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Preface

Welcome to VMCAI 2020, the 21st International Conference on Verification, Model
Checking, and Abstract Interpretation. VMCAI 2020 is part of the 47th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2020),
at the hotel JW Marriott New Orleans, USA, during January 19–21, 2020.

Conference Description. VMCAI provides a forum for researchers from the
communities of verification, model checking, and abstract interpretation, facilitating
interaction, cross-fertilization, and advancement of hybrid methods that combine these
and related areas. The topics of the conference include program verification, model
checking, abstract interpretation, program synthesis, static analysis, type systems,
deductive methods, decision procedures, theorem proving, program certification,
debugging techniques, program transformation, optimization, and hybrid and
cyber-physical systems.

Focus on Reproducibility of Research Results. VMCAI 2020 included, for the
first time in this conference series, an optional artifact-evaluation (AE) process for
submitted papers. Reproducibility of results is of the utmost importance to the VMCAI
community. Therefore, we encouraged all authors to submit an artifact for evaluation.
An artifact is any additional material (software, data sets, machine-checkable proofs,
etc.) that substantiates the claims made in a paper and ideally makes them fully
replicable. The evaluation and archival of artifacts improves replicability and trace-
ability for the benefit of future research and the broader VMCAI community.

Paper Selection. VMCAI 2020 received a total of 44 paper submissions. After a
rigorous review process, with each paper reviewed by at least 3 Program Committee
(PC) members, followed by an online discussion, the PC accepted 21 full papers for
publication in the proceedings and presentation at the conference. The main selection
criteria were quality, relevance, and originality.

Invited Talks. The conference program includes three keynotes, by Rajeev Alur
(University of Pennsylvania, USA) on “Model Checking for Safe Autonomy,” Marta
Kwiatkowska (University of Oxford, UK) on “Safety and Robustness for Deep
Learning with Provable Guarantees,” and Moshe Vardi (Rice University, USA) on
“The Siren Song of Temporal Synthesis.”

Winter School. The VMCAI Winter School is the second winter school on formal
methods, associated with VMCAI 2020, New Orleans, USA, during January 16–18,
2020. In the vein of VMCAI, the school is meant to facilitate interaction,
cross-fertilization, and advancement of hybrid methods that combine verification,
model checking, and abstract interpretation. The school is aimed primarily at PhD
students who intend to continue their study in the field of verification.

The VMCAI Winter School program features lectures and tutorials from both aca-
demia and industry experts in their respective fields. The school covers several funda-
mental aspects of formal methods and applications. The following speakers were invited



to give lectures at the winter school: Dirk Beyer (Ludwig-Maximilians-Universität
München, Germany), Igor Konnov (Interchain Foundation, Switzerland), Marta
Kwiatkowska (University of Oxford, UK), Corina Pasareanu (NASA Ames and
Carnegie Mellon University, USA), Andreas Podelski (University of Freiburg,
Germany), Natasha Sharygina (University of Lugano, Switzerland), Helmut Seidl
(TU Munich, Germany), Moshe Vardi (Rice University, USA), Mike Whalen (Amazon
Web Services, USA), and Valentin Wüstholz (Consensys Diligence, Germany).

The venue of the second VMCAI Winter School is the New Orleans BioInnovation
Center. The school location and schedule was chosen to integrate nicely with POPL
and VMCAI, New Orleans, USA, during January 19–25, 2020. The registration for the
winter school was free but mandatory. As part of the registration, the applicants could
apply for travel and accommodation support, which we were able to provide thanks to
the generous donations of the sponsors. Furthermore, we helped to find room mates to
reduce the accommodation cost. Students with alternative sources of funding were also
welcome.

Artifact-Evaluation Process. For the first time, VMCAI 2020 used an AE process.
The goals of AE are: (1) getting more substantial evidence for the claims in the papers,
(2) simplify the replication of results in the paper, and (3) reward authors who create
artifacts. Artifacts are any additional material that substantiates the claims made in the
paper. Examples for artifacts are software, tools, frameworks, data sets, test suites, and
machine-checkable proofs.

Authors of submitted papers were encouraged to submit an artifact to the VMCAI
2020 Artifact-Evaluation Committee (AEC). We also encouraged the authors to make
their artifacts publicly and permanently available. Artifacts had to be provided as .zip
files and contain all necessary software for AE as well as a README file that describes
the artifact and provides instructions on how to replicate the results. AE had to be
possible in the VMCAI 2020 virtual machine, which runs an Ubuntu 19.04 with Linux
5.0.0-31 and was made publicly and permanently available on Zenodo1.

All submitted artifacts were evaluated in parallel with the papers, and a meta-review
of the AE was provided to the reviewers of the respective papers. We assigned three
members of the AEC to each artifact and assessed it in two phases. First, the reviewers
tested if the artifacts were working, e.g., no corrupted or missing files exist and the
evaluation does not crash on simple examples. 5 of the 15 submitted artifacts passed the
first phase without any problems and we skipped the author clarification phase for
them. For the remaining 10 artifacts, we sent the issues of reviewers to the authors. The
authors’ answers to the reviewers were distributed among the reviewers, and the
authors were allowed to submit an updated artifact to fix issues found during the test
phase. In the second phase, the assessment phase, the reviewers aimed at replicating
any experiments or activities and evaluated the artifact based on the following five
questions:

1. Is the artifact consistent with the paper and the claims made by the paper?
2. Are the results of the paper replicable through the artifact?
3. Is the artifact complete, i.e., how many of the results of the paper are replicable?

1 https://doi.org/10.5281/zenodo.3533104
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4. Is the artifact well-documented?
5. Is the artifact easy to use?

10 of the 15 submitted artifacts passed this second phase and were rewarded with the
‘Functional’ VMCAI AE badge. Independently, artifacts that are permanently and
publicly available were rewarded with the ‘Available’ VMCAI AE badge. 6 artifacts
received this ‘Available’ badge.

The VMCAI 2020 AEC consisted of the two chairs, Daniel Dietsch and
Marie-Christine Jakobs, and 20 committee members from 9 different countries.

Acknowledgments. We would like to thank, first of all, the authors for submitting
their papers to VMCAI 2020. The PC and the AEC did a great job of reviewing: they
contributed informed and detailed reports, and took part in the discussions during the
virtual PC meeting. We warmly thank the keynote speakers for their participation and
contributions. We also thank the general chair of the POPL 2020 week, Brigitte
Pientka, and her team for the overall organization. We thank Alfred Hofmann and his
publication team at Springer-Verlag for their support, and EasyChair for providing an
excellent review system. Special thanks goes to the VMCAI Steering Committee, and
in particular to Lenore Zuck, Ruzica Piskac, and Andreas Podelski, for their helpful
advice, assistance, and support.

Last but not least, we thank the sponsors of the VMCAI winter school —Amazon
Web Services, Moloch DAO/Consensys Diligence, Interchain, Cadence, and
Springer— for their financial contributions to supporting the winter school for students.

December 2019 Dirk Beyer
Damien Zufferey

PC Chairs

Daniel Dietsch
Marie-Christine Jakobs

AEC Chairs
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Witnessing Secure Compilation

Kedar S. Namjoshi1(B) and Lucas M. Tabajara2

1 Nokia Bell Labs, Murray Hill, NJ, USA
kedar.namjoshi@nokia-bell-labs.com
2 Rice University, Houston, TX, USA

lucasmt@rice.edu

Abstract. Compiler optimizations may break or weaken the security
properties of a source program. This work develops a translation valida-
tion methodology for secure compilation. A security property is expressed
as an automaton operating over a bundle of program traces. A refinement
proof scheme derived from a property automaton guarantees that the
associated security property is preserved by a program transformation.
This generalizes known refinement methods that apply only to specific
security properties. In practice, the refinement relations (“security wit-
nesses”) are generated during compilation and validated independently
with a refinement checker. This process is illustrated for common opti-
mizations. Crucially, it is not necessary to formally verify the compiler
implementation, which is infeasible for production compilers.

1 Introduction

Optimizing compilers are used to improve the run time performance of soft-
ware programs. An optimization is correct if it preserves input-output behavior.
A number of approaches, including automated testing (cf. [13,28]), translation
validation (cf. [22,25,31]), and full mathematical proof (cf. [14]) have been devel-
oped to gain confidence in the correctness of compilation.

Correctness does not, however, guarantee the preservation of security prop-
erties. It is known that common optimizations may weaken or break security
properties that hold of a source program (cf. [10,12]). A secure compiler is one
that, in addition to being correct, also preserves security properties. This work
provides a methodology for formally establishing secure compilation.

int x := read_secret_key();
use(x);
x := 0; // clear secret data
rest_of_program();

int x := read_secret_key();
use(x);
skip; // dead store removed
rest_of_program();

Fig. 1. Information leakage through optimization. Source program on left, optimized
program on right.

c© Springer Nature Switzerland AG 2020
D. Beyer and D. Zufferey (Eds.): VMCAI 2020, LNCS 11990, pp. 1–22, 2020.
https://doi.org/10.1007/978-3-030-39322-9_1
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2 K. S. Namjoshi and L. M. Tabajara

Figure 1 shows an instance of the dead store removal optimization. This opti-
mization eliminates stores (i.e., assignment statements) that have no effect on
the input-output behavior of the source program. If variable x is not referenced
in rest_of_program, the optimization correctly replaces x := 0 with skip. The
replacement, however, exposes the secret key stored in x to the rest of the pro-
gram, which may be vulnerable to an attack that leaks this secret, thus breaking
a vital security property of the source program.

Compiler directives can be used to prevent this optimization from taking
effect. Such fixes are unsatisfactory and brittle, however, as they assume that
programmers are aware of the potential security issue and understand enough
of a compiler’s workings to choose and correctly place the directives. Moreover,
the directives may not be portable across compilers [29].

It is far more robust to build security preservation into a compiler. The clas-
sical approach constructs a mathematical proof of secure compilation, applicable
to all source programs. This is highly challenging for at least two reasons. The
first is that of proof complexity. Past experience shows that such proofs can
take man-years of effort, even for compact, formally designed compilers such as
CompCert [4,14]. Constructing such proofs is entirely infeasible for production
compilers such as GCC or LLVM, which have millions of lines of code written in
hard-to-formalize languages such as C and C++. The second reason is that, unlike
correctness, secure compilation is not defined by a single property: each source
program may have its own notion of security. Even standard properties such as
non-interference and constant-time have subtle variants.

This work addresses both issues. To tackle the issue of proof complexity, we
turn to Translation Validation [25] (TV), where correctness is established at
compile time only for the program being compiled. We use a form of TV that we
call “witnessing” [21,26], where a compiler is designed to generate a proof (also
called a “certificate” or a “witness”) of property preservation. For correctness
properties, this proof takes the form of a refinement relation relating single traces
of source and target programs. For security preservation, it is necessary to have
refinement relations that relate “bundles” of k traces (k ≥ 1) from the source
and target programs.

To address the second issue, we show how to construct property-specific
refinement proof rules. A security property is defined as an automaton operat-
ing on trace bundles, a flexible formulation that encompasses standard security
properties such as non-interference and constant-time. The shape of the induced
refinement proof rule follows the structure of the property automaton.

Refinement rules are known for the important security properties of non-
interference [3,8,17] and constant-time execution [4]. We show that these rules
arise easily and directly from an automaton-based formulation. As automata
can express a large class of security properties, including those in the HyperLTL
logic [6], the ability to derive refinement proof rules from automata considerably
expands the reach of the refinement method.

We now discuss these contributions in more detail. We use a logic akin to
HyperLTL [6] to describe security hyperproperties [7,27], which are sets of sets
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of sequences. A security property ϕ is represented by a formula of the shape
Q1π1, . . . , Qkπk : κ(π1, . . . , πk), where the πi’s represent traces over an observa-
tion alphabet, the Qi’s stand for either existential or universal quantification,
and κ is a set of bundles of k program traces, represented by a Büchi automaton
Aκ whose language is the complement of κ. The structure of this automaton is
reflected in the derived refinement proof rule for ϕ.

A transformation from program S to program T preserves a security property
ϕ if every violation of ϕ by T has a matching violation of ϕ by S. Intuitively,
matching violations have the same inputs and are of the same type.

The first refinement scheme applies to purely universal properties, those of
the form ∀π1 . . . ∀πk : κ(π1, . . . , πk). The witness is a refinement relation between
the product transition systems Aκ × T k and Aκ × Sk. The second refinement
scheme applies to arbitrary properties (∀∃ alternation is used to express limits
on an attacker’s knowledge). Here, the witness is a pair of relations: one being
a refinement relation between Aκ × T k and Aκ × Sk, as before; the second
component is an input-preserving bisimulation relation between T and S.

We define refinement relations for several common compiler optimizations.
Those relations are logically simple, ensuring that their validity can be checked
automatically with SMT solvers. Crucially, the witnessing methodology does
not require one to verify either the compiler implementation or the proof gen-
erator, considerably reducing the size of the trusted code base and making the
methodology applicable to production compilers.

2 Example

To illustrate the approach, consider the following source program, S.

L1: int x := read_secret_input();
L2: int y := 42;
L3: int z := y - 41;
L4: x := x * (z - 1);
L5:

In this program, x stores the value of a secret input. As will be described in
Sect. 3.1, this program can be modeled as a transition system. The states of the
system can be considered to be pairs (α, �). The first component α : V → Int
is a partial assignment mapping variables in V = {x, y, z} to values in Int, the
set of values that a variable of type int can contain. The second component
� ∈ Loc = {L1, L2, L3, L4, L5} is a location in the program, indicating the next
instruction to be executed. In the initial state, α is empty and � points to location
L1. Transitions of the system update α according to the variable assignment
instructions, and � according to the control flow of the program.

To specify a notion of security for this program, two elements are neces-
sary: an attack model describing what an attacker is assumed to be capable of
observing (Sect. 3.2) and a security property over a set of program executions
(Sect. 4). Suppose that an attacker can see the state of the memory at the end
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of the program, represented by the final value of α, and the security property
expresses that for every two possible executions of the program, the final state of
the memory must be the same, regardless of the secret input, thus guaranteeing
that the secret does not leak. Unlike correctness properties, this is a two-trace
property, which can be written as a formula of the shape ∀π1, π2 : κ(π1, π2),
where κ(π1, π2) expresses that the memory at the end of the program is the
same for traces π1 and π2 (cf. Section 4). The negation of κ can then be trans-
lated into an automaton A that detects violations of this property.

It is not hard to see that the program satisfies the security property, since
y and z have constant values and at the end of the program x is 0. However,
it is important to make sure that this property is preserved after the compiler
performs optimizations that modify the source code. This can be done if the
compiler can provide a witness in the form of a refinement relation (Sect. 5).
Consider, for example, a compiler which performs constant folding, which sim-
plifies expressions that can be inferred to be constant at compile time. The
optimized program T would be:

L1: int x := read_secret_input();
L2: int y := 42;
L3: int z := 1;
L4: x := 0;
L5:

By taking the product of the automaton A with two copies of S or T (one for
each trace πi considered by κ), we obtain automata A × S2 and A × T 2 whose
language is the set of pairs of traces in each program that violates the property.
Since this set is empty for S, it should be empty for T as well, a fact which
can be certified by providing a refinement relation R between the state spaces
of A × T 2 and A × S2.

As the transformation considered here is very simple, the refinement relation
is simple as well: it relates configurations (q, t0, t1) and (p, s0, s1) of the two
spaces if the automaton states p, q are identical, corresponding program states
t0, s0 and t1, s1 are also identical (including program location), and the variables
in s0 and s1 have the constant values derived at their location (see Sect. 6 for
details). The inductiveness of this relation over transitions of A × T 2 and A × S2

can be easily checked with an SMT solver by using symbolic representations.

3 Background

We propose an abstract program and attack model defined in terms of labeled
transition systems. We also define Büchi automata over bundles of program
traces, which will be used in the encoding of security properties, and describe
a product operation between programs and automata that will assist in the
verification of program transformations.
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Notation. Let Σ be an alphabet, i.e., a set of symbols, and let Γ be a subset
of Σ. An infinite sequence u = u(0), u(1), . . ., where u(i) ∈ Σ for all i, is said to
be a “sequence over Σ”. For variables x, y denoting elements of Σ, the notation
x =Γ y (read as “x and y agree on Γ”) denotes the predicate where either x and
y are both not in Γ , or x and y are both in Γ and x = y. For a sequence u over
Σ, the notation u|Γ (read as “u projected to Γ”) denotes the sub-sequence of u
formed by elements in Γ . The operator compress(v) = v|Σ , applied to a sequence
v over Σ ∪ {ε}, removes all ε symbols in v to form a sequence over Σ. For a
bundle of traces w = (w1, . . . , wk) where each trace is an infinite sequence of Σ,
the operator zip(w) defines an infinite sequence over Σk obtained by choosing
successive elements from each trace. In other words, u = zip(w) is defined by
u(i) = (w1(i), . . . , wk(i)), for all i. The operator unzip is its inverse.

3.1 Programs as Transition Systems

A program is represented as a transition system S = (C,Σ, ι,→):

– C is a set of program states, or configurations;
– Σ is a set of observables, partitioned into input, I, and output, O;
– ι ∈ C is the initial configuration;
– (→) ⊆ C × (Σ ∪ {ε}) × C is the transition relation.

Transitions labeled by input symbols in I represent instructions in the pro-
gram that read input values, while transitions labeled by output symbols in O
represent instructions that produce observable outputs. Transitions labeled by
ε represent internal transitions where the state of the program changes without
any observable effect.

An execution is an infinite sequence of transitions (c0, w0, c1)(c1, w1, c2) . . . ∈
(→)ω such that c0 = ι and adjacent transitions are connected as shown. (We
may write this as the alternating sequence c0, w0, c1, w1, c2, . . ..) To ensure that
every execution is infinite, we assume that (→) is left-total. To model programs
with finite executions, we assume that the alphabet has a special termination
symbol ⊥, and add a transition (c,⊥, c) for every final state c. We also assume
that there is no infinite execution where the transition labels are always ε from
some point on.

An execution x = (c0, w0, c1)(c1, w1, c2) . . . has an associated trace, denoted
trace(x), given by the sequence w0, w1, . . . over Σ ∪ {ε}. The compressed trace
of execution x, compress(trace(x)), is denoted ctrace(x). The final assumption
above ensures that the compressed trace of an infinite execution is also infinite.
The sequence of states on an execution x is denoted by states(x).

3.2 Attack Models as Extended Transition Systems

The choice of how to model a program as a transition system depends on the
properties one would like to verify. For correctness, it is enough to use the stan-
dard input-output semantics of the program. To represent security properties,
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however, it is usually necessary to extend this base semantics to bring out inter-
esting features. Such an extension typically adds auxiliary state and new obser-
vations needed to model an attack. For example, if an attack is based on program
location, that is added as an auxiliary state component in the extended program
semantics. Other examples of such structures are modeling a program stack as
an array with a stack pointer, explicitly tracking the addresses of memory reads
and writes, and distinguishing between cache and main memory accesses. These
extended semantics are roughly analogous to the leakage models of [4]. The base
transition system is extended to one with a new state space, denoted Ce; new
observations, denoted Oe; and a new alphabet, Σe, which is the union of Σ with
Oe. The extensions do not alter input-output behavior; formally, the original
and extended systems are bisimular with respect to Σ.

3.3 Büchi Automata over Trace Bundles

A Büchi automaton over a bundle of k infinite traces over Σe is specified as
A = (Q,Σk

e , ι,Δ, F ), where:

– Q is the state space of the automaton;
– Σk

e is the alphabet of the automaton, each element is a k-vector over Σe;
– ι ∈ Q is the initial state;
– Δ ⊆ Q × Σk

e × Q is the transition relation;
– F ⊆ Q is the set of accepting states.

A run of A over a bundle of traces t = (t1, . . . , tk) ∈ (Σω)k is an alternating
sequence of states and symbols, of the form (q0 = ι), a0, q1, a1, q2, . . . where for
each i, ai = (t1(i), . . . , tk(i))—that is, a0, a1, . . . equals zip(t)—and (qi, ai, qi+1) is
in the transition relation Δ. The run is accepting if a state in F occurs infinitely
often along it. The language accepted by A, denoted by L(A), is the set of all
k-trace bundles that are accepted by A.

Automaton-Program Product. In verification, the set of traces of a program
that violate a property can be represented by an automaton that is the product
of the program with an automaton for the negation of that property. Security
properties may require analyzing multiple traces of a program; therefore, we
define the analogous automaton as a product between an automaton A for the
negation of the security property and the k-fold composition P k of a program
P . For simplicity, assume for now that the program P contains no ε-transitions.
Programs with ε-transitions can be handled by converting A over Σk

e into a new
automaton Â over (Σe ∪ {ε})k (see full version [20] for details).

Let A = (QA, Σk
e ,ΔA, ιA, FA) be a Büchi automaton (over a k-trace bundle)

and P = (C,Σe, ι,→) be a program. The product of A and P k, written A×P k,
is a Büchi automaton B = (QB , Σk

e ,ΔB , ιB , FB), where:

– QB = QA × Ck;
– ιB = (ιA, (ι, . . . , ι));
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– ((q, s), u, (q′, s′)) is in ΔB if, and only if, (q, u, q′) is in ΔA, and (si, ui, s
′
i) is

in (→) for all i;
– (q, s) is in FB iff q is in FA.

Lemma 1. Trace zip(t1, . . . , tk) is in L(A × P k) if, and only if, zip(t1, . . . , tk)
is in L(A) and, for all i, ti = trace(xi) for some execution xi of P .

Bisimulations. For programs S = (CS , Σe, ι
S ,→S) and T = (CT , Σe, ι

T ,→T ),
and a subset I of Σe, a relation B ⊆ CT × CS is a bisimulation for I if:

1. (ιT , ιS) ∈ B;
2. For every (t, s) in B and (t, v, t′) in (→T ) there is u and s′ such that (s, u, s′)

is in (→S) and (t′, s′) ∈ B and u =I v.
3. For every (t, s) in B and (s, u, s′) in (→S) there is v and t′ such that (t, v, t′)

is in (→T ) and (t′, s′) ∈ B and u =I v.

4 Formulating Security Preservation

A temporal correctness property is expressed as a set of infinite traces. Many
security properties can only be described as properties of pairs or tuples of
traces. A standard example is that of noninterference, which models potential
leakage of secret inputs: if two program traces differ only in secret inputs, they
should be indistinguishable to an observer that can only view non-secret inputs
and outputs. The general notion is that of a hyperproperty [7,27], which is a set
containing sets of infinite traces; a program satisfies a hyperproperty H if the
set of all compressed traces of the program is an element of H. Linear Temporal
Logic (LTL) is commonly used to express correctness properties. Our formulation
of security properties is an extension of the logic HyperLTL, which can express
common security properties including several variants of noninterference [6].

A security property ϕ has the form (Q1π1, . . . , Qnπk : κ(π1, . . . , πk)), where
the Qi’s are first-order quantifiers over trace variables, and κ is set of k-trace
bundles, described by a Büchi automaton whose language is the complement
of κ. This formulation borrows the crucial notion of trace quantification from
HyperLTL, while generalizing it, as automata are more expressive than LTL,
and atomic propositions may hold of k-vectors rather than on a single trace.

The satisfaction of property ϕ by a program P is defined in terms of the fol-
lowing finite two-player game, denoted G(P,ϕ). The protagonist, Alice, chooses
an execution of P for each existential quantifier position, while the antagonist,
Bob, chooses an execution of P at each universal quantifier position. The choices
are made in sequence, from the outermost to the innermost quantifier. A play
of this game is a maximal sequence of choices. The outcome of a play is thus
a “bundle” of program executions, say σ = (σ1, . . . , σk). This induces a corre-
sponding bundle of compressed traces, t = (t1, . . . , tk), where ti = ctrace(σi) for
each i. This play is a win for Alice if t satisfies κ and a win for Bob otherwise.

A strategy for Bob is a function, say ξ, that defines a non-empty set of
executions for positions i where Qi is a universal quantifier, in terms of the
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earlier choices σ1, . . . , σi−1; the choice of σi is from this set. A strategy for
Alice is defined symmetrically. A strategy is winning for player X if every play
following the strategy is a win for X. This game is determined, in that for any
program P one of the players has a winning strategy. Satisfaction of a security
property is defined by the following.

Definition 1. Program P satisfies a security property ϕ, written |=P ϕ, if the
protagonist has a winning strategy in the game G(P,ϕ).

4.1 Secure Program Transformation

Let S = (CS , Σe, ι
S ,→S) be the transition system representing the original

source program and let T = (CT , Σe, ι
T ,→T ) be the transition system for the

transformed target program. Any notion of secure transformation must imply
the preservation property that if S satisfies ϕ and the transformation from S to
T is secure for ϕ then T also satisfies ϕ.

Preservation in itself is, however, too weak to serve as a definition of
secure transformation. Consider the transformation shown in Fig. 1, with use(x)
defined so that it terminates execution if the secret key x is invalid. As the source
program violates non-interference by leaking the validity of the key, the trans-
formation would be trivially secure if the preservation property is taken as the
definition of secure transformation. But that conclusion is wrong: the leak intro-
duced in the target program is clearly different and of a more serious nature, as
the entire secret key is now vulnerable to attack.

This analysis prompts the formulation of a stronger principle for secure trans-
formation. (Similar principles have been discussed in the literature, e.g., [11].)
The intuition is that every instance and type of violation in T should have a
matching instance and type of violation in S. To represent different types of
violations, we suppose that the negated property is represented by a collection
of automata, each checking for a specific type of violation.

Definition 2. A strategy ξS for the antagonist in G(S, ϕ) (representing a viola-
tion in S) matches a strategy ξT for the antagonist in game G(T, ϕ) (representing
a violation in T ) if for every maximal play u = u1, . . . , uk following ξT , there
is a maximal play v = v1, . . . , vk following ξS such that (1) the two plays are
input-equivalent, i.e., ui|I = vi|I for all i, and (2) if u is accepted by the m-th
automaton for the negated property, then v is accepted by the same automaton.

Definition 3. A transformation from S to T preserves security property ϕ if
for every winning strategy for the antagonist in the game G(T, ϕ), there is a
matching winning strategy for the antagonist in the game G(S, ϕ).

As an immediate consequence, we have the preservation property.

Theorem 1. If a transformation from S to T preserves security property ϕ and
if S satisfies ϕ, then T satisfies ϕ.
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In the important case where the security property is purely universal, of the
form ∀π1, . . . ,∀πk : κ(π1, . . . , πk), a winning strategy for the antagonist is simply
a bundle of k traces, representing an assignment to π1, . . . , πk that falsifies κ.

In the rest of the paper, we consider ϕ to be specified by a single automaton
rather than a collection, to avoid notational clutter.

5 Refinement for Preservation of Universal Properties

We define an automaton-based refinement scheme that is sound for purely-
universal properties ϕ, of the form (∀π1, . . . ,∀πk : κ(π1, . . . , πk)). In Sect. 8,
this is generalized to properties with arbitrary quantifier prefixes. We assume
for simplicity that programs S and T have no ε-transitions; we discuss how to
remove this assumption at the end of the section. An automaton-based refine-
ment scheme for preservation of ϕ is defined below.

Definition 4. Let S, T be programs over the same alphabet, Σe, and A be a
Büchi automaton over Σk

e . Let I be a subset of Σe. A relation R ⊆ (QA ×
(CT )k) × (QA × (CS)k) is a refinement relation from A × T k to A × Sk for I if

1. Initial configurations are related, i.e., ((ιA, ιT
k

), (ιA, ιS
k

)) is in R, and
2. Related states have matching transitions. That is, if ((q, t), (p, s)) ∈ R and

((q, t), v, (q′, t′)) ∈ΔA×Tk

, there are u, p′, and s′ such that the following hold:
(a) ((p, s), u, (p′, s′)) is a transition in ΔA×Sk

;
(b) u and v agree on I, that is, ui =I vi for all i;
(c) the successor configurations are related, i.e., ((q′, t′), (p′, s′)) ∈ R; and
(d) acceptance is preserved, i.e., if q′ ∈ F then p′ ∈ F .

Lemma 2. If there exists a refinement from A × T k to A × Sk then, for every
sequence v in L(A × T k), there is a sequence u in L(A × Sk) such that u and v
are input-equivalent.

Theorem 2 (Universal Refinement). Let ϕ = (∀π1, . . . , πk : κ(π1, . . . , πk))
be a universal security property; S and T be programs over a common alphabet
Σe = Σ ∪ Oe; A = (Q,Σk

e , ι,Δ, F ) be an automaton for the negation of κ; and
R ⊆ (Q× (CT )k)× (Q× (CS)k) be a refinement relation from A × T k to A×Sk

for I. Then, the transformation from S to T preserves ϕ.

Proof. A violation of ϕ by T is given by a bundle of executions of T that violates
κ. We show that there is an input-equivalent bundle of executions of S that also
violates κ. Let x = (x1, . . . , xk) be a bundle of executions of T that does not
satisfy κ. By Lemma 1, v = zip(trace(x1), . . . , trace(xk)) is accepted by A × T k.
By Lemma 2, there is a sequence u accepted by A × Sk that is input-equivalent
to v. Again by Lemma 1, there is a bundle of executions y = (y1, . . . , yk) of S
such that u = zip(trace(y1), . . . , trace(yk)) and y violates κ. As u and v are input
equivalent, trace(xi) and trace(yi) are input-equivalent for all i, as required. 
�
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The refinement proof rule for universal properties is implicit: a witness is a
relation R from A × T k to A × Sk; this is valid if it satisfies the conditions set
out in Definition 4. The theorem establishes the soundness of this proof rule.
Examples of witnesses for specific compiler transformations are given in Sect. 6,
which also discusses SMT-based checking of the proof requirements.

To handle programs that include ε-transitions, we can convert the automaton
A over Σk

e into a buffering automaton Â over (Σe ∪ {ε})k, such that Â accepts
zip(v1, . . . , vk) iff A accepts zip(compress(v1), . . . , compress(vk)). The refinement
is then defined over Â × Sk and Â × T k. Details can be found in the full ver-
sion [20]. Another useful extension is the addition of stuttering, which can be
necessary for example when a transformation removes instructions. Stuttering
relaxes Definition 4 to allow multiple transitions on the source to match a sin-
gle transition on the target, or vice-versa. This is a standard technique for
verification [5] and one-step formulations suitable for SMT solvers are known
(cf. [14,18]).

6 Checking Transformation Security

In this section, we formulate the general construction of an SMT formula for
the correctness of a given refinement relation. We then show how to express a
refinement relation for several common compiler optimizations.

6.1 Refinement Checking with SMT Solvers

Assume that the refinement relation R, the transition relations Δ, (→T ) and
(→S) and the set of accepting states F are described by SMT formulas over
variables ranging over states and alphabet symbols.

To verify that the formula R is indeed a refinement, we perform an inductive
check following Definition 4. To prove the base case, which says that the initial
states of A × T k and A × Sk are related by R, we simply evaluate the formula
on the initial states. The proof of the inductive step requires establishing that R
is closed under automaton transitions. This can be expressed by an SMT query
of the shape (∀qT , qS , pT , t, s, t′, σT : (∃σS , pS , s′ : ϕ1 → ϕ2)), where:

ϕ1 ≡ R((qT , t), (qS , s)) ∧ Δ(qT , σT , pT ) ∧
k∧

i=1

(ti
σT
i−−→T t′i)

ϕ2 ≡ Δ(qS , σS , pS) ∧
k∧

i=1

(si
σS
i−−→S s′

i) ∧
k∧

i=1

(σT
i =I σS

i )

∧ R((pT , t′), (pS , s′)) ∧ (F (pT ) → F (pS))

This formula has a quantifier alternation, which is difficult for SMT solvers to
handle. It can be reduced to a quantifier-free form by providing Skolem functions
from the universal to the existential variables. We expect the compiler to generate
these functions as part of the witness generation mechanism.
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As we will see in the examples below, in many cases the compiler can choose
Skolem functions that are simple enough so that the validity of the formula can
be verified using only equality reasoning, making it unnecessary to even expand
the definitions of Δ and F . The general expectation is that a compiler writer
must have a proof in mind for each optimization and should therefore be able
to provide the Skolem functions necessary to establish refinement.

6.2 Refinement Relations for Compiler Optimizations

We consider three common optimizations below. In addition, further exam-
ples for dead-branch elimination, expression flattening, loop peeling and register
spilling can be found in the full version [20]. All transformations are based on
the examples in [4].

Example 1: Constant Folding. Section 2 presented an example of a program
transformation by constant folding. We now proceed to show how a refinement
relation can be defined to serve as a witness for the security of this transforma-
tion, so its validity can be checked using an SMT solver as described above.

Recall that states of S and T are of the form (α, �), where α : V → Int and
� ∈ Loc. Then, R can be expressed by the following formula over states qT , qS

of the automaton A and states t of T k and s of Sk, where ti = (αT
i , �T

i ):

(qT = qS) ∧ (t = s) ∧
k∧

i=1

(�T
i = L3 → αT

i (y) = 42)

∧
k∧

i=1

(�T
i = L4 → αT

i (z) = 1) ∧
k∧

i=1

(�T
i = L5 → αT

i (x) = 0)

The final terms express known constant values, necessary to establish inductive-
ness. In general, if the transformation relies on the fact that at location � variable
v has constant value c, the constraint

∧k
i=1(�

T
i = � → αT

i (v) = c) is added to
R. Since this is a simple transformation, equality between states is all that is
needed to establish a refinement.

R can be checked using the SMT query described in Sect. 6.1. For this trans-
formation, the compiler can choose Skolem functions that assign σS = σT and
pS = pT . In this case, from (qT = qS) (given by the refinement relation) and
Δ(qT , σT , pT ) the solver can automatically infer Δ(qS , σS , pS), (σT

i =I σS
i ) and

F (pT ) → F (pS) using only equality reasoning. Therefore, the refinement check is
independent of the security property. This applies to several other optimizations
as well, as the reasons for preserving security are usually simple.

Example 2: Common-Branch Factorization. Common-branch factoriza-
tion is a program optimization applied to conditional blocks where the instruc-
tions at the beginning of the then and else blocks are the same. If the condition
does not depend on a variable modified by the common instruction, this instruc-
tion can be moved outside of the conditional. Consider for example:
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// Source program S

L1: if (j < arr_size) {

L2: a := arr[0];

L3: b := arr[j];

L4: } else {

L5: a := arr[0];

L6: b := arr[arr_size-1];

L7: }

// Target program T

L1: a := arr[0];

L2: if (j < arr_size) {

L3: b := arr[j];

L4: } else {

L5:

L6: b := arr[arr_size-1];

L7: }

Suppose that the attack model allows the attacker to observe memory
accesses, represented by the index j of every array access arr[j]. We assume
that other variables are stored in registers rather than memory (see full ver-
sion [20] for a discussion on register spilling). Under this attack model the com-
pressed traces produced by T are identical to the ones of S, therefore the trans-
formation is secure regardless of the security property ϕ. However, because the
order of instructions is different, a more complex refinement relation R is needed,
compared to constant folding:

((t = s) ∧ (qT = qS))∨
k∧

i=1

((�T
i = L2)

∧ ((αS
i (j) < αS

i (arr size)) ? (�S
i = L2) : (�S

i = L5))

∧ (αT
i = αS

i [a := arr[0]]) ∧ Δ(qS , (0, . . . , 0), qT ))

The refinement relation above expresses that the states of the programs and
the automata are identical except when T has executed the factored-out instruc-
tion but S has not. At that point, T is at location L2 and S is either at location
L2 or L5, depending on how the guard was evaluated. It is necessary for R to
know that the location of S depends on the evaluation of the guard, so that it
can verify that at the next step T will follow the same branch. The states of
Â × Sk and Â × T k are then related by saying that after updating a := arr[0]
on every track of S the two states are identical. (The notation α[x := e] denotes
the state α′ that is identical to α except at x, where its value is given by α(e).)
As this instruction produces an observation representing the index of the array
access, the states of the automata are related by Δ(qS , (0, . . . , 0), qT ), indicating
that the access has been observed by Â × T k but not yet by Â × Sk.

Example 3: Switching Instructions. This optimization switches two sequen-
tial instructions if the compiler can guarantee that the program’s behavior will
not change. For example, consider the following source and target programs:

// Source program S

L1: int a[10], b[10], j;

L2: a[0] := secret_input();

L3: b[0] := secret_input();

L4: for (j:=1; j<10; j++) {

L5: a[j] := b[j-1];

L6: b[j] := a[j-1];

L7: public_output(j);

L8: }

// Target program T

L1: int a[10], b[10], j;

L2: a[0] := secret_input();

L3: b[0] := secret_input();

L4: for (j:=1; j<10; j++) {

L5: b[j] := a[j-1];

L6: a[j] := b[j-1];

L7: public_output(j);

L8: }
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The traces produced by T and S have identical public outputs. Therefore,
a refinement relation for this pair of programs can be given by the following
formula, regardless of the security property under verification:

(qS = qT )∧
k∧

i=1

((�S
i = �T

i ) ∧ (�S
i �= L6 → αS

i = αT
i )

∧ (�S
i = L6 → αS

i [b[j] := a[j-1]] = αT
i [a[j] := b[j-1]]))

The formula expresses that the state of the source and target programs is the
same except between executing the two switched instructions. At that point, the
state of the two programs is related by saying that after executing the second
instruction in each of the programs they will again have the same state.

More generally, a similar refinement relation can be used for any source-target
pair that satisfies the assumptions that (a) neither of the switched instructions
produces an observable output, and (b) after both switched instructions are
executed, the state of the two programs is always the same. All that is neces-
sary in this case is to replace L6 by the appropriate location �S

switch where the
switch happens and αS

i [b[j] := a[j-1]] = αT
i [a[j] := b[j-1]] by an appropri-

ate formula δ(αS
i , αT

i ) describing the relationship between the states of the two
programs at that location.

If the instructions being switched do produce observations, setting up the
refinement relation becomes harder. This is due to the fact that the relationship
(qS = qT ) might not hold in location �S

switch, but expressing the true relationship
between qS and qT is complex and might require knowledge of the state of all
copies of S and T at once. In general, reordering transformations require the
addition of history variables to set up an inductive refinement relation. Details
can be found in the full version [20].

7 Connections to Existing Proof Rules

We establish connections to known proof rules for preservation of the non-
interference [3,8,17] and constant-time [4] properties. We show that under the
assumptions of those rules, there is a simple and direct definition of a relation
that meets the automaton-based refinement conditions for automata represent-
ing these properties. The automaton-based refinement method is thus general
enough to serve as a uniform replacement for the specific proof methods.

7.1 Constant Time

We first consider the lockstep CT-simulation proof rule introduced in [4] to show
preservation of the constant-time property. For lack of space, we refer the reader
to the original paper for the precise definitions of observational non-interference
(Definition 1), constant-time as observational non-interference (Definition 4),
lockstep simulation (Definition 5, denoted ≈), and lockstep CT-simulation (Def-
inition 6, denoted (≡S ,≡C)).
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We do make two minor adjustments to better fit the automaton notion,
which is based on trace rather than state properties. First, we add a dummy
initial source state Ŝ(i) with a transition with input label i to the actual initial
state S(i); and similarly for the target program, C. Secondly, we assume that a
final state has a self-loop with a special transition label, ⊥. Then the condition
(b ∈ Sf ↔ b′ ∈ Sf ) from Definition 1 in [4] is covered by the (existing) label
equality t = t′. With these changes, the observational non-interference property
can be represented in negated form by the automaton shown in Fig. 2, which
simply looks for a sequence starting with an initial pair of input values satisfying
φ and ending in unequal transition labels. The states are I (initial), S (sink), M
(mid), and F (fail), which is also the accepting state.

I M FS
φ(i1, i2)¬φ(i1, i2)

true truet1 = t2

t1 �= t2

Fig. 2. A Büchi automaton for the negation of the constant-time property.

We now define the automaton-based relation, using the notation in Theorem
1 of [4]. Define relation R by (q, α, α′)R(p, a, a′) if a ≈ α, a′ ≈ α′, and

1. p = F , i.e., p is the fail state, or
2. p = q = S, or
3. p = q = I, and α = Ĉ(i), α′ = Ĉ(i′), a = Ŝ(i), a = Ŝ(i′), for some i, i′, or
4. p = q = M , and α ≡C α′, and a ≡S a′.

Theorem 3. If (≡S ,≡C) is a lockstep CT-simulation with respect to the lockstep
simulation ≈, the relation R is a valid refinement relation.

Proof. Every initial state of A × C2 has a related initial state in A × S2.
As related configurations are pairwise connected by ≈, which is a simulation,
it follows that any pairwise transition from a C-configuration is matched by a
pairwise transition from the related S-configuration, producing states b, b′ and
β, β′ that are pointwise related by ≈. These transitions have identical input
labels, as the only transitions with input labels are those from the dummy initial
states.

The remaining question is whether the successor configurations are connected
by R. We reason by cases.

First, if p = F , then the successor p′ is also F . Hence, the successor configu-
rations are related. This is also true of the second condition, where p = q = S,
as the successor states are p′ = q′ = S.

If p = q = I the successor states are β = C(i), β′ = C(i′) and b = S(i), b′ =
S(i′), and the successor automaton state is either p′ = q′ = S, if φ(i, i′) does
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not hold, or p′ = q′ = M , if it does. In the first possibility, the successor con-
figurations are related by the second condition; in the second, they are related
by the final condition, as C(i) ≡C C(i′) and S(i) ≡S S(i′) hold if φ(i, i′) does
[Definition 6 of [4]].

Finally, consider the interesting case where p = q = M . Let τ, τ ′ be the
transition labels on the pairwise transition in C, and let t, t′ be the labels on the
corresponding pairwise transition in S. We consider two cases:

(1) Suppose t �= t′. Then p′ = F and the successor configurations are related,
regardless of q′.

(2) Otherwise, t = t′ and p′ = M . By CT-simulation [Definition 6 of [4]: a ≡S a′

and α ≡C α′ by the relation R], it follows that b ≡S b′ and β ≡C β′ hold,
and τ = τ ′. Thus, the successor automaton state on the C-side is q′ = M
and the successor configurations are related by the final condition.

This completes the case analysis. Finally, the definition of R implies that if q = F
then p = F , as required.


�

7.2 Non-Interference

Refinement-based proof rules for preservation of non-interference have been
introduced in [3,8,17]. The rules are not identical but are substantially similar
in nature, providing conditions under which an ordinary simulation relation, ≺,
between programs C and S implies preservation of non-interference. We choose
the rule from [8], which requires, in addition to the requirement that ≺ is a sim-
ulation preserving input and output events, that (a) A final state of C is related
by ≺ only to a final state of S (precisely, both are final or both non-final), and
(b) If t0 ≺ s0 and t1 ≺ s1 hold, and all states are either initial or final, then the
low variables of t0 and t1 are equal iff the low variables of s0 and s1 are equal.

We make two minor adjustments to better fit the automaton notion, which
is based on trace rather than state properties. First, we add a dummy initial
source state Ŝ(i) with a transition that exposes the value of local variables and
moves to the actual initial state S(i) (i is the secret input); and similarly for the
target program, C. Secondly, we assume that a final state has a self-loop with a
special transition label that exposes the value of local variables on termination.
With these changes, the negated non-interference can be represented by the
automaton shown in Fig. 3. It accepts an pair of execution traces if, and only if,
initially the low-variables on the two traces have identical values, and either the
corresponding outputs differ at some point, or final values of the low-variables
are different. (The transition conditions are written as Boolean predicates which
is a readable notation for describing a set of pairs of events; e.g., the Low1 �=
Low2 transition from state I represents the set of pairs (a, b) where a is the
init(Low = i) event, b is the init(Low = j) event, and i �= j.)

Define the automaton-based relation R by (q, t0, t1)R(p, s0, s1) if p = q and
t0 ≺ s0 and t1 ≺ s1. We have the following theorem.
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IS M F

true true true

Low1 = Low2Low1 �= Low2

Final1 ∧ Final2
∧Low1 �= Low2

Out1 �= Out2

Fig. 3. A Büchi automaton for the negation of the non-interference property.

Theorem 4. If the simulation relation ≺ between C and S satisfies the addi-
tional properties needed to preserve non-interference, then R is a refinement.

Proof. Consider (q, t0, t1)R(p, s0, s1). As ≺ is a simulation, for any joint tran-
sition from (t0, t1) to (t′0, t

′
1), there is a joint transition from (s0, s1) to (s′

0, s
′
1)

such that t′0 ≺ s′
0 and t′1 ≺ s′

1 holds. This transition preserves input and output
values, as ≺ is an input-output preserving simulation.

We have only to establish that the automaton transitions also match up. If
the automaton state is either F or S, the resulting state is the same, so by the
refinement relation, we have p′ = p = q = q′.

Consider q = I. If q′ = S then the values of the low variables in t0, t1 differ;
in which case, by condition (b), those values differ in s0, s1 as well, so p′ is also
S. Similarly, if q′ = M , then p′ = M .

Consider q = M . If q′ = F then either (1) t0, t1 are both final states and
the values of the low variables differ, or (2) the outputs of the transitions from
t0, t1 to t′0, t

′
1 differ. In case (1), by condition (a), s0, s1 are also final states, and

therefore by condition (b) the values of the low variables differ in s0, s1 as well,
so p′ is also F . In case (2) the outputs of the transitions from t0, t1 to t′0, t

′
1

differ; in which case, as ≺ preserves outputs, this is true also of the transition
from s0, s1 to s′

0, s
′
1, so p′ is also F . If q′ = M then, since p = M and M has a

self-loop on true, then p′ can just be chosen to be M as well.
Finally, by the relation R, if q = F , the accepting state, then p = F as well.

This completes the case analysis and the proof.

�

8 Witnessing General Security Properties

The notion of refinement presented in Sect. 5 suffices for universal hyperproper-
ties, as in that case a violation corresponds to a bundle of traces rejected by the
automaton. Although many important hyperproperties are universal in nature,
some require quantifier alternation. One example is generalized noninterference,
as formalized in [6], which says that for every two traces of a program, there is a
third trace that has the same high inputs as the first but is indistinguishable from
the second to a low-clearance individual. A violation for such hyperproperties,
as defined in Sect. 4, is not simply a bundle of traces, but rather a winning strat-
egy for the antagonist in the corresponding game. A refinement relation does
not suffice to match winning strategies. Therefore, we introduce an additional
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input-equivalent bisimulation B from T to S, which is used in a back-and-forth
manner to construct a matching winning strategy for the antagonist in G(S, ϕ)
from any winning strategy for the antagonist in G(T, ϕ).

A bisimulation B ensures, by induction, that any infinite execution in T has
an input-equivalent execution in S, and vice-versa. For an execution x of T , we
use B(x) to denote the non-empty set of input-equivalent executions in S induced
by B. The symmetric notion, B−1(y), refers to input-equivalent executions in T
induced by B for an execution y of S.

Definition 5. Let ξT be a strategy for the antagonist in G(T, ϕ) and B be a
bisimulation between T and S. Then, the strategy ξS = S(ξT , B) for the antag-
onist in G(S, ϕ) proceeds in the following way to produce a play (y1, . . . , yk):

– For every i such that πi is existentially quantified, let yi be chosen by the
protagonist in G(S, ϕ). Choose an input-equivalent execution xi from B−1(yi);

– For every i such that πi is universally quantified, choose xi in T from
ξT (x1, . . . , xi−1) and choose yi from B(xi).

Thus, the bisimulation helps define a strategy ξS to match a winning antag-
onist strategy ξT in T . We can establish that this strategy is winning for the
antagonist in S in two different ways. First, we do so under the assumption that
S and T are input-deterministic, i.e., any two executions of the program with the
same input sequence have the same observation sequence. This is a reasonable
assumption, covering sequential programs with purely deterministic actions.

Theorem 5. Let S and T be input-deterministic programs over the same input
alphabet I. Let ϕ be a general security property with automaton A representing
the negation of its kernel κ. If there exists (1) a bisimulation B from T to S,
and (2) a refinement relation R from A × T k to A × Sk for I, then T securely
refines S for ϕ.

Proof. We have to show, from Definition 3, that for any winning strategy ξT for
the antagonist in G(T, ϕ), there is a matching winning strategy ξS in G(S, ϕ).
Let ξS = S(ξT , B). Let y = (y1, . . . , yk) be the bundle of executions resulting
from a play following the strategy ξS , and x = (x1, . . . , xk) the corresponding
bundle resulting from ξT . By construction, y and x are input-equivalent.

Since ξT is a winning strategy, the trace of x is accepted by A × T k. Then,
from the refinement R and Lemma 2, there is a bundle z = (z1, . . . , zk) accepted
by A × Sk that is input-equivalent to x. Therefore, z is a win for the antag-
onist. Since z is input-equivalent to x, it is also input-equivalent to y. Input-
determinism requires that z and y are identical, so y is also a win for the antag-
onist. Thus, ξS is a winning strategy for the antagonist in G(S, ϕ). 
�

If S and T are not input-deterministic, a new notion of refinement is defined
that intertwines the automaton-based relation R with the bisimulation B. A
relation R ⊆ (QA × (CT )k)× (QA × (CS)k) is a refinement relation from A×T k

to A × Sk for I relative to B ⊆ CT × CS , if
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1. ((ιA, ιT
k

), (ιA, ιS
k

)) is in R and (ιT
k

i , ιS
k

i ) ∈ B for all i; and
2. If ((q, t), (p, s)) is in R, (ti, si) is in B for all i, ((q, t), v, (q′, t′)) is in ΔA×Tk

,
(s, u, s′) is in (→Sk

), u and v agree on I, and (t′i, s
′
i) ∈ B, there is p′ such

that all of the following hold:
(a) ((p, s), u, (p′, s′)) ∈ ΔA×Sk

;
(b) ((q′, t′), (p′, s′)) ∈ R;
(c) if q′ ∈ F then p′ ∈ F .

Refinement typically implies, as in Lemma 2, that a run in A×T k is matched
by some run in A × Sk. The unusual refinement notion above instead considers
already matching executions of T and S, and formulates an inductive condition
under which a run of A on the T -execution is matched by a run on the S-
execution. The result is the following theorem, establishing the new refinement
rule, where the witness is the pair (R,B).

Theorem 6. Let S and T be programs over the same input alphabet I. Let ϕ be
a general security property with automaton A representing its kernel κ. If there
exists (1) a bisimulation B from T to S, and (2) a relation R from A × T k to
A × Sk that is a refinement relative to B, then T securely refines S for ϕ.

8.1 Checking General Refinement Relations

The main difference when checking security preservation of general hyperproper-
ties, compared to the purely-universal properties handled in Sect. 5, is the neces-
sity of the compiler to provide also the bisimulation B as part of the witness. The
verifier must also check that B is a bisimulation, which can be performed induc-
tively using SMT queries in a manner similar to the refinement check. If the
language semantics guarantees input-determinism, then Theorem 5 holds and
checking B and R separately is sufficient. Otherwise, the check for R described
in Sect. 6.1 has to be modified to follow Theorem 6 to determine whether R is a
refinement relative to B.

The optimizations discussed in Sect. 6 produce bisimular programs; the rela-
tion B in each case is defined as follows.

1. Constant Folding: (t = s) ∧ (�T = L3 → αT (y) = 42) ∧ (�T = L4 →
αT (z) = 1) ∧ (�T = L5 → αT (x) = 0)

2. Common-Branch Factorization: (t = s) ∨ ((�T = L2) ∧ ((αS(i) <
αS(arr size)) ? (�S = L2) : (�S = L5)) ∧ (αT = αS [a := arr[0]]))

3. Switching Instructions: (�S = �T ) ∧ (�S �= L6 → αS = αT ) ∧ (�S = L6 →
αS [b[j] := a[j-1]] = αT [a[j] := b[j-1]])

There are clear similarities between the bisimulations and the corresponding
refinement relations defined in Sect. 6. When the transformation does not alter
the observable behavior of a program, it is often the case that the refinement
relation between Â × T k and Â × Sk is essentially formed by the k-fold product
of a bisimulation between T and S across the bundle of executions.
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9 Discussion and Related Work

This work tackles the important problem of ensuring that the program transfor-
mations carried out by an optimizing compiler do not break vital security proper-
ties of the source program. We propose a methodology based on property-specific
refinement rules, with the refinement relations (witnesses) being generated at
compile time and validated independently by a generic refinement checker. This
structure ensures that neither the code of the compiler nor the witness generator
have to be formally verified in order to obtain a formally verifiable conclusion. It
is thus eminently suited to production compilers, which are large and complex,
and are written in hard-to-formalize languages such as C or C++.

The refinement rules are constructed from an automaton-theoretic definition
of a security property. This construction applies to a broad range of security
properties, including those specifiable in the HyperLTL logic [6]. When applied to
automaton-based formulations of the non-interference and constant-time prop-
erties, the resulting proof rules are essentially identical to those developed in the
literature in [3,8,17] for non-interference and in [4] for constant-time. Manna
and Pnueli show in a beautiful paper [15] how to derive custom proof rules for
deductive verification of an LTL property from an equivalent Büchi automaton;
our constructions are inspired by this work.

Refinement witnesses are in a form that is composable: i.e., for a security
property ϕ, if R is a refinement relation establishing a secure transformation
from A to B, while R′ witnesses a secure transformation from B to C, then
the relational composition R;R′ witnesses a secure transformation from A to C.
Thus, by composing witnesses for each compiler optimization, one obtains an
end-to-end witness for the entire optimization pipeline.

Other approaches to secure compilation include full abstraction, proposed
in [1] (cf. [23]), and trace-preserving compilation [24]. These are elegant formu-
lations but difficult to check fully automatically, and are therefore not suitable
for translation validation. The theory of hyperproperties [7] includes a definition
of refinement in terms of language inclusion (i.e., T refines S if the language
of T is a subset of the language of S), which implies that any subset-closed
hyperproperty is preserved by this notion of refinement. Language inclusion is
also not easily checkable and thus cannot be used for translation validation.
The refinement theorem in this paper for universal properties (which are subset-
closed) uses a tighter step-wise inductive check that is suitable for automated
validation.

Translation validation through compiler-generated refinement relations was
proposed in work on “Credible Compilation” by [16,26] and “Witnessing”
by [21]. As the compiler and the witness generator do not require formal veri-
fication, the size of the trusted code base shrinks substantially. Witnessing also
requires less effort than a full mathematical proof: as observed in [19], a mathe-
matical correctness proof of SSA (Static Single Assignment) conversion in Coq is
about 10,000 lines [30], while refinement checking can be implemented in around
1,500 lines of code; much of this code comprises a reusable witness validator.
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Our work shows how to extend this concept, originally developed for correct-
ness checking, to the preservation of a large class of security properties, with the
following important distinction. Refinement relations for correctness preserve all
linear-time properties defined over propositions common to both programs. This
is necessary as a complete specification of correctness is usually not available
in practice. On the other hand, security properties are likely to be known in
advance (e.g., “do not leak secret keys”). This motivates our construction of
property-specific refinement relations.

The refinement rules defined here implicitly require that a security specifica-
tion apply equally well to the target and source programs. Thus, they are most
applicable when the target and source languages and attack models are identi-
cal. That is the case in the optimization phase of a compiler, where a number of
transformations are applied to code that remains within the same intermediate
representation. To complete the picture, it is necessary to look more generally
at transformations that convert a higher-level language (say LLVM bytecode)
to a lower-level one (say x86 machine code). The so-called “attack surface” is
then different, so it is necessary to incorporate a notion of back-translation of
failures [9] in the refinement proof rules. How best to do so is an intriguing topic
for future work.

Another question for future work is the completeness of the refinement rules.
We have shown that a variety of common compiler transformations can be proved
secure through logically simple refinement relations. The completeness question
is whether every secure transformation has an associated stepwise refinement
relation. In the case of correctness, this is a well-known theorem by Abadi and
Lamport [2]. To the best of our knowledge, a corresponding theorem is not known
for security hyperproperties.

A number of practical concerns must be addressed to implement this method-
ology. An important one is the development of a convenient notation for specify-
ing the desired security properties at the source program level. It is also necessary
to define how a security property is transformed through a program optimiza-
tion. For instance, if a transformation introduces fresh variables, it is necessary
to determine whether those variables are assigned a high or low security level
for a non-interference property.
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Abstract. Taint analysis detects if data coming from a source, such as
user input, flows into a sink, such as an SQL query, unsanitized (not
properly escaped). Both static and dynamic taint analyses have been
widely applied to detect injection vulnerabilities in real world software. A
main drawback of static analysis is that it could produce false alarms. In
addition, it is extremely time-consuming to manually explain the flow of
tainted data from the results of the analysis, to understand why a specific
warning was raised. This paper formalizes BackFlow, a context-sensitive
taint flow reconstructor that, starting from the results of a taint-analysis
engine, reconstructs how tainted data flows inside the program and builds
paths connecting sources to sinks. BackFlow has been implemented on
Julia’s static taint analysis. Experimental results on a set of standard
benchmarks show that, when BackFlow produces a taint graph for an
injection warning, then there is empirical evidence that such warning is
a true alarm. Moreover BackFlow scales to real world programs.

1 Introduction

Software security vulnerabilities allow an attacker to perform unauthorized
actions. In the last decade, hackers have widely exploited such vulnerabilities, in
particular SQL injections and cross-site scripting (XSS), causing relevant dam-
ages. For instance, the Equifax data breach1 relied on a command injection vul-
nerability. Hackers exploited this flaw to access data of hundreds of millions of
Equifax customers, heavily impacting Equifax business and market value. There-
fore, it is industrially relevant to detect and prevent such flaws and attacks.

Detection of cyber-attacks has been mostly based on run-time environments
that monitor the system, in production, to discover anomalous situations. In
this way, one discovers attacks based on the exploitation of software vulnerabil-
ities, but also other types of attacks, such as denial-of-service through botnets.

1 https://en.wikipedia.org/wiki/Equifax#May%E2%80%93July 2017 data breach.

c© Springer Nature Switzerland AG 2020
D. Beyer and D. Zufferey (Eds.): VMCAI 2020, LNCS 11990, pp. 23–43, 2020.
https://doi.org/10.1007/978-3-030-39322-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39322-9_2&domain=pdf
https://en.wikipedia.org/wiki/Equifax#May%E2%80%93July_2017_data_breach
https://doi.org/10.1007/978-3-030-39322-9_2


24 P. Ferrara et al.

var l , h
l := h

(a) Explicit flow

var l , h
if h = true then
l := 3

else
l := 42

(b) Implicit flow

var l , h
if h = 1 then
(∗ do some time−consuming work ∗)

l := 0

(c) Side channel

Fig. 1. Different types of flows (from https://en.wikipedia.org/wiki/Information flow
(information theory)).

For instance, the Mirai malware2 exploited IoT devices with default credentials
to gain administrative access to the device. The prevention of cyber-attacks has
been also based on system safeguards, such as firewalls that block Internet traffic
from and to malicious IP addresses; or on antivirus that detect and block mali-
cious software running inside the system, that could be exploited by a hacker;
or on the prevention of software vulnerabilities. In the latter case, two distinct
approaches exist: dynamic analysis (notably, penetration testing [2]) runs the
software as much pervasively as possible, in order to expose such vulnerabilities
during the execution; static analysis, instead, builds a model of the program and
detects patterns that might lead to security vulnerabilities.

Dynamic analysis does not produce false alarms: all reported vulnerabilities
are real. However, it usually achieves limited coverage, since it cannot activate all
possible run-time values. Static analysis, instead, can achieve high coverage, but
at the price of precision. Namely, it might report false alarms that are not real
flaws, since it must apply some forms of approximation to ensure the finiteness of
the analysis. There exist two families of static analyzers: those based on syntactic
reasoning, that operate locally on the abstract syntax tree of a code unit; and
those based on semantic reasoning, that apply formal methods to approximate
the overall structure of the code under analysis. The former might miss many real
vulnerabilities and/or produce many false alarms, but typically scale to software
of industrial size (between 100KLOCs and 1MLOCs); the latter can achieve full
coverage, but are often slow or have limited precision.

Since security vulnerabilities, such as SQL injections and XSS, have heavy
impact on a software system, semantic static analyzers attracted industrial atten-
tion. In particular, catching and fixing all possible software flaws before deploy-
ment is extremely valuable. Hence, the research community focused on these
issues. In particular, information flow analyses [14,33] tackled the problem of
tracking flows of information through a program. The problem was formalized
as the detection of private information flowing into public channels. With the
help of Fig. 1, where h and l represent secret and public variables, respectively,
one can identify three main types of flows: (i) direct flows, when a secret variable
is directly assigned to a public one (Fig. 1a); (ii) indirect flows, when the assign-
ment of some public variable is performed in a branch of code whose execution
is conditional on the value of a secret variable (Fig. 1b); and (iii) side channels,

2 https://techcrunch.com/2016/10/10/hackers-release-source-code-for-a-powerful-dd
os-app-called-mirai/.

https://en.wikipedia.org/wiki/Information_flow_(information_theory)
https://en.wikipedia.org/wiki/Information_flow_(information_theory)
https://techcrunch.com/2016/10/10/hackers-release-source-code-for-a-powerful-ddos-app-called-mirai/
https://techcrunch.com/2016/10/10/hackers-release-source-code-for-a-powerful-ddos-app-called-mirai/
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Fig. 2. The architecture of BackFlow.

where some observable property of the execution depends on the value of some
secret variable (Fig. 1c).

All three types of flows are theoretically dangerous, since they could induce
XSS, SQL injections (see for instance Fig. 7 of [7]) or leakages of sensitive data.
However, in practice, hackers have rarely exploited implicit flows and side chan-
nels; moreover, their identification leads to very conservative results (too many
false alarms). Therefore, taint analysis [3,8,28] focuses on explicit flows only,
ignoring implicit flows and side channels. It has been applied to industrial soft-
ware, both in dynamic and static flavor [36,41]. It checks if data coming from an
untrusted source (such as user input or servlet parameters) flows, explicitly, into
a trusted sink (such as the execution of an SQL query), unsanitized (that is, not
correctly escaped). This analysis approximates values as Booleans (tainted/un-
tainted), which helps scalability, since it does not require much memory and
computational resources. However, it abstracts away precise information about
the exact source of tainted data, and its flow.

1.1 Contribution

This paper introduces BackFlow, a new tool that reconstructs the flow of tainted
data from sinks, backwards towards the sources, by building a complete taint
graph from sources to sinks. BackFlow relies on a preliminary static taint analysis
and on two standard semantic static analyses for heap abstraction and for call-
graph construction. It builds a flow from a source of tainted data to a sink that
receives such data. It does so in a context-sensitive way, that is, it considers
under which circumstances the flow might exist, and discards unfeasible flows,
under the information inferred by the semantic static analysis.

BackFlow has been implemented inside the Julia static analyzer [35], a seman-
tic static analyzer for Java and C# programs, that already implements a static
taint analysis [36], a call-graph construction and various heap abstractions.
Figure 2 reports its overall architecture. Starting from a Java or .NET pro-
gram, it first runs Julia’s taint analysis. Such analysis requires to compute var-
ious heap abstractions (and in particular a creation point and a must aliasing
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analyses), and a call graph. The result is a set of (injection) warnings, for poten-
tially vulnerable program points, with the indication of the sink parameter that
is reached by tainted data. However, these warnings do not specify any explica-
tive flow about the origin of the tainted data from a source. That flow is exactly
what BackFlow tries to reconstruct. If successful, it replaces the original warn-
ing with a new warning that includes a taint graph, representing the previously
missing flow. Otherwise, the original warning is left, unchanged.

This paper discusses two experiments with BackFlow. A first, qualitative
experiment is the analysis of WebGoat, an application developed by OWASP
to teach security vulnerabilities (thus containing several kinds of explicit injec-
tions). BackFlow produces a taint graph for all true positives, while it fails for all
false positives. Therefore, the inference of a taint graph is an effective indicator
of a true alarm3. A second, quantitative experiment is the analysis of a dozen
standard benchmarks. BackFlow scales to these real world applications, by run-
ning in about a fifth of the time spent for the preliminary static taint analysis.
The percentage of warnings for which BackFlow reconstructs a taint graph is
smaller but comparable with that for WebGoat.

This paper is structured as follows. The rest of this section introduces a
running example. Section 2 discusses related work and compares it to BackFlow.
Section 3 formalizes BackFlow’s approach. Section 4 describes the integration of
BackFlow with Julia. Section 5 describes the implementation. Section 6 reports
the experiments. Section 7 concludes.

1.2 Running Example

1class Wrapper {
2String f ;
3void set(String f) {
4this . f = f;
5}
6}
7class Bugged {
8void vulnerable () {
9Wrapper w = new Wrapper();
10w.set(source ());
11sink(w.f );
12}
13}
14class NotBugged {
15void noise () {
16new Wrapper().set(source ());
17}
18}

Fig. 3. Running example.

Figure 3 reports a minimal example that
needs context-sensitive information in order
to infer the correct flow of tainted data from
a source to a sink. In this example, method
source is assumed to yield tainted data that
method sink should not receive. A sound
static taint analyzer must issue a warning at
line 11, since tainted data actually flows into
sink there. A backward reconstructor then
would look, from line 11, for assignments to
w.f: it goes back to line 4 and then further
backwards to the beginning of method set
(line 3). It then queries the call graph to
know where set might be called. This occurs
at both lines 10 and 16, in both cases with
tainted data. However, a context-sensitive reconstructor should be able to dis-
card the flow from line 16, since the receiver of the call to set, there, cannot be
alias to w at line 11. Therefore, the only possible flow starts at line 10, goes to

3 Note that this is an empirical result, since theoretically BackFlow might produce
taint graphs for false alarms, and fail to produce taint graphs for true alarms.



BackFlow: Backward Context-Sensitive Flow Reconstruction 27

the field assignment at line 4, continues with the field read at line 11, and ends
with the sink call at the same line.

2 Related Work

Section 1 has already discussed different types of information flow analysis and
taint analysis. This section discusses and compares to BackFlow the most rep-
resentative static and dynamic analyses of programs, to detect security vulner-
abilities and privacy leaks.

Information flow analysis has been widely applied to several programming
languages. In the object-oriented context, JFlow [27] is possibly the most notable
example. It is an extension of the Java programming language, that allows devel-
opers to add information flow annotations to the code, to classify variables into
private or public. Then it statically checks such annotations, to discover if the
value of a private variable can ever flow into a public variable. JFlow checks both
implicit and explicit flows. SAILS [45] instead combines a generic information
leakage analysis inside a generic static analyzer (Sample [10,17,18]) and applies
this analysis to some Java benchmarks.

During the last decade, dynamic taint analysis has been widely exploited to
detect, at run time, various types of security vulnerabilities and privacy leaks: the
run-time environment gets augmented for tracking a Boolean mark for tainted
variables, with low overhead. This augmentation can also be used to issue an
alarm when a tainted value reaches a sink. Namely, TaintCheck [28] performs
binary instrumentation to track tainted variables and detect vulnerabilities. Also
Dytan [8] provides a generic framework for dynamic taint analysis and instanti-
ates it to x86 executables. The dynamic taint analyzer Panorama [44] introduces
the concept of taint graphs. For Panorama, these are very abstract, since they
track how different executables propagate tainted data, but not through which
exact statements. Comet [25] produces, instead, more concrete taint graphs, that
represent how values in the heap or stack are affected by tainted data inside
a single run-time state. BackFlow produces completely different taint graphs,
that precisely represent how program statements propagate tainted data from a
source to a sink.

Static taint analysis has been applied to different contexts and scenarios.
During the last decade, web applications have been their most popular target,
since security issues can have major impact on them. Pixy [24] applies a data flow
analysis that detects XSS vulnerabilities in PHP code. Wasserman and Su [43]
define a precise static taint analysis to detect SQL-injections, while JSA [39] uses
dynamic information about the run-time context of a web application to reduce
the rate of false alarms produced by static taint analysis. TAJ [41] applies an
ad-hoc forward slicing technique to propagate tainted data. This tool produces
a sort of taint graphs, but ignores dependencies through the heap, being based
on the no-heap system dependence graph by Reps et al. [32].

There are also several tools that, starting from the results (that is, warn-
ings) of a static analyzer, try to produce a witness through dynamic analysis or
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classify automatically true and false alarms. For instance, Check ‘n’ Crash [13]
starts from the static checks performed by ESC/Java, builts a set of constraints
that must hold to produce the error reported by a warning, and then produces
concrete test cases to expose the error. Aletheia [40] instead applies statistical
learning to discern between true and false alarms produced by a commercial
static security analyzer for JavaScript.

More recently, static and dynamic taint analyses have been applied to
Android applications. FlowDroid [3] is a precise static taint analysis that detects
sensitive data leaks. TaintDroid [16] performs an efficient dynamic taint analysis.
MorphDroid [20] specializes the analysis for specific categories of sensitive data,
for more precise and detailed results. Other approaches [5,9] introduce various
extensions of information flow and taint analysis to track which kind of sensitive
data is managed and potentially disclosed by Android applications.

Some works combine dynamic and static taint analysis: Saner [4] detects
faulty sanitization procedures in PHP programs, while Vogt et al. [42] detect
XSS vulnerabilities in the client browser of a web application.

As far as we know, BackFlow is the first tool that, starting from a generic
static taint analysis and exploiting some supporting heap analyses, builds a
context-sensitive taint graph that provides evidence of the flows of tainted data
from a source to a sink.

3 Formalization

This section formalizes our approach over a simple object-oriented language.

3.1 Language

Let Programs and Classes represent the set of all possible programs and classes,
respectively. An object-oriented program is an element p ∈ Programs =
℘(Classes). A class c is composed of a set of fields and methods: c ∈ Classes =
℘(Fields) × ℘(Methods), where Fields and Methods are the set of all possible
fields and methods, respectively. A field f is a pair of its name and its type:
f ∈ Fields = Names×Types, where Names and Types are the set of all names and
types (including classes in Classes and native types such as int or double),
respectively. A method m is a pair of a list of n parameters Parameters =
(Names × Types)n and a body, represented as a control flow graph cfg ∈ CFGs
of basic statements: Methods = Parameters × CFGs. Control flow graphs (CFGs)
are directed graphs whose vertexes are statements (formally, graphs are ele-
ments of (Statements,Statements × Statements)). We assume that statements
in Statements includes the label of the statement (thus we can have the same
statement at different program points), but we omit it in the formalization for
the sake of simplicity. The set VarAtStatement = Statements × Names allows
one to refer to a variable at a program point. Namely, (s, v) ∈ VarAtStatement
represents variable v at the exit state of s.

For the sake of simplicity, our formalization focuses on a minimal object-
oriented programming language, whose statements Statements are either (i) the
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beginning of a method (start), (ii) a field read (y = x.f), (iii) a field write
(y.f = x), (iv) a method call (y = x.m(z1, · · · , zn)), or (v) a return (ret x). Func-
tion pred : Statements → ℘(Statements) yields all predecessors of a given state-
ment. Each statement belongs to a method. Therefore, function getMethod :
Statements → Methods yields the method of each statement.

3.2 External Components

Before running BackFlow, a static analyzer must have already inferred some
information: a taint analysis, a call graph and a heap abstraction.

A taint analysis specifies which variables, at which program points, have been
inferred as tainted, since they might hold unsanitized user input or sensitive data.
The taint analyzer must have received a specification of the set of sources and
sinks: sources are values returned by specific methods (Sources ⊆ Methods); sinks
are values passed to method parameters (Sinks ⊆ Methods×N, where the second
element is the index of the parameter). The taint analysis is then a predicate
taint : VarAtStatement → {true, false}, that holds if a given variable, after a
given statement, has been inferred as tainted. We assume it sound: if there is a
feasible execution of the code where variable x actually contains a tainted value
after a statement st, then taint(st, x) must hold.

A call graph is a function called : Statements → ℘(Methods) that, given a call
statement st, yields an over-approximation of the set of methods that might
be called there. This is a standard component of a static analyzer [21,38]. It is
handy, sometimes, to see the call graph as the inverse function caller : Methods →
℘(Statements) that, given a method m, yields an over-approximation of the set
of call statements that might call it.

There are many heap abstractions [15,22]. BackFlow is agnostic about the
chosen one, as long as it provides a function writersVisible : Statements →
℘(Statements) that, given a heap read y = x.f, yields an over-approximation of
the set of heap writes y.f = x where the read value might have been written, pre-
viously. The heap abstraction must also provide a must alias analysis, given as
a predicate alias : Constraints → {true, false} over alias equality constraints
between variables at some program points: Constraints = VarAtStatement ×
VarAtStatement. This predicate is extended to constraintsSatisfied :
℘(Constraints) → {true, false}, by letting constraintsSatisfied(C) hold if and
only if, for every c ∈ C, predicate alias(c) holds.

3.3 Flow Reconstruction

Once the supporting taint analysis has inferred a sink as potentially tainted, the
backwards flow reconstructor tries to reconstruct a path of variables at state-
ments, providing evidence about how tainted data flows, from a source, into
that sink. The path is given as a taint graph, with vertexes in VarAtStatement.
Taint graphs TG are then defined as (VarAtStatement,VarAtStatement ×
VarAtStatement), that is, a poset with upper bound operator (v1, e1)�TG(v2, e2) =
(v1 ∪ v2, e1 ∪ e2).
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(1) S y1 = x1.f, y1 = {((y2.f = x2, x2), {((y1 = x1.f, x1), (y2.f = x2, y2))}) :
y2.f = x2 ∈ writersVisible(y1 = x1.f)}

(2) S y1 = x1.m(· · ·), y1 = {((ret x2, x2), {((y1 = x1.m(· · ·), x1), (ret x2, this))}) :
∃(pars, cfg) ∈ called(y1 = x1.m(· · ·)) : ret x2 ∈ cfg}

(3) S start, pi = {((y = x.m(x1, · · · , xn), xi),
{((start, this), (y = x.m(x1, · · · , xn), x))}∪
{((start, pj), (y = x.m(x1, · · · , xn), xj)) : j ∈ [1..n]}) :

((p1, · · · , pn), cfg) = getMethod(start)∧
y = x.m(x1, · · · , xn) ∈ caller((p1, · · · , pn), cfg)}

(4) S st, x = {((st′, x), ∅) : st′ ∈ pred(st)} for any other statement.

Fig. 4. A single step of backwards propagation.

In order to be context-sensitive, the reconstructor, while proceeding back-
wards from a sink, collects a set of alias constraints in ℘(Constraints), that must
hold if the path leading to the sink is feasible. Otherwise, the path is an arti-
fact of the approximated taint analysis, not allowed by the heap abstraction.
During this backwards procedure, the reconstructor builds the taint graph and
attaches, to each of its newly discovered vertexes, the collected set of alias con-
straints that must hold there. Therefore, the reconstructor builds a function in
CV : VarAtStatement → ℘(Constraints). A larger set of alias constraints repre-
sents a smaller set of concrete states. Hence, the upper bound operator is ∩̇, i.e.,
the functional lifting of set intersection: c1 �CV c2 = c1 ∩̇ c2. The poset of heap
constraints is then 〈CV,�CV〉.

The reconstructor keeps a state during its execution, consisting of the cur-
rently computed taint graph and of the function mapping each of its vertexes to
the alias constraints that must hold there: Σ# = TG × CV. These states form a
poset with upper bound operator (g1, c1) �Σ# (g2, c2) = (g1 �TG g2, c1 �CV c2).

3.4 Backwards Propagation

This section formalizes how the flow reconstructor tracks, backwards, the value
in a sink towards a source.

Figure 4 shows the rules for a single step of backwards propagation, for
the language from Sect. 3.1, that will later be extended into a multi-steps
propagation. It defines a function S : VarAtStatement → ℘(VarAtStatement ×
℘(Constraints)) that, given a variable (st, n) ∈ VarAtStatement, meaning that
the reconstructor wants to follow, backwards, the value of v after statement st,
computes a set of variables to track after the preceding statements and a set of
alias constraints that must hold if that step is feasible. In particular, the three
rules consider the following situations:
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1. when tracking a field read statement, the reconstructor tracks the value
assigned to the field by any possible writer, taking note of an alias constraint
stating that the receiver of the field read and write must be aliased;

2. when tracking the value returned by a method call, the reconstructor tracks
the value returned by any ret inside any method that might be called there,
by using the call graph; moreover, it takes note of an alias constraint stating
that the receiver of the method call and the this variable inside the callee
must be aliased;

3. when tracking a method formal argument, once the beginning of the method
has been reached, the reconstructor tracks the actual argument passed by any
possible caller of the method, by using the call graph; moreover, it takes note
of an alias constraint stating that this variable inside the method must be
alias of the receiver of the method call, and that the corresponding formal
and actual parameters must be aliased as well;

4. when tracking any other statement (assignments to other variables, not cur-
rently tracked, or field writes) the reconstructor simply propagates the tracked
variable, backwards.

This single-step propagation does not check the feasibility of the step. Hence,
the results of S are refined by dropping unfeasible states, through function

filter(R) = {(v, C) : (v, C) ∈ R ∧ taint(v) ∧ constraintsSatisfied(C)}

used for the definition of the abstract state transformer:

Sσ�(st, x), ((V,E), c)� = ((V ′, E′), c′) where
(1) S�st, x� = R
(2) R′ = filter(R)
(3) V ′ = V

⋃
(v′,C)∈R′{v′}

(4) E′ = E
⋃

(v′,C)∈R′{(v, v′)}
(5) c′ = c[v′ �→ (c(v′) ∪ C) : (v′, C) ∈ R′]

In this way, filter drops all the flows that are unfeasible using the results of the
taint analysis. For instance, if a sanitizer is used by the program, this would pro-
duce a not-tainted result, and even if the flow reconstructor backwardly reached
the result of the method call, filter would drop it.

Intuitively, given the variable x at a statement st, whose value must be
tracked backwards, and an abstract state (that is, a taint graph (V,E) and a
function of constraints c), it (1) applies the single-step propagation, (2) drops
all unfeasible values, (3) adds the new vertexes discovered by the single-step
propagation, (4) the corresponding edges connecting the predecessor and the
statements produced by the single-step propagation, and (5) updates the alias
constraints tracked for the given statement and tracked variable.

Flow reconstruction is defined as a least fixpoint:

BackFlow(v0) = lfpλ
�#

Σ

∅ ((V,E), c).(({v0}, ∅), ∅) �Σ# {Sσ�v, ((V,E), c)� : v ∈ V }
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This fixpoint requires an initial seed v0, from where the backwards reconstruction
starts. This is any sink where the taint analysis issues a warning, for which the
flow reconstruction is performed. The fixpoint is reached in a final number of
steps, since it works over a finite domain: there is only a finite set of statements
and variables, hence a finite set of vertexes and edges of taint graphs, and a
finite set of alias constraints.

4 Integration with Julia

We have implemented BackFlow inside the Julia static analyzer [35], an industrial
tool that analyzes Java and C# bytecode. Julia is based on abstract interpreta-
tion [11,12], performs static analysis based on denotational or constraint-based
semantics, and implements a taint analyzer, various heap abstractions and a call
graph builder. This section presents the latter components and how BackFlow
integrates inside Julia. For the sake of readability, the formalization from Sect. 3
deals with source code statements. However, Julia analyzes bytecode, hence this
section refers to local variables and stack values instead of program variables.

BackFlow uses Julia’s taint analysis to implement function taint (Sect. 3.2).
Julia’s taint analysis models explicit information flows through Boolean formu-
las. Boolean variables correspond to program variables and their models are a
sound overapproximation of all taint behaviors for the variables in scope at a
given program point. For instance, the abstraction of bytecode load k t, that
pushes on the operand stack the value of local variable k, is the Boolean formula
(ľk ↔ ŝtop) ∧ U , stating that the taintedness of the topmost stack element after
this instruction (denoted by hatˆ) is equal to the taintedness of local variable k
before the instruction (denoted by hatˇ); all other local variables and stack ele-
ments do not change (expressed by the formula U); taintedness before and after
an instruction is distinguished by using distinct hats for the variables. There
are such formulas for each bytecode instruction. Instructions that might have
side-effects (field updates, array writes and method calls) need some approxima-
tion of the heap, to model the possible effects of the updates. The analysis of
sequential instructions is merged through a sequential composition of formulas.
Loops and recursion are saturated by fixpoint. The resulting analysis is a denota-
tional, bottom-up taint analysis, that Julia implements through efficient binary
decision diagrams [6]. Julia uses a dictionary of sources (for instance, servlets
input and input methods) and sinks (such as SQL query methods, command
execution routines, session manipulation methods) of tainted data, so that flows
from sources to sinks can be established.

Julia contains several heap abstractions. In particular, a definite aliasing
analysis between variables and expressions [29], that identifies local variables
and stack elements that are definitely alias. A possible sharing analysis [34]
and a possible reachability analysis [30] between pairs of variables allow one
to reason about side-effects. In addition, a creation point analysis [1] infers the
program points that might have created the objects flowing to a given local
variable or stack element. BackFlow relies on the latter analysis to check if two
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reference values might be alias, and implement the alias function (Sect. 3.2).
In addition, BackFlow uses the definite aliasing analysis to augment the set of
alias constraints. Namely, if flow reconstruction requires variables x and y to be
alias at some statement st, and definite aliasing analysis infers that y and z are
definite alias at st, then BackFlow adds the constraint (x, z).

Julia approximates the dynamic targets of method calls through standard
class analysis [31], widely adopted in practice [38]. BackFlow uses this informa-
tion to implement functions caller and called (Sect. 3.2) and to determine the
predecessors of statements start and y = x.m(· · · ).

5 Implementation

Algorithm 1 reports the flow reconstruction algorithm. Its input is a program; its
output is a set of warnings, possibly enriched with some taint graphs. The Julia
analyzer is represented as a function Julia that, given a program and a taint
analysis (e.g., Injection) returns a set of warnings represented as potentially
tainted sinks, that is, pairs of a statement and a local variable, from where flows
should be reconstructed. The algorithm iterates on Julia’s warnings (line 3). For
each warning, it applies BackFlow, inferring a taint graph. For each statement
in the taint graph, that is a source (line 6), it collects some paths that connect
the source to the sink (line 7, where getPaths is a function that given a graph
and two vertexes in the graph returns a set of paths in the given graph that
connect the two vertexes). The collected taint graphs are then associated with
the warning (line 8): since the taint graph returned by BackFlow might contain
no calls to sources, f might well be empty here. At the end, the algorithm returns
all warnings with the corresponding taint graphs (line 9).

Algorithm 1. Overall algorithm of flow reconstruction
1: procedure TaintAnalysisWithBackFlow(program, TaintAnalysis)
2: res ← ∅
3: for (st, x) ∈ Julia(program, TaintAnalysis) do
4: ((V,E), c) ← BackFlow((st, x))
5: f ← ∅
6: for (st′, x′) ∈ V : called(st) ∩ Sources �= ∅ do
7: f ← f ∪ getPaths((V,E), (st, x), (st′, x′))

8: res ← res ∪ {(st, x), f}
9: return res

Algorithm 1 reflects the formalization of Sect. 3. However, some implemen-
tation choices have been made to support scalability. Namely, keeping alias con-
straints can be expensive, in particular because the need of computing their clo-
sure, as well as the computation of function constraintsSatisfied. Hence, BackFlow
caches the results of the evaluation of alias constraints, and their closure, to avoid
recomputation. Moreover, closure of alias constraints, including the constraints
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inferred by the definite aliasing analysis (Sect. 4), leads easily to an unmanage-
able amount of constraints. Therefore, BackFlow drops the constraints that refer
to variables not in scope (i.e, in another method). Finally, the backwards flow
reconstruction has been limited to a maximal depth n, controlled by the user.
This, however, reduces the number of taintness warnings for which the recon-
structor succeeds in inferring a taint graph.

Fig. 5. BackFlow’s UI in Eclipse.

BackFlow uses library JGraphT 1.3.04

to implement the taint graphs. The lat-
ter have been represented as graphml
files, in hierarchical structure: nodes are
grouped by package, class, method and
source line of the statement. BackFlow
relies on the implementation of the Dijk-
stra shortest-path algorithm in class
DijkstraShortestPath, to compute the
final taint graphs (function getPaths).

BackFlow has been embedded inside
Julia’s Injection checker. Figure 5
shows the UI of BackFlow, as it appears
in Julia’s Eclipse plugin5. The follow-
ing options have been added to the
Injection checker:

1. flow (defaults to false): if true, BackFlow is used to infer the taint graphs for
the warnings;

2. flowComputingSpeed (defaults to AVERAGE): specifies the maximal depth
n of the inferred taint graphs: FASTEST (n = 500), FAST (n = 1000),
AVERAGE (n = 2000), SLOW (n = 4000) or SLOWEST (no limit).

3. dumpCompleteGraphs (defaults to false): if true, dumps the complete back-
wards taint graph (that is, before the application of getPaths).

6 Experimental Results

This section presents the results of the application of BackFlow. It first analyzes
the quality of these results on a specific application (how many alarms get a
taint graph and which are true or false). Then it studies them quantitatively,
on a well-known set of benchmarks used in previous works about taint analysis
of Java programs. The experiments have been performed on a HP EliteBook
850 G4 laptop equipped with an Intel Core i7-7500 CPU at 2.7 GHz and 16 GB
of RAM memory running Microsoft Windows 10 Pro and Oracle JDK version
1.8.0 141. During the analysis, 8 GB were allocated to Java.

4 https://jgrapht.org/.
5 The user manual can be retrieved at https://static.juliasoft.com/docs/latest/pdf/

EclipsePluginUserGuide.pdf.

https://jgrapht.org/
https://static.juliasoft.com/docs/latest/pdf/EclipsePluginUserGuide.pdf
https://static.juliasoft.com/docs/latest/pdf/EclipsePluginUserGuide.pdf
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The raw experimental results have been published in Zenodo [19]. To repro-
duce the results:

1. register at https://portal.juliasoft.com,
2. install the Julia Eclipse plugin (https://static.juliasoft.com/docs/latest/pdf/

EclipsePluginUserGuide.pdf),
3. contact JuliaSoft (info@juliasoft.com) asking enough credits to run the anal-

yses,
4. import the projects in Eclipse (in some cases it might be easier to import

them as “Julia projects” , check the Eclipse Plugin User Guide for details),
5. run the analyses with the configuration described in the previous section.

6.1 Qualitative Study: WebGoat

Table 1. Results on WebGoat 6.0.

Warning # w. flow # w/o flow

True False True False

AddressInjection 1 0 0 0

CommandInjection 5 0 0 0

HttpResponseSplitting 3 0 0 3

LogForging 1 0 0 0

MessageInjection 0 0 0 1

PathInjection 6 0 0 3

ReflectionInjection 3 0 0 2

ResourceInjection 2 0 0 0

SessionInjection 2 0 0 2

SQLInjection 38 0 0 0

XPathInjection 1 0 0 0

XSSInjection 2 0 0 3

Total 64 0 0 14

WebGoat is a “deliberately
insecure web application main-
tained by OWASP and designed
to teach web application secu-
rity lessons”6. It is a good tar-
get to evaluate a taint analysis,
since it contains a wide range
of different injections (such as
SQL injection or XSS) and it
has been widely used as bench-
mark in the past.

Julia produces 78 warnings
on WebGoat 6.0. BackFlow
builds a taint graph for 64
(82%) of them. Table 1 reports
our manual classification of
the 78 warnings, where columns
“# w. flow” and “# w/o flow”
report the statistics of the 64
warnings with a taint graph and of the 14 warnings without such graph, respec-
tively. It shows that the 64 warnings for which BackFlow could reconstruct a
taint graph are true alarms, while the remaining 14 are false alarms. There-
fore, BackFlow’s backwards flow reconstruction is an empirical evidence of a
true alarm. This is an ideal result, since BackFlow was always able to discern
between true and false alarms, but this is not always the case in general. In
particular, BackFlow might produce a taint graph for a false alarm, for instance
when dealing with code that stores tainted data into an array at some index,
and then reads data from another index and passes it to a sink; and it might fail
to produce a taint graph for a true alarm, because of limits of the static alias
analysis engine.

6 https://www.owasp.org/index.php/Category:OWASP WebGoat Project.

https://portal.juliasoft.com
https://static.juliasoft.com/docs/latest/pdf/EclipsePluginUserGuide.pdf
https://static.juliasoft.com/docs/latest/pdf/EclipsePluginUserGuide.pdf
https://juliasoft.com
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
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Fig. 6. The taint graph for a complex path injection warning.

6.2 True Alarms

BackFlow reconstructs taint graphs for two true alarms, allowing the user to
immediately identify the source of tainted data. Manual inspection would have
required relevant effort to identify these flows because of the complex structure
of code.

Figure 6 shows the taint graph reconstructed for a complex path injection.
Figure 7a shows the code where the flow occurs. Julia’s taint analysis warns
about a possible path injection at line 203 in class LessonTracker (correspond-
ing to line 35 in Fig. 7a). Namely, the first parameter of the FileInputStream
constructor receives a string fileName, returned by method getTrackerFile,
that consumes the three parameters of method load. The taint analysis detects
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1 class ReportCardScreen {
2 Element createContent(WebSession s) {
3 String user = s.getParser ()
4 .getRawParameter(USERNAME);
5 ec.addElement(makeReportCard(s, user));
6 }
7 Element makeReportCard
8 (WebSession s, String u) {
9 t .addElement(makeLessonRow(s, u, screen));

10 }
11 private TR makeLessonRow
12 (WebSession s, String u, Screen screen) {
13 LessonTracker lessonTracker = UserTracker.
14 instance (). getLessonTracker(s , u, screen );
15 }
16 }
17 class UserTracker{
18 public LessonTracker getLessonTracker
19 (WebSession s, String u, Screen screen) {
20 LessonTracker tracker =
21 LessonTracker. load(s , u, screen );
22 }
23 }
24 class LessonTracker{
25 static String getTrackerFile
26 (WebSession s, String user , Screen screen) {
27 return getUserDir(s) + user + ”.” +
28 screen . getClass (). getName() + ”.props”;
29 }
30 LessonTracker load
31 (WebSession s, String user , Screen screen) {
32 String fileName =
33 getTrackerFile (s , user , screen );
34 FileInputStream in =
35 new FileInputStream(fileName);
36 }
37 }

(a) Snippet of the code for Figure 6.

1 class LessonAdapter extends AbstractLesson { ... }
2 class ThreadSafetyProblem extends LessonAdapter {
3 protected Element createContent(WebSession s) {
4 ElementContainer ec = new ElementContainer();
5 currentUser = s.getParser ()
6 .getRawParameter(USER NAME, ””);
7 originalUser = currentUser;
8 ec.addElement(”Account information for user : ”+
9 originalUser + ”<br><br>”);

10 return ec;
11 }
12 class AbstractLesson extends Screen {
13 public void handleRequest(WebSession s) {
14 Form form = new Form(getFormAction(),
15 Form.POST).setName(”form”).setEncType(””);
16 form.addElement(createContent(s));
17 setContent(form);
18 }
19 }
20 class Screen {
21 private Element content;
22 protected void setContent(Element content) {
23 this .content = content;
24 }
25 public String getContent() {
26 return content. toString ();
27 }
28 public void output(PrintWriter out) {
29 out. print (getContent());
30 }
31 }

(b) Snippet of the code for Figure 8.

Fig. 7. Snippets of codes for two true alarms.

user as tainted, and then BackFlow tracks it backwards through UserTracker.
getLessonTracker (line 21 of Fig. 7a), ReportCardScreen.makeLessonRow
(line 14), ReportCardScreen.makeReportCard (line 9) and ReportCardScreen.
createContent (line 5). There, user is assigned a raw servlet parameter, hence
a source has been reached (line 3, where the parameter is returned by a method
of WebGoat that calls the Java servlet API, but we omit this detail here). This
example shows that BackFlow infers a taint graph that helps the programmer
understand and hence fix the injection. Manual tracking of tainted data would be
much harder. For instance, UserTracker.getLessonTracker is called five times
in WebGoat: the programmer would have needed to check all of them to discover
the one that taints user.

Figure 8 shows another taint graph produced by BackFlow, whose corre-
sponding code is in Fig. 7b. Julia reports an XSS warning at line 201 of class
Screen (line 29 in Fig. 7b), where field content is passed to PrintWriter.print,
through a getter method. The setter method setContent for this field is called
at 19 different places in WebGoat: manual inspection would be extremely diffi-
cult. Instead, the taint graph in Fig. 8, which is one of the eight different taint
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Fig. 8. The taint graph for an XSS warning.

graphs, each for a different source, reconstructed for this warning, shows that
the call from class AbstractLesson (that extends Screen and thus can call
the protected setContent) at line 736 (line 17 in Fig. 7b) passes tainted data
coming from createContent. The latter is an abstract method in class Screen,
implemented in 79 classes of WebGoat. The taint graph shows that an imple-
mentation passing tainted data is in class ThreadSafetyProblem (that extends
LessonAdapter, that in turn extends AbstractLesson). This accesses a servlet
parameter at line 80 (line 6 of Fig. 7b) and, after some computation, adds it at
line 122 to the element returned by the method.
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1 class Encoding {
2 static String base64Encode(String str) {
3 byte [] b = str .getBytes ();
4 return encoder.encode(b);
5 }
6 }
7 class Challenge2Screen {
8 private String user = ”youaretheweakestlink”;
9 protected Element doStage1(WebSession s) {

10 Cookie newCookie = new Cookie
11 (USER, Encoding.base64Encode(user));
12 s .getResponse().addCookie(newCookie);
13 }
14 }

(a) False HTTP response splitting.

1 class Course {
2 List<String> files = new LinkedList<>();
3 void loadFiles (ServletContext context , String path) {
4 Set resourcePaths = context.getResourcePaths(path);
5 Iterator itr = resourcePaths. iterator ();
6 while ( itr .hasNext())
7 files .add( itr .next ());
8 }
9 private void loadResources() {

10 for (String absoluteFile : files ) {
11 String fileName = getFileName(absoluteFile );
12 ...
13 }
14 }
15 private static String getFileName(String s) {
16 String fileName = new File(s ).getName();
17 //Some computations on fileName
18 return fileName;
19 }
20 }

(b) False path injection.

Fig. 9. Snippets of code for the false alarms.

6.3 False Alarms

BackFlow fails to reconstruct a flow graph for two injection warnings reported
by Julia’s taint analysis. They turn out to be false alarms.

Julia warns about a potential HTTP response splitting at line 172 of
class Challenge2Screen. Figure 9a reports the corresponding source code (see
line 12). Julia’s taint analysis infers that Encoding.base64Encode returns a
tainted value, which taints variable newCookie. However, field user is not
tainted and the code of Encoding.base64Encode is such that, if its parame-
ter is not tainted, then also the returned value is not tainted. But Julia’s taint
analysis infers that the returned value could be tainted because encoder has
class sun.misc.BASE64Encoder, not available to the analysis. Hence a worst-case
assumption on missing code [36] is applied. BackFlow reconstructs the flow until
the read of the static field encoder and stops there, since it does not find the
origin of the tainted data.

Julia reports a possible path injection warning at line 83 of class Course.
Figure 9b reports the corresponding source code (see line 16). Julia sees that
method Course.loadResources might call getFileName with a tainted parame-
ter (line 11), during the iteration over all file paths in the list files. This field is
initialized to an empty list of strings (line 2) and only method loadFiles adds
elements to it (line 7) from the parameters obtained from the resource paths of
the servlet context. Julia taint analysis infers that elements of files might be
tainted, but the only statement that adds elements to the list (line 7) does not
deal with tainted data. BackFlow reconstructs the flow only until the beginning
of the for each loop at line 10. The false alarm is due to the fact that Julia’s taint
analysis sees the receiver of the getfield files bytecode statement as tainted.
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Table 2. Experimental results on standard benchmarks.

Program Time (sec) Other Http Log Path Refl Sess SQL URL XSS Total

Name Ver. LOC Taint Rec w/o w w/o w w/o w w/o w w/o w w/o w w/o w w/o w w/o w w/o w

blojsom 3.3b 17144 268 19 0 1 2 6 17 19 1 17 0 6 1 0 21 49

bluebog 0.9 1930 137 3 6 4 6 4

friki 1.3.0 7718 127 107 0 4 1 3 1 2 2 9

gestcv 1.0.0 3948 93 3 0 1 1 0 1 1

jboard 0.30 3397 143 3 0 1 11 1 11 2

jspwiki 2.11 30024 412 192 1 0 3 8 96 114 19 22 5 8 1 1 0 1 8 22 133 176

jugjobs 869 94 2 1 0 2 0 1 0 4 0 8 0

pebble 2.6.4 23124 581 55 1 6 69 29 13 0 0 3 1 1 3 12 87 51

personal vel 3480 148 4 0 1 2 0 5 0 1 0 2 0 10 1

photov 2.1 9368 115 4 3 2 1 39 3 0 7 41

roller 0.9.6 11202 42 7 0 1 10 1 5 0 6 2 8 3 29 7

snipsnap 0.7 3736 96 2 0 0

Total 115940 2256 401 2 1 6 22 109 117 120 79 25 11 10 65 19 1 3 8 21 37 315 341

6.4 Quantitative Study: Benchmarks

BackFlow has been run on a set of Java web applications used as benchmarks to
evaluate similar tools, in previous work. In particular, this set is taken from [23],
that collected these applications starting from other previous work [26,37,41].
The goal of this quantitative experiment is to study the scalability of BackFlow
and see if it is as precise as on WebGoat.

Table 2 reports the results. For each application, it reports its version (column
Vers.)7, its number of lines of code (LOC, as estimated by Julia), the time for
taint analysis and for BackFlow (in seconds), and the number of warnings with
(column w) or without (column w/o) taint graph. This figure reports numbers
only for the types of warnings that were actually raised by Julia: Http stands
for Http response splitting, Log for log forging, Path for path injections, Refl for
reflection injections, Sess for session injections, SQL for SQL injections, URL for
URL injections, XSS for cross site scripting and Other for all remaining types
of injection warnings - address injections for blojsom, DOS injections for jspkiwi
and message injections for jugjobs.

All together, the analyzed applications consist in about 116KLOCs. Julia
analysis and BackFlow took 37’26” and 6’41”, respectively. Hence, BackFlow
requires less than a fifth of the overall analysis time and it scales to real world
applications.

Out of 656 injection warnings, BackFlow builds a taint graph for 341 (52%).
While there are significant differences between different types of applications and
warnings (for instance, BackFlow reconstructs 87% of session injection flows, but
only 5% of SQL injection flows), the overall result shows that BackFlow is effec-
tive in building taint graphs for injection warnings in real world applications. The
efficacy is smaller than on the qualitative study (where BackFlow reconstructs a
taint graph for 82% of the warnings). This difference is possibly justified by the

7 We were not able to find a distribution of jugjobs with a version number.
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fact that WebGoat’s didactic code is more regular than that of these benchmark
applications.

7 Conclusion

BackFlow proves to be able to reconstruct the flow of tainted data, as taint
graphs. Experimental results show that the fact that BackFlow provides (or not)
a taint graph for a warning is a clear empirical indication that the alarm is true
(respectively, false). Moreover BackFlow scales to real-world applications.
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Abstract. Effective symbolic evaluation is key to building scalable ver-
ification and synthesis tools based on SMT solving. These tools use sym-
bolic evaluators to reduce the semantics of all paths through a finite
program to logical constraints, discharged with an SMT solver. Using
an evaluator effectively requires tool developers to be able to identify
and repair performance bottlenecks in code under all-path evaluation,
a difficult task, even for experts. This paper presents a new method
for repairing such bottlenecks automatically. The key idea is to formu-
late the symbolic performance repair problem as combinatorial search
through a space of semantics-preserving transformations, or repairs, to
find an equivalent program with minimal cost under symbolic evalua-
tion. The key to realizing this idea is (1) defining a small set of generic
repairs that can be combined to fix common bottlenecks, and (2) search-
ing for combinations of these repairs to find good solutions quickly and
best ones eventually. Our technique, SymFix, contributes repairs based
on deforestation and symbolic reflection, and an efficient algorithm that
uses symbolic profiling to guide the search for fixes. To evaluate Sym-
Fix, we implement it for the Rosette solver-aided language and symbolic
evaluator. Applying SymFix to 18 published verification and synthesis
tools built in Rosette, we find that it automatically improves the perfor-
mance of 12 tools by a factor of 1.1×–91.7×, and 4 of these fixes match
or outperform expert-written repairs. SymFix also finds 5 fixes that were
missed by experts.

Keywords: Symbolic evaluation · Performance optimization

1 Introduction

Tools based on SMT solving have automated vital programming tasks in many
domains, from verifying safety-critical properties of medical software [33] to syn-
thesizing fast computational kernels for cryptographic applications [35]. These
tools employ symbolic evaluation [4,26] to reduce the semantics of all paths
through a loop-free (i.e., finite) program to logical constraints. The resulting
constraints are then used to express queries about program behavior as logical
satisfiability queries, discharged with an SMT solver. Since the solvability of such
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queries hinges on the compactness and simplicity of the underlying constraints,
effective symbolic evaluation is key to building effective solver-aided tools.

Building a tool used to require crafting a custom symbolic evaluator, a
difficult task that can take years of expert work. Today, this burden is much
lower thanks to reusable symbolic evaluators provided by solver-aided host lan-
guages [45,47] and frameworks [9,39]. To build a tool, developers simply write an
interpreter for the tool’s source language in the solver-aided host language. When
this interpreter executes a source program, the host’s symbolic evaluator reduces
both the interpreter and the program to constraints. The interpreter can con-
trol its symbolic evaluation, and thus the encoding, through constructs [38,44]
exposed by the host language and through the structure of its implementation [7].
By exploiting these control mechanisms, developers can create, in weeks, state-
of-the-art tools [29] that outperform a custom symbolic execution engine [30,41].

But if an interpreter performs poorly on a host symbolic evaluator, finding
and fixing the bottleneck can be daunting. Recent work on symbolic profiling [7]
explains why: classic performance engineering techniques assume a single path
of execution, and the all-path execution model of symbolic evaluation violates
this assumption. As a result, standard profiling tools (e.g., time-based) fail to
identify the code that needs to be optimized, and standard optimizations (e.g.,
breaking early out of a loop) can make performance asymptotically worse under
symbolic evaluation. Symbolic profiling addresses the first problem, providing
a new performance model for symbolic evaluation and an automatic technique
for identifying performance bottlenecks in solver-aided code. The second prob-
lem, however, remains open, with developers relying on experience and ad-hoc
experimentation to optimize their code.

To address this problem, we present a new method for automatic repair of
common performance bottlenecks in solver-aided code. The key idea is to for-
mulate the symbolic performance repair problem as combinatorial search in a
space of semantics-preserving transformations, or repairs. Our technique, Sym-
Fix, takes as input a solver-aided program and a workload, and it searches the
repair space for a semantically equivalent program that minimizes the cost of
symbolic evaluation [7] on the input workload. The choice of repairs and the
search strategy are critical to the usefulness and completeness of SymFix. This
paper contributes a small set of generic repairs that combine to fix common bot-
tlenecks, and an effective algorithm for combining repairs into (optimal) fixes.

What makes a generic repair useful for code under symbolic evaluation? Intu-
itively, a repair is useful if its application reduces the cost of symbolic evaluation
for a large class of programs. This cost depends on the program’s control struc-
ture and the evaluator’s strategy for splitting and merging states [7,27,46]. So
useful repairs change the program’s control structure or evaluation strategy.

Based on this insight, we develop a set of three repairs that employ deforesta-
tion [48] to simplify program structure and symbolic reflection [46] to simplify
the evaluation strategy. Deforestation is a classic optimization for functional
programming languages that eliminates intermediate lists. Under concrete eval-
uation, deforestation improves performance by a constant factor. Under symbolic
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evaluation, however, it can improve performance asymptotically when the inter-
mediate lists are symbolic. We use deforestation based on build/foldr fusion [22]
as one of our repairs. We also develop two repairs for host languages that sup-
port symbolic reflection—a set of language constructs that a program can use
to inspect its symbolic state and control its symbolic evaluation (e.g., by forcing
a split on a merged state). These two repairs work by creating more oppor-
tunities for concrete evaluation. As such, they can both improve performance
asymptotically and, in some cases, fix divergence due to loss of concreteness.

The search space defined by our repairs is finite for every program, so it
supports complete and optimal search. But it is also intractably large for real
programs. We therefore formulate SymFix as an anytime algorithm, equipped
with a pruning mechanism that exploits precedence of repairs and a prioritization
heuristic that exploits symbolic profiling information. The pruning mechanism is
inspired by partial order reduction [15]: if two repairs can always be reordered so
that one is applied before the other without changing the result, SymFix explores
only one of the orders. The prioritization heuristic uses ranking information
computed by symbolic profiling to decide what parts of the program to repair
first. In particular, symbolic profiling takes as input a program and a workload,
and ranks the locations in the program from most to least likely bottlenecks.
SymFix uses this ranking to quickly drive the search toward most promising
solutions.

We implement SymFix for Rosette [43,45,46], a solver-aided host language
that extends Racket [18,37] with support for symbolic evaluation, reflection,
and profiling. To evaluate SymFix’s effectiveness, we apply it to 15 solver-aided
tools [2,5,6,8,10,12,14,25,33,36,46,50,51] studied in the paper on symbolic pro-
filing [7], as well as 3 more recent tools [29,31,35]. SymFix improves the per-
formance of 12 tools by a factor of 1.1×–91.7×, and 4 of these fixes match or
outperform those written by experts. SymFix also finds 5 fixes that were missed
by experts. We further show that the improvements made by SymFix generalize
to unseen workloads, and that its search strategy is essential for finding useful
fixes.

In summary, this paper makes the following contributions:

1. A formulation of the symbolic performance repair problem as combinatorial
search in a space of semantics-preserving transformations, or repairs.

2. SymFix, a new technique for solving this problem. SymFix contributes a set
of repairs based on deforestation and symbolic reflection, and an effective
anytime algorithm for combining these repairs into useful fixes.

3. An implementation of SymFix for the Rosette solver-aided language [43,46].
4. An evaluation of SymFix’s effectiveness on 18 published solver-aided tools

built in Rosette, showing that it can find repairs that outperform expert fixes
and that generalize to unseen workloads.

The rest of the paper illustrates symbolic performance repair on a small example
(Sect. 2); formulates the problem of repairing performance bottlenecks in solver-
aided code (Sect. 3); presents the SymFix algorithm, repairs, and implementation
for Rosette (Sect. 4); shows the effectiveness of SymFix at repairing bottlenecks
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in real solver-aided tools hosted by Rosette (Sect. 5); discusses related work
(Sect. 6); and concludes with a summary of key points (Sect. 7).

2 Overview

This section illustrates symbolic performance repair on a small solver-aided pro-
gram (Fig. 1). The program is adapted from Serval [29], a framework for verify-
ing systems code at the instruction level. Serval is built in Rosette [43], and it
supports creating scalable automated verifiers by writing interpreters. Serval’s
authors show how to profile this program with a symbolic profiler, and manually
fix the bottleneck using a custom construct implemented as a Rosette macro. We
first revisit this analysis to highlight the challenges of repairing bottlenecks in
solver-aided code, and then show how SymFix repairs the problem automatically
and generically, using a repair based on symbolic reflection [46].

1 ; cpu state: program counter and registers
2 (struct cpu (pc regs) #:mutable)
3
4 ; interpret a program from a cpu state
5 (define (interpret c program) ; A
6 (define i (fetch c program)) ; B
7 (match i
8 [(list opcode rd rs imm)
9 (execute c opcode rd rs imm)

10 (when (not (equal? opcode ’ret))
11 (interpret c program))]))
12
13 ; fetch an instruction at the current pc
14 (define (fetch c program)
15 (define pc (cpu-pc c))
16 (vector-ref program pc)) ; C
17
18 ; read register rs
19 (define (cpu-reg c rs)
20 (vector-ref (cpu-regs c) rs))
21
22 ; write value v to register rd
23 (define (set-cpu-reg! c rd v)
24 (vector-set! (cpu-regs c) rd v))
25
26 ; execute instruction (opcode rd rs imm)
27 (define (execute c opcode rd rs imm)
28 (define pc (cpu-pc c))
29 (case opcode
30 [(ret)
31 (set-cpu-pc! c 0)] ; D
32 [(bnez)

33 (if (! (= (cpu-reg c rs) 0))
34 (set-cpu-pc! c imm) ; E
35 (set-cpu-pc! c (+ 1 pc)))] ; F
36 [(sgtz)
37 (set-cpu-pc! c (+ 1 pc))
38 (if (> (cpu-reg c rs) 0)
39 (set-cpu-reg! c rd 1) ; G
40 (set-cpu-reg! c rd 0))] ; H
41 [(sltz)
42 (set-cpu-pc! c (+ 1 pc))
43 (if (< (cpu-reg c rs) 0)
44 (set-cpu-reg! c rd 1) ; I
45 (set-cpu-reg! c rd 0))] ; J
46 [(li)
47 (set-cpu-pc! c (+ 1 pc)) ; K
48 (set-cpu-reg! c rd imm)])) ; L
49
50 (define sgnt #( ; sign in ToyRISC
51 (sltz 1 0 #f) ; 0. r1 = r0<0 ? 1 : 0
52 (bnez #f 1 4) ; 1. branch to 4 if r1!=0
53 (sgtz 0 0 #f) ; 2. r0 = r0>0 ? 1 : 0
54 (ret #f #f #f) ; 3. return
55 (li 0 #f -1) ; 4. r0 = -1
56 (ret #f #f #f) ; 5. return
57 ))
58
59 (define-symbolic X Y integer?)
60 (define c (cpu 0 (vector X Y)))
61 (interpret c sgnt)
62 (verify
63 (assert (= (cpu-reg c 0) (sgn X))))

Fig. 1. A ToyRISC interpreter and program in Rosette, adapted from Serval [29].

Solver-Aided Programming. Fig. 1 shows a small program [29] written in Rosette,
a solver-aided host language that extends Racket [37] with support for sym-
bolic evaluation. Rosette programs behave like Racket programs when executed
on concrete values. But Rosette also lifts programs, via symbolic evaluation,
to operate on symbolic values. These values are used to formulate solver-aided
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queries, such as verifying that a program satisfies its specification, expressed as
assertions, on all inputs. The example verifies a program in ToyRISC, a small
subset of RISC-V [1], by lifting its interpreter to work on symbolic values.

The ToyRISC interpreter (lines 1–48) implements a simple recursive proce-
dure for executing a ToyRISC program from a given CPU state. The state con-
sists of a program counter and vector of two registers, r0 and r1, both holding
integers. A program is a sequence of instructions that manipulate the state. An
instruction is a list of four values, (opcode rd rs imm), specifying the instruc-
tion’s opcode, destination and source registers, and the immediate constant.
Unused arguments are denoted by #f; for example, the return instruction takes
no arguments, denoted by (ret #f #f #f). In addition to the return instruc-
tion, which halts the execution (line 10), the language also includes instructions
for conditional branching (bnez), loading values into registers (li), and com-
paring register values to zero (sgtz and sltz). The example ToyRISC program,
sgnt, uses these instructions to compute the sign of the value in register r0,
storing the result back into r0 and using r1 as a scratch register.

The sgnt program is correct if it produces the same result as the host sign
procedure, sgn, for all valid CPU states. To verify sgnt, we first use Rosette’s
define-symbolic form to create two fresh symbolic integers, X and Y , and
bind them to the variables X and Y (line 59). Next, we use these variables to
create a CPU state c with the program counter set to 0 and registers set to X
and Y (line 60). The symbolic state c represents all valid concrete CPU states.
Finally, we interpret sgnt on c and use Rosette’s verify query to search for a
counterexample to the assertion that register r0 holds the sign of X. A coun-
terexample to this query would bind the symbolic values X and Y to concrete
integers that trigger the assertion failure. But since sgnt is correct, the query
returns (unsat) to indicate the absence of counterexamples.

Symbolic Evaluation and Profiling. When interpreting sgnt on the symbolic
state c, Rosette evaluates all paths through the interpreter code and reduces
their meaning to symbolic expressions over X and Y . For example, after the
call to the interpreter (line 61), register r0 of c holds the symbolic value
ite(X < 0,−1, ite(0 < X, 1, 0)), which encodes the meaning of sgnt. This value is
part of the symbolic heap that Rosette generates while exploring the interpreter’s
symbolic evaluation graph [7] (Fig. 2a). The heap consists of all symbolic values
created during evaluation. The graph is a DAG over program states and guarded
transitions between states, and its shape reflects the evaluator’s strategy for path
splitting and state merging. The symbolic heap and evaluation graph character-
ize the behavior of solver-aided code under every (forward) symbolic evaluation
strategy, and controlling their complexity is key to good performance [7].

To help with this task, Rosette provides a symbolic profiler, SymPro, that
monitors the heap and the graph to identify performance bottlenecks. Sym-
Pro computes summary statistics about the effect of each procedure call on
these structures, such as the number of symbolic values added to the heap, and
the number of path splits and state merges added to the graph. It then uses
these statistics to rank the calls to suggest likely bottlenecks. When applied
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v0 : X < 0
v1 : ¬v0
v2 : ite(v0, 1, 0)
v3 : ite(v0, 4, 2)
v4 : ite(v0, li, sgtz)
v5 : ite(v0,#f, 0)
v6 : ite(v0,−1,#f)
v7 : ite(v0, 5, 3)
v8 : X > 0
v9 : ¬v8
v10 : ite(v8, 1, 0)
v11 : ite(v0,−1, v10)

c �→ cpu(0, X, Y )
i �→ (sltz 1 0#f)

B

c �→ cpu(1, X, 1)
I

c �→ cpu(1, X, 0)
J

c �→ cpu(1, X, v2)
i �→ (bnez#f 1 4)

B

v0 v1

c �→ cpu(4, X, v2)
E

c �→ cpu(2, X, v2)
F

c �→ cpu(v3, X, v2)
A

v0 v1

c �→ cpu(v3, X, v2)
i �→ (v4 0 v5 v6)

B

c �→ cpu(v7,−1, v2)
L

c �→ cpu(v3, X, v2)

c �→ cpu(v7, 1, v2)
G

c �→ cpu(v7, 0, v2)
H

c �→ cpu(v7, v10, v2)

c �→ cpu(v7, v11, v2)
A

c �→ cpu(v7, v11, v2)
i �→ (ret#f#f#f)

B

c �→ cpu(0, v11, v2)
D

(v4 = li) ≡ v0 (v4 = sgtz) ≡ v1 v4 = ret
v4 = bnez

v4 = sltz

v8 v9

vector-ref

v1
v0

v3 = 0 v3 = 1 v3 = 3

v3 = 5

C

vector-ref

v9
v8

v7 = 0 v7 = 1 v7 = 2

v7 = 4

C

(a) Original (Figure 1)

v0 : X < 0
v1 : ¬v0
v2 : ite(v0, 1, 0)
v3 : ite(v0, 4, 2)
v4 : X > 0
v5 : ¬X > 0
v6 : ite(v4, 1, 0)
v7 : ite(v0,−1, v6)

c �→ cpu(0, X, Y )
i �→ (sltz 1 0#f)

B

c �→ cpu(1, X, 1)
I

c �→ cpu(1, X, 0)
J

c �→ cpu(1, X, v2)
i �→ (bnez#f 1 4)

B

v0 v1

c �→ cpu(4, X, v2)
E

c �→ cpu(2, X, v2)
F

c �→ cpu(v3, X, v2)
O

v0 v1

c �→ cpu(4, X, v2)
i �→ (li 0#f−1)

B v0

c �→ cpu(5,−1, v2)
i �→ (ret#f#f#f)

B

c �→ cpu(0,−1, v2)
D

c �→ cpu(2, X, v2)
i �→ (sgtz 0 0#f)

Bv1

c �→ cpu(3, 1, v2)
G

c �→ cpu(3, 0, v2)
H

c �→ cpu(3, v6, v2)
i �→ (ret#f#f#f)

B

v4 v5

c �→ cpu(0, v6, v2)
D

c �→ cpu(0, v7, v2)

(b) Repaired (Figure 3)

Fig. 2. Simplified symbolic evaluation heap and graph for the original (a) and repaired
(b) ToyRISC code. Heaps are shown in gray boxes. Nodes in a symbolic evaluation
graph are program states, and edges are guarded transitions between states, labeled
with the condition that guards the transition. Edges ending at pink circles denote
infeasible transitions. Dotted edges indicate elided parts of the graph. Circled letters
are program locations, included for readability.

to ToyRISC, SymPro identifies the calls to execute at line 9 and vector-ref
at line 16 as the likely bottlenecks. But how does one diagnose and fix these
bottlenecks?

Manually Repairing Bottlenecks. The authors of ToyRISC reasoned [29] that the
first location returned by SymPro “is not surprising since execute implements
the core functionality, but vector-ref is a red flag.” Examining the merging
statistics for vector-ref, they concluded that vector-ref is being invoked
with a symbolic program counter to produce a “merged symbolic instruction”
(highlighted in Fig. 2a), which represents a set of concrete instructions, only
some of which are feasible. Since execute consumes this symbolic instruction
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(define (interpret c program) ; A
(serval:split-pc [cpu pc] c ; O

(define i (fetch c program)) ; B
(match i

[(list opcode rd rs imm)
(execute c opcode rd rs imm)
(when (not (equal? opcode ’ret))

(interpret c program))])))

(a) Manual repair [29]

(define (interpret c program) ; A
(split-all (c) ; O

(define i (fetch c program)) ; B
(match i

[(list opcode rd rs imm)
(execute c opcode rd rs imm)
(when (not (equal? opcode ’ret))

(interpret c program))])))

(b) Generated repair

Fig. 3. Manual and SymFix repair for ToyRISC code.

(line 9), its evaluation involves exploring infeasible paths, leading to degraded
performance on our example and non-termination on more complex ToyRISC
programs.

Having diagnosed the problem, the authors of ToyRISC then reasoned that
the fix should force Rosette to split the evaluation into separate paths that
keep the program counter concrete. Such a fix can be implemented through
symbolic reflection [46], a set of constructs that allow programmers to control
Rosette’s splitting and merging behavior. In this case, ToyRISC authors used
symbolic reflection and metaprogramming with macros (which Rosette inherits
from Racket) to create a custom construct, split-pc, that forces a path split on
CPU states with symbolic program counters. Applying split-pc to the body of
interpret (Fig. 3a) fixes this bottleneck (Fig. 2b)—and ensures that symbolic
evaluation terminates on all ToyRISC programs. But while simple to implement,
this fix is hard won, requiring manual analysis of symbolic profiles, diagnosis of
the bottleneck, and, finally, repair with a custom construct based on symbolic
reflection.

Repairing Bottlenecks with SymFix. SymFix lowers this burden by automatically
repairing common performance bottlenecks in solver-aided code. The core idea
is to view the repair problem (Sect. 3) as search for a sequence of semantics-
preserving repairs that transform an input program into an equivalent program
with minimal symbolic cost—a value computed from the program’s symbolic
profiling metrics. To realize this approach, SymFix solves two core technical
challenges (Sect. 4): (1) developing a small set of generic repairs that can be
combined into useful and general repair sequences for common bottlenecks, and
(2) developing a search strategy that discovers good fixes quickly and best fixes
eventually.

SymFix can repair complex bottlenecks in real code as well as or better than
experts (Sect. 5). It can also repair ToyRISC, finding the fix in Fig. 3b. This
fix has the same effect as the expert split-pc fix but uses a generic split-all
construct. The construct forces a split on the value stored in a variable depending
on its type: if the value is a struct, the split is performed on all of its fields that
hold symbolic values. The split-all construct can be soundly applied to any
bound occurrence of a local variable in a program, leading to intractable search
spaces even for small programs. For example, there are 55 bound local variables
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in ToyRISC, so the split-all repair alone can be used to transform ToyRISC
into 255 syntactically distinct programs. SymFix is able to navigate this large
search space effectively, matching the expert fix in a few seconds.

3 Symbolic Performance Repair

As Sect. 2 illustrates, performance bottlenecks in solver-aided code are difficult
to repair manually. This section presents a new formulation of this problem
that enables automatic solving. Our formulation is based on two core concepts:
repairs and fixes. A repair is a semantics-preserving transformation on programs.
A fix combines a sequence of repair steps, with the goal of reducing the cost of
a program under symbolic evaluation. The symbolic performance repair problem
is to find a fix, drawn from a finite set of repairs, that minimizes this cost. We
describe repairs and fixes first, present the symbolic performance repair problem
next, and end with a discussion of key properties of repairs that are sufficient
for solving the repair problem in principle and helpful for solving it in practice.

3.1 Repairs, Fixes, and Symbolic Cost

Repairs. A repair transforms a program to a set of programs that are syn-
tactically different but semantically equivalent (Definitions 1 and 2). A repair
operates on programs represented as abstract syntax trees (ASTs). It takes as
input an AST and a node in this AST, and produces an ordered set of ASTs that
transform the input program at the given node or one of its ancestors. This inter-
face generalizes classic program transformations by allowing repairs to produce
multiple ASTs. The classic interface is often implemented by heuristically choos-
ing one of many possible outputs that an underlying rewrite rule can generate.
Our interface externalizes this choice, while still letting repairs provide heuristic
knowledge in the order of the generated ASTs, as illustrated in Example 1. This
enables an external algorithm to drive the search for fixes, with advice from the
repairs.

Definition 1 (Program). A program is an abstract syntax tree (AST) in a
language P, consisting of labeled nodes and edges. A program P ∈ P denotes
a function [[P ]] : Σ → Σ on program states, which map program variables
to values. Programs P and P ′ are syntactically equivalent if their trees con-
sist of identically labeled nodes, connected by identically labeled edges. They are
semantically equivalent iff [[P ]]Pσ ≡ [[P ′]]Pσ for all program states σ ∈ Σ, where
[[·]]P : P → Σ → Σ denotes the concrete semantics of P.

Definition 2 (Repair). A repair R : P → L → 2P is a function that maps
a program and a location to an ordered finite set of programs. A location l ∈ L
identifies a node in an AST. The set R(P, l) is empty if the repair R is not
applicable to P at the location l. Otherwise, each program Pi ∈ R(P, l) satisfies
two properties. First, P and Pi differ in a single subtree rooted at l or an ancestor
of l in P . Second, P and Pi are semantically equivalent.
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Example 1. Consider a repair R1 that performs the rewrite e ∗ 2 → e << 1 on
integer expressions. There are three ways to apply this rewrite to the program
P = 1 + (a * 2) * 2 at the node a or its ancestors, and R1 orders them as
follows:

1 + (a << 1) << 1 ; 0: Apply the rewrite exhaustively.
1 + (a << 1) * 2 ; 1: Apply the rewrite just to a’s parent.
1 + (a * 2) << 1 ; 2: Apply the rewrite just to a’s grandparent.

The order of the generated ASTs suggests that applying the rewrite exhaustively
is most useful, followed by applying it from the inside out.

Fixes. A fix composes a sequence of repair steps into a function from programs
to programs (Definitions 3 and 4). A repair step 〈R, l, i〉 specifies the repair R
to apply to a program, the location l at which to apply it, and the index i of
the program to select from the resulting ordered set of programs. In essence,
a repair step turns a repair into a classic program transformation by choosing
one of the repair’s outputs, and fixes can compose these steps to create new
transformations, as illustrated in Example 2.

Definition 3 (Repair step). A repair step 〈R, l, i〉 consists of a repair R,
program location l, and non-negative integer i. A step denotes the function
[[〈R, l, i〉]] : P ∪ {⊥} → P ∪ {⊥} as follows: [[〈R, l, i〉]]P = R(P, l)[i] if P 
= ⊥
and |R(P, l)| > i; otherwise the result is ⊥. We write R(P, l)[i] to mean the ith

program in the ordered set R(P, l).

Definition 4 (Fix). A fix F = [〈R1, l1, i1〉, . . . , 〈Rn, ln, in〉] is a finite sequence
of one or more repair steps. A fix F denotes the function that composes the
repair steps of F , i.e., [[F ]] = [[〈Rn, ln, in〉]] ◦ . . . ◦ [[〈R1, l1, i1〉]]. We say that fix is
successful for a program P if [[F ]]P 
= ⊥.

Example 2. Consider the fix F = [〈R1, a, 0〉, 〈R2, a, 0〉], where R1 is the repair
from Example 1 and R2 performs the rewrite (e<< 1)<< 1 → e<< 2. Apply-
ing F to the program P from Example 1 produces the program 1 + (a << 2):
[[〈R2, a, 0〉]]([[〈R1, a, 0〉]]P ) = [[〈R2, a, 0〉]](1 + (a << 1) << 1) = 1 +(a << 2).
In other words, the fix F composes its repair steps to rewrite the second subex-
pression of P using the rule (e ∗ 2) ∗ 2 → e<< 2.

Cost. There are many ways to combine repairs into fixes for a given program,
even when the program is small and repairs are few (Example 3). To choose a fix
that is useful for improving the performance of a program under symbolic evalu-
ation, we need a way to measure the cost of symbolic evaluation (Definition 5).
We address this challenge by building on the observation that the behavior of
symbolic evaluators is characterized by two structures: the symbolic heap and
the symbolic evaluation graph. Our framework defines symbolic evaluation as a
function from programs and program states to these structures (Definition 6),
and the cost of symbolic evaluation as a function from these structures to (nat-
ural) numbers (Definition 7). The details of the cost function are not important
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for the framework, although they are important in practice: the symbolic cost
should correlate with concrete metrics that are meaningful to developers (e.g.,
end-to-end running time), and SymFix uses a cost function (Sect. 4) that is sim-
ple but effective (Sect. 5). What matters, however, is that the symbolic evaluator
is a total function, which means that we consider only finite computations. In
particular, we make the standard assumption that programs P ∈ P are free of
input-dependent loops, and are therefore guaranteed to terminate under sym-
bolic evaluation, ensuring that we can compute the cost for every fix.

Definition 5 (Useful fix). A fix F is useful for a program P ∈ P, program
state σ ∈ Σ, symbolic evaluator S : P → Σ → G, and cost c : G × H → N, if
[[F ]]P 
= ⊥ and c(S([[F ]]P, σ)) < c(S(P, σ)).

Definition 6 (Symbolic evaluator). A symbolic evaluator S : P → Σ →
G×H is a function that takes as input a program P ∈ P and program state σ ∈ Σ,
and outputs a pair 〈G,H〉, where G ∈ G is a symbolic evaluation graph and H ∈
H is a symbolic heap [7]. A symbolic heap H = (VH , EH) is a directed acyclic
graph (DAG) with labeled nodes and edges. Heap nodes are symbolic values, and
heap edges connect compound symbolic values to the symbolic or concrete values
from which they are built. A symbolic evaluation graph G = (VG, EG) is a DAG
where nodes VG ⊆ Σ are program states and edges are transitions between states,
each labeled with a (symbolic or concrete) boolean value that guards the transition
and a program location in P that caused the transition. The graph G has σ ∈ VG

as its sole source node. The heap H contains all symbolic values that appear in
G as part of a program state or as an edge label. If H = (∅, ∅) is empty, then G
consists of a single path from σ to [[P ]]Pσ, where all edges are labeled with �.

Definition 7 (Symbolic cost). A symbolic cost function c : G × H → N

assigns a cost, expressed as a natural number, to the results of symbolic evalua-
tion.

Example 3. Consider again the fix F , repairs R1 and R2, and program P from
Examples 1 and 2. In addition to F , there are seven different ways to compose
repair steps over R1 and R2 into fixes for P ; two are equivalent to F and five
to the outputs of R1 on P . Intuitively, F produces the best program for all
workloads, and in this case, the intuition is captured by a simple cost function
that measures the size of the symbolic heap, i.e., c(〈G,H〉) = |VH |. For example,
letting σ = {a �→ A}, where A is a symbolic integer, we can compute the cost of
P , the output of the fix [〈R1, a, 0〉], and the output of the fix F as follows:

c(S(1 + (a * 2) * 2, σ)) = |{v0 : A ∗ 2, v1 : v0 ∗ 2, v2 : 1 + v1}| = 3
c(S(1 + (a << 1) << 1, σ)) = |{v0 : A << 1, v1 : v0 << 1, v2 : 1 + v1}| = 3
c(S(1 + (a << 1) << 2, σ)) = |{v0 : A << 2, v1 : 1 + v0}| = 2

As expected, the program produced by F has the lowest cost.

3.2 The Symbolic Performance Repair Problem

The symbolic performance repair problem is to find a fix, drawn from a finite set
of repairs, that minimizes the symbolic cost of a program on a given workload
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(Definition 8). To make this problem solvable in principle, it is sufficient to ensure
that the set of repairs is terminating [17], preventing the repairs from being
indefinitely applicable to any program (Definition 9). To help solve the repair
problem in practice, we can use a general property of repairs, precedence, to prune
fixes during search without missing any programs (Definition 10). A partial order
�R is a precedence relation on a set of repairs R if every successful fix over R
can be turned into an equivalent fix by permuting its repair steps to respect �R.
To search for a fix over R with �R, it is sufficient to explore successful fixes that
order all repair steps according to �R. Example 4 illustrates these definitions,
and we use them in the next section to develop the SymFix algorithm for solving
the repair problem.

Definition 8 (Symbolic performance repair). Let P ∈ P be a program,
σ ∈ Σ a program state, R a finite set of repairs for P, S a symbolic evaluator
for P, and c a symbolic cost function for S. The symbolic performance repair
problem is to find a useful fix F over R that minimizes the cost of evaluating P
on σ; i.e., for all useful fixes F ′ 
= F over R, c(S([[F ]]P, σ)) ≤ c(S([[F ′]]P, σ)).

Definition 9 (Terminating repair set). Let R be a finite set of repairs for
the language P. We say this set is terminating if for every program P ∈ P, there
is an upper bound on the length of every successful fix for P drawn from R.

Definition 10 (Repair precedence). Let R be a finite set of repairs and �R a
partial order on R. Let spine be a function that projects out the repairs from a fix,
i.e., spine(F ) = [R1, . . . , Rn] for F = [〈R1, l1, i1〉, . . . , 〈Rn, ln, in〉]. We say that
�R is a precedence on R if for every program P and every successful fix F for P
drawn from R, there is a fix F ′ such that [[F ]]P = [[F ′]]P and spine(F ′) permutes
spine(F ) to respect �R, i.e., ∀i, j. spine(F ′)[i] �R spine(F ′)[j] =⇒ i ≤ j.

Example 4. Recall the program P , repairs R1 and R2, fix F , and cost c from
Examples 1–3. The repair set R = {R1, R2} is terminating; R1 �R R2; and F is
a solution to the symbolic performance repair problem for P , R, and c.

4 The SymFix Algorithm and Repairs

This section presents the SymFix system for solving the symbolic performance
repair problem. SymFix consists of two components: an anytime algorithm for
searching the space of fixes drawn from a terminating set of repairs, and a
set of three generic repairs for functional solver-aided languages with symbolic
reflection. We present the algorithm first and prove its correctness and optimality
(Sect. 4.1). We then describe the repairs and a total precedence relation on them,
and argue that they form a terminating set (Sect. 4.2). We end by highlighting the
key details of our implementation of SymFix for the Rosette language (Sect. 4.3).
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1 function SymFix(Pin, σ, S, M,R, �R)

2 function Info(P, F ) � Symbolic profile sorts P ’s locations from most to least
3 〈LP , mP 〉 ← M(S(P, σ)) � likely bottlencks & collects k profiling metrics.
4 cP ← ∑

0≤i<k mi � P ’s cost is the sum of its profiling metrics.

5 return {P {→� cost �→ cP , locs �→ LP ,fix �→ F}}
6 function Next(P, info) � Picks a successor of P , if any, with an extra repair.
7 F ← info[P ][fix ] � Get the fix that generated P .
8 for R in R do � Iterate over the repairs in R that do not precede
9 if

∧
Ri∈spine(F ) Ri = R ∨ R 	�R Ri then � any repairs in P ’s fix,

10 for l in info[P ][locs] do � then over the ranked locations in P ,
11 for Pj ∈ R(P, l) do � and then over the ordered results
12 if info[Pj ] = ⊥ then � to find a new program Pj .
13 return 〈Pj , append(F, 〈R, l, j〉)〉 � Return Pj and its fix.

14 return 〈⊥, ⊥〉 � No new programs can be obtained from P .

15 function Search(Pin)
16 W, info ← {Pin}, Info(Pin, []) � Initialize the work set and info map.
17 minCost ← info[Pin][cost] � Set P ’s cost as current best cost.
18 while W 	= ∅ do
19 P ← min(W, λP.info[P ][cost]) � Choose the cheapest P ∈ W to work on.
20 〈P ′, F ′〉 ← Next(P, info) � Get a successor P ′ of P and its fix.
21 if 〈P ′, F ′〉 	= 〈⊥, ⊥〉 then � If P ′ exists,
22 W, info ← W ∪ {P ′}, info ∪ Info(P ′, F ′) � add P ′ to W and info;
23 if info[P ′][cost] < minCost then � and if P ′ is best so far,
24 minCost ← info[P ′][cost] � update minCost and
25 print P ′ � output P ′.
26 else
27 W ← W \ {P} � No new programs can be obtained from P .

28 Search(Pin)

Fig. 4. The SymFix search algorithm takes as input a program Pin in a language P, a
workload σ, a symbolic evaluator S for P, a symbolic profiler M for S, a terminating
set of repairs R for P, and a precedence relation �R on R. It searches the space of fixes
drawn from R to find a program that is equivalent to Pin and minimizes the cost of
symbolic evaluation on σ according to the profiler M .

4.1 Profile-Guided Search for Fixes

The SymFix algorithm (Fig. 4) solves the symbolic performance repair problem
for a cost function based on symbolic profiling. As shown in prior work [7],
the metrics computed by a symbolic profiler closely reflect the overall running
time of solver-aided code (i.e., symbolic evaluation together with solving time),
and reducing these metrics is key to improving performance. In addition to
computing these metrics, which measure the size and shape of the symbolic
heap and evaluation graph, a symbolic profiler M also ranks all locations in
a program from most to least expensive to evaluate. The SymFix algorithm
uses both of these outputs: it searches for a fix that minimizes the sum of the
profiling metrics for a given program and workload, and the search is guided by
the profiling ranks.

The algorithm relies on the Search procedure to explore the space of fixes for
a program Pin and a terminating set of repairs R. Search performs exhaustive
(rather than greedy) best-first search over this space. It starts by initializing the
work set W with the input program Pin; the info map with a binding from Pin

to its profiling metrics, cost, and the empty fix; and the minimum cost minCost
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with the cost of Pin. The main search loop then picks a program P from the
work set, applies one repair step to P to get a new program P ′ (corresponding
to a fix F ′ that extends P ’s fix by one step), and adds P ′ to both W and
info. If the new program P ′ has lower cost than minCost , Search prints it and
updates minCost accordingly. But if no new programs can be obtained from P by
applying a repair from R, then P has no more children in the underlying search
graph, and Search removes it from the work set W . The search continues as long
as there are programs in W , so the entire search graph is eventually explored.

To make the algorithm practically useful, Search employs the procedure
Next to explore the most promising fixes first and to prune the search space
without losing completeness. Search selects the cheapest fix F to extend (line
19), and Next constructs the repair step 〈R, l, j〉 to add to F . To construct
〈R, l, j〉, Next first choses a repair R that does not strictly precede any of the
repairs in F , according to the precedence relation �R. Then, it uses profiling
rankings and the repair’s ordering heuristics to select the location l and the
result index j. This ensures that Search explores only fixes that respect �R,
and that it tries to repair most likely bottlenecks first.

The SymFix algorithm is sound, complete, and optimal (Theorem 1). It pro-
duces correct fixes that are semantically equivalent to the input program (sound-
ness). It always finds a useful fix if one exists in the space defined by the given
set of repairs (completeness). And it eventually finds the best such fix that min-
imizes the symbolic profiling cost on the given workload (optimality).

Theorem 1. Let Pin be a program, σ a workload, R a terminating set of repairs,
and �R a precedence relation on R. Then SymFix(Pin, σ, S,M,R,�R) terminates
and satisfies the following conditions. (1) If Search produces a program at line
25, then every such program P ′ is semantically equivalent to Pin (soundness).
(2) For every cost C < info[Pin][cost], if there is a fix over R with cost C, then
line 25 will produce a program P ′ with info[P ′][cost] ≤ C (completeness and
optimality).

Proof (sketch). First, note that SymFix explores a search graph where nodes are
programs; two nodes are related by a repair step drawn from R; and a path in
the graph corresponds to a fix over R that respects �R. All paths through this
graph are finite because R is terminating (Definition 9). There are also finitely
many such paths because each node has finitely many outgoing edges (repair
steps), which follows from the finite number of repairs, locations in a program,
and repair outputs. So, (1) the underlying search graph is finite, and (2) by
definition of �R (Definition 10), it contains the same programs (nodes) as the
search graph that includes all fixes (paths) over R. Next, note that (3) SymFix
adds each program in this graph to the work set W exactly once, and (4) each
added program is removed after all of its children have been visited, i.e., added
to the info map. These facts (1–4) imply that the algorithm terminates after
visiting each program in the space defined by R. Completeness and optimality
then follow from lines 17, 23–25, and soundness follows from the definition of
repairs (Definition 2).
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4.2 Effective Repairs for Functional Hosts with Symbolic Reflection

The effectiveness of SymFix hinges on the choice of the repair set R. An ideal
repair set includes a few key repairs that can be combined into useful fixes for
most common performance bottlenecks. This section presents three such repairs
for solver-aided languages with functional programming primitives and symbolic
reflection. We use Rosette to illustrate these repairs, but they are applicable to
any solver-aided language or framework with similar features (e.g., [13,39,47]).

Deforestation. Higher-order combinators (e.g., map, fold, and filter) are com-
monly used to operate on lists. Using these combinators generates intermediate
lists that are immediately consumed and discarded, slowing down concrete eval-
uation by a constant factor. Under symbolic evaluation, however, the resulting
slow down is asymptotically worse, as the following example demonstrates.

(define (sum-slow xs) ; Sums the positive numbers in xs using an
(foldr + 0 (filter positive? xs))) ; intermediate list (the result of filter).

(define (sum-fast xs) ; Sums the positive numbers in xs without
(foldr (lambda (e acc) ; creating any intermediate lists.

(if (positive? e)
(+ e acc)
acc))

0 xs))

> (define-symbolic xs integer? [100]) ; xs is a list of 100 symbolic integers.

> (time (sum-slow xs)) ; Adds 520,000 values to the symbolic heap.
cpu time: 5119 real time: 4954 gc time: 2194

> (time (sum-fast xs)) ; Adds 100 values to the symbolic heap.
cpu time: 3 real time: 3 gc time: 0 ; Times are given in milliseconds.

Deforestation [48] is a classic program transformation that eliminates interme-
diate lists produced by list combinators. As such, it makes a powerful repair for
performance bottlenecks in solver-aided code. In the above example, it automat-
ically transforms sum-slow into sum-fast, avoiding the expensive call to filter
that creates a symbolic intermediate list when the input xs is symbolic. Many vari-
ants of deforestation exist for different functional languages; for Rosette, SymFix
uses a repair based on build/foldr fusion [22]. This repair applies deforestation
exhaustively at a given location and outputs at most one program.

Path Splitting. Deforestation changes the behavior of a program under symbolic
evaluation by restructuring its implementation. But if the host language supports
symbolic reflection [46], we can control the evaluation more directly, by using ded-
icated constructs to force path splitting [44] (or state merging [38]) at specific pro-
gram locations. We have seen an example of this in Sect. 2, where SymFix used a
path splitting construct to fix the ToyRISC interpreter. In Rosette, this construct
takes the form (split-all (x) E), where x is an identifier and E an expression
over x. If x is bound to a symbolic value that ranges over a small finite set of con-
crete values, {v1, . . . , vn}, then split-all splits the evaluation of E into n paths,
one for each value that x can take, i.e., x = vi � (let ([x vi]) E) for 1 ≤ i ≤ n.
Otherwise, split-all acts as the identity transformation on E. Because path
splitting increases the number of paths that are evaluated, it must be applied care-
fully to avoid path explosion—a task we delegate to automated search.
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The SymFix path splitting repair works as follows. Given a program location
l in a procedure body P , it outputs all valid ways to insert (split-all (x) E)
into P , so that E contains the location l, x is bound in E’s context, and there is
no other split on x in E or its context. So, nested splits on the same identifier,
(split-all (x) (...(split-all (x) ...), are disallowed. The resulting set
of transformed programs is finite but large, and the repair heuristically prefers
splits with broadest scope (i.e., where E is the highest ancestor of l in P ).

Value Splitting. Path splitting allows programs to exert local control on the
symbolic evaluation strategy, by concretizing a specific symbolic value at a spe-
cific program location. In principle, it is possible to combine many path splitting
repairs to implement a global change in the evaluation strategy, such as con-
cretizing every operation on a given user-defined type. In practice, however, this
would require prohibitively long and complex fixes. We therefore develop a global
value splitting repair that assumes the host language provides a mechanism for
controlling how all values of a given type are merged and split. In Rosette, this
is done with a transparency annotation, illustrated in the following example.

(require rosette/lib/match)

(struct Cell (v) #:transparent)

; Return a new Cell that doubles
; the value v of c.
(define (twice c)

(match c
[(Cell v) (Cell (+ v v))]))

; Create a symbolic Cell.
(define-symbolic b boolean?)
(define c (if b (Cell 1) (Cell 0)))

; Fields of transparent structs are merged,
; so ‘twice’ works on symbolic values.
> c
(Cell (ite b 1 0))
> (twice c)
(Cell (+ (ite b 1 0) (ite b 1 0)))

; The symbolic heap now contains 4 values:
; b,¬b, ite(b, 1, 0), ite(b, 1, 0) + ite(b, 1, 0).

(require rosette/lib/match)

(struct Cell (v)) ; Opaque struct.

; Return a new Cell that doubles
; the value v of c.
(define (twice c)

(match c
[(Cell v) (Cell (+ v v))]))

; Create a symbolic Cell.
(define-symbolic b boolean?)
(define c (if b (Cell 1) (Cell 0)))

; Fields of opaque structs are not merged,
; so ‘twice’ works on concrete values.
> c
{[b � (Cell 1)] [(! b) � (Cell 0)]}
> (twice c)
{[b � (Cell 2)] [(! b) � (Cell 0)]}
; The symbolic heap now contains 2 values,
; b,¬b, but the graph has more paths.

The SymFix value splitting repair toggles the transparency annotation on
user-defined structures in a way that preserves soundness. Under Rosette seman-
tics, it is sound to make structs less transparent (i.e., the transparency anno-
tation can be removed) but not more. So given a location within a struct dec-
laration, the value splitting repair produces at most one program. Like path
splitting, this repair creates more opportunities for concrete evaluation, at the
cost of adding more paths to the symbolic evaluation graph.

Termination and Precedence. The SymFix repairs form a terminating set with
a total precedence relation RV �R RD �R RP that orders value splitting first,
deforestation second, and path splitting last. To see this, first note that value
splitting applies to structs, while neither of the other repairs does, so RV can be
freely reordered with RD and RP . Next, observe that if deforestation RD follows
path splitting RP , then either they were applied to disjoint locations, or RP was
applied to an expression that is moved but not transformed by deforestation (e.g.,
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xs in the sum-slow example). In either case, the same effect can be achieved by
applying RP after RD (though not vice versa). Finally, note that RV and RD

can be applied to the same location at most once, and RP can be applied at most
N times, where N is the number of bound identifiers in the enclosing context.
Hence, the set {RV , RD, RP } is terminating.

4.3 Implementation

We implemented the SymFix algorithm and repairs for Rosette. All three repairs
require side effect analysis to preserve soundness, and we implement a simple
conservative analysis that allows repairs only on expressions built out of proce-
dures and constructs known to be safe. Because the repairs are totally ordered,
we apply them in stages so that all of our fixes are of the form R∗

V R∗
DR∗

P . While
our repair framework assumes that programs have no unbounded loops, Rosette
places no bounds on loops by design [46], so it is possible to write a Rosette pro-
gram that does not terminate under symbolic evaluation. Our implementation
deals with diverging and slow executions with timeouts.

5 Evaluation

To evaluate the effectiveness of SymFix, we address three research questions:

RQ1: Can SymFix repair the performance of state-of-the-art solver-aided tools,
and how do its fixes compare to those written by experts?

RQ2: Do the fixes found by SymFix generalize to different workloads?
RQ3: How important is SymFix’s search strategy for finding useful fixes?

All results in this section were collected using an Intel Core i7-7700K at 4.20 GHz
with 16 GB of RAM, running Racket v7.4. Each timing result is the average of
10 executions of the corresponding experiment.

5.1 Can SymFix Repair the Performance of State-of-the-Art
Solver-Aided Tools, and How Do Its Fixes Compare to
Experts’?

To demonstrate that SymFix is effective on state-of-the-art solver-aided tools, we
collected a suite of 15 tools [2,5,6,8,10,12,14,25,33,36,46,50,51] built in Rosette
from a prior literature survey [7], together with 3 more recent tools [29,31,35].
For each of these Rosette programs, we applied SymFix to identify and repair
performance bottlenecks.

Figure 5 shows the results. For each program, we report the original running
time in seconds, and the cost of the original program as estimated by SymFix.
We report three sources of repairs: fixes found by SymFix, fixes found by a
baseline greedy algorithm discussed in Sect. 5.3, and manual fixes from prior
work [7,29]. We used a one-hour timeout for all experiments. For each fix, we
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Original SymFix Greedy Manual

Program LoC Time Cost Time Cost |F | # Time Cost Time Cost

Bagpipe 3317 17 s 6.0e4 1.0× 1.0× 1 6 – – – –
Bonsai† 641 27 s 1.5e6 1.3× 1.3× 2 21 1.1× 1.1× 1.0× 0.9×
Cosette§ 2709 – – 21 s 6.8e5 3 33 – – 15 s 7.4e5
Ferrite 350 13 s 9.8e5 2.8× 3.8× 4 11 – – 1.6× 1.1×
Fluidics 145 10 s 6.5e5 1.9× 1.7× 1 1 1.9× 1.7× 2.1× 1.8×
FRPSynth 304 3 s 2.3e4 3.1× 1.6× 4 93 1.4× 1.3× – –
GreenThumb 934 1179 s 2.0e5 1.3× 1.1× 1 1 1.3× 1.1× – –
IFCL 574 53 s 6.2e5 – – – – – – – –
Memsynth 3362 15 s 2.0e6 1.1× 1.1× 1 2 1.0× 1.1× – –
Neutrons 37317 29 s 5.6e6 2.0× 2.3× 3 5 2.0× 2.3× 193.7× 869.9×
Nonograms 6693 8 s 1.5e5 1.1× 1.4× 7 46 – – – –
Quivela 5946 47 s 2.9e6 91.7× 218.4× 6 7 90.1× 187.3× 86.1× 218.5×
RTR 2007 282 s 1.6e7 – – – – – – 7.2× 4.1×
Serval‡ 8641 116 s 7.3e6 6.2× 80.7× 1 1 – – 6.2× 80.7×
Swizzle 1240 7 s 3.1e5 1.8× 1.3× 2 18 – – – –
SynthCL 3732 16 s 7.5e5 – – – – – – – –
Wallingford 3866 2 s 8.5e3 1.0× 1.0× 1 2 – – – –
WebSynth 2057 7 s 1.0e6 – – – – – – – –
† The manual repair was made unnecessary by a subsequent Rosette improvement.
§ The repair by SymFix involves independent changes from users.
‡ The repair by SymFix uses user-supplied repairs.

Fig. 5. Summary of fixes found by SymFix, a baseline greedy search, and experts.
“LoC” is the number of lines of code in a given benchmark; “Cost” is SymFix’s cost
function for search; “|F |” is the number of repair steps in the fix found by SymFix;
and “#” is the number of fixes explored in one hour before the reported best one is
found.

report the relative speedup and cost decrease compared to the original run time
and cost. A dash “–” indicates the absence of data due to timeouts or the lack of
known manual fixes. One original program (Cosette) does not terminate within
an hour, so we report only its repaired running times and costs.

SymFix finds fixes that improve the performance of 12 programs, with the
improvements ranging from 1.1× to 91.7×. SymFix also finds 2 fixes that lower
the symbolic cost and runtime only slightly, marked as 1.0× in Fig. 5. The “#”
column reports the number of iterations of SymFix’s search procedure needed to
find the fix, and “|F |” reports the number of repair steps in the fix. Most fixes
are found in fewer than 10 iterations, and most have up to 2 repair steps.

Of the 15 benchmarks from prior work, 7 were manually fixed by the authors
of that paper. For two of these benchmarks (Neutrons and RTR), the expert
finds a significantly better fix than SymFix or finds some fix while SymFix finds
none. Overall, SymFix matches or outperforms experts on 4 benchmarks, and
it finds fixes for 5 benchmarks with no expert fix. We inspected all the fixes
manually, and discuss interesting cases below.

For Bonsai (a synthesis tool for checking type-system soundness [12]), Neu-
trons (a verifier for safety-critical systems [33]), and RTR (a refinement type
checker for Ruby), the manual fixes were sound but not semantics-preserving, so
SymFix cannot discover them. For Bonsai, the manual fix was made unnecessary
by a subsequent Rosette improvement, but SymFix still discovers a new repair
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Original SymFix

Program Input Time (s) Cost Time Cost

Bonsai nanodot 17 s 7.8e5 1.2× 1.1×
Cosette q2 1 s 4.6e4 2.2× 9.8×
Cosette q3 – – 33 s 1.3e6
Ferrite chrome 99 s 2.1e7 16.2× 15.6×
FRPSynth program0 2 s 1.9e4 0.8× 0.8×
Quivela test-etm-10 19 s 6.7e5 1.8× 1.8×
Serval enosys 105 s 8.0e5 1.8× 11.3×
Swizzle stencil 6 s 2.1e5 1.1× 1.1×
Swizzle aos-sum 5 s 5.4e4 1.1× 1.0×

Fig. 6. Effectiveness of SymFix’s repairs from Fig. 5 on alternative workloads.

that improves the performance further. For Neutrons, SymFix cannot recover the
manual fix but does find a concretization opportunity offering a 2.0× speedup.
For RTR, SymFix does not find a useful fix, suggesting future opportunities to
exploit conditional repairs that are only sound under certain preconditions [40].

For Cosette, an automated prover for deciding the equivalence of two SQL
queries [14], the original implementation did not terminate within one hour. The
expert fix allowed Cosette to terminate in 15 s. Because SymFix needs to exe-
cute the original program during the search for repairs, we imposed a timeout of
60 s per execution. SymFix finds a fix that reduces Cosette’s run time to 21 s,
comparable to the manual fix. This new fix combines path splitting and defor-
estation of the map–reduce pattern Cosette uses to filter SQL tables. Finding
the deforestation repair required converting Cosette’s recursive implementation
of this pattern into a higher-order version, but the Cosette developers made this
change independently to implement the manual fix; SymFix exploited this new
structure to find another fix that allows Cosette to terminate in seconds.

For Fluidics, a tool for synthesizing programs that control a digital microflu-
idics array [51], the expert-written fix involves a change to the core data structure
the tool uses to represent the array. This change is outside the scope of SymFix’s
search space. However, SymFix instead discovers a different fix that uses path
splitting and requires no changes to the data structure. This fix offers a 1.9×
speedup instead of 2.1× for the manual one, but it is made automatically and
allows the tool’s developers to retain their preferred data structure.

For Ferrite, a tool for checking file-system crash consistency [5], SymFix
improves upon the expert-written fix by finding additional opportunities for
concretization through path and value splitting. These changes make Ferrite
close to 2× faster than the expert-repaired version.

For GreenThumb, a tool for developing superoptimizers [36], SymFix finds
a concretization opportunity that the expert did not. The concretization both
improves symbolic evaluation and alters the shape of the SMT formula so that
SMT solving is 1.1× faster. SymFix also finds previously unknown concretiza-
tion opportunities for FRPSynth, a tool for synthesizing functional reactive
programs [31], and Swizzle, a tool for synthesizing GPU kernels [35], leading to
a 3.1× and 1.8× speed-up, respectively.
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For Serval, a toolset for automatic verification of systems software [29], Sym-
Fix does not discover a significant fix using its built-in repairs. But Serval comes
with its own set of symbolic optimizations, which were originally designed for
manual application [29]. Using these optimizations as repairs, SymFix discovers
the manual fix, showing that its algorithm works well with a variety of repairs.

5.2 Do the Fixes Found by SymFix Generalize to Different
Workloads?

SymFix generates each of the fixes in Fig. 5 using a single input to the respective
program. To determine whether discovered repairs generalize to different pro-
gram inputs, we identified the programs in Fig. 5 that have alternative inputs
available and executed the repaired versions on them.

Figure 6 shows the performance of each program on alternative inputs, both
before and after the fix that SymFix discovered in Fig. 5. In all but one case, the
fix generalizes to the new input and improves the program’s performance. The
relative performance improvement varies from Fig. 5 due to different problem
sizes; for example, the new Ferrite input is much larger than the original and so
spends comparatively less time in the fixed procedure. The one exception is the
“program0” input to FRPSynth, which is 20% slower than the original version.
Manual inspection of this fix shows that the last of its 4 repair steps overfits to
the initial input, and the first 3 steps improve the performance on both inputs.

5.3 How Important Is SymFix’s Search Strategy for Finding Fixes?

SymFix employs a complete form of best-first search, guided by symbolic profil-
ing ranks. To evaluate the importance of these design choices, we consider two
alternative algorithms without them:

Random implements a complete best-first search that is not guided by profiling
ranks, and instead chooses a location randomly at line 10 in Fig. 4; and

Greedy implements the standard greedy best-first search, which applies only the
first repair produced by Next at line 20 and never backtracks (by removing
P from W unconditionally at line 27).

The Random algorithm discovers no useful fix for any benchmark within a
one hour timeout. This is not surprising since the space of fixes is exponential
in the number of potential repair locations, and there are thousands of such
locations in each benchmark. The results for the Greedy algorithm are reported
in the last two columns of Fig. 5. Greedy finds a useful fix for only half (7) of the
benchmarks repaired by SymFix, and none of its fixes are better than those found
by SymFix. These results show that the key features of the SymFix algorithm
are vital for fixing performance bottlenecks in real solver-aided tools.
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6 Related Work

Profile-Guided Optimization. Compilers often support profile-guided optimiza-
tion, in which the compiler uses profile data to guide its optimization phases
(see Gupta et al. [23] for a survey). For example, the efficacy of inlining depends
on factors including cache size and access patterns that are best determined by
executing the program in the intended environment. Pettis and Hansen [34] intro-
duce a profile-guided code layout algorithm that tries to position commonly used
code together in memory to improve spatial locality. As another example, many
JIT compilers for both static and dynamic languages will specialize methods
based on type information observed at run time [20,32] (e.g., specializing vir-
tual calls for a particular concrete receiver). SymFix takes inspiration from these
approaches, using profile data to guide the application of semantics-preserving
repairs. But unlike them, SymFix focuses on optimizing a program’s symbolic
evaluation strategy rather than its utilization of machine resources.

Not all profile-guided optimization techniques are automated. Optimization
coaching [42] is an interactive tool that gives programmers feedback about the
optimizations a compiler applied to their program, and optimizations that it tried
unsuccessfully. SymFix does not provide interactivity, but because its repairs are
high level, it can follow the optimization coach approach of reporting them to
the programmer as syntactic changes to their input program.

Symbolic Profiling. Because SymFix uses profile data to guide the search for
fixes, its effectiveness depends on high quality profiles. SymFix builds on sym-
bolic profiling [7], a technique for profiling the behavior of symbolic evaluation
engines. Symbolic profiling generalizes across a spectrum of symbolic evaluation
techniques, and so SymFix’s approach could generalize to other engines that sup-
port symbolic profiling (e.g., Crucible [21]). Other profiling techniques measure
different aspects of automated tools. The Z3 Axiom Profiler [3] measures axiom
instantiations in the Z3 [16] SMT solver’s quantifier theory module. It can be
used to detect optimization opportunities at the SMT level. Using such profilers
to extend SymFix to the SMT level is an interesting direction for future work.

Optimizing Symbolic Evaluation. A number of approaches exist for interactively
improving the performance of tools based on symbolic evaluation. Wagner et al.
[49] introduce a configuration for optimizing compilers to prioritize generating
code that is amenable to symbolic execution. Cadar [11] develops a suite of com-
piler optimizations that make code easier to evaluate symbolically. Nelson et al.
[29] develop a set of custom symbolic optimizations that can be manually applied
to build scalable verifiers for low-level languages (e.g., RISC-V [1], LLVM [28],
x86 [24], and eBPF [19]) on top of a generic verification framework. SymFix
is complimentary to these approaches: it can automatically apply custom opti-
mizations to verifiers for low-level code, and these verifiers can further benefit
from the custom compiler optimizations applied to their input programs.
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7 Conclusion

This paper presented a new approach to repairing performance bottlenecks in
code under symbolic evaluation. Our approach rests on three technical contribu-
tions. We formulate the symbolic performance repair problem as combinatorial
search for a fix that applies a sequence of semantics-preserving repairs to a pro-
gram and a workload; the resulting fixed program is guaranteed to be equivalent
to the input program, and to have minimal symbolic evaluation cost on the
input workload. To solve this repair problem, we develop SymFix, a system with
two key components: (1) a small set of generic repairs based on deforestation
and symbolic reflection, and (2) an anytime search algorithm that uses sym-
bolic profiling to guide the exploration of this space. Our evaluation shows that
SymFix can discover useful fixes for state-of-the-art verification and synthesis
tools, matching or outperforming experts, and that the fixed programs continue
to work well across different workloads. As more programmers employ symbolic
evaluation to automate verification and synthesis tasks for new domains, SymFix
can help them build better tools more easily.
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2 École Polytechnique, Palaiseau, France

3 Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USA
shankar@csl.sri.com

Abstract. Code generation is gaining popularity as a technique to
bridge the gap between high-level models and executable code. We
describe the theory underlying the PVS2C code generator that trans-
lates functional programs written using the PVS specification language
to standalone, efficiently executable C code. We outline a correctness
argument for the code generator. The techniques used are quite generic
and can be applied to transform programs written in functional lan-
guages into imperative code. We use a formal model of reference count-
ing to capture memory management and safe destructive updates for a
simple first-order functional language with arrays. We exhibit a bisim-
ulation between the functional execution and the imperative execution.
This bisimulation shows that the generated imperative program returns
the same result as the functional program.

1 Introduction

Functional languages offer a convenient and expressive notation for defining pro-
grams in a form that is referentially transparent and amenable to mathematical
proof. One way of implementing a functional language on a machine is to trans-
form a given program into a corresponding program in an imperative program-
ming language. There are two key challenges in defining such a transformation.
One, the evaluation of expressions in a functional language is pure, so that
updating an array creates a fresh copy of the array being updated. Replacing
such an update with a destructive, in-place update is not always sound. Two,
allocated structures like arrays have to be garbage collected when they are no
longer referenced in the evaluation.

We are interested in proving the correctness of a transformation from a func-
tional program to a self-contained imperative program that executes efficiently
and performs its own memory management. To this end, we use a transformation
that employs reference counting for managing memory as well as for identifying
opportunities for safe destructive updates during execution. The transformation
is enabled by a light static analysis on the input functional program. This anal-
ysis helps release references as soon as possible in order to maximize the oppor-
tunities for destructive updates. We present a proof method for demonstrating
c© Springer Nature Switzerland AG 2020
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the correctness of the transformation and a formalization of the correctness of a
transformation from a small functional language to a C-like imperative language.
The transformation from functional to self-contained imperative code forms the
core of the PVS2C code generator [10,23]. Such transformations and the inter-
mediate languages used in them are of foundational interest and practical utility
for the generation of efficient code from executable fragments of specification
and modelling languages.

Since code generators are becoming increasingly popular, it is important to
ensure that they can be backed with simple, easily verifiable correctness proofs.
The correctness of the transformation from a functional to an imperative lan-
guage is carried out in multiple steps. The source language FL for our code gen-
erator is an idealized first-order functional language where programs are written
in A-normal form [11]. This language is lightly typed and can serve as an inter-
mediate language for multiple source languages. The operational semantics is
presented in terms of reductions within an evaluation context [9]. This seman-
tics is pure: each array update allocates a new array and copies the contents of
the old array and performs the update on the copy.

We next define the operational semantics of an annotated variant RL of FL
that exploits reference counting and destructive updates. We exhibit a bisimi-
larity between the FL and RL operational semantics so that these two forms of
evaluation always yield the same value, when either evaluation terminates. The
correspondence between FL and RL has been already been verified in PVS.

Next, we define a translation from annotated FL to an imperative language
KL. The latter language is inspired by the operational semantics given by Appel
and Blazy [1]. The language KL uses explicit assignments and the operational
semantics employs continuations so that there is a significant semantic gap
between RL executions and their KL counterparts. Even so, we exhibit a bisim-
ulation between the operational semantics for the reference counting execution
of RL and that of the imperative language KL.1

We give a brief overview of languages, the code generator, and the correctness
arguments. Consider the FL program swap which swaps two elements of an
array.

swap(u, i, j) = let a = u[i]
in let b = u[j]

in let u′ = u[i �→ b]
in u′[j �→ a]

The body of the definition is in A-normal form [11]. The array access and update
operations are applied to arguments that are variables. Our A-normal form is
1 We had initially used a different semantics for the imperative language based on call

stacks and program counters that is closer to the machine execution, but this led
to a fairly cumbersome definition of the bisimulation. We found the mechanization
(https://github.com/SRI-CSL/PVSCodegen) of the correspondence quite challeng-
ing. The correspondence given here between RL and KL executions has not yet
been formalized using a proof assistant, but we expect it to be a significantly easier
exercise.

https://github.com/SRI-CSL/PVSCodegen
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unflattened so that the expressions e1 and e2 in a let-expression let x = e1 in e2

are both recursively in A-normal form.
Given a body of definitions Δ of the above form, we would like to evaluate

an expression given in A-normal form. The evaluation of an expression e can be
carried out with respect to a stack S which binds variables to values (integers
or references) and a store which maps references to arrays. For example if the
expression e is let x = y[i �→ k] in x[i], where the subexpression y[i �→ k]
denotes the result of updating the array y at i with k. Let us assume that we
are evaluating e with a stack S of the form 〈y �→ r0, i �→ 2, k �→ 5〉 and a store
M given by the map {r0 �→ A}, where A is the array 〈1, 2, 3〉. The expression
e can be viewed as an evaluation context let x = � in x[i] with a single hole
�, and a redex y[i �→ k] filling the hole. The operational semantics is given
as a set of rewrite rules on the triple (d, S,M) for redex d, stack S, and store
M. In this case, the reduction yields a reference r1 and a new store M′ that
extends M with the map {r1 �→ 〈1, 2, 5〉}. The new state now has the expression
let x = r1 in x[i], which contains an explicit reference, namely, the reference
resulting from the prior reduction. This expression is a redex by itself. Reducing
this redex with stack S and store M′ yields the expression pop(x[i]), the new
stack 〈x �→ r1, y �→ r0, i �→ 2, k �→ 5〉, and the same store M. The operation pop
is a book-keeping operation used to pop the stack at the end of the evaluation
of the body of the let-expression. The subexpression x[i] is a redex and reduces
to 5, and finally the redex pop(5) is reduced by popping the binding for x off
the stack to yield the value 5 and the resulting stack S and store M′.

The reference counting semantics maintains a count for each reference in the
domain of the store M. The RL expression being evaluated is annotated so that
the last lexical occurrence of a variable along any evaluation path is marked (i.e.,
underlined). For example, the expression e above would be annotated as let x =
y[i �→ k] in x[i]. If we evaluate this expression with a stack S as above, and a store
M of the form {r0 �→ [1, 2, 3]}, and a reference count C of the form {r0 �→ 0}.
With this, the redex y[i �→ k] is reduced to r0, the new stack S′ is of the form
〈y �→ nil, i �→ 2, k �→ 5〉, the new store M′ is just {r0 �→ 〈1, 2, 5〉}, and the new
reference count C ′ is {r0 �→ 1}. In other words, we can perform the update in place
since the variable y is marked and its reference count is 1, indicating that there
are no further uses of the reference r0 in the evaluation nor for the stack binding
of the variable y in the stack. If the variable y is unmarked or the corresponding
reference r0 has a count greater than 1, then we need to create a (shallow) copy of
the array before updating it. The next step of evaluation binds x to r0 in the stack
and continues executing as above. When the redex x[i] is evaluated, the reference
count for r0 becomes 0, and the array is freed. Here, the array contains integers,
but if the array being freed contains references, these references need to have their
reference counts decremented. The bisimulation between the pure evaluation and
the reference counting destructive evaluation shows that the reference count is
tracked accurately. It also shows that there is a map from the references in the
destructive evaluation to those in the pure evaluation such that the corresponding
expressions, stacks, and stores match.
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The next step in our proof transforms the annotated language RL to an
imperative language KL. The imperative language, by design, looks quite simi-
lar to the functional language but employs assignments. The translation of the
expression let x = y[i �→ k] in x[i] into KL is done in the context of a result
variable return. In IL, we get a program {int x;x := y[i �→ k]; return := x[i]}.

Like RL, the execution of the imperative language KL tracks reference counts
and uses the marking to release references. A reference is released by decre-
menting its reference count and freeing memory when the reference count drops
to 0, but only after recursively releasing the references in the contents of the
array. In addition to the stack S, the store M, and the reference count C,
the operational semantics for KL maintains a continuation K that is just a
program representing the rest of the computation. Let the initial continua-
tion K0 be {int x;x := y[i �→ k]; return := x[i]}, the initial stack S0 be
〈return �→ undef, i �→ 2, k �→ 5, y �→ r〉, the initial store M0 be {r0 �→ 〈1, 2, 3〉},
and the initial reference count table C0 be {r0 �→ 1}. The declaration int x
is evaluated by extending the stack with the binding x �→ undef so that S1 is
〈x �→ undef, return �→ undef, i �→ 2, k �→ 5, y �→ r0〉, while appending a pop
instruction to the right of the continuation corresponding to the binding for x
to yield K1 = x := y[i �→ k]; return := x[i]; pop. The store and reference count
tables are left unchanged in M1 and C1. The assignment x := y[i �→ k] is executed
by evaluating the right-hand side by updating the array bound to r0 in the store,
binding x in the stack to the reference r0, and releasing the binding to y. Now, K2

is return := x[i]; pop, S2 is 〈x �→ r0, return �→ undef, i �→ 2, k �→ 5, y �→ nil〉,
M1 is {r0 �→ 〈1, 2, 5〉}, and C1 is {r0 �→ 1}. The assignment to return is then
executed and the remaining pop instructions are executed to yield the final state
where K4 is empty, the S4 is set to 〈return �→ 5, i �→ 2, k �→ 5, y �→ nil〉,
and M4 and C4 are both empty. The bisimulation between the evaluation of an
RL expression and the execution of its translation in KL is quite challenging
since there are subtle semantic differences between the executions of these two
languages.

The goal of our proof exercise is to construct a simple and elegant formal-
ization of the correctness of the correspondence between the evaluations of the
source and target of a code generator that is amenable to easy mechanical ver-
ification. We have defined intermediate representations that simplify the proofs
while retaining the flexibility to support multiple source languages and target
multiple imperative languages. The proofs have been designed so that the lan-
guage can be extended with new features with minimal impact on the invariants
and bisimulations. The formally defined code generator presented here is an ide-
alization of a practical code generator from a functional language to C. This code
generator produces readable, self-contained C code with a modest overhead for
reference counting.

Related Work. Reference counting was introduced by Collins [5] in 1960. It
was shown to fail in the presence of cyclic structures by McBeth [18] in 1963.
Reference cycles cannot appear in the execution of PVS or in any of the lan-
guages FL, RL, or KL so that our use of reference counting is sound. There are
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several proofs of the correctness of reference counting implementations and ref-
erence counting garbage collectors [8,19]. Hudak [13] presents an abstract inter-
pretation in terms reference counts as a way of optimizing program execution.
Several papers present static analyses for safe destructive updates in functional
languages [2,7,12,14,22,26]. Chirimar, Gunter, and Riecke [4] define a reference
counting abstract machine for a computational interpretation of linear logic.
The work that is closest to our own is Schulte’s code generator [21] for the spec-
ification language Opal [6] that translates a first-order functional fragment of
the language into a reference counted implementation in C in which execution
interacts with the garbage collector to reuse storage (see also de Moura and
Ullrich [25]). The analysis and transformations used here are similar though the
intermediate languages and proof techniques are quite different. We are using a
formal model of reference counting to dynamically manage memory for a source
language with object updates that can be executed destructively when safe. The
presentation here is the basis for a practical implementation of a code genera-
tor that covers a full functional language with arrays, records, tuples, algebraic
datatypes, and closures, as well as the outline for a machine-verified proof for
its correctness.

Formal verification of compilers is a well-studied topic [3,15–17,20,24]. This
paper presents the theory underlying a simple code generator. Based on our prior
experience, we estimate that the mechanization of the proofs here would require
fewer than ten person-weeks, whereas the correctness of the full PVS2C code
generator would involve a substantial months-long effort. In contrast, proving
the correctness of a compiler is a much larger undertaking.

2 A Small Functional Language

The source functional language FL features recursive functions, let-bindings and
immutable arrays, and is in A-normal form. Internally we always use de Bruijn
indices everywhere for the variables for simplicity; however, in the paper we will
use identifiers when giving examples to make the example more readable. The
syntax of FL is defined in Fig. 1a. The functions f can be primitive functions
like +, ∗, and −, or defined functions. The sequence of variables x1, . . . , xn in a
function application f(x1, . . . , xn) may contain duplicates.

The variables and operations have types associated with them in order to
simplify the definition of various memory management operations. The expres-
sion vars(e) is defined as the set of free variables in e. A type t is either the
integer type int or is an n-element array t[n] with element type t. The constant
nil is seen as a valid constant for any array type of the form t[n].

t:: = int | t[n]

Each function symbol has a type t1 × . . . × tn → t, where the i’th argument
has type ti, and the range type is t. Given the types of the variables and function
symbols, the type of a well-formed expression e can be computed as τ(e).
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e ::= | n

| x

| nil
| f(x1, . . . , xn)
| let (x : t) = e1 in e2

| ifnz x then e1 else e2

| x[y]
| x[y �→ z]
| newint(n) | newref(n)
| pop(e1) | ref(k)

(a) Syntax of FL

redex ::= | x

| f(x1, . . . , xn)
| x[y]
| x[y �→ z]
| newint(n)
| newref(n)
| ifnz x then e1 else e2

| let x = v in e

| pop(v)
, where v is a value.

(b) Definition of a redex

Fig. 1. Expression and Redex Syntax of FL

The type system does not rule out errors due to null dereferencing and out-
of-bounds array access. Given the types for variables and operations, each well-
typed expression has a unique type. The type rules are straightforward and
are left as an exercise for the reader. For the sake of simplicity, we will often
omit the type annotations on the let constructors. Note that the pop and ref
constructors are not allowed in programs and are used only during reduction.
We also restrict the primitive functions to operate solely over the integers.

We also define an evaluation context with a hole � marking the location
where evaluation occurs, as below.

K:: = � | let (x : t) = K1 in e1 | pop(K1)

The composition K[e] of a context K and an expression e consists in replacing
the hole � in K by the expression e. A value is a reference, a constant or nil.
A redex is defined in Fig. 1b.

Theorem 1. Every expression that is not a value can be uniquely decomposed
as the composition of a context and a redex.

The state is defined as a triplet (e, S,M), where e is an expression, S is the
stack, which maps variables to values, and M the state of the memory, which
maps a finite number of references to finite sequences of values. The empty
stack is written as empty . Entries A are pushed on to the stack by the oper-
ation push(A,S). When S is a stack of variable bindings, a binding x �→ v is
pushed on to the stack by the operation push(x �→ v, S). For a sequence of vari-
ables x1, . . . , xn (abbreviated as x) and values v1, . . . , vn (abbreviated as v), we
abbreviate push(xn �→ vn, . . . ,push(x1 �→ v1, S) . . .) as push(x �→ v, S). The
lookup operation S(x) retrieves the topmost binding for x. This operation is only
invoked when there is a binding for x in S. We also use the operation S[x �→ v]
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(x, S,M) → (S(x), S,M)
(x[y], S,M) → (M(S(x))(S(y)), S,M)

(x[y �→ z], S,M) → (r, S,M[r M→� (S(x))[S(y) �→ S(z)]]),
where r = new(M)

(newint(n), S,M) → (new(M), S,M[new(M) 〈→� 0, . . . , 0〉])
(newref(n), S,M) → (new(M), S,M[new(M) 〈→� nil, . . . , nil〉])

(let x = v in e, S,M) → (pop(e),push(x �→ v, S),M)
(pop(v), S,M) → (v,pop(S),M)

(ifnz x then e1 else e2, S,M) →
{
(e1, S,M), if S(x) �= 0
(e2, S,M), otherwise

(f(x1, . . . , xn), S,M) → (v, S,M) for primitive f ,

where f(S(x1), . . . , S(xn))
δ→ v

(f(x1, . . . , xn), S,M) → (popn(e),push(y �→ S(x), S),M)
where f(y1, . . . , yn) = e in Δ.

Fig. 2. Operational semantics of FL

to update the topmost binding for x in the stack. This operation is also applied
only when there is a binding for x in S. We denote by new(M), a reference that
is not yet defined in M. We use f(v1, . . . , vn) δ→ v for the reduction relation
capturing the evaluation of primitive functions such as +. The non-primitive
functions are defined in the program Δ which maps the function symbol f to
its definition of the form f(y1, . . . , yn) = e where vars(e) = {y1, . . . , yn}, and
yi �= yj for 1 ≤ i < j ≤ n.

The small-step semantics are defined as the unique context-preserving rela-
tion → that is defined on redexes as in Fig. 2. It is easy to see that the
reductions are deterministic. An evaluation step has the form (E[e], S,M) −→
(E[e′], S′,M′) iff (e, S,M) → (e′, S′,M′).

It is an error to access or modify outside the bounds given by the store,
to call a non-existent function, to call a function with an incorrect number of
arguments, or to use primitive operations with unsupported arguments. The
state obtained after such erroneous reductions is ⊥.

Let swap(u, i, j) be defined as

let a = u[i] in let b = u[j] in let u′ = u[i �→ b] in u′[j �→ a].

Given e = let z = +(y, 1) in swap(x, y, z) with S = (y �→ 0, x �→ r) and
M = (r �→ 〈0, 1〉), we show the steps in the reduction of (e, S,M) in Fig. 3.
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(
let z = +(y, 1) in swap(x, y, z),
(y �→ 0, x �→ r), (r 〈→� 0, 1〉)

)
(1)

−→ (let z = 1 in swap(x, y, z), (y �→ 0, x �→ r), (r 〈→� 0, 1〉)) (2)
−→ (pop(swap(x, y, z)), (z �→ 1, y �→ 0, x �→ r), (r 〈→� 0, 1〉)) (3)

−→
⎛
⎝ . . . let a = u[i] in . . . ,

(j �→ 1, i �→ 0, u �→ r, . . . ),
(r 〈→� 0, 1〉)

⎞
⎠ (4)

−→
(

. . . let a = 0 in . . . ,
(j �→ 1, i �→ 0, t �→ r, . . . ), (r 〈→� 0, 1〉)

)
(5)

−→ . . . let b = u[j] in . . . , (a �→ 0, j �→ 1, . . . ), (r 〈→� 0, 1〉)) (6)
−→ (. . . let b = 1 in . . . , (a �→ 0, j �→ 1, . . . ), (r 〈→� 0, 1〉)) (7)

−→
⎛
⎝ . . . let u′ = u[i �→ b] in . . . ,

(b �→ 1, a �→ 0, . . . ),
(r 〈→� 0, 1〉)

⎞
⎠ (8)

−→
⎛
⎝ . . . let u′ = r′ in . . . ,

(b �→ 1, a �→ 0, . . . ),
(r′ 〈→� 1, 1〉, r 〈→� 0, 1〉)

⎞
⎠ (9)

−→ (. . . u′[j �→ a] . . . , (u′ �→ r′, b �→ 1, . . . ), (r′ 〈→� 1, 1〉, . . . )) (10)
−→ (pop7(r′′), (u′ �→ r′, b �→ 1, . . . ), (r′′ 〈→� 1, 0〉, . . . )) (11)
+−→ (r′′, (y �→ 0, x �→ r), (r′′ 〈→� 1, 0〉, r′ 〈→� 1, 1〉, r 〈→� 0, 1〉)) (12)

Fig. 3. An example FL reduction

3 Evaluation with Reference Counting

The reference-counting language RL extends FL with an additional constructor,
release(x, e), which is also a redex. In addition, a variable occurrence in RL
can be marked to indicate that this is the last occurrence of the variable along
an evaluation path. The evaluation state is extended with C which maps each
reference to its reference count.

Define #(S, r) as the number of times the reference r occurs as a binding in
stack S, #(a, r) as the number of occurrences of r as an element of the array
a, and 1r∈e as 1 if r occurs as a value in e, and 0, otherwise. The key invariant
that is maintained is that the value of C(ref(k)) is exactly the reference count
of ref(k) in e, S, and M.

C(ref(k)) = 1ref(k)∈e + #(S, ref(k)) +
∑

ref(j)∈M
#(M(ref(j)), ref(k)) (13)
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The advantage of defining and maintaining this reference count is to be able
to free memory as soon as it is no longer needed, and to be able to perform more
efficient destructive updates on the arrays.

The evaluation also preserves three key invariants:

early-release. Each variable in S that is no longer live in e is not bound to a
reference.

correct-marking. The expression e is correctly marked (deleting all the mark-
ings in e and re-marking the result (using the mark algorithm shown below)
returns an expression identical to e).

release-marked. All subterms of e of the form release(x, e′) have the occur-
rence of x in the first argument marked.

We use the following helper functions:

incr(ref(k), C) = C[ref(k) �→ C(v) + 1]
incr(v, C) = C otherwise

decr(ref(k), C) = C[ref(k) �→ C(v) − 1]
decr(v, C) = C otherwise

The function decref takes a value, the state of memory and a count, and if
the value is a reference, decreases its count. In case the count is 1, it recursively
(using decref�) decreases the count of all the non-nil references pointed by
that one and replaces them by nil before freeing the memory allocated to a
reference r by setting M(r) to ⊥. The termination of the mutually recursive
definitions of decref and decref� is given by a lexicographic measure on the
size of the type t and the array index m.2

decref(t[n])(ref(k), (M, C)) = (M,decr(ref(k), C)), if C(ref(k)) > 1

decref(t[n])(ref(k), (M, C)) = (M′[ref(k) �→ ⊥],decr(ref(k), C′)),

if C(ref(k)) = 1

where (M′, C′) = decref�(t)(v, (M, C), n)

decref(t)(v, (M, C)) = (M, C), otherwise

decref�(t[n])(ref(k), (M, C), m + 1) = decref(t)(M(ref(k))[m], (M′′, C′)),

where (M′, C′) = decref�(t[n])(r, (M, C), m)

M′′ = M′[r �→ M′(r)[m �→ nil]]

r = ref(k)

decref�(t[n])(ref(k), (M, C), 0) = (M, C)

decref�(t)(v, (M, C), m) = (M, C), otherwise

2 Note that due to the recursion on type structure, the termination proofs do not need
to assume that the store is non-cyclic. In our mechanization, we use a slightly dif-
ferent definition and exploit Invariant 13 and the invariant (also implicit in decref)
that M contains no (dangling) references that are not in the domain of M so that
the total reference count in M decreases with each call to decref .
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Expressions being evaluated are analyzed in order to mark the last occurrence
of a variable along any evaluation path. This marking helps to identify the
lifetime of the variable by indicating the point at which the variable is no longer
used in a computation. The operation mark(X, e), a few cases of which are
defined below, marks each variable in e that is not in X. In the remaining cases,
mark(X, e) marks the last (non-binding) occurrence in e of any variable in
vars(e)−X. We overload release so that release({x1, . . . , xn}, e) is shorthand
for release(xn, . . . release(x1, e) . . .).

mark(X,x) ={
x if x ∈ X

x otherwise

mark(X, let x = e1 in e2) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩
let x = mark(X ∪ vars(e2), e1)

in mark(X, e2) if x ∈ vars(e2)
let x = mark(X ∪ vars(e2), e1)

in release(x,mark(X, e2)) otherwise

mark(X, ifnz x then e1 else e2) =⎧⎪⎨
⎪⎩
ifnz mark(vars(e1) ∪ vars(e2) ∪ X,x)

then release(vars(e2) − (X ∪ vars(e1)),mark(X, e1))
else release(vars(e1) − (X ∪ vars(e2)),mark(X, e2))

For example, mark(∅, let x = f(y) in ifnz z then g(x, y) else f(x)) is

let x = f(y) in ifnz z then g(x, y) else release(y, f(x))

We translate FL programs into marked RL programs by replacing each def-
inition of the form f(y) = e in Δ by f(y) = mark(∅, e) in the RL program
Δ#.

Given a sequence x1, . . . , xn (abbreviated as x) of (possibly marked) vari-
ables. Let incvars(x, S, C) represent the result of incrementing the count of S(y)
by one for each unmarked variable y in x.

incvars(〈〉, S, C) = C
incvars((x1, x2, . . . , xn), S, C) = incvars((x2, . . . , xn), S, C′), where

C′ =
{
incr(S(x), C), if x is unmarked
C, otherwise .

Figure 4 shows a few cases of the definition of reduction for RL redexes.
The reduction of update redexes is by far the most complicated of all; but it

is also the main reason why we perform this step of reference counting.
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(x, S, (M, C)) →# (S(x), S[x �→ nil], (M, C))
if x is marked and S(x) is a reference

(x, S, (M, C)) →# (S(x), S, (M, incvars(x,M, C))) otherwise
(f(x), S, (M, C)) →# (e, Sn, (M, C′)), where

C′ = incvars(x, S, C)
S0 = push(y �→ S(x), S)

Si+1 =

⎧⎨
⎩

Si[xi �→ nil],
if xi is a marked and S(x) is a reference

Si, otherwise

(x[y �→ z], S, (M, C)) →# (S(x), S′[x �→ nil], (M′′, C′′)),
if C(S(x)) = 1 and x is marked
where τ(x) = t[n], for some n,

M′ = M[S(x) M→� (S(x))[S(y) �→ S(z)]],
C′ = incvars(z, S, C)
(M′′, C′′) = decref(t)(M(S(x))[S(y)], (M′, C′))

(x[y �→ z], S, (M, C)) →# (r, S′′, (M′, C′′′)), otherwise
where r = new(M),

M′ = M[r M→� (S(x))[S(y) �→ S(z)]],

(C′, S′) =

⎧⎨
⎩

(decr(S(z), C), S[z �→ nil])
if z is marked

(C, S), otherwise,

(C′′, S′′) =

⎧⎨
⎩

(decr(S(x), C′, S[x �→ nil]))
if x is marked

(C′, S′), otherwise

C′′′ = (#(M′(r)) + C′′)[r �→ 1],
(release(x, e), S, (M, C)) →# (e, S[x �→ nil],decref(τ(x))(S(x), (M, C)))

if S(x) is a reference
(release(x, e), S, (M, C)) →# (e, S, (M, C)), otherwise

Fig. 4. Operational semantics of some reductions in RL

For instance, let swap(u, i, j) be defined as

let a = u[i] in let b = u[j] in let u′ = u[i �→ b] in u′[j �→ a].

Suppose that e = let z = +(y, 1) in swap(x, y, z), with S = (y �→ 0, x �→ r),
M = (r �→ 〈0, 1〉) and C = (r �→ 2). Steps of the reduction are detailed in Fig. 5.

Notice how even though the reference count of r was 2 initially, we still saved
a copy compared to Fig. 3 and performed a destructive update instead. Indeed,
the reference count of the result of an array update is always 1: either it is the
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(
let z = +(y, 1) in swap(x, y, z), (y �→ 0, x �→ r),
(r 〈→� 0, 1〉), (r �→ 2)

)
(1)

−→#
(
let z = 1 in swap(x, y, z), (y �→ 0, x �→ r),
(r 〈→� 0, 1〉), (r �→ 2)

)
(2)

−→#
(
pop(swap(x, y, z)), (z �→ 1, y �→ 0, x �→ r),
(r 〈→� 0, 1〉), (r �→ 2)

)
(3)

−→#

⎛
⎝ . . . let a = u[i] in . . . ,

(j �→ 1, i �→ 0, u �→ r, . . . , x �→ nil),
(r 〈→� 0, 1〉), (r �→ 2)

⎞
⎠ (4)

−→#
(

. . . let a = 0 in . . . , (j �→ 1, i �→ 0, u �→ r, . . . ),
(r 〈→� 0, 1〉), (r �→ 2)

)
(5)

−→#
(

. . . let b = u[j] in . . . , (a �→ 0, j �→ 1, . . . ),
(r 〈→� 0, 1〉), (r �→ 2)

)
(6)

−→#
(

. . . let b = 1 in . . . , (a �→ 0, j �→ 1, . . . ),
(r 〈→� 0, 1〉), (r �→ 2)

)
(7)

−→#
(

. . . let u′ = u[i �→ b] in . . . , (b �→ 1, a �→ 0, . . . ),
(r 〈→� 0, 1〉), (r �→ 2)

)
(8)

−→#

⎛
⎝ . . . let u′ = r′ in . . . ,

(b �→ 1, a �→ 0, . . . , u �→ nil, . . . ),
(r′ 〈→� 1, 1〉, r 〈→� 0, 1〉), (r′ �→ 1, r �→ 1)

⎞
⎠ (9)

−→# (. . . u′[j �→ a] . . . , (u′ �→ r′, b �→ 1, . . . ), (r′ 〈→� 1, 1〉, . . . )) (10)

−→#
(
pop7(r′), (u′ �→ nil, b �→ 1, . . . ),
(r′ 〈→� 1, 0〉, . . . ), (r′ �→ 1, . . . )

)
(11)

�−→#
(

r′, (y �→ 0, x �→ nil),
(r′ 〈→� 1, 0〉, r 〈→� 0, 1〉), (r′ �→ 1, r �→ 1)

)
(12)

Fig. 5. An example reduction in RL

result of a destructive update, in which case the reference count has to be 1, or
it is a fresh copy, in which case the count is 1 as well.

Theorem 2. With the reductions in Fig. 4, it is an invariant that the count is
accurate, that is, Eq. 13 holds, and the other invariants (early-release, correct-
marking, and release-marked), are preserved as well.

To establish a bisimulation between the RL state (e′, S′, (M′, C′)) and the
FL one (e, S,M), we say these two states match if there exists a translation
function ρ from the elements of the domain of M′ with a count greater than
zero to those of the domain of M such that:
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– The expression e is the result of translating the references (applying ρ to each
of the references) when unmarking all the variables and removing all release
constructors in e′,

– For each variable x in vars(e′), S(x) = ρ(S′(x)),
– For each reference r in the domain of M′ with a count greater than zero,

M(ρ(r)) is the result of translating the references of M′(r).

The mapping ρ is not fixed across the two executions but depends on the
pairs of states being matched. For example, the bisimulation between the FL
execution in Fig. 3 and the RL execution in Fig. 5 lines up the twelve states in
each execution exactly. The mapping {r �→ r} is used for matching states 1
through 8, and {r �→ r, r′ �→ r′} for states 9 and 10, and {r �→ r, r′ �→ r′′} for
states 11 and 12. Note that although it is not required for the mapping between
references to be injective, it happens to be an invariant (that is not needed for
proving the bisimulation result). We also do not need to assume that the store
does not contain any cycles, though this too is an invariant that is preserved by
both FL and RL executions.

Theorem 3. If the state S = (e, S,M) matches the state S ′ = (e′, S′, (M′, C′)),
we have:

– if the current redex of e′ is a release redex, then the state obtained when
reducing S ′ after one step still matches the state S,

– if it is not a release redex, then the state obtained when reducing S and the
one obtained when reducing S ′ for a step each still match each other.

Theorem 4. The reduction relations −→ in FL and −→# in RL are in bisim-
ulation.

As a step toward an imperative translation of RL, we extend RL by adding
a construct of the form return(e) to mark the return from a function call. Since
the return label will be used as a variable in the imperative translation, it cannot
be used as a variable identifier in RL. In the expanded language, return(�) is
an evaluation context. We also have a redex of the form

(return(v), S, (M, C)) →# (v, S, (M, C)).

The evaluation rule for function calls is modified as below.

(f(x), S, (M, C)) →# (return(popn(e)), Sn, (M, C′)), where
C′ = incvars(x, S, C)
S0 = push(y �→ S(x), S)

Si+1 =

⎧⎨
⎩

Si[xi �→ nil],
if xi is a marked and S(x) is a reference

Si, otherwise

We also label the pop operations with the variable being popped so that
it has the form popx when the stack entry to be popped binds x. Neither of
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these extensions affects any of the claims about RL since the return operation
essentially functions as a skip operation, and labeling the occurrences of pop has
no impact on the evaluation. Both these constructs together with let-binding are
used to define the stack employed in the imperative evaluation in terms of the
RL stack.

The operation stack(x)(E) on an evaluation context E collects the stack of
variables introduced by return, pop, and pending let-bindings on the path to
the hole in the RL expression being evaluated. This operation fuses consecutive
return variables so that the return value from the evaluation of a function is
passed directly to the outermost return point. The stack used in the imperative
evaluation binds variables in a somewhat different order than the operational
semantics for RL. The stack operation is used to capture the sequence of vari-
ables that appear at the top of the stack during the evaluation of the imperative
counterpart of an RL expression. It is used in defining the bisimulation between
RL executions and the imperative semantics presented in the next section.

stack(x)(�, st) = st

stack(x)(let y = a in b, st) = stack(y)(a,push(y, st))

stack(x)(popy(a), st) = stack(x)(a,push(y, st))

stack(x)(return(a), st) =

{
stack(x)(a, st), if x = return
stack(return)(a),push(return, st)), otherwise

4 A Small Imperative Language

Mapping RL expressions to imperative code poses significant semantic chal-
lenges. In RL, we evaluate expressions, whereas in an imperative language, the
statements are executed sequentially. RL evaluation returns a value, whereas the
execution in an imperative language returns a state mapping variables to val-
ues. This changes the signalling mechanism used to identify the redexes. In FL
and RL, a let-redex is triggered when the binding expression becomes a value.
There is no such signalling mechanism in an imperative program since state-
ments are executed successively. There is no handy equivalent of let-expressions
let x = a in b in imperative languages since this expression is mapped to two
statement blocks: sa for computing a and assigning the value to x, and sb for
evaluating b. Since x is assigned in sa and used in sb, it has to be declared
ahead of the block sa, but this has the unfortunate side-effect of including sa in
its scope. Such issues of scope can be handled in a formalization based on the
de Bruijn representation (as we do in our mechanized proofs), but require some
care when using a named representation.

The target of our code generation is an imperative language KL which looks
quite similar to RL. From KL, we can target a lower-level imperative language
such as C that does not keep track of reference counts automatically. A program
KL is defined as a sequence of functions, whose body is a statement, with the
definitions in Fig. 6.
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e ::= | n

| x

| nil
| f(x1, . . . , xn)
| x[y]
| x[y �→ z]
| newint(n)
| newref(n)

s ::= | x := e

| ifnz x then s1 else s2

| skip
| s1; s2
| {t x; s}
| release x

| pop

decl ::= t x

function ::= (name,decl∗, s)
program ::= function∗

Fig. 6. Syntax of KL

As in KL, variables can be marked. A value is now either nil, an integer,
a reference, or undef. It is an error to use the value undef within a program
since it is there only for evaluation purposes. There is a special variable named
return that is used as the return value of a function and is never used as a
regular variable in a program.

Once a program with definitions Π is fixed, the evaluation state for KL is a
triplet (K, S, (M, C)), where as previously, S is the stack, which maps variables
to values, M and C are the store and the reference counts, respectively. K is the
(possibly empty) statement (or continuation) being evaluated. The evaluation
rules for KL are given in Fig. 9 (for non-assignment statements), Fig. 10 (for
non-array assignment statements), and Fig. 11 (for assignment statements).

Next, we illustrate the translation of RL expressions into KL code. To trans-
late a function with body e from RL to KL, we use translate(e, return), where
translate is defined in Fig. 7. The operation assumes that in any RL subexpres-
sion of the form let x = a in b, the variable x does not occur free in a.

To translate the RL program Δ# into a KL program Π, we translate each
function definition f(x) = e in Δ# as f(x1, . . . , xd) = sf , where

sf = translate(popd(e), return).

For the example of the swap(u, i, j) program, the body

let a = u[i] in let b = u[j] in let u′ = u[i �→ b] in u′[j �→ a]

is translated as

{int a; a := u[i]; {int b; b := u[j]; {int[2] u′; u′ := u[i �→ b]; return := u′[j �→ a]}}}
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translate(n, x) = x := n

translate(y, x) = x := y

translate(nil, x) = x := nil

translate(f(x1, . . . , xn), x) = x := f(x1, . . . , xn)
translate(let (y : t) = e1 in e2, x) = {t y; translate(e1, y); translate(e2, x)}

translate(ifnz y then e1 else e2, x) = ifnz y then s1 else s2,

s1 = translate(e1, x),
s2 = translate(e2, x)

translate(y[z], x) = x := y[z]
translate(y[z �→ w], x) = x := y[z �→ w]

translate(newint(n), x) = x := newint(n)
translate(newref(n), x) = x := newref(n)

translate(release(y, e), x) = release y; translate(e, x)
translate(popy(e), x) = translate(e, x); popy

translate(return(e), x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

translate(e, x), if x = return
{t return; se;x := return}, otherwise,

where
se = translate(e, return),
t = τ(e)

Fig. 7. Translation from RL to KL

Next, we demonstrate a bisimulation between the evaluation of an RL expres-
sion and the execution of its translated program.

We define lvars(S) to represent the stack of variables bound in the stack.

lvars(push(x �→ v, S)) = push(x, lvars(S))
lvars(push(x �→ undef, S)) = lvars(S)

lvars(empty) = empty

The operation defined(S) extracts the defined bindings in the stack S:

defined(push(x �→ v, S)) = push(x �→ v, lvars(S))
defined(push(return �→ v, S)) = defined(S)
defined(push(x �→ undef, S)) = defined(S)

defined(empty) = empty

For KL program s, let body(s) be defined as below.

body({t x; s}) = body(s); pop
body(s1; s2) = body(s1); s2
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⎛
⎝{int z; z := +(y, 1); return := swap(x, y, z)};K,

(return �→ undef, y �→ 0, x �→ r),
((r 〈→� 0, 1〉), (r �→ 2))

⎞
⎠ (1)

−→!

⎛
⎝ z := +(y, 1); return := swap(x, y, z); pop;K,

(z �→ undef; return �→ undef, y �→ 0, x �→ r),
((r 〈→� 0, 1〉), (r �→ 2))

⎞
⎠ (2)

−→!

⎛
⎝return := swap(x, y, z); pop;K,

(z �→ 1, return �→ undef, y �→ 0, x �→ r),
((r 〈→� 0, 1〉), (r �→ 2))

⎞
⎠ (3)

−→!

⎛
⎝sswap ; pop;3 pop;K,

(j �→ 1, i �→ 0, u �→ r, z �→ 1, return �→ undef, y �→ 0, x �→ nil),
((r 〈→� 0, 1〉), (r �→ 2))

⎞
⎠ (4)

−→!

⎛
⎝a := u[i]; . . . ; pop;5 K,

(a �→ undef, j �→ 1, i �→ 0, u �→ r, z �→ 1, return �→ undef, . . . ),
((r 〈→� 0, 1〉), (r �→ 2))

⎞
⎠ (5)

�−→!

⎛
⎝ b := u[j]; . . . ; pop;6 K,

(b �→ undef, a �→ 0, j �→ 1, . . . ),
((r 〈→� 0, 1〉), (r �→ 2))

⎞
⎠ (6)

�−→!

⎛
⎝u′ := u[i �→ b]; . . . ; . . . ; pop;7 K,

(u′ �→ undef, b �→ 1, a �→ 0, j �→ 1, . . . ),
((r 〈→� 0, 1〉), (r �→ 2))

⎞
⎠ (7)

�−→!

⎛
⎝return := u′[j �→ a]; . . . ;K,

(u′ �→ r; b �→ 1, a �→ 0, u �→ nil, . . . ),
((r′ 〈→� 1, 1〉, r 〈→� 0, 1〉), (r′ �→ 1, r �→ 1))

⎞
⎠ (8)

�−→!
(K, (return �→ r′, . . .), ((r′ 〈→� 1, 0〉, . . . ), (r′ �→ 1, r �→ 1))) (9)

Fig. 8. An example reduction in KL

A rough point of correspondence between an RL state (e, S1, (M, C)) and KL
state (se, S2, (M2, C2)) is:

1. The KL program se corresponding to e is the empty program when e is a
value, and is body(translate(e, return)), otherwise.

2. The correspondence between the RL stack S1 and KL stack S2 is that
lvars(S2) = stack(return)(e,push(return, empty)) ◦ lvars(S) for some S,
and defined(S2) = push(return �→ v, S1), when e is the value v, and other-
wise S1 = defined(S2).

3. (M1, C1) = (M2, C2).

The idea is that we initiate both evaluations with a stack S0 but the KL state
stack is of the form push(return �→ undef, S0) to capture the return value.
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(skip;K, S, (M, C)) −→! (K, S, (M, C))
({t x; s};K, S, (M, C)) −→!

(
s; pop;K,push(x �→ undef, S)
(M, C)

)
(ifnz x then s1 else s2;K, S, (M, C)) −→! (si;K, S, (M, C)), where

i =
{
2, if S(x) = 0
1, otherwise

(release x;K, S, (M, C)) −→! (K, S[x �→ nil], (M′, C′)), where
(M′, C′) = decref(S(x), (M, C))

(pop;K, S, (M, C)) −→! (K,pop(S), (M, C))

Fig. 9. Operational semantics of KL: non-assignment statements

(x := y;K, S, (M, C)) −→! (K, S[x �→ S(y)], (M, C))
(x := y;K, S, (M, C)) −→! (K, S[x �→ S(y)], (M, C′)),

where y is unmarked,
C′ = incr(S(y), C)

(x := n;K, S, (M, C)) −→! (K, S[x �→ n], (M, C))
(y := f(x1, . . . , xn);K, S, (M, C′)) −→! (K′, Sn, (M, C′)), where

K′ =

⎧⎨
⎩

sf ; popn;K, if y = return
sf ; pop;n y := return; pop;K,
otherwise

S′ =

⎧⎪⎪⎨
⎪⎪⎩

push(y �→ S(x),
push(return �→ undef, S)),

if y �= return
push(y �→ S(x), S), otherwise

S0 = S′

Si+1 =

⎧⎪⎪⎨
⎪⎪⎩

Si[xi �→ nil], if
xi is a marked and
S(x) is a reference

Si, otherwise

C′ = incvars(x, S, C)

Fig. 10. Operational semantics of KL: non-array assignment statements

Furthermore, the S2 stack contains bindings, defined and undefined, for the
variables in stack(return)(e), whereas all the bindings in S1 are defined.

However, the first bullet holds only for canonical states, as defined below. For
example, in RL, e can have the form let x = r in e′ for some reference r but the
syntax of KL does not allow explicit references in expressions. The fourth state in
Fig. 8 has a program of the form {int a; a := u[i]; . . .}, which is not the body of
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(x := y[z];K, S, (M, C)) −→! (K, S[x �→ v], (M, C′)), where
v = M(S(y))[S(z)], C′ = incr(v, C)

(x := y[z �→ w];K, S, (M, C)) −→! (K, S[x �→ v], (M′′, C′′)), where
v = S(y), C(v) = 1, v is a reference,
M′ = M(v)[S(z) := S(w)],
C′ = incvars(w, S, C),
(M′′, C′′) = decref(t)(M(v)[S(z)], (M′, C′))

(x := y[z �→ w];K, S, (M, C)) −→! (K, S[x �→ v], (M′, C′′)), where
v = S(y), v is a reference,
y is unmarked or C(v) > 1,
r = new(M),
M′ = M[r M→� (S(y))[S(z) := S(w)],
C′ = (#M′(r) + C)[r �→ 1],
C′′ = decr(M(v)(S(z)), C′)

Fig. 11. Operational semantics of KL: assignment statements

let z = +(y, 1) in swap(x, y, z) z := +(y, 1); return := swap(x, y, z); pop;
swap(x, y, z) return := swap(x, y, z); pop;

return(let a = u[i] in . . .) a := u[i]; . . . ; pop;5

return(let b = u[j] in . . .) b := u[j]; . . . ; pop;6

return(let u′ = u[i �→ b] in . . .) u′ := u[i �→ b]; . . . ; pop;7

return(u′[j �→ a]) return := u′[j �→ a]; . . . ; pop;7

r′

Fig. 12. Correspondence between RL and KL evaluation

the program. To get around these discrepancies, we restrict the correspondence
to states in canonical form obtained by applying certain reductions. In RL, in
any state (e, S1, (M1, C2)), redexes e′ of the form let x = v in e′′, return(v),
and pop(v), where e = E[e′], must be silently reduced. Similarly, in any KL state
(s;S2, (M2, C2)) any of the following redexes must be silently reduced:

1. {t x; s};K
2. x := v;K
3. x := return;K
4. pop;K

With these reductions, the above correspondence yields a bisimulation
between RL and KL execution steps. For example, in the derivation in Fig. 8
(assuming that continuation K is empty) the canonical states are 2, 3, 5, 6, 7, 8,
and 9, which correspond to the RL evaluation states 1, 3, 4, 6, 8, 10, and 12 in
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Fig. 5. The correspondence between the canonical RL expressions in evaluation
in Fig. 5 and their translations in the KL evaluation in Fig. 8 is shown in Fig. 12.

Theorem 5. The reduction relations −→# in RL and −→! in KL are in bisim-
ulation.

5 Conclusions

Functional languages offer significant advantages in terms of expressiveness and
verifiability, but they require fairly extensive runtime support. Our goal here
is to generate efficient, standalone code from an executable fragment of a logic
in which we can unify specification, modeling, and execution. The PVS2C code
generator translates an applicative fragment of PVS into C code. The generated
C code is self-contained and does not rely on a run time. The generated code
preserves the type safety of the typechecked PVS. It can only crash by exhaust-
ing resource bounds. The generated C code is comparable in efficiency to the
corresponding hand-crafted C, and is typically a lot faster than the Common
Lisp code generated from PVS.

The intermediate languages presented here: FL, RL, and KL form the core
of the translation from the applicative subset of PVS to executable C code. The
translations between these languages and the bisimulation proofs presented here
form a step toward the mechanized verification of the code generator. We believe
that the proof outlined in the paper can be easily mechanized, and can also be
used as a foundation for similar proofs involving more sophisticated language
features.
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Abstract. Developers nowadays regularly use numerous programming
languages with different characteristics and trade-offs. Unfortunately,
implementing a software verifier for a new language from scratch is a
large and tedious undertaking, requiring expert knowledge in multiple
domains, such as compilers, verification, and constraint solving. Hence,
only a tiny fraction of the used languages has readily available soft-
ware verifiers to aid in the development of correct programs. In the past
decade, there has been a trend of leveraging popular compiler interme-
diate representations (IRs), such as LLVM IR, when implementing soft-
ware verifiers. Processing IR promises out-of-the-box multi- and cross-
language verification since, at least in theory, a verifier ought to be able
to handle a program in any programming language (and their combina-
tion) that can be compiled into the IR. In practice though, to the best
of our knowledge, nobody has explored the feasibility and ease of such
integration of new languages. In this paper, we provide a procedure for
adding support for a new language into an IR-based verification toolflow.
Using our procedure, we extend the SMACK verifier with prototypical
support for 6 additional languages. We assess the quality of our exten-
sions through several case studies, and we describe our experience in
detail to guide future efforts in this area.

Keywords: Verification · Multi-language · Cross-language · Compiler
intermediate representation

1 Introduction

The evolution of software systems motivates the need for new programming
languages with novel features to better adapt to new programming goals, such

This work was supported by funding from the Undergraduate Research Opportunities
Program at the University of Utah awarded to Jack J. Garzella, the National Science
Foundation awards CNS 1527526 and CCF 1837051, and a gift from the VMware’s
University Research Fund.

c© Springer Nature Switzerland AG 2020
D. Beyer and D. Zufferey (Eds.): VMCAI 2020, LNCS 11990, pp. 90–111, 2020.
https://doi.org/10.1007/978-3-030-39322-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39322-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-39322-9_5


Leveraging Compiler IR for Multi- and Cross-Language Verification 91

as improving program safety or easing programming. For example, Rust [45]
is a novel performant systems programming language with guaranteed memory
safety and safer parallel programming. The D programming language also aims
to provide memory safety and high-level programming primitives, while main-
taining performance and low-level programming capabilities. Swift and Kotlin
employ modern programming language concepts to reduce language verbosity
and allow for easier programming. On the other hand, there are legacy languages
that are still widely used in certain domains. For example, Fortran dominates as
a programming language of choice among domain scientists, such as physicists
and chemists. To further complicate matters, developers typically build real-
world software systems using a combination of several programming languages
by implementing various components in different languages depending on the
requirements and trade-offs.

Software verification is integral to improving software quality. Among soft-
ware verification techniques, the ones based on satisfiability modulo theories
(SMT) have become increasingly popular due to its rigor, automation, and
tremendous scalability improvements of the past two decades. There are numer-
ous SMT-based tools available with various capabilities, features, and trade-offs
(e.g., [1–3,5–8,10–15,23,30,37,39,41,47,51]). However, the traditional way to
prototype a program verifier, by implementing all of its components (e.g., front-
end, SMT formula generator) from scratch, is extremely time-consuming and
heavily coupled with target language details. Hence, despite widespread usage
of many programming languages and their combinations, automatic software
verifiers still predominantly target the C programming language, thereby deny-
ing many developers a valuable tool for ensuring safety and reliability of their
programs. It would be ideal if program verifiers can keep pace with the develop-
ment of emerging programming languages such that users can benefit from this
rigorous software analysis technique.

LLVM [34,35] is a popular, open source compiler infrastructure, which fea-
tures an assembly-like intermediate compiler representation, known as the LLVM
intermediate representation (IR). LLVM IR has been leveraged to build program
verifiers [26,37,41], since LLVM IR frees the verifier designer from the error
prone tasks of modeling the semantics and parsing of the source language [41].
In theory, a well-designed verifier targeting LLVM IR should be able to support
any programming language that has a compiler front-end capable of emitting
LLVM IR, as well as their combinations. However, to the best of our knowl-
edge, verifiers built upon LLVM IR only support C/C++, and there has been
no systematic study exploring how well such verifiers extend to support other
programming languages. This is despite the fact that compilers for other pro-
gramming languages can produce LLVM IR, such as the Rust compiler and the
Flang compiler [24] for Fortran.

The goal of this paper is to investigate the feasibility of multi- and cross-
language verification that leverages an intermediate compiler representation
(e.g., LLVM IR). We chose to use SMACK [41,48] as an exemplar mature verifi-
cation toolchain based on LLVM IR. As our first step, we prescribe a procedure
for adding a new language to such a tool chain, consisting of interoperating with
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language models, compiling into IR, and adding models for missing language fea-
tures. Then, we evaluate our procedure by prototyping in SMACK support for
6 additional programming languages with compilers capable of emitting LLVM
IR. Since SMACK is an LLVM IR-based verifier with extensive, preexisting sup-
port for the C programming language, it is a good basis for building a verifier
for a new language. Additionally, the modular design of SMACK is a desirable
feature due to its decoupling of source language details from the verification task
through LLVM IR.

We performed several empirical case studies based around multi- and cross-
language verification. To this end, we created a microbenchmark suite that
tests support for key language features such as dynamic dispatch. We also
explore cross-language verification using an example that exercises the interac-
tion between Rust, Fortran, and C code. This is an important task as many new
programming languages include a facility to invoke C functions natively to sup-
port legacy code. We summarize our experience and lessons learned. We observe
that depending on features present in a programming language, SMACK may
not always work out-of-the-box. This is due to either SMACK not supporting
certain LLVM IR patterns or lack of suitable models for the standard libraries
and runtime. We discuss the process of improving SMACK’s support for various
LLVM IR patterns, which involves modeling additional IR instructions. We also
describe how we provide basic models for standard libraries and runtimes for
several languages we added.

To summarize, our main contributions are as follows:

– We prescribe a procedure by which support for new programming languages
can be added to an IR-based software verifier.

– By following our procedure, we added basic multi-language support to the
SMACK software verifier for 6 additional programming languages: C++,
Objective-C, D, Fortran, Swift, and Kotlin. We also made the preexisting
support for Rust more robust, and hence we include it in our evaluation.

– We developed a suite of microbenchmarks for testing the robustness of multi-
language verification, which implements key language features across all of
the additional languages.

– We performed several multi- and cross-language case studies using SMACK,
and we report on our experience and lessons learned in the process to guide
future efforts in this area.

2 Related Work

In the past decade, numerous software verifiers have been developed on top of
the LLVM compiler infrastructure (e.g., [5,6,20,26,37,41]), while others leverage
GCC in a similar fashion (e.g., [21,27]). The authors of these tools have realized
the benefits LLVM offers for the development of verifiers, such as a canoni-
cal intermediate representation and readily available analysis and optimization
passes. In particular, verifiers such as SAW [20], LLBMC [37], SeaHorn [26],
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and SMACK [41] all take as input LLVM bitcode produced by the clang com-
piler, which is then handled differently by each verifier. SAW (Software Analysis
Workbench) uses symbolic execution with path merging to produce formal mod-
els from LLVM IR in a dependently-typed intermediate verification language;
it reasons about the resulting models using rewriting or external satisfiabil-
ity solvers. LLBMC generates its own intermediate logical representation (ILR)
based on the input LLVM IR program, and leverages SMT solvers to check the
formula derived from ILR. SeaHorn encodes an input LLVM IR program into
Horn clauses, which are further solved using different techniques. SMACK trans-
lates LLVM IR into an intermediate verification language called Boogie, which
is then verified using different back-end verification engines. Both LLBMC and
SeaHorn support both C and C++ (to some extent), while SMACK has mature
support only for C. Unlike the aforementioned tools, ESBMC [14] leverages clang
just as a parser to obtain ASTs, and it does not use LLVM IR; it supports both
C and C++. Despite the popularity of LLVM IR in building software verifiers, to
the best of our knowledge, we are the first to study the feasibility of leveraging an
intermediate representation to perform multi- and cross-language verification.

Some of the languages we considered in this paper have standalone verifiers.
For instance, CRUST [50] verifies unsafe Rust code by translating a Rust pro-
gram into a C program, and then using an off-the-shelf C verifier. Rust2Viper [28]
and its successor Prusti [4] are modular verifiers for Rust programs that include a
design-by-contract specification language. As input they take an annotated pro-
gram in the Rust’s high-level intermediate representation, which simplifies and
canonicalizes complex language constructs. Then, such a program is encoded
into the Viper intermediate verification language [38] for verification. These
approaches would require substantial effort to support verification of other pro-
gramming languages. To the best of our knowledge, there are no verifiers avail-
able targeting Swift, Kotlin, D, or Fortran.

There are software verifiers that process the input languages directly as
opposed to delegating to a compiler IR. For example, CPAchecker [7], Ultimate
Automizer [30], CBMC [12], SAW [20], and CIVL [47] all leverage off-the-shelf
or custom parsers to generate abstract syntax trees (ASTs), and then process
these ASTs in various ways to carry out verification. (Note that CPAchecker,
CBMC, and SAW support LLVM IR as well.) The verifiers in this category
can potentially perform multi-language verification, but often at the expense of
having to perform some language-specific work. For example, SAW’s work-in-
progress support for Rust involves implementing a designated symbolic simula-
tor. While taking compiler IR as input has its drawbacks over directly handling
input languages, such as losing type information and precise debugging data,
it also demonstrates an advantage in the context of multi-language verification
— only the details of one language (namely compiler IR) need to be addressed.
This implies that supporting a new programming language does not require sup-
porting all the new constructs that it brings to the table. For example, C++
templates are completely compiled away at the LLVM IR level. Instead, only
the new program constructs in the IR that are not yet supported, but are used
by the new language, need to be modeled.
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Fig. 1. Toolflow of SMACK.

3 SMACK Software Verification Toolchain

SMACK [9,41,48] is an open source, modular software verification toolchain.
The core component of SMACK converts LLVM IR code into Boogie intermedi-
ate verification language [18]. The remainder of the SMACK toolchain handles
details such as compiling the source program into LLVM IR and invoking a
Boogie verifier. Its modular nature decouples source language details from veri-
fication by leveraging compiler front-ends to translate programs into the Boogie
intermediate verification language through LLVM IR. Before we implemented
the multi-language extensions described in this paper, SMACK had been pre-
dominantly used to verify LLVM IR programs produced by the clang C compiler.

Figure 1 shows the current toolflow of SMACK, which proceeds as follows:

1. SMACK first invokes clang, the LLVM’s C compiler, to compile the input pro-
gram, SMACK models, and C standard library models (e.g., strings, pthreads,
math). SMACK models contain various verification primitives (e.g., for gen-
erating nondeterministic values) and the encoding of the memory model for
handling of dynamically allocated memory. All of the models are written in C
since SMACK provides a convenient mechanism for interoperating with the
underlying Boogie code, which we describe below.

2. SMACK links together all of the generated LLVM IR files into one LLVM IR
program.

3. The core llvm2bpl component of SMACK transforms an LLVM IR program
produced by the previous step into a semantically equivalent Boogie program.

4. Finally, a back-end verifier, such as Corral [33], verifies the generated Boogie
program using an SMT solver, such as Z3 [17].

In this work, we use Corral in its bounded verification mode, meaning that it
unrolls loops and recursion up to a certain user-provided bound.

SMACK models verifier primitives and memory models through the use of
__SMACK_code function. This C routine takes a formatted string as a parameter,
and is declared in the SMACK header files, but not implemented in any models.
When llvm2bpl comes across a call to this function, instead of translating
the function call, it simply inserts the parameters into the Boogie code snippet
passed as string; this functionality is akin to C’s inline assembly. This allows for
Boogie code or ghost variables to be injected into the translation, giving an easy
way to encapsulate routines like assume which are not normally available in C.
It also provides an abstraction that can be used for any primitive or model.
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Fig. 2. Toolflow for adding support for programming language X to SMACK.

4 Procedure for Adding a Language

In this section, we introduce our prescribed procedure for adding support for a
new programming language into an LLVM-based software verifier. The procedure
is based on our study of adding languages to SMACK, but the lessons we learned
generalize to other verifiers that have similar architecture. By showing how the
procedure of adding a new language to SMACK is relatively straightforward,
we also motivate the adoption of a SMACK-like verifier architecture. Note that
while our procedure is focused on LLVM, we expect that a similar process could
be adopted for any IR-based verifier. We structure our procedure into three
tasks: interoperating with language models, compiling into compiler intermediate
representation (IR), and adding models for missing language features.

4.1 Interoperating with Language Models

A software verifier has to encode the desired semantics of an input programming
language in order to perform verification. In the case of an LLVM-based software
verifier, that typically amounts to providing a memory model in addition to
models for LLVM IR statements generated by the chosen compiler. A memory
model encodes dynamic memory allocation, pointer dereferencing, and memory
accesses. Adding a new programming language necessitates for the verification
to be able to interoperate with the mentioned models.

The architecture of SMACK allows for a new programming language to eas-
ily interoperate with SMACK models, as Fig. 2 shows. First, SMACK’s mod-
els for LLVM IR instructions are general and internal to SMACK, and hence
they can be shared across all languages that are compiled into LLVM IR. Sec-
ond, SMACK’s memory model [42] is encoded as a regular C language header
and its accompanying implementation. This is achieved using the convenient
__SMACK_code mechanism described in the previous section, which allows for the
low-level model encoding to be done at the level of C. We must be able to link an
input program with this header in order to interoperate with the memory model.
According to our experience, most languages have interoperability with the C
language as a feature. Hence, linking against the SMACK’s memory model in a
new programming language is an easy task. It is worth emphasizing that since
the code in the new language is linking with the C code of the memory model,
every verification in a new language is already a cross-language verification.
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4.2 Compiling and Linking into Compiler IR

As opposed to verifiers that operate directly on program source, an IR-based
verifier needs for the input program to be first compiled into the chosen IR. In the
case of the LLVM compiler infrastructure, there are many popular programming
languages with front-ends that output LLVM IR. Hence, producing LLVM IR
for the programming language of choice is typically straightforward. Once the
input program is compiled into IR, it gets linked with the SMACK models, which
are written in either C (common ones) or the target language (language-specific
ones) and automatically compiled by SMACK. The resulting linked IR file is in
turn handed over to the SMACK verifier for processing (see Fig. 2). A verifier
needs a program entry point, such as function main in C, to know from where
to start the verification process. The LLVM IR specification does not prescribe
a well-defined entry point, and hence language developers are free to choose
how to define the entry point for a program in their language—most languages
define entry points other than main. Thus, we either implement a simple post-
processing step to mark the program’s entry point, or manually specify it in
SMACK’s command line, which is in turn passed to the SMACK verifier.

4.3 Adding Models for Missing Language Features

When adding a new language, we typically observe three categories of models
that might be missing in a verifier: unsupported LLVM IR instructions, runtime
features, and standard libraries.

LLVM IR is an extensive format comprised of more than one hundred instruc-
tions and intrinsics [36], many of which are not commonly used. Hence, when
adding a new language, its compiler can potentially generate IR instructions or
intrinsics that a verifier has not encountered before, and hence are potentially
not supported. This necessitates updating the verifier to account for the seman-
tics of such instructions. Our experience shows that in the case of a mature
LLVM-based verifier such as SMACK, we rarely encountered a new compiler
generating instructions/intrinsics that it did not already support.

Most languages require the use of a standard library to achieve almost any-
thing of practical value. SMACK provides extensive models for the C standard
library, such as pthreads, strings, and math. However, every programming lan-
guage comes with its own standard libraries that it relies on, with different
specifications. A language may rely heavily on its standard libraries, even if it
has little or no runtime. For example, unlike C, D, and Fortran, languages such
as Rust and Swift implement arrays as a compound type in the standard library.
Hence, models for the standard libraries of a new programming language have
to be written manually mostly from scratch. This is the most tedious and time
consuming aspect of adding support for a new language. To somewhat allevi-
ate the burden of developing models, SMACK architecture enables for a user to
write models for standard library functions as header files that are linked with
input programs. This is a convenient mechanism for writing such models since
it requires no updates to be made to the actual SMACK verifier source code.
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Some languages are also heavily dependent on runtime functionality, such
as Objective-C, Swift, and Kotlin. For example, Objective-C relies heavily on
its runtime for method dispatch, memory management, and other basic features.
Code from the runtime is not included in the LLVM IR which is generated by the
compiler. Therefore, runtime functions must be modeled before any nontrivial
verification. Languages like C, Fortran, and D have very few runtime models,
and as a result these are much easier languages to verify out-of-the-box.

5 Case Studies

We perform three case studies to assess the feasibility and ease of adding sup-
port for an additional input programming language into an IR-based software
verification toolchain such as SMACK. Before we describe each case study in
detail, we provide our strategy for selecting input programming languages we
attempted to support.

5.1 Choice of Input Programming Languages

There are numerous programming languages in existence today, and clearly it
would be infeasible for us to handle all of them. Hence, for our case studies, we
used the following criteria for choosing which languages to add support for in
SMACK. First, we selected popular languages from the Stack Overflow Devel-
oper Survey [19] that can be compiled down into LLVM IR. Second, we performed
a thorough search for other languages that can be compiled into LLVM IR, and
are important in certain domains but less popular overall (i.e., domain specific).
Then, we prune this list based on our requirements on the front-end, which are
as follows:

1. Compile input programs into LLVM IR Ahead-of-Time
2. Target the same version of LLVM as SMACK
3. Be stable and under active development

Table 1 lists the languages we considered and their relevant properties.
As SMACK directly translates an entire program from LLVM to Boogie, it

requires all related definitions to be available at translation time. A Just-in-Time
compiler does not have a whole program readily available in the LLVM IR format
for SMACK to process. Therefore, Ahead-of-Time compilers are the only ones
that can currently be used with SMACK. LLVM does not preserve backwards
compatibility of the LLVM IR format. Hence, the LLVM version supported by
SMACK and the chosen language front-end have to match. The used version
of SMACK supports LLVM 3.9, and hence our requirement is for a language
front-end to support the same LLVM version. We sometimes had to revert to an
older front-end version to satisfy this requirement. For example, Swift 4.2 does
not target the required LLVM 3.9, but Swift 3.0 does. Of course, as SMACK
gets updated to newer LLVM versions, this requirement will change as well. In
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Table 1. List of programming languages we considered and their properties. Column
Ahead-of-Time shows whether an Ahead-of-Time compiler is available for the lan-
guage; column LLVM 3.9 indicates whether the needed LLVM version is supported;
column Active indicates whether the compiler is under active development, while
column Stable indicates if there is a stable release; finally, column Used it? shows
whether we used the language in our evaluation.

Language Compiler Ahead-of-Time LLVM 3.9 Active Stable Used it?

C clang ✓ ✓ ✓ ✓ ✓

C++ clang ✓ ✓ ✓ ✓ ✓

Fortran [24] flang ✓ ✓ ✓ ✓ ✓

D [16] ldc ✓ ✓ ✓ ✓ ✓

Rust [45] rustc ✓ ✓ ✓ ✓ ✓

Objective-C clang ✓ ✓ ✓ ✓ ✓

Swift [49] swiftc ✓ ✓ ✓ ✓ ✓

Kotlin [32] kotlinc ✓ ✓ ✓ ✓ ✓

Scala [46] scala-native ✓ ✓ ✓ ✓ ✗

C# [52] llilc ✓ ? ✓ ✓ ✗

Haskell [29] ghc ✓ ✓ ✓ ✓ ✗

Julia [31] julia ✗ ✓ ✓ ✗ ✗

Go [25] llgo ✓ ✓ ✗ ✗ ✗

Python [40] pyston ✓ ? ✗ ✗ ✗

Ruby [43] ruby-llvm ✓ ✗ ✗ ✗ ✗

Java [22] falcon (Azul) ✗ ✗ ✓ ✗ ✗

order to limit our focus to compilers of practical value, we ignore the ones that
are not stable and under active development.

Of the LLVM-IR-based languages in the developer survey, there are 4 that
satisfy our criteria: C, C++, Objective-C, and Swift. Kotlin, Scala [46], and
C# [52]) have compilers that are not yet fully mature, but are stable and under
active development. We chose Kotlin as the representative of this “managed
language into LLVM IR” category. In addition to the popular languages listed
on Stack Overflow, there are other notable, stable languages that target LLVM.
Most of these are tailored for domain-specific coding. The Rust programming
language [45] is a performant systems language with an emphasis on safety and
concurrency. The D programming language [16] is a mature language which offers
low-level control combined with high-level abstractions. Both Rust and D target
the systems programming community. Fortran is primarily used in the scientific
programming community, since it provides support for parallel processing and
compatibility with legacy code for projects that span multiple decades. The only
language we do not use which satisfies our criteria is Haskell. Its LLVM back-end
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Fig. 3. Microbenchmark with program versions in C, Swift, Rust, and Fortran.

is not compatible with SMACK, mainly because the entry point for the code is
not included in a standalone bitcode file.

5.2 Case Study 1: Microbenchmarks

We developed a microbenchmark suite to evaluate the quality of the support
for different languages we implemented in SMACK. We crafted each bench-
mark to exercise across all languages (8 languages total, see Table 1) a spe-
cific language feature we deem important, meaning that a benchmark consists
of a number of programs, each implementing the chosen feature in a different
language. In addition, we injected a property to be verified into each bench-
mark using assertions. Hence, there are several (at least two) program versions
per each benchmark-language pair: a passing version (i.e., no failing assertions)
and a failing version (i.e., a failing assertion) for each assertion. Figure 3 shows



100 J. J. Garzella et al.

Table 2. Characteristics of our microbenchmark suite. Column LOC is the average
number of lines of code per benchmark across supporting languages; column #Lang
is the number of languages supporting the features tested.

Benchmark Features tested LOC #Lang

basic basic assertions 8 8

compute integer arithmetic 12 8

function functions, if-then-else, nondet values 19 8

forloop for loops 14 8

fib recursion 20 8

compound objects and structures, fields 18 8

array array creation, array access 10 8

pointer dynamic memory allocation, references 14 6

inout updates via side effects 17 7

method single type dispatch 26 6

dynamic polymorphic dispatch 29 6

several variations of one of our microbenchmarks. Table 2 gives basic character-
istics of our microbenchmark suite.1

We designed the microbenchmarks to be as small as possible, and yet still test
a particular language feature. Hence, a failing benchmark is a good indicator of
which feature is not properly supported by a verifier. While our microbenchmarks
are not based on real-world programs, since they focus on common and widely-
used language features, being able to handle them is a prerequisite to verifying
real-world code. One can think of our microbenchmarks as being litmus tests for
various key language features.

Not all benchmarks have a program version for every language since not
all language features are supported across the board. For example, languages
without support for object-oriented programming (e.g., C, Fortran) do not have
versions of the corresponding benchmark (i.e., method). Then, Swift and Kotlin
do not have syntactic support for pointers, and so we could not implement ver-
sions of the pointer benchmark for these languages. We also sometimes had to
implement benchmark versions differently across languages. For example, we
implemented the dynamic dispatch benchmark in Rust using traits instead of
inheritance. As another example, we implemented the inout benchmark in Swift
and Fortran using a specific mutable-parameter syntax, while in most other lan-
guages we replicate this feature using pointers. We did not implement this bench-
mark in Kotlin since it has no support for pointers, nor for mutable-parameter
syntax.

1 We made our microbenchmark suite publicly available at https://github.com/
soarlab/gandalv.

https://github.com/soarlab/gandalv
https://github.com/soarlab/gandalv
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Table 3. Results of running SMACK on our microbenchmarks. Symbol ✓ marks pass-
ing, symbol ✗ failing, and N/A marks benchmarks that do not have a version for the
corresponding language.

Benchmark C C++ Objective-C Rust Fortran D Swift Kotlin

basic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

compute ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

function ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

forloop ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

fib ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

compound ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗

array ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗

pointer ✓ ✓ ✓ ✓ ✓ ✓ N/A N/A

inout ✓ ✓ ✓ ✓ ✓ ✓ ✓ N/A

method N/A ✓ ✗ ✓ N/A ✓ ✗ ✓

dynamic N/A ✗ ✗ ✓ N/A ✗ ✗ ✗

Table 3 summarizes the results of running SMACK with our extensions
on the microbenchmarks. Overall, SMACK successfully discharges all available
program versions of benchmarks in C, Fortran, and Rust. For C++ and D, the
main missing language feature that we still have to add support for is dynamic
dispatch. Swift, Objective-C, and Kotlin need more work before SMACK could
support language features beyond just the very basic ones. The primary cause
for the failing benchmarks is SMACK lacking models of standard libraries and
runtime.

Swift, Objective-C, Kotlin, and Rust are all very library- and runtime-depen-
dent. Hence, there are many basic language features that SMACK does not
capture precisely (i.e., that are not modeled in SMACK), which causes even
some small benchmarks to fail. As we note in Sect. 6.2, developing such models
for a verifier is typically a tedious manual process, and is an exercise we could
not perform for all languages in the limited amount of time we had for our case
study. However, the version of SMACK we used already contained models of
several popular Rust standard library functions. Hence, in our experiments, the
other three languages have more failing benchmarks than Rust, which are caused
by the following unmodeled functionality:

Swift range structures (forloop), array subscripts (array), dispatching functions
via function pointers (method)

Obj-C objc-msg-send for dispatching methods via function pointers (compound,
method), NSArray class (array)

Kotlin dynamic object instantiation (compound, array)
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Table 4. Time commitment summary for adding a new language.

Procedure step Person-Hours

Write code to interoperate with SMACK models 8

Compile and link at the LLVM IR level, test 3

Add and model missing functionality 4

Total: 15

5.3 Case Study 2: Adding a Language

In order to get a rough estimate of the time commitment required to add sup-
port for a new language to an IR-based verifier, we conducted an informal timed
exercise where an undergraduate student working on this project (Jack
J. Garzella, one of the coauthors) added support for one additional language, the
D programming language, to SMACK. During the exercise, the student followed
the steps we prescribe in our procedure from Sect. 4, and we measured elapsed
time (in hours) it took him to accomplish each of the steps. Table 4 summarizes
our measurements.

The student had no experience with D beyond implementing the microbench-
marks; he was also not familiar with the SMACK internals, which ended up not
being important for this exercise since no changes to SMACK were needed. How-
ever, as D was the sixth programming language the student added, he had ample
experience adding support for new languages, which contributed to this exercise
proceeding smoothly. Furthermore, D was an easy language to add since the
LLVM IR it generates is close to the one generated by the C clang compiler, and
hence heavily tested with SMACK. In addition, basic code in D does not heavily
depend on its standard library and runtime. Hence, the student spent very little
time modeling missing functions for D. For languages with extensive usage of
standard libraries and runtime (e.g., Swift, Kotlin), we expect that modeling the
runtime and standard library functionality to dominate the total time.

5.4 Case Study 3: Cross-Language Verification

One of the major advantages to the IR-based approach to verification is the
ease of cross-language verification. In fact, with the approach that SMACK
takes, every verification (of a non-C language) is a cross-language verification,
as SMACK’s models that have to be linked against the input program are writ-
ten in C. With this in mind, non-trivial cross-language verification efforts are
typically as simple as any regular single-language verification. As a proof of this
concept, we took a simple algorithm, namely a classic triangle classifier, and
implemented it in C, Rust, and Fortran. Our triangle classifier takes 3 integers
as input, which represent the sides of a triangle, and it determines and returns
the type of the triangle defined by the input sides. We wrote a harness program
that invokes triangle classifiers from each language in turn, feeds equal nonde-
terministic inputs to all of them, and asserts that they return the same result.
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Table 5. Equivalence checking of half-precision floating-point implementations in C
and Rust. Column Equal? shows whether the two implementations are equivalent;
column Time gives the verification runtime in seconds; column LOC gives the number
of lines of code in the checked Rust function.

Function Equal? Time (s) LOC

eq ✓ 13 8

lt ✓ 22 13

le ✓ 18 13

gt ✓ 17 13

ge ✓ 18 13

to f32 ✓ 8 41

to f64 ✓ 8 41

from f32 ✗ 5 68

from f64 ✗ 4 70

is nan ✓ 4 3

Hence, we performed cross-language verification to verify the equivalence of our
implementations in all three languages. SMACK was able to verify the equiva-
lence (i.e., the harness program) in around 19 s. We expect such cross-language
equivalence checking to be a valuable tool for developers when rewriting legacy
applications in, for example Fortran or C, into more modern languages, such as
C++ or Rust.

We further push our cross-language verification case study to a real-world
Rust application—the half crate [44] that implements the half-precision floating-
point type f16. We chose the half crate because its implementation is compact
in terms of code size (functions range from only a few to around 70 LOC, see
Table 5), but difficult to reason about because it frequently performs low-level
bit manipulations. Furthermore, the equivalence of functions implementing the
half-precision floating-point type can be easily expressed. This makes the half
crate a suitable target for our cross-language verification case study.

For the purpose of this case study, we developed a simple C reference imple-
mentation of the half-precision floating-point type that leverages the available
__f16 type. Then, we verify that several important representative methods of the
half crate, such as lt, gt, and to_f32, are equivalent to the respective C imple-
mentations. We leverage the Rust’s Foreign Function Interface to write harness
programs that assert the equivalence between Rust and C functions. (Note that
if such a mechanism for interoperating between languages does not exist, we
could implement the equivalence check at the LLVM IR level; however, working
directly with the low-level LLVM IR would be more tedious.) Thanks to Rust’s
high interoperability with C, we are able to trivially express equivalence using
the equality operator. For example, relational operators in C evaluate to 1 if the
relation is true and otherwise they evaluate to 0. In Rust, casting a value of type
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bool into an integer has the same behavior. Therefore, comparing a predicate
function such as eq in C and Rust reduces to checking if the return value of the
C version is equal to the return value of the Rust version cast to type u8.

Table 5 summarizes the results of this case study. SMACK is able to verify
that most of the chosen functions of the f16 type are equivalent to their reference
C implementations. The only exceptions are functions from f32 and from f64,
for which SMACK discovered inconsistencies between the two implementations:
conversions from larger bit-width floating-point types to f16 are rounded differ-
ently. We reported this issue to the half crate developers, and they confirmed
and fixed it. The verification runtimes range between 4–22 s on a 3.5 GHz Intel
3770k machine.

6 Experience

In this section, we describe our experience of applying the procedure introduced
in Sect. 4 to add support for new languages into SMACK as well as perform
cross-language verification. First, we discuss why our approach and procedure
allow us to trivially support many language constructs of the added programming
languages (Sect. 6.1). Second, we describe key challenges that we encountered in
the process of adding support for new languages and propose solutions for them
(Sect. 6.2). Third, we present our experience with leveraging the cross-language
verification capability to perform equivalence checking (Sect. 6.3).

6.1 Trivially Supported Features

SMACK is a mature C verifier that has been successfully applied on numerous C
programs, including large-scale real-world C projects such as OpenSSH, SQLite,
and Linux device drivers. Hence, SMACK already fully supports an extensive
subset of LLVM IR that gets generated by the clang C compiler. For example, the
key language constructs of LLVM IR such as functions, control flow, arithmetic,
and derived types are completely modeled. As a result, SMACK readily supports
new languages of which compilers emit LLVM IR code that is akin to what
clang generates. We find that these languages are typically also procedural C-
like languages, such as Fortran and D.

As it turns out, to our surprise, SMACK was often able to out-of-the-box
support even language features that are not found in C. For example, without
any modifications SMACK could handle the vectorized addition of arrays in
Fortran, which we show in Fig. 4. After inspecting the IR code generated by the
Fortran compiler, we observe that the vectorized addition operation compiles
into an element-wise array addition, which is a common IR operation and hence
was already supported by SMACK.

Having an extensive subset of LLVM IR supported also saved us from mod-
eling a lot of key program constructs in non-C-like languages such as Rust and
Swift. For example, even though function calls and control flow constructs are
different from those found in C (e.g., closures and match expressions), they are
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Fig. 4. Fortran program that utilizes vectorized addition.

compiled to the subset of LLVM IR that was already understood by SMACK.
Therefore, our approach enables us to evade cumbersome modeling of advanced
language features such as closures. In this regard, our experience demonstrates
the advantages of our IR-based approach for multi-language verification.

6.2 Adding New Languages: Challenges and Solutions

As expected, supporting even a small subset of a new language in a verifier is
often challenging. For example, a major challenge is the need to model previously
unsupported LLVM IR constructs. Our experience shows that the compilers of
non-C-like languages, such as Rust and Swift, indeed produce LLVM IR that
was not supported by SMACK. Moreover, another important challenge is that
we have to model a language runtime and its standard libraries to enable for
practically usable verification. In the rest of this section, we describe in detail
these challenges as well as our efforts to solve them.

Unsupported LLVM Constructs. SMACK is a mature verifier that has been
thoroughly tested on C programs, including thousands of SVCOMP benchmarks
as well as large real-world applications such as OpenSSH. Despite SMACK’s
maturity, we found that compilers for the emerging languages, such as Rust and
Swift, readily generate LLVM IR constructs we do not observe in LLVM IR
generated from C code by clang. Hence, we had to extend SMACK with support
for such constructs, and we describe some of these next.

Both the Rust and Swift compilers heavily rely on the use of LLVM struc-
ture types, often emitting different instructions involving structures than what
clang would generate. We solved this problem by modeling LLVM IR structure
types using uninterpreted functions that recursively constrain each field. For
example, we represent value {v,1} of structure type {T,i1} using an integer
s with constraint f(s,0)==v && f(s,1)==1, where f is an uninterpreted func-
tion with the second argument being the index of a structure field. This encoding
allows us to model two basic LLVM IR structure instructions extractvalue and
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insertvalue that read and write structure fields, respectively. Loads and stores
of structures into memory are recursively translated into a sequence of instruc-
tions that generate load/store for each field of primitive type, in conjunction
with the two aforementioned instructions.

Another previously unsupported but frequently used LLVM IR construct is
intrinsics. For example, both the Rust and Swift compilers default to using LLVM
IR’s overflow arithmetic intrinsics, such as llvm.add.with.overflow.i32. The
leading_zeros methods of unsigned integer types in Rust are compiled to
llvm.ctlz.* intrinsics. Such intrinsics can be easily modeled. For example, we
model these intrinsics in SMACK by first performing the requested operation
in the double-bit-width precision, to avoid potential overflows. Then, we inspect
the result to detect if it overflowed, in which case we either report an overflow
error or we block the overflowing path.

In addition to supporting more LLVM IR instructions, we also extended
SMACK to support instruction sequences that are not regularly generated by
clang. For example, the Rust compiler performs a packing optimization where
structures with a size less than 8 bytes are packed into 8 byte integers (e.g., a
load of a structure of type {i32,i32} gets encoded as a load of i64). This breaks
the completeness of SMACK’s memory model [42], which is not precise enough
to capture such low-level operations, thereby leading to false alarms. We added
an analysis pass to SMACK that detects load/store instruction patterns with
pointer operands of integer element type that refer to structures. We translate
such patterns to load from or store into structure fields (following the encoding
described earlier), thereby avoiding packing.

Although we had to model these additional constructs, our approach still
demonstrates the advantages discussed in Sect. 6.1: modeling one LLVM IR
construct benefits the support of multiple languages, and this process becomes
progressively easier as adding a new language benefits from previous modeling
efforts.

Languages with Large Runtimes. Getting a verifier to translate LLVM IR
generated from a language with a large runtime is not any more difficult than
for languages with smaller runtimes. However, performing a nontrivial verifica-
tion task for such a language is much harder, because even rudimentary language
features are sometimes under the hood implemented using complex runtime con-
structs and standard libraries. Moreover, the source code implementing such fea-
tures is not readily accessible to the verifier as IR code linked with the program
source. We found this to be the most challenging problem when adding a new
language to a verifier. Note that this problem persists even if the verification is
done directly on program source (as opposed to IR) since the source code of the
underlying runtime is typically not available, written in a different programming
language, or too large to be efficiently handled by a verifier.

As an example of such a language feature, consider the for-in loop over an
iterable structure. All of the languages with substantial runtime we considered
provide such a feature. In fact, in Swift, Kotlin, and Rust, the C-style for loop is
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Table 6. Sizes of models we developed for each language. Column Model LOC gives
the size of each model in terms of lines of code.

Language Model LOC

C 2566

C++ 13

Fortran 38

D 0

Rust 480

Objective-C 0

Swift 2

Kotlin 17

not even supported, and range structures are used to emulate the same behavior.
Consider this simple example in Swift: for i in 0..<10 {x += 5}. The compiler
translates the code 0..<10 using a Range<Int> structure/class, whose member
methods are then called in the compiled loop code. The code of such member
methods is not readily available to the verifier, but is a part of the runtime. On
the other hand, both Kotlin and Rust compile such loops into basic LLVM IR
instructions that do not contain method calls into runtime, despite the high-
level concept of a range being similar to Swift. Many features of large-runtime
languages are implemented like this, and they vary wildly between languages.
Examples of other basic language features the heavily depend on runtime include
method dispatch (Swift, Objective-C), arrays (Swift, Objective-C, Rust, Kotlin),
and object instantiation (Kotlin). As a more extreme example, even basic arith-
metic in Kotlin is abstracted into invoking methods belonging to its runtime,
instead of generating the appropriate LLVM IR instructions directly. We relied
on two solutions to overcome such problems, with different trade-offs, as we
describe next.

We compile and link an existing implementation of the runtime/standard
library with the input program. For example, to support basic integer opera-
tions in Kotlin, we used the existing implementation of these operations from
the Kotlin runtime and linked it with the input program. The main advantage
of this approach is that it requires no manual effort. It also avoids the user
potentially introducing errors while modeling the runtime. The main drawback
is that the standard libraries and runtime are generally very large, and this may
cause verification to blow up even on small input programs. For example, the
implementation of the array structure in Swift is thousands of lines of code. Such
code is also heavily optimized, and often relies on low-level bit vector operations
and compiler builtins, which further complicate its verification.

We model the standard libraries and runtime by writing stubs for the relevant
methods. Table 6 gives the sizes of the models we developed for each language
we support. SMACK already came with extensive models for the C standard
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library and a part of the Rust standard library, which is why these two models
are by far the largest. The main advantage of this approach is that the manually
written models make the verification much more tractable, and hence most ver-
ifiers, no matter whether they are IR-based or not, require it to achieve scalable
verification. The main drawback is that writing them is a tedious manual effort
that requires detailed understanding of the language specifications. Hence, we
did not do that for other languages. In principle, the standard libraries and run-
time of Kotlin, Objective-C, and Swift could each be modeled in a similar way
to Rust. Note that this solution is contradictory to the general principle of our
approach since it requires per-language modeling.

6.3 Cross-Language Verification

Although our experience with cross-language verification is limited to equiva-
lence checking of programs written in different languages, it captures an impor-
tant pattern in cross-language development: a program written in one language
uses external libraries written in another language. Furthermore, equivalence
checking is a useful application of cross-language verification, giving confidence
to developers that a new, native implementation of a library retains the behav-
iors of the previous non-native implementation. This is especially true when large
rewriting efforts are under way, such as replacing legacy libraries implemented
using Fortran with C/C++ implementations in the context of high-performance
computing, or libraries implemented using C with their Rust counterparts.

We find that once the languages involved in the cross-language verification
process are well-supported and there are available mechanisms for these lan-
guages to interoperate, cross-language verification is feasible, highly automated,
and comes almost for free. This is expected since our approach casts the prob-
lem of cross-language verification into the problem of verifying a single language,
namely LLVM IR. Therefore, the main impediments we encountered while veri-
fying cross-language programs were related to SMACK’s incomplete support for
LLVM IR, similarly to our efforts to add support for new languages. For exam-
ple, while performing the case study, the only issue we encountered was that
SMACK did not model the LLVM count-leading-zeros intrinsics. We quickly
added support for this instruction and were able to complete the verification
process smoothly.

7 Conclusions

In this paper, we proposed a procedure for extending an IR-based verifier with
multi- and cross-language verification capabilities. By relying on the proposed
procedure, we extended the LLVM-IR-based SMACK software verification tool-
chain with basic prototypical support for 6 additional languages. We performed
several case studies to assess the quality of our extensions and the feasibility of
leveraging the IR-based verifier architecture in the context of multi- and cross-
language verification. Our evaluation is encouraging and indicates that the IR-
based architecture indeed lowers the bar for adding support for a new language
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into an existing verifier—languages with small runtimes could be reliably added
with only a modest effort. It also allows for straightforward cross-language verifi-
cation. As we anticipated, supporting languages with large runtimes that heavily
rely on standard libraries is possible, but mature support would require a large
manual effort to model the runtime and libraries.
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41. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from ver-

ifier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 7
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Abstract. Automatic verification of array manipulating programs is a
challenging problem because it often amounts to the inference of induc-
tive quantified loop invariants which, in some cases, may not even be
first-order expressible. In this paper, we suggest a novel verification tech-
nique that is based on induction on user-defined rank of program states
as an alternative to loop-invariants. Our technique, dubbed inductive
rank reduction, works in two steps. Firstly, we simplify the verification
problem and prove that the program is correct when the input state con-
tains an input array of length �B or less, using the length of the array as
the rank of the state. Secondly, we employ a squeezing function � which
converts a program state σ with an array of length � > �B to a state �(σ)
containing an array of length �−1 or less. We prove that when � satisfies
certain natural conditions then if the program violates its specification
on σ then it does so also on �(σ). The correctness of the program on
inputs with arrays of arbitrary lengths follows by induction.

We make our technique automatic for array programs whose length of
execution is proportional to the length of the input arrays by (i) perform-
ing the first step using symbolic execution, (ii) verifying the conditions
required of � using Z3, and (iii) providing a heuristic procedure for syn-
thesizing �. We implemented our technique and applied it successfully
to several interesting array-manipulating programs, including a bidirec-
tional summation program whose loop invariant cannot be expressed in
first-order logic while its specification is quantifier-free.

1 Introduction

Automatic verification of array manipulating programs is a challenging problem
because it often amounts to the inference of inductive quantified loop invariants.
These invariants are frequently quite hard to come up with, even for seemingly
simple and innocuous program, both automatically and manually. The purpose
of this paper is to suggest an alternative kind of correctness witness, which is
c© Springer Nature Switzerland AG 2020
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often simpler than inductive invariants and hence more amenable to automated
search.

Loop invariants, the basis of traditional verification approaches, offer an
induction scheme based on the time axis, i.e., on the number of loop itera-
tions. We suggest an alternative approach in which induction is carried out on
the space axis, i.e. on a (user-defined notion of the) rank (e.g., size) of the pro-
gram state. This is particularly useful in the setting of infinite-state systems,
where the size of the state may be unbounded. In this induction scheme, estab-
lishing the induction step relies on a squeezing function � : Σ → Σ (read � as
squeeze) that maps program states to lower-ranked program states (up to a given
minima). Roughly speaking, the squeezing function should satisfy the following
conditions, described here intuitively and formalized in Definition 3:

– Initial anchor. � maps initial states to initial states.
– Simulation inducing. � induces a certain form of simulation between the

program states and their squeezed counterparts.
– Fault preservation. � maps unsafe states to unsafe states.

Our main theorem (Theorem 1) shows that if these conditions are satisfied
then P is correct, provided it is correct on its base, i.e., on the states with minimal
rank. The crux of the proof is that as a consequence of the aforementioned
conditions, if P violates its specification on a state σ then it also violates it
on �(σ). Hence, if P satisfies the specification on the base states, by induction
it satisfies it on any state.

The function � itself can be given by the user or, as we show in Sect. 4,
automatically obtained for a class of array programs which iterate over their
input arrays looking for a particular element (e.g., strchr) or aggregating their
elements (e.g., max). In our experiments, we utilized automatically synthesized
squeezing functions to verify natural specifications of several interesting array-
manipulating programs, some of which are beyond the capabilities of existing
automatic techniques. Arguably, the key benefit of the our approach is that the
squeezing functions are often rather simple, and thus finding them and establish-
ing that they satisfy the required properties is an easier task than the inference
of loop invariants. For example, in the next section we show a program whose
loop invariant cannot be expressed in first order logic but can be proven correct
using a squeezing function which is first-order expressible, in fact, the reasoning
about the automatically synthesized squeezing function is quantifier free.

The last point to discuss is the verification of the program on states in the
base of �. Here, we apply standard verification techniques but to a simpler prob-
lem: we need to establish correctness only on the base, a rather small subset of
the entire state space. For example, for the programs in our experiments it is pos-
sible to utilize symbolic execution to verify the correctness of the programs on all
arrays of length three or less. This approach is effective because on the programs
in our benchmarks, the bound on the length of the input arrays also determines
a bound on the length of the execution. As this aspect of our technique is rather
standard we do not discuss it any further.
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Fig. 1. A bidirectional sum example and a loop invariant for it.

Outline. The rest of the paper is structured as follows: We first give an informal
overview of our approach (Sect. 2) which is followed by a formal definition of our
technique and a proof of its soundness (Sect. 3). We continue with a description
of our heuristic procedure for synthesizing squeezing functions (Sect. 4) and a
discussion about our implementation and experimental results (Sect. 5). We then
review closely related work (Sect. 6) and conclude (Sect. 7).

2 Overview

In this section, we give a high-level view of our technique.

Running Example. Program sum_bidi, shown in Fig. 1, computes the sum of
the input array a in two ways: One computation accumulates elements from left
to right, and the other—from right to left (assuming that indexes grow to the
right). Ignoring its dubious usefulness, sum_bidi possesses an intricate property:
the variables l and r are both computed to be the sum of the input array a. A
natural property one expect to hold when the program terminates is that l = r.

The Challenge. To verify the aforementioned postcondition when the length of
the array is not known and unbounded, a loop invariant is often employed. It
is important to remember, that a loop invariant must hold on all intermediate
loop states—every time execution hits the loop header. For this reason, the loop
invariant needed in this case is more involved than the mere assertion l = r
that follows the loop. The right side of Fig. 1 shows a possible loop invariant
for this scenario. Intuitively, the invariant says that l and r differ by the sum
of the elements that they have not yet, respectively, accumulated. Notice that
the invariant’s formulation relies on a function sum(·) for arrays (and array
slices), the definition of which is also included in the figure. This definition is
recursive; indeed, any definition of sum will require some form of recursion or
loop due to the unbounded sizes of arrays in program memory. This kind of
“logical escalation” (from quantifier-free l = r to a fixed-point logic) makes such
verification tasks challenging, since modern solvers are not particularly effective
in the presence of quantifiers and recursive definitions.

Moreover, a system attempting to automate discovery of such loop invariants
is prone to serious scalability issues since it has to discover the definition of sum(·)



Putting the Squeeze on Array Programs 115

Fig. 2. A bidirectional sum example and its squeezing function.

along the way. The subject program sum_bidi effectively computes a sum, so
this auxiliary definition is at the same scale of complexity as the program itself.

Our Approach. We suggest to leverage the semantics already present in the sub-
ject program for a more compact proof of safety. Instead of having to summarize
partial executions of the program via a loop invariant, we show that the pro-
gram is correct for all arrays of size 0...r for some base rank r (the size of the
array serves as the rank of the program state), and further show how to derive
the correctness of the program for arrays of size n > r, from its correctness for
arrays of size n − 1. To achieve the latter, we rely on a function that “squeezes”
states in which the array length is n to states in which the array length is n− 1,
as we illustrate next.

Continuing with the example sum_bidi described above, we use the function
� : Σ → Σ, defined as a code block on the right side of Fig. 2, to “squeeze”
program states. In this case, the state consists of the variables 〈a, n, i, l, r〉,
and it is squeezed by removing the first element of a and adjusting the indices and
sums accordingly. The base rank here is r = 0, since any non-empty array can be
squeezed in this manner. The bottom part of Fig. 3 shows the effect of applying
� to each of the states in the execution trace of sum_bidi on the example
input [7,2,9,1,4]. The first property that is demonstrated by the diagram
is the “initial anchor” property, stating that initial states are “squeezed” into
initial states. As is obvious from the diagram, the execution on the squeezed
array [2,9,1,4] is accordingly shorter, so � cannot be injective—in this case,
�(σ0) = �(σ1) = σ′

0. Still, the sequence σ′
0 → σ′

1 → σ′
2 → σ′

3 → σ′
4 constitutes

a valid trace of sum_bidi. This is the second property required of �, which we
refer to as simulation inducing and define it formally in the next section.

Now, draw attention to fault preservation, the third property required of
�: whenever a state σ falsifies the safety property ϕ, denoted σ �|= ϕ, it is
also the case that �(σ) falsifies the safety property, i.e. �(σ) �|= ϕ. In our
example, the safety property can be formalized as ϕ =̂ (i = n → l = r). The
reasoning establishing fault preservation is not immediate but still quite simple:
if σ �|= ϕ, it means that i = n but l �= r (at σ). In that case, a[n − i] = a[0]; so
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Fig. 3. Example trace of sum_bidi, and the corresponding shrunken image.

l′ = l−a[0] �= r−a[n− i] = r′, where l′, r′ are the values of l and r, respectively,
at state �(σ). Since i and n are both decremented1 we get �(σ) �|= ϕ.

In this manner, from the assumption that �(σj), for j = 0..5, induces a safe
trace, we conclude that σj is safe as well. This lends the notion of constructing
a proof by induction on the size of the initial state σ0, provided that � cannot
“squeeze forever” and that we can verify all the minimal cases more easily,
e.g. with bounded verification. This is definitely true for sum_bidi, since the
minimal case would be an empty array, in which the loop is never entered. In
some situations the minima contains states with small but not empty arrays. In
general, if one can verify that the program is correct when started with a minimal
initial state, thus establishing the base case of the induction, our technique would
lift this proof to hold for unbounded initial states. In particular, if the length of
the program’s execution trace can be bounded based on the size of the initial
state then bounded model checking and symbolic execution can be lifted to
obtain unbounded correctness guarantee.

It is worth mentioning at this point that � is in no sense “aware” that it is,
in fact, reasoning about sums. It only has to handle scalar operations, in this
case subtraction (as the counterpart of addition that occurs in sum_bidi; the
same will be true for any other commutative, invertible operation.) The folding
semantics arises spontaneously from the induction over the size of the array.

Recap. We suggest a novel verification technique that is based on induction on
the size of the input states as an alternative to loop-invariants. The technique
is based on utilizing a squeezing function which converts high-ranked states into
low-ranked ones, and then applying a standard verification technique to establish
the correctness of the program on the minimally-ranked states. In a manner

1 Notice that we assume a positive size (n > 0), otherwise the array cannot be squeezed
in the first place.
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analogous to that which is carried out with “normal” verification using loop
invariants, the squeezer has to uphold the three properties described in Sect. 1,
namely initial anchor, simulation inducing, and fault preservation. (See Sect. 3
for a formal definition.) These properties ensure that the mapping induces a valid
reduction between the safety of any trace and that of its squeezed counterpart.

Why Bother. The attentive readers may ask themselves, given that both loop
invariants and squeezers incur some proof obligations for them to be employed
for verification, what benefit may come of favoring the latter over the former.
While the verification condition scheme proposed here is not inherently simpler
(and arguably less so) than its Floyd-Hoare counterpart, we would like to point
out that the squeezer itself, at least in the case of sum_bidi, is indeed simpler
than the loop invariant that was needed to verify the same specification. It is
simpler in a sense that it resides in a weaker logical fragment : while the invariant
relies on having a definition of (partial) sums, itself a recursive definition, the
squeezer � can be axiomatized in a quantified-free formula using a theory of
strings (sequences) [8] and linear arithmetic. In Sect. 4 we take advantage of the
simplicity if the squeezing function, and show that it is feasible to generate it
automatically using a simple enumerative synthesis procedure.

On top of that, it is quite immediate to see that the induction scheme outlined
above is still sound even if the properties of � (initial anchor, simulation, and
fault preservation) only hold for reachable states. Obviously, the set of reach-
able states cannot be expressed directly—otherwise we would have just used
its axiomatization together with the desired safety property, making any use of
induction superfluous. Even so, if we can acquire any known property of reach-
able states, e.g. through a preliminary phase of abstract interpretation [16], then
this property can be added as an assumption, simplifying � itself. A keen reader
may have noticed that the specification of sum_bidi has been written down as
ϕ =̂ (i = n → l = r), while a completely honest translation of the assertion
would in fact produce a slightly stronger form, ϕ′ =̂ (i ≥ n → l = r). This was
done for presentation purposes; in an actual scenario the “proper” specification
ϕ′ is used, and a premise 0 ≤ i ≤ n is assumed. Such range properties are preva-
lent in programs with arrays and indexes, and can be discovered easily using
static analysis, e.g., using the Octagon domain [36].

This final point is encouraging because it gives rise to a hybrid approach,
where a partial loop invariant is used as a baseline—verified via standard
techniques—and is then stengthened to the desired safety property via squeezer-
based verification. Or, the order could be reversed. There can even be alternating
strengthening phases each using a different method. These extended scenarios
are potentialities only and are matter for future work.

3 Verification by Induction over State Size

In this section we formalize our approach for verifying programs that operate over
states (inputs) with an unbounded size. The approach mimics induction over the
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state size. The base case of the induction is discharged by verifying the program
for executions over “small” low-ranked states (to be formalized later). For the
induction step, we need to deduce correctness of executions over “larger” higher-
ranked states from the correctness of executions over “smaller” states. This is
facilitated by the use of a simulation-inducing squeezing function �. Intuitively,
the function transforms a state σ into a corresponding “smaller” state �(σ) such
that executions starting from the latter simulate executions starting from the
former. The simulation ensures that correctness of the executions starting from
the smaller state, �(σ), implies correctness of the executions starting from the
larger one, σ.

Transition Systems and Safety Properties. To formalize our technique, we first
define the semantics of programs using transition systems. The is quite standard.

Definition 1 (Transition Systems). A transition system TS = (Σ, Init,Tr,
P) is a quadruple comprised of a universe (a set of states) Σ, a set of initial
states Init ⊆ Σ, a transition relation Tr ⊆ Σ × Σ, and a set of good states
P ⊆ Σ.

A trace of TS is a (finite or infinite) sequence of states τ = σ0, σ1, . . . such that
for every 0 ≤ i < |τ |, (σi, σi+1) ∈ Tr. In the following, we write Trk, for k ≥ 0 to
denote k self compositions of Tr, where Tr0 = Id denotes the identity relation.
That is, (σ, σ′) ∈ Trk if and only if σ′ is reachable from σ by a trace of length k
(where the length of a trace is defined to be the number of transitions along the
trace).

A transition system TS = (Σ, Init,Tr,P) is safe if all its reachable states are
good (or “safe”), where the set of reachable states is defined, as usual, to be
the set of all states that reside on traces that start from the initial states. A
counterexample trace is a trace that starts from an initial state and includes a
“bad” state, i.e., a state that is not in P. The transition system is safe if and
only if it has no counterexample traces.

Simulation-Inducing Squeezer. To present our technique, we start by formalizing
the notion of a simulation-inducing squeezing function (squeezer for short).

Definition 2 (Squeezing function). Let X be a set and 
 a well-founded
partial order over X. Let B ⊇ min(X) be a base for X, where min(X) is the set
of all the minimal elements of X w.r.t. 
, and let ρ : Σ → X be a rank on the
program states. A function � : Σ → Σ is a squeezing function, or squeezer for
short, with base B if for every state σ ∈ Σ such that ρ(σ) ∈ X \ B, it holds that
ρ(�(σ)) ≺ ρ(σ).

That is, � must strictly decrease the rank of any state unless its rank is in the
base, B. We refer to states whose size is in B as base states, and denote them
ΣB = {σ ∈ Σ | ρ(σ) ∈ B}. We denote by ΣB = Σ \ ΣB the remaining states.
Since 
 is well-founded and all the minimal elements of X w.r.t. 
 must be in B
(additional elements may be included as well), any maximal strictly decreasing
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sequence of elements from X will reach B (i.e., will include at least one element
from B). Hence, the requirement of a squeezer ensures that any state will be
transformed into a base state by a finite number of � applications.

Example 1. In our examples, we use (N,≤) as a well-founded set, and define the
base as an interval [0, k] for some (small) k ≥ 0. While it suffices to define B =
min(N) = {0}, it is sometimes beneficial to extend the base to an interval since it
excludes additional states from the squeezing requirement of � (see Sect. 5). For
array-manipulating programs, the rank used is often (but not necessarily) the
size of the underlying array, in which case, the “squeezing” requirement is that
whenever the array size is greater than k, the squeezer must remove at least one
element from the array. For example, for sum_bidi (Fig. 2), we consider k = 0,
i.e., the base consists of arrays of size 0, and, indeed, whenever the array size is
greater than 0, it is decremented by �. For arrays of size 0, � behaves as the
identity function (this case is omitted from the figure). In addition, whenever
the state contains more than one array, we will use the sum of lengths of all
arrays as a rank.

Definition 3 (Simulation-inducing squeezer). Given a transition system
TS = (Σ, Init,Tr,P), a squeezer � : Σ → Σ is simulation-inducing if the follow-
ing three conditions hold for every σ ∈ Σ:

• Initial anchor: if σ ∈ Init then �(σ) ∈ Init as well.
• Simulation inducing: there exist nσ ≥ 1 and mσ ≥ 0 such that if

(σ, σ′) ∈ Trnσ then (�(σ),�(σ′)) ∈ Trmσ , i.e., if σ reaches σ′ in nσ steps,
then the same holds for their �-images, except that the number of steps may
be different.

• Fault preservation: if σ �∈ P then �(σ) �∈ P as well.

The definition implies that {(σ,�(σ)) | σ ∈ Σ} is a form of a “skipping” sim-
ulation relation, where steps taken both from the simulated state, σ, and from
the simulating state, �(σ), may skip over some states. This allows the simulated
and the simulating execution to proceed in a different pace, but still remain syn-
chronized. In fact, to ensure that we obtain a “skipping” simulation, it suffices
to consider a weaker simulation inducing requirement where the parameter mσ

that determines the number of steps in the simulating trace depends not only
on σ but also on σ′ and may be different for each σ′. Note that for determinis-
tic programs (as we use in our experiments) these requirements are equivalent.
Another possible, yet stronger, relaxation is to weaken the requirement that
(�(σ),�(σ′)) ∈ Trmσ into (�(σ),�(σ′)) ∈ Tri for some 0 ≤ i ≤ mσ.

Example 2. To illustrate the simulation inducing requirement, recall the pro-
gram sum_bidi from Example 1. For the base states (n = 0), � behaves as the
identity function. Hence, for such states the skipping parameters nσ and mσ

are both 1 (letting each step be simulated by itself). For non-base states, nσ,
the “skipping” parameter of σ, is still 1, while mσ, the “skipping” parameter
of �(σ), is 0 if σ is an initial state, and 1 otherwise. This accounts for the fact
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Fig. 4. Another program with � demonstrating a scenario where nσ < mσ.

Fig. 5. Soundness proof sketch; an arbitrary trace can be reduced to a low-ranked trace
by countable applications of �. Since ranks form a well-founded set, a base element is
encountered after finitely many such reductions. Arrows with vertical ellipses indicate
alternating applications of � and Tr∗, except for initial states where Definition 3(1)
ensures straight applications of � alone.

that � truncates the head of the array; hence, the first step in an execution is
skipped in the corresponding “squeezed” execution, while the rest of the steps
are synchronized in both executions (see Fig. 3 for an illustration).

Intuitively, one may conjecture that given a loop that iterates over an array,
it will essentially perform fewer iterations when run on �(σ) than it does on
σ, always resulting in mσ ≤ nσ. The following example shows that this is not
necessarily the case (Fig. 5).

Example 3. The program is_sorted (Fig. 4) checks whether the input array
elements are ascending by comparing all consecutive pairs. Our squeezer (for
n > 3) checks whether the last three elements form an ascending sequence; if so,
removes the last element, otherwise it removes the forth element from the right.
Consider the input a = 1, 0, 2, 3, 1 and the squeezed a’ = 1, 2, 3, 1. is_sorted(a)
terminates after one iteration, but is_sorted(a’) after three iterations. Let
σ =

[

a, i → 1
]

. The simulation inducing requirement can only be satisfied with
nσ = 1 and mσ = 3. Since Trnσ (σ) =

[

a, ret = false
]

, no smaller value of mσ

can satisfy the requirement that Trmσ
(

� (σ)
)

= �
(

Trnσ (σ)
)

.
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Checking If a Squeezer is Simulation-Inducing. The initial anchor and fault
preservation requirements are simple to check. To facilitate checking the simula-
tion inducing requirement, we do not allow arbitrarily large numbers nσ,mσ but,
rather, determine a bound N on the value of nσ and a bound M on the value of
mσ. This makes the simulation inducing requirement stronger than required for
soundness, but avoids the need to reason about pairs of states that are reachable
by traces of unbounded lengths (nσ and mσ).

Using Simulation-Inducing Squeezer for Safety Verification. Roughly, the exis-
tence of a simulation-inducing squeezer ensures that any counterexample to
safety, i.e., an execution starting from an initial state and ending in a bad state (a
state that falsifies the safety property), can be “squeezed” into a counterexample
that starts from a “smaller” initial state. In this sense, the squeezer establishes
the induction step for proving safety by induction over the state rank. To ensure
the correctness of this argument, we need to require that a “bad” state may not
be “skipped” by the simulation induced by the squeezer.

Formally, this is captured by the following definition.

Definition 4. A transition system TS = (Σ, Init,Tr,P) is recidivist if no “bad”
state is a dead-end, i.e., σ �∈ P =⇒ ∃σ′. (σ, σ′) ∈ Tr, and that transitions leaving
“bad” states lead to “bad” states, i.e., σ �∈ P ∧ (σ, σ′) ∈ Tr =⇒ σ′ �∈ P.

Recidivism can be obtained by removing any outgoing transition of a bad state
and adding a self loop instead. Importantly, this transformation does not affect
the safety of the underlying program. In our examples, terminal states of the
program are treated as self loops, thus ensuring recidivism.

Lemma 1. Let � : Σ → Σ be a simulation-inducing squeezer for a recidivist
transition system TS = (Σ, Init,Tr,P). For every σ0 ∈ Σ, if there exists a coun-
terexample that starts from σ0, then there also exists a counterexample that starts
from �(σ0).

The proof is constructive: given a counterexample trace from σ0, we use the
simulation-inducing parameters nσ of the states σ along the trace to divide
it into segments such that the first and last state of each segment are the ones
used as synchronization points for the simulation and the inner ones are the ones
“skipped” over. We then match each segment (σ, σ′) with the corresponding trace
of length mσ from �(σ) to �(σ′), whose existence is guaranteed by the simulation
inducing requirement. The concatenation of these traces forms a counterexample
trace from �(σ0). Formally:

Proof. Let τ = σ0, σ1, . . . , σn be a counterexample trace starting from an ini-
tial state σ0 ∈ Init. If the counterexample is of length 0, then �(σ0) is also a
counterexample of length 0 (by the initial anchor and fault preservation require-
ments). Consider a counterexample of length n > 0. We show how to construct a
corresponding counterexample from �(σ0). We first split the indices 0, . . . , n into
(overlapping) intervals I0, . . . , Ik, where I0 = 0, . . . , nσ, and for every i ≥ 1, if
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the last index in Ii−1 is j for j < n, then Ii = j, . . . , j + nσj
. If j +nσj

≥ n, then
k := i. Since TS is recidivist, we may assume, without loss of generality, that
j + nσj

= n (otherwise, because TS is recidivist and σn �∈ P, we can exploit one
of the transitions leaving σn, which necessarily exists and leads to a bad state,
to extend the counterexample trace as needed.) We denote by first(Ii), respec-
tively last(Ii), the smallest, respectively largest, index in Ii. By the definition of
the intervals, for every 0 ≤ i ≤ k, we have that last(Ii) = first(Ii) + nσfirst(Ii)

.
Hence, the simulation inducing requirement for σfirst(Ii) ensures that there exists
a trace of mσfirst(Ii)

steps from �(σfirst(Ii)) to �(σlast(Ii)). Since σfirst(I0) = σ0

and for every 0 < i ≤ k, σfirst(Ii) = σlast(Ii−1), we can glue these traces together
to obtain a trace from �(σ0) to �(σlast(Ii)). Finally, it remains to show that
�(σlast(Ik)) �∈ P. This follows from the fault preservation requirement, since
last(Ik) = n, hence σlast(Ik) = σn �∈ P. ��

Ultimately, the existence of a simulation-inducing squeezer implies that a
counterexample can be “squeezed” to one that starts from a base initial state.
Hence, to establish that the transition system is safe, it suffices to check that it
is safe when the initial states are restricted to the base states, i.e., to Init ∩ ΣB .

Theorem 1 (Soundness). Let � : Σ → Σ be a simulation-inducing squeezer
with base B for a recidivist transition system TS = (Σ, Init,Tr,P). If TSB =
(Σ, Init ∩ ΣB ,Tr,P) is safe then TS is safe.

Proof. Suppose for the sake of contradiction, that {σi}d
i=0 is a counterexample

trace with minimal rank for σ0 (such a state with a minimal rank exists since 
 is
well-founded). Since TSB is safe, it must be that σ0 ∈ ΣB (since σ0 ∈ Init, while
safety of TSB ensures that no counterexample trace can start from Init ∩ ΣB).
By Lemma 1, we have that �(σ0) also has an outgoing counterexample trace.
However, since σ0 ∈ ΣB , we get that ρ(�(σ0)) ≺ ρ(σ0), in contradiction to the
minimality of σ0. ��

In all of our examples, the transitions of TS do not increase the rank of the
state. In such cases, we can also restrict the state space of TSB (and accordingly
Tr) to the base states in ΣB . Furthermore, in these examples, the size of the
state (array) also determines the length of the executions up to a terminal state.
Hence, bounded model checking suffices to determine (unbounded) safety of
TSB , and together with �, also of TS.

Remark 1. As evident from the proof of Theorem1, it suffices to require that
� decreases the rank of the initial non-base states, and not of all the non-base
states.

4 Synthesizing Squeezing Functions

So far we have assumed that the squeezer � is readily available, in much the
same way that loop invariants are available—typically, as user annotations—
in standard unbounded loop verification. As demonstrated by the examples in
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Fig. 6. Program space for syntax-guided synthesis of �. Expressions are split into three
categories: index, int, and char as described in Sect. 4. τ ∈ {int, char}.

Sects. 2 and 3, � is specific to a given program and safety property. Thus, it
might be tedious to provide a different squeezer every time we wish to check a
different safety property. In this section we show how to lighten the burden on
the user by automating the process of obtaining squeezing functions for a class
of typical programs that loop over arrays.

The solution for the squeezer-inference problem we take in this paper is to uti-
lize a rather standard enumerative synthesis technique of multi-phase generate-
and-test: We take advantage of the relative simplicity of � and provide a synthe-
sis loop where we generate grammatically-correct squeezing functions and test
whether they induce simulation.

4.1 Generate

First we note that while � is applied to arbitrary states in Definition 3, it is only
required to reduce the rank of non-base states σ ∈ B. For states σ ∈ B it is
trivial to satisfy all the requirements by defining �(σ) = σ. In the sequel, we
therefore only consider squeezing functions whose restriction to B is the identity,
and synthesize code for squeezing non-base states.

A central insight is that squeezing functions � for different programs still
have some structure in common: for programs with arrays, squeezing amounts
to removing an element from the array, and adjusting the index variables accord-
ingly. Some more detailed treatment may be needed for general purpose vari-
ables, such as the accumulators l and r of sum_bidi (recall Fig. 1), but the
resulting expressions are still small.

We have found that, for the set of programs used in our experiments, � can
be characterised by the grammar in Fig. 6. The grammar allows for functions
comprised of a single if statement, where in each branch an array is squeezed
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using the remove function, and several integer variables are set. Conditions are
generating by composing array elements, local variables and a fixed set of con-
stants based on the given program, with standard comparison operators and
boolean connectives. The semantics of remove(arr, position) are such that a
single element is removed from the array at the specified position, and all index
variables are adjusted by decrementing them if they are larger from the index of
the element being removed. This behavior is hard-coded and is specific to array-
based loops. Our experience has shown that a single conditional statement is
indeed sufficient to cover many different cases (see Sect. 5).

To bound the search space, expressions and conditions have bounded sizes
(in terms of AST height) imposed by the generator and the user selects the set
of basic predicates from which the condition of the if statement is constructed.
The resulting space, however, is still often too large to be explored efficiently.
To reduce it, some type-directed pruning is carried out so that only valid func-
tions are passed to the checker. Moreover, our synthesis procedure distinguishes
between variables that are used as indices to the array (varindex) and regular
integer variables (varint), and does not mix between them. We further assume
that we can determine, from analyzing the program’s source code, which index
variable is used with which array(s). So when generating expressions of the form
arr[ i ] etc., only relevant index variables are used. Also, we note that generated
squeezers preserve in bounds access by construction.

4.2 Test

The test step checks whether a candidate squeezer that is generated by the syn-
thesizer satisfies the requirements of Definition 3. For the simulation-inducing
requirement, we restrict nσ = 1..2 and mσ = 0..1. The step is divided into three
phases. In the first phase, candidates are checked against a bank of concrete pro-
gram states (both reachable and unreachable). In the second phase, candidates
are verified for a bounded array size, but with no restrictions on the values of
the elements. Those that pass bounded verification enter the third phase where
full, unbounded verification is performed.

The second and third phases of the test step require the use of an SMT solver.
The second phase is useful since incorrect candidates may cause the solver to
diverge when queried for arbitrary array sizes. Limiting the array size to a small
number (we used 6) enables to rule out these candidates in under a second. To
simplify the satisfiability checks, we found it beneficial to decompose the verifi-
cation task. To do so, we take advantage of the structure of the squeezer, and
split each satisfiability query (that corresponds to one of the requirements in
Definition 3) into two queries, where in each query we make a different assump-
tion regarding the branch the squeezer function takes. We note in this context
that the capabilities of the underlying solver direct (or limit in some sense) the
expressive power of the squeezer. In this aspect, it is also worth mentioning that
sequence theory support for element removal helped to define squeezers format.

For the simulation inducing check, we further exploit the property that for
the kind of programs and squeezers we consider, the transitions of the program
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usually do not change the truth value of the condition of the if statement in the
definition of the squeezer. Namely, if σ makes a transition to σ′ then either both
of them satisfy the condition or both of them falsify it; either way, their defi-
nition of � follows the same branch. This form of preservation can be checked
automatically using additional queries. When it holds, we can consider the same
branch of the squeezer program in both the pre- and post-states, thus simplify-
ing the query for checking simulation. Similarly, we can opportunistically split
the transition relation of the program into branches (e.g., one that executes an
iteration of the loop and one that exits the loop). In most cases, the same branch
that was taken for σ is also the one that needs to be taken from �(σ) to establish
simulation. This leads to another simplification of the queries, which is sound
(i.e., never concludes that the simulation-inducing requirement holds when it
does not), but potentially incomplete. We can therefore use it as a “cheaper”
check and resort to the full check if it fails.

4.3 Filtering Out Unreachable States

For soundness, a squeezer needs to satisfy Definition 3 only on the reachable
states. As we do not have a description of this set, for otherwise the verification
task would be essentially voided, we need to ensure that the requirements of
simulation-inducement on a safe over-approximation of this set. A simple over-
approximation would be the set of all states. However, this over-approximation
might be too coarse, indeed we noticed in our experiments that in some cases,
unreachable states have caused phases 1, 2 and 3 to produce false negatives,i.e.,
disqualify squeezers which can be used safely to verify the program. Therefore
we used an over-approximation of reachable states using

1. Bound constraints on the index variables: the index is expected to be within
bounds of the traversed array. This property can be easily verified using
other verifiers or by applying our verifier in stages, first proving this property
and then proving the actual specification of the verified procedure under the
assumption that the property hold.

2. 2-step bounded reachability: We found out that for our examples, looking
only at states that are reachable from another state in at most two steps
is a general enough inclusion criterion. Note that we do not require 2-step
reachability from an initial state, but rather from any state, hence this set
over-approximates the set of reachable states.

5 Implementation and Experimental Results

We implemented an automatic verifier for array programs based on our approach,
and applied it successfully to verify natural properties of a few interesting array-
manipulating programs.
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Base Case. We discharged the base case of the induction (the verification on the
base states) using KLEE [12]—a state-of-the-art symbolic execution [13] engine.
It took KLEE less than one tenth of a second to verify the correctness of each
program in our benchmarks on the states in its base. This part of our verification
approach is standard, and we discuss it no further; in the rest of this section we
focus on the generation of the squeezing functions.

5.1 Implementation

The generate step and phase 1 of the test step of the squeezer synthesizer were
implemented using a standalone C++ application that generates all � candidates
with an AST of depth three. Each squeezer was tested on a pre-prepared state
bank and every time a squeezer passed the tests it was immediately passed on
to phase 2. The state bank contained states with arrays of length five or less.
For each benchmark, we used up to 24,386 states with randomly selected array
contents. The number of states was determined as follows: Suppose the program
state is comprised of k variables and an array of size n. We randomly selected
p elements that can populate the array: p = {′a′,′ b′, 0} for string manipulating
procedures and p = {−4,−2, 9, 100, 200} for programs that manipulate integer
arrays. We determined the number test states according to the following formula:
dk · |p|n/df , where df is an arbitrary dilution factor used to reduce the number
of states from thousands to hundreds. (In our experiments, df = 17.)

The second and third phases were implemented using Z3 [17], a state of the
art SMT solver. We chose to use the theory of sequences, since its API allows for
a straightforward definition of the operation remove(arr,i) (see Fig. 6). In prac-
tice, the sequence solver proved to be overall more effective than a corresponding
encoding using the more mature array solver. In that aspect, it is worth men-
tioning that verifying fault preservation on its own is faster with the theory of
arrays. We conjecture that this is because the specification has quantifiers while
the other requirements can be verified using quantifier-free reasoning.

The transition relation was manually encoded in SMT-LIB2 format. However,
it should be straightforward to automate this step.

5.2 Experimental Evaluation

We evaluated our technique by verifying a few array-manipulating programs
against their expected specifications. The experiments were executed on a laptop
with Intel i7-8565 CPU (4 cores) with 16 GB of RAM running Ubuntu 18.04.

Benchmarks. We ran our experiments on seven array-manipulating programs:
strnchr looks for the first appearance of a given character in the first n char-
acters of a string buffer. strncmp compares whether two strings are identical
up to their first n characters or the first zero character. max_ind (resp. min_ind)
looks for the index of the maximal (resp. minimal) element in an integer array.
sum_bidi is our running example. is_sorted checks if the elements of an array
are sorted in an increasing order. long_pref is looking for the longest prefix
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Table 1. Experimental results (end-to-end). Time in seconds. G&T is a shorthand for
Generate&Test

Program B #Cand Phase 1 Phase 2 Phase 3 Total time
G&T+KLEE

Quic3 time

|Bank| Test Time BMC Time Time

strnchr 2 80 356 29 0.004 1 0.12 0.16 0.28+0.07 0.32

strncmp 2 980 76 196 0.02 1 7.2 154.48 161.70+0.05 0.19

max_ind 2 8000 368 10 0.18 2 1.86 4.44 4.73+0.05 0.11

min_ind 2 8000 257 9 0.26 2 2.1 16.86 17.21+0.05 0.09

sum_bidi 2 6328125 4602 1200 2.18 1 0.57 0.61 3.36+0.05 t.o.

is_sorted 4 900 25736 764 4.37 1 0.59 0.67 5.63+0.06 0.15

long_pref 3 6480 24386 4696 22.93 1 1.25 0.89 25.07+0.05 t.o.

of an array comprised of either a monotonically increasing or a monotonically
decreasing sequence.

The user supplies predicates that are used when synthesizing each squeezer.
These were selected based on understanding what the program does and the
operations it uses internally. E.g., for strncmp equality comparisons between
same-index elements of the two input arrays are used (s1[0]==s2[0] etc.),
as well as comparison with constant 0; for long_pref, order comparisons
(s1[1]<=s1[2] etc.) between different elements of the same array are used
instead.

Results. Table 1 describes the end-to-end running times of our verifier, i.e.,
the time it took our tool to establish the correctness of each example. In this
experiment, every candidate squeezer was tested before the next squeezer was
generated. The table shows the time it took the synthesizer to find the first
simulation-inducing squeezer plus the time it took to establish the correctness of
the programs on the states in the base using KLEE (Total Time). The table also
compares our verifier to Quic3 [28], an automatic synthesizer of loop invariants.
In general, when both tools where able to prove that the analyzed procedure is
correct, Quic3 was somewhat faster, and in the case of strncmp much faster.
However, on two of our benchmarks Quic3 timed out (1 h) whereas our tool was
able to prove them correct in less than 30 s.

Table 1 also provides more detailed statistics regarding the experiments: The
rank of the base states (B), the total number of possible candidates based on
the supplied predicates and the bound on the depth of the AST (# Cand), and
a more detailed view of each phase in the testing step. For phase 1, it reports
the number of states in the pre-prepared state bank (|Bank|), the number of
squeezers tested until a simulation-inducing one was found (Test), and the total
time spent to test these squeezers (Time). For phase 2, it reports the number of
candidates which passed phase 1 and survived bounded verification (BMC) and
the time spent in this phase (Time). For phase 3, we report how many simulation-
inducing squeezers were found the time it took to apply full verification.
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Table 2. Experimental results. Time in seconds. ε ≤ 0.0001

Program Phase 1 Phase 2 Phase 3

|Pos.| Time |Neg.| Time |Pos.| Time Time|Neg.| |Pos.| Time Time|Neg.|
strnchr 1 ε 9 ε 1 0.94 − 1 0.98 −
strncmp 3 ε 36 ε 3 14.29 − 3 154.48 −
max_ind 11 ε 3 ε 2 0.78 1.08 1 31.00 0.41

min_ind 11 ε 7 ε 2 0.91 1.19 1 16.00 0.43

sum_bidi 12 ε 1 0.05 1 0.56 0.69 1 0.61 −
is_sorted 1 ε 18 ε 1 0.59 − 1 0.67 −
long_pref 2 ε 74 ε 1 1.03 1.22 1 0.89 −

Table 3. Synthesized squeezers. n is the size of the input array

Program Squeezer

strchr(c) if ( s[0] == c || s[0]==0 ) remove(s,1) else remove(s,0)

strncmp (1) if (s1[0] == s2[0] && s1[0] != 0) remove(s1,0); remove(s2,0)

else remove(s1,1); remove(s2,1)

(2) if (s1[0] == s2[0] && s2[0] != 0) remove(s1,0); remove(s2,0)

else remove(s1,1); remove(s2,1)

(3) if (s1[0] != s2[0]) || (s1[0] == 0 && s2[0] == 0))

remove(s1,1); remove(s2,1)

else remove(s1,0); remove(s2,0)

max_ind if (s[n-2] <= s[n-1]) remove(s,n-2) else remove(s,n-1)

is_sorted if (s[n-3]<=s[n-2]<=s[n-1]) remove(s,n-1) else remove(s,n-4)

long_pref if ((s[0]<=s[1]<= s[2]) || (s[0]>s[1]>s[2])) remove(s,0)

else remove(s,n-1)

In all our experiments except of max/min_ind only the simulation-inducing
squeezers passed bounded verification. In the latter case, a squeezer passed BMC
due to the use of arrays of size at most five where the cells a[2] and a[n − 2] are
adjacent. Had we increased the array bound to six, these false positives would
have been eliminated by the bounded verification.

Table 2 provides average times required to pass all the generated squeezers
through the testing pipeline. For phase 1, it reports the number of squeezers
which passed (Pos) resp. failed (Neg) testing against the randomly generated
states and the average time it took to test the squeezers in each category (Time).
The table reports the statistics pertaining to phase 2 and 3 in a similar manner,
except that it omits the number of squeezers which failed the phase as this
number can be read off the number of squeezers which reached this phase.

Table 3 shows some of the automatically generated squeezers. We obtained a
single simulation-inducing squeezer in all of our tests except for strncmp where
three squeezers were synthesized. The three differ only syntactically by the condi-
tion of the if statements. However, semantically, the three conditions are equiv-
alent. Thus, improving the symmetry-detection optimizations to include equiv-
alence up-to-de morgan rules would have filtered out two of the three squeezers.
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6 Related Work

Automatic verification of infinite-state systems, i.e., systems where the size of
an individual state is unbounded such as numerical programs (where data is
considered unbounded), array manipulating programs (where both the length of
the array and the data it contains may be unbounded), programs with dynamic
memory allocation (with unbounded number of dynamically-allocatable mem-
ory objects), and parameterized systems (where, in most cases, there is an
unbounded number of instances of finite subsystems) is a long standing chal-
lenge in the realm of formal methods.

Well Structured Transition Systems. Well structured transition systems
(WSTS) [1,2,22] are a class of infinite-state transition systems for which safety
verification is decidable, with a backward reachability analysis being a decision
procedure. In these transitions systems, the set of states is accompanied by a
well-quasi order that induces a simulation relation: a state is simulated by those
that are “larger” than it. As a result, the set of backward-reachable states is
upward closed. The simulation-inducing well-quasi order used in WSTS resem-
bles our condition of a simulation-inducing squeezer. However, there are several
fundamental differences: (i) The order underlying our technique is required to
be well-founded, which is a strictly weaker requirement than that of a well-quasi
order; (ii) The simulation-inducing requirement requires each state to be simu-
lated by its squeezed version, which has a lower rank rather than greater; further,
a state need not be simulated by every state with a lower rank; accordingly, the
set of backward-reachable states need not be upward (nor downward) closed.
(iii) Our procedure is not based on backward (or any other form of) reachability
analysis.

Reductions. Cutoff-based techniques, e.g., [18], reduce model checking of
unbounded parameterized systems to model checking for systems of size (up to) a
small predetermined cutoff size. Verification based on dynamic cut-offs [3,31] also
considers parameterized systems but employs a verification procedure which can
dynamically detect cut-off points beyond which the search of the state space need
not continue. Invisible invariants [39,48] are used to verify unbounded param-
eterized systems in a bounded way. The idea is to use the standard deductive
invariance rule for proving invariance properties but consider only bounded sys-
tems for discharging the verification conditions, while ensuring that they hold
for the unbounded system. The approach provides (i) a heuristic to generate a
candidate inductive invariant for the proof rule, and (ii) a method to validate
the premises of the proof rule once a candidate is generated [48].

Similar reductions were applied to array programs–a particular form of
parameterized systems but with unbounded data–as we consider in this work.
For example, in [33], shrinkable loops are identified as loops that traverse large
or unbounded arrays but may be soundly replaced by a bounded number of
nondeterministically chosen iterations; and in [37], abstraction is used to replace
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reasoning about unbounded arrays and quantified properties by reasoning about
a bounded number of array cells.

A fundamental difference between our approach and these works is that we do
not reduce the problem to a bounded verification problem. Instead, we generate
verification conditions which amount to a proof by induction on the size of the
system. In fact, from the perspective of deductive verification, our work can be
seen as introducing a new induction scheme.

Loop Invariant Inference. Arguably, inference of loop invariants is the ubiqui-
tous approach for automatic verification of infinite-size systems. Recent research
efforts in the area have concentrated around inference of quantified invariants,
in particular, the search for universal loop invariants is a central issue.

Classical predicate abstraction [7,25] has been adapted to quantified invari-
ants by extending predicates with skolem (fresh) variables [23,34]. This is suf-
ficient for discovering complex loop invariants of array manipulating programs
similar to the simpler programs used in our experiments.

A research avenue that has received ongoing popularity is the use of con-
strained Horn clauses (CHCs) to model properties of transition systems which
have been used for inference of universally quantified invariants [9,27,37] by
limiting the quantifier nesting in the loop invariant being sought. In [20], univer-
sally quantified solutions (inductive invariants) to CHCs are inferred via syntax-
guided synthesis.

Another active research area is Model-Checking Modulo Theories
(MCMT) [24] which extends model checking to array manipulating programs
and has been used for verifying heap manipulating programs and parameter-
ized systems (e.g., [15]) using quantifier elimination techniques. For example, in
Safari [4] (and later Booster [5]), the theory of arrays [11] is used to construct
a QF proof of bounded safety which is generalized by universally quantifying out
some terms.

IC3 [10] extends predicate abstraction into a framework in which the predi-
cate discovery is directed by the verification goal and heuristics are used to gen-
eralize proofs of bounded depth execution to inductive invariants. UPDR [32]
and Quic3 [28] extend IC3 to quantified invariants. UPDR focuses on programs
specified using the Effectively PRopositional (EPR) fragment of uninterpreted
first order logic (e.g., without arithmetic) for which quantified satisfiability is
decidable. As such, UPDR does not deal with quantifier instantiation. Quic3
uses model based projection and generalizations based on bounded exploration.

Like these techniques we also use heuristics to overcome the unavoidable
undecidability barrier. In our case, this amounts to the selection of the squeezing
function. In contrast to all the aforementioned approaches, our technique does
not rely on the inference of loop invariant but rather proves programs correct
by induction on the size (rank) of their states.

We note that we do not position our technique as a replacement to automatic
inference of loop invariants but rather as a complementary approach. Indeed,
while some tricky properties can be easily verified by our approach, e.g., the
postcondition of sum_bidi, a property which we believe no other automatic
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technique can deduce, other properties which are simple to establish using loop
invariants, e.g., that variable i is always in the range 0..n−1, are surprisingly
challenging for our technique to establish.

Recurrences. Other approaches represent the behavior of loops in array-
programs via recurrences defined over an explicit loop counter, and use these
recurrences to directly verify post-conditions with universal quantification over
the array indices. In [40] this is done by customized instantiation schemes and
explicit induction when necessary. In [14], verification is done by identifying a
relation between loop iterations (characterized by the loop counter) and the
array indices that are affected by them, and verifying that the post-condition
holds for these indices. Similarly to our approach, these works do not rely on
loop invariants, but they do not allow to verify global properties over the arrays,
such as the postcondition of sum_bidi.

Program Synthesis. The inference we use for � is indeed a form of program
synthesis, as was alluded to in Sect. 2 by representing � via pseudo-code. In par-
ticular, syntax-guided synthesis (SyGuS) [6] is the domain of program synthesis
where the target program is derived from a programming language according to
its syntax rules. [19,30,45,46] all fall within this scope.

Sketching is a common feature of SyGuS. The term is inspired by Sketch [42],
referring to the practice of giving synthesizers a program skeleton with a missing
piece or pieces. This uses domain knowledge to reduce the size of the candidate
space. It is quite common to use a domain-specific language (DSL) for this pur-
pose [29,41,43,44,47]. [38] restricts programs by typing rules in addition to just
syntax. [26] develops it further by restricting how operators may be composed.
Our synthesis procedure (Sect. 4) follows the same guidelines: the domain of
array-scanning programs dictates the constructed space of squeezer functions,
and moreover, inspecting the analyzed program allows for more pruning by (i)
matching index variables to array variables and (ii) focusing on operators and
literal values occurring in the program. This early pruning is responsible for the
feasibility of our synthesis procedure, which apart from that is rather naive and
does not facilitate clever optimizations such as equivalence reduction [21,38].

7 Conclusions

At the current state of affairs in automatic software verification of infinite state
systems, the scene is dominated by various approaches with a common aim:
computing over-approximations of unbounded executions by means of inferring
loop invariants. Indeed, abstract interpretation [16], property-directed reachabil-
ity [10], unbounded model checking [35], or template-based verification [44] can
be seen as different techniques for computing such approximations by finding
inductive loop invariants which are tight enough not to intersect with the set
of bad behaviors. Experience has shown that these invariants are frequently
quite hard to come by, even for seemingly simple and innocuous program, both
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automatically and manually. The purpose of this paper is to suggest an alter-
native kind of correctness witness, which may be more amenable to automated
search. We successfully applied our novel verification technique to array pro-
grams and managed to prove programs and properties which are beyond the
ability of existing automatic verifiers. We believe that our approach can be com-
bined with standard techniques to give rise to a new kind of hybrid techniques,
where, e.g., a partial loop invariant is used as a baseline—verified via standard
techniques—and is then strengthened to the desired safety property via squeezer-
based verification.
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Abstract. Abstract interpretation is a technique to define sound static
analyses. While abstract interpretation is generally well-understood, the
analysis of program transformations has not seen much attention. The
main challenge in developing an abstract interpreter for program trans-
formations is designing good abstractions that capture relevant informa-
tion about the generated code. However, a complete abstract interpreter
must handle many other aspects of the transformation language, such as
backtracking and generic traversals, as well as analysis-specific concerns,
such as interprocedurality and fixpoints. This deflects attention.

We propose a systematic approach to design and implement abstract
interpreters for program transformations that isolates the abstraction for
generated code from other analysis aspects. Using our approach, anal-
ysis developers can focus on the design of abstractions for generated
code, while the rest of the analysis definition can be reused. We show
that our approach is feasible and useful by developing three novel inter-
procedural analyses for the Stratego transformation language: a single-
ton analysis for constant propagation, a sort analysis for type checking,
and a locally-illsorted sort analysis that can additionally validate type
changing generic traversals.

1 Introduction

Abstract interpretation is a technique to define sound static analyses [6]. Static
analyses have proved useful in providing feedback to developers (e.g., dead
code [4], type information), in finding bugs (e.g., uninitialized read [25], type
errors [20]), and in enabling compiler optimizations (e.g., constant propaga-
tion [3], purity analysis [21]). It is therefore no surprise that the field of abstract
interpretation and static analysis has seen significant attention both in academia
and industry.

Unfortunately, the analysis of program transformations has not seen much
attention so far. Program transformations are a central tool in language engi-
neering and modern software development. For example, they are used for
code desugaring, macro expansion, compiler optimization, refactoring, migra-
tion scripting, or model-driven development. The development of such program
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transformations tends to be difficult because they act at the metalevel and should
work for a large class of potential input programs. Yet, there are hardly any
static analyses for program transformation languages available, and it appears
to be difficult to develop such analyses. To this end, we identified the following
challenges:

Domain-Specific Features Program transformation languages such as Strat-
ego [24], Rascal [14], and Maude [5] aim to simplify the development of pro-
gram transformations. Therefore, they provide domain-specific language fea-
tures such as rich pattern-matching, backtracking, and generic traversals.
These domain-specific language features usually cannot be found in other
general-purpose languages and the literature on static analysis provides only
little guidance on how to tackle them.

Term Abstraction Programs are first-class in program transformations and are
represented as terms (e.g., abstract syntax trees). Therefore, analysis devel-
opers need to find a good abstraction for terms, such as syntactic sorts or
grammars [8]. This term abstraction heavily influences the precision and use-
fulness of the analysis and most of the analysis development effort should
be spent on the design of this abstraction. We expect analysis developers to
experiment with alternative term abstractions: The design of good abstract
domains is inherent to the development of any abstract interpreter and cannot
be avoided.

Soundness Developing an abstract interpreter that soundly predicts the gener-
ated code of program transformations is difficult. This is because real-world
transformation languages have many edge cases and an abstract interpreter
has to account for all of these edge cases to be sound. Furthermore, transfor-
mation languages often do not have a formal semantics, which makes it hard
to verify that the abstract interpreter covered all cases.

In this paper we present a systematic approach to develop abstract inter-
preters for program transformation languages that addresses these challenges.
It is based on the well-founded theory of compositional soundness proofs [13]
and reusable analysis components [12]. In particular, our approach captures the
core semantics of a transformation language with a generic interpreter [13] that
does not refer to any analysis-specific details. This simplifies the analysis of
the domain-specific language features. Furthermore, our approach decouples the
term abstraction from the remainder of the analysis through an interface. This
means that any term abstraction that implements this interface gives rise to a
complete abstract interpreter. Thus, analysis developers can fully focus on devel-
oping good term abstractions. Lastly, our approach reuses language-independent
functionality, such as abstractions for environments, exceptions and fixpoints,
from the Sturdy standard library. This not only reduces the analysis development
effort, but also simplifies its soundness proof as we can rely on the soundness
proofs of the Sturdy library [12].

We demonstrate the feasibility and usefulness of our approach by developing
abstract interpreters for Stratego [24]. Stratego is a complex dynamic program
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transformation language featuring rich pattern matching, backtracking, generic
traversals, higher-order transformations, and an untyped program representa-
tion. Despite these difficulties, based on our approach we developed three novel
abstract interpreters for Stratego: We developed a constant propagation anal-
ysis, a sort analysis, which checks that transformations are well-typed, and an
advanced sort analysis, which can even validate type-changing generic traver-
sals which produce ill-sorted intermediate terms. Our systematic approach was
crucial in allowing us to focus on each of these abstract domains without being
concerned with other aspects of the Stratego language. We implemented the
analyses in Haskell in the Sturdy analysis framework and the code of the analy-
ses is open-source.1

In summary, we make the following contributions:

– We propose a systematic approach to the development of abstract interpreters
for program transformations, that lets analysis developers focus on designing
the term abstraction.

– We show that many features of program transformation languages can be
implemented on top of existing analysis functionality and do not require spe-
cific analysis code.

– We demonstrate the feasibility and usefulness of our approach by applying it
to Stratego, for which we develop three novel abstract interpreters.

2 Illustrating Example: Singleton Analysis

The static analysis of program transformations can have significant merit help-
ing developers to understand and debug their code and helping compilers to
optimize the code. For example, we would like to support the following analy-
ses: Singleton analysis to enable constant propagation, purity analysis to enable
function inlining, dead code analysis to discover irrelevant code, sort analysis to
prevent ill-sorted terms. While these and many other analyses would be useful,
their development is complicated. In this section, we illustrate our approach by
developing a singleton analysis for Stratego [24].

2.1 Abstract Interpreter for Program Transformations = Generic
Interpreter + Term Abstraction

The development of analyses for program transformations is complicated for two
reasons. First, each analysis requires a different term abstraction, with which it
represents the generated code. The choice of term abstraction is crucial since
it directly influences the precision, soundness, and termination of the analy-
sis. Second, program transformation languages provide domain-specific language
features such as rich pattern matching, backtracking, and generic traversals.
Soundly approximating these features in an analysis is not easy, and resolving
this challenge for each analysis anew is impractical.
1 https://gitlab.rlp.net/plmz/sturdy/tree/master/stratego.

https://gitlab.rlp.net/plmz/sturdy/tree/master/stratego
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data Pat = Var String | As String Pat | Cons String [Pat]

| StringLit String | NumLit Int | Explode Pat Pat

match :: (IsTerm term c, ArrowEnv String term c,

ArrowExcept () c, ...) ⇒ c (Pat ,term) term

match = proc (pat ,t) → case pat of

Var "_" → returnA � t

Var x → lookup

(proc (t’,(x,t)) → do t’’ ← equal � (t,t’);

insert � (x,t’’); returnA � t’’)

(proc (x,t) → insert � (x,t); returnA � t) � (x,(x,t))

As v p → do t’ ← match � (Var v,t); match � (p,t’)

StringLit s → matchStringLit � (s,t)

NumLit n → matchNumLit � (n,t)

Cons c ps → matchCons (zipWith match) � (c,ps,t)

Explode c ts → matchExplode

(proc c’ → match � (c,c’))

(proc ts’ → match � (ts,ts ’)) �� t

Listing 1. Generic abstract pattern matching for Stratego.

In this paper, we propose a more systematic approach to developing static
analyses for program transformations. To support static analyses for a given
transformation language, we first develop a generic interpreter that implements
the abstract semantics of the domain-specific language features in terms of stan-
dard language features whose abstract semantics is well-understood already. The
generic interpreter is parametric in the term abstraction, such that we can derive
different static analyses in a second step by providing different term abstractions.
This architecture enables analysis developers to separately tackle the challenge
of designing a good term abstraction.

We have developed a generic interpreter for Stratego based on the Sturdy
analysis framework [12,13] in Haskell. We explain the full details of generic
interpreters and background about Sturdy in Sect. 3. Here, we only illustrate a
small part of the generic interpreter, namely pattern matching.

Listing 1 shows the generic analysis code for pattern matching. We param-
eterized the pattern-matching function match using a type class IsTerm as an
interface. Pattern matching interacts with the term abstraction to deconstruct
terms but implements other aspects generically. In Listing 1, we have highlighted
all calls to operations of IsTerm; the remaining code is generic. We provide a
short notational introduction before delving deeper into the analysis code.

Our approach is based on Sturdy, which requires analysis code to be writ-
ten in arrow style [11]. Like monads, arrows (c x y) generalize pure func-
tions (x → y) to support side-effects in a principled fashion. For users of
our approach, this mostly means that they have to use Haskell’s built-in syn-
tax for arrows, as shown in Listing 1. Expression (proc x → e) introduces
an arrow computation similar to the pure (λx → e). Do notation (do cmd∗)
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denotes a sequence of arrow commands, where each command takes the form
(y ← f � x) or (f � x) [18]. Command (y ← f � x) calls f on x and stores
the result in y; (f � x) ignores the resulting value but not the potential side-
effect of f. For a more in-depth introduction to arrows, we refer to Hughes’s
original paper [11] and online resources such as https://www.haskell.org/arrows.

The generic analysis code for pattern matching in Listing 1 describes a com-
putation (c (Pat, t) t) that is parametric in c and t, but restricts these
types through type-class constraints. Type t must implement the term abstrac-
tion interface IsTerm. Type c is an arrow that encapsulates the side-effects of
the computation and must at least support environments and exception han-
dling. We use these side-effects to implement pattern variables and backtracking
in match.

Computation match takes a pattern and the matchee (the term to match)
as input and yields the possibly refined term as output. For a wildcard pattern,
we yield the matchee unchanged. For pattern variables, we look up the variable
in the environment and distinguish two cases. If the variable is already bound
to t’, we require the matchee t to be equal to t’. If the variable is not bound
yet, we insert a binding into the environment. For named subpatterns (As v p),
we invoke the code for pattern variables recursively. The remaining four cases
delegate to the term abstraction, passing the function for matching subterms as
needed. When a pattern match fails, it throws an exception to reset all bound
pattern variables.

The generic analysis code for pattern matching captures the essence of pat-
tern matching in Stratego and closely follows Stratego’s concrete semantics. In
fact, the generic code can be instantiated to retrieve a fully functional concrete
interpreter for Stratego. This makes the generic interpreter relatively easy to
develop: no analysis-specific code is required. All analysis-specific code resides
in instances of interfaces like ArrowExcept and IsTerm. Sturdy further exploits
this to support compositional soundness proofs of analyses [13].

2.2 A Singleton Term Abstraction

We can derive complete Stratego analyses from the generic interpreter by instan-
tiation. Specifically, we need to provide implementations for the type classes it
is parameterized over. For standard interfaces like ArrowExcept and ArrowEnv,
we provide reusable abstract semantics. However, the term abstraction IsTerm
is language-specific and analysis-specific. Thus, this interface needs to be imple-
mented by the analysis developer.

To illustrate the definition of term abstractions, here we develop a singleton
analysis for Stratego. The analysis determines if (part of) a program transfor-
mation yields a constant output, such that the transformation can be optimized
by constant propagation. Note that in this paper we are only concerned with the
definition of analyses; the implementation of subsequent optimizations is outside
the scope of the paper.

https://www.haskell.org/arrows
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instance (ArrowExcept () c, ArrowJoin c, ...) ⇒ IsTerm ̂Term c where

matchString = proc (s,t) → case t of

Single ct → liftConcrete matchString � (s,ct)

Any → (returnA � t) � (throw � ())

matchNum = proc (i,t) → case t of

Single ct → liftConcrete matchNum � (i,ct)

Any → (returnA � t) � (throw � ())

matchCons matchSub = proc (c,ps,t) → case t of

Single (Cons d ts) | c == d && eqLen ps ts → do

ts’ ← matchSub � (ps,map Single ts)

case allSingle ts’ of

Nothing → returnA � Any

Just cts → returnA � Single (Cons c cts)

Single _ → throw � ()

Any → do matchSub � (ps,replicate (length ps) Any)

(returnA � t) � (throw � ())

Listing 2. Parts of a singleton term abstraction for Stratego.

Each term abstraction needs to choose a term representation. For the single-
ton analysis, we use a simple data type ̂Term with two constructors:

data ̂Term = Single Term | Any

A term Single ct means that the transformation produces a single concrete
Stratego term ct of type Term. In contrast, Any means that the transformation
cannot be shown to produce a single concrete term.

Based on such term representation, a term abstraction for Stratego must
implement the 10 functions from the IsTerm interface. We show the implemen-
tation of four of these functions in Listing 2 that also appeared in Listing 1.

Function matchString in Listing 2 defines a computation that takes a string
value s and a matchee t of type Term as input. If t denotes a single concrete
term, matchString delegates to the concrete string matching semantics using
liftConcrete. However, if the matchee is Any, we cannot statically determine
if the pattern match should succeed or fail. Thus, we join � the two potential
outcomes: Either pattern matching succeeds and we return t unchanged, or
pattern matching fails and we abort the matching by throwing an exception.
Function matchNum is analogous to matchString.

Function matchCons distinguishes three cases. The first case checks if matchee
t denotes a single concrete term with constructor c and right number of sub-
terms. If so, we recursively match the subpatterns against the subterms, con-
verted to singletons. Then, if all submatches yielded singleton terms again, we
refine the matchee accordingly. The second case occurs when t denotes a single-
ton term but does not match the constructor pattern. In this case, we simply
abort. Finally, if t is Any, we combine the two cases using a list of Any terms as
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subterms. Note that the recursive match on the subpatterns ps is necessary to
bind pattern variables that may occur.

2.3 Soundness

Our approach drastically simplifies the soundness proof of the abstract inter-
preter. In particular, by factoring the concrete and abstract interpreter into a
generic interpreter, we do not have to worry about soundness of the generic inter-
preter. Instead, its soundness proof follows by composing the proof of smaller
soundness lemmas about its instances [13]. Furthermore, because we instanti-
ate the generic interpreter with sound analysis components for environments,
stores and exceptions, we do not have to worry about soundness of these anal-
ysis concerns either [12]. All that is left to prove, is the soundness of the term
operations.

2.4 Summary

Our approach to developing static analyses for program transformations consists
of two steps. First, develop a generic interpreter based on standard semantic com-
ponents and a parametric term abstraction. Second, define a term abstraction
and instantiate the generic interpreter. While the term abstraction is language-
specific and analysis-specific, the generic interpreter can be reused across anal-
yses and only needs to be implemented once per transformation language. In
the subsequent section, we explain how to develop and instantiate generic inter-
preters for transformation languages using standard semantic components. Sec-
tions 4 and 5.1 demonstrate the development of sophisticated term abstractions.

3 Generic Interpreters for Program Transformations

Creating sound static analyses is a laborious and error-prone process. While
there is a rich body of literature on analyzing functional and imperative program-
ming languages, static analysis of program transformation languages is under-
explored. Most work in the area of program transformations so far focused on
type checking, which considers each rewriting separately and is limited to intra-
procedural analysis.

The key enabler of our approach are generic interpreters that can be instanti-
ated with different term abstractions to obtain different analyses. In this section,
we demonstrate our approach at the example of Stratego and show how to
develop generic interpreters for Stratego. In particular, we show that the fea-
tures of program transformation languages do not require specific analysis code
but can be mapped to existing language concepts whose analysis is already well-
understood.
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desugar-type: PairType(t1,t2) → �Pair<~t1 ,~t2>�

desugar-expr: PairExpr(e1,e2) → �new Pair<>(~e1 ,~e2)�

topdown(s) = s; all(topdown(s)) try(s) = s <+ id

main = topdown(try(desugar-type + desugar-expr))

Listing 3. A generic traversal for desugaring pair notation.

3.1 The Program Transformation Language Stratego

Stratego is a program transformation language featuring rich pattern matching,
backtracking, and generic traversals [24]. For example, consider the following
desugaring of Java extended with pairs [9] in Listing 3. The two rewrite rules of
the form above use pattern matching to select pair types and expressions, respec-
tively. They then generate representations of pair types and expressions using
the Pair class. The main rewriting strategy traverses the input AST top-down
and tries to apply both rewrite rules at every node, leaving a node unchanged
if neither rule applies. We also added the definitions of the higher-order func-
tions topdown and try from the standard library. The built-in primitive all
takes a transformation and applies it to each direct subterm of the current term.
Function topdown uses all to realize a generic top-down traversal over a term,
applying s to every node. Function try uses left-biased choice <+ to catch any
failure in s and to resume with the identity function id instead. Furthermore,
the Stratego compiler translates the rewrite rules of the form r : p → t to
transformations r = ?p; !t:

desugar-type = ?PairType(t1,t2); !ClassType ("Pair",[t1,t2])

desugar-expr = ?PairExpr(e1,e2); !NewInstance ("Pair",[e1,e2])

The translated rule first matches the pattern p, binding all pattern variables to
the respective subterms and then builds the term t using the abstract syntax of
Java.

3.2 A Generic Interpreter for Stratego

We demonstrate how to map these language features to standard language con-
cepts and how this enables static analysis of program transformations. To this
end, we developed a generic interpreter for Stratego.2 The generic interpreter is
based on a previous Sturdy case study [13] that was never described in detail.

We consider fully desugared Stratego code in our interpreter, ignoring Strat-
ego’s dynamic rules. This core Stratego language [23] only contains 12 constructs
as defined by the data type Strat in Listing 4. We explain these constructs
together with their generic semantics, shown in the same listing. The seman-
tics is defined by a function eval that accepts a Stratego program and yields

2 https://gitlab.rlp.net/plmz/sturdy/blob/master/stratego/src/GenericInterpreter.
hs.

https://gitlab.rlp.net/plmz/sturdy/blob/master/stratego/src/GenericInterpreter.hs
https://gitlab.rlp.net/plmz/sturdy/blob/master/stratego/src/GenericInterpreter.hs


144 S. Keidel and S. Erdweg

data Strat = Match Pat | Build Pat | Id | Seq Strat Strat

| Fail | GuardedChoice Strat Strat Strat | Scope [String] Strat

| Call String [Strat] [String] | Let [(String ,Strategy)] Strat

| One Strat | Some Strat | All Strat

eval :: (IsTerm term c, ArrowEnv String term c, ArrowExcept () c,

ArrowFix c, ...) ⇒ Strat → c term term

eval = fix $ λev strat → case strat of

Match pat → proc t → match � (pat ,t)

Build pat → proc _ → build � pat

Id → proc x → returnA � x

Seq s1 s2 → proc t1 →
do t2 ← ev s1 � t1; t3 ← ev s2 � t2; returnA � t3

Fail → proc _ → throw � ()

GuardedChoice s1 s2 s3 → try (ev s1) (ev s2) (ev s3)

Scope vars s → scoped vars (ev s)

Call f ss ts → proc t → do

senv ← readStratEnv � ()

case Map.lookup f senv of

Just (Closure s@(Strat _ ps _) senv ’) → do

args ← mapA lookupOrFail � ts

scoped ps (invoke ev) �� (s, senv ’, ss, args , t)

Nothing → failString � "Cannot�find�strat"

Let bnds body → let_ bnds body eval ’

One s → mapSubterms (one (ev s))

Some s → mapSubterms (some (ev s))

All s → mapSubterms (all (ev s))

scoped vars f = proc t → do

oldEnv ← getEnv � ()

deleteEnvVars � vars

finally (proc (t,_) → f � t)

(proc (_,oldE) → restoreEnvVars vars � oldE)

� (t, oldEnv)

Listing 4. Generic interpreter for Stratego.

a computation of type (c term term), meaning that a Stratego program takes
a term as input and yields another term as output. That is, Stratego programs
are term transformations as expected. The arrow c captures the side-effects of
the computation, as explained in Sect. 2.1.

The first two core Stratego constructs deconstruct and construct terms. A
(Match pat) transformation is based on a term pattern pat, which it matches
against the input term t. Function match from Listing 1 implements the actual
pattern matching, as we have discussed in Sect. 2. Recall that match binds pat-
tern variables in the environment as a side-effect and throws an exception if the
pattern match fails. We will see shortly how these side-effects are supported by
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the generic interpreter. A (Build pat) transformation is the dual of match: it
constructs a new term according to the pattern, filling in information from the
environment in place of pattern variables.

The next four core Stratego constructs handle control-flow. The identity
transformation Id returns the input term unchanged. A sequence (Seq s1 s2)
of transformations s1 and s2 pipes the output of s1 into s2. The Fail trans-
formation never succeeds and always throws an exception using throw, which
we also used to indicate failed pattern matches. To catch such exceptions, core
Stratego programs can use guarded choice, written (s1 < s2 + s3) in Strat-
ego notation. Guarded choice runs s3 if s1 fails (throws an exception) and s2
otherwise. We implemented guarded choice using the try function. Like throw,
try is declared in the ArrowExcept interface and allows us to catch exceptions
triggered by throw. There are two things to note here:

– The implementation of throw and try are not specific to Stratego and are
provided as sound reusable analysis components [12] by the standard library
of Sturdy. We are effectively mapping Stratego features to these pre-defined
features of Sturdy.

– We can choose how exceptions affect the variables bound during pattern
matching. For Stratego, we need exceptions to undo variable bindings in
order to correctly implement backtracking. However, in other languages we
may want to retain the state of a computation even after an exception was
thrown.

The next three constructs handle scoping, strategy calls, and local strategy
definitions. We discuss the first two of these in some detail. Stratego’s scoping is
somewhat unconventional, because Stratego has explicit scope declarations and
environments follow store-passing style. Variables listed in a scope declaration
are lexically scoped as usual, but other variables can occur in the environment
and must be preserved. We use function scoped (at the bottom of Listing 4)
to implement this scoping. First, we unbind the scoped variables from the cur-
rent environment to allow pattern matching to bind them afresh. Second, after
the scoped code finishes, we restore the bindings of scoped variables from the
old environment while retaining other bindings from the current environment
unchanged. Scoping also occurs when calling a strategy. To evaluate a call, we
first find the strategy definition, then lookup the term arguments ts in the
current environment, and then invoke the strategy using scoped for the term
parameters ps.

The final three constructs are generic traversals that use mapSubterms to
call one, some, or all on the subterms of the current input term. Function
mapSubterms is part of the IsTerm interface and thus analysis-specific because
depends on the term representation. Functions one, some, or all are part of the
generic interpreter and ensure that, respectively, exactly one, at least one, or all
of subterms are transformed by the given strategy s. This way our generic inter-
preter separates term-specific operations from operations that can be defined
generically.
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class Arrow c ⇒ IsTerm term c where

matchString :: c (String ,term) term

matchNum :: c (Int ,term) term

matchCons :: c ([p],[term]) [term] →
c (String ,[p],term) term

matchExplode :: c term term → c term term → c term term

buildString :: c String term

buildNum :: c Int term

buildCons :: c (String ,[term]) term

buildExplode :: c (term ,term) term

equal :: c (term ,term) term

mapSubterms :: c [term] [term] → c term term

Listing 5. An interface for operations on terms.

3.3 The Term Abstraction

At this point, all that it takes to define a Stratego analysis is to implement the
IsTerm interface for a new term abstraction. The rest of the analysis is given by
the generic interpreter and reusable functionality from the Sturdy library.

The generic interpreter described in the previous section crucially relies on
the term abstraction. In particular, pattern matching, term construction, and
generic traversals must inspect or manipulate terms. In Sect. 2 we have seen how
match used term operations and how we could implement these for the singleton
term abstraction. Here we show the complete interface for term abstractions.

Stratego terms are strings, numbers, or constructor terms:

data Term = Cons String [Term] | StringLit String | NumLit Int

Our interface must at least provide operations to match and construct such
terms. In addition, we must support Stratego’s generic traversals and explode
patterns. Note that Stratego represents lists using constructors Cons and Nil:

Cons "Cons" [NumLit 1, Cons "Cons" [NumLit 2, Cons "Nil" []]]

We designed an interface for term abstractions of Stratego terms that requires
only 10 operations. Listing 5 shows the corresponding type class. The interface
contains four functions for pattern matching, four functions for term construc-
tion, one equality function, and one function to map subterms.

We have discussed the functions for pattern matching Sect. 2 already. Func-
tion matchCons takes a function for matching subterms against subpatterns.
Function matchExplode takes functions for matching the constructor name and
the subterms. The functions for term construction are straightforward. While
function buildCons takes a String and a list of terms, function buildExplode
takes two terms. The first of these terms must be a string term, the second one
must represent a list of terms. Finally, we require functions for checking the



Systematic Approach to Abstract Interpretation of Program Transformations 147

equality of two terms and for mapping a function over a term’s subterms. This
last function enables generic traversals as shown in Listing 4.

Our interface for term abstractions can be instantiated in various ways by
defining instances of the type class. We have shown an instance for the single-
ton term abstraction in Listing 2 and will describe further term abstractions in
the upcoming sections. But it is worth noting that the interface can also be
instantiated for concrete Stratego terms:

instance ... ⇒ IsTerm Term c where ...

This concrete term instance allows us to run the generic interpreter as a concrete
Stratego semantics. This is not only great for testing the generic interpreter
against a reference implementation of Stratego, but also crucial for proving the
soundness of term abstractions against the concrete semantics.

To summarize, we implemented the Stratego language semantics as a generic
interpreter based on a few term operations only. The generic interpreter maps
many aspects of Stratego language to standard language concepts such as envi-
ronments and exceptions. For these language concepts, we reuse the abstract
semantics found in the Sturdy standard library. In the end, to design and imple-
ment a new analysis for Stratego, all it takes is a new term abstraction. We
exploit this reduction of effort in the next two sections, where we develop two
novel static analyses for Stratego by defining term abstractions.

4 Sort Analysis

In this section, we define an inter-procedural sort analysis for Stratego. The
analysis checks if a program transformation generates well-formed programs and
to which sort the program belongs. That is, we implement a term abstraction
where we choose to represent terms through their sort.

4.1 Sorts and Sort Contexts

We describe the sorts of Stratego terms by the following Haskell datatype:

data Sort = Lexical | Numerical | Sort String | List Sort

| Tuple [Sort] | Option Sort | Bottom | Top

Sort Lexical represents string values, Numerical represents numeric values.
We use (Sort s) to represent named sorts such as (Sort "Exp"). We further
include sorts for representing Stratego’s lists, tuples, and option terms. Finally,
Bottom represents the empty set of terms and Top represents all terms (also
ill-formed ones). This means, we can guarantee a term is well-formed if its sort
is not Top.

To associate terms to sorts, we parse the declaration of constructor signa-
tures that are part of any Stratego program. Typically, these declarations are
automatically derived from the grammar of the source and target language.
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Num : Int → ArithExp

Add : ArithExp * ArithExp → ArithExp

: ArithExp → PythonExp

Each line declares a constructor, the sorts of its arguments and the generated
sort. We allow overloaded constructor signatures as long as they generate terms
of the same sort. That is, if c : s1 . . . sm → s ∈ Γ and c : s′

1 . . . s′
n → s′ ∈ Γ , then

s = s′.
The third signature declares that any term of sort ArithExp should

also be considered a term of sort PythonExp. This is the result of injec-
tion production in the grammar and effectively declares a subtype relation
ArithExp <: PythonExp. Dealing with subtyping correctly is one of the major
challenges of developing a sort analysis. Thanks to our separation of concerns,
we can fully focus on that challenge here.

We collect all constructor signatures and the subtyping relation in a sort
context:

type Sig = ([Sort], Sort)

data Context = Context { sorts :: Map Sort [(String ,Sig)],

subtypes :: SubtypeRelation }

Since we require the context when operating on sorts, we actually represent
terms abstractly as a pair (Sort,Context). However, all terms refer to the
same context and the context never changes. To simplify the presentation in
this paper, we assume the context is globally known and terms are represented
by Sort alone.

4.2 Abstract Term Operations

In the remainder of this section, we explain how to implement the term abstrac-
tion for our sort analysis. To this end, we have to provide an instance of type class
IsTerm as shown in Listing 6. We only show the code for lists and user-defined
constructor and omit the other cases for tuples and optionals for brevity.

As a warm-up, consider operation buildString that yields sort Lexical
independent of the string literal. When matching a string against sort s in
matchString, the match can only succeed if Lexical terms may be part of
s terms. Otherwise the match must fail.

Arguably the most interesting part of the term abstraction is building and
matching constructor terms. Let’s start with operation buildCons, which obtains
the constructor name c and the list of subsorts ss. In Stratego, list, tuple, and
optional terms use reserved constructor names. We include one case for each
reserved constructor to generate the appropriate sort. For example, constructor
Nil can be applied to an empty argument list to generate an empty list. This
list has sort (List Bottom). Constructor Cons generates a compound term that
has sort list if the second argument was a list. The sort of the resulting list is
the least super-sort (�) of the new head list and the tail. The empty constructor
"" generates tuples; None and Some generate optional terms.
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instance (ArrowExcept () c, ArrowJoin c, ...)⇒IsTerm Sort c where

buildString = proc _ → returnA � Lexical

matchString = proc (_,s) → if subtype Lexical s

then (returnA � s) � (throw � ()) else throw � ()

buildCons = proc (c, ss) → returnA � case (c, ss) of

("Nil" ,[]) → List Bottom

("Cons",[a,s]) | subtype (List Bottom) s → List a � s

_ → �

(Top : [t | (ss’,t) ← constrSigs c, ss � ss ’])

matchCons matchSubs = proc (c,ps,s)→ case (c,ps)

("Nil" ,[]) → if subtype (List Bottom) s

then (buildCons�("Nil" ,[])) � (throw�()) else throw�()

("Cons",[hd ,tl]) → if subtype (List Bottom) s

then do let subterms = [getListElem s, s]

ss ← matchSubs � ([hd ,tl],subterms)

(buildCons � ("Cons",ss)) � (throw � ())

else throw � ()

_ → ⊔

(proc (c’,ss) → if c == c’ && length ss == length ps

then do ss’ ← matchSubs � (ps ,ss); cons � (c,ss ’)

else throw � ()) �� constructorsOfSort s

mapSubterms f = proc s → do
⊔

(proc (c,ts) →
do ts ’ ← f � ts buildCons � (c,ts ’))

� constructorsOfSort s

Listing 6. Abstract term operations for the sort analysis.

The last case of buildCons handles user-defined constructor symbols c. We
use (constrSigs c) to look up the signatures (ss’,t) of c from the sort con-
text. We only retain those signatures that can accept the constructor arguments
ss. Finally, we collect all result sorts t and compute their greatest lower bound.
If none of the signatures matches, we return sort Top. For example, consider the
call:

buildCons � ("While",[Sort "Exp",Sort "Block"])

If the signature of While is (Exp * Block → Stmt), we obtain Sort "Stmt’’
as result. If the signature is instead declared as (Exp * Exp → Stmt), we
obtain Top because the constructed term is ill-formed (unless Block is a sub-sort
of Exp).

Operation matchCons is quite complex, although all cases for reserved con-
structors follow the same pattern:

1. We check if the sort of the current term s is compatible with the matched
constructor. For example, a match against Nil can only succeed if the sort is
a list.
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Fig. 1. A simplified trace of the sort analysis of the pair desugaring, where we abbre-
viate desugar-type + desugar-expr with D.

2. We retrieve the subterm sorts if any. For example, for Cons we have two
subterms: the head element and the tail list. Auxiliary function getListElem
carefully finds all possible list elements, taking subtyping into account.

3. We match the subterms against the subpatterns, yielding refined subterms
ss.

4. We refine the current term by calling buildCons on the refined subterms and
the matched constructor. Since matching may always fail, we join the result
with a call to throw.

The last case of matchCons again handles user-defined constructor symbols
c. We use constructorsOfsort s to obtain all constructors c’ and their argu-
ment types ss. If the constructor has the required name and the right number
of arguments, then the corresponding match might succeed. We match the sub-
terms and refine the current term as in the other cases, but the we compute
the least upper bound over all possible results. For example, when we match a
constructor Add against sort Exp, we would lookup all constructors that gener-
ate sort Exp. For (Add : Exp * Exp → Exp) the match can succeed, but for
(Var : Lexical → Exp) the match must fail. The join operator merges the
results to compute a sound approximation.

Lastly, we show the code of mapSubterms, which needs to retrieve the current
subterms as a list and pass them to f. However, sorts do not directly point out
their subterms. Again we use constructorsOfsort s to retrieve the sorts of
subterms indirectly by finding all constructors of the current sort and taking
their parameter lists. For example, if we call mapSubterms with sort "Exp", then
computation f will be called on [Sort "Exp", Sort "Exp"] for constructor
Add and on [Lexical] for constructor Var.
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To summarize, in this section we defined a sort analysis for Stratego, simply
by designing a sort term abstraction which implements the IsTerm interface.
The rest of the analysis we get for free from the generic interpreter and reusable
analysis code. As the reader probably noticed, the term abstraction for sorts
is fairly complex in its own right. Being able to focus on the term abstraction
without considering other analysis aspects was crucial.

4.3 Sort Analysis and Generic Traversals

In this subsection, we showcase the inter-procedurality of our sort analysis by
analyzing generic traversals. A generic traversal traverses a syntax tree indepen-
dent of its shape and transforms the visited nodes. Statically assigning types to
a generic traversal is notoriously difficult, because the type needs to summarize
all changes the traversal does to the entire tree. In this subsection, we will illus-
trate how our inter-procedural sort analysis can support some generic traversals,
before refining our analysis further in the subsequent section.

Consider the trace of the sort analysis (Fig. 1) of the pair desugaring from
Sect. 3.1. The trace starts in the main function with an input term of sort Expr.
The main function calls topdown, which calls try(D), which calls the desugaring
rules desugar-type + desugar-expr. The rule desugar-expr either yields a
term of sort Expr or fails because the pattern PairExpr(...) matches some but
not all terms of sort Expr. Furthermore, the rule desugar-type definitely fails
because no terms of sort Expr match the pattern PairType(...). Even though
one of the rules failed, the call try(D) produces a successful result by applying
the input term to the identity transformation. The function topdown then passes
the resulting term of sort Expr to the generic traversal all(...). Since we know
the sort of the current term, we enumerate all relevant constructors and the
sorts of their direct subterms and recursively analyze the desugaring for them.
In the example trace of Fig. 1, we consider three subterm sorts of Expr. The
second and third recursive call to topdown(try(D)) resolve easily, whereas the
first recursive call would end up in a cycle (shaded nodes in Fig. 1). To this end,
we use a fixpoint algorithm with widening to ensure that the analysis terminates.

The example shows why it is hard to analyze the type of a generic traversal:
For different input sorts, a generic traversal might produce different output sorts.
Therefore, our sort analysis reanalyzes a generic traversal for each input sort,
instead of assigning a fixed type like a type checker would do.

The example we considered here is a special case of generic traversals, known
as type-preserving. A generic traversal is type-preserving if the sort of the input
and output term are the same at every node. However, some generic traversals
change the sort of the input term. The sort analysis of this section is not capable
of analyzing such type-changing generic traversals. To this end, we require a
more precise analysis, which we develop in the following section.
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Fig. 2. The top of the figure contains a type-changing generic traversal that trans-
lates boolean to numeric expressions. The bottom contains the analysis trace of the
transformation, where we abbreviate encode with E.

5 Locally Ill-Sorted Sort Analysis

Many program transformations, like a compiler, translate terms from one sort to
terms of another sort. When these program transformations use generic traver-
sals, they produce mixed intermediate terms, which contain subterms of the
input sort and subterms of the output sort. Because mixed intermediate terms
are not well-sorted, these program transformations are challenging to type check.

For example, consider the traversal in Fig. 2 that translates Boolean expres-
sions into numeric expressions in a bottom-up fashion. The boolean expression
And(True(),False()) is transformed in two steps:

And(True(),False()) �
�������
And(1,0) � Min(1,0)

Even though the input term And(True(),False()) is a valid boolean expression
and the output term Min(1,0) a valid numeric expression, the transformation
creates an intermediate term

��������
And(1,0), which is ill-sorted. The sort analysis of

the previous section is only able to check transformations which produce well-
sorted terms and therefore cannot handle this example. To analyze this example,
we need a more precise sort analysis that can represent ill-sorted terms, which
we develop in the remainder of this section

5.1 Term Abstraction for Ill-Sorted Terms

The key idea is to use a term abstraction which can represent terms with well-
sorted leafs and an possible ill-sorted prefix, such as And(NumExp,NumExp). This
abstract term represents all terms with "And" as top-level constructor and two
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matchCons matchSub = proc (c,ps,t) → case t of

MaybeSorted cs → matchCons ’ �(c,ps,cs)

Sorted s → Sort.matchCons matchSub�(c,ps,lookupSort ’ ctx s)

where

matchCons ’ = proc (c,ps,cs) → ⊔

(proc (c’,ss) →
if c == c’ && length ss == length ps

then do ss’ ← mapSub � (ps ,ss); cons � (c,ss ’)

else throw � ()) �� cs

buildCons = proc (c,ts) → returnA � MaybeSorted [(c,ts)]

widening :: Context → Int → Term → Term → Term

widening ctx k cs1 cs2

| k == 0 = Sorted (typecheck ctx (cs1 � cs2))

| otherwise =
MaybeSorted (zipSubterms (termWidening ctx (k-1)) cs1

cs2)

where typecheck :: Context → Term → Sort

Listing 7. Abstract term operations for the locally ill-sorted sort analysis.

numeric expressions as subterms. We implement this term abstraction with the
following Haskell type:

data Term = Sorted Sort | MaybeSorted (Set (String ,[Term]))

The case Sorted s represents well-sorted terms that belong to sort s, and the
case MaybeSorted represents terms with an possibly ill-sorted prefix. For exam-
ple, this datatype allows us to represent the ill-sorted term And(1,0) with the
abstract term

MaybeSorted [("And",[Sorted "NExp",Sorted "NExp"])].

5.2 Abstract Term Operations

We develop an analysis for Stratego by implementing the term operations with
the term abstraction from above. We only discuss the matchCons and buildCons
operations (Listing 7), because the remaining functions are similar to the oper-
ations of the sort analysis.

The matchCons operation first matches on the term representation and in
both cases calls the matchCons’ helper function, which compares the construc-
tors, arity and subterms. The lookupSort’ function, similar to Listing 6, looks
up all constructor signature for a sort, but additionally converts the signatures
to abstract terms. This matchCons operation is more than the matchCons of
the sort analysis, because we may know the top-level constructor of the term.
This improved precision results in more pattern matches which unconditionally
succeed or fail.
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In contrast to the sort analysis, the buildCons operation in Listing 7 does
not check if the constructor and its subterms belong to a valid sort. Instead, it
constructs a new abstract term, which may or may not be well-sorted. The type
checking of this term is then delayed until a later point.

With these definitions, the analysis would be able to check some type-
changing generic traversals, however, it might not terminate because the abstract
terms might grow arbitrarily large. To avoid this problem, we reduce the size
of abstract terms by type checking their subterms. For example, we can type
check the immediate subterms of Or(And(1,0),1) to obtain the abstract term
Or(�,NumExp). In the new term, the sort � indicates the type checking of
And(1,0) failed and the term is ill-sorted. We use this technique in a widen-
ing operator [7] that ensures that the analysis terminates. The operator simply
type checks all subterms deeper than a certain limit k, such that the resulting
terms are not deeper than k.

5.3 Analyzing Type-Changing Generic Traversals

In the remainder of this section, we discuss how the analysis of this section checks
type-changing generic traversals. To this end, we discuss an analysis trace of the
example at the beginning of this of this section (Fig. 2).

The trace in Fig. 2 shows only the final fixpoint iteration (earlier iterations
produce subsets of the sets shown in the trace). It starts with the analysis of
the main function with the boolean expression sort BExp, which is then passed
to bottomup(E). In contrast to the top-down traversal, the bottom-up traversal
first traverses with all(bottomup(E)) over the subterms of boolean expressions
and replaces them by numeric expressions, e.g., And(NExp,NExp). The resulting
set of ill-sorted terms is then passed to the rewrite rule E. The rule E then replaces
each top-level boolean constructor with a numeric constructor without touching
the subterms. All terms in the resulting set are now well-typed and bottomup(E)
applies the widening operator to reduce this set to NExp.

In summary, we defined an advanced sort analysis, which can represent ill-
sorted terms. This analysis is able to check type-changing generic traversals,
which produces ill-sorted intermediate terms.

6 Related Work

Transformation languages like Stratego [10] and PLT Redex [17] have a dynamic
type checker for syntactic well-formedness. While dynamic type checking sup-
ports generic traversals, it does not help developers of transformations to under-
stand the code. In contrast, we developed a static analysis such that program
transformations can be checked before running them.

Other program transformation languages like Ott [22], Maude [5], Tom [2]
and Rascal [14] use static type checking to ensure syntactic well-formedness.
However, these languages do not support or struggle to statically check arbi-
trary generic traversals. Ott is a language for specifying rewrite systems and
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exporting them to proof assistants such as Coq or Isabelle. However, it does not
support generic traversals. Maude is a language for specifying rewrite systems
in membership equational logic. However, it implements generic traversals with
reflection and hence cannot statically check their type. Tom and Rascal are stat-
ically typed transformation languages with support for type-preserving generic
traversals. However, they do not support type-changing generic traversals. We
explained in Sect. 5 why conventional static type checkers cannot analyze type-
changing generic traversals: these traversals produce intermediate terms which
are ill-sorted. In this work, we aim to analyze type-preserving as well as type-
changing generic traversals. We solve this problem by defining a static analysis
which can represent terms with a finite ill-sorted prefix. In contrast to a conven-
tional type checking, this term abstraction is more precise than regular types,
but requires computing a fixed point.

Lämmel distinguishes “type-preserving” from “type-unifying” generic traver-
sals [15], as realized in Scrap-Your-Boilerplate [19]. A unifying generic traversal
is a fold over the term that yields a value of the same “unified” type at each
node. These kinds of generic traversals are easier to type statically, however,
not all generic traversals fit in one of these two typing schemes. For example,
a generic traversal that translates code from one language to another is neither
type-preserving nor type-unifying. Rather than developing additional specialized
traversal styles, our paper aims to support static analysis for arbitrary generic
traversals.

Most closely related to our work, Al-Sibahi et al. present an abstract inter-
preter of a subset of Rascal, including generic traversals [1]. Al-Sibahi et al.
use inductive refinement types as abstract domain. The main difference of our
work is that we separated analysis-independent concerns (the generic interpreter)
from analysis-specific concerns (the instances). This way we can develop different
analyses for program transformations with relatively little effort. Furthermore, it
also simplifies the analysis definition, because most of the language complexity
is captured in the generic interpreter. Lastly, our work is based on the well-
founded theory of compositional soundness proofs [13] provided by the Sturdy
framework. This allows us to verify that soundness of analyses more easily, as
we only need to prove that the instances are sound.

CompCert [16] is a formally verified C compiler. The compiler guarantees that
the compiled program has the same semantics as the input program. To this end,
each program transformation in the compiler passes has to preserve the semantics
of the transformed program. While CompCert focuses on the semantics of the
transformed program, the static analyses for program transformations in this
work have to satisfy a different correctness property. Soundness of these static
analyses guarantees that the analyses results overapproximate which programs
can be generated by a program transformation. However, soundness does not give
any guarantees about the semantics of the transformed program. In the future,
we aim to develop more precise analyses for program transformation languages
that allow us to draw conclusion about the semantics of transformed programs.
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7 Conclusion

To summarize, in this work, we presented a systematic approach to designing
static analyses for program transformations. Key of our approach is to capture
the core semantics of the program transformations with a generic interpreter
that does not refer to any analysis-specific details. This lets the analysis devel-
oper focus on designing a good abstraction for programs. We demonstrated the
usefulness of our approach by designing three analyses for the program transfor-
mation language Stratego. Our sort analyses are able to check the well-sortedness
of type-preserving and even type-changing generic traversals.

Acknowledgements. This research was supported by DFG grant “Evolute”. We
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duction.
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Abstract. We propose a framework in which we share ghost variables
across a collection of abstract domains allowing precise proofs of complex
properties.

In abstract interpretation, it is often necessary to be able to express
complex properties while doing a precise analysis. A way to achieve that
is to combine a collection of domains, each handling some kind of prop-
erties, using a reduced product. Separating domains allows an easier
and more modular implementation, and eases soundness and termina-
tion proofs. This way, we can add a domain for any kind of property
that is interesting. The reduced product, or an approximation of it, is in
charge of refining abstract states, making the analysis precise.

In program verification, ghost variables can be used to ease proofs of
properties by storing intermediate values that do not appear directly in
the execution.

We propose a reduced product of abstract domains that allows
domains to use ghost variables to ease the representation of their internal
state. Domains must be totally agnostic with respect to other existing
domains. In particular the handling of ghost variables must be entirely
decentralized while still ensuring soundness and termination of the
analysis.

1 Introduction

Ghost variables can help to proof complex properties on programs: they store
intermediate values that do not appear in the program but help to express com-
plex values or allow better expressivity, like in [16]. We would like to reason on
these variables as well as we do on real variables. We propose here a flexible way
to make abstract interpretation and ghost variables to work together.

Abstract interpretation [7] is a framework of semantics approximation that
allow to prove semantic properties on programs such as the absence of runtime
errors. Analyses using abstract interpretation are usually made to be sound and
terminating and consequently are not complete. False alarms are unavoidable in
theory, but we can strive to make them as rare as possible.
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Running an analysis using several domains without communication is no bet-
ter than running separate analyses. Each domain handles some kind of properties
but independently, they are usually not precise enough to prove the properties
we are interested in. Yet there are good sides to use separate domains. From a
mathematical point of view, it makes the proofs of soundness and termination
easier and compositional. From a software engineering point of view, it makes the
implementation more modular. Usually, we use a reduced product [8] that pre-
serves soundness and termination while improving internal states of the domains:
each domain communicates what it knows to all other domains so that they can
use this information to improve their own internal state and thus avoiding some
false alarms. In this framework, we benefit from mutual induction (where each
domain can refine its state thanks to any other domain’s information) which is
better than cascading analyses, where domains can only get information from
previous domain, with respect to a linear ordering. We want to keep the power of
mutual induction. A classical method in program verification to express complex
properties is to refer to ghost variables. They are variables that are useful for the
proof but do not appear in the program. A standard (but not the only) usage of
ghost variables is to remember former values of real variables.

Though, ghost variables are difficult to use in a reduced product. The con-
straints are plenty, since each domain shall not make any assumption on other
existing domains. Whatever the chosen combination of domains, the result
should always be correct. This has several implications. Firstly, a ghost vari-
able can need another ghost variable to represent its state, thus the set of ghost
variables must be handled dynamically. The management of ghost variables (cre-
ation, deletion and all operations) is totally distributed. Consequently, we must
be sure that these concurrent operations still guarantee a sound abstraction,
with very little knowledge on evaluation order. Indeed, deciding an evaluation
order would require to know all involved domains. Moreover, the analysis should
always terminate even for non-terminating programs.

An example that illustrates the need for ghost variables is to abstract pre-
cisely Global Descriptor Table (GDT) entries. In the x86 architecture, GDT
is an array in which each entry describes a memory segment or some kind of
enriched function pointer (e.g. call gate). Along with various flags controlling
permissions and miscellaneous settings, these entries need to store an address:
the base address of the memory segment or the bare function pointer. But these
addresses are not stored contiguously in memory: they are chopped into several
pieces with bitwise operations. Though, remembering precise information is nec-
essary to be able to get a precise pointer when reconstructing it (e.g. to call the
function pointed by the call gate). A quite realistic case is the following:
1 /* Given int limit, *base; char access, flags; short t[4]; */

2 t[0]=limit&0xffff
3 t[1]=base&0xffff;
4 t[2]=((base>>16)&0xff)|((access&0xff)<<8);
5 t[3]=((base>>24)<<8)|((limit>>16)&0xf)|((flags&0xf)<<4);
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We assume that we have some hypotheses on the architecture and on the com-
piler that go beyond the C standard but are usual in the context of embedded sys-
tems. We want to know that t[1]|((t[2]&0xff)<<16)|((t[3]&0xff00)<<16)
has the same value as base. It may be a variable or an arbitrary expression, and
evaluates to an integer or a pointer. Typically, it may be fn_ptr_array[index]
or &some_function. More generally, low level programming uses extensively
bitwise operations, e.g. for pointer alignment or to change the endianness when
communicating on a network.

It might be tempting to simply stack domains: each domain has one under-
lying domain and acts on it as it decides. However, this has several limitations.
Firstly, properties of the overlaying domain can use the ones of the underlying
domain, but not in the other way or with recursive nesting. For instance, we
might want to represent simultaneously slices of linear combinations of pointers,
and linear combinations of slices of pointers (this is not a fantasy, it happens
in real world low-level source code). Moreover, from an implementation point of
view, adding a domain is very costly as it requires to implement all the primi-
tives to translate and forward instructions to the underlying level and to compute
inductive invariant from increasing iterations.

2 Related Work

Our work stands in the ancient tradition of abstract interpretation which goes
back to Cousot and Cousot [7]. Analysis precision can be improved through
several strategies, like disjunction of states depending on their contents [4], or
the context [2]. Non-standard semantics can also enhance analyses by adding
information that does not directly appear in the semantics, for instance in [11,
18,19] where objects are enriched with information about their history. In [5]
ghost variables are used to represent expressions with external symbols. Here,
ghost variables are statically allocated. [1,12,15] are examples of works where
ghost variables have a more dynamic semantics, but they are local to the domain
and are not shared with outside domains.

Another way to improve precision is to make several abstract domains work
together, typically, with a reduced product [6,8]. Our work is motivated by
pragmatic constraints: allowing easy proofs and implementation by delegation
to the domains. In particular our work is an extension of [9]. Our product was
introduced to add some new specific domains, that will be discussed in the
following, that get their power from shared ghost variables. Nevertheless, some
existing abstract domains were adjusted to this new framework such as Miné’s
pointer abstraction [14]. There are other works on domain cooperation with
dynamic support, like cofibered domains [17]. Those have some limitations we
try to overcome. The product we propose does not enforce a hierarchy between
domains and the current support is known by every domain to improve precision.

[13] also uses transformation of statements but based on expression rewrit-
ing. In this approach, several abstraction levels use rewriting rules to gradually
simplify expressions. This strategy is well-fitted for function resolution in a con-
text where there are function overloading and dynamic typing, which is crucial
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to analyze Python source code. Given our application, we have other priorities.
This is why we choose to promote a more flexible framework where statement
transformation may depend on the history (see Subsect. 5.2 for an example). It
allows domains to declare new ghost variables without knowing a priori when
they will be used; their value will be updated during the following computation
steps, and used when useful without knowing precisely when they have been
declared. Another requirement is to allow arbitrary predicate nesting (cf. Sect. 1):
domains are free to use ghost variables to represent any available property, even
if it means that some kinds of transformations are not so straightforward.

We implemented all the following in a development version of Astrée. Astrée
is a static analyzer designed to analyze critical C source code coming from auto-
motive application, avionics, astronautics, etc. [3]. This development version goes
beyond safety and aims to prove security properties that are crucial in critical
contexts. It has been successfully used to analyze the source code of a proprietary
host platform.

3 The Setup

Let us define the framework in which to work. We remain very general at this
point and simply define the concrete semantics as the composition of primitives.

We denote by V the set of variables, and by E the set of expressions. We
consider any usual operation except dereferencing. Nevertheless, we do not forbid
the use of “address of” (& in C), so variables may store pointers. Variables are
assumed to not alias. For instance, they may represent memory blocks in C and
each C statement is transformed to multiple statements to simulate the effect
of the C statements on overlapping memory blocks. This is because in Astrée,
pointer resolution is performed before (and thanks to) pointer abstraction.

To stay very general, we describe the (non-deterministic) semantics with
variable allocation and killing, comparison, assignment and union. Since we have
variable allocation and killing, the support (set of living variables) is dynamic.
Formally, let S = V ⇀ I be the set of states: they are partial maps from variables
to values where I is an arbitrary set. The support of such a state s is denoted
supp (s).

We assume we are given a primitive to assign a variable, one to guard by
an arbitrary comparison and one to allocate and kill a variable. The two former
shall not change the support, while the two latter respectively add and remove a
variable to the support. So, even though the semantics is non-deterministic, each
step leads to a set of states with the same support. We denote the poset D =({S ∈ P (S)

∣
∣ ∀(s, s′) ∈ S2, supp (s) = supp (s′)

}
,⊆)

. The unique support of all
states in a d ∈ D is also denoted supp (d). We denote O = {<,>,=, �=,�,�},
C = E×O×E the type of comparisons and A = V×E the type of assignments.
The directives aforementioned have types Assign : A×S → D, Comp : C×S →
D, Alloc : V × S → D and Kill : V × S → D, with the assumptions:

– ∀(a, s) ∈ A × S, supp (Assign(a, s)) = supp (s)
– ∀(c, s) ∈ C × S, supp (Comp(c, s)) = supp (s)
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– ∀s ∈ S,∀v �∈ supp (s),Alloc(v, s) = supp (s) ∪ {v}
– ∀s ∈ S,∀v ∈ supp (s),Kill(v, s) = supp (s) \ {v}
We identify these functions with their lift to D, ie., they respectively are Assign :
A × D → D, Comp : C × D → D, Alloc : V × D → D and Kill : V × D → D.

Let us add some requirements inspired by the C language. First, even if the
support is dynamic (due to local variables, scopes, . . . ), we assume that non
existing variables do not appear in expressions, and that binary flow operations
(such as union) are performed with the same support in both operands. We also
assume there is no allocating an existing variable or killing of a dead variable.
Allocations of variables are done by Alloc and killings by Kill ; all other primitives
keep the same support. We add a few assumptions:

– In assignments, the left-hand side variable does not appear in the right-hand
side expression.

– ∀a ∈ D,∀(c, d) ∈ C
2,∀(e, f, g) ∈ E

3,∀(v, w) ∈ V
2,∀o ∈ O, v �= w

– {v, w} ∩ (Var (e) ∪ Var (f)) = ∅ ⇒ Assign((v, e),Assign((w, f), a)) =
Assign((w, f),Assign((v, e), a)) where Var (e) is the set of variables in
e (independent assignments commute)

– Comp(c,Comp(d, a)) = Comp(d,Comp(c, a)) (comparisons commute)
– v /∈ Var (e) ∪ Var (f) ⇒ Comp((e, o, f),Assign((v, g), a)) =
Assign((v, g),Comp((e, o, f), a)) (independent comparison and assign-
ment commute)

– Comp(c, a) ⊆ a

These assumptions are quite reasonable and allow to commute statements
as long as they are independent enough. It will come in handy to run a set of
statements in a distributed way without guarantees on the execution order.

We write [[c]] the function D → D that runs the statement c. We naturally
extend this notation to any sequence of instructions and control flow graphs
(using least fix-point operator to stabilize loops).

4 An Abstract Domain with Dynamic Support

4.1 The Difficulties

Using a single abstract domain to analyze programs may result in poor precision.
To overcome this issue, we use the reduced product [8]. This is a compound
abstract domain that runs a collection of domains and make them cooperate to
improve their internal states. Formally, the internal state of each domain is the
best abstraction of the intersection of the concretization of all internal states.
This structure allows easier (because separate) implementation and correctness
proofs. The reduced product ensures the best possible precision given the set
of available domains, however, this is not realistic. But we can use an over-
approximation of the reduced product: internal states may be improved, but
they are not supposed to be the best possible.
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We want a product that allows each domain to add new ghost variables to the
current state, reduce them and kill them. All domains must store ghost variables
of all domains: they must communicate their policy for ghost variables manage-
ment, i.e. what to do on ghost variables while we operate on real variables.
Recursively, reduction of ghost variables may trigger new reductions.

There are several problems that the proposed framework is solving: – one
cannot order meaningfully constraints coming from different domains. So con-
current constraints must be safely reorderable; – we need to recursively collect
all constraints on ghost variables while ensuring termination; – when perform-
ing binary operations, we have assumed that the support of real variables is the
same, but there is no such guarantee about ghost variables. So, before performing
a binary operation, supports shall be unified.

Let us take a look at a simpler code that sublimates the difficulties of the real-
world case and that will be used all along the paper to illustrate the framework:

1 int* x = &t[idx]; /* given int t[]; and int idx; */

2 int low = x & 0xffff;
3 int high = x >> 16;
4 int* y = low | (high << 16);

In this example, mask and bit shift are used to split a pointer and recombine
it.

4.2 Ghost Variables and Constraints

Let us define ghost variables, their structure and their relation to abstract
domains. Ghost variables are built recursively from normal or ghost variables
using unary constructors. These constructors specify the semantics of the ghost
variable, for this reason, these constructors are called “roles”. Each role must
be associated to the domain in charge of managing this kind of ghost variables.
To define all the component of the signatures of abstract domains, we need to
reference them, although we still are not able to define them entirely.

Notation 1 (Domain name). Let us denote N a set of domain names.

To analyze properly the running example we will use 3 domains: bitwise
properties, pointers as a memory block and an offset [14] and equality. These
domains are respectively named Slice, Offset and Equality. In the examples, we
can choose N to contain only these three names.

Each role is associated to the domain that decides what to do with ghost
variables that have this role as outermost one.

Definition 1 (Roles). Let R be a set of unary constructors. These constructors
are called “roles”. Let o : R → N . When o(R) = d, we say that d is the owner
of a role R, or that R belongs to d, and we denote R � d.

For instance, after the second line of the simplified example, we would like to
remember that the 16 upper bits of low are 0 and the 16 lower bits are the 16
lower bits of a ghost variable named S lice[0,15]→[0,15](low). We can write this
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property low = [0 S lice[0,15]→[0,15](low)[0, 15] 15|16 0 31], where v[a, b] designates
the bits a to b of the variable v, and S lice[0,15]→[0,15](low) stores the value of
x. This way, even if x falls out of scope or is modified, the ghost variable is safe.

From now on, everything written in this Round Hand style (like R) is about
ghost variables.

Notation 2 (All variables). We denote by V the inductively defined set of all
variables, starting with real variables (in V).

Formally V :=
⋃

i∈N

Vi where Vi :=

{
V if i = 0
{R(v) | R ∈ R, v ∈ Vi−1} otherwise

E denotes the set of expressions whose variables are V .

It is worth noticing that V ⊆ V and E ⊆ E . We assume we can naturally
extend concrete primitives to V and E .

Though the handling of ghost variables is decentralized, there are restrictions
on which variables a domain can create or delete. For instance, only the domain
Slice should be able to decide what to do with S lice[0,15]→[0,15](low). So, we
need a belonging relation between ghost variables and domain names.

Definition 2. We extend the � to V × N by ∀v ∈ V ,∀R ∈ R,R(v) � o(R).

The ownership is purely syntactic: the topmost role is enough to decide the
owner of a ghost variable. Real variables (in V) are not owned.

A role defines the semantics of the ghost variable. This is usually a relation
between the value of the ghost variable and the variable immediately above. For
instance, Offset(p) should be the offset of p.

Notation 3. Let � � : V → P (S) be the semantics of ghost variables.

For instance, �Offset(p)� is the set of states where Offset(p) is indeed the
offset part of the pointer p. The codomain of � � is not D since legal states do
not have necessarily the same support.

Definition 3 (Ghostly ordering). Let � be the smallest transitive relation on
V 2 such that ∀v ∈ V ,∀R ∈ R,R(v) � v. Let � be the reflexive closure of �. If
x � y, we say that x is less real (or ghostlier) than y. We extend this relation to
E 2 by ∀(e, e′) ∈ E 2, (∀v′ ∈ Var (e′),∃v ∈ Var (e) : v′ � v) ⇔ e′ � e where Var (e)
is the set of variables of the expression e. That is every variable in e′ is ghostlier
than a variable in e.

� is clearly an order on V and a preorder on E . Now that we have all variables,
we want to operate on them. In addition to variable creation/deletion that are
handled separately, domains can exchange information about ghost variables in
the form of comparisons and directed reduction.

Definition 4 (Ghost constraints). We let O := {�, <,�, >,=, �=}, C :=
E × O × E (comparison), A := V × E (directed constraint) and U := C  A .
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These are the types of constraints about ghost variables. C is the set of
comparisons of two arbitrary expressions. A are equality between a variable
and an expression, but with a restriction: they are used to point out the vari-
able is unknown (it is �) and that reduction may only occur in one direction.
This reduction can be implemented very efficiently as an assignment. These con-
straints are written in the form v ← e. This may look like a mere implementation
concern, but it relies on fundamental assumptions.

First constraints are generated from the executed statement (in A or C), then
each constraint may trigger the generation of several other constraints. Let us
see on a simple example why atomic constraints are not expressive enough. We
consider two variables a and b that have been built with bitwise instructions,
like in the example. Let us say they are both made of two parts of 16 bits:

a = [0 S lice[0,15]→[0,15](a)[0, 15] 15|16 S lice[16,32]→[16,32](a)[16, 31] 31]
b = [0 S lice[0,15]→[0,15](b)[0, 15] 15|16 S lice[16,32]→[16,32](b)[16, 31] 31]

A way to run the comparison a = b in a state s is to compute f ◦ g(s) where

– f = [[S lice[0,15]→[0,15](a)[0, 15] = S lice[0,15]→[0,15](b)[0, 15]]]
– g = [[S lice[16,31]→[16,31](a)[16, 31] = S lice[16,31]→[16,31](b)[16, 31]]]

So we need to be able to sequence constraints. If we want the result of a �= b, we
need to compute f(s) ∪ g(s) where

– f = [[S lice[0,15]→[0,15](a)[0, 15] �= S lice[0,15]→[0,15](b)[0, 15]]]
– g = [[S lice[16,31]→[16,31](a)[16, 31] �= S lice[16,31]→[16,31](b)[16, 31]]]

To combine both branching and sequencing, and still have obvious termina-
tion, the compound constraints communicated across domains are DAGs. More
precisely the internal language to communicate constraints is made of DAGs
with one source and one sink and whose edges wear sequence of constraints in
U . Edges converging to a node mean that a join must be performed before
guarding by the constraints on the node. It allows conditional branching and
avoids loops and thus non-termination. For instance, the graph corresponding
to the test a �= b is given in Fig. 1.

This kind of compound constraints is quite powerful. The graph in Fig. 2
computes κ(θ(ζ(i) � η(i)) � ι(η(i))) where i ∈ D� is the input. We notice that

Fig. 1. An example of a constraint DAG
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Fig. 2. A more complicated constraint DAG

η(i) appears several times in the one-line expression, but the graph form allows
easy sharing of intermediate computations.

Notation 4 (Constraint graph). G is the set of 3-tuples (V,E, n) where
(V,E) is a DAG with exactly one source and one sink and n : V → U ∗ maps
nodes to finite sequences of elements of U . Given g ∈ G and u ∈ U , we write
u ∈ g when ∃v ∈ V : u ∈ n(v).

In fact, the exact form of the intermediate language does not matter. If
needed, it could include other terminating constructs like constant-bounded for-
style loops. We choose this language made of DAGs because it is both simple
and expressive enough.

Given a support V , the semantics of such graph is defined inductively on
the nodes and is an element of D denoted [[G]]V . The semantics of the source is
{s ∈ S | supp (s) = V } and the semantics of each node is the union of the seman-
tics of the parent nodes guarded by the constraints of the node. The semantics of
the graph is the semantics of the sink. This is well-founded thanks to acyclicity.

A graph expresses constraints about ghost variables, so to be a sound con-
straint, its semantics shall be bigger than the intersection of the semantics of
ghost variables. In other words, it can do no more than enforcing the semantics
of ghost variables.

Definition 5 (Constraint-DAG soundness). A graph G is said to be sound
in the support V ⊆ V if

{
s ∈ ⋂

v∈V \V�v�
∣
∣
∣ supp (s) = V

}
⊆ [[G]]V .

Though any sound graph can be used, there are several ways to build them
systematically. Here is a non-exhaustive list that covers most common cases.

– If we test equality between variables x and y in a context where both R(x)
and R(y) exist, for a given role R, and the implication x = y ⇒ R(x) =
R(y) is true in all states, we can generate the one-node graph containing the
unique constraint R(x) = R(y). If several such implications hold, we may
simply sequence all graphs in an arbitrary order (since these conditions do
not interfere). This is the general case of the example a = b.

– To test difference between variables x and y in a context where (Ri(x))i∈[[1,n]]

and (Ri(y))i∈[[1,n]] exist, for a given family of roles (Ri)i∈[[1,n]] and the impli-
cation x �= y ⇒ ∨

i∈[[1,n]] Ri(x) �= Ri(y) holds in any state, we can generate
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the graph that joins the results of these n conditions taken separately (like
Fig. 1). This is like the comparison a �= b in the last example.

– Some constraints come from the language semantics but can be reinterpreted
with ghost variables. E.g. since the ghost variable offset must coincide with
the C standard offset, the latter can be substituted by the former.

Directed constraints (v ← e) enforce that the left-hand side is �, to be able
to run it efficiently as an assignment. The way to ensure this property stands in
two arguments: – a directed constraint about a variable can only be issued by
the domain that owns the variable; – after a variable assignment, all consequent
assignments can only modify ghostlier variables.

Of course, the condition cannot be totally local. Here, the hidden global
hypothesis is that the roles of different domains are disjoint. To help the proof
that the restriction on directed constraints holds, we introduce the following
relation. If any generated constraint is smaller than the previous with respect to
this relation, then only variables set to � will appear in the left-hand side of a
directed constraint, and at most once.

Definition 6. Let n ∈ N . Let �n the smallest relation on (A  C  U ) × U
satisfying:

– ∀v ∈ V ,∀R ∈ R,∀(e, e′) ∈ E 2,R � n ∧ e′ � e ⇒ (v, e) �n (R(v), e′)
– ∀(a, b, c, d) ∈ E 4,∀(o, p) ∈ O2, a � c ∧ b � d ⇒ (c, o, d) �n (a, p, b)
– ∀(a, b, c) ∈ E 3,∀v ∈ V ,∀o ∈ O, b � a ∧ c � a ⇒ (v, a) �n (b, o, c)

The type of the left-hand side is A  CU , this is because a ghost constraint
can be generated from a real assignment (A), a real comparison (C), or another
ghost constraint (U ). At the first step, the left-hand side is in A  C; after,
only elements of U appear. Let us reword the three cases: – a directed reduction
(resp. assignment) can trigger a directed reduction about a variable immediately
ghostlier with a ghostlier right-hand side; – a (real or ghost) comparison can
trigger a comparison that involves ghostlier expression; – a directed reduction
(resp. assignment) can trigger a comparison whose expressions are ghostlier than
the right-hand side of the directed reduction (resp. assignment).

4.3 Generic Abstract Domain

Before describing the structure of an abstract domain, let us see how the running
example behaves. We assume we use the 3 domains we introduced before: one
to express bitwise properties (named Slice), one that represents pointers as a
block and an offset [14] (Offset) and one about equality (Equality). The Offset
domain uses a single role Offset that means the ghost variable is the offset of
the base variable as a pointer. The equality domain does not have any role.
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At the end of the third line, we have:

low = [0 S lice[0,15]→[0,15](low)[0, 15] 15|16 0 31]

high = [0 S lice[16,31]→[0,15](high)[16, 31] 15|16 0 31]

}
Slices

x = t + Offset(x)

S lice[0,15]→[0,15](low) = t + Offset(S lice[0,15]→[0,15](low))

S lice[16,31]→[0,15](high) = t + Offset(S lice[16,31]→[0,15](high))

⎫⎪⎬
⎪⎭ Offset

Offset(S lice[0,15]→[0,15](low)) = Offset(x)

Offset(S lice[16,31]→[0,15](high)) = Offset(x)

}
Equality

The support consists in the following trees of variables:

x

Offset(x)

low

S lice[0,15]→[0,15](low)

Offset(S lice[0,15]→[0,15](low))

high

S lice[16,31]→[0,15](high)

Offset(S lice[16,31]→[0,15](high))

Now, let us run the last statement. Offset and Equality domains get nothing
interesting from that. However, the Slice domain is more clever. It can deduce

y = [0 S lice[0,15]→[0,15](y)[0, 15] 15|16 S lice[0,15]→[16,31](y)[0, 15] 31]

but requires the creation of two ghost variables (initialized to �) and yields two
directed reductions: S lice[0,15]→[0,15](y) ← S lice[0,15]→[0,15](low) and
S lice[0,15]→[16,31](y) ← S lice[16,31]→[0,15](high).

One can remark that the restriction on directed constraints is satisfied: both
left-hand sides are � since they are freshly allocated. After this reduction, we
know that:

S lice[0,15]→[0,15](y) = t + Offset(S lice[0,15]→[0,15](y))
S lice[0,15]→[16,31](y) = t + Offset(S lice[0,15]→[16,31](y))

Offset(S lice[0,15]→[0,15](y)) ← Offset(S lice[0,15]→[0,15](low))
Offset(S lice[0,15]→[16,31](y)) ← Offset(S lice[16,31]→[0,15](high))

}

Offset

Again, left hand-sides of constraints are unknown before reduction. Finally, we
get:

Offset(S lice[0,15]→[0,15](y)) = Offset(x)
Offset(S lice[16,31]→[16,31](y)) = Offset(x)

}

Equality

and we use this additional tree of ghost variables:
y

S lice[0,15]→[0,15](y)

Offset(S lice[0,15]→[0,15](y))

S lice[0,15]→[16,31](y)

Offset(S lice[0,15]→[16,31](y))
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This illustrates why we need distributed handling of ghost variables and that
they should be known by other domains. In fact, when we use a ghost variable,
it is likely that another domain can do better about it, otherwise we wouldn’t
need a ghost variable. For instance, parts of low, high and y are pointers: it is
more suitable to ask the pointer domain to represent them. Likewise, the offset
is a numeric value so, while the pointer domain associates it to the pointer of
which it is the offset, it is worth to let a numeric domain represent the offset
value. But, if we know for offset, in general we don’t a priori know the kind of
value the ghost variable store, for instance, in the case of bitwise slices that can
be pointers, numeric values or anything else. Furthermore, we do not know in
advance the list of available domains, so we cannot decide which domain is the
best to represent a ghost variable. Thus, every ghost variable must be known
by all domains. This prevents the simple use of stacked domains, each being
controlled by the overlaying one. Indeed, a domain won’t be able to make one
of its ghost variable represented by a domain higher in the hierarchy.

Let us discuss the problems that we have highlighted. The termination is
satisfied: directed reductions of offsets do not trigger new constraints. We can
observe that each constraint is more elementary than the previous, and there is
nothing simpler than copying a numeric variable. The decreasing complexity is
a good approach to ensures termination. The other problem was the execution
order. Here, we can see that the assignments are disjoint: we assign variables
under y from variables under low and high. So, an assigned variable is never
in the right-hand side of an assignment and since we always go deeper in ghost
variables, each variable is assigned only once, making directed reductions legal.
Both these points will be detailed and generalized later.

This result is correct but not interesting in this form. With domain coopera-
tion, we can infer S lice[0,15]→[0,15](y) = x and S lice[0,15]→[16,31](y) = x, hence
y = x which is the expected result.

We can be very general on the form of the abstract domains. Classically, a
domain needs a set of abstract states and their meaning in the concrete world,
fixpoint approximation and abstract counterparts of concrete primitives. In addi-
tion, we add two other kinds of function.

First, there are two maps to decide what to do with ghost variables: one to
react to the execution of a unary statement or a ghost constraint, and one to
unify supports before performing a binary operation (typically, the join).

Moreover, domains include primitives to communicate information about
their abstract state á la [9]. This allows domains to refine themselves (as a
reduced product is meant to) but also to communicate their policy on ghost
variables management: since all domains must care about the ghost variables of
the other domains, they need to communicate what to do.

We are given a lattice IO� with a concretization γIO : IO� → D. This is a
lattice common to all domains that will be the middleman for all communication.

Definition 7 (Generic abstract domain). A generic abstract domain
with dynamic support is a tuple (n,D�, γ,�, lfp�,Assign,Comp,Alloc,Kill,
Extract,Refine,U ,B) where:
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– n ∈ N
– D� is a set of abstract properties,
– γ : D� → D is the concretization, for any a ∈ D� we denote supp (a) :=

supp (γ(a)),
– � : D� → D� → D� such that ∀(a, b) ∈ D�2, supp (a) = supp (b) ⇒ γ(a) ∪

γ(b) ⊆ γ(a � b)
– lfp� : (D� → D�) → D� → D� such that ∀f : D → D,∀f � : D� → D�, f ◦ γ ⊆

γ ◦ f � ⇒ lfp(f) ⊆ γ ◦ lfp�
(
f �

)

– Assign : (V × E ) × D� → D� such that
– ∀(v, e, a) ∈ V × E × D�,Assign((v, e), γ(a)) ⊆ γ(Assign((v, e), a))
– ∀((v, e), a) ∈ A × D�, let d = γ(Assign(v, e, a)) in ∀(w, s, x) ∈ {v}� ×

d × I, s[w �→ x] ∈ d where SR := {x | ∃y ∈ S : xRy}.
– Comp : C × D� → D� such that ∀(c, a) ∈ C × D�,Compare(c, γ(a)) ⊆

γ(Comp(c, a))
– Alloc : V × D� → D� such that ∀(v, a) ∈ V × D�,Allocate(v, γ(a)) ⊆

γ(Alloc(v, a))
– Kill : V ×D� → D� such that ∀(v, a) ∈ V ×D�,Kill(v, γ(a)) ⊆ γ(Kill(v, a))
– Extract : D� × IO� → IO� such that ∀a ∈ D�,∀io ∈ IO�, γ(a) ∩ γIO(io) ⊆

γIO(Extract(a, io))
– Refine : D� × IO� → D� such that ∀a ∈ D�,∀io ∈ IO�, γ(a) ∩ γIO(io) ⊆

γ(Refine(a, io))
– U : D� → (A  C  U ) → P (V ) × P (V ) × G such that for all (a, u) ∈

D� × (A  C  U ), letting (new, old,G) := U(a)(u)
– new ∩ supp (a) = ∅ and old ⊆ supp (a)
– variables that occur in G belong to new ∪ supp (a).
– G is sound in support (supp (a) ∪ new) \ old
– ∀(u′, u′′) ∈ G2, u �n u′ ∧ ((u′, u′′) ∈ A 2 ∧ π1(u′) = π1(u′′) ⇒ u′ = u′′)

where πi is the ith projection.
– B : D� × D� → N → (P (V ) × P (V ) × G )2 such that ∀(a, b) ∈ D�2,∀i ∈ N

– γ(a) ⊆ γ(a′) ∧ γ(b) ⊆ γ(b′)
– ((∀j ∈ [[0, i − 1]], supp(a) ∩ Vj = supp(b) ∩ Vj) ⇒ (∀j ∈ [[0, i]], supp(a′) ∩

Vj = supp(b′) ∩ Vj))
where a′ = [[(new1, old1, g1)]]�(a), b′ = [[(new2, old2, g2)]]�(b),
((new1, old1, g1), (new2, old2, g2)) = B(a, b)(i) and [[(new, old, g)]]� denote
allocating variables in new guarding by g, and killing variables in old.

The Assign directive makes all ghost variables under the assigned variable
unknown, since their previous value is not a priori valid anymore.

Let us take a look at the types of ghost variables management maps. Given
a state a ∈ D� and an unary statement or a constraint u ∈ (ACU ), U(a)(u)
yields a 3-tuple: the sets of ghost variables to add, the set of ghost variables to
kill and a constraint-DAG. This result must be shared across all domains, and
we must proceed recursively for each constraint in the DAG.

Of course there are more hypotheses for the domain to be always terminating
during recursive exploration of constraints. They will be detailed in the following
since it isn’t an intrinsic property of domains.
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The B map is slightly more tricky. It is used to unify supports of ghost
variables layer by layer: the first call care about ghost variables that have only
one role around a real variable, the second call is for variable with two nested
roles, and so on. Similarly to U it returns the actions to perform on each branch.

4.4 Running Ghost Constraints

To get more precision, functions U of all domains must be called recursively
to get as many constraints about ghost variables as possible. In the state a,
U(a) : (A  C  U ) → P(V ) × P(V ) × G is the function that returns sub-
constraints that are implied by the constraint in argument. We denote this map
by Ua. Every domain shall receive the partial application Ua of all domains,
making them able to know what other domains know. Transmitting these partial
applications can be done using Extract and Reduce via the channel IO� which
must be performed before each real statement.

We combine them using the function

C = (fn)n∈N �→
(

u �→
⋃

n∈N

π1(fn(u)),
⋃

n∈N

π2(fn(u)),
⋃

n∈N

{π3(fn(u))}
)

Overall, in the state a we get from all domains a single function Ua =
C((Un(an))n∈N ) where all returned sets are finite. Especially, the third com-
ponent has the same cardinal as N .

When executing a constraint, all these functions are called, and they return
constraint-DAGs to run. The domain executes these constraints (using the
abstract primitives) by taking care of recursively asking other domains for
ghostlier constraints. Eventually, each constraint generates a tree of constraint-
DAGs. The recursive exploration terminates when the graph returned is empty.

Definition 8. Given Ua : (A  C  U ) → P (V ) × P (V ) × P (G ) we define

U∗
a : (A  C  U ) → P(V ) × P(V ) × P (G )

u �→
let new, old, g = Ua(u) in

lfp

(
(N,O,G) �→ let R = {Ua(u′) | g′ ∈ G, u′ ∈ g′} in

new ∪ {π1(r) | r ∈ R}, old ∪ {π2(r) | r ∈ R}, g ∪ {π3(r) | r ∈ R}

)

U∗
a is the analog of a transitive closure, hence the notation.

Communications are performed between a recursive ghost reduction and the
next real statement (in A or C) to improve precision and exchange new Un(an).

4.5 Non-interference

As previously mentioned, directed constraints ensure that their left-hand side
is � so as to be able to implement them as assignments. Clearly, such assign-
ments cannot interfere with each other or with other comparisons, since they



172 M. Chevalier and J. Feret

are semantically equivalent to a comparison (and we assumed comparisons com-
mute). We just have to ensure that the hypothesis holds: the left-hand side of
directed constraints must be �. In the example, we see that it was achieved by
increasing the ghostliness of the involved variables. We would like to guarantee
non-interference with a local condition, i.e. a hypothesis that must be verified in
each domain independently and that makes any combination of domains correct.

Theorem 1 (Non-interference). Let n ∈ N and (Di)i∈[[1,n]] a collection of
domains with distinct names. Let (ai ∈ D�

i )i∈[[1,n]]. Let Ua := C
(
(Ui(ai))n∈[[1,n]]

)
.

Let u ∈ A  C  U and G := π3 (U∗
a (u)).

– If u ∈ A  A , ∀(u′, u′′) ∈ G2,
(
(u′, u′′) ∈ A 2 ∧ π1(u′) = π1(u′′)

) ⇒
(u′ = u′′ ∧ π1(u′) ∈ π1(u)�)

– If u ∈ C  C , ∀u′ ∈ G, u′ ∈ C

That is, there is at most one directed reduction for each variable under the
left-hand side of an assignment and none for other variables.

Rewording the hypothesis hidden in the definition of abstract domains, there
is a family of Ua functions such that: – they only allocate and kill variables
belonging to the domain they are part of; – constraint triggering process satisfies
the relation �n (increasing ghostliness); – a constraint-DAG does not involve
twice the same variable in a directed constraint.

Let us draw a proof sketch. We made the assumption that real assignments
never use their left-hand side in their right-hand side. Thus, the tree of variables
that are ghostlier than the left-hand side and the forest of variables ghostlier
than variables in the right hand-side are disjoint. This has a crucial consequence:
all left-hand sides of assignments may never appear in the right-hand side of a
directed constraint or in a comparison. Indeed, in the example, the last directed
constraint assign variables under y using variables under low and high.

We now have to check that an assigned variable can only be written once.
Let v ∈ V . We distinguish two cases:

– v ∈ V. A directed constraint can only assign a ghost variable (thank to �n).
So v is only assigned by the real assignment. So, only once.

– v /∈ V. There is a variable v′, a role R and an integer i such that v = R(v′) and
v ∈ Vi. Since each directed constraint triggered by another directed constraint
writes in a variable exactly one level more ghostly, an assignment to a variable
in Vi can only be generated at the ith step of recursion. Moreover, it can only
come from the domain that owns the role R. Consequently, there is only
one constraint-DAG that may contain an assignment to v. As we assumed
that constraint-DAGs may only assign each variable once, there is only one
assignment to v.

So, variables under the left-hand side of an assignment appear at most once
and only as the left-hand side of a directed constraint, and these variables were
previously set to � by Assign. Hence the hypothesis on directed constraints
holds.
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4.6 Termination

Generally, U∗
a (u) is an infinite set. But it can be made finite, which is neces-

sary to actually execute ghost constraints, under some conditions. The example
shows that ghostlier and ghostlier variables are assigned from simpler and simpler
expressions. The idea behind is to use a well-founded order: if ghost constraints
keep being simpler, within the meaning of a well-founded notion of “simplicity”,
recursive exploration of constraints eventually terminates.

Let us take a look to the tree of ghost constraints. From y = low | (high
<< 16), at the first step of recursion we got

– S lice[0,15]→[0,15](y) ← S lice[0,15]→[0,15](low)
– S lice[0,15]→[16,31](y) ← S lice[16,31]→[0,15](high)

and at the second step

– Offset(S lice[0,15]→[0,15](y)) ← Offset(S lice[0,15]→[0,15](low))
– Offset(S lice[0,15]→[16,31](y)) ← Offset(S lice[16,31]→[0,15](high))

It’s clear that the left-hand side of assignment decreases (like prescribed by the
non-interference condition). Sadly, it is not enough to ensure termination: since
we can add ghost variables, we may end up into adding an infinitely deep tree of
ghost variables. It is also worth noticing that all new ghost variables are under
the left-hand side of an assignment, which is pretty natural.

The relation we are going to define has no fundamental importance, unlike
non-interference condition. Here, any well-founded relation is acceptable and the
relation might be fine-tuned depending on the domains. Here, the hypothesis is
global to all involved domains. Indeed, the union of well-founded relations is
not necessarily well-founded, so if each domain has its own relation, it does not
guarantee termination. When implementing, there are two philosophies. One can
choose a reasonable relation and dictate itself to stick with it. Or, conversely,
one can try to adapt the relation according to the domains. In practice, a hybrid
approach should be favored since the first method can lack flexibility and the
second may result in trying to use a non-terminating set of domains.

The following relation is a real-world one that covers most of the cases while
still being simple. As said before, the main idea is to increase the ghostliness of
assigned variables, but, to avoid allocation of an infinitely deep tree of ghost vari-
ables, we consume “complexity” of expressions (right-hand side of assignments
or operand in comparisons) on allocation.

First let us define the complexity order on expressions.

Notation 5. Let us denote � the order relation on E defined by a � b :⇔
VarM (a) �M VarM (b) ∨ (VarM (a) �M VarM (b) ∧ a ⊆ b) where ⊆ is the struc-
tural inclusion, VarM (e) is the multiset of variables in e and �M is the multiset
order induced by � [10]. ≺ denotes the corresponding strict order.

Lemma 1. Let V be a finite subset of V and E := {e ∈ E | Var (e) ⊆ V }. The
restriction to E of �M is well-founded.
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It is a well-known result [10], since � is well-founded on such a set.

Lemma 2. Let V be a finite subset of V and E := {e ∈ E | Var (e) ⊆ V }. The
restriction to E of � is well-founded.

It is a lexicographic order induced by two well-founded orders.

Notation 6. Let us denote � the smallest relation on U that satisfies

– ∀(v, e) ∈ A  A ,∀(l, op, r) ∈ C ,Var (l) ∪ Var (r) ⊆ Var (e)� ⇒ (v, e) �
(l, op, r)

– ∀((l, op, r), (l′, op′, r′)) ∈ (C  C ) × C , l′ ≺ l ∧ r′ ≺ r ⇒ (l, op, r) � (l′, op′, r′)

– ∀((v, e), (v′, e′)) ∈ (A  A ) × A , v′ � v ∧
{

e′ ≺ eif v is freshly allocated

e′ � eotherwise

}

⇒
(v, e) � (v′, e′)

Theorem 2. Let V be a finite subset of V , E := {e ∈ E | Var (e) ⊆ V } and
U := (E × O × E)  {(v, e) | v ∈ V , e ∈ E}. � is well-founded on U .

This is not enough to ensures termination in all cases. We add a last con-
straint that has been already observed in the example: new variables are under
the left-hand side of an assignment:

– ∀c ∈ C  C , π1(Ua(c)) = ∅ (comparisons don’t allocate ghost variables)
– ∀(v, e) ∈ A  A ,∀w ∈ π1(Ua((v, e))), w � v (assignments allocate only under

their left-hand side)

Finally, we need to recall an intermediate result of non-interference: the tree
of ghost variables under the left-hand side of an assignment has no intersection
with the trees under other involved variables. Consequently, any new variable
cannot appear in a comparison or the right-hand side of an assignment. Thus,
the hypotheses of Theorem 2 are indeed satisfied, ensuring termination.

4.7 Support Unification

A last big part is the problem of support unification prior to binary operation.
Unifying the support implies adding, killing and assigning variables so as to
ensure consistency of both states. But, when a variable is allocated and reduced,
it can lead to the allocation of new ghostlier variables that may be not unified.
Thus, the way to proceed is to unify the support layer by layer. First, there are
real variables: they are already unified since it is guaranteed by the language.
The first step is to unify the ghost variables in V1. This may add new ghost
variables in deeper layers. Then, variables in V2 can be unified. At this round,
domains can allocate and reduce variables only in V2 and lower layers, but, they
cannot constrain (or kill) any variable of V1 and higher. Thus, at the end of this
step, both V1 and V2 are unified. We continue this way until all variables are
unified. We simply iterate calls to B to unify layer Vi with i increasing.
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Ensuring termination of this process is quite tricky. Since each round consists
in applying unary operations on the two abstract states, they will all clearly
terminate. But, we should still have a finite number of rounds.

Unlike regular assignments that can lead to a finite but arbitrarily high num-
ber of new ghost variables depending on the right-hand side expression, unifica-
tion assignments are meant to make both states similar. The form of the forest of
ghost variables can change, but its depth must stay the same. It is a reasonable
constraint since adding a variable where there weren’t any means guessing some
information from nothing, which seems dubious.

Thus, to ensure termination, we dictate that the depth of the ghost variable
tree should not increase. The depth is the maximum number of roles nested
around a living variable. In other words, the depth for an abstract state a is
depth(a) = max {i ∈ N | supp (a) ∈ Vi �= ∅}. At the end, the depth should not
be bigger than max(depth(a),depth(b)) + 1. It is not a natural property but
a political one. It is ensured by assigning � in all variables that exceed the
maximum depth. We need each domain to be able to represent the � value
for a variable without using ghost variables. Actually, with reasonable domains,
especially domains given in example, unification never allocate variables beyond
the limit and this forced-termination protocol is never triggered.

Some unification examples will be detailed in the following.

5 Some Abstract Domains

Here are some abstract domains that benefit from this framework, or simply,
that tolerate it well.

5.1 Pointers as Base + Offset

1 int t[3];
2 int u[3];
3 int* p;
4 if (?)
5 p = &t;
6 else
7 p = &u;
8 if (?)
9 p++;

The domain described in [14] represents each pointer as a set
of blocks (typically, structures or arrays) it can point to and a
numeric offset inside these blocks. This domain has been reim-
plemented in this framework.

The old implementation use an underlying numeric domain
to handle offsets. In the new implementation, the offset is a
ghost variable. More precisely, the domain defines a single role
Offset such that the offset of the variable v is stored in the
ghost variable Offset(v). Pointer arithmetic is translated on
arithmetic computation on the offset.

For instance, at the end of the program beside, we have p = {t, u}+Offset(p)
and Offset(p) = {0, 4} (in a possible numeric domain).

If we look closer at the p++; statement. In expanded form, it is p = p + 1;.
This violates the hypothesis that the left-hand side is not part of the right-hand
side. So, internally, this statement is rewritten as q = p + 1; p = q; where q
is a fresh variable. The second generated statement is a mere copy, so not very
interesting. Let examine the first one.
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Before this assignment we have p = {t, u} + Offset(p). The pointer
domain can check that this computation is correct and has two effects:
setting the base of q to {t, u} and modifying the offset of q as
Offset(q) ← Offset(p) + sizeof(int) × 1.

5.2 Slices

In low-level system management, bitwise operations on pointers are sometimes
mandatory. A natural example is the initialization of Global Descriptor Table
(GDT) in x86 architecture. It is a structure that describes memory spaces with
their base address, their size, and some miscellaneous flags. The base address is
not stored contiguously in memory: each part is computed using bitwise opera-
tions (typically, shifts and bitwise and). The GDT can be used to describe the
main memory, but also special structures like call gates: these are mechanisms
by which a non privileged application can perform system calls. In this case, the
base address is a pointer to the function to call. And so, while accessing a call
gate, we must be able to reconstruct the pointer to check the call is valid and
continue the analysis. This need a domain that smartly handle bitwise compu-
tations. It should be able to keep a precise representation of variables that are
cut and rebuilt with bitwise operators.

The main idea is to remember that bit slices of different variables are equal.
A slice may also be 0, 1 or � (unknown). Remembering the 0 and 1 parts is
necessary to handle nicely bitmasks.

For instance, with the instruction z = x & 0xff | (y & 0xff << 16)
using the notation defined in Sect. 4.2, the slices domain will remember that

z = [0 S lice[0,7]→[0,7](z)[0, 7] 7|8 0 15|16 S lice[0,7]→[16,23](z)[0, 7] 23|24 0 31]

1 int x, y;
2 if (?)
3 y=x&0xffff
4 else
5 y=x&0xff

It requires two ghost variables to store the same value.
With more expressive roles, we could use only one ghost to
mean “this variable represents slices [0, 7] and [16, 23] of y”.
This solution may be appealing but was rejected due to the
complexity it adds into algorithms while being very rarely
useful. Indeed, it is uncommon to select two non-consecutive
slices of the same variable (here x).

Let us also look at support unification. The code above a non-trivial join. At
the end of the “if” branch, the 16 lower bits of y are those of x, while at the end
of the “else”, only the 8 lower bits are those of x. To compute the state after the
last line, we need to join these states. But the supports are different. We have
to unify the subdivisions. The first branch becomes

y = [0 S lice[0,7]→[0,7](y)[0, 7] 7|8 S lice[8,16]→[8,15](y)[8, 15] 15|16 0 31]

while in the “else” branch, we add a useless S lice[8,15]→[8,15](y) variable equal
to x. We can now proceed to the join. The first slice is the same, we keep it. The
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second slice join “0” and S lice[8,15]→[8,15](y)[8, 15] which becomes �. The third
slice is just “0” so we keep it. Overall

y = [0 S lice[0,7]→[0,7](y)[0, 7] 7|8 � 15|16 0 31]
x = S lice[0,7]→[0,7](y) = S lice[8,15]→[8,15](y)(unused)

Some ghost variables haven’t been deleted but are not used anymore. They may
be garbage collected after reduction.

5.3 Numeric Domains: A Singular Case

We can adapt vanilla numeric domains in this framework as a domain without
role. All the ghost variables management functions are consequently trivial. This
allows straightforward integration of existing numeric abstract domains to this
framework.

The converse is not true: there are numerical domains that may take advan-
tage of ghost variables. For instance, it is a way to implement signedness-agnostic
domains that need to remember the unsigned value that have the same bit-
representation of a signed variable, and conversely. This domain was already
part of Astrée but used an ad hoc implementation trick that cannot be general-
ized. This domain was naturally adapted to the new framework.

5.4 Linear Combinations

In assembly, there are several kinds of jumps. Among near jumps (the simple
family of jumps), there are two ways of specifying the destination: either by
giving the explicit address of the target instruction, or the offset relative to
the address of the current instruction. During system initialization, it might be
necessary (for technical reasons) to write dynamically in the code to set such an
offset computed as the difference between the destination function pointer and
the address of the jump instruction (pinned with a label). Both these addresses
are unknown, thus the difference must be remembered symbolically. Later, when
the jump is executed and the destination computed, the current address is added
to the previously computed difference. We can symbolically simplify this result,
and we get the expected function pointer.

The ghost variables are the terms of the linear combination. Just like the slices
domain, this domain uses ghost variables to remember values of expressions that
may be rvalues, may change or whose variables might fall out of scope.

6 Conclusion

We have proposed a new product of abstract domains that handles ghost vari-
ables. It allows decentralized allocation and deletion of ghost variables, while
still being shared by all domains. Moreover, it supports communication of arbi-
trary constraints to allow reduction of internal states, thus to improve precision.
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This framework has been implemented in the Astrée static analyzer along with
the base-offset domain [14], slices domain and an adapter from old framework to
new one to reuse all the numerical domains. This development version of Astrée
has been successfully used to analyze real-world critical source code where the
old framework is not expressive enough.

Some domains can be added to the current implementation, like linear com-
binations domain. Beyond that, though we designed this product with dynamic
support to ease pointer abstraction, there is no a priori limitation on the abstrac-
tion level at which it can work. For instance, one can adapt this domain to make
reduced product of shape abstraction domains. A product with dynamic support
can indeed be a nice and modular way to implement cofibered domains. Thereby,
a list-abstraction domain can seamlessly use integers as the content of the list,
or any other available domain, such as another kind of data-structure.
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Abstract. We present a novel approach based on supervised machine-learning
for inverting String Manipulating Procedures (SMPs), i.e., given an SMP p : Σ̄ →
Σ̄, we compute a partial pseudo-inverse function p−1 such that given a target
string t ∈ Σ, if p−1(t) �=⊥ then p(p−1(t)) = t. The motivation for addressing this
problem is the difficulties faced by modern symbolic execution tools, e.g., KLEE,
to find ways to execute loops inside SMPs in a way which produces specific
outputs required to enter a specific branch. Thus, we find ourselves in a pleas-
ant situation where program analysis assists machine learning to help program
analysis.

Our basic attack on the problem is to train a machine learning algorithm using
(output, input) pairs generated by executing p on random inputs. Unfortunately,
naively applying this technique is extremely expensive due to the size of the
alphabet. To remedy this situation, we present a specialized static analysis algo-
rithm that can drastically reduce the size of the alphabet Σ from which examples
are drawn without sacrificing the ability to cover all the behaviors of the analyzed
procedure. Our key observation is that often a procedure treats many characters
in a particular uniform way: it only copies them from the input to the output in an
order-preserving fashion. Our static analysis finds these good characters so that
our learning algorithm may consider examples coming from a reduced alpha-
bet containing a single representative good character, thus allowing to produce
smaller models while using fewer examples than had the full alphabet been used.
We then utilize the learned pseudo-inverse function to invert specific desired out-
puts by translating a given query to and from the reduced alphabet.

We implemented our approach using two machine learning algorithms and
show that indeed our string inverters can find inputs that can drive a selection
of procedures taken from real-life software to produce desired outputs, whereas
KLEE, a state-of-the-art symbolic execution engine, fails to find such inputs.
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1 Introduction

Recently, there has been a growing interest in applying machine learning techniques
to challenging program analysis problems [9,22,23,25,27,28,32]. In this paper, we
address the dual question: Can program analysis techniques help machine learning? We
perform a preliminary case study in which machine learning algorithms are used to
invert string manipulating procedures (SMPs), and show that in this domain the answer
is reassuringly positive. Interestingly, the models generated by the machine learning
algorithms can themselves be of help to other program analysis tools. Specifically, they
can help improve the coverage of symbolic execution tools such as KLEE [2]. Thus, we
find ourselves in a pleasant situation where program analysis assists machine learning
to help program analysis.

Research Problem. Let Σ be a (possibly infinite) set of characters ranged over by a
meta-character σ. A string s ∈ Σ is a finite sequence of characters. Given a deterministic
SMP p() which transforms input strings s ∈ Σ to output strings p(s) ∈ Σ, where p(s)
denotes the output p() returns when invoked on s, our goal is to find a partial right
pseudo-inverse of a (possibly non-injective) p, i.e., a function p−1 : Σ ↪→ Σ such that

∀s′ ∈ Σ. p−1(s′) �= ⊥ =⇒ p(p−1(s′)) = s′.

Clearly, the problem is decidable as we can always have p−1 = ⊥. Another trivial
solution is to define p−1 to be the identity function wherever it coincides with the inverse
of p, i.e., have

p−1(s′) =

{
s′ p(s′) = s′

⊥ otherwise.

Thus, the challenge is to come up with a function p−1 with non-trivial domain of def-
inition. Ideally, p−1 should be able to help automatic test generation, as we discuss
now.

Motivation. The ability to invert string-manipulating procedures (SMPs) is useful, for
example, in the context of tools for automatic test generation, e.g., KLEE [2]—a state-
of-the-art symbolic execution engine. These tools automatically generate test cases,
aiming to exercise as much of the program’s code as possible. For example, KLEE
uses various heuristics to explore the program’s code: it continuously selects code paths
that lead to not-yet-explored statements, applying a satisfiability-modulo theory solver
(SMT) [4,6] to determine whether a path is feasible, i.e., that there is an input which
causes the selected path to be executed. As the exploration is path-sensitive, the tool
may inspect an exponential number of code paths when exploring a loop containing
a conditional, while generating formulae whose size is proportional to the length the
inspected path. As a result, it can be challenging to cover a statement following a call to
an SMP p which can be reached only if p returns a specific output s′. Ideally, when
the engine reaches such a difficult-to-handle branch condition, one would want the
symbolic execution engine to abandon the execution path it followed within p(), and
instead, try to execute it “backward” to produce s′. Our technique equips the engine
with such an ability by generating an “inverse shortcut”—a function that inverts the
behavior of p() without the cost of a path-by-path exploration.
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Learning Pseudo-Inverses. Our goal is to help tools such as KLEE to find inputs which
drive SMPs to produce desired outputs. We suggest to do it using machine learning:
Given an SMP p() mapping input strings s to output strings p(s), we apply a supervised
machine learning algorithm to learn a model of a pseudo inverse of p. The model should
be capable of translating strings, i.e., given a string s′ the model should be able to find
a string s which it predicts to be an inverse of s under p.

Roughly speaking, producing the model entails generating a set of arbitrary inputs
{si}n

i=1, executing p on each input, thus producing a training set T = {(p(si),si)}n
i=1,

and finally training the algorithm on T . Note that T is comprised of pairs of strings map-
ping the output of p() to the input which produced it. Thus, by training the algorithm
using T , we in fact learn a model which approximates the behavior of a pseudo-inverse
of p().

The Challenge. Unfortunately, a naive generation of the training set can be extremely
inefficient in the sense that many output/input pairs effectively expose the same behav-
ior. For example, consider an SMP which adds an escape character before tab and new-
line characters in its input. If we use randomly generated training sets, p() will act as
the identity function on most of the examples, and it might require a very large training
set to expose other, more “interesting”, behaviors: A randomly constructed string with
10 resp. 88 characters has a 92% resp. 50%, chance not to include a tab or a newline
character. As a result, the machine learning algorithm might find it difficult to gener-
alize the interesting cases (or outright ignore them, considering them to be noise), and
end up learning a bad approximation of the inverse.

Our Solution: Learning with Reduced Alphabets. To remedy the above situation, we
propose a static analysis which allows to reduce the alphabet from which the training set
examples are drawn, without scarifying the ability to encode any “interesting” behav-
iors. In fact, our approach increases the chances of generating “interesting” examples
by reducing the part of the alphabet from which “non-interesting” examples are drawn.
Intuitively, we identify a set of good characters (Definition 2) whose only effect on the
analyzed procedure is to be copied in an order-preserving manner from the input to the
output. Our key insight is that given such a set, it is possible to expose all the interest-
ing behaviors of a procedure using an alphabet containing a single representative good
character, and deduce the effect of an SMP on a string containing characters which were
not found in the reduced alphabet from its effect on a similar string (Definition 1) whose
characters do.

Alphabet Reduction via Static Analysis. To automate the selection of good characters,
we designed a static analysis that can find the set of good characters for a given string
manipulating procedure. Our analysis handles a restricted class of procedures. In this
class, a procedure takes a string input and returns a string output. The procedure can
read its input from left-to-right, from right-to-left, or in both directions, however each
input character is read only once. The procedure is allowed to use variables that can
hold character values and employ conditionals and loops, where condition can only test
whether a character variable is equal or not to another variable or to a constant. While
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simple, we found that our restricted programming model is still expressive enough to
handle a variety of procedures.

Technically, the static analysis maintains an order between the variables according
to the position of the input character that they got their value from. Essentially, when-
ever a variable x containing an input character is written to the output out of turn, i.e.,
before any other variable y holding an input value σ which was read off the input x
was set, the analysis determines that the σ cannot be good. Similarly, writing a constant
character const to the output leads the analysis to dictate that const is not good either.

Implementation and Experimental Evaluation. We implemented our analysis in a tool
called STRINVER. We applied it to invert a small selection of procedures written in C
and taken from real-life software. (The tool operates on LLVM bitcode.) We then ran
KLEE on a simple program containing a call to the SMP followed by an erroneous
command whose execution is predicated on the SMP returning a particular output. Our
analysis succeeded to find useful pseudo-inverses of the particular outputs in a few
seconds, whereas KLEE, a state-of-the-art symbolic execution tool, failed to find an
input which lead to the bug.

Main Contributions. The main conceptual contribution of our work is the observation
that when a machine learning algorithm is used to discover properties of programs, it
might be possible to use program analysis to help direct the choice of the training set
towards examples that expose interesting behaviors. The main technical contribution of
our work is the concretization of this observation by developing a static analysis algo-
rithm which allows to reduce the size of the alphabet from which examples are drawn
when learning pseudo inverses of a restricted class of string manipulating procedures.
The main practical contribution of our work is the implementation of the analysis and
an empirical evaluation where we applied our technique to a small selection of proce-
dures taken from real-life software. Also, to the best of our knowledge, the idea of using
machine learning to invert string-manipulating procedures is novel.

2 Overview

In this section, we motivate our research problem and give a high-level overview of our
approach by walking the reader through a series of examples.

Example 1. Figure 1 shows procedure escapeWS(), an SMP which returns a copy of
its input string with a $ character before every 5 and 8 character it contains.1 For exam-
ple, given the input string “Ali5BaBa8”, escapeWS() outputs “Ali$5BaBa$8”.

To motivate the need for computing inverses of SMPs, assume that we wish to sym-
bolically execute a program which aborts in an error state only if escapeWS() produces
a particular output, e.g.,

1 The procedure is based on a GCC procedure which adds an escape character before tab and
newline characters. For clarity, we replaced the whitespace characters with more visible char-
acters. For simplicity, we removed code concerning array bound checking.
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Note that escapeWS() produces “Ali$5BaBa$8” only if it is given “Ali5BaBa8”
as input. To find this input, symbolic execution engines such as KLEE would have to
follow a very particular code path, namely the one in which the loop body is executed
nine times and the true branches of the first and second if statements are taken after
reading the fourth and ninth input characters, respectively.

Our goal is to help tools such as KLEE to find inputs which drive SMPs to pro-
duce specific desired outputs. We would like to use an off-the-shelf supervised machine
learning algorithm and train it to generate a model of the inverse function. While it
is quite easy to generate random inputs, most of them will be non-representative of
the function’s actual semantics, necessitating large training sets, as we noticed in our
experiments. Consider again procedure escapeWS() shown in Fig. 1. It is easy to see
that the procedure acts rather uniformly on most of the input characters: all the charac-
ters are copied from the input string to the output string in an order-preserving fashion,
only characters 5 and 8 trigger an insertion of the ‘$’ character. Thus, if the input string
does not contain characters 5 and 8 then the procedure acts as the identity function.
Thus, intuitively, all the “interesting” behaviors of the procedure should be detected by
considering string comprised of four characters: 5, 8, $, and an arbitrary character M
representing all other characters.

Fig. 1. A simple SMP4 and a transducer approximating its pseudo-inverse under the reduced
alphabet

Inverting SMPs with Reduced Alphabets. To remedy the above situation, we propose a
static analysis which allows to reduce the alphabet from which the training set examples
are drawn, without scarifying the ability to encode any “interesting” behaviors. Our key
insight is that if we can identify that the SMP does not distinguish between several
characters then it might be possible to expose all the interesting behaviors of a procedure
using an alphabet containing a single representative character of the set, and deduce the
effect of an SMP on a string containing characters which were not found in the reduced
alphabet from its effect on a similar string whose characters do. In this paper, we focus
on a particular class of indistinguishable characters, those which the procedure act on
as, essentially, the identity function, and refer to these characters good characters.
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Definition 1 (Similar strings). Let S ⊆ Σ be a set of characters. Strings s1 ∈ Σ and
s2 ∈ Σ are similar up to S, denoted by s1 ∼S s2, if |s1|= |s2|, where |s| denotes the length
of a string s, and for every i = 1..|s1|, it holds that either s1(i) = s2(i) or {s1(i),s2(i)} ⊆
S.

Definition 2 (Good characters). Given a procedure p() and a string s, a set of char-
acters G(s) ⊆ Σ is good for s and p() if s|G(s) = p(s|G(s)), where s|G(s) denotes the
maximal subsequence of s comprised of characters in G(s). A set of characters G is
good for p() if it is good for p() and any input string s.

Lemma 1. Let G ⊆ Σ be a set of good characters for p(). For any two strings s1 and
s2, if s1 ∼G s2 then p(s1) ∼S p(s2).

Given a procedure p(), our static analyzer, discussed next, finds a set of good char-
acters for p() by way of elimination. For example, our analyzer finds that the set
{$,5,8} is bad for procedure escapeWS(). We use this result to construct a reduced
alphabet Γ = {$,5,8,M}, where M ∈ Σ is the single representative of the good charac-
ters, which we refer to as a metacharacter. Given Γ, we apply the aforementioned learn-
ing process; this time, however, we generate the training set by only drawing examples
from Γ. Our static analysis is independent of the machine learning algorithm used to
find the inverse. In our experiments, we use two such algorithms: OSTIA [14], which
learns a transducer, and the other is a non deterministic model for character inser-
tion/replacement/deletion based on the Needleman Wunsch alignment algorithm [20].
(See Sect. 6.) A transducer is a finite state machine that, instead of accepting or rejecting
an input string, outputs characters upon transition. Figure 1 depicts a transducer approx-
imating the pseudo inverse of escapeWS() which OSTIA has learned using a training
set comprised of 100 strings, randomly generated over Γ. (We explain the graphical
notations in Sect. 6.1.) In our example, the transducer has two states, where state 0 is
the initial one. An edge labeled

x::s→ is traversed when reading an input character x and
it outputs the string s. (For further details, see Sect. 6.) For example, when applied to
the string s′ = MM$5$5MM$8, the transducer outputs the string s = MM55MM8. Note
that executing escapeWS() on s results in s′, i.e.,

escapeWS−1(MM$5$5MM$8) = MM55MM8.

In fact, if we only consider strings comprised of characters coming from Γ then the
transducer in Fig. 1 can invert any string in the image of escapeWS().

Static Analysis for a Restricted Class of SMPs. One of the key technical contributions
of this paper is the design of a static analysis that can find a set of good characters
for a given string manipulating procedure. Our analysis handles a restricted class of
procedures. In this class, a procedure takes a string input and returns a string output.
The procedure can read its input from left to right or from right to left, however each
input character is read only once. The procedure is allowed to use variables that can
hold character values and employ loops and conditions where a variable is compared
with a constant character or another variable. While simple, we found that our restricted
programming model is still expressive enough to handle a variety of procedures.
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The analysis abstracts the execution trace of the procedure by maintaining an order-
ing over program variables according to the position of the input character that they
got their value from. Essentially, whenever a variable containing an input character is
written out of order, the analysis determines that the values of all the unwritten vari-
ables that may have been read before it are not good. Writing a constant character to
the output also leads the analysis to decide that this character is not good either.

String Inversion. Given the machine learning model approximating a pseudo inverse
of p() and an output string s′, we first replace every good character in s′ with the meta
character. For example,

s′ = Ab$5$5T @$8
translates to−−−−−−→ s′

0 = MM$5$5MM$8.

We then execute the transducer using s′
0, which returns s0. Recall that

escapeWS−1(s′
0) = s0. Our main theorem (see Sect. 5) ensures that the static analysis

indeed finds a set of good characters for the analyzed procedure. Thus, using Defini-
tion 2, we can get an input s which would lead to the desired output s′ by replacing the
meta character M back to the good character it came from in s′. For example,

s0 = MM55MM
translates back to−−−−−−−−−→ s = Ab55T @8.

Indeed, escapeWS(Ab55T @8) = Ab$5$5T @$8.

Disclaimer. We note that our technique is not guaranteed to always find an input s
which leads p() to produce a particular output string s′. This can be because p() is not
surjective and p−1(s′) is undefined, or because the translation model produced by the
machine learning algorithm is not accurate enough. (To isolate any client application
from this kind of inaccuracy, and as we have p() at our disposal, we can execute p()
on s and validate that indeed it returns s′). Furthermore, in case p() is not injective,
and there might be multiple inputs leading to a specific output, the model we learn may
return an arbitrary string, which, untested by a forward execution, might not even be
in the preimage of p. However, as our technique involves generating a random training
set, re-executing the learning phase may create a different model which would possibly
find a different input.

3 Programming Language

We formalize our results for a simple imperative programming language specialized for
string processing: Every program receives a string as input and produces a string as out-
put. The design of the language is inspired by real life examples of string manipulating
procedures which often process their inputs character by character.2

2 We remind the reader that our tool operates directly on LLVM bitcode.
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Computation Model. Roughly speaking, programs have at their disposal two read heads
and two write heads. The input resides in the read buffer. The first read head is used to
read the input from left to right, and the last read head allows to read the input from right
to left. Once a read head inspects a character, it advances to the next position. A special
built-in expression done() allows the programmer to determine whether all the input
characters have been read. Trying to read a character after all the input has been read
blocks the program.3 The program produces its output using the write heads. The first
write head writes characters to the program’s first write buffer, and the last write head
writes to the program’s last write buffer. The first write buffer is written from left to tight
and the last write buffer is written from right to left. When the program terminates, it
returns a concatenation of the first and last write buffers. This model allows us to handle
programs which process their input string in a character by character fashion and read
every character at most once in a sequential manner going from the beginning of the
string to it end, the other way around, or even alternating between the two directions.

Fig. 2. Syntax of the programming language and a version of procedure escapeWS() written in
our programming language. ��∈ {=, �=}

3.1 Syntax

Figure 2 defines the syntax of our programming language and, as an example, shows a
possible encoding of procedure escapeWS() in our language.

A program is a statement stmt, which can be either a primitive command cmd, a
sequential composition of statements, denoted by juxtaposition, a conditional statement,
or a while loop.

Primitive commands allow to read input characters, write output characters, and
assign the values of expressions to variables: The command x = read-first() reads
a character from the input using the first reading head, and assigns it to variable x. The
command x = read-last() does the same using the last read head. The commands
write-first(x) and write-last(x) write the contents of x to the first and last output
buffers, respectively. We allow for assignments of the form expression x = exp where an

3 The choice to block the program was done in the sake of simplicity. Alternatively, we could
have designed the language to signal an error.
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expression exp is either a character variable or a constant character. The return com-
mand terminates the execution of the program and produces the output by concatenating
the write buffers.

Conditional statements and while loops use boolean expressions bexp which allow
to check whether the value of a given variable is equal to a given expression or not. Two
additional boolean expressions are the special built in operators done() and !done(),
which allow the program to determine whether all its input has, respectively, has not,
been read.

Fig. 3. Concrete meaning of commands. ��∈ {=, �=}

3.2 Concrete Semantics

Before defining the meaning of programs in our language, we introduce some notation.

Notation. We assume a (possibly infinite) domain (alphabet) of characters Σ ranged
over by the meta variable σ, and a syntactic domain VAR of variable names, ranged
over by v,x, . . ., which we also use as a semantic domain. A string s ∈ Σ is a sequence
of characters, i.e., a function from 1..n, for some n ∈ N

0, to Σ. In the following, we
denote string concatenation by juxtaposition and the empty string by ε. Given a function
env, we write env[x �→ y] to denote a function which acts like env anywhere except at x,
where its value is y.

Concrete Memory States. A concrete memory state

m = (in,outF ,outL,env) ∈M = Σ×Σ×Σ×E

is a quadruple. The first three components, namely in, outF , and outL, are strings which
store the contents of the program’s read buffer, first write buffer, and last write buffer,
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respectively. env ∈ E = VAR → Σ is an environment which records the values of vari-
ables. We assume that variables are initialized to some fixed zero character. By abuse of
notation, we let env(const) = const for any constant character const.

Operational Semantics. Figure 3 defines the meaning of programs using a small step
operational semantics. The latter is defined by translating the program into a control-
flow graph form, and encoding conditional using assume commands in the stan-
dard way: executing an assume(bexp) command blocks the execution on state where
bext does not hold, and does not change the state otherwise. The meaning of com-
mands is rather self explanatory. We only direct the reader’s attention to the fact that a
write-first() command adds a character at the end of the first write buffer whereas
the write-last() command adds a character at the beginning of the last write buffer
and that the program gets stuck if it tries to read an input character when the read buffer
is empty.

4 Instrumented Semantics

The purpose of our static analyzer is to help reduce the size of the input alphabet used
by the machine learning algorithm when computing the pseudo-inverse of the analyzed
SMP. To do so, it detects characters on which the SMP act as the identity function: It
turns out that rather often a string-manipulating procedure treats many characters in a
particularly uniform way; it only copies them once from the input to the output in an
order-preserving fashion. The static analyzer conservatively finds these good characters,
and enables the use of a single good representative character in the alphabet during
learning. This reduction in the size of the alphabet translates to a huge benefit for the
learning algorithms, as we discovered in our experiments.

The instrumented semantics extends the concrete one with properties which are of
matter to the analysis. The main tracked property is the set BAD ⊆ Σ of bad characters
for the execution. We explain the role of BAD by describing its complement GOOD =
Σ−BAD. A set of characters G ⊆ Σ is good if every time a character ∈ G is read off the
input, it is copied as-is to the output. In particular, the subsequences of the input and
output strings comprised of the good characters are identical. (see Definition 2.)

The goal of our static analysis is to determine a set of good characters for an SMP.
The role of the instrumented semantics is to explicate which properties of the execution
are tracked to facilitated this task. Thus, when the instrumented semantics terminates, it
returns, in addition to the output string, the set of bad characters it computed. Let p̂(s) =
(s′,BAD) denote the output p() produces if it executes according to the instrumented
semantics on input string s. The usefulness of the instrumented semantics as a basis for
analysis stems from the following lemma.

Lemma 2. Let p() be an SMP and s, s′ strings. If p̂(s) = (s′,BAD) then Σ \ BAD is a
good set of characters for p() and s.
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Fig. 4. SMP showDough()

4.1 Instrumented States

Instrumented states record properties pertaining to the flow of information from the
input string through variables to the output string. Specifically, every instrumented
state augments a concrete state with four binary relations EF ,EL,RF ,RL ⊆ Σ × Σ
and the set of possibly-not-good characters BAD ⊆ Σ. We refer to the quintuple
ι = (EF ,EL,RF ,RL,BAD) as an instrumentation. We assume the components of the
instrumentation are initialized to /0.

m̂ = (m, ι) ∈ M̂ =M × Î

where ι = (RF ,RL,EF ,EL,BAD) ∈ Î = (2VAR×VAR)4 ×2Σ.

The m component of an instrumented state is the concrete state it augments.
EF and EL are equivalence relations over variable names. Recall that in our lan-

guage, a variable can be assigned a value either by reading into it a character from the
input, assigning into it a constant value, or assigning into it the value of another variable.
EF equates variables whose values originated from the same read-first() operation,
either directly, or through a sequence of copy assignments. For example, in the instru-
mented state which arises at program point 3 in Fig. 4, EF = {(x,x),(y,y),(y,z),(z,y),
(z,z)}. EL does the same for variables whose value was originated from a read-last()
command. In Fig. 4, there are no read-last() commands. Thus, EL = /0 at any state
which arises during the execution.

RF and RL are preorders over variable names. RF represents the order in which
variables were read using the first reading head, and RF represents the order in
which variables were read using the last reading head. Both orders take variable
copy-assignments into account. For instance, at the instrumented state in program
point 3, RF = {(x,x),(y,y),(z,z),(y,z),(z,y),(x,y),(x,z)}. RL = /0 because there are no
read-last() commands.

BAD over approximates the set of bad characters for the input string on which the
SMP executes to produce the state. The over approximation is based on the flow of
characters from the input string to output string, as we discuss in Sect. 4.2.

Healthiness Conditions. The instrumentation in instrumented states respects certain
natural healthiness conditions: A variable may appear in RF only if it appears in EF ,
as in a concrete execution the order in which input characters is read is total and every
input character may be read at most once. In fact, RF can be seen as a total order over
the equivalence classes of EF . A similar relation exists between RL and EL. Finally, a
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variable cannot appear in both EF and EL as an input character may be read either by
the first read head or by the last read head.

4.2 Instrumented Small-Step Operational Semantics

The instrumentation is manipulated by the instrumented transformers presented in Fig. 5
which defines a deterministic transition relation over Î × Î .4 The transition rules of the
instrumented semantics extends the ones of the concrete semantics to track must value-
flow information:

m
cmd−−→ m′ ι cmd−−→m ι′

(m, ι) cmd−−→ (m′, ι′)
cmd �= return

m
return−−−−→ s ι return−−−−→m BAD

(m, ι) return−−−−→ (s,BAD)

The transition relation of the instrumented part of the state is parameterized with the
source concrete state of the transition because it requires access to the environment.

We define the rules in Fig. 5, which we explain next, using the following shorthand:
Let R resp. E be a binary resp. equivalence relation over variable names and X a set of
variable names. We use the following as shorthand R|¬X ≡ {(a,b) ∈ R | (a /∈ X)∧ (b /∈
X)} removes from R any pair coming from X × X , �v�E ≡ {x | (x,v) ∈ E} denotes the
equivalence class of v in E, and Add(R,v,x)≡ R∪{(a,v) | (a,x)∈ R}∪{(v,a) | (x,a)∈
R} adds v to R in the same positions as x.

The instrumented semantics of a v= read-first() command removes any mention
of v from all the relations in the instrumentation—it might be there because its value
could have come from a previous read command. It then places it in its own equivalence
class in EF and as the minimal element in RF : v is the only variable that got its value
from that read-first() operation, which is the last command executed so far. If before
the assignment v relates only to itself in either EF or EL then its value is about to be
overridden and lost before having a chance to get written to the output. Hence, in this
case the value of env(v) is considered a bad character.

The instrumented meaning of write-first(v) removes any mention of v or any of
the variables in its equivalence class according to EF from any relation it belongs to.
This is because a read good character should not be written more than one time to the
output. If v got its value from a constant assignment or from the opposite read head, or
if its value has already been written then env(v) becomes a bad character. If v did get its
value from the first-head but it is not written in the right order, i.e., it is not a maximal
element in RF then the contents of all the larger variables in RF becomes bad.5

The instrumented meaning of a v := exp removes v from its current place in the
instrumentation and, if exp is a variable, places v in the same relations and at the same
positions as exp. If v was the only variable to contain a value coming from a read
command then env(v) becomes a bad character.

The instrumented meaning of a return command ends the execution with the accu-
mulated BAD set.

4 The transformers pertaining to read-last() and write-last() operations are similar to
those of read-first() and write-first(), respectively, and are thus omitted.

5 An equally plausible alternative would be to make env(v) bad.
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Fig. 5. Instrumented semantics. The transformers pertaining to assume commands act like the
identity function. m = (_,_,_,env). We assume v �= x

The rules in Fig. 5 never interfere with neither the values nor the control of the
underlying concrete semantics. They also preserve healthiness.

Lemma 3. Let (m, ι) and (m′, ι′) be instrumented states and cmd a command such that

(m, ι) cmd−−→ (m′, ι′). If ι is a healthy instrumentation then ι′ is healthy too.

5 Static Analysis

Our abstract interpretation algorithm over-approximates the instrumented semantics
described in Sect. 4 by replacing the concrete memory state component of instrumented
states with an abstract one.

Abstract States. Our static analysis algorithm computes an abstract instrumented state

A = (m�, ι) ∈ A =M � × Î where m� = (Done,env�) ∈M �.

at every program point. An abstract instrumented state is comprised of an abstract
state m� = (Done,env�) and an instrumentation ι ∈ Î (see Sect. 4.1). The Done com-
ponent of the abstract state abstracts the number of unread characters, i.e., whether the
two read-heads passed each other or not: {T} means that all the input characters have
been read, {F} means the opposite, and {T,F} means that the situation is unknown.
env� : VAR → 2Σ is an abstract environment mapping variable names to the sets of their
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possible values. The instrumentation component ι is utilized for the same purpose and
in the same way as in the instrumented semantics.

Notice that while env�(x) ∈ 2Σ may be infinite, the only changes to it are additions
and removals of values that occur as literal constants in the program. Therefore the
number of such distinct values is at most 2k, where k is the number of such constants.
This provides a termination guarantee of the analysis even with an infinite alphabet.

Join. The least upper bound (join) operator is defined as follows:

(m�
1, ι1)� (m�

2, ι2) = (m�
1 �m�

2, ι1 � ι2), where

(Done1,env�
1)� (Done1,env�

1) = (Done1 ∪Done1,λx.env�
1(x)∪ env�

2(x))(
R1

F ,R1
L,E1

F ,E1
L,C1,BAD1

)� (
R2

F ,R2
L,E2

F ,E2
L,C2,BAD2

)
=

(R1
F ∩R2

F ,R1
L ∩R2

L,E1
F ∩E2

F ,E1
L ∩E2

L,BAD3)

where BAD3 = BAD1 ∪{σ ∈ ρ1(x) | x ∈ E1
F −E2

F ∪E1
L −E2

L}∪
BAD2 ∪{σ ∈ ρ2(x) | x ∈ E2

F −E1
F ∪E2

L −E1
L}

With the exception of the BAD component, it is easy to see that the resulting state is
indeed the least upper bound of the two abstract instrumented states. The reason we
chose in to intersect most of the component of joined instrumentations is rather clear—
we track must information. To understand the reason why defining BAD3 = BAD1 ∪
BAD2 would not suffice to ensure a sound analysis consider a scenario when (x,x) ∈
E1

F − E2
F . Had we kept (x,x) ∈ E3

F , then a future write-first(x) possibly violates
the goodness of the character set ρ3(x) as it may be written without ever being read.
On the other hand, as we discarded (x,x) from E3

F , we opened the door for a future x
= read-first() to possibly violate the goodness of the character set ρ3(x), as some
characters may have been read without ever being written. So whenever (x,x)∈ Ei

F −E j
F

({i, j} = {1,2}) we include ρi(x) in BAD3. The same line of reasoning applies to EL

too. Thus, we add to BAD3 the characters associated with the variables found in the
symmetrical difference of the relevant equivalence relations.

5.1 Concretization

The concrete domain which we use to justify the soundness of our analysis is the pow-
erset of instrumented states. The concretization function γ maps an abstract state to a
set of instrumented ones. Let ι = (RF ,RL,EF ,EL,BAD), then

γ(((Done,env�), ι)) = {((in,outF ,outL,env),(Rc
F ,Rc

L,Ec
F ,Ec

L,BADc)) |
in = ε → T ∈ Done∧ in �= ε → F ∈ Done∧
∀x.env(x) ∈ env�(x)∧
Rc

F ⊇ RF ∧Rc
L ⊇ RL ∧Ec

F ⊇ EF ∧Ec
L ⊇ EL ∧BADc ⊆ BAD

When an abstract instrumented state ι� = (A, ι) represents an instrumented state
((in,outF ,outL,env) , ιc), A’s Done component conservatively tracks whether all the
input characters in in have been read and that the values env gives to variables agree
with the ones provided by the abstract environment. The instrumentation ιc of the con-
crete state should track no less information regarding the information flow of characters
from the input string to the output string as does the instrumentation ι. The latter should
also consider as bad any bad character in ιc.



194 O. Ish-Shalom et al.

Fig. 6. Abstract semantics. ϕ(z) = z′ = z∨ z′ ∈ �z�EF ∨ �z�EL

5.2 Abstract Transformers

The abstract transformers are defined by replacing the concrete component in the tran-
sition rules of the instrumented semantics with the rules pertaining to abstract states
defined in Fig. 6 and adapting the rules in Fig. 5 to utilize an abstract environment
instead of a concrete one as explained below

m� cmd−−→ m�′ ι cmd−−→m� ι′

(m�, ι) cmd−−→ (m�′, ι′)

Again, the transition relation of the instrumented part of the state is parameterized
with the source abstract state of the transition because it requires access to the abstract
environment. The required adaptation of Fig. 5 is rather direct: where ever an expression
of the form {env(x)} appears in a rule, we replace it with env(x).

The rules are quite simple; the tricky ones pertain to assume statements regarding
inequalities, which we now explain.

The abstract transformer of command assume(v!=const) blocks the execution if
the only possible value of v is const. Otherwise, it merely records that const is not
in fact a possible value of v. Note that not only env�(v) may be adapted, but in case v
got its value from the input string, any variable who got its value from the same read
operation, i.e., in the same equivalence class as v in either EF or EL, may have the set
of its possible values refined.
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Fig. 7. An SMP written in C and its pseudo-inverse as learned by OSTIA.

Fig. 8. A transducer implementing the SMP in Fig. 2

The abstract transformer of command assume(v!=const) blocks the execution if
the only possible value of v is const. Otherwise, it merely records that const is not in
fact a possible value of v. The abstract transformer of command assume(v!=y) blocks
the execution if the abstract environment associates both variables with the same single
character. Otherwise it attempts to refine the set of possible values of one variable if the
other one is associated with a singleton set.

Main Theorem. The static analysis algorithm computes at every program point an
abstract state which over-approximates any instrumented state which can arise at this
point for some input string. We denote by BAD(p) the union of the BAD sets at p()’s
exit points, i.e., right after p() executes a return command. Our main theorem, whose
proof follows directly from Lemma 2 and the soundness of the analysis, states that the
analyzer computes a set of good characters p().

Theorem 1. Let p() be an SMP. Σ\BAD(p) is a good set of characters for p().
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6 Learning Pseudo-Inverse Functions

Our overall goal is that given an SMP p and a desired output string s′ to find a string s
such that p(s) = s′. One natural candidate for s is s′ itself. Thus, when trying to learn an
inverse we look for an input s �= s′ such that p(s) = s′ and hence when generating the
training examples, we only use ones where the input is different from the output. Also,
if p() is not injective, then it may have many pseudo-inverses, and there is no a priori
way to favor any of them. Thus, it suffices to learn an arbitrary pseudo-inverse of p().

The learning algorithms chosen to be employed in this paper are the ones we thought
handle best the SMPs we have examined. However, they can be easily interchanged
with others—our approach, as we said before, is independent of the chosen learning
algorithm.

6.1 Learning Transducers with OSTIA

Transducers are deterministic finite state machines that are used to translate strings. We
explain them using the example transducer depicted in Fig. 7. Just like DFAs, transducer
read their input strings from the left to the right, character by character, and traverse
edges according to a transition function. In addition, as edges are traversed, the trans-
ducer prints characters to the output. If the input string MMMM## is fed to the trans-
ducer, it will go through states 0,2,5,0,2,6,0, and print the output string MMMM#$#.
Any states of the transducer can hold inner strings. If some state q is a final state for
the transduction, and it holds an inner string sigma, then it is appended at the end of the
output. For example, the transduction of MMMM# equals MMMM$#.

OSTIA [14] is a supervised learning algorithm that is capable of learning transduc-
ers. Assuming the training set is without noise, like in our case, OSTIA is guaranteed
to converge to the real transducer as the size of the training set increases. The SMP
from Fig. 2 and its inverse are both transducers, and we depict them in Figs. 1 and 8,
respectively. Every state of the transducer is depicted as a square containing a unique
identifier, with state 0 being the initial state, and the string sigma which is appended to
the output if the transduction end at that state. Transitions between states are depicted
as edges annotated with σ ::s denoting the character σ which triggers the transition and
the string s appended to the output due to taking the transition.

OSTIA succeeds in learning the exact inverse at the right hand side of the figure. In
its essence, OSTIA is an iterative state merging algorithm. At each step the algorithm
considers pairs of states as candidates for a possible merge, and if the resulting merged
transducer is consistent with the training set, it accepts the merge and proceeds to the
next iteration. The transducer in Fig. 7 is the pseudo inverse OSTIA learns for the SMP
shown in the same figure. The character # in an output string could have originated from
either #, $ or $# in the input string. While randomizing our input for the training set, all
three possibilities introduce themselves. This is evident in the transducer, as the edges
(5,0),(2,6),(6,0) choose a different source for the # character each. Thus neither # nor
$ can be good characters.
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6.2 Needleman Wunsch Alignment Algorithm

To show the versatility of our approach, we also used the alignment algorithm of
Needleman-Wunsch [20] to learn procedure inverses. The algorithm is designed to
align input and output strings, where the latter comes from the former by perform-
ing a sequence of steps. In each step a character is either deleted, inserted or replaced
by another character. Naturally, as the number of steps is smaller, and the input and
output are close in terms of edit distance, the results of the alignment are better. Our
application uses a random set of inputs {si}n

i=1 just as before, and apply p on each
element of the set to end up with a training set {(si, p(si))}n

i=1. Note, the order of the
training set has changed, as we now want to learn the effect of the original SMP p.
Each (input,output) pair is then aligned, and three probability tables are accumulated
for the original SMP p: (1) A two dimensional table Tr(p) for character replacements,
in which Tr(p)[$][#] = 0.45 means that there is an estimated probability that a $ in
the input string will be replaced by a #. (2) A one dimensional table Td(p), in which
Td(p)[∗] = 0.95 means there is a probability of 0.95 that ∗ will be deleted from the
input string. (3) A one dimensional table Ti(p), in which Ti(p)[@] = 0.55, means there
is a 0.55 probability of inserting @ somewhere in the output. Once these tables have
been learned for the original SMP p, they can be used to deduce pseudo inverses p−1:
If Tr(p)[$][#] = 0.45 then clearly Tr(p−1)[#][$] = 0.45. Deducing Ti(p−1)[∗] based on
Td(p)[∗] is a little more subtle, and should also take into account the prevalence of the
character ∗ in the input strings of the training set. Note that for more accurate results,
Ti(p−1)[∗] depends on the length of the string y it wishes to invert. Finally, computing
Td(p−1)[@] from Ti(p)[@] depends on the prevalence of the character @ in the output
strings of training set, the prevalence of @ in y, and the length of y too. It is impor-
tant to stress out that the resulting pseudo inverse p−1 is not deterministic, and could
return different outputs when invoked multiple times. This can be seen as an advantage,
because of p−1(y) failed to find a relevant x, we do not have to perform the learning
process again, but simply call p−1(y) again.

7 Implementation and Experimental Evaluation

We have implemented our ideas in a tool called STRINVER. The tool gets as input
an SMP p() written in LLVM [18] intermediate representation language, and a con-
crete query string y. (In our experiments, we used procedures written in C, compiled
using Visual C 2010.) The tools checks whether the procedure falls within the class of
restricted SMPs we handle (see Sect. 3) by expecting it to follow certain syntactic con-
ventions, and if so it looks for a string s such that s �= s′ and p(s) = s′. If the learning
algorithm failed to find a model that returns a non-identity inverse for the given string
s′, it is retried with a new randomized training set. The algorithms were trained using
a training set comprised of 64–100 examples, with a bias towards choosing shorter
strings.

Table 1 summarizes our experimental results. We considered four string manipulat-
ing procedures coming from real-life software. DPSTrim() removes prefixes and suf-
fixes comprised of character #. It is taken from DataparkSearch [1] open source search
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Table 1. Experimental evaluation of selected SMPs. The table shows the size of the reduced
alphabet and the machine learning algorithm used to model the pseudo inverse.

Procedure Reduced alphabet ML. Alg.

DPSTrim() {M,#} Needleman Wunsch

escapeWS() {$,5,8,M} OSTIA

ReplaceSpaces() {$,#,M} OSTIA

DosNames() {.,_,M} OSTIA

engine and is used to help parse configuration files. escapeWS() is our running exam-
ple shown in Fig. 1 and ReplaceSpaces() is shown in Fig. 7. Both come from GCC.
DosNames() is a python library function which replaces all the dots in a file name with
underscores, except for the last one.

In our experiments, we randomly chose output strings using uniform distribution
and with average length of 32 characters. We applied our technique to invert 100 strings
for and each procedure. Table 1 shows the reduced alphabet our analysis discovered
and the machine learning algorithm which we used. We ran our experiments in a laptop
equipped with an i5 2.3 Ghz CPU with 6 GB memory running Windows 7. In all our
experiments, it took our analysis to invert each string less than 10 s, whereas KLEE [2],
a state of the art symbolic executor, failed to invert any string after running for one hour.
(KLEE was able to invert short strings containing around 5 characters in a few seconds.)
Similarly, a machine learning algorithm trained with randomly selected strings chosen
using the full alphabet failed to invert the given output strings. It might be the case
that using a larger training set would make the naive machine learning more successful,
however, this process might lead to expensive analyses as the space of possible strings
grows exponentially with the length of the string.

8 Related Work, Conclusion and Future Work

Automatic inversion of programs was first studied by Dijkstra who manually inverted
simple array-manipulating programs [5]. Follow up works looked at inverting (i) sim-
ple programs whose semantics is given as logic programs [26], (ii) tree-traversal pro-
grams using relational calculus and deductive methods [3,29], (iii) array transformers
using techniques based on LR-parsing [8,16] or testing [15], and (iv) bijective string-
manipulating procedures [13,19]. To the best of our knowledge, we are the first to apply
machine learning tools to invert programs. We also note that the programs we invert are
not necessarily injective.

Recent advances in machine learning lead researchers to explore its capabilities in
helping challenging program analysis tasks, e.g., specification inference [25,28], speed
up abstraction refinement [9], invariant generation [7,22,27], setting up parameters for
parametrized static analyses [24], and infer clustering of variables in partially relational
static analyses [12]. In our work, we address a dual question–how can machine learning
technique help program analyses. To the best of our knowledge the question has not
been widely addressed, with the notable exception of [21] which also argues that a
combination of machine learning and program analysis can be a win-win situation.
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Another active research area is the use of input/output examples to learn computer
programs. Often, this is done in the context of synthesis, where examples guide a search-
based synthesis process [11]. For example, in [10], a learning procedure is used to syn-
thesize string manipulating procedures which appears in the context of spreadsheets
based on syntactic manipulation. Another attack on this problem was taken in [30],
where the procedures where synthesized using database-like lookup operations. In these
works, the focus is on designing a language in which programs can be synthesized and
an efficient search heuristics. In this work we too focus on string manipulating proce-
dures (SMPs), which are abundant in almost all software packages. However, instead
of asking the user for input/output examples, we analyze the code of one procedure and
its behavior, as expressed by input-output pairs, to synthesize another procedure.

In [33], the authors suggest to learn the behavior of a procedure by inspecting its
code and input-output examples. Their technique applies to a class of procedures which
accepts their input character by character, e.g., multi-digit addition. They use recurrent
neural network models with long short-term memory to accurately learn a model of the
procedure behavior as a sequence-to-sequence transformer [31]. It can be interesting to
see if a preliminary phase of program analysis, as we do in this work, can help improve
the accuracy of their technique.

String solvers, e.g., [17,34], can reason about constraints involving operations on
strings. For example, HAMPI [17], can reason about constraints expressing membership
in regular languages and fixed-size context-free languages. In contrast, we provide a
technique based on a combination of machine learning and static analysis that can help
invert string manipulating procedures written in a restricted programming language.

Conclusion and Future Work. We present a machine learning-based approach for
inverting string manipulating procedures (SMPs). To the best of our knowledge, the
use of machine learning for program inversion is novel. We make the approach feasible
by developing a static analysis which reduces the size of the alphabet of the examples
used during training. While the idea of reducing the input domain size is a known idea,
we believe that we are the first to design a static analysis specific for enabling such a
reduction. We evaluated our technique using a small selection of procedures taken from
real-life software. Our approach does not require that the inverted SMP be bijective.
However, our analysis is beneficial when the SMP acts as the identity on a large part of
its alphabet, which we refer to as the “good” characters.
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Abstract. We automate synthesis of environment invariants for modu-
lar hardware verification in processors and application-specific accelera-
tors, where functional equivalence is proved between a high-level spec-
ification and a low-level implementation. Invariants are generated and
iteratively strengthened by reachability queries in a counterexample-
guided abstraction refinement (CEGAR) loop. Within each iteration, we
use a syntax-guided synthesis (SyGuS) technique for generating invari-
ants, where we use novel grammars to capture high-level design insights
and provide guidance in the search over candidate invariants. Our gram-
mars explicitly capture the separation between control-related and data-
related state variables in hardware designs to improve scalability of the
enumerative search. We have implemented our SyGuS-based technique
on top of an existing Constrained Horn Clause (CHC) solver and have
developed a framework for hardware functional equivalence checking that
can leverage other available tools and techniques for invariant generation.
Our experiments show that our proposed SyGuS-based technique com-
plements or outperforms existing property-directed reachability (PDR)
techniques for invariant generation on practical hardware designs, includ-
ing an AES block encryption accelerator, a Gaussian-Blur image process-
ing accelerator and the PicoRV32 processor.

1 Introduction

This paper addresses hardware verification of processing cores in modern com-
plex Systems-on-Chip (SoCs). These comprise general purpose processors and
also application-specific hardware accelerators. Despite advances in automated
verification, scalability with increasing design complexity remains elusive. For
general-purpose processors, where the instruction set architecture (ISA) serves
as a specification, a natural approach is to take advantage of the modular per-
instruction specification and perform equivalence checking against a microar-
chitectural implementation on a per-instruction basis [9,36,41,44]. However,
increasingly, domain-specific hardware accelerators are being used in SoCs to
meet power-performance requirements. Traditionally these accelerators do not
c© Springer Nature Switzerland AG 2020
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Fig. 1. (a) An example of environment invariants when verifying an ADD instruction in
a pipelined processor. (b) Counterexample-guided environment invariant synthesis.

have an ISA or a high-level specification. Recent work has addressed this gap and
proposed a generalization of the ISA referred to as an instruction-level abstrac-
tion (ILA) [33,54,55]. Similar to the ISA, an ILA provides a high-level modular
specification that can be used for modular verification of accelerator implementa-
tions. Thus, per-instruction modular verification is applicable on general-purpose
processors using ISA [37,49,50], as well as on accelerators using ILA [33].

Although per-instruction equivalence checking1 helps improve scalability due
to modularity, it has its own challenges. Each sub-task in verification checks
whether a well-founded equivalence bisimulation (WEB) relation [41] holds
between an ISA/ILA model and a low-level model (e.g., the register-transfer-
level, or RTL implementation) when the same instruction is executed. The cor-
respondence between states in the two models is specified by a refinement map,
typically provided by the user. However, in each check, the given instruction
starts to execute from an arbitrary state that is left by some previous (sequence
of) instructions. For example, when a specified ADD instruction is in the dispatch
stage in a processor, as shown in Fig. 1(a), the state of the other pipeline stages
(and other microarchitecture variables) constitutes the environment. If this envi-
ronment is not in some consistent or reachable state, the equivalence check on
the instruction may generate (spurious) counterexamples even when an imple-
mentation is correct. Thus, as in any modular verification method, one needs to
model the environment adequately for the per-instruction equivalence checks to
be successful.

Past efforts in processor verification have used a flushing abstraction [9] as
a workaround to this problem. However, in general, modeling the environment
constraints usually requires manual work [37,41,50]. Furthermore, a flushing
abstraction is not readily available, and may not even be applicable, in the
context of accelerator cores. Prior work on ILA-based verification of accelera-
tors [33] also used manually-constructed environment invariants (after automat-
ically checking their validity).

1 Hereafter, we will use “equivalence checking” to refer to instruction-level functional
equivalence checking.
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1.1 Automatic Discovery of Environment Invariants

Our goal is to automate the process of discovering adequate environment abstrac-
tions for instruction-based equivalence checking. This would significantly reduce
the human burden in applying verification (in other settings as well, described
later in Sect. 6). One approach is to view this problem as relational program ver-
ification, and to automatically derive both environment and relational invariants
(described in Sect. 2). We tried this approach and found that existing tools (e.g.,
Spacer [25,38], FreqHorn [19,20]) fail to solve these problems, likely due to large
sizes of the hardware models and bit-precise reasoning required for equivalence
checking (Sect. 5).

Instead, we adopt a counterexample-guided abstraction refinement (CEGAR)
approach [12], where the environment is refined iteratively by blocking spurious
counterexamples that are found during equivalence checking. Since counterexam-
ples are often due to inconsistent (unreachable) states in the low-level implemen-
tations, we pose a reachability query to check whether the starting state of the
counterexample is reachable in the implementation. If it is unreachable, we add
invariants2 generated during the reachability query, to provide generalizations
that can potentially block a larger set of unreachable states.

Our top-level method using an equivalence checker and a reachability query
engine is shown in Fig. 1(b). While CEGAR-based approaches for refining envi-
ronments have been used in other verification settings (e.g., in angelic [14] or
depth-bounded [34] program verification, and also in hardware verification [40]),
these have not been targeted at per-instruction equivalence checking in proces-
sors and accelerators, or customized for this purpose.

For invariant generation within each reachability query, we explored several
existing techniques including Property Directed Reachability (PDR) [15], orig-
inally proposed by Bradley as IC3 [6]. PDR has been used successfully with
Constrained Horn Clause (CHC) solvers on programs [25,27], and with bit-level
and word-level abstraction techniques in ABC [7,28,45] on hardware designs.
Interestingly, we found in our experiments (Sect. 5) that accelerators are more
challenging than processors for existing PDR-based tools. We conjecture this is
due to two reasons: (1) accelerators tend to have wide bit-vectors (e.g., 128-bits),
and word-level operations on wide bit-vectors are not handled well at the bit-
level; and (2) control flow in accelerators is often more complex and software-like,
in comparison to processors. These reasons make it harder for bit-level PDR and
CHC-solvers (that support bit-vectors by bit-blasting) to converge with CEGAR.

1.2 SyGuS-Based Invariant Generation

To overcome these additional challenges in our setting, we adopt syntax-guided
synthesis (SyGuS) [1] for invariant generation. SyGuS has been applied very
2 Our tool implementation can utilize general constraints in an environment abstrac-

tion, not necessarily invariants; however, we focus on invariant generation in this
paper – hence we will use abstractions/constraints/invariants interchangeably when
discussing the environment hereafter.
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successfully in many applications, e.g., invariant generation in programs [22,
47] and program synthesis [2,53]. In our method, candidates for invariants are
generated by an enumerative search over a space of formulas restricted by a
grammar (similar to prior work [20,21]). When the grammar covers a small
space of expressive formulas, then candidates can be enumerated efficiently and
checked for invariance and safety using an off-the-shelf SMT solver.

The main novelty in our SyGuS-based method is the grammar used for gener-
ating candidates, and the filtering and prioritizing heuristics to prune the search
space of candidates. Specifically, our grammar exploits the separation between
data-related and control-related state variables that naturally exists in hardware
designs for processing cores. Such “control-or-data” difference often affects how
variables appear in invariants. For example, concrete values of data-related vari-
ables appear less frequently in environment invariants, whereas concrete values
of control-related variables are more significant. Our SyGuS-based method gen-
erates small candidates (in term of formula size) and iteratively strengthens the
learned invariant with relatively inductive candidates (those becoming inductive
after assuming the learned candidates) until it is safe for a given query. This
shows better scalability in comparison to searching for a single monolithic can-
didate that satisfies all the constraints, which is often used in a generic SyGuS
procedure (e.g., in cvc4sy [3,51]).

We have implemented our SyGuS-based method in a tool called Grain

(Grammar-based invariant generator), developed on top of an existing CHC
solver [20,21]. To the best of our knowledge, this is the first SyGuS-based tool
for synthesizing invariants on large hardware designs. We also provide a detailed
experimental comparison with existing PDR-based and SyGuS-based tools for
invariant generation. Our results show that Grain often complements or out-
performs existing tools on practical hardware designs. Our overall approach is
especially beneficial in enabling automated modular verification for accelerators,
such as the AES block encryption accelerator and the Gaussian-Blur image pro-
cessing accelerator reported in this paper.

In summary, the contributions of this paper are:

– We automate the generation of environment invariants for modular hardware
equivalence checking to reduce human effort in relation to prior work. Our
CEGAR-based approach leverages available techniques and tools for invariant
generation.

– We propose a syntax-guided method for synthesizing environment invariants,
with a novel grammar that leverages insights about hardware designs and
uses pruning techniques to reduce the search space.

– We implement our SyGuS-based method as a prototype tool Grain on top of
an existing CHC solver, and demonstrate its usefulness on a range of hardware
designs that include accelerators and processors. To the best of our knowl-
edge, this is the first SyGuS-based tool that has been applied for invariant
generation on large hardware designs.

– We provide a detailed experimental comparison against existing PDR-based
and SyGuS-based tools for generating invariants. This has identified their
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key weaknesses in our application setting – inadequate handling of word-
level operations (in bit-level PDR techniques), and poor scalability in the
enumeration of complex candidates on large hardware designs (in existing
SyGuS-based techniques).

instruc on ’s state update in ILA

refinement map
environmental invariants

low-level FSM’s transi on func on

Low-level FSM
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?
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Fig. 2. The verification task in instruction-level modular verification.

We start by introducing instruction-level equivalence checking, and then
present our top-level CEGAR-based method. In Sect. 4, we present our novel
grammar and SyGuS-based method for generating invariants. We describe our
tool Grain and present detailed evaluation results in Sect. 5, followed by a dis-
cussion of related work and conclusions.

2 Background and Preliminaries

2.1 Instruction-Level Modular Verification

We consider checking equivalence of a low-level implementation, e.g., an RTL
design in Verilog, against a formal instruction-level (ILA) specification [33]. The
implementation is represented as a finite state machine (FSM): 〈V, Tl, Init l〉,
where V is a set of states, Tl is a transition relation representing the next-state
function, and Init l is an initial state.

The ILA specification has program-visible (architectural) state variables S
and input variables W (on its interface). Instructions to update S are modeled
using a standard fetch-decode-execution style. In the following, bvecw denotes a
bit-vector of width w, and B = {true, false}. To simplify the presentation, we
omit W in formulas hereafter, since inputs can be treated as free state variables.

– fetch function F : S → bvecw, maps states to an instruction word,
– decode predicate δi : bvecw → B, identifies if an instruction word corresponds

to instruction i,
– state update function Ni : S → S, specifies the effect of executing instruction

i on the state.

We use predicate Di(·) def= δi(F (·)) to denote the composition of fetch and
decode. Thus, an instruction i is triggered only when Di evaluates to true. (When
clear from the context, we drop the subscript i.)
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The equivalence verification task is shown in Fig. 2: an instruction i in the
ILA model updates the architectural state from U to U ′, and correspondingly
the implementation transitions from state V to V ′. A refinement map [41] r
(could be one-to-many) maps the ILA states to the implementation states.

Informally, the verification task checks that the diagram commutes, i.e., start-
ing from states that are matched by r, and updating both models by executing
instruction i, the ending states U ′ and V ′ should also be matched by r.

The following details are needed to describe the starting and ending states
in the models.

– We use predicate Di(U) to ensure that only one ILA instruction i executes.
– Although an ILA updates the state in a single transition Ni, the implementa-

tion could use multiple transitions T+
l to perform the same operation. There-

fore, we use a completion predicate E(V ) (provided by a user) on the imple-
mentation state V to denote its ending state. (It is a common design practice
to have an instruction commit signal in the low-level FSM).

– Predicate C(V ) on the starting state of the implementation represents the
environment invariant that we seek to discover. Without such invariants,
the implementation is free to start from inconsistent or unreachable states,
those that no past instructions can reach. This often results in spurious
counterexamples-to-equivalence, even when an implementation is correct.

More formally, the verification task for each instruction is the following:

Definition 1. The two transition systems ILA and FSM start from arbitrary
states U , V respectively, where r(U, V ) ∧ Di(U) ∧ C(V ) holds. After applying
an instruction i, if their ending states U ′,V ′, (defined as U ′ = Ni(U), V ′ =
T+
l (V ) ∧ E(V ′)) are related by r, then they are equivalent for instruction i.

To use off-the-shelf property verification tools, we can rephrase the task using
a product transition system 〈U × V, Tp, Initp〉, where: Initp(U, V ) = r(U, V ) ∧
D(U) ∧ C(V ), and Tp ((U, V ), (U ′, V ′)) = Th(U,U ′) ∧ Tl(V, V ′). Here, Tl is the
transition relation of the low-level FSM, and Th is a stuttering version of the
ILA transition relation N whose first transition corresponds to state update of
instruction i, after which the state remains unchanged. The equivalence check is
represented as a property φ(U ′, V ′) def= E(V ′) =⇒ r(U ′, V ′).

2.2 Checking Equivalence via Relational Program Verification

The ILA vs. FSM equivalence checking problem can be solved using techniques
for relational program verification, where relational invariants are automati-
cally derived. In the product state transition system, there are two invariants to
find—the environment invariant C(V ), and an invariant I(U ,V ) that can prove
equivalence. Using the notations defined in the previous section, the equivalence
checking problem can be formulated using constrained horn clauses (CHCs)3:

Init l(V ) =⇒ C (V ) (1)

3 All CHC rules are considered to be universally quantified over the variables.
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C (V ) ∧ Tl(V ,V ′) =⇒ C (V ′) (2)
r(U, V ) ∧ D(U) ∧ C(V ) =⇒ I (U ,V ) (3)

I (U ,V ) ∧ Tp (U ∪ V ,U ′ ∪ V ′) =⇒ I (U ′,V ′) (4)
I (U ,V ) ∧ ¬φ (U ,V ) =⇒ ⊥ (5)

The first two Horn rules define C to be closed in the transition relation
of the low-level FSM. C is then used as an environment invariant in (3) to
constrain arbitrary starting states in the product FSM to avoid infeasible states.
Another relational invariant I(U ,V ) is needed to prove safety with respect to
the equivalence property φ.

The above formulation allows the use of existing CHC tools (e.g., Spacer [25,
38]) for simultaneously finding environment invariants C and checking equiva-
lence property φ. However, this monolithic approach shows poor scalability as
the CHC instances grow in size, as shown in our experiments (Sect. 5). This moti-
vates our CEGAR-based approach for finding environment invariants, described
in the next section.

3 Counterexample-Guided Invariant Synthesis

To improve scalability of the overall procedure, we propose finding environ-
ment invariants iteratively by using counterexample-guided abstraction refine-
ment (CEGAR) [12]. Our CEGAR-based method to discover an environment
invariant C (in the form of a conjunction of multiple invariants) is presented in
Algorithm 1.

Algorithm 1. EqCheck-Inv-Syn(i,FSM , r): Equivalence Checking with
Counterexample-Guided Abstraction Refinement for the Environment
Input: i: an instruction in ILA with its associated predicate and function,

FSM : the low-level model, r: the refinement map.
Output: C: the environmental invariant; res ∈ {Equivalent, Not-Equivalent}.

1 C ← �;
2 while true do
3 cex ← EqCheck(i,FSM , r, C);
4 if cex = ∅ then return Equivalent, C;
5 Vstart ← GetAssignment(cex);
6 result, Inv ← Reachability(FSM , Vstart);
7 if result = reachable then return Not-Equivalent;
8 C ← C ∧ Inv ;

It starts by initializing C to 	 (line 1). Then it iteratively checks equivalence
(line 3) of the ILA and the low-level FSM (where they start from states that
satisfy r(U, V ) ∧ D(U) ∧ C(V ), as described earlier). If these models are not
equivalent, a counterexample cex is returned, and the environment abstraction
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needs to be refined. From the counterexample trace cex, an assignment to the
variables in the starting state Vstart of the FSM is extracted (line 5), and the
algorithm checks whether Vstart is reachable in the FSM (line 6).

If the state Vstart is unreachable, i.e., the safety property holds, then a for-
mula that blocks Vstart could be used to refine the environment invariant C.
However, blocking each such counterexample individually could be expensive,
and require many iterations for the algorithm to converge. Instead, our algo-
rithm discovers a safe inductive invariant Inv as a proof of unreachability of
Vstart (in the Reachability procedure on line 6).

Formally, for an FSM 〈V , Tl, Initl〉 and a set of error states Bad, a safe
inductive invariant is defined as a formula Inv such that the followings are valid:

Init l(V ) =⇒ Inv(V ) (6)
Inv(V ) ∧ Tl(V ,V ′) =⇒ Inv(V ′) (7)
Inv(V ) ∧ Bad(V ) =⇒ ⊥ (8)

In our case, Bad def= (V = Vstart). Thus, when Bad(V ) is unreachable, an invari-
ant Inv is a strengthened constraint from V 
= Vstart (because Inv(V ) =⇒ V 
=
Vstart from (8)) This potentially blocks additional unreachable states, thereby
requiring fewer iterations of the CEGAR loop to converge.

Note that the CEGAR approach decouples equivalence checking from envi-
ronment invariant synthesis. This allows freely applying other tools and tech-
niques in equivalence checking. In case the CEGAR-loop does not terminate
due to time or resource limits, one can still get some useful invariants from the
iterations that have completed.

Furthermore, we can leverage any existing technique or tool to discover safe
inductive invariants during the reachability query. As we show in our detailed
evaluations (Sect. 5), many CHC-based and SyGuS-based tools can be applied
here. We found that existing reachability solvers based on bit-blasting tend to
perform poorly on accelerators that require word-level reasoning on wide bit-
vectors. In the next section, we present our novel SyGuS-based method for word-
level invariant synthesis that is designed to overcome these limitations.

4 SyGuS for Word-Level Invariant Synthesis

While SyGuS-based techniques have been successfully applied to synthesize loop
invariants in software programs [22,47], to the best of our knowledge, they have
not been applied to generate invariants in large hardware designs before. In
general, to use grammar-based enumeration of invariant candidates, one has to
balance between the expressiveness of a grammar (to find adequate invariants)
and the size of the related search space (for achieving tractability in practice). In
addition, one needs to use pruning where possible during enumeration, to quickly
eliminate non-promising candidates. In this section, we describe the design of our
grammar, pruning techniques, and enumeration-based method targeted toward
synthesis of word-level environment invariants for RTL hardware designs.
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Fig. 3. Example of a HLSM model for a vector dot-product accelerator: (a) datapath,
(b) control FSM. Paths in (a) are activated according to the state in (b).

4.1 Designing a Grammar for Environment Invariant Synthesis

One common design pattern in RTL processing cores is a separation between
control and data. In particular, hardware accelerators often implement some
high-level algorithm. It is typical to use a high-level state machine (HLSM)
model [39], which is comprised of two interacting parts: a control finite state
machine (FSM) and the datapath. The control FSM often tracks status sig-
nals (predicates) from the datapath, and triggers various datapath operations
depending on the control state.

Example 1. Figure 3 shows a simplified view of an HLSM model for a vector dot-
product accelerator that computes z = x · y. The datapath is shown on the left
and the control FSM on the right. The input vectors are fetched from starting
addresses in the configuration registers xbase and ybase, and the dot-product
result is stored in the address pointed by zbase. The datapath may perform: (a)
a multiplication-accumulation (MAC) operation, (b) set up the counters and

>
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Fig. 4. Tags for state variables in the control FSM and datapath of a processing unit.
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Table 1. Tags of variables, invariants, and grammar for Example 1

Tags

ctrl-state state
ctrl-inout <none>
data-src xbase, ybase, zbase, len
data-dst xaddr, yaddr, len
ignore ACC

Invariants state �= IDLE =⇒ xaddr = xbase + len
(automatically generated) state �= IDLE =⇒ yaddr = ybase + len

Grammar

〈Cand〉 ::= 〈CSpred〉 =⇒ 〈Dpred〉
〈CSpred〉 ::= 〈CSvar〉 = 〈ConstC〉 | 〈CSvar〉 �= 〈ConstC〉
〈Dpred〉 ::= 〈DDvar〉 = 〈DSvar〉 + 〈DSvar〉

〈ConstC〉 ::= 00 | 01 | 10 | 11

the accumulator, (c) send the output, or (d) do nothing, when the control FSM
is in MAC, SETUP, OUTPUT, or IDLE state, respectively. In the SETUP state, address
counters are initialized to the base address, and length counter will be set to
zero. When the control FSM is in the MAC state, the address counter xaddr will be
incremented, and so will the vector length counter len. But their increments are
the same, namely xaddr = xbase+len. Note this relation holds in all control states
except IDLE. When the control FSM is in the IDLE state, there is no update of
xaddr, but the xbase register can be programmed to an arbitrary address. Similar
relations can be found among yaddr, ybase and len. We aim to find such relations
in certain control states as environment invariants.

Our grammar builds on top of tags that are assigned to all state variables in
an RTL design description (e.g., registers in Verilog). These tags are based on
their role, shown pictorially in a generic HLSM model in Fig. 4.

– ctrl-state (CS): state of a control FSM (there could be multiple FSMs)
– ctrl-inout (CIO): signals between control FSM and datapath, or between

control FSMs
– data-src (DS): source in datapath operation
– data-dst (DD): destination in datapath operation
– ignore: none of the above, typically internal/temporary state variables.

In our experiments, we currently tag all variables manually, based on our
knowledge of the designs (details described in Sect. 5.3). It does not seem too
difficult to implement a simple analysis (over Verilog or an intermediate repre-
sentation) for tagging variables automatically.

The main idea is to construct a grammar for formula expressions where these
tags are used as “types” of the variables, to allow limited operators over certain
types and to restrict the sets of variables during enumeration of expressions. In
particular, state variables with the tag “ignore” are not considered in expressions
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at all. (Some variables could have multiple tags, e.g., DS and DD.) Incorrect
tags may result in either an unnecessary enumeration overhead (e.g., DS tagged
as CS) or missing candidates (e.g., variables incorrectly tagged as “ignore”). As
a preview of the full grammar (described in detail in the next section), the tags,
invariants, and relevant grammar snippets for Example 1 are shown in Table 1.

4.2 SyGuS Grammar

Our full grammar for generating invariant candidates is shown in Fig. 5. The
terminals of this grammar represent tagged variables, where CSvar represents
a ctrl-state variable, CIOvar represents a ctrl-inout variable, and DSvar and
DDvar represent a source and destination (data-src/-dst) in the datapath, respec-
tively. (Recall that a variable can have multiple tags.)

〈Cand〉 ::= 〈Ante〉 =⇒ 〈Conseq〉
〈Ante〉 ::= 〈CSpred〉 ∧ 〈Ante〉 | true

〈CSpred〉 ::= 〈CSvar〉 = 〈ConstC〉 | 〈CSvar〉 �= 〈ConstC〉
〈Conseq〉 ::= 〈Disj〉 | 〈Disj〉 ∨ 〈Conseq〉

〈Disj〉 ::= 〈CIOpred〉 | 〈Dpred〉
〈CIOpred〉 ::= 〈CIOvar〉 = 〈ConstC〉 | 〈CIOvar〉 �= 〈ConstC〉

〈Dpred〉 ::= 〈DDvar〉 = 〈ConstD〉 | 〈DDvar〉 �= 〈ConstD〉
| 〈DDvar〉 = op 〈DSvar〉 | 〈DDvar〉 = 〈DSvar〉 op 〈DSvar〉

Fig. 5. The grammar for environment invariants.

The first (top-level) production rule of our grammar defines the shape of a
candidate invariant to be an implication between an antecedent (Ante) and a con-
sequent (Conseq). The antecedent is typically a condition on states of the control
FSM(s). Thus, it is expressed as a conjunction of predicates that allow compari-
son of CSvar against constants (that define the control states). The consequent is
a disjunction over predicates that allow comparison of CIOvar and DDvar against
constants, or express datapath operations on DSvar. Since our invariant synthesis
algorithm (to be outlined in Sect. 4.4) can discover conjunctive invariants, our
grammar does not need to enumerate a top-level conjunction of implications.
Furthermore, this also avoids a need to have disjunctions in the antecedent or
conjunctions in the consequent.

Note that our grammar allows operators on only word-level variables that are
data-related. We identified a small set of operators (negation, truncation, addi-
tion, subtraction) that is sufficient for our benchmarks. Intuitively, environment
invariants are generally independent of the actual computation in the datapath.
Although the datapath may be capable of using a rich set of operators, those
needed for environment invariants tend to be fairly simple.
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The sets of constants ConstC and ConstD (used with control and data vari-
ables, respectively) need not be the same. The set ConstC can be derived from the
Verilog descriptions—it is common practice for designers to define such constants
using macros or parameters in Verilog. The concrete values of data variables are
less important, and ConstD can be populated with a few concrete values. In our
implementation, we use all 0’s and all 1’s (of appropriate bit-widths that match
the variables). One can also extend this set with data constants that appear in
Verilog descriptions.

The grammar shown in Fig. 5 is recursively defined to allow an arbitrary
number of conjuncts (in Ante) and disjuncts (in Conseq). In practice, we instan-
tiate it with a bound on each, and our experiments (in Sect. 5) show that a small
bound of 2 is sufficient in our benchmark examples.

4.3 Candidate Enumeration

We enumerate over all allowed variables in the tagged sets for invariant can-
didates using the grammar. In addition, we use the following meta-production
rules and heuristics to prune the set of enumerated candidates.

Grouping (Meta-rule). For verifying processor designs, we place additional
restrictions during enumeration by using grouping over variables, whereby pred-
icates on only the grouped variables are allowed to appear in the same clause in
the antecedent or the consequent. For pipeline designs, the variables are grouped
together if they are read in the same stage or written by the same stage. In a
sense, combinations of grouped variables are likely to be more significant than
combinations of unrelated variables. Enumerating clauses by choosing combina-
tions of grouped variables can dramatically reduce the total number of invariant
candidates to be checked.

Cone-of-Influence (Meta-rule). Not all variables that are tagged need
to appear in the invariants. For example, some datapath variables may not
affect control-flow, i.e., they are outside the cone-of-influence (COI) of con-
trol states. Such variables can be dropped during enumeration. For a specific
counterexample-to-equivalence, all variables might not appear in the COI of the
equivalence property. The equivalence checker can identify the set of variables
in the COI, so we enumerate only these variables and drop the rest.

Ordering the Candidates (Heuristic). The ordering of enumeration is
important: if Inv1 is inductive relative to Inv2, then it is useful to first learn Inv2

and then try Inv1. Thus, we want to carefully choose an enumeration ordering
that is efficient. Our heuristic is to respect the ordering of data-flow/control-flow
in Verilog. For example, if there is a flow pattern like a → b, a → c, and b → c,
then relations between (a, b) and (a, c) are enumerated before (b, c). This allows
the first two relations to set up some relation between b and c, thus making it
more likely to be learned as a relative inductive invariant later in the ordering.
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4.4 Enumerative SyGuS Solver

Our enumerative SyGuS solver method is shown in Algorithm 2. It takes as
inputs the low-level FSM, grammar G, and an error state Bad (Vstart from
Sect. 3); and either successfully finds a safe inductive invariant Inv or fails (with
result Unknown).

We follow a standard guess-and-check paradigm for generating safe invari-
ants (e.g., [19,22]). The set of candidates, CandSet , is initialized with expressions
enumerated from the given grammar G and pruning heuristics (line 1). The algo-
rithm continues until either the error state is proved to be unreachable (line 3),
or there are no more candidates to process (line 4). A candidate must be implied
by the initial state of the FSM (line 7), and it should be inductive relative to the
already learned invariants (line 8), in order to be added to the Learned set. A
candidate is not totally discarded if the inductiveness check fails, but is placed in
the 2ndChance set (line 10). We re-evaluate the inductiveness of such candidates
by adding them back to the CandSet if their corresponding counterexample-to-
induction (CTI, not to be confused with the counterexample-to-equivalence in
Sect. 3) can be blocked by newly learned invariants (line 11).

Algorithm 2. Inv-Syn(FSM,Bad,G): Synthesize invariant to block Bad

Input: FSM = 〈V ∪ V ′, Init , tl〉: the low-level (FSM) model, Bad, and G:
SyGuS grammar

Output: Safe inductive invariant Inv or Unknown
1 CandSet ← Enumerate(G);
2 Learned , 2ndChance ← ∅;
3 while Bad ∧ ∧

�∈Learned

�(V ) 	=⇒ ⊥ do

4 if CandSet = ∅ then return Unknown;
5 for each cand ∈ CandSet do
6 CandSet ← CandSet \ {cand};
7 if Init(V ) 	=⇒ cand(V ) then Continue;
8 if cand(V ) ∧ ∧

�∈Learned

�(V ) ∧ tl(V ,V ′) =⇒ cand(V ′) then

9 Learned ← Learned ∪ {cand};
10 else 2ndChance ← 2ndChance ∪ {cand} ;

11 for cand ∈ 2ndChance where CTI(cand) 	|= ∧

�∈Learned

�(V ) do

12 2ndChance ← 2ndChance \ {cand};
13 CandSet ← CandSet ∪ {cand};

14 return Learned ;

5 Experimental Evaluation and Comparison

We have developed Grain, a prototype implementation of our SyGuS-based
method for invariant synthesis, on top of an existing CHC solver [19]. We have
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also developed a flexible CEGAR-based framework for equivalence checking,
where we use Grain for synthesis of environment invariants. In this section, we
describe an evaluation of these methods on benchmark examples, along with a
comparison against other tools for invariant synthesis.

5.1 Methods Evaluated

For the purpose of detailed comparison, we consider the following five methods:
RelChc encodes the equivalence checking and environment invariant synthe-

sis as a single CHC problem (Sect. 2.2), which is solved by Spacer [38]. Since
this does not use CEGAR explicitly in an outer loop, it serves as a top-level
comparison for our CEGAR-based method.

PdrAbc uses our CEGAR-based approach with PDR-based techniques in
the ABC tool [15] for solving the reachability query and generating safe invari-
ants. We used Yosys [56] to parse Verilog descriptions and generated AIGER
format [35] as input to ABC (since ABC’s Verilog parser did not support all
Verilog features in our designs). Due to this translation, we were unable to use
word-level abstraction techniques in ABC [28].

PdrChc uses our CEGAR-based approach with the Spacer tool [38], a CHC-
solver that uses PDR techniques to generate safe invariants. Again, we used
Yosys [56] to parse Verilog descriptions and generate SMT-LIB2 [4] instances.

cvc4sy uses our CEGAR-based approach with the SyGuS procedure in
CVC4 [51] to synthesize a function that satisfies the constraints (6)–(8). We
use the same grammar and variable tagging as in Grain. The difference from
Grain is that cvc4sy searches for a single expression that satisfies all three con-
straints at the same time, whereas Grain iteratively strengthens a candidate
with more lemmas that are found inductive.

Grain uses our CEGAR-based approach with our SyGuS-based method for
generating invariants.

5.2 Benchmark Examples

We applied all methods on five hardware designs (two synthetic and three from
real-world) including processors and accelerators. The ILA specifications for
some designs were developed in prior work [33,55], where manually constructed
environment invariants were used to prove equivalence against RTL designs.

Redundant Counters (RC). This example is a synthetic test case that imple-
ments a high-level specification of a 4-bit counter. The RTL implementation uses
an extra counter for redundancy, storing it as 1’s-complement. The RTL output
is computed as BitwiseAnd (C1, 15 − C2), which can be simplified as C1. This
relation between C1 and C2 is not visible at the high level, and is the environ-
ment invariant that needs to be discovered by the synthesis process. This design
is used as a small sanity check for our synthesis algorithm.

Simple Pipeline (SP). This design mimics the back-end of a simple pipelined
processor. It has three stages (dispatch, execute, and write-back), and four 8-
bit wide architectural registers. The instruction set has four instructions (ADD,
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NOT, AND, and NOP). The pipelined implementation has a scoreboard to track
latest register values for data forwarding. The environment invariants need to
capture the relation between the scoreboard and the intermediate stage registers
among the three stages. The human-provided invariant contains 16 implications
in conjunction, where each implication is not inductive by itself.

AES Block Encryption Accelerator (AES). The AES block encryption
accelerator is a publicly available design from OpenCores.org [31]. An ILA spec-
ification was constructed in prior work [55], where a START ENCRYPT command
triggers a “load-compute-store” loop that works block-by-block. Although AES
is not the largest design we checked, it poses the most challenges: (a) it needs
wide 128-bit state variables in the invariants, (b) the accelerator operation is
like software, with a large maximum loop bound (4096), and (c) one of the
(human-provided) invariants required a large number of conjunctions.

PicoRV32 Processor (Pico). The PicoRV32 processor [13] is a size-optimized
RISC-V processor that implements the RISC-V RV32IMC instruction set. The
processor is basically a multi-cycle implementation with an average CPI (cycle-
per-instruction) of 4, but it also has some pipelining features, for example,
instruction fetch can take place while another instruction is still executing.

Gaussian Blur Accelerator (GB). The Gaussian Blur image processing accel-
erator is a design generated by high-level synthesis (HLS) in Halide [48], for
computing the convolution of an image with a Gaussian kernel. The accelerator
streams in and out an image pixel-by-pixel, and buffers the pixels with inter-
nal memories (about 32Kb), while multiplication-accumulation (MAC) units are
used for convolution. For environment invariant synthesis, we over-approximate
the internal memories and MACs by replacing their outputs with free variables
(since it is reasonable to expect that their values do not affect the environment
invariants). However, we do not over-approximate them for equivalence checking,
which is performed using Cadence JasperGold [10] that has built-in abstraction
models for memory and computation units. Although the design size of this
accelerator is the largest (in number of state bits), the environment invariants
required are relatively simple.

5.3 Grammars Used for SyGuS

The RTL designs and the instantiations of grammar we used for each benchmark
example can be found in our Github repository [57], and our tools will be released
as part of the ILAng verification framework [32]. Statistics for the benchmarks
and grammars are reported in Table 2, where the last row reports the total
number of candidates generated. We used a maximum bound of 2 for number of
conjuncts/disjuncts (as shown). We used grouping in SP and PicoRV32 to prune
the number of candidates – the number without grouping is 6137 and 255410,
i.e., grouping reduced the number of candidates to 34% and 25%, respectively.
We briefly summarize key points about tagging variables.
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– Redundant Counters (RC): has only two variables, both are data-src/-dst.
– Simple Pipeline (SP): the scoreboard is tagged as ctrl-state, write-enable

signals are ctrl-inout, and destination signals are data-dst. Grouping is used
to group together the signals in the same stage of the pipeline.

– AES accelerator: computation in the datapath is ignored (plaintexts, cipher-
texts, and keys), control FSM is kept, index and block counters are tagged
as ctrl-inout, address and length registers are tagged as data-src/-dst.

– PicoRV32 processor: The ALU, register files, memory input/output data, and
performance counters are ignored for environment invariants, while flags and
control FSMs are kept. Flags are tagged as ctrl-inout, and grouped by the
stage where they are set (decode/execute units, interrupts).

– Gaussian Blur accelerator (GB): Since this design is generated by HLS,
the naming of state variables follows some conventions. Control FSMs with
names ap CS fsm are tagged as ctrl-state. Flag bits, tagged as ctrl-inout,
have names like xxx full n, xxx empty n, or exitcond xxx. Address pointers
(with name mOutPtr), column or row counters (with names col reg xxx or
row reg xxx) are tagged as data-dst.

Table 2. Statistics of benchmarks and SyGuS grammars

Benchmarks RC SP AES PicoRV32 Gaussian Blur

#. state-bits 8 72 963† 1817 4840†

#. word-level state-vars 2 16 14† 149 176†

#. ctrl-state – 4 3 30 4

#. ctrl-inout – 2 2 34 8

#. data-src 2 – 2 – –

#. data-dst 2 2 3 – 11

#. groups – 2 – 3 –

Max. antecedent size 1 1 2 2 2

Max. consequent size 1 2 1 1 1

#. candidates 2 2112 22048 63663 19195
† For AES, this model abstracts the round-level computation; for Gaus-
sian Blur, this model abstracts internal block RAMs and MACs.

5.4 Results of Experiments

The experiments were conducted on a laptop with 4-core i5-8300H processor
and 32 GB memory, except for Gaussian Blur which needs Cadence JasperGold
(available on a server with 56 cores and 256 GB memory). All other bench-
marks used CoSA [42] for equivalence checking. Counterexamples are extracted
by parsing the waveform generated by JasperGold or CoSA. We set the time-out
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limit for the CEGAR-loop to be 10 h, which includes time for both equivalence
checking and environment invariant synthesis.

The results are reported in Table 3 for the five methods (along columns) on
the benchmark examples (along rows). We also report additional details (number
of iterations for CEGAR-based methods and times for synthesis and equivalence
checking). Note that our proposed method Grain successfully finds environment
invariants in all benchmarks, and outperforms the other four methods on the
three real-world designs (AES, Pico, GB).

5.5 Detailed Comparison and Discussion

CEGAR-Loop vs. Monolithic CHC Query. As PdrChc uses the same CHC
solver as RelChc, we use the results of the two as a comparison between CEGAR-
loop and using a monolithic CHC query. RelChc succeeds on only the first two
examples, both under 100 state bits. We looked at the invariants produced by
the two methods and saw that RelChc generated invariants that were easier to
understand. For example, for RC, it generated

∧
i C1[i]⊕C2[i], i ∈ {1, .., 4} (where

⊕ is the XOR operator), which is more succinct than those generated by PdrChc.
However, the overall results clearly show that CEGAR-based approaches are
more scalable.

PDR-Based Methods: Spacer vs. ABC. Although Spacer and ABC both
use PDR, their performance varies. For benchmarks where both succeeded,
PdrAbc requires less synthesis time and fewer CEGAR iterations. However,
ABC seems to have bigger memory requirements – two of the five benchmarks
failed due to out-of-memory error. For GB, using PdrAbc results in CEGAR-
loop time-out. For the failing query of AES, we also tested gate-level abstraction
techniques in ABC [28,45], but these did not succeed (due to either timeout or
too coarse abstraction). As mentioned earlier, due to our translation to AIGER,
we were not able to test the word-level abstraction technique in ABC.

SyGuS-Based Methods: Grain vs. cvc4sy. One main difference between
our method Grain and cvc4sy is how they construct the required invariant.
Since cvc4sy is a generic SyGuS solver, its verifier requires a term enumerator
to propose a candidate that satisfies all constraints (i.e., all three conditions for
a safe inductive invariant) at the same time. In contrast, Grain is specialized
for finding safe invariants for transition systems by incrementally conjoining
relatively inductive candidates (inspired by PDR).

To study this further, we tested cvc4sy in more detail on the SP example. We
instantiated the grammar with a fixed number of implications (based on known
invariants) and asked cvc4sy to fill in the antecedent and consequent of each
implication. This significantly shrinks the search space for cvc4sy. However, this
still resulted in out-of-memory errors. This is likely due to a large number of syn-
tactic constraints that the CVC4 term generator learns from failing candidates.

For AES, cvc4sy finished the first four iterations of the CEGAR-loop fairly
fast, where the invariants contain at most one implication. In the fifth round,
an invariant with many conjoined implications is needed, but it failed. cvc4sy



Synthesizing Environment Invariants for Modular Hardware Verification 219

Table 3. Results of experiments

RelChc CEGAR

PdrAbc PdrChc cvc4sy Grain

Solver Z3 ABC Z3 CVC4 Z3

RC # iter – 4 6 1 1

tsyn(s) – 30.2 11.5 0.2 1.2

teq(s) – 2.1 4.7 0.8 0.8

ttotal(s) 1.6 32.3 16.2 1.0 2.0

SP # iter – 21 36 1 4

tsyn(s) – 1.9 2.9 O.O.M 134.4

teq(s) – 27.8 37.5 1.2 10.7

ttotal(s) 1035.2 29.7 40.4 O.O.M 145.1

AES # iter – 2 2 4 5

tsyn(s) – O.O.M T.O O.O.M 912.3

teq(s) - 6.4 6.5 17.5 35.5

ttotal(s) T.O O.O.M T.O O.O.M 947.8

Pico # iter – 3 149 1 9

tsyn(s) – O.O.M 3771.7 O.O.M 4345.9

teq(s) – 87.2 4493.1 6.8 83.5

ttotal(s) T.O O.O.M 7864.8 O.O.M 4429.4

GB # iter – 176 7 8 3

tsyn(s) – 63.1 1292.4 161.9 414.5

teq(s) – T.O 1491.3 1653.2 631.5

ttotal(s) T.O T.O 2783.7 1815.1 1046.0

RC, SP, AES, Pico, GB denote the five benchmarks: Redundant
Counters, Simple Pipeline, AES block encryption accelerator,
PicoRV32 processor, and Gaussian Blur accelerator.
O.O.M indicates out-of-memory (>32 GB) and T.O. indicates
time-out (>10 h). “# iter.” reports the number of CEGAR
iterations. For methods that did not converge within the
time/memory limit, we report the last iteration it finished before
it terminates.
RelChc does not use CEGAR, we only report total solving time.
For all CEGAR methods, the total time (ttotal) is the sum of time
for synthesis (tsyn) and time for equivalence checking (teq).

is also successful on GB, where no invariant requires more than one implication.
It seems that a large number of top-level conjunctions is an obstacle for cvc4sy,
whereas Grain can handle this by candidate strengthening techniques.

Another difference is that Grain collects inductive candidates along the
search for safe inductive invariants. These inductive invariants can block other
infeasible counterexamples. Therefore, Grain requires fewer CEGAR iterations.
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SyGuS-Based vs. PDR-Based Techniques. When well-guided by gram-
mars, Grain can deliver comparable performance to PDR-based approaches,
and it outperforms them on large real-world designs. We believe this is mainly
due to our emphasis on word-level invariants, which seem more difficult to derive
in PdrAbc and PdrChc. For example, in AES, the failing query for PdrAbc and
PdrChc needs an invariant: STATUS 
= 0 =⇒ IV + BLK CNT = AES CNT. This says
that when the accelerator is operating, the current operation counter is the sum
of a block counter and the initial value (IV), where the three variables in the
consequent are all 128-bit. This relation is simple on the word-level but complex
on the bit-level. Another challenge in accelerators is they contain loop struc-
tures similar to software. For example, the “load-compute-store” loop in AES
can iterate as many as 4096 times. With a large number of variables after bit-
blasting, it becomes harder for PDR to reach a fixpoint when computing forward
reachability.

An interesting difference we noticed is that both PdrAbc and PdrChc some-
times produce invariants that refer to datapath variables. For example, instead
of a generalized invariant Inv , one may get (D = v =⇒ Inv), where D is a
datapath variable and v is some concrete value. The antecedent here is usually
unnecessary, as in many processing units, the datapath variable can have an
arbitrary value, and the consequent is a valid fact regardless of the value of D.
These invariants could result in more CEGAR iterations and longer synthesis
time in total. On the other hand, our grammars used in Grain target word-level
expressions, place restrictions on variable sets, and do not enumerate concrete
values on data-related variables. Therefore, they generate candidates that can
produce a more general invariant.

For Grain, PicoRV32 is the hardest example due to a large number of state
variables, which results in a large search space for enumeration. In this case, it
would be beneficial for a human designer to provide additional insights to shrink
the search space.

Lessons Learned and Potential Improvements. The above experiments
show that PDR-based techniques sometimes suffer from an explosion of state
bits due to bit-blasting, and sometimes generate invariants that are too specific
to a query (thereby requiring more CEGAR iterations). By working on the word-
level and using guidance on state variables to consider in candidate invariants,
Grain can outperform PDR-based techniques under such situations. It would be
interesting to investigate in future work whether the generalization step in PDR
can benefit from guidance using grammars.

6 Related Work

Invariant Synthesis. Automatic generation of invariants has been stud-
ied extensively in verification. Among symbolic model checking techniques,
IC3/PDR [6,15] has demonstrated success for both hardware and software veri-
fication. It incrementally constructs an inductive invariant by iteratively remov-
ing counterexamples to induction. In software verification, several application
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of PDR [5,11,25,29,38] for linear arithmetic and arrays have been proposed.
PDR engines that support bit-vectors often use bit-blasting and find fixpoints on
the bit-level. As the data-width increases, the same word-level formula becomes
larger on the bit-level. For hardware, PDR has been combined with various
abstraction techniques [18,45], including the use of word-level information to
construct abstractions [28,40]. In Grain, we continue this trend of leveraging
word-level information to help with scalability, and extend it by considering
roles of the variables (e.g., control or data) in the design.

Other work also targets bit-precise invariants for software [8,26,30] by lazily
encoding the program in parts by using bit-vectors, along with light-weight the-
ories (such as equality with uninterpreted functions, Presburger arithmetic, and
linear rational arithmetic). These techniques, however, have not been evaluated
on large hardware designs so far, and we expect they would require many refine-
ment iterations before converging.

Syntax-Guided Synthesis [1] has also been used successfully for invariant gen-
eration, although not for large hardware designs so far. LoopInvGen [47] takes
a data-driven approach and learns features for loop invariance inference, whereas
Grain relies more on the structure of hardware designs to provide guidance and
enumeration heuristics. The cvc4sy solver [51] employs various advanced enu-
meration techniques from user-provided grammars, but attempts to generate a
whole invariant at once, which has significant scalability implications. Liquid Fix-
point [52] has been used in Iodine [24] to generate invariants for constant-time
property checking for hardware. It uses candidates from predicate abstraction
rather than a grammar. The approach closest to ours is FreqHorn [19–21] that
also generates individual lemmas first and then conjoins them together to derive
an invariant. However it relies on various heuristics to automatically construct
grammars (e.g., from the syntax and bounded semantics of the program). In con-
trast, our grammars leverage domain-specific knowledge of hardware designs.

Modular Hardware Verification. Our focus is on using instruction-level
modularity in hardware equivalence checking, which has also been embraced in
industrial practice [37,50]. For modular verification of systems, in general, the
specification and implementation are partitioned component-wise and assume-
guarantee rules are used to reason about a component and its interaction with
the environment [23,41,43]. Our environment invariants are also a form of envi-
ronment assumptions, which we aim to discover automatically.

Other instruction-level verification efforts can also benefit from automatic
generation of environment invariants. For example, Symbolic Quick-Error-
Detection (S-QED) [17], unbounded protocol compliance verification [46], hard-
ware information flow tracking [16] – all used some form of symbolic initial
state constraints to avoid spurious counterexamples, where these constraints are
manually constructed. Our methods for automated discovery of environment
invariants can potentially benefit these applications by reducing human effort.
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7 Conclusions

In this paper, we described techniques for automating the discovery of environ-
ment invariants for per-instruction modular hardware verification. We used an
equivalence checker coupled with a CEGAR-based method to iteratively con-
struct such invariants. We proposed a SyGuS-based method for invariant syn-
thesis in each iteration, where we use a novel grammar to guide the search
for invariant candidates. The grammar leverages domain-specific features in
hardware designs, and can be tuned by a user. Our invariant synthesis app-
roach is inspired by existing PDR-based and SyGuS-based techniques. It targets
word-level invariants, to avoid dealing with complex relations at the bit-level,
and constructs conjunctive invariants incrementally. Our detailed experiments
demonstrate the effectiveness of our proposed CEGAR-based and SyGuS-based
methods on several hardware designs including processors and accelerators.
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Abstract. In this work, we study the problem of verification of sys-
tems in the presence of attackers using bounded model checking. Given
a system and a set of security requirements, we present a methodology
to generate and classify attackers, mapping them to the set of require-
ments that they can break. A naive approach suffers from the same
shortcomings of any large model checking problem, i.e., memory short-
age and exponential time. To cope with these shortcomings, we describe
two sound heuristics based on cone-of-influence reduction and on learn-
ing, which we demonstrate empirically by applying our methodology to
a set of hardware benchmark systems.

1 Introduction

Problem Context. Some systems are designed to provide security guarantees
in the presence of attackers. For example, the Diffie-Hellman key agreement
protocol guarantees perfect forward secrecy [21,27] (PFS), i.e., that the session
key remains secret even if the long-term keys are compromised. These security
guarantees are only valid in the context of the attacker models for which they
were proven; more precisely, those guarantees only hold for attackers that fit
those or weaker attacker models. For instance, PFS describes an attacker model
(i.e., an attacker that can compromise the long-term keys, and only those), and a
property that is guaranteed in the presence of an attacker that fits the model (i.e.,
confidentiality of the session keys). However, if we consider an attacker model
that is stronger (e.g., an attacker that can directly compromise the session key),
then Diffie-Hellman can no longer guarantee the confidentiality of the session
keys. Clearly, it is difficult to provide any guarantees against an attacker model
that is too capable, so it is in the interest of the system designer to choose an
adequate attacker model that puts the security guarantees of the system in the
context of realistic and relevant attackers.

Consider the following research question: (RQ1) given a system and a list
of security requirements, how do we systematically generate attackers that can
potentially break these requirements, and how do we verify if they are successful?
We approach this question at a high level for a system S with a set C of n
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components, and a set of security requirements R as follows. Let A be a subset
of C; the set A models an attacker that can interact with S by means of each
component c in it. More precisely, for every component c in A, the attacker can
change the value of c at any time and any number of times during execution,
possibly following an attack strategy. Considering the exponential size of the
set of attackers (i.e., 2n), a brute-force approach to checking whether each of
those attackers breaks each requirement in R is inefficient for two reasons: (1)
an attacker A may only affect an isolated part of the system, so requirements
that refer to other parts of the system should not be affected by the presence of
A, and (2) if some attacker B affects the system in a similar way to A (e.g., if
they control a similar set of components), then the knowledge we obtain while
verifying the system in the presence of A may be useful when verifying the system
in the presence of B. These two reasons motivate a second research question:
(RQ2) which techniques can help us to classify attackers, i.e., to map each
attacker to the set of requirements that it breaks?

To answer these two research questions in a more concrete and practical
context, we study systems modelled by And-inverter Graphs (AIGs) (see [23,
25]). AIGs describe hardware models at the bit-level [10], and have attracted
the attention of industry partners including IBM and Intel [16]. Due to being
systems described at bit-level, AIGs present a convenient system model to study
the problem of attacker classification, because the range of actions that attackers
have over components is greatly restricted: either the attacker leaves the value
of the component as it is, or the attacker negates its current value. However, this
approach can be generalised to other systems by considering non-binary ranges
for components, and by allowing attackers to choose any value in those ranges.

Contributions. In this paper, we provide:

– a formalisation of attackers of AIGs and how they interact with systems,
– a methodology to perform bounded model checking while considering the

presence of attackers,
– a set of heuristics that characterise attacker frontiers for invariant properties

using bounded model checking,
– experimental evidence of the effectiveness of the proposed methodology and

heuristics.

2 Preliminaries

In this section, we provide the foundation necessary to formally present the prob-
lem of model checking And-inverter Graph (AIGs) in the presence of attackers.
Let B = { 0, 1 } be the set of booleans/bits. An And-inverter Graph models a
system of equations that has m boolean inputs, n boolean state variables and o
boolean gates. The elements in the set W = {w1, . . . , wm } represent the inputs,
the elements in V = { v1, . . . , vn } represent the latches, and the elements in
G = { g1, . . . , go } represent the and-gates. We assume that W , V and G are
pairwise disjoint, and we define the set of components C by C � W ∪ V ∪ G.
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Fig. 1. Left: And-inverter graph describing a system with two inputs w1 and w2 (green
boxes), one latch v1 with initial value 1 (grey box), two gates g1 and g2 (gray circles),
and three invariant requirements r1 = �g1, r2 = �¬g2 and r3 = �v1 (red circles).
Arrows represent logical dependencies, and bullets in the arrows imply negation. Right
above: an attacker that controls latch v1 can set its initial value to 0 to break r2 and
r3 in 0 steps. Right below: an attacker that controls gate g2 can set its value to 1 at
time 0 to break r2 in 0 steps and r3 in 1 step, because the value of v1 at time 1 is 0.
(Color figure online)

An expression e is described by the grammar e ::= 0 | 1 | c | ¬c, where c ∈ C.
The set of all expressions is E. We use discrete time steps t = 0, 1, .. to describe
the system of equations. To each latch v ∈ V we associate a transition equation
of the form v(t + 1) = e(t) and an initial equation of the form v(0) = b, where
e ∈ E and b ∈ B. To each gate g ∈ G we associate an equation of the form
g(t) = e1(t) ∧ e2(t), where e1, e2 ∈ E.

Example 1. Figure 1 shows an example AIG with W = {w1, w2 }, V = { v1 }
and G = { g1, g2 }. The corresponding system of equations is

v1(0) = 1, v1(t + 1) = ¬g2(t),
g1(t) = ¬w1(t) ∧ ¬w2(t), g2(t) = g1(t) ∧ ¬v1(t).

The states of a system are all the different valuations of the variables in V ;
formally, a state −→v : V → B is a map from V to bits. Similarly, the valuations of
the variables in W are all the inputs to the systems; again, an input −→w : W → B

is a map from W to bits. We refer to the set of all states by
−→
V , and to the set

of all inputs by
−→
W . For t = 0, 1, ..., we denote the state of the system at time

t by −→v (t), with −→v (t) � 〈v1(t), . . . , vn(t)〉. The initial state is −→v (0), defined by
the initial equations for the latches. Similarly, we denote the input of the system
at time t by −→w(t), with −→w(t) � 〈w1(t), . . . , wn(t)〉. There are no restrictions or
assumptions over −→w(t), so it can take any value in

−→
W .
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In Example 1, the states are
−→
V = { 〈(v1, 0)〉, 〈(v1, 1)〉 }, the inputs are

−→
W =

{〈(w1, 0), (w2, 0)〉, 〈(w1, 0), (w2, 1)〉, 〈(w1, 1), (w2, 0)〉, 〈(w1, 1), (w2, 1)〉},
and the initial state is −→v (0) = 〈(v1, 1)〉.
Given an expression e ∈ E, the invariant �e is the property that requires

e(t) to be true for all t ≥ 0. The system S fails the invariant �e iff there exists a
finite sequence of inputs 〈−→w0, . . . ,

−→w t〉 such that, if we assume −→w(t) = −→w t, then
e(t) is false. The system satisfies the invariant �e if no such sequence of inputs
exists. Every expression e represents a boolean predicate over the state of the
latches of the system, and can be used to characterise states that are (un)safe.
These expressions are particularly useful in safety-critical hardware, as they can
signal the approach of a critical state.

In Example 1, we define three requirements: r1 � �g1, r2 � �¬g2, and
r3 � �v1. This system satisfies r2 and r3, but it fails r1 because w1 = 1
and w2 = 0 results in g1(0) being 0.

The Cone-of-Influence (COI) is a mapping from an expression to the compo-
nents that can potentially influence its value. We obtain the COI of an expression
e ∈ E, denoted �(e), by transitively tracing its dependencies to inputs, latches
and gates. More precisely,

– �(0) = ∅ and �(1) = ∅;
– if e = ¬c for c ∈ C, then �(e) = �(c);
– if e = w and w is an input, then �(e) = {w };
– if e = v and v is a latch whose transition equation is l(t + 1) = e′(t), then

�(e) = { v } ∪ �(e′);
– if e = g and g is a gate whose equation is g(t) = e1(t) ∧ e2(t) then �(e) =

{ g } ∪ �(e1) ∪ �(e2).

The COI of a requirement r = �e is �(r) � �(e).

In Example 1, the COI for the requirements are �(�g1) = { g1, w1, w2 },
and �(�g2) = �(�g3) = { g1, g2, v1, w1, w2 }.

The set of sources of an expression e ∈ E, denoted src(e) is the set of latches
and inputs in the COI of e; formally, src(e) � �(e)∩(V ∪W ). The Jaccard index
of two expressions e1 and e2 is equal to |src(e1)∩src(e2)|

|src(e1)∪src(e2)| . This index provides a
measure of how similar the sources of e1 and e2 are.

The dual cone-of-influence (IOC) of a component c ∈ C, denoted �(c), is the
set of components influenced by c; more precisely �(c) � { c′ ∈ C | c ∈ �(c′) } .

3 Motivational Example

In this section, we provide a motivational example of the problem of model
checking compromised systems, and we illustrate how to classify attackers given
a list of security requirements. Consider a scenario where an attacker A controls
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Fig. 2. Left: classification of attackers for requirements r2 and r3. Right: classification
of attackers for requirement r1. A green attacker cannot break the requirement, while
a red attacker can. (Color figure online)

the gate g2 of Example 1. By controlling g2, we mean that A can set the value
of g2(t) at will for all t ≥ 0. Since r2 = �¬g2, it is possible for A to break
r2 by setting g2(0) to 1. We note that the same strategy works to break both
requirements, but it need not be in the general case; i.e., an attacker may have
one strategy to break one requirement, and a different strategy to break another.
A can also break r3 = �v1, because, if A sets g2(0) to 1, then v1(1) is equal to
0. Since the original system fails to enforce r1, we say that A has the power to
break the requirements r1, r2 and r3. Now, consider a different attacker B which
only controls the gate g1. No matter what value B chooses for g1(t) for all t, it
is impossible for B to break r2 or r3, so we say that B only has the power to
break r1.

If we allow attackers to control any number of components, then there are 8
different attackers, described by the subsets of { v1, g1, g2 }. We do not consider
attackers that control inputs, because the model checking of invariant properties
requires the property to hold for all inputs, so giving control of inputs to an
attacker does not make it more powerful (i.e. the attacker cannot break more
requirements than it already could without the inputs). Figure 2 illustrates the
classification of attackers depending on whether they can break a given require-
ment or not. Based on it, we can provide the following security guarantees: (1)
the system cannot enforce r1, and (2) that the system can only enforce r2 and
r3 in the presence of attackers that are as capable to interact with the system
as { g1 } (i.e. they only control g1 or nothing).

According to the classification, attacker { g2 } is as powerful as the attacker
{ v1, g1, g2 }, since both attackers can break the same requirements r1, r2 and r3.
This information may be useful to the designer of the system, because it may
prioritise attackers that control less components but are as powerful as attackers
that control more when deploying defensive mechanisms.
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4 Bounded Model Checking of Compromised Systems

We recall the research questions that motivate this work: (RQ1) given a system
and a list of security requirements, how do we systematically generate attackers
that can potentially break these requirements, and how do we verify if they are
successful? and (RQ2) which techniques can help us classify attackers, i.e., to
map each attacker to the set of requirements that it breaks? In this section,
we aim to answer these research questions on a theoretical level by formalising
the problem of attacker classification via bounded model checking AIGs in the
presence of attackers. More precisely, to answer RQ1, we formalise attackers
and their interactions with systems, and we show how to systematically gener-
ate bounded model checking problems that solve whether some given attackers
can break some given requirements. We then propose two methods for the clas-
sification of attackers: (1) a brute-force method that creates a model checking
problem for each attacker-requirement pair, and (2) a method that incremen-
tally empowers attackers to find “minimal attackers,” since minimal attackers
represent large portions of the universe of attackers thanks to a monotonicity
relation between the set of components controlled by the attacker and the set
of requirements that the attacker can break. The latter method is a theoretical
approach to answer RQ2, while its practical usefulness is evaluated in Sect. 5.

4.1 Attackers and Compromised Systems

Since an AIG describes a system of equations, to incorporate the actions of an
attacker A into the system, we modify the equations that are associated to the
components controlled by A. Let S = (W,V,G) be a system described by an
AIG, let R = { r1, . . . , rn } be a set of invariant requirements for S, and let
C = W ∪ V ∪ G be the set of components of S. By definition, an attacker A
is any subset of C. If a component c belongs to an attacker A, then A has the
capability to interact with S through c. We modify the equations of every latch
v ∈ V to be parametrised by an attacker A as follows: the original transition
equation v(t + 1) = e(t) and the initial equation v(0) = b changes to

v(t + 1) =

{
e(t), if v �∈ A;
Av(t + 1), otherwise,

v(0) =

{
b, if v �∈ A;
Av(0), otherwise.

(1)

where Av(t) is a value chosen by the attacker A at time t. Similarly, we modify
the equation of gate g ∈ G as follows: the original equation g(t) = e1(t) ∧ e2(t)
changes to

g(t) =

{
e1(t) ∧ e2(t), if g �∈ A;
Ag(t), otherwise,

(2)

where Ag(t) is, again, a value chosen by the attacker A at time t. We use A[S] to
denote the system S under the influence of attacker A; i.e., A[S] is the modified
system of equations.
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An attack −→a : A → B is a map of components in A to booleans. An attack
strategy is a finite sequence of attacks (−→a 0,

−→a 1, . . . ,
−→a t) that fixes the values

of all Ac(k) (used in the equations above) by Ac(k) = −→a k(c), with c ∈ A and
0 ≤ k ≤ t.

Definition 1 (Broken Requirement). Given a requirement r ∈ R with r =
�e, we say that A breaks the requirement r if and only if there exists a sequence
of inputs of length k and an attack strategy of length k such that e(k) is false.
We denote the set of requirements that A breaks by A[R].

Finally, we define two partial orders for attackers: (1) an attacker Ai is strictly
less capable (to interact with the system) than an attacker Aj in the context of
S iff Ai ⊆ Aj and Ai �= Aj . The attacker Ai is equally capable to attacker Aj iff
Ai = Aj ; and (2) an attacker Ai is strictly less powerful than an attacker Aj in
the context of S and R iff Ai[R] ⊆ Aj [R] and Ai[R] �= Aj [R]. Similarly, attacker
Ai is equally powerful to attacker Aj iff Ai[R] = Aj [R]. We simply state that Ai

is less capable than Aj if S is clear from the context. Similarly, we simply say
that Ai is less powerful than Aj if S and R are clear from the context.

We can now properly present the problem of attacker classification.

Definition 2 (Attacker Classification via Model Checking). Given a
system S, a set of requirements R, and a set of h attackers {A1, . . . , Ah }, for
every attacker A, we compute the set A[R] of requirements that A can break by
performing model checking of each requirement in R on the compromised system
A[S].

Definition 2 assumes that exhaustive model checking is possible for S and
the compromised versions A[S] for all attackers A. However, if exhaustive model
checking is not possible (e.g., due to time limitations or memory restrictions),
we consider an alternative formulation for Bounded Model Checking (BMC):

Definition 3 (Attacker Classification via Bounded Model Checking).
Let S be a system, R be a set of requirements, and t be a natural number.
Given a set of attackers {A1, . . . , Ah }, for each attacker A, we compute the set
A[R] of requirements that A can break using a strategy of length up to t on the
compromised system A[S].

In the following, we show how to construct a SAT formula that describes the
attacker classification problem via bounded model checking.

4.2 A SAT Formula for BMC up to t Steps

For a requirement r = �e and a time step t ≥ 0, we are interested in finding an
assignment of sources and attacker actions (i.e., an attack strategy) such that,
for 0 ≤ k ≤ t, the value of e(k) is false. We define the proposition goal(r, t) by

goal(�e, t) �
t∨

k=0

¬e(k), (3)
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We must inform the SAT solver of the equalities and dependencies between
expressions given by the definition of the AIG (e.g., that e(k) ⇔ ¬v1(k)).
Inspired by the work of Biere et al. [8], we transform the equations into a Con-
junctive Normal Form formula (CNF) that the SAT solver can work with using
Tseitin encoding [31]. Each equation of the form

v(0) =

{
b, if v �∈ A;
Av(0), otherwise,

becomes
(
v↓ ∨ (v(0) ⇔ b)

) ∧ (¬v↓ ∨ (v(0) ⇔ Av(0))
)

where v↓ is a literal that marks whether the latch v is an element of the attacker
A currently being checked; i.e., we assume that v↓ is true if v ∈ A, and we assume
that v↓ is false if v �∈ A. Consequently, if v �∈ A, then v(0) ⇔ b must be true,
and if v ∈ A, then v(0) ⇔ Av(0) must be true. We denote this new proposition
by encode(v, 0), and it characterises the initial state of v.

Similarly, for 0 ≤ k < t, each equation of the form

v(k + 1) =

{
e(k), if v �∈ A;
Av(k + 1), otherwise,

becomes
(
v↓ ∨ (v(k + 1) ⇔ e(k))

) ∧ (¬v↓ ∨ (v(k + 1) ⇔ Av(k + 1))
)
.

We denote this new proposition by encode(v, k). Finally, for 0 ≤ k ≤ t, each
equation of the form

g(k) =

{
e1(k) ∧ e2(k), if g �∈ A;
Ag(k), otherwise,

becomes
(
g↓ ∨ (g(k) ⇔ e1(k) ∧ e2(k))

) ∧ (¬g↓ ∨ (g(k) ⇔ Ag(k))
)
,

where g↓ is a literal that marks whether the gate g is an element of the attacker
A currently being checked in a similar way that the literal v↓ works for the latch
v. We denote this new proposition by encode(g, k).

To perform SAT solving, we need to find an assignment of inputs in W and
attacker actions for each component c in A over t steps; thus, we need to assign
at least |W × A| × t literals. The SAT problem for checking whether requirement
r is safe up to t steps, denoted check(r, t), is defined by

check(r, t) � goal(r, t) ∧
∧

c∈(V ∪G)

(
t∧

k=0

encode(c, k)

)
. (4)

Proposition 1. For a given attacker A and a requirement r = �e, if we assume
the literal c↓ for all c ∈ A and we assume ¬x↓ for all x �∈ A (i.e., x ∈ (V ∪G)−A),
then A can break the requirement r in t steps (or less) if and only if check(r, t)
is satisfiable.
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Proof. We first show that if A can break the requirement in t steps or less,
then check(r, t) is satisfiable. Since A breaks r = �e in t steps or less, then, by
Definition 1, there exists an assignment of inputs (−→w0, . . . ,

−→wk) and an attacker
strategy (−→a 0, . . . ,

−→a k) which causes e(k) to be false for some k ≤ t; this means
that goal(r, t) is satisfiable, which, in turn, makes check(r, t) satisfiable.

Data: system S = (W,V,G), a time step t ≥ 0, a set of requirements
R.

Result: A map that maps the attacker A to A[R].
1 Map H;
2 foreach r ∈ R do
3 foreach A such that A ⊆ (V ∪ G) do
4 if check(r, t) is satisfiable while assuming c↓ for all c ∈ A

then
5 insert r in H(A);
6 end
7 end
8 end
9 return H;

Algorithm 1. Naive attacker classification algorithm.

We now show that if check(r, t) is satisfiable, then A can break the require-
ment. If check(r, t) is satisfiable then goal(r, t) is satisfiable, and e(k) is false for
some k ≤ t. Consequently, there is an assignment of inputs −→w(k) and attacker
actions Ac(k), such that the encode(c, k) propositions are satisfied for all c ∈ A.
With −→a k(c) = Ac(k) and −→wk = −→w(k), we obtain a witness input sequence and
a witness attack strategy which proves that A can break r in k steps (i.e., in t
steps or less since k ≤ t). ��

Algorithm 1 describes a naive strategy to compute the sets A[R] for each
attacker A; i.e. the set of requirements that A breaks in t steps (or less). Algo-
rithm 1 works by solving, for each of the 2|V ∪G| different attackers, a set of |R|
SAT problems, each of which has a size of at least O (|C| × t) on the worst case.

In the rest of the section, we propose two sound heuristics in an attempt
to improve Algorithm 1: the first technique aims to reduce the size of the SAT
formula, while the other aims to record and propagate the results of verifications
among the set of attackers so that some calls to the SAT solver can be avoided.

4.3 Isolation and Monotonicity

The first strategy involves relying on isolation to prove that it is impossible for a
given attacker to break some requirements. To formally capture this notion, we
first extend the notion of IOC to attackers. The IOC of an attacker A, denoted
�(A), is defined by the union of IOCs of the components in A; more precisely,
�(A) �

⋃ {�(c) | c ∈ A } .
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Informally, isolation happens whenever the IOC of A is disjoint from the COI
of r, implying that A cannot interact with r.

Proposition 2 (Isolation). Let A be an attacker and r be a requirement that
is satisfied in the absence of A. If �(A) ∩ �(r) = ∅, then A cannot break r.

Proof. For the attacker A to break the requirement r, there must be a component
c ∈ �(r) whose behaviour was affected by the presence of A, and whose change
of behaviour caused r to fail. However, for A to affect the behaviour of c, there
must be a dependency between the variables directly controlled by A and c, since
A only chooses actions over the components it controls; implying that c ∈ �(A).
This contradicts the premise that the IOC of A and the COI of r are disjoint,
so the component c cannot exist. ��
Isolation reduces the SAT formula by dismissing attackers that are outside the
COI of the requirement to be verified. Isolation works similarly to COI reduction
(see [7,13–15,18]), and it transforms Eq. 4 into

check(r, t) � goal(r, t) ∧
∧

c∈(�(r)−W )

(
t∧

k=0

encode(c, k)

)
(5)

The second strategy uses monotonicity relation between capabilities and
power of attackers.

Proposition 3 (Monotonicity). For attackers A and B and a set of require-
ments R, if A ⊆ B, then A[R] ⊆ B[R].

Proof. If A is a subset of B, then attacker B can always choose the same attack
strategies that A used to break the requirements in A[R]; thus, A[R] must be a
subset of B[R]. ��
Monotonicity allows us to define the notion of minimal (successful) attackers
for a requirement r: attacker A is a minimal attacker for requirement r if and
only if A breaks r, and there is no attacker B ⊂ A such that B also breaks r.
In the remainder of this section, we expand on this notion, and we describe a
methodology for attacker classification that focuses on the identification of these
minimal attackers.

4.4 Minimal (Successful) Attackers

The set of minimal attackers for a requirement r partitions the set of attackers
into those that break r and those who do not. Any attacker that is more capable
than a minimal attacker is guaranteed to break r by monotonicity (cf. Propo-
sition 3), and any attacker that is less capable than a minimal attacker cannot
break r; otherwise, this less capable attacker would be a minimal attacker. Con-
sequently, we can reduce the problem of attacker classification to the problem of
finding the minimal attackers for all requirements.
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Existence of a Minimal Attacker. Thanks to isolation (cf. Proposition 2)
we can guarantee that a requirement r that is safe in the absence of an attacker
A remains safe in the presence of A if �(r) ∩ �(A) is empty. Thus, for each
requirement r ∈ R, the set of attackers that could break r is P(�(r) − W ).
Out of all the attackers of r, the most capable attacker is �(r) − W , so we can
test whether there exists any attacker that can break r in t steps by solving
check(r, t) against attacker �(r) − W . For succinctness, we henceforth denote
the attacker �(r) − W by rmax.

Corollary 1. From monotonicity and isolation (cf. Propositions 3 and 2), if
attacker rmax cannot break the requirement r, then there are no minimal attack-
ers for r. Equivalently, if rmax cannot break r, then r does not belong to any set
of broken requirements A[R].

Data: system S, a requirement r, and a time step t ≥ 0.
Result: set M of minimal attackers for r, bounded by t.

1 if check(r, t) is not satisfiable while assuming c↓ for all c ∈ rmax

then
2 return ∅;
3 end
4 Set: P = { ∅ }, M = ∅; //(P contains the empty attacker ∅)
5 while P is not empty do
6 extract A from P such that the size of A is minimal;
7 if not (exists B ∈ M such that B ⊆ A) then
8 if check(r, t) is satisfiable when assuming c↓ for all c ∈ A

then
9 insert A in M ;

10 else
11 foreach c ∈ (rmax − A) do
12 insert A ∪ { c } in P ;
13 end
14 end
15 end
16 end
17 return M ;

Algorithm 2. The MinimalAttackers algorithm.

Finding Minimal Attackers. After having confirmed that at least one min-
imal attacker for r exists, we can focus on finding them. Our strategy consist
of systematically increasing the capabilities of attackers that fail to break the
requirement r until they do. Algorithm 2 describes this empowering procedure
to computes the set of minimal attackers for a requirement r, which we call
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MinimalAttackers. As mentioned, we first check to see if a minimal attacker
exists (Lines 1–3); then we start evaluating attackers in an orderly fashion by
always choosing the smallest attackers in the set of pending attackers P (Lines
5–16). Line 7 uses monotonicity to discard the attacker A if there is a successful
attacker B with B ⊆ A. Line 8 checks if the attacker A can break r in t steps
(or less); if so, then A is a minimal attacker for r and is included in M (Line
9); otherwise, we empower A with a new component c, and we add these new
attackers to P (Lines 11–13). We note that Line 11 relies on isolation, since we
only add components that belong to the COI of r.

Data: system S, a time step t ≥ 0, and a set of requirements R.
Result: Set of all minimal attackers M and an initial classification

map H.
1 Set: M = ∅;
2 Map: H;
3 foreach r ∈ R do
4 foreach A ∈ MinimalAttackers(S, t, r) do
5 insert r in H(A);
6 insert A in M;
7 end
8 end
9 return (M,H);

Algorithm 3. The AllMinimalAttackers algorithm.

We recall the motivational example from Sect. 3. Consider the computation
of MinimalAttackers for requirement r2. In this case, rmax

2 is { g1, g2, v1 },
which is able to break r2, confirming the existence of (at least) a minimal
attacker (Lines 1–3). We start to look for minimal attackers by check-
ing the attacker ∅ (Lines 5–8); after we see that it fails to break r2, we
conclude that ∅ is not a minimal attacker and that we need to increase
its capabilities. We then derive the attackers { g1 } , { g2 } and { v1 } by
adding one non-isolated component to ∅, and we put them into the set of
pending attackers (Lines 11–13). For attackers { v1 } and { g2 }, we know
that they can break the requirement r2, so they get added to the set of
minimal attackers, and are not empowered (Line 9); however, for attacker
{ g1 }, since it fails to break r2, we increase its capabilities and we gener-
ate attackers { v1, g1 } and { g1, g2 }. Finally, for these two latter attackers,
since the minimal attackers { v1 } and { g2 } have already been identified,
the check in Line 7 fails, and they are dismissed from the set of pend-
ing attackers, since they cannot be minimal. The algorithm finishes with
M = { { v1 } , { g2 } }.

Algorithms 3 applies Algorithm 2 to each requirement; it collects all minimal
attackers in the set M and initialises the attacker classification map H. Finally,
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Algorithm 4 exploits monotonicity to compute the classification of each attacker
A by aggregating the requirements broken by the minimal attackers that are
subsets of A.

For the motivational example in Sect. 3, Algorithm 3 returns M = {∅,
{ v1 } , { g2 }} and H = {(∅, { r1 }), ({ v1 } , { r2, r3 }), ({ g2 } , { r2, r3 })}.
From there, Algorithm 4 completes the map H, and returns

H = {(∅, { r1 }), ({ v1 } , { r1, r2, r3 }), ({ g1 } , { r1 }), ({ g2 } , { r1, r2, r3 }),
({ v1, g2 } , { r1, r2, r3 }), ({ v1, g2 } , { r1, r2, r3 }),
({ g1, g2 } , { r1, r2, r3 }), ({ v1, g1, g2 } , { r1, r2, r3 })}

Data: system S = (W,V,G), a time step t ≥ 0, a set of requirements
R.

Result: A map H that maps the attacker A to A[R].
1 (M,H) = AllMinimalAttackers(S, t, R);
2 foreach A ⊆ (V ∪ G) do
3 foreach A′ ∈ M do
4 if A′ ⊆ A then
5 insert all elements of H(A′) in H(A);
6 end
7 end
8 end
9 return H;
Algorithm 4. Improved classification algorithm. We assume that H ini-
tially maps every A to the empty set.

4.5 On Soundness and Completeness

Just like any bounded model checking problem, if the time parameter t is below
the completeness threshold (see [24]), the resulting attacker classification up to t
steps could be incomplete. More precisely, an attacker classification up to t steps
may prove that an attacker A cannot break some requirement r with a strategy
up to t steps, while in reality A can break r by using a strategy whose length
is strictly greater than t. There are practical reasons that justify the use of a
time parameter that is lower than the completeness threshold: (1) computing
the exact completeness threshold is often as hard as solving the model-checking
problem [18], so an approximation is taken instead; and (2), the complexity
of the classification problem growths exponentially with t in the worst case,
since the size of the SAT formulae grow with t, and there is an exponential
number of attackers that need to be classified by making calls to the SAT solver.
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A classification that uses a t below the completeness threshold, while possibly
incomplete, is sound, i.e., it does not falsely report that an attacker can break a
requirement when in reality it cannot. In Sect. 6 we discuss possible alternatives
to overcome incompleteness, but we leave a definite solution as future work.

We also consider the possibility of limiting the maximum size of minimal
attackers to approximate the problem of attacker classification. The result of a
classification whose minimal sets are limited to have up to z elements is also
sound but incomplete, since does not identify minimal attackers that have more
than z elements. We show in Sect. 5 that, even with restricted minimal attackers,
it is possible to obtain a high coverage of the universe of attackers.

4.6 Requirement Clustering

Property clustering [7,13,14] is a state-of-the-art technique for the model check-
ing of multiple properties. Clustering allows the SAT solver to reuse information
when solving a similar instance of the same problem, but under different assump-
tions. To create clusters for attacker classification, we combine the SAT problems
whose COI is similar (i.e., requirements that have a Jaccard index close to 1),
and incrementally enable and disable properties during verification. More pre-
cisely, to use clustering, instead of computing goal(r, t) for a single requirement,
we compute goal(Y, t) for a cluster Y of requirements, defined by

goal(Y, t) �
∧
r∈Y

(¬r↓ ∨ goal(r, t)). (6)

where r↓ is a new literal that plays a similar role to the ones used for gates and
latches; i.e., we assume r↓ when we want to find the minimal attackers for r,
and we assume ¬y↓ for all other requirements y ∈ Y .

The SAT problem for checking whether the cluster of requirements Y is safe
up to t steps is

check(Y, t) � goal(Y, t) ∧
∧

c∈(�(Y )−W )

(
t∧

k=0

encode(c, k)

)
, (7)

where �(Y ) =
⋃ {�(r) | r ∈ Y }.

5 Evaluation

In this section, we perform experiments to evaluate how effective is the use of
isolation and monotonicity for the classification of attackers, and we evaluate
the completeness of partial classifications for different time steps.

For evaluation, we use a sample of AIG benchmarks from past Hardware
Model-Checking Competitions (see [1,2]), from their multiple-property verifica-
tion track. Each benchmark has an associated list of invariants to be verified
which, for the purposes of this evaluation, we interpret as the set of security



240 E. Rothstein-Morris et al.

requirements. As of 2014, the benchmark set was composed of 230 different
instances, coming from both academia and industrial settings [16]. We quote
from [16]:

“Among industrial entries, 145 instances belong to the SixthSense family
(6s*, provided by IBM), 24 are Intel benchmarks (intel*), and 24 are Oski
benchmarks. Among the academic related benchmarks, the set includes 13
instances provided by Robert (Bob) Brayton (bob*), 4 benchmarks coming
from Politecnico di Torino (pdt*) and 15 Beem (beem*). Additionally, 5
more circuits, already present in previous competitions, complete the set.”

All experiments are performed on a quad core MacBook with 2.9 GHz Intel Core
i7 and 16GB RAM, and we use the SAT solver CaDiCaL version 1.0.3 [3]. The
source code of the artefact is available at [4].

We separate our evaluation in two parts: (1) a comparative study where we
evaluate the effectiveness of using of monotonicity and isolation for attacker clas-
sification in several benchmarks, and (2) a case study, where we apply our clas-
sification methodology to a single benchmark –pdtvsarmultip– and we study
the results of varying the time parameters for partial classification.

5.1 Evaluating Methodologies

Given a set of competing classification methodologies M1, . . . ,Mn (e.g., Algo-
rithms 1 and 4), each methodology is given the same set of benchmarks
S1, . . . , Sm, each with its respective set of requirements R1, . . . , Rm. To evaluate
a methodology M on a benchmark S = (W,V,G) with a set of requirements
R, we allow M to “learn” for about 10 min per requirement by making calls to
the SAT solver, and produce a (partial) attacker classification H. Afterwards,
we compute the coverage metric obtained by M, defined as follows.

Definition 4 (Coverage). Let P(V ) be the set of all attackers, and let H be
the attacker classification produced by the methodology M. We recall that H
is a map that maps each attacker A to a set of requirements, and in the ideal
case, H(A) = A[R], for each attacker A. The attacker coverage obtained by
methodology M for a requirement r is the percentage of attackers A ∈ P(V )
for which we can correctly determine whether A breaks r by computing r ∈ H(A)
(i.e., we do not allow guessing and we do not allow making new calls to the SAT
solver).

We also measure the execution time of the classification per requirement.
More precisely, the time it takes for the methodology to find minimal attackers,
capped at about 10 min per requirement. We force stop the classification for each
requirement if a timeout occurs, but not while the SAT solver is running (i.e.,
we do not interrupt the SAT solver), which is why sometimes the reported time
exceeds 10 min.
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5.2 Effectiveness of Isolation and Monotonicity

To test the effectiveness of isolation and monotonicity, we selected a small sam-
ple of seven benchmarks. For each benchmark, we test four variations of our
methodology:

1. (+IS,+MO): Algorithm 4, which uses both isolation and monotonicity
2. (+IS,−MO): Algorithm 4 but removing the check for monotonicity on Algo-

rithm 2, Line 7;
3. (−IS,+MO): Algorithm 4 but using Eq. 5 instead of Eq. 7 to remove isolation

while preserving monotonicity; and
4. (+IS,+MO) Algorithm 1, which does not use isolation nor monotonicity.

The benchmarks we selected have an average of 173 inputs, 8306 gates, 517
latches, and 80 requirements. Under our formulation of attackers, these bench-
marks have on average 28823 attackers . However, since an attacker that controls
a gate g can be emulated by an attacker that controls all latches in the sources
of g, we restrict attackers to be comprised of only latches; reducing the size of
the set of attackers from 28823 to 2517 on average per benchmark. Furthermore,
we arbitrarily restrict the number of components that minimal attackers may
control to a maximum of 3, which implies that, on a worst case scenario, we need
to make a maximum of 80 × ∑3

k=0

(
517
k

)
calls to the SAT solver per benchmark.

We also arbitrarily define the time step parameter t to be 10.
Figure 3 illustrates the average coverage for the four different methodologies,

for each of the seven benchmarks. The exact coverage values are reported in the
Appendix of [29] (an extended version of this article). We see that our method-
ology consistently obtains the best coverage of all the other methodologies, with
the exception of benchmark 6s155, where the methodology that removes isola-
tion triumphs over ours. We attribute this exception to the way the SAT solver
reuses knowledge when working incrementally; it seems that, for (−IS,+MO),
the SAT solver can reuse more knowledge than for (+IS,+MO), which is why
(−IS,+MO) can discover more minimal attackers in average than (+IS,+MO).

We observe that the most significant element in play to obtain a high coverage
is the use of monotonicity. Methodologies that use monotonicity always obtain
better results than their counterparts without monotonicity. Isolation does not
show a trend for increasing coverage, but has an impact in terms of classification
time. Figure 4 presents the average classification time per requirement for the
benchmarks under the different methodologies. We note that removing isolation
often increases the average classification time of classification methodologies;
the only exception –benchmark 6s325– reports a smaller time because the SAT
solver ran out of memory during SAT solving about 50% of the time, which
caused an early termination of the classification procedure. This early termina-
tion also reflects on the comparatively low coverage for the method (−IS,+MO)
in this benchmark, reported on Fig. 3.
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Fig. 3. Average requirement coverage per benchmark. A missing bar indicates a value
that is approximately 0.

Fig. 4. Average classification time per requirement per benchmark. A missing bar
indicates a value that is approximately 0.

5.3 Partial Classification of the pdtvsarmultip Benchmark

The benchmark pdtvsarmultip has 17 inputs, 130 latches, 2743 gates, and has
an associated list of 33 invariant properties, out of which 31 are unique and
we interpret as the list of security requirements. Since we are only considering
attackers that control latches, there are a total of 2130 attackers that need to be
classified for the 31 security requirements.

We consider 6 scenarios for partial classification up to t, with t taking values
in { 0, 1, 5, 10, 20, 30 }. For each requirement, we obtain the execution time of
classification (ms), the size of the set of source latches for the requirement (#C),
the number of minimal attackers found (#Min.), the total number of calls to the
SAT solver (#SAT), the average number of components per minimal attacker
(#C./Min) and the coverage for the requirement (Cov.). We present the average
of these measures in Table 1.

Normally, the attacker classification behaves in a similar way to what is
reported for requirement �¬g2177, shown in Table 2. More precisely, coverage
steadily increases and stabilises as we increase t. However, we like to highlight
two interesting phenomena that may occur: (1) coverage may decrease as we
increase the time step (e.g., as shown in Table 3) and (2) the number of minimal
attackers decreases while the coverage increases, as shown in Tables 2 and 3.

Case (1) occurs because the set of attackers that can effectively interact with
the system at time 0 is rather small, i.e., 26, while the set of attackers that can
affect the system at times 0 and 1 has size 226. The size of this set increases
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Table 1. Average measures for all requirements per time steps.

Steps ms #C. #Min. #SAT #C./Min. Cov.

0 683.1290323 34.96774194 2.451612903 16328.77419 1.4 0.527277594

1 2387.548387 46.22580645 6.387096774 24420 1.650232484 0.572533254

5 5229.935484 58.93548387 44.90322581 28355.29032 1.639645689 0.84956949

10 24967.12903 58.93548387 151.1935484 25566.54839 1.460869285 0.918973269

20 13632.51613 58.93548387 17.67741935 20849.70968 1.176272506 0.979354259

30 12208.25806 58.93548387 15.93548387 20798.16129 1.104563895 0.979354274

Table 2. Coverage for �¬g2177.

�¬g2177

Steps ms #C #Min. #SAT #C./Min. Cov.

0 895 59 0 34281 – 5.94E-14

1 2187 66 10 47378 2 0.499511

5 1735 66 205 12476 1.912195 0.999997

10 968 66 27 9948 1 0.999999

20 1275 66 27 9948 1 0.999999

30 1819 66 27 9948 1 0.999999

Table 3. Coverage for �¬g2220.

�¬g2220

Steps ms #C. #Min #SAT #C./Min. Cov.

0 1 6 1 28 1 0.90625

1 86 26 1 2628 1 0.500039

5 4511 67 17 47664 2.588235 0.852539

10 3226 67 6 37889 1 0.984375

20 3355 67 6 37889 1 0.984375

30 3562 67 6 37889 1 0.984375

with time until it stabilises at 266, which is the size of the set of attackers that
cannot be dismissed by isolation.

Case (2) occurs because the minimal attackers that are found for smaller
time steps represent a small percentage of the set of attackers that can affect
the system, so there is very little we can learn by using monotonicity. More
precisely, those minimal attackers control a relatively large set of components,
which they need to be successful in breaking requirements, as shown in Step
5, column #C./Min in Tables 2 and 3. By considering more time steps, we are
allowing attackers that control less components to further propagate their actions
through the system, which enables attack strategies that were unsuccessful for
smaller choices of time steps.

By taking an average over all requirements, we observe that coverage seems
to steadily increase as we increase the number of steps for the classification,
as reported in Table 1, column Cov. The low coverage for small t is due to
the restriction on the size of minimal attackers. More precisely, for small t,
attackers can only use short strategies, which limits their interaction with the
system; we expect attackers to control a large number of components if they
want to successfully influence a requirement in this single time step, and since
we restricted our search to attackers of size 3 maximum, these larger minimal
attackers are not found (e.g., as reported in Table 2 for Step 0).

We conclude that experimental evidence favours the use of both monotonic-
ity and isolation for the classification of attackers, although some exceptions
may occur for the use of isolation. Nevertheless, these two techniques help our
classification methodology (+IS,+MO) consistently obtain significantly better
coverage when compared to the naive methodology (−IS,−MO).



244 E. Rothstein-Morris et al.

6 Related Work

On Defining Attackers. Describing an adequate attacker model to contex-
tualise the security guarantees of a system is not a trivial task. Some attacker
models may be adequate to provide guarantees over one property (e.g. confiden-
tiality), but not for a different one (e.g., integrity). Additionally, depending on
the nature of the system and the security properties being studied, it is sensible
to describe attackers at different levels of abstraction. For instance, in the case
of security protocols, Basin and Cremers define attackers in [6] as combinations
of compromise rules that span over three dimensions: whose data is compro-
mised, which kind of data it is, and when the compromise occurs. In the case
of Cyber-physical Systems (CPS), works like [19,30] model attackers as sets of
components (e.g., some sensors or actuators), while other works like [17,32,33]
model attackers that can arbitrarily manipulate any control inputs and any sen-
sor measurements at will, as long as they avoid detection. In the same context
of CPS, Rocchetto and Tippenhauer [28] model attackers more abstractly as
combinations of quantifiable traits (e.g., insider knowledge, access to tools, and
financial support), which, when provided a compatible system model, ideally
fully define how the attacker can interact with the system.

Our methodology for the definition of attackers combines aspects from [6,19]
and [30]. The authors of [6] define symbolic attackers and a set of rules that
describe how the attackers affect the system, which is sensible since many crypto-
graphic protocols are described symbolically. Our methodology describes attack-
ers as sets of components (staying closer to the definitions of attackers in [19]
and [30]), and has a lower level of abstraction since we describe the semantics
of attacker actions in terms of how they change the functional behaviour of the
AIG, and not in terms of what they ultimately represent. This lower level of
abstraction lets us systematically and exhaustively generate attackers by simply
having a benchmark description, but it limits the results of the analysis to the
benchmark; Basin and Cremers can compare among different protocol imple-
mentations, because attackers have the same semantics even amongst different
protocols. If we had an abstraction function from sets of gates and latches to
symbolic notions (e.g., “components in charge of encryption”, or “components
in charge of redundancy”), then it could be possible to compare results amongst
different AIGs.

On Efficient Classification. The works by Cabodi, Camurati and Quer [15],
Cabodi et al. [13], and Cabodi and Nocco [14] present several useful techniques
that can be used to improve the performance of model checking when verifying
multiple properties, including COI reduction and property clustering. We also
mention the work by Goldberg et al. [20] where they consider the problem of
efficiently checking a set of safety properties P1 to Pk by individually checking
each property while assuming that all other properties are valid. Ultimately, all
these works inspired us to incrementally check requirements in the same cluster,
helping us transform Eqs. 4 into 7. Nevertheless, we note that all these techniques
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are described for model checking systems in the absence of attackers, which is
why we needed to introduce the notions of isolation and monotonicity to account
for them. Additionally, it may be possible to use or incorporate other techniques
that improve the efficiency of BMC in general (e.g., interpolation [26]).

On Completeness. As mentioned in Sect. 4.5, if the time parameter for the
classification is below the completeness threshold, the resulting attacker classifi-
cation is most likely incomplete. To guarantee completeness, it may be possible to
adapt existing termination methods (see [5]) to consider attackers. Alternatively,
methods that compute a good approximation of the completeness threshold (see
[24]) which guarantee the precision of resulting the coverage should help improve
the completeness of attacker classifications. If we consider alternative verifica-
tion techniques, then IC3 [11,12] and PDR [11], which have seen some success in
hardware model checking, may address the limitation of boundedness. Finally,
interpolation [26] could also help finding a guarantee of completeness.

On Verifying Non-safety Properties. In this work, we focused our analysis
exclusively on safety properties of the form �e. However, we believe that it is
possible to extend this methodology to other types of properties, it is possible to
efficiently encode Linear Temporal Logic formulae for bounded model checking
[8,9]. The formulations of the SAT problem change for the different nature of
the formulae, but both isolation and monotonicity should remain valid heuristics,
since they ultimately refer to how strategies of attackers can be inferred, not how
they are constructed.

7 Conclusion and Future Work

In this work, we present a methodology to model check systems in the presence
of attackers with the objective of mapping each attacker to the list of security
requirements that it breaks. This mapping of attackers creates a classification
for them, defining equivalence classes of attackers by the set of requirements
that they can break. The system can then be considered safe in the presence of
attackers that cannot break any requirement. While it is possible to perform a
classification of attackers by exhaustively performing model checking, the expo-
nential size of the set of attackers renders this naive approach impractical. Thus,
we rely on ordering relations between attackers to efficiently classify a large per-
centage of them, and we demonstrate empirically by applying our methodology
to a set of benchmarks that describe hardware systems at a bit level.

In our view, ensuring the completeness of the attacker classification is the
most relevant direction for future work. Unlike complete classifications, incom-
plete classifications cannot provide guarantees that work in the general case if
minimal attackers are not found. We also note that the effectiveness of mono-
tonicity for classification is directly related to finding minimal attackers. Con-
sequently, our methodology may benefit from any other method that helps in
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the identification of those minimal attackers. In particular, we are interested in
checking the effectiveness of an approach where, instead of empowering attack-
ers, we try to reduce successful attackers into minimal attackers by removing
unnecessary capabilities. This, formally, is an actual causality analysis [22] of
successful attackers.
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Abstract. We discuss expansions of CTL with connectives able to
express Streett fairness objectives for single paths. We focus on
(E)SFCTL: (Extended) Streett-Fair CTL inspired by a seminal paper of
Emerson and Lei. Unlike several other fair extensions of CTL, our entire
formalism (not just a subclass of formulas in some canonical form) allows
a succinct embedding into the μ-calculus, while being able to express
concisely all relevant types of path-based fairness objectives. We imple-
ment our syntax in the well-known symbolic model checker NuSMV, conse-
quently also implementing CTL model checking with “compassion” objec-
tives. Since the μ-calculus embedding requires only alternation depth
two, the resulting specifications correspond to parity games with two pri-
orities. This allows a comparison of the performance of our NuSMVsf with
existing parity game solvers (both explicit and symbolic). The advan-
tages of the symbolic approach seem to extend to fair model checking.

Keywords: Model checking · Fairness and compassion · CTL ·
μ-calculus · NuSMV · Parity games

1 Introduction

Computation tree logic (CTL) [12] enjoys linear complexity of model checking
(unlike LTL), but is unable to express fairness objectives. Since the 1980’s, this
has led to numerous proposals for extensions of CTL which overcome this limita-
tion while (sometimes) preserving low complexity of the model checking problem:

– CTLf [22] extends ordinary CTL with a binary version of EG ,
– FCTL [18] allows restricting path quantifiers with fairness constraints (written

using LTL operators), whereas
– both ECTL+ and the most powerful CTL∗ [15,16]1 involve full-blown mutu-

ally recursive grammars of state and path formulas, although a formalism
equivalent to ECTL+ can be defined using one connective EM of unrestricted
arity (i.e., an infinite family of fixed-arity connectives {EMn}n∈N) [31].

1 The name “ECTL+” was used in the conference version [15].
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D. Beyer and D. Zufferey (Eds.): VMCAI 2020, LNCS 11990, pp. 248–269, 2020.
https://doi.org/10.1007/978-3-030-39322-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39322-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-39322-9_12


Cheap CTL Compassion in NuSMV 249

Details are given in Sect. 2. Furthermore, various notions of path-based fair-
ness have been proposed [19,21] to specify the manner in which (a combination
of) certain events happen(s) along infinite sequences of transitions within some
graph:

– The most basic of these notions, unconditional fairness (or just fairness),
requires that a certain event p happens infinitely often but allows for arbi-
trarily long breaks between any two occurrences of this event.

– Conditional fairness (also referred to as weak fairness or justice) requires
that if some event q does not happen from some state on, then some event p
happens infinitely often.

– Strong fairness (also called compassion or Streett fairness) requires that if an
event q happens infinitely often, then some event p holds infinitely often.

Strong fairness appears to be the most expressive notion of fairness considered
in classical literature within the context of temporal logic [19] and indeed it
has been argued that every ω-regular fairness objective can be expressed by
a Streett objective [9]. Initially, the use of such fairness objectives in model
checking appears to have mostly been restricted to fairness constraints in the
style of FCTL, which one can think of as global path quantifiers ∀(fair → ϕ) and
∃(fair ∧ ϕ), where fair expresses some fairness condition on the path level and
ϕ does not contain further fairness properties [1, Sect. 6.5]. However, some fair
extensions of CTL mentioned above allow, e.g., for checking whether all paths in
a given model are fair, which cannot be done using just fairness constraints.

A well-known example of a tool supporting model checking under fairness
constraints is the symbolic model checker NuSMV ([10], sources available at http://
nusmv.fbk.eu), in which input models are internally represented as binary deci-
sion diagrams (BDDs); CTL (or LTL) formulas are then evaluated by fixpoint
computations over BDDs. The practical viability of this symbolic approach has
been demonstrated repeatedly, both for the model checking approach that is
used in NuSMV [5] and, more recently, for BDD-based solving of parity games [32].
In NuSMV, the user can annotate a CTL specification with JUSTICE constraints,
which in NuSMV express unconditional fairness constraints contrary to the use of
the term in the literature, restricting the evaluation of formulas to paths that
satisfy the constraint (this is redundant for LTL specifications, where fairness
is directly expressible). However, this strategy can be awkward to work with:
NuSMV, for example, has never implemented the COMPASSION keyword (enabling
the specification of strong fairness constraints) for CTL, which seems the most
natural and useful extension of fairness discussed in classical references [18].

The excellent computational properties of CTL model checking can be easily
explained by the existence of a direct translation into a well-behaved fragment of
the modal μ-calculus (alternation depth 1). Nevertheless, this perspective makes
inexpressibility of fairness constraints even more inexplicable, calling the choice
of original CTL primitives into question: such properties require only (succinct!)
μ-calculus formulas of alternation depth at most 2.

http://nusmv.fbk.eu
http://nusmv.fbk.eu
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1.1 Our Contributions

Inspired by the above considerations, we propose a new Streett-fair temporal
formalism ESFCTL, investigate its model-checking properties, implement it in
NuSMV and use a collection of benchmarks and examples to compare our extension
of NuSMV with parity game solvers.

We begin by revisiting Emerson and Lei’s paper [17] and as our first contribu-
tion in Sect. 2 we extend CTL with primitives directly corresponding to fixpoint
formulas used by them. One primitive E(ϕ1�ψ1, . . . , ϕn�ψn)Gχ, expressing the
existence of a compassionate path, leads to a language we call SFCTL (standing
for Streett-Fair CTL or Strongly Fair CTL) which succinctly encodes uncondi-
tional, weak and strong fairness operators and is a fragment of ECTL+ [15,16,29]
and hence CTL∗. The second language ESFCTL (Extended SFCTL) is based on
a more powerful primitive 〈ϕ1�ψ1, . . . , ϕn�ψn〉, which is central to our imple-
mentation and implicitly used already in [17], where its nontrivial semantics
has not been clarified. The latter logic does not appear to be a CTL∗ fragment,
yet enjoys efficient model checking: linear in the formula size when the arity of
the main connective is bounded, and quadratic in the formula size otherwise,
cf. Sect. 3. The unrestricted fair connective EM [31] and the binary EG [22] can
be encoded already in the weaker logic SFCTL, but the reverse translation is
altogether impossible for binary EG and apparently incurs exponential blowup
for n-ary EM . Furthermore, fairness operators can occur at any point in formulas
of our logics so that we can express fairness constraints without automatically
restricting all path quantifiers in the formula to conforming paths.

As our second contribution we implement model checking for the connectives
of ESFCTL within the (open source) current version of NuSMV (v2.6.0, see Sect. 4),
using the fixpoint characterizations that allow us to give the linear translation
into the μ-calculus in Sect. 3. In this paper, we refer to the proposed extension2

of NuSMV as NuSMVsf . It adds a new ESFCTLSPEC keyword, which one can use to
write ESFCTL specifications, disabling and making redundant the JUSTICE and
COMPASSION keywords. Thus, we repair the longstanding problem that model
checking under COMPASSION constraints for CTL was not supported in NuSMV.
Furthermore, our syntax allows the user to, e.g., verify whether all paths in some
input model are fair. There is also another sense in which we are completing the
NuSMV implementation of the model checking procedure for CTL under fairness:
the NuSMV implementation was not covering all canonical form FCTL formulas as
given by Emerson and Lei [18]. In fact, NuSMV seems to have been implementing
an intermediate class of formulas between CTLF [11] and FCTL [29]. Since all
canonical form FCTL formulas can be translated to ESFCTL formulas, our imple-
mentation NuSMVsf effectively enables model checking for canonical form FCTL
formulas in NuSMV.

At present, parity game solvers appear to be the most powerful software
available for μ-calculus model checking and satisfiability checking, with numer-
ous algorithms implemented and optimized (e.g., [20,32,35]). By an embedding

2 Available online at https://git8.cs.fau.de/software/nusmvf.

https://git8.cs.fau.de/software/nusmvf
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of ESFCTL into the μ-calculus with alternation depth 2, model checking instances
for ESFCTL formulas are equivalent to Büchi games, that is, parity games that
involve just the priorities 1 (indicating least fixpoint formulas) and 2 (for all
other formulas). Hence, as our third contribution, we illustrate by means of a
series of examples and benchmarks the correspondence between compassionate
NuSMVsf specifications and equivalent parity games and study the respective per-
formances of NuSMVsf and various parity game solving tools (Sect. 5).

Direct comparisons of this kind between the two types of tools have not
been undertaken often in the past, perhaps because translating previously avail-
able LTL fair specifications into the μ-calculus can be computationally costly.
Our extension NuSMVsf shows promising performance, outperforming parity game
solvers by a large margin in selected cases, apparently due to the symbolic nature
of its BDD-based model checking algorithm. We discuss the state of the art in
parity game solving, and the future prospects of CTL-based model checking in
Sect. 6.

In the present paper we focus on practical aspects, but we believe that there
are interesting theoretical problems regarding SFCTL and ESFCTL. Examples
include quasi-equational axiomatizations similar to those for CTLf [22] or for
the full μ-calculus [28,37], settling the question whether ESFCTL is contained in
CTL∗, or formal proofs of succinctness of our formalisms as compared to the one
based on EM and its fragments [31].

2 Making CTL Fair and Compassionate

We begin by defining two extensions of CTL with operators along the lines of
Emerson and Lei [17] that allow for expressing compassion properties. Next, we
detail the relation of the obtained logics to other fair extensions of CTL.

Given some predefined collection of atoms At and a natural number n, Extended
Streett-Fair CTL, which we denote by ESFCTLn, is defined by the grammar

ϕ,ψ ::= � | p ∈ At | ¬ϕ | ϕ ∧ ψ | EXϕ | E [ϕUψ] | 〈ϕ1�ψ1, . . . , ϕn�ψn〉.

Apart from the usual defined operators, we also have

E(ϕ1�ψ1, . . . , ϕn�ψn)Gχ := E [χU〈ϕ1�ψ1, . . . , ϕn�ψn,¬χ�⊥〉],

expressing the existence of a compassionate path that globally satisfies χ. Taken
as a primitive, this last connective yields Streett-Fair CTL. In other words,
SFCTLn is the fragment of ESFCTLn+1 defined by the following grammar

ϕ,ψ ::= � | p | ¬ϕ | ϕ ∧ ψ | EXϕ | E [ϕUψ] | E(ϕ1�ψ1, . . . , ϕn�ψn)Gχ.

ESFCTL and SFCTL denote the languages where the corresponding primitives
are not restricted to any specific n.
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Definition 2.1 (Reachability, Fairness and Compassion).

– A transition system is a triple M := (S,−→, L), where
• S is a finite collection of states,
• −→ ⊆ S × S is a non-terminating transition relation, that is, we require

that for all s ∈ S for which there is some s′ ∈ S such that s′ −→ s, there
is some t ∈ S such that s −→ t.

• L : S → ℘(At) is a labelling function, assigning sets of atoms to states.
– A path in M is a function π : N → S such that for all n ∈ N, we have

π(n) −→ π(n + 1). We write ΠM(s) for the set of all π such that π(0) = s
and ΠM for the set of all paths in M; we drop the subscripts M whenever
possible. We define a finite path analogously, restricting the domain to a finite
interval of N. Given any n, any π ∈ Π divides into the finite prefix up to π(n)
and the infinite suffix in Π(π(n)).

– Given a non-terminating relation � ⊆−→, we say that its domain dom(� )
is the collection of all states s ∈ S s.t. there exists t ∈ S with s � t.

– We say that t is −→-reachable (strictly −→-reachable) from s if for some
π ∈ Π(s) there is n ≥ 0 (n ≥ 1, respectively) such that π(n) = t.

– Given X,Y ⊆ S, we say that π ∈ Π is (X,Y )-compassionate if whenever π
passes infinitely often through X, it also passes infinitely often through Y .

Definition 2.2 (Semantics of ESFCTL). We inductively define the relation
of satisfaction � between pointed models (i.e., models M := (S,−→, L) with a
distinguished state s ∈ S) and formulas; we also write s ∈ [[ϕ]]M for M, s � ϕ.

– M, s � � always, M, s � p if p ∈ L(s), M, s � ¬ϕ if M, s � ϕ,
– M, s � ϕ ∧ ψ if M, s � ϕ and M, s � ψ,
– M, s � EXϕ if there is t ∈ S such that s −→ t and M, t � ϕ,
– M, s � E [ϕUψ] if there are π ∈ Π(s) and j ∈ N such that

M, π(j) � ψ and for all 0 ≤ i < j, we have M, π(i) � ϕ.
– M, s � 〈ϕ1�ψ1, . . . , ϕn�ψn〉 if there is a non-terminating relation � ⊆−→

such that s ∈ dom( � ) and such that for all 1 ≤ i ≤ n and all t that are
�-reachable from s, if some u ∈ [[ϕi]]M is �-reachable from t, then some
v ∈ [[ψi]]M is strictly �-reachable from t.

The crucial last clause comes with the intuition that if 〈ϕ1�ψ1, . . . , ϕn�ψn〉 is
satisfied at s, then a strongly connected subcomponent of M is reachable from
s that, for all 1 ≤ i ≤ n, contains some state satisfying ψi if it contains a state
satisfying ϕi.

We leave out semantic brackets and superscript M wherever possible, nota-
tionally conflating a formula with its denotation. E.g., instead of writing that
π is “([[ϕi]]M, [[ψi]]M)-compassionate”, we write π is “(ϕi, ψi)-compassionate”. We
also say that π is a ϕ-path if M, π(n) � ϕ for every n. We have:

Lemma 2.3 (Semantics of ESFCTL).

– M, s � 〈ϕ1�ψ1, . . . , ϕn�ψn,¬χ�⊥〉 implies that there is a χ-path in Π(s)
that is (ϕi, ψi)-compassionate for every i.
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– M, s � E(ϕ1�ψ1, . . . , ϕn�ψn)Gχ if and only if there is a χ-path in Π(s) that
is (ϕi, ψi)-compassionate for every i.

Proof. For the first item, use the assumption and pick a witnessing non-ter-
minating relation � ⊆−→ such that s ∈ dom( � ) and for all i ≤ n and
all t that are �-reachable from s, if some u ∈ [[ϕi]]M is �-reachable from t,
then some v ∈ [[ψi]]M is strictly �-reachable from t. Consider the strongly �-
connected components that are �-reachable from s. Define the natural partial
order between them as Y ≤SCC Z if Y is reachable from Z (that is, there is a
state in Y that is �-reachable from a state in Z). Pick an arbitrary such strongly
connected component X that is minimal w.r.t. ≤SCC and pick a finite path ending
in some u ∈ X. The remaining infinite suffix of the compassionate path we have
to construct is obtained as the infinite unfolding of a finite �-path ρ of the
form x1 = u, . . . , xm = u and consists solely of states lying in X. We construct
ρ stepping through i ∈ {1, . . . , n}. We can ignore every i s.t. X ∩ [[ϕi]]M = ∅,
as the corresponding condition ϕi�ψi is then satisfied automatically. For any
other i, assuming that x1, . . . , xj have already been constructed, we pick a finite
path xj , . . . , xk s.t. xk ∈ [[ψi]]M and append it to the part constructed so far,
starting with xj+1. By assumption, such a finite path always exists. We finish
the construction by looping back to u.

For the second item, let θ := E(ϕ1�ψ1, . . . , ϕn�ψn)Gχ. In one direction,
pick a χ-path π ∈ Π(s) which is (ϕi, ψi)-compassionate for every i. Let j be
the minimal number for which, for each 1 ≤ i ≤ n such that ψi does not hold
infinitely often on π, we have M, π(j′) � ϕi for all j′ ≥ j. We have M, s � θ if
M, π(j) � 〈ϕ1�ψ1, . . . , ϕn�ψn,¬χ�⊥〉. Let � be the restriction of −→ to the
suffix of π starting at j. Assume that π(k) � ϕi for some k ≥ j. By our choice of
j, this means that ψi holds infinitely often on π. Thus, as the witness of strict
�-reachability, we can pick any k′ > k such that π(k′) � ψi. The part for ¬χ�⊥
is trivial. For the opposite direction, assume

s � E [χU〈ϕ1�ψ1, . . . , ϕn�ψn,¬χ�⊥〉]
and pick π ∈ Π(s) and n ∈ N s.t. ∀i < n.M, π(i) � χ and moreover

M, π(n) � 〈ϕ1�ψ1, . . . , ϕn�ψn,¬χ�⊥〉.
Now use the first item of the Lemma. �
We write ϕ ≤ ψ if, for all M := (S,−→, L) and all s ∈ S, we have that M, s � ϕ
implies M, s � ψ. Moreover, we write ϕ ≡ ψ if ϕ ≤ ψ and ψ ≤ ϕ. We have

〈ϕ1�ψ1, . . . , ϕn�ψn,¬χ�⊥〉 ≤E(ϕ1�ψ1, . . . , ϕn�ψn)Gχ

since ϕ ≤ E [ψUϕ] for all ϕ,ψ.

Example 2.4. For the model shown to the left below, we have, e.g., that x �
E(a � b, c � d)G e since the e-path x, y, z, y, z, . . . is both (a, b)-compassionate
(since it satisfies b infinitely often) and (c, d)-compassionate (since it satisfies c
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only finitely often). On the other hand, we have x � 〈a �b, c �d,¬e �⊥〉 since
we have x � c but no state satisfying d is reachable from x. However, we have
y � 〈a�b, c�d,¬e�⊥〉 and thus x � E [eU〈a�b, c�d,¬e�⊥〉] (see Corollary 3.3).

x

c, e

y

a, e

z

b, e
u

b

v

a, c

w

d
For the model to the right, we have v � E(a � b, c � d)G� as can be seen by
looking at the compassionate path v, u, u, . . .. Alternatively, the path v, w,w, . . .
can be taken as a witness for satisfaction of the formula as well. We also have
v � 〈a � b, c � d〉 since v � a and v � c, and since there are (different!) states
satisfying b and d that are strictly reachable from v. Here, the atoms a and
c that are satisfied at v trigger the independent requirements on eventually
reaching states that satisfy b and d, respectively. This indicates that the opera-
tors 〈ϕ1 � ψ1, . . . , ϕn � ψn〉 specify graphs (or sets of paths) rather than single
paths. This non-determinism however is restricted to finite prefixes of paths
so that skipping finite prefixes by means of the operator EF yields formulas
EF〈ϕ1 � ψ1, . . . , ϕn � ψn〉 ≡ E(ϕ1 � ψ1, . . . , ϕn � ψn)G� that specify single
paths (again, see Corollary 3.3).

We define the remaining standard connectives of fair CTL as abbreviations:

EGϕ := E(���)Gϕ EGFϕ := E(��ϕ)G� EFϕ := E [�Uϕ]
AFϕ := ¬EG¬ϕ AGϕ := ¬EF¬ϕ AXϕ := ¬EX¬ϕ

and also A [ϕUψ] := ¬E [¬ψU(¬ϕ∧¬ψ)]∧AFψ. As an additional connective, we
define a binary variant of EG by EϕGψ := E(��ϕ)Gψ. Corollary 2.5 below shows
that it is precisely the fair connective of CTLf proposed recently (for theoretical
reasons independent of model-checking concerns) by Ghilardi and van Gool [22].
There is an obvious n-ary generalization:

E(ϕ1, . . . , ϕn)Gψ := E(��ϕ1, . . . ,��ϕn)Gψ.

A similar connective has been proposed by Rabinovich and Schnoebelen [31]. In
our language, it is definable as

EM(ϕ1, . . . , ϕn) := E(��ϕ1, . . . ,��ϕn)G(ϕ1 ∨ . . . ∨ ϕn).

As a corollary of Lemma 2.3, this definition captures precisely the intended
semantics of EM .

Corollary 2.5 (Semantics of Additional Operators).

– M, s � E(ϕ1, . . . , ϕn)Gψ if and only if Π(s) contains a ψ-path on which each
ϕi holds infinitely often.

– M, s � EM(ϕ1, . . . , ϕn) if and only if Π(s) contains a (ϕ1 ∨ · · · ∨ϕn)-path on
which each ϕi holds infinitely often.
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When the arity of EM (or polyadic EG) is fixed, a reverse translation from SFCTL
does not exist: Corollary 2.5 immediately implies

E(ϕ1, . . . , ϕn)Gψ ≡ EM(ϕ1 ∧ ψ, . . . , ϕn ∧ ψ,ψ)

and it has been established by Rabinovich and Schnoebelen [31] that for every
fixed n, the extension of CTL with n-ary EM is strictly less expressive than the
one with n+1-ary EM .3 In the limit, the logics determined by either the sequence
of EG ’s with arbitrary arity, or by the sequence of EM ’s of arbitrary arity do
have the same expressive power as SFCTL. However, a direct proof of this fact
entails an exponential blowup. Let us illustrate this for the case where n = 2:

E(ϕ1�ψ1, ϕ2�ψ2)Gχ ≡ E [χUEG(¬ϕ1 ∧ ¬ϕ2 ∧ χ)] ∨ E(ψ1, ψ2)Gχ

∨ E [χUEψ2G(¬ϕ1 ∧ χ)] ∨ E [χUEψ1G(¬ϕ2 ∧ χ)].

Each possible combination of ¬ϕ1 or ψ1 and ¬ϕ2 or ψ2 requires an individual
EG operator. However, SFCTL succinctly embeds into a fragment of ECTL+

(cf. [14–16,31]). Using informally ECTL+ syntax, we can state this as

E(ϕ1�ψ1, . . . , ϕn�ψn)Gχ ≡ E [(GFϕ1 → GFψ1) ∧ · · · ∧ (GFϕn → GFψn) ∧ Gχ].

3 Streett-Fair CTL and the µ-Calculus

The modal μ-calculus [28] extends standard modal logic with general extremal
fixpoint operators and thus encompasses many temporal logics. For example, the
CTL formula EF p can be expressed by the μ-calculus formula μY. (p ∨ EX Y ),
where Y is a fixpoint variable and the least fixpoint operator μY applied to
its argument p ∨ EXY picks the least solution of the equation Y = p ∨ EXY .
Hence, the formula is satisfied at all states from which a state satisfying p is
reachable. Dually, greatest fixpoint formulas νY. ϕ(Y ) pick the greatest solution
of the equation induced by ϕ(Y ), so that we can express, e.g., the formula AG p
by νY. (p ∧ AX Y ). We assume that the definitions from Sect. 2 are extended to
accommodate fixpoint operators in the usual way and follow the ideas from [17]
to embed our logics ESFCTL and SFCTL into the modal μ-calculus.

Definition 3.1. For C = {(ϕ1, ψ1), . . . , (ϕn, ψn)}, we put

τC(Y ) :=
∧

1≤i≤n

(
EX(μZ. (ψi ∧ Y ) ∨ (Y ∧ EXZ)) ∨ (¬ϕi ∧ EX Y )

)
.

Then we have x ∈ �τC(Y )� if and only if, for all 1 ≤ i ≤ n, a state satisfying
ψi can be reached from x by a path of length at least 1 that does not leave
Y , or ϕi is not satisfied at x and some successor of x is contained in Y . The
3 An intuitive explanation: requiring that, e.g., ϕ1 and ϕ2 are witnessed infinitely often

on a given path does not amount to requiring that ϕ1 ∧ ϕ2 holds infinitely often,
whereas EX in front of either conjunct could deviate from the path in question.
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formula νY. τC(Y ) then expresses that the current state is contained within a
non-terminating graph such that, for all i and all states satisying ϕi, a state
satisfying ψi is reachable within the graph.

The following lemma and its corollaries can be derived from results given
(without proofs) by Emerson and Lei [17, Lemma 4.8].

Lemma 3.2. 〈ϕ1�ψ1, . . . , ϕn�ψn,¬χ�⊥〉 ≡ νY.(χ ∧ τC(Y )).

Proof. For one direction, let M, x � νY. (χ∧τC(Y )). Put S′ = �νY. (χ∧τC(Y ))�;
we will informally treat it as another variable. For each y ∈ S′, we have that
M, y � χ and for all 1 ≤ i ≤ n, we have M, y � EXE [S′U(ψi ∧ S′)] or M, y �
¬ϕi ∧ EXS′. Consequently, there is an −→-successor z of y such that M, z �
E [S′U(ψi ∧ S′)] or M, z � S′. Let � ⊆−→ consist of all edges (y, z) that are
enforced in this way. It is clearly a non-terminating relation and x ∈ dom(� ).
We also have that for each node y ∈ S′ and for all 1 ≤ i ≤ n, if ψi is not
strictly �-reachable from y (that is, if M, y � EXE [S′U(ψi ∧ S′)]), then we
have M, y � ¬ϕi ∧ EXS′. Since ψi is not strictly �-reachable from y, ψi is
also not strictly �-reachable from any �-successor y′ of y. Hence we also have
M, y′ � ¬ϕi ∧ EXS′. Repeat this argumentation to see that ϕi does not hold
anywhere on any path π ∈ Π�(y), i.e., that ϕi is not �-reachable from y.

For the converse direction, let M, x � 〈ϕ1�ψ1, . . . , ϕn�ψn,¬χ�⊥〉 so that we
can pick a non-terminating relation �⊆−→ such that x ∈ dom(�) and for each
y ∈ dom(�) and for all 1 ≤ i ≤ n, we have that if ψi is not strictly �-reachable
from y, then all �-paths that start at y globally satisfy ¬ϕi; also we have that
all �-paths that start at y globally satisfy ¬(¬χ). The latter follows from the
requirement ¬χ�⊥ since ⊥ is not satisfied at any state. Then we have that χ
holds everywhere in S′ := dom(�), that is, S′ ⊆ �χ�. By coinduction, it suffices
to show that S′ is a postfixpoint of χ∧ τC , that is, that S′ ⊆ �χ�∩ τC(S′). Since
we have S′ ⊆ �χ�, it remains to show S′ ⊆ τC(S′). Pick y ∈ S′. If ψi is strictly
�-reachable from y, then it is also strictly −→-reachable from y, and thus we
have M, y � EXE [S′U(ψi ∧ S′)]. If ψi is not strictly �-reachable from y, then
all �-paths that start at y globally satisfy ¬ϕi by assumption and as y lies on
some �-path that starts at y, we have M, y � ¬ϕi ∧ EXS′. �
Corollary 3.3 (Fixpoint Characterizations for SFCTL and ESFCTL).

〈ϕ1�ψ1, . . . , ϕn�ψn〉 ≡ νY.τC(Y )
E(ϕ1�ψ1, . . . , ϕn�ψn)Gχ ≡ E [χUνY. (χ ∧ τC(Y ))]

Proof. For the first item, put χ = � in Lemma 3.2. The second item follows
immediately from that Lemma and the definition of the connective. �
This yields a translation of SFCTL and ESFCTL into a relatively simple fragment
of the μ-calculus in which the nesting depth of alternating extremal fixpoints is
bounded by 2 (see, e.g., [30] for a detailed definition of alternation depth):

(�)µ := � (p)µ := p (¬ϕ)µ := ¬ϕµ

(ϕ ∧ ψ)µ := ϕµ ∧ ψµ (EXϕ)µ := EXϕµ (E [ϕUψ])µ := μZ.(ψµ ∨ (ϕµ ∧ EXZ)),
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and, crucially,

(〈ϕ1�ψ1, . . . , ϕn�ψn〉)µ :=

νY.
∧

1≤i≤n

(
EX(μZ.((ψµ

i ∧ Y ) ∨ (Y ∧ EXZ))) ∨ (¬ϕµ
i ∧ EXY )

)
.

To see that the embedding of our logics into the μ-calculus indeed is succinct,
let Cl(θ) denote the closure of a given μ-calculus formula θ, that is, the set of all
its subformulas and let |ψ| denote the size of formulas.

Lemma 3.4 (Size of the Translation). Let n > 1. For every ESFCTLn for-
mula ψ, we have |Cl(ψµ)| ≤ (9n + 6)|ψ|.
Proof. The proof is by induction over ψ; we just consider the case where ψ =
〈ϕ1�ψ1, . . . , ϕn�ψn〉. We have |ψ| = 1 +

∑
1≤i≤n(|ϕi| + |ψi|) and, for

C :={ψµ,
∧

1≤i≤n

(
EXμZ.((Y ∧ EXZ) ∨ (ψµ

i ∧ Y )) ∨ (¬ϕµ
i ∧ EXY )

)
,

EXY, Y, Y ∧ EXZ, Z}

and

Di :={EXμZ.((Y ∧ EXZ) ∨ (ψµ
i ∧ Y )) ∨ (¬ϕµ

i ∧ EXY ),
EXμZ.(Y ∧ EXZ) ∨ (ψµ

i ∧ Y ), ¬ϕµ
i ∧ EXY,

μZ.(Y ∧ EXZ) ∨ (ψµ
i ∧ Y ), ¬ϕµ

i ,

(Y ∧ EXZ) ∨ (ψµ
i ∧ Y ), ϕµ

i , ψµ
i ∧ Y, ψµ

i },

we have

Cl(ψµ) = C ∪
⋃

i≤n

Di ∪
⋃

i≤n

Cl(ϕµ
i ) ∪

⋃

i≤n

Cl(ψµ
i ).

Hence we get |Cl(ψµ)| = 6 + 9n +
∑

1≤i≤n(|Cl(ϕµ
i )| + |Cl(ψµ

i )|), as |C| = 6 and
|Di| = 9 for 1 ≤ i ≤ n. By the induction hypothesis,

|Cl(ψµ)| ≤ 6 + 9n +
∑

1≤i≤n

(6 + 9n)(|ϕi| + |ψi|)

= (9n + 6)(1 +
∑

1≤i≤n

(|ϕi| + |ψi|)) = (9n + 6)|ψ|. �

Similar bounds can be established for the fragments of ESFCTL discussed
above.

It is well-known (e.g., [23,34]) that model checking μ-calculus formulas is
linear-time equivalent to solving parity games in which the number of priorities
correspond to the alternation depth of the input formulas. Furthermore, parity
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games with k priorities and m nodes can be solved in time O(m
k
2 ) (see, e.g.,

[26]) so that solving parity games with a fixed number of priorities is a tractable
problem. This suffices for our purposes since all parity games that we consider
below have at most 2 priorities, that is, we always have k ≤ 2. The size of
the model checking game for a μ-calculus formula θ against some model M is
m = |M| · |Cl(θ)|. Hence the time bound on the model checking problem is
linear in |ψ| if we fix the arity n of the main operator 〈ϕ1�ψ1, . . . , ϕn�ψn〉 (or
its counterparts for other fragments discussed above). Without a fixed constant
bound on the arity of the operator, n has to be replaced with |ψ|, turning the
linear dependency on formula sizes into a quadratic one:

Corollary 3.5. Let M be a model, n ∈ N and x be a state in M.

– For a ESFCTLn formula ψ, checking whether M, x � ψ can be done in time
O(|M| · |ψ|).

– For a ESFCTL formula ψ, checking whether M, x � ψ can be done in time
O(|M| · |ψ|2).

4 NuSMV Implementation

The current release version (v2.6.0) of the symbolic model checker NuSMV has
only limited support for model checking branching time formulas in combina-
tion with fairness objectives; for CTL it allows the use of the JUSTICE keyword
to specify global unconditional fairness constraints of the form

∧
i GFϕi where

the ϕi are boolean formulas over atoms. A stronger COMPASSION keyword is
also available which allows to specify strong fairness constraints of the form∧

i(GFϕi → GFψi), where again the ϕi and ψi are boolean formulas over atoms.
However, the use of this keyword is restricted to LTL model checking. Hence,
NuSMV currently does not support model checking for CTL with strong fairness
objectives.

To rectify this problem, we extend the implementation of CTL model checking
within NuSMV to support full ESFCTL (and its fragments), adding the capabil-
ity of model checking CTL in combination with strong fairness objectives; the
sources of our implementation are available at https://git8.cs.fau.de/software/
nusmvf. Thanks to the fixpoint characterizations (Corollary 3.3) of our new
compassion connectives, it was relatively straightforward to add support of
E(ϕ1�ψ1, . . . , ϕn�ψn)Gχ and 〈ϕ1�ψ1, . . . , ϕn�ψn〉 (both for arbitrary n) to the
model checking procedure of NuSMV. Our implementation adds a new keyword
ESFCTLSPEC, whose parameter is a ESFCTL formula. The keyword disables all
JUSTICE and COMPASSION keywords while checking ESFCTL formulas in favour
of directly expressing the fairness objectives via the formula. Alternatively, the
user may specify an ordinary CTL formula augmented with an arbitrary number
of COMPASSION constraints, which then is internally translated into the corre-
sponding ESFCTL formula. Additionally, we have extended the trace generation
mechanism of NuSMV to also support trace generation for ESFCTL formulas which
allow a counter-example in the form of a single path.

https://git8.cs.fau.de/software/nusmvf
https://git8.cs.fau.de/software/nusmvf
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4.1 BDD-based Model Checking Within NuSMV

The symbolic NuSMV model checking procedure for ordinary CTL represents the
transition relation of the input model as a binary decision diagram (BDD) (e.g.,
[25, Section 6.3.2]). The procedure verifies the satisfaction of the input formula
at a given set of initial states rather than at a single given state. To support
fairness constraints, the model BDD is first narrowed down to just those paths
of the input model that satisfy the specified fairness constraints, resulting in a
fair model BDD. Then the truth set of the input formula within the fair model
is computed recursively as a second BDD. During this computation, the fair
model BDD is queried directly when evaluating propositional atoms and via a
preimage operation for the next state connectives EX (and the dual connectives
AX). Boolean connectives are mapped to raw BDD operations. For the evalua-
tion of CTL connectives, the relevant fixpoints of the respective subformulas are
computed directly by approximation in the case of EG and EU or—in the case
of AU , AF and EF—using standard CTL equivalences (see, e.g., [25]).

Our extension of the model checking procedure—to which we refer as NuSMVsf

in the following—adds functions computing the fixpoints induced (via the fix-
point characterizations from Corollary 3.3) by the E(ϕ1�ψ1, . . . , ϕn�ψn)Gχ and
〈ϕ1�ψ1, . . . , ϕn�ψn〉 connectives. The pseudo-code depicted in Algorithm 4.1
shows how the extension of a formula 〈ϕ1�ψ1, . . . , ϕn�ψn〉 is computed as the
result of ExtendedStreettFair((ϕ1, ψ1), . . . , (ϕn, ψn)). We use Boolean con-
nectives to denote the respective BDD operations, the functions EU and EX
compute EU and EX in the usual way and the model is assumed to be available
globally to the functions.

Algorithm 4.1. Evaluation of 〈ϕ1�ψ1, . . . , ϕn�ψn〉 operators.
function ExtendedStreettFair((ϕ1, ψ1), . . . , (ϕn, ψn))

y ← BDD for ‘false’
y′ ← BDD for ‘true’
while y �= y′ do

y ← y′

y′ ← BDD for ‘true’
for i = 1 . . . n do

z ← EU(y, ψi ∧ y)
y′ ← y′ ∧ (EX(z) ∨ (¬ϕi ∧ EX(y)))

end for
end while
return y

end function

Since the new operators can be used to express fairness constraints, we no
longer have to restrict the model to just the fair paths in a precomputation step.
Instead, we directly evaluate the given ESFCTL formula within the given model.
Furthermore, the evaluation of fairness objectives by means of fixpoint com-
putations enables straightforward extraction of witnesses and counterexamples.
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We have implemented witness generation for formulas that have path witnesses,
essentially extending the witness generation capabilities of NuSMV to cope with
our new compassion operators.

5 Examples and Benchmarks

To demonstrate the viability of our approach, we conduct several experiments in
which we model check ESFCTL formulas (or their respective μ-calculus encod-
ings) against systems that are given as unlabelled transition systems. From the
perspective of parity games, our experiments amount to solving model checking
games with just the two priorities 1 (for formulas belonging to least fixpoints) and
2 (for all other formulas), i.e., Büchi games. We compare the runtime behaviour
and memory requirements of our new tool NuSMVsf (as described in the previ-
ous section), with the explicit parity game solvers PGSolver [20] and Oink [35]
and (for some experiments) with the BDD-based parity game solvers introduced
in [32]. It should be noted that parity game solvers support model checking for
the full μ-calculus while our implementation is restricted to ESFCTL. Further-
more, parity game solvers typically implement various game solving algorithms.

– For PGSolver we conduct experiments with the implementations of
• Zielonka’s recursive algorithm [38] (referred to as PGSolver(zlk) below),
• the local model checking algorithm due to Stevens and Stirling [33]

(PGSolver(mc)) and
• the strategy improvement algorithm [36] (PGSolver(sil)),

using default optimizations.
– For Oink, we evaluate the implementations

• of Zielonka’s algorithm (Oink(zlk)) and
• the priority promotion algorithm [2] (Oink(npp)),

again using default optimizations;
– for NuSMVsf , we use the optimizations -dynamic (enabling dynamic reordering

of variables) and -iwls95 100000 (enabling BDD-partitioning); sometimes
it is useful to disable BDD-caching with set enable_sexp2bdd_caching 0
(we refer to our implementation with BDD-caching disabled as NuSMVsfnc).

– Furthermore, we conduct experiments with an implementation of symbolic
variants of Zielonka’s algorithm (BDD(zlk)) and the fixpoint iteration algo-
rithm [3] (BDD(fpi)) that work over BDDs, as detailed in Sanchez et al. [32].
Since dynamic reordering of the BDD variables does not guarantee improved
performance [32], we disable it. As suggested by Sanchez et al., we execute our
experiments using the native Python BDD implementation to handle BDD
operations.

All experiments have been conducted on a system with Intel Core i7 3.60 GHz
CPU with 24 GB RAM; we generally use a timeout of 360 seconds and report the
mean time for three runs for all experiments. For most experiments, we show just
the results for the fastest algorithm from each of the tools that we tested. Below,
we show graphical presentations of our results with the exception of examples
where some tools perform very similar, in which case we report the results as
tables, for readability.
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5.1 Elevator Control System

Standard benchmark sets for parity game solvers [3,27] include a simple elevator
example, which models an elevator serving a building with n floors. When the
elevator is requested at some level i (modelled by an atom isPressed(i)), the
request for this floor is added to a queue, whose entries the elevator visits in either
FIFO or LIFO order. The property to be tested, a strong fairness objective, is
that however the system evolves, if the elevator is called to a floor infinitely often,
then it visits this floor infinitely often as well (the latter event being modelled
by an atom isAt(i)). In terms of our language SFCTL, we check against

θe(n) := AG
∧

i≤n

¬E(��isPressed(i))G¬isAt(i),

stating that there is no i ≤ n such that isPressed(i) can be visited infinitely often
while visiting isAt(i) only finitely often. The property is satisfied if the elevator
processes its waiting queue in a FIFO manner while it is not satisfied in the LIFO
version of the system. To obtain benchmark results, we wrote a script to generate
elevator models in SMV format and used PGSolver’s own tool elevators to
generate parity games, accordingly. The results of the measurements on time
and memory usage are depicted in Tables 1 and 2, where †T indicates a runtime
of over 360 seconds and †M an out-of-memory error.

Table 1. Runtime and memory requirements for Elevator FIFO (n stages)

n PGSolver(zlk) PGSolver(sil) Oink(zlk) Oink(npp) NuSMVsf

Time Memory Time Memory Time Memory Time Memory Time Memory

3 0.009 9836 0.026 10 824 0.002 5080 0.003 5052 0.009 17 272

4 0.046 12 656 1.041 21 144 0.003 5672 0.003 5464 0.028 0:028

5 1.252 33 888 113.450 83 608 0.009 7800 0.008 7524 0.112 19 832

6 73.370 168 624 †T †T 0.070 27 824 0.062 25 148 0:758 25 480

7 †T †T †T †T 0.771 189 980 0.728 169 360 2.904 50 792

8 †T †T †M †M 6:812 1 671 940 6.410 1 484 552 69.815 67 672

9 †M †M †M †M †M †M 79.915 14 812 208 †T †T

Table 2. Runtime and memory requirements for Elevator LIFO (n stages)

n PGSolver(zlk) PGSolver(sil) Oink(zlk) Oink(npp) NuSMVsfnc

Time Memory Time Memory Time Memory Time Memory Time Memory

3 0.007 9440 0.009 9644 0.002 5184 0.003 4992 0.012 17 260

4 0.022 12 664 0.017 12 712 0.004 5676 0.003 5404 0.033 17 836

5 0.149 30 652 0.081 27 320 0.012 8324 0.009 7660 0.137 19 748

6 1.440 171 440 0.558 97 296 0.084 30 916 0.077 27 624 0.477 26 824

7 14.744 1 434 396 4.510 740 788 4.005 203 280 0.916 188 224 2.073 53 876

8 167.345 13 605 024 46.996 6 785 520 11.249 1 772 448 8.977 1 664 240 71.507 69 800
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All the tools show relatively similar performance in this example (with
NuSMVsf generally being faster than PGSolver but somewhat slower than Oink).
For the LIFO variant of the experiment, disabling BDD-caching roughly halves
the runtime of NuSMVsf , so we show just the results for NuSMVsfnc. While symbolic
model checking does not seem to provide a measurable advantage regarding
runtimes in the elevator example, we observe that NuSMVsf uses a significantly
smaller amount of memory than the parity game solvers, possibly due to succinct
BDD-encoding of models and truth sets.

5.2 Non-emptiness for Random Büchi Automata

To further compare our implementation with existing parity game solvers, we
devise several series of models and formulas from the domain of automata theory.
Automata on infinite words—such as Büchi, parity or Streett automata [23,
Ch. 1]—are graphs with atoms that identify accepting/non-accepting states, the
priorities of states or containment in components of acceptance pairs. A run of
an automaton thus is just an infinite path through the corresponding graph.
We first focus on Büchi automata (BA), for which accepting runs visit some
accepting state infinitely often. A state in an automaton is non-empty if some
accepting run starts at the state and the non-emptiness region of automata
consists of their non-empty states. While automata on infinite words typically
have labelled edges so that runs correspond to infinite words over some alphabet,
we restrict our development to models with unlabelled edges (corresponding to
automata with a single letter alphabet); this is justified by the fact that edge
labels do not affect the (non-)emptiness of states. Using f to indicate accepting
states, the SFCTL formula θBA := E(��f)G� then specifies the non-emptiness
region of BA by expressing the existence of a path on which some accepting
state is visited infinitely often.

We compare the tools by checking random (non-)empty BA for non-emp-
tiness. To this end, we construct random automata and in the non-empty case
we randomly pick a single state that lies on some loop, marking it as accepting;
the tools then have to find this state and verify that it is contained in some
loop. Figures 1 and 2 show the runtimes of the various tools for (non)-empty
automata of increasing size. Oink consistently shows the best performance and
uses the least amount of memory on these random automata. Our implementa-
tion NuSMVsf and the BDD-based parity game solvers [32] are the slowest tools
in this example. We argue that this is due to the weakness of the BDD-based
approach on random input models which are typically not well-structured and
rarely allow for a concise BDD representation. Similar effects have also been
observed by Sanchez et al. [32]. This point seems to be substantiated by the fact
that for all random models in our experiments, the model BBDs in NuSMVsf are
at least 3 times larger than the corresponding explicit model representations.
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Fig. 1. Non-empty BA (n × 1000 states)
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Fig. 2. Empty BA (n × 1000 states)

5.3 Non-emptiness for Tree-Like Parity and Streett Automata

We now turn our attention to non-emptiness checking for parity and Streett
automata with a certain tree-like structure that can be exploited by symbolic
model checking algorithms. Since these automata can be transformed to equiv-
alent (nondeterministic) Büchi automata, we can define their accepting runs by
means of an SFCTL formula. The resulting model checking games then have
a Büchi winning condition instead of a parity or Streett condition. Due to the
strictness of the alternation hierarchy of the μ-calculus (cf. , e.g., [23, Ch. 11]) we
can use this straightforward reduction of parity and Streett conditions to Büchi
conditions for automata, but not for games [13]. Hence we restrict our atten-
tion to non-emptiness checking for automata. Runs of parity automata (PA) are
accepting if the highest priority that they visit infinitely often is even. To solve
the non-emptiness problem for parity automata with k priorities by fair model
checking, we require that each state has exactly one of the priorities 0 (encoded
by p0) to k (encoded by pk). The non-emptiness region of parity automata then
can defined by the SFCTL formula

θPAk := EF
∨

i≤k, i even
E(��pi)G(

∧
j>i

¬pj)

which expresses that, eventually, a state is reached, for which there is some even
priority i such that there is a path on which priority i is visited infinitely often
and no priority greater than i is ever visited. While θPAk mentions k priorities,
the μ-calculus formula (θPAk )µ has alternation depth just 2.

As indicated above, we run experiments on tree-like automata, that is, perfect
binary trees of depth n ≥ 1 with additional back edges from each leaf to the root
state; all inner nodes of the tree have priority 0 while the 2n−1 leafs have the
priorities 1 to 2n−1. Figure 3 depicts the runtimes for model checking non-empty
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Fig. 3. Non-empty PA (depth n)
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Fig. 4. Totally accepting PA (depth n)

tree-like parity automata of depth n and with 2n−1 priorities against the formula
θPA2n−1 ; all trees satisfy the respective formula. We also run experiments for total
acceptance of parity automata, expressed by the formula

θTPAk := AG
∧

i≤k, i odd
¬E(��pi)G(

∧
j>i

¬pj)

which states that every run is accepting. Figure 4 depicts the results for checking
tree-like parity automata of depth n and with 2n−1 priorities against θTPA2n−1 ; in
this series, we choose automata to be totally accepting so that the formulas are
satisfied.

All of the tools appear to exhibit exponential runtime behaviour on both
series of tree-like parity automata, in accordance with the exponentially growing
sizes of the models and formulas. Yet our implementation NuSMVsf compares
favourable to all parity game solvers in this example. We conjecture that the
main reason for this lies in the BDD-encoding of models as discussed above (and
in e.g., [5] and [32]): in cases, where the input allows for a succinct encoding of
the model as a BDD, symbolic model checkers have a structural advantage over
tools that use explicit encoding of the input. To substantiate this conjecture, we
measure the numbers of nodes in model BDDs and of nodes in explicit model
representations. For trees of depth n, we denote the former number by f(n) and
the latter number by g(n). We find that f(n) ≤ 15n but g(n) ≥ 2n − 1 in all our
tree-like models. The model BDDs apparently grow linearly with n while the
explicit models grow exponentially with n; we made the same observations with
the tree-like Streett automata considered below. Interestingly, we did not observe
the benefit on runtime that the symbolic approach provides in our experiments
when testing the BDD-based parity game solvers of Sanchez et al. [32] (cf. the
plot for BDD(fpi) in Fig. 3). The performance of symbolic model checkers appears
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to be highly dependent on the structure of the BDD-encoding of the model
and the used variable ordering; there may be BDD-encodings of our tree-like
automata which are more suitable for such tools.
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Fig. 5. Non-empty SA, runtime
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Fig. 6. Non-empty SA, memory usage

Runs in Streett automata (SA) are accepting if, for each acceptance pair
(P,Q), whenever some state from P is visited infinitely often along the run, then
a state from Q is visited infinitely often as well. To check Streett automata for
non-emptiness, we assume k acceptance pairs (Pi, Qi), i ≤ k, where containment
in the respective component of a pair is modelled by atoms pi, qi. The non-
emptiness region of Streett automata is then defined by the SFCTL formula

θSAk := E(p1�q1, . . . , pk�qk)G�
which states the existence of a path that is strongly fair for each acceptance pair.
Figures 5 and 6 show the runtimes and the memory requirements, respectively,
of the various tools when checking tree-like Streett automata of depth n and
with 2n−1 acceptance pairs against the formula θSA2n−1 . Here, we use non-empty
automata in which acceptance pairs ({v0}, {li}) require that if the root node
v0 is visited infinitely often, then the leaf li is visited infinitely often; hence
the formula is satisfied in all cases. We observe that our tool again decisively
outperforms all parity game solvers in this example, possibly due to the concise
encoding of tree-like structures as BDDs; the results regarding memory usage
are similarly pronounced.

5.4 Alternating Bit Protocol

As another example, we evaluate the performance of NuSMVsf with a version
of the Alternating Bit Protocol [24] which is also included in the parity game
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benchmarking set [27]. The protocol describes communication of two agents via
channels which might lose or duplicate data, a circumstance which it tries to
overcome by sending a control bit along with each message which is flipped
on successful transmission. The model is parameterized by a set of data ele-
ments D that can be sent over communication channels. Keiren’s tool chain
[27] uses a model written in the mCRL2 specification language to generate equiv-
alent parity games. We start from the same file and generate an SMV model.
The time for converting from mCRL2 to the respective format has not been mea-
sured. The resulting SMV model encodes the labelled transition system underlying
the original model naively, resulting in only two variables state and transition,
where the former represents a state of the system by a number and the lat-
ter can take values from the set of transition labels (which are obtained from
the mCRL2 description as all possible combinations of actions and their param-
eters) in the original model. Thus, in NuSMV we can state propositions like
state = 42 & transition = next(transition).

Whereas loc. cit. performs model checking against several formulas, we con-
centrate here on a strong fairness statement, namely that if an action r1(d)—
denoting that the sender reads a datum d from the outside—is enabled infinitely
often, then it is also taken infinitely often:

θ(D) := AG
∧

d∈D

¬E(��EX(transition = r1(d)))G¬(transition = r1(d))

The property is satisfied in none of the models.
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Fig. 7. Runtimes for ABP, θ(D) for |D| =
2n data elements
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Fig. 8. Memory usage for ABP, θ(D)
for |D| = 2n data elements

We present our findings in Figs. 7 and 8. It is worth noting that the largest
NuSMV model (with |D| = 27) is around 512 kB in size, whereas the corresponding
parity game is much larger at 53 MB.
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6 Conclusions

Our work resulted in an extension of the popular tool NuSMV, fixing its known
limitations in handling fair CTL specifications, i.e., not only providing the pre-
viously missing COMPASSION keyword for CTL and overcoming the restriction
to fairness constraints, but also supporting counterexample extraction. Further-
more, the evaluation of our extension so far has shown that for select examples,
the advantages of the BDD-based approach seem to extend readily from CTL
model checking to model checking with Streett fairness objectives. In general,
we conjecture that if the input model can be succinctly encoded as a BDD, this
compression leads to significantly reduced runtime and memory usage in com-
parison to state-of-the art (explicit) parity game solvers. However, a detailed
evaluation of this claim (using, e.g., large numbers of model checking instances
from practical problems) remains for future work. Despite our promising initial
evaluation, the recent progress on parity game solving, both in theory (e.g., the
quasipolynomial upper time bounds on explicit [6] and symbolic [8] parity game
solving) and in practice [32,35] calls into question the long-term perspectives of
the SMV line of tools, at least when it comes to CTL-based model checking.

The central advantage of NuSMV and related tools in comparison to parity
game solvers has been the succinct internal representation of models and formu-
las in terms of BDDs [5]. However, parity game solvers have recently caught up
in this area (see, e.g., [7,8,32]), essentially reaching eye level with NuSMV. On
a related note, the mCRL2 framework [4] supports model checking for the full
μ-calculus by solving parity games and comes with a powerful description lan-
guage, equaling or surpassing NuSMV regarding the readability and succinctness
of the model specification language. Nevertheless, while symbolic parity game
solving algorithms are available in theory and have been tested in repositories
supporting recent submissions, it appears that they are not (yet) a part of the
standard mCRL2 development.

For the time being, our implementation (NuSMVsf) provides a unique combi-
nation of an expressive and succinct specification language with symbolic model
checking for CTL formulas including Streett fairness objectives. On the practical
side, NuSMVsf could be further optimized by adding support for on-the-fly (that
is, local) model checking (e.g., [33]). Regarding theoretical aspects, we listed
several challenges in the concluding sentence of Sect. 1.1.

The datasets generated and analyzed during the current study are available
at https://doi.org/10.6084/m9.figshare.9977510 and have be verified using the
virtual machine available at https://doi.org/10.6084/m9.figshare.9977510.
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30. Niwiński, D.: On fixed-point clones. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226,
pp. 464–473. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16761-
7 96

31. Rabinovich, A., Schnoebelen, P.: BTL2 and the expressive power of ECTL+. Inf.
Comput. 204(7), 1023–1044 (2006)

32. Sanchez, L., Wesselink, W., Willemse, T.A.C.: A comparison of BDD-based par-
ity game solvers. In: Proceedings of the 9th International Symposium on Games,
Automata, Logics, and Formal Verification (GandALF 2018), pp. 103–117 (2018)

33. Stevens, P., Stirling, C.: Practical model-checking using games. In: Proceedings of
the 4th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 1998), pp. 85–101 (1998)

34. Stirling, C.: Games and modal mu-calculus. In: Proceedings of the 2nd Interna-
tional Workshop on Tools and Algorithms for Construction and Analysis of Systems
(TACAS 1996), pp. 298–312 (1996)

35. Dijk, T.: Oink: an implementation and evaluation of modern parity game solvers.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 291–308.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 16
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Abstract. Recently presented, IC3-inspired symbolic model checking
algorithms strengthen the procedure for showing inductiveness of lem-
mas expressing reachability of states. These approaches show an impres-
sive performance gain in comparison to previous state-of-the-art, but also
present new challenges to portfolio-based, lemma sharing parallelization
as the solvers now store lemmas that serve different purposes. In this
work we formalize this recent algorithm class for lemma sharing parallel
portfolios using two central engines, one for checking inductiveness and
the other for checking bounded reachability, and show when the respec-
tive engines can share their information. In our implementation based
on the PD-KIND algorithm, the approach provides a consistent speed-
up already in a multi-core environment, and surpasses in performance
the winners of a recent solver competition by a comfortable margin.

Keywords: Parallel model checking · Lemma sharing ·
Property-directed k-induction · IC3/PDR · Craig interpolation

1 Introduction

Safe inductive invariants of symbolically described, infinite-state transition
systems are valuable artefacts when proving safety for example in software
model checking. Algorithms suitable for obtaining such invariants include those
based on k-induction [27,32] and IC3 [8]. These algorithms rely on descrip-
tions in propositional or first-order logic that are solved with SAT and SMT
solvers enhanced with over-approximation techniques based on Craig interpola-
tion [7,12]. The elusive goal of such algorithms is to minimize the need for user
intervention in model checking through well-defined tasks that can be turned
into a symbolic traversal of a search space at the expense of increased computa-
tional cost.

Solvers for this problem have often a substantial heuristic component
enabling different strategies in the algorithm execution. Recent results [10,24,30]
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show the use of varied strategies to be a powerful tool for parallelizing model-
checking algorithms using algorithm portfolios. The abstract nature of the algo-
rithmic components enables literally infinite possibilities for adjusting the model-
checking algorithms, and the changes are known to affect dramatically not only
the algorithm run time but also its convergence. However, the key to truly scal-
able solving is the sharing of information among the solvers of the portfolio (see,
e.g., [24]), a usually much more complicated task than constructing the portfolio.

This paper describes a parallelization approach for a recently introduced
class (see [15,20]) of model-checking algorithms that combines the strength of
k-induction with IC3-style search in finding safe inductive invariants. The algo-
rithms consist of two components, the induction-checking engine and the finite
reachability engine. We describe what information sharing means in a portfolio
of instances of this class, and show with a robust experimental analysis on our
implementation that the class can profit greatly from this type of parallelization
already in a multi-core environment, surpassing in performance the state-of-the-
art. While in the following we refer to the class with the acronym IcE/FiRE, we
point out the two existing implementation that we are aware of, PD-KIND [20]
and KIC3 [15].

An instance of determining the safety of a transition system S consists of a
triple of predicates (I, T, P ), where I describes the initial states of the system, T
describes its transition relation, and P is a set of states to be tested to contain
all reachable states of S. The predicates are defined over a fixed set of state
variables X, and, in the case of T , a copy X ′ of X. A solution to the instance, if
one exists, is a predicate R containing I such that R(X)∧T (X,X ′) =⇒ R(X ′)
and R is contained in P .

In this paper we are studying a general class of algorithms that work on an
over-approximation F of the states of S reachable in n steps or less for some
n ≥ 1. The idea is to maintain the invariant that predicate F does not intersect
with ¬P , while trying to prove that F is (k-)inductive. When F is represented
symbolically as a set of formulas, individual elements of F can be checked for
inductiveness relative to F instead of checking F as a whole. Successfully checked
elements are collected in a new set G which represents an over-approximation of
the states of S reachable in m steps or less, for m > n. When G = F , such an F
(or G) has the properties of R and therefore is a solution for (I, T, P ). This new
class of algorithms, introduced in [20] and further refined in [15], is based on an
observation that it is, from a pragmatic point of view, better to use an engine for
k-induction instead of regular induction in showing F inductive. The class can
be described as a combination of the algorithms based on k-induction and IC3.
Intuitively it generalizes IC3, since k-induction is stronger than regular induc-
tion. In addition, instances from this class perform well in experimentations. For
example, the model checker Sally [20], which implements PD-KIND, won the
transition system division of the 2019 edition of the CHC competition.1

In this paper we describe a parallelization approach for the IcE/FiRE class
of algorithms. We show that the algorithms allow sharing both the formulas

1 See https://chc-comp.github.io.

https://chc-comp.github.io
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constructed for F and the formulas inside the finite reachability engine. Our
parallel algorithm, implemented for multi-core environments on top of PD-
KIND [20], performs better than the state-of-the-art parallel and sequential
solvers P3 [24], Z3/Spacer [22], and PD-KIND itself [20]. The implementation
shows surprisingly good, consistent, close to linear speed-up at least up to nine
cores that is visible already for instances with run times as low as two seconds
and tends to become more pronounced for higher run times. We show that both
types of formula sharing are useful: the parallel solver solves more instances
within our timeout and solves the easier instances faster. The implementation is
particularly good at showing systems safe.

2 Related Work

Parallelization is a natural way of improving scalability of model-checking algo-
rithms, for example when facing the complexity of real-world problems. We there-
fore review below only the work that we deem most relevant to our results.

In [24] we presented the P3 system for parallelizing the IC3-inspired algo-
rithm IC3/PDR for computing clusters using portfolio of lemma-sharing solvers
and search-space partitioning. The current work differs from that in several
important aspects. First, we study a different class of algorithms, based on a
combination of IC3 and k-induction. Second, in the implementation our empha-
sis in this work is on multicore environments instead of computing clusters. We
also target a different application domain, studying transition systems instead
of general constrained Horn clauses. Finally, in comparing the current system
against P3 we measure a significant improvement on the set of instances that
both tools can solve, providing practical evidence on the importance of the
contribution.

Approaches for parallel IC3 were suggested, for example, in the original pub-
lication [8], and more recently in [10]. The current system differs from both, in
addition to basing on k-induction, by allowing constraints expressible in first-
order logic through an SMT encoding instead of purely propositional encoding,
therefore being more readily applicable in software model checking.

The Tarmo system [34] allows SAT-based bounded model checkers to share
learned clauses between queries of different execution bounds. The approach
could be applied at least in the FiRE systems underlying our bounded reacha-
bility queries by allowing the SMT solvers to share clauses as in [18,25]. However,
we leave the study of performance effects of such a technique for future work.

A system presented in [31] follows a different approach of determining the
feasibility of symbolic execution paths in parallel. Our approach is more sym-
bolic in the sense that it does not require the explicit enumeration of, in gen-
eral, an exponential number of paths done in [31]. Algorithms for parallel LTL
model checking are presented in [1]. The general approach relies on an automata-
theoretic formulation of reducing model checking to determining the emptiness
of Büchi automata. The parallelization idea focuses on using algorithms based
on DFS and BFS for this purpose. We consider this approach orthogonal to ours,
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and leave it for future work to study the possible synergies. In [21] the authors
use three processes to parallelize a standard k-induction algorithm enriched
with invariants generated from predefined templates. This approach was general-
ized in [3] where program analysis with dynamic precision refinement generates
continuously-refined invariants for the k-induction. Our approach is based on
the more general IcE/FiRE class, and allows scalability to arbitrary number of
cores. In [30] the authors present a more general approach of parallelizing model
checking by running several model checkers in parallel. However, the paper does
not address the problem of sharing information between the solvers, a topic
central to the current discussion.

Finally, our approach is greatly inspired by the sequential approaches com-
bining k-induction with IC3, in particular the PD-KIND algorithm [20] but
also the KIC3 framework [15]. In this work we aim at capturing the class of
these algorithms from the point of view of information sharing between different
solvers, and apply these results on parallelizing these algorithms.

A very recent, not yet published work [2] presents another approach of com-
bining k-induction and IC3/PDR. It extends the framework of [3] and employs
IC3/PDR (not only) for generation of auxiliary invariants for k-induction.

Combining and unifying different approaches to software verification, such as
IC3/PDR [8,14], k-induction [32] and BMC [5], is becoming increasingly popu-
lar [3,4,9,15,20]. Both combination and parallelization techniques benefit from
relentless continuous improvements [6,11,16,23,33] of the original algorithms.

3 Preliminaries

Let X denote a finite set of typed variables and let X ′ denote the set of primed
versions of variables from X, i.e., the next-state variables. Then a state formula
F (X) is any quantifier-free formula over variables from X and a transition for-
mula T (X,X ′) is any quantifier-free formula over variables from both X and
X ′. A transition system S (over X) is a pair 〈I, T 〉, where I is a state formula
denoting the initial states of the system and T is a transition formula. A state sX

is a type-consistent assignment of variables from X, i.e., sX(x) ∈ Dom(x) for all
x ∈ X. When clear from context, we omit X and write simply s. A state formula
F holds in a state s if it evaluates to true under s, that is, s � F . The states s
such that s � F are called the F -states. A sequence of states 〈s0, s1, . . . , sk〉 is
called a trace if sXi−1, s

X′
i � T (X,X ′) for all 1 ≤ i ≤ k. A state s is k-reachable

in S (reachable in k steps) if there exists a trace 〈s0, s1, . . . , sk〉 such that s0 � I
and sk = s. A state is reachable if it is k-reachable for some finite k.

A state formula F is a k-invariant of the system if it holds in all states
reachable in k or less steps. If F is a k-invariant then ¬F is not reachable in k
steps or less and we say that ¬F is k-inconsistent with S. When a concrete k
is not important or not determined, or when we refer to multiple k-invariants
but with different values of k, we use a more general term bounded invariants. A
bounded invariant F is thus a state formula for which there exists k such that
F is a k-invariant. Similarly to IC3, we also use the term lemma to refer to a
bounded invariant.
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Given a transition system S = 〈I, T 〉, a state formula P and a set of state
formulas F , we say that P is Fk-inductive if

k−1∧

i=0

((F(Xi) ∧ P (Xi)) ∧ T (Xi,Xi+1)) =⇒ P (Xk) (1)

If F = {P} and P is a (k−1)-invariant, then P is a k-inductive invariant of
S, meaning it is valid in all reachable states of S. When P is not Fk-inductive,
the negation of (1) is satisfiable and each satisfying assignment defines a trace
〈s0, . . . , sk〉 of k+1 states called a counter-example to ( k-)induction (CTI). We
say that a CTI is reachable in S when s0 is reachable. A central task of the
algorithm presented in this paper is to check if elements of F are Fk-inductive.
Checking this for an element P of F and placing P to another set G if P is
Fk-inductive is referred to as pushing P to G.

Given a transition system S and a state formula P , the goal of verification
is to prove that P is valid on all reachable states of S, or equivalently that ¬P
is not reachable. We say that the system is safe with respect to P if P is indeed
an invariant of the system, and we say that it is unsafe if there exists a finite
trace starting from an initial state and ending in a ¬P -state. For the rest of the
paper we make the assumption that the problem is non-trivial, meaning that the
initial states satisfy the property P , or more formally, that I =⇒ P is valid.

4 The IcE/FiRE Framework

This section formalizes a general approach for checking safety of symbolically rep-
resented transition systems in a way that allows us to present naturally our par-
allelization techniques. The approach splits the reasoning about the safety into
two separate components (Fig. 1). The first, main, component is an induction-
checking engine (IcE), also referred to shortly as induction engine. The goal of
the induction engine is to decide the safety problem. It searches for a k-inductive
strengthening of the property P being checked. If it finds such a strengthening
it reports the system as safe. During the search it may discover that no such
strengthening exists since the negation of the property is reachable from the
initial states. In this case it reports the system as unsafe. To make progress
in its search, to remove spurious counterexamples to induction, and to confirm
real ones, IcE relies on the services of the second component – finite reachability
engine (FiRE). The role of FiRE is to answer bounded reachability queries issued
by IcE. Given a state formula s and a number n, a bounded reachability query
asks if any s-state is reachable from initial states in exactly n steps. The finite
reachability engine answers these queries and provides a reason for the answer.
In case of reachability, the reason is a trace of n + 1 states leading from an
initial state to an s-state. In case of unreachability, the reason is an n-invariant
blocking s.

The cooperation of these two engines is depicted on Fig. 1. During the run,
FiRE accumulates knowledge about the system in the form of bounded invari-
ants. This knowledge helps it to answer the subsequent queries faster. The
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Fig. 1. The IcE/FiRE framework for solving safety of transition systems

progress of IcE during its run is modelled using a set of rules that capture
and evolve the state of IcE. We discuss the rules in the next section and discuss
how IcE relies on FiRE when applying these rules.

The idea of separate components for inductive and bounded reachability
reasoning is present already in [20]. However, our formalization enables us to
easily extend the framework to parallel setting with information sharing and
reason about its correctness. In addition, thanks to its abstract nature, it covers
not only PD-KIND [20], but also other algorithms, such as KIC3 [15]. We show
this for PD-KIND in Sect. 5, but omit the similar proof for KIC3 due to lack of
space.

4.1 Induction-Checking Engine

Given a safety problem for a transition system (I, T, P ) the induction-checking
engine (IcE) searches for k-inductive strengthening of P . It maintains two dis-
tinct sets of state formulas: a base frame F and a successor frame G. In addition,
it maintains information about its current level n. Intuitively, if IcE is currently
working on level n, it already knows that the system is safe up to level n, i.e., ¬P
is not reachable in n steps or less. The base frame F serves both as a witness that
¬P is not reachable, as well as a candidate for the inductive strengthening of P .
IcE maintains an invariant that on level n every element of F is an n-invariant.
Moreover, P is always an element of F . The successor frame G collects those
elements of F that are Fk-inductive for some fixed k ≤ n+1. Since

∧ F is an n-
invariant, this means that all elements of G are at least (n+1)-invariants. When
all elements of the base frame are checked and either successfully pushed to G
or dropped, and no termination condition has been hit, G becomes the new base
frame and the successor frame is emptied. If at any point F = G then F is a
k-inductive strengthening of P , proving that P holds in the system (as shown
later in Lemma 1). In addition to the two frames IcE maintains a queue Q. The
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queue contains the elements of F that still need to be processed at the current
level. We also refer to the elements of Q as obligations.

We now formalize the workings of the induction engine as a set of rules that
work on and modify the current state of IcE. The current state of IcE is a 5-tuple
〈F ,G, n, k,Q〉 with F being the base frame, G the successor frame, n the current
level, Q the current queue of obligations, and k defining the current depth of
induction. We refer to the state of IcE as configuration. For brevity we also
sometimes refer to the elements of F as lemmas instead of bounded invariants.
The initial configuration of IcE is 〈{P}, ∅, 0, 1, {P}〉 and IcE makes progress by
applying the following rules. Note that the rules Safe and Unsafe are special,
terminating rules.

Safe:
〈F ,G, n, k, ∅〉

SAFE

if
{F = G

Unsafe:
〈F ,G, n, k,Q〉
UNSAFE

if
{¬P is reachable in [n + 1, n + k] steps.

Next-Level:
〈F ,G, n, k, ∅〉
〈G, ∅, n′, k′,G〉

if

⎧
⎪⎪⎨

⎪⎪⎩

F 
= G
n′ > n∧ G is n′-invariant
1 ≤ k′ ≤ n′ + 1

Push-Lemma:
〈F ,G, n, k,Q ∪ {l}〉
〈F ,G ∪ {l}, n, k,Q〉

if
{

l is Fk-inductive

Add-Lemma:
〈F ,G, n, k,Q〉

〈F ∪ {l},G, n, k,Q ∪ {l}〉
if

{
l is an n-invariant

Drop-Lemma:
〈F ,G, n, k,Q ∪ {l}〉

〈F ,G, n, k,Q〉
if

{
l 
= P

The rules of IcE, namely Add-Lemma and Drop-Lemma, are abstract in
the sense that we do not prescribe when or how are the new lemmas learnt, nor
when they should be dropped. In sequential setting, new lemmas are typically
learnt from FiRE when a counter-example to induction of some obligation is
showed to be unreachable by FiRE. We discuss this in detail in Sect. 5 when we
instantiate the abstract IcE for a concrete algorithm.

One specific thing that we would like to point out is that Add-Lemma is
general enough to cover not only the internal learning, but also external learning.
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By internal learning we mean the learning of lemmas from FiRE. The external
learning means that the lemmas can come from any other source. This is impor-
tant for parallelization as it enables incorporating bounded invariants discovered
by other instances working on the same problem.

Correctness of the Induction-Checking Engine. The abstract nature of
the rules of IcE allows us to easily prove it correctness. That is, if the engine
terminates by applying the rule Safe (Unsafe) then the system really is safe
(unsafe).

Given our assumption that I =⇒ P , the following invariants are valid for the
initial configuration and are maintained by every rule (excluding the terminating
rules Safe, Unsafe):

1. P ∈ F
2. For each l ∈ F ∪ G ∪ Q at level n, l is an n-invariant of S.
3. For each l ∈ G, l is Fk-inductive.

It is easy to verify that all invariants are valid for the initial configuration.
The first invariant is trivially preserved by all rules except Next-Level as F
either stays the same or grows. When Next-Level is applied that it must hold
that P ∈ G since it is put in Q at the beginning of each level and can never
be dropped. Since Q is empty when Next-Level is being applied, P must have
been successfully pushed to G using Push-Lemma.

The second invariant is preserved by the rules Next-Level, Push-Lemma
and Drop-Lemma since the set of formulas in consideration stays the same or
becomes smaller. The invariant is also preserved by Add-Lemma because of
the condition of the rule.

The third invariant trivially holds after applying Next-Level as the succes-
sor frame is empty at that moment. For the other rules, let us use G′ to denote
the successor frame after a rule has been applied. The invariant is also preserved
by rules Add-Lemma and Drop-Lemma since G′ = G. Finally, the invariant
is preserved by Push-Lemma because of the condition of the rule.

Lemma 1. When the algorithm terminates by applying Safe, the system satis-
fies the property P and

∧ F is a safe k-inductive invariant. When the algorithm
terminates by applying Unsafe, the system can reach a state where P does not
hold.

Proof. The first part follows from the invariants. When Safe is applied, then it
must be the case that F = G. This means that F is Fk-inductive and consists
of n-invariants of the system with k ≤ n+1. It follows that

∧ F is a k-inductive
invariant of the system. Moreover, P ∈ F , so P is an invariant. The second part
follows trivially from the condition of the rule Unsafe. �

4.2 Finite Reachability Engine

The finite reachability engine (FiRE) is responsible for answering bounded reach-
ability queries issued by IcE. A bounded reachability query for a system S is
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simply a pair 〈s, i〉 where s is a state formula and i is a natural number. It
represents a question if any s-state is reachable in S by exactly i steps. This is
naturally generalized to queries of the form 〈s, [i, j]〉, meaning reachability in at
least i and at most j steps. An answer to a bounded reachability query 〈s, i〉 is
either an i-invariant l such that l =⇒ ¬s in case of unreachability, or a trace
of i + 1 states starting from an initial state and ending in an s-state in case of
reachability.

We do not prescribe how FiRE should be implemented, but we note two
known instances: bounded model checking [5] and IC3/PDR [8]. An interesting
observation [20] is that when IC3/PDR only needs to answer bounded reacha-
bility queries then the requirements on the frames it maintains can be relaxed.
The frames do not need to be inductive nor form a monotone sequence.

From the parallelization perspective the advantage of FiRE based on bounded
invariants is two-fold. First, the correctness of FiRE is maintained when bounded
invariants are exchanged between different instances. Second, there is freedom
in generalizing the bounded invariants computed as certificates of unreachability
and this freedom can be exploited for portfolio approach to discover a variety of
interesting bounded invariants across multiple instances.

4.3 Cooperation of Multiple Instances

We base our parallelization on the portfolio approach running multiple instances
of the same algorithm with different parameters on a single problem. However,
we aim to go beyond that. We want the instances to cooperate and to share
information they discover about the problem they are solving. Our approach to
cooperation of multiple instances of IcE/FiRE framework is depicted in Fig. 2.

In our approach, several instances of IcE/FiRE framework (see Fig. 1) work
on the same problem and share information among themselves. However, the
communication is split to that between the finite reachability engines and to
that between induction-checking engines.

Cooperation of FiREs. Each reachability engine is gradually building and
refining its representation of the state space by discovering and accumulating
bounded invariants of the system. Since all instances work on the same transi-
tion system, a bounded invariant discovered by one instance is valid for other
instances as well. Thus, multiple reachability engines can share their informa-
tion through a global database of bounded invariants. Additionally, in this setting
each FiRE has a filter which controls which invariants are sent and received. The
filter can be set to send and receive all or none invariants, or it can implement a
heuristic. For example, it might be beneficial to send out only sufficiently small
invariants to avoid burdening the other instances too much.

Cooperation of IcEs. Unlike FiREs, it is not immediately obvious what infor-
mation IcEs could share between themselves. Natural candidates are elements
of the base frame or the successor frame. However, one needs to be careful since
different IcEs could be working on different levels and thus directly including
lemmas from other instance might violate the invariants of these frames. Our
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Fig. 2. Multiple instances of IcE/FiRE framework sharing information

solution is to accept external information in a way that can be modelled using the
rule Add-Lemma and thus guarantee to preserve the correctness of the engine.
Each engine sends out elements of the successor frame G. When an engine is
working on a level n and a lemma is pushed to G, it is guaranteed to be at
least (n+1)-invariant. Moreover, it is an interesting bounded invariant in the
sense that this engine so far believes it should be part of the inductive strength-
ening. The engine sends such lemma to the global pool for other instances to
see. When another engine receives this (n+1)-invariant, it checks if it can apply
Add-Lemma to add it to its base frame. If the engine’s current working level
is higher than n+1, such bounded invariant cannot be added. Moreover, our
preliminary experiments showed that it is better to have additional checks in
the filter for incoming lemmas in order not to spend too much time processing
useless external lemmas. We discuss our implementation and the experimental
results with different settings of sharing information in Sect. 6.

5 PD-KIND as an Instance of IcE/FiRE

In this section we reformulate the original description of PD-KIND [20] in
terms of our IcE/FiRE framework. This reformulation enables us to identify
the freedom in the algorithm that can be utilized for the portfolio approach
to parallelization. Additionally, the techniques mentioned in Sect. 4 for sharing
information between cooperating instances will become directly applicable for
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PD-KIND. On top of that, it allows us to prove the correctness of the parallel
version of the algorithm.

5.1 Induction-Checking Engine of PD-KIND

The induction-checking engine of PD-KIND uses an extended configuration
〈F ,G, n, k,Q, nCTI 〉, where nCTI remembers the number of steps needed to reach
a non-F state from an F state. This helps to determine n′ > n such that all
elements of G are n′-invariants when applying Next-Level.

Additionally, IcE of PD-KIND maintains a mapping CEX of elements of F
to potential counter-examples they block. Formally, CEX is a function from F to
state formulas such that for each l ∈ F , l =⇒ ¬CEX (l) and every CEX (l)-state
can reach a ¬P -state. Maintaining the potential counter-examples in addition
to the bounded invariants allows for earlier discovery of real counter-examples.
It also provides a possible fall-back in case the bounded invariant is too strong
to be inductive.

The initial configuration of IcE is 〈{P}, ∅, 0, 1, {P}, 1〉, with CEX (P ) = ¬P ,
and the engine makes progress using the following set of rules.

Safe:
〈F ,G, n, k, ∅, nCTI 〉

SAFE

if
{F = G

Next-Level:
〈F ,G, n, k, ∅, nCTI 〉

〈G, ∅, n′, k′,G, n′ + k′〉
if

⎧
⎨

⎩

F 
= G
n′ = n + nCTI

1 ≤ k′ ≤ n′ + 1

Push-Lemma:
〈F ,G, n, k,Q ∪ {l}, nCTI 〉
〈F ,G ∪ {l}, n, k,Q, nCTI 〉

if
{

l is Fk-inductive

Unsafe:
〈F ,G, n, k,Q ∪ {l}, nCTI 〉

UNSAFE

if
{
CEX (l) is reachable in [n+1, n+k] steps

Add-Lemma:
〈F ,G, n, k,Q, nCTI 〉

〈F ∪ {l′},G, n, k,Q ∪ {l′}, nCTI 〉
if

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∃l ∈ Q s.t.
¬CEX (l) is not Fk-inductive
with c′ being its CTI
Unsafe is not applicable
l′ is n-invariant that blocks c′

CEX (l′) = c′
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Bad-Lemma:
〈F ,G, n, k,Q ∪ {l}, nCTI 〉

〈F ∪ {l′},G ∪ {l′}, n, k,Q, n′
CTI )〉

if

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N ∈ [n+1, n+k]
¬l reachable in N steps
l′ = ¬CEX (l)
¬CEX (l) is Fk-inductive
n′
CTI = min(N,nCTI)

Strengthen-Lemma:
〈F ,G, n, k,Q ∪ {l}, nCTI 〉

〈F ∪ {l′},G, n, k,Q ∪ {l′}, nCTI 〉
if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬CEX (l) is Fk-inductive
l is not Fk-inductive
with c′ being CTI
Bad-Lemma is not applicable
l′ is n-lemma s.t.
l′ =⇒ l ∧ ¬c′

CEX (l′) = CEX (l)

A run of the engine starts from the initial configuration and applies the
rules until Safe or Unsafe is applicable (which is generally not guaranteed to
happen). The engine can be viewed as operating on a certain level, defined by the
parameter n. At each level, the engine attempts to prove that the n-invariants
from F are Fk-inductive, strengthening the frame in the process if necessary or
giving up on n-invariants that do not hold for higher levels. When all elements
of the (refined) frame F have been processed two cases can happen. Either the
whole frame F has been pushed, in which case the engine can terminate using
Safe, or some element could not be pushed and thus Next-Level is applied.

If all elements have not been pushed yet, that is, Q is not empty, then an
n-invariant l from Q is picked and processed in the following way: When l is Fk-
inductive then l, and consequently ¬CEX (l), is in fact at least (n+1)-invariant.
In this case Push-Lemma is applied and l is removed from Q.

If Push-Lemma is not applicable and ¬CEX (l) is not Fk-inductive then
there exists a CTI witnessing this. This CTI can be either real (reachable in
S) or spurious (not reachable in S). A bounded reachability query is issued
to FiRE to determine the status. If it is real, the system S is unsafe because
CEX (l) is reachable and ¬P is reachable from CEX (l). In this case the algorithm
terminates by applying Unsafe. If CTI is spurious then a new lemma blocking
it is returned from FiRE and added to F by applying Add-Lemma.

The last possibility is that l is not Fk-inductive but ¬CEX (l) is Fk-inductive.
Now the reachability query regarding the CTI for l is issued to FiRE. If it is
not reachable then l is strengthened using the reason of unreachability returned
by FiRE – Strengthen-Lemma is applied. If it is reachable then l is not an
invariant of the system and must be discarded. Bad-Lemma is applied and l is
replaced by ¬CEX (l). Since we already know that ¬CEX (l) is Fk-inductive, it
can be immediately pushed to the next frame.

This formalization of PD-KIND allows us to prove its correctness, building
on the correctness of the abstract induction-checking engine (see Lemma 1). We
extend the proof for parallel version in Sect. 5.3.
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Lemma 2. If PD-KIND terminates using the rule Safe (Unsafe), the tran-
sition system is safe (unsafe).

Proof. For Safe, notice that PD-KIND’s run can be viewed as a run of the
abstract engine (Sect. 4.1). To avoid name clashes we use a prime to denote the
PD-KIND’s rules in this proof. All four rules Safe’, Push-Lemma’, Next-
Level’ and Add-Lemma’ directly map to their abstract counterpart. Bad-
Lemma is just Drop-Lemma applied on l followed by Add-Lemma and
Push-Lemma on ¬CEX (l). Finally, Strengthen-Lemma is Drop-Lemma
applied on l, followed by Add-Lemma applied on l′. Consequently, each PD-
KIND’s run terminating with Safe’ is mapped to an abstract engine’s run ter-
minating with Safe. By Lemma 1, the system is safe.

For Unsafe, we show that the following invariant is preserved throughout the
run: For each l in F ∪ G ∪ Q, CEX (l) can reach ¬P . The invariant holds for the
initial configuration since F ∪ G ∪ Q = {P} and CEX (P ) = ¬P . Add-Lemma
preserves the invariant since for the only new lemma l′, CEX (l′) can reach
CEX (l), which can reach ¬P by the induction hypothesis. The invariant is also
preserved by Bad-Lemma and Strengthen-Lemma as CEX (l′) = CEX (l)
for the only new lemma l′ and an old lemma l. As the other rules do not change
the set F ∪G ∪Q, we can conclude that the invariant is always preserved. Thus,
when the algorithm terminates by rule Unsafe, ¬P is reachable and the system
is unsafe. �

5.2 Finite Reachability Engine of PD-KIND

The finite reachability engine used in PD-KIND [20] can be described as IC3-
like algorithm. It answers the bounded reachability queries using a sequence of
reachability frames and local reasoning only, i.e., it does not unroll the tran-
sition relation. A reachability frame at level n, Rn, is a set of n-invariants.
Consequently, the set of Rn-states over-approximates the set of states reachable
in n steps or less. Unlike IC3, there is no further condition on the reachability
frames. They do not need to be monotone nor form an inductive sequence. Like
IC3, when FiRE receives a query 〈s, i〉, it checks if it is reachable in one step
from Ri−1 using a simple satisfiability query Ri−1 ∧ T ∧ s′. If it is unreachable,
then FiRE generalizes the reason for unreachability using Craig interpolation
and returns the answer together with the reason. If it is reachable, then FiRE
computes a predecessor t of s and recursively calls itself with query 〈t, i−1〉.
If this predecessor turns out to be unreachable, the (i−1)-invariant witnessing
the unreachability is used to refine Ri−1 and s is checked again. If the recursive
sequences of calls ever reaches an initial state, then the information about reach-
ability, together with the trace made of the predecessors is gradually returned.

Note that the only condition required for reachability frame Rn is that it
consists of n-invariants. In sequential setting FiRE learns new bounded invari-
ants on its own as it processes more and more reachability queries. However, in
parallel setting it can also receive bounded invariants from external source. More
specifically, it can receive bounded invariants discovered by other instances of
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the same engine working in parallel on the same problem. Additionally, different
interpolation algorithms can be used in different instances, thus allowing the
engines to spread the search for useful bounded invariants.

5.3 Parallel PD-KIND

Since PD-KIND is an instantiation of the IcE/FiRE framework, it can be readily
plugged into the abstract parallel framework with information sharing described
in Sect. 4.3.

The bounded reachability information is stored in form of reachability frames
consisting of bounded invariants. Whenever FiRE learns new bounded invariant
as a response to bounded reachability query made by IcE, it can send it to the
other instances. It can also periodically query the common pool for new bounded
invariants and when it receives an external i-invariant, it can directly add it to
its reachability frame Ri.

Similarly, IcE sends out bounded invariants when it manages to push them
to the successor frame. When it receives an external bounded invariant, it must
check the necessary condition for adding it to the base frame. If the condition is
not met, it simply drops the lemma. Otherwise, it uses a heuristic to determine
usefulness of the lemma. Since PD-KIND assumes that each element of the base
frame is associated with a potential counter-example through the mapping CEX ,
each bounded invariant l that is sent out by IcE must also be accompanied by
its companion CEX (l).

It is important for the success of a parallel approach to diversify the search
for the solution. It was not possible to discuss this for the abstract framework
as it requires the concrete algorithm with its concrete settings that drive the
behaviour of the algorithm. Here we identify the key points where the behaviour
of PD-KIND can be adjusted and finally give an algorithm capturing PD-
KIND as an instance of IcE/FiRE framework in the parallel setting.

Choosing the Depth of Induction. When the induction engine moves to
the next level n by applying Next-Level there is freedom to choose a new
value k of the induction depth from the interval [1, n+1]. The behaviour of the
algorithm can be greatly influenced by the value of the induction depth it uses.
For example, choosing large k requires large unwinding of the transition relation
when SAT/SMT solver is used and the inductive checks become slower. On the
other hand preferring larger k can lead to faster exploration of the search space.
Moreover an obligation might be Fk-inductive, and thus successfully pushed,
but not Fk′

-inductive for k′ < k. We denote the strategy to choose the new
value of induction depth whenever Next-Level is applied as κ.

Obligation Processing Strategy. Several rules might be applicable given a
configuration with nonempty queue of obligations Q. However, once the obliga-
tion to be processed is chosen, there is no more freedom. The conditions of the
rules are mutually exclusive for a fixed obligation l ∈ Q. Which rule applies for
a particular obligation l is determined by its properties and the properties of
CEX (l). Therefore, the behaviour of the algorithm can be controlled through
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the strategy determining the obligation to pick from the queue. We denote the
strategy to pick the next obligation from Q by ω.

Learning Strategy. The finite reachability engine computes bounded invari-
ants as certificates of unreachability. Theoretically, the certificate of unreacha-
bility for a query 〈s, i〉 could be ¬s. However, this leads to terrible performance
in practice as it excludes only s and nothing else. Therefore, FiRE uses more
sophisticated techniques to compute bounded invariants that are stronger and
exclude more unreachable states. FiRE of PD-KIND uses Craig interpolation
for computation of bounded invariants. However, Craig interpolant for a given
problem is in general not unique and there exist techniques for computing dif-
ferent interpolants in propositional logic and in theories of first-order logic. The
use of different interpolation algorithms leads to different bounded invariants
and this can have a huge influence on the performance of the whole algorithm
(see Sect. 6). We denote the strategy for computing the bounded invariants as σ.

Algorithm 1. PD-KIND in the parallel setting of IcE/FiRE
1: procedure Run(S, κ, ω, σ)
2: C = 〈F , G, n, k, Q, nCTI 〉 ← 〈{P}, ∅, 0, 1, {P}, 1〉 � Initial configuration
3: while True do
4: if Q = ∅ then
5: if F= G then return SAFE � Terminate using rule Safe
6: else
7: Apply Next-Level on C with κ
8: continue
9: end if

10: end if
11: FiRE.SendReceive() � FiRE sends and receives bounded invariants
12: C ← IcE.Receive(C) � IcE receives bounded invariants
13: l ← ω(Q) � Pick obligation to process
14: c ← CEX (l)
15: switch 〈l, c〉 � Pick rule based on properties of l, c
16: case l is Fk-inductive
17: Apply Push-Lemma for l on C
18: IcE.Send(〈l, c, n+1〉) � IcE sends pushed bounded invariant

19: case c is reachable in [n+1, n+k] steps
20: return UNSAFE � Terminate using rule Unsafe

21: case ¬c is not Fk-inductive
22: Apply Add-Lemma with σ on C

23: case ¬l is reachable in [n+1, n+k] steps
24: Apply Bad-Lemma for l

25: case None of the above condition is met
26: Apply Strengthen-Lemma with σ on C for l

27: end while
28: end procedure
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The run of a single instantiation of IcE/FiRE as PD-KIND in a parallel
setting with information sharing is presented in pseudocode as Algorithm 1.
The input is a triple S = 〈I, T, P 〉 representing the transition system and the
property together with the three strategies κ, ω, σ that determine the behaviour
of the algorithm at the previously identified non-deterministic steps.

Lemma 3. The parallel version of PD-KIND with information exchange is
correct. If it reports SAFE (UNSAFE), the system is safe (unsafe).

Proof. The correctness of exchanging the bounded invariants between reachabil-
ity engines has been discussed already in Sect. 4.3. The only new step IcE does is
incorporating an external lemma l from another PD-KIND instance, together
with a potential counter-example that it blocks. This is done only if the condition
of the abstract rule Add-Lemma is satisfied and thus the invariants ensuring
the correctness of SAFE answer are preserved. Moreover, the invariant from the
proof of Lemma 2 is preserved and thus also UNSAFE answer is correct. �

6 Implementation and Experiments

Our implementation of the parallel PD-KIND algorithm is based on the open-
source model checker Sally [20] and uses the SMTS framework [26] for paral-
lelization and information exchange. We have extended Sally with API for send-
ing and receiving information. In our experiments Sally was using Yices [13]
for checking satisfiability and OpenSMT [17] for the interpolation queries.2

The benchmarks were taken from the transition systems category of CHC
COMP 20193, where the problem is encoded using the theory of linear real
arithmetic. Out of 244 benchmarks, 7 problematic ones were excluded due to
reasons such as the presence of a non-linear operation. All experiments were
run on a single multi-core machine with 16 Intel R© Xeon R© X5687 @ 3.6 GHz
CPUs and 180 GB of RAM. The resources were restricted to 1000 s of timeout
and 6 GB of memory per one instance of Sally. This means that configurations
with more instances are effectively granted more memory and CPU time. This
choice is in line with our goal of improving the solver’s wall clock time.

All instances use the default strategy of Sally when they are choosing the
depth of induction (κ from Algorithm 1). The obligation processing strategy ω is
a priority queue based on a score assigned to obligations, randomized to diversify
the behaviour of different instances. The learning strategy σ is diversified pri-
marily by using different interpolation algorithms in OpenSMT and secondary
by using different random seed for the SMT search. Three different LRA inter-
polation algorithms were used: Farkas interpolation algorithm [28], dual Farkas,
and an interpolation algorithm based on decomposing Farkas interpolants [7].
We denote these as PF, DF and PD, respectively.

2 All benchmarks, tools and results are bundled together in an artifact available at
https://doi.org/10.5281/zenodo.3484097.

3 https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts.

https://doi.org/10.5281/zenodo.3484097
https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts


286 M. Blicha et al.

In the experiments we seek answers to the following questions:

1. How does the system compare to the state-of-the-art?
2. How important is the sharing of information between various instances?
3. How does the approach scale when the number of instances is increased?
4. How do different interpolation algorithms contribute to the overall perfor-

mance?
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Fig. 3. Best parallel configuration against the winner of LRA-TS category of CHC
COMP 2019

Comparison to the State-of-the-Art. The main result of the experiments
is summarized in Fig. 3 that compares the performance of the winner of the
transition systems category of CHC COMP 2019 (sequential Sally using PD
interpolation algorithm in OpenSMT) with our parallel implementation with
nine instances sharing information between IcEs and between FiREs. The paral-
lel implementation achieves 4-fold speedup on a significant number of instances
and solves 224 instances compared to 197 instances solved by the sequential
version.

We also compared our parallel implementation to P3 [24], the parallel imple-
mentation of Spacer [22] that also allows sharing information between solver
instances. We also add the comparison with the sequential Spacer, the default
Horn clause engine in Z3 [29].4 The results are summarized in Fig. 4. Our frame-
work significantly outperforms Spacer on safe instances. Interestingly, Spacer
seems to fare better on unsafe instances.

Information Sharing. Figure 5 summarizes the performance of 4 configura-
tions: no information sharing (sno), sharing between FiREs only (sreach), sharing
4 Results for Z3-4.8.5 with default settings.
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Fig. 4. Comparison of parallel Sally and parallel Spacer using 6 communicating
instances
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Fig. 5. The effect of sharing information

between IcEs only (sind), and all sharing enabled (sall). In these configurations
six instances were running in parallel (two instances for each interpolation algo-
rithm PF, DF and PD). For comparison, the figure includes results of sequential
versions with different interpolation algorithms. Note that the runtimes of the
parallel implementation were rounded to the whole seconds and this creates an
effect of “stairs” for the low runtimes in cactus plots with logarithmic scale.
There is also a significant number of instances solved almost instantly and for
this reason the axes start at 1 s runtime and 50 instances solved.

A clear gap is visible between the best sequential version and the parallel ver-
sions indicating that the parallel approach yields a significant improvement even
without information sharing. Sharing information between FiREs is helpful, but
the effect is not that significant compared to sharing information between IcEs,
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Fig. 6. Scalability experiments

which is crucial for improving performance on many benchmarks. Configurations
with sharing reachability information disabled (p6-sally-sno, p6-sally-sind)
do not profit much from enabling it (p6-sally-sreach, p6-sally-sall). However,
some hard benchmarks could only be solved by allowing reachability information
to be shared. On the other hand, enabling the sharing of induction information
does boost the performance significantly. We conclude that the best performance
was achieved by enabling sharing information between both IcEs and FiREs.

Scalability. We compared the performance of one, two, six and nine instances
with all information sharing enabled. The results, summarized in Fig. 6, show
that adding more instances improves the performance, both decreasing the run-
time and solving more benchmarks with the configurations solving 197, 213, 221
and 224 instances, respectively.

The Effect of Interpolation. The large jump when moving from sequential
solving to two instances running in parallel can be in part contributed to different
interpolation algorithms. We investigate this further in Fig. 7. We compared
configurations using six instances when the interpolation algorithm varies (p6-
sally-sall), when the interpolation algorithm is fixed to PF for all instance
(p6-sally-sall-PF), and when it is fixed to PD (p6-sally-sall-PD). We also
added a configuration of just two instances (one with PF, one with PD). The
results show that varying the interpolation algorithm is very important as the
performance of p2-sally-sall is comparable to that of p6-sally-sall-PD and
p6-sally-sall-PF while p6-sally-sall performs significantly better.

The experiments show that our parallel algorithm performs substantially bet-
ter than its sequential version. Its success can be contributed to more than one
factor: The use of different interpolation algorithms helps to solve more bench-
marks compared to a single interpolation algorithm used by all instances. Sharing
information between solver instances can significantly reduce the runtime and
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Fig. 7. The effect of using different interpolation algorithms

thus solve more instances within the time limit. The major part of this can
be contributed to the sharing of induction information, but sharing reachabil-
ity information does help as well. The scalability experiments show continuing
improvement up to nine instances. Additionally, our algorithm compares favor-
ably with the state-of-the-art parallel implementation of Spacer, outperforming
it significantly on the safe instances. Since Spacer is performing better on unsafe
instances, the integration of the two algorithms within the SMTS framework to
get the best of both tools is an interesting possibility for the future work.

7 Conclusions

The IC3 algorithm [8] has arguably given a significant boost to symbolic model
checking as witnessed by the number of new algorithms it has inspired. An
early observation first made in [8] and later independently verified for example
in [10,24] states that these algorithms are particularly amenable for paralleliza-
tion. A recent pragmatic addition to the base algorithmic idea aims at obtain-
ing higher quality reachability lemmas by k-induction and naturally splits the
IC3 algorithm into two engines, one for induction and the other for computing
bounded reachability.

This idea changes the way a lemma sharing parallel portfolio can be imple-
mented for the class of algorithms, a question that was fundamental in IC3 from
the beginning. In this work we provide the IcE/FiRE architecture that addresses
this question by separating the two engines and their lemma storages and allow-
ing parallel running solvers to share lemmas among their respective engines. We
show experimentally that this approach provides a good speed-up in multi-core
environments, and that the solver surpasses in speed and number of instances
solved the current state-of-the-art on proving safety of transitions systems.
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In future we plan to extend the presented idea in several ways. We will gener-
alize the approach to solving constrained Horn clauses. We plan to study closer
possible heuristics for sharing lemmas between the solvers, and to determine
under what conditions the lemmas can be shared between an induction engine
and a reachability engine. Aside from parallel portfolio, we would also like to
study how search space partitioning and approaches such as the parallelization
tree [19] could be applied in the context of the algorithm.
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Abstract. Generalized property-directed reachability (GPDR) belongs
to the family of the model-checking techniques called IC3/PDR. It has
been successfully applied to software verification; for example, it is the
core of Spacer, a state-of-the-art Horn-clause solver bundled with Z3.
However, it has yet to be applied to hybrid systems, which involve a
continuous evolution of values over time. As the first step towards GPDR-
based model checking for hybrid systems, this paper formalizes HGPDR,
an adaptation of GPDR to hybrid systems, and proves its soundness.
We also implemented a semi-automated proof-of-concept verifier, which
allows a user to provide hints to guide verification steps.

Keywords: Hybrid systems · Property-directed reachability · IC3 ·
Model checking · Verification

1 Introduction

A hybrid system is a dynamical system that exhibits both continuous-time
dynamics (called a flow) and discrete-time dynamics (called a jump). This com-
bination of flows and jumps is an essential feature of cyber-physical systems
(CPS), a physical system governed by software. In the modern world where
safety-critical CPS are prevalent, their correctness is an important issue.

Model checking [14,19] is an approach to guaranteeing hybrid system safety.
It tries to prove that a given hybrid system does not violate a specification by
abstracting its behavior and by exhaustively checking that the abstracted model
conforms to the specification.

In the area of software model checking, an algorithm called property-directed
reachability (PDR), also known as IC3, is attracting interest [5,7,12]. IC3/PDR
was initially proposed in the area of hardware verification; it was then trans-
ferred to software model checking by Cimatti et al. [10]. Its effectiveness for soft-
ware model checking is now widely appreciated. For example, the SMT solver
Z3 [29] comes with a Horn-clause solver Spacer [21] that uses PDR internally;
Horn-clause solving is one of the cutting-edge techniques to verify functional
programs [6,8,17] and programs with loops [6].
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We propose a model checking method for hybrid automata [3] based on the
idea of PDR; the application of PDR to hybrid automata is less investigated com-
pared to its application to software systems. Concretely, we propose an adapta-
tion of a variant of PDR called generalized property-directed reachability (GPDR)
proposed by Hoder and Bjørner [20]. Unlike the original PDR, which is special-
ized to jump-only automata-based systems, GPDR is parametrized over a map
over predicates on states (i.e., a forward predicate transformer); the detail of
the underlying dynamic semantics of a verified system is encapsulated into the
forward predicate transformer. This generality of GDPR enables the application
of PDR to systems outside the scope of the original PDR by itself; for example,
Hoder et al. [20] show how to apply GPDR to programs with recursive function
calls.

An obvious challenge in an adaptation of GPDR to hybrid automata is how
to deal with flow dynamics that do not exist in software systems. To this end,
we extend the logic on which the forward predicate transformer is defined so
that it can express flow dynamics specified by an ordinary differential equation
(ODE). Our extension, inspired by the differential dynamic logic (dL) proposed
by Platzer [32], is to introduce continuous reachability predicates (CRP) of the
form 〈D | ϕI〉ϕ where D is an ODE and ϕI and ϕ are predicates. This CRP
is defined to hold under valuation σ if there is a continuous transition from σ
to certain valuation σ′ that satisfies the following conditions: (1) the continuous
transition is a solution of D, (2) the valuation σ′ makes ϕ true, and (3) ϕI is true
at every point on the continuous transition. With this extended logic, we define
a forward predicate transformer that faithfully encodes the behavior of a hybrid
automaton. We find that we can naturally extend GPDR to hybrid automata
by our predicate transformer.

We formalize our adaptation of GPDR to hybrid automata, which we call
HGPDR. In the formalization, we define a forward predicate transformer that
precisely expresses the behavior of hybrid automata [3] using dL. We prove the
soundness of HGPDR. We also describe our proof-of-concept implementation
of HGPDR and show how it verifies a simple hybrid automaton with human
intervention.

In order to make this paper self-contained, we detail GPDR for discrete-time
systems before describing our adaptation to hybrid automata. After fixing the
notations that we use in Sect. 2, we define a discrete-time transition system and
hybrid automata in Sect. 3. Section 4 then reviews the GPDR procedure. Section 5
presents HGPDR, our adaptation of GPDR to hybrid automata, and states the
soundness of the procedure. We describe a proof-of-concept implementation in
Sect. 6. After discussing related work in Sect. 7, we conclude in Sect. 8.

For readability, several definitions and proofs are presented in the appendices.

2 Preliminary

We write R for the set of reals. We fix a finite set V := {x1, . . . , xN} of variables.
We often use primed variables x′ and x′′. The prime notation also applies to a
set of variables; for example, we write V ′ for {x′

1, . . . , x
′
N}. We use metavariable
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x for a finite sequence of variables. We write Fml for the set of quantifier-free
first-order formulas over V ∪V ′ ∪V ′′; its elements are ranged over by ϕ. We call
elements of the set Σ : =(V ∪ V ′ ∪ V ′′) → R a valuations; they are represented
by metavariable σ. We use the prime notation for valuations. For example, if
σ ∈ V → R, then we write σ′ for {x′

1 �→ σ(x1), . . . , x′
N �→ σ(xN )}. We write

σ[x �→ r] for the valuation obtained by updating the entry for x in σ with r. We
write σ |= ϕ if σ is a model of ϕ; σ �|= ϕ if σ |= ϕ does not hold; |= ϕ if σ |= ϕ
for any σ; and �|= ϕ if there exists σ such that σ �|= ϕ. We sometimes identify a
valuation σ with a logical formula

∧
x∈V x = σ(x).

3 State-Transition Systems and Verification Problem

We review the original GPDR for discrete-time systems [20] in Sect. 4 before
presenting our adaptation for hybrid systems in Sect. 5. This section defines the
models used in these explanations (Sects. 3.1 and 3.2) and formally states the
verification problem that we tackle (Sect. 3.3).

3.1 Discrete-Time State-Transition Systems (DTSTS)

We model a discrete-time program by a state-transition system.

Definition 3.1. A discrete-time state-transition system (DTSTS) is a tuple
〈Q, q0, ϕ0, δ〉. We use metavariable SD for DTSTS. Q = {q0, q1, q2, . . .} is a
set of locations. q0 is the initial location. ϕ0 is the formula that has to be satis-
fied by the initial valuation. δ ⊆ Q × Fml × Fml × Q is the transition relation.
We write 〈q, σ1〉 →δ 〈q′, σ2〉 if 〈q, ϕ, ϕc, q

′〉 ∈ δ where σ1 |= ϕ and σ1 ∪ σ′
2 |= ϕc;

we call relation →δ the jump transition. A run of a DTSTS 〈Q, q0, ϕ0, δ〉 is a
finite sequence

〈
q0, σ0

〉
,
〈
q1, σ1

〉
, . . . ,

〈
qN , σN

〉
where (1) q0 = q0, (2) σ0 |= ϕ0,

and (3)
〈
qi, σi

〉 →δ

〈
qi+1, σi+1

〉
for any i ∈ [0, N − 1].

〈q, ϕ, ϕc, q
′〉 ∈ δ intuitively means that, if the system is at the location q with

valuation σ1 and σ1 |= ϕ, then the system can make a transition to the location
q′ and change its valuation to σ′

2 such that σ1 ∪ σ′
2 |= ϕc. We call ϕ the guard

of the transition. ϕc is a predicate over V ∪ V ′ that defines the command of the
transition; it defines how the value of the variables may change in this transition.
The elements of V represent the values before the transition whereas those of
V ′ represent the values after the transition.

q0x ≥ 0 ∧ sum = 0 q1

x > 0 ∧ sum = sum+ x ∧ x = x − 1

x ≤ 0

Fig. 1. An example of DTSTS
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Example 3.2. Figure 1 is an example of a DTSTS that models a program
to compute the value of 1 + · · · + x; Q := {q0, q1} and ϕ0 := x ≥ 0 ∧
sum = 0. In the transition from q0 to q0, the guard is x > 0; the com-
mand is sum′ = sum + x ∧ x′ = x − 1. In the transition from q0 to q1,
the guard is x ≤ 0; the command is x′ = x ∧ sum′ = sum because this
transition does not change the value of x and sum. Therefore, the transition
relation δ =

{ 〈q0, x > 0, sum′ = sum + x ∧ x′ = x − 1, q0〉 , 〈q0, x ≤ 0, x′ =
x ∧ sum′ = sum, q1〉

}
. The finite sequence 〈q0, {x �→ 3, sum �→

0}〉, 〈q0, {x �→ 2, sum �→ 3}〉 , 〈q0, {x �→ 1, sum �→ 5}〉 , 〈q0, {x �→ 0, sum �→ 6}〉 ,
〈q1, {x �→ 0, sum �→ 6}〉 is a run of the DTSTS Fig. 1.

3.2 Hybrid Automaton (HA)

We model a hybrid system by a hybrid automaton (HA) [3]. We define an HA
as an extension of DTSTS as follows.

Definition 3.3. A hybrid automaton (HA) is a tuple 〈Q, q0, ϕ0, F, inv , δ〉. The
components Q, q0, ϕ0, and δ are the same as Definition 3.1. We use metavariable
SH for HA. F is a map from Q to ODE on V that specifies the flow dynamics
at each location; inv is a map from Q to Fml that specifies the stay condition1

at each state.

A state of a hybrid automaton is a tuple 〈q, σ〉. A run of 〈Q, q0, ϕ0, F, inv , δ〉
is a sequence of states 〈q0, σ0〉 〈q1, σ1〉 . . . 〈qn, σn〉 where σ0 |= ϕ0. The system
is allowed to make a transition from 〈qi, σi〉 to 〈qi+1, σi+1〉 if (1) σi reaches a
valuation σ′ along with the flow dynamics specified by F (qi), (2) inv(qi) holds
at every point on the flow, and (3) 〈qi, σ

′〉 can jump to 〈qi+1, σi+1〉 under the
transition relation δ. In order to define the set of runs formally, we need to define
the continuous-time dynamics that happens within each location.

Definition 3.4. Let D be an ordinary differential equation (ODE) on V and let
x1(t), . . . , xn(t) be a solution of D where t is the time. Let us write σ(t) for the
valuation {x1 �→ x1(t), . . . , xn �→ xn(t)}. We write σ→D,ϕσ′ if (1) σ = σ(0) and
(2) there exists t′ ≥ t such that σ′ = σ(t′) and σ(t′′) |= ϕ for any t′′ ∈ (0, t′]. We
call relation →D,ϕ the flow transition.

q0
ẋ = −y
ẏ = x
y ≥ 0

q1
ẋ = −y
ẏ = x
y ≤ 0

y ≤ 0

y ≥ 0

Fig. 2. An example of a hybrid
automaton.

Intuitively, the relation σ→D,ϕσ′ means that
there is a trajectory from the state represented
by σ to that represented by σ′ such that (1) the
trajectory is a solution of D and (2) ϕ holds
at any point on the trajectory. For example,
let D be ẋ = v, v̇ = 1, where x and v are
time-dependent variables; ẋ and v̇ are their time
derivative. The solution of D is v = t + v0 and

1 We use the word “stay condition” instead of the standard terminology “invariant”
following Kapur et al. [23].
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x = t2

2 +v0t+x0 where t is the elapsed time, x0 is the initial value of x, and v0 is
the initial value of v. Therefore, {x �→ 0, v �→ 0} →D,true

{
x �→ 1

2 , v �→ 1
}

holds
because (x, v) = (1

2 , 1) is the state at t = 1 on the above solution with x0 = 0
and v0 = 0. {x �→ 0, v �→ 0} →D,x≥0

{
x �→ 1

2 , v �→ 1
}

also holds because the con-
dition x ≥ 0 continues to hold along with the trajectory from (x, v) = (0, 0) to
( 1
2 , 1). However, {x �→ 0, v �→ 0} →D,x≥ 1

4

{
x �→ 1

2 , v �→ 1
}

does not hold because
the condition x ≥ 1

4 does not hold for the initial 1√
2

seconds in this trajectory.
Using this relation, we can define a run of an HA as follows.

Definition 3.5. A finite sequence
〈
q0, σ0

〉
,
〈
q1, σ1

〉
, . . . ,

〈
qN , σN

〉
is called a

run of an HA 〈Q, q0, ϕ0, F, inv , δ〉 if (1) q0 = q0, (2) σ0 |= ϕ0, (3) for
any i, if 0 ≤ i ≤ N − 2, there exists

〈
qi, ϕi, ϕ

i
c, q

i+1
〉 ∈ δ and σI such

that σi→F (qi),inv(qi)σ
I and σI |= ϕi and

〈
qi, σI

〉 →δ

〈
qi+1, σi+1

〉
, and (4)

σN−1→F (qN−1),inv(qN−1)σN .

Remark 3.6. This definition is more complicated than that of runs of DTSTS
because we need to treat the last transition from

〈
qN−1, σN−1

〉
to

〈
qN , σN

〉
dif-

ferently than the other transitions. Each transition from
〈
qi, σi

〉
to

〈
qi+1, σi+1

〉
,

if 0 ≤ i ≤ N − 2, is a flow transition followed by a jump transition; however, the
last transition consists only of a flow transition.

Example 3.7. Figure 2 shows a hybrid automaton with Q := {q0, q1} schemati-
cally. Each circle represents a location q; we write F (q) for the ODE associated
with each circle. Each edge between circles represents a transition; we present
the guard of the transition on each edge. We omit the ϕc part; it is assumed to
be the do-nothing command represented by ∧x∈V x′ = x.

Both locations are equipped with the same flow that is the anticlockwise
circle around the point (x, y) = (0, 0) on the xy plane. The system can stay at
q0 as long as y ≥ 0 and at q1 as long as y ≤ 0. y = 0 holds whenever a transition
is invoked. Indeed, for example, inv(q0) = y ≥ 0 and the guard from q0 to q1 is
y ≤ 0; therefore, when the transition is invoked, inv(q0) ∧ y ≤ 0 holds, which is
equivalent to y = 0.

Starting from the valuation σ0 := {x �→ 1, y �→ 0} at location q0, the system
reaches σ1 := {x �→ −1, y �→ 0} by the flow F (q0) along which inv(q0) ≡ y ≥ 0
continues to hold; then the transition from q0 to q1 is invoked. After that, the sys-
tem reaches σ2 := {x �→ 0, y �→ −1} by F (q1). Therefore, 〈q0, σ0〉 〈q1, σ1〉 〈q1, σ2〉
is a run of this HA.

3.3 Safety Verification Problem

Definition 3.8. We say that σ is reachable in DTSTS SD (resp., HA SH)
if there is a run of SD (resp., SH) that reaches 〈q, σ〉 for some q. A safety
verification problem (SVP) for a DTSTS 〈SD, ϕ〉 (resp., HA 〈SH , ϕ〉) is the
problem to decide whether σ′ |= ϕ holds for all the reachable valuation σ′ of the
given SD (resp., SH).
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If an SVP is affirmatively solved, then the system is said to be safe; otherwise,
the system is said to be unsafe. One of the major strategies for proving the safety
of a system is discovering its inductive invariant.

Definition 3.9. – Let 〈SD, ϕP 〉 be an SVP for DTSTS where SD =
〈Q, q0, ϕ0, δ〉. Then, a function R : Q → Fml is called an inductive invari-
ant if (1) |= ϕ0 =⇒ R(q0); (2) if σ |= R(q) and 〈q, σ〉 →δ 〈q′, σ′〉, then
σ′ |= R(q′); and (3) |= R(q) =⇒ ϕP for any q.

– Let 〈SH , ϕP 〉 be an SVP for HA where SH = 〈Q, q0, ϕ0, F, inv , δ〉. Then, a
function R : Q → Fml is called an inductive invariant if (1) |= ϕ0 =⇒ R(q0);
(2) if σ |= R(q) and 〈q, σ〉 →F (q),inv(q) 〈q′′, σ′′〉 and 〈q′′, σ′′〉 →δ 〈q′, σ′〉, then
σ′ |= R(q′); and (3) |= R(q) =⇒ ϕP for any q.

Unsafety can be proved by discovering a counterexample.

Definition 3.10. Define SD, ϕP , and SH as in Definition 3.9. A run
〈σ0, q0〉 . . . 〈σN , qN 〉 of SD (resp. SH) is called a counterexample to the SVP
〈SD, ϕP 〉 (resp. 〈SH , ϕP 〉) if σN |= ¬ϕP .

GPDR is a procedure that tries to find an inductive invariant or a counterex-
ample to a given SVP. SVP is in general undecidable. Therefore, the original
GPDR approach [20] and our extension with hybrid systems presented in Sect. 5
do not terminate for every input.

4 GPDR for DTSTS

Before presenting our extension of GPDR with hybrid systems, we present
the original GPDR procedure by Hoder and Bjørner [20] in this section. (The
GPDR presented here, however, is slightly modified from the original one; see
Remark 4.4.)

Given a safety verification problem 〈SD, ϕP 〉 where SD = 〈Q, q0, ϕ0, δ〉,
GPDR tries to find (1) an inductive invariant to prove the safety of SD, or
(2) a counterexample to refute the safety. To this end, GPDR (nondetermin-
istically) manipulates a data structure called configurations. A configuration is
either Valid, ModelM , or an expression of the form M || R0, . . . , RN ;N . We
explain each component of the expression M || R0, . . . , RN ;N in the following.
(Valid and ModelM are explained later.)

– R0, . . . , RN is a finite sequence of maps from Q to Fml (i.e., elements of Fml).
Each Ri is called a frame. The frames are updated during an execution of
GPDR so that Ri(qj) is an overapproximation of the states that are reachable
within i steps from the initial state in SD and whose location is qj .

– N is the index of the last frame.
– M is a finite sequence of the form 〈σi, qi, i〉 , 〈σi, qi, i + 1〉 , . . . , 〈σN , qN , N〉.

This sequence is a candidate partial counterexample that starts from the one
that is i-step reachable from the initial state and that ends up with a state
〈σN , qN 〉 such that σN |= ¬ϕP . Therefore, in order to prove the safety of SD,
a GPDR procedure needs to prove that 〈qi, σi〉 is unreachable within i steps
from an initial state.
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In order to formalize the above intuition, GPDR uses a forward predicate
transformer determined by SD. In the following, we fix an SVP 〈SD, ϕP 〉.
Definition 4.1. F(R)(q′), where F is called the forward predicate transformer
determined by SD, is the following formula:

(q′ = q0 ∧ ϕ0) ∨
∨

(q,ϕ,ϕc,q′)∈δ

∃x′′.
(

[x′′/x]R(q)
∧ [x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc

)

,

where x′′ is the sequence x′′
1 , . . . , x′′

N .

Notice that F(λq.false) is equivalent to ϕ0. Intuitively, σ′ |= F(R)(q′) holds
if 〈q′, σ′〉 is an initial state (i.e., q′ = q0 and σ′ |= ϕ0) or 〈q′, σ′〉 is reachable
in 1-step transition from a state that satisfies R. The latter case is encoded by
the second disjunct of the above definition: The valuation σ′ satisfies the second
disjunct if there are q, ϕ, and ϕc such that (q, ϕ, ϕc, q

′) ∈ δ (i.e., q′ is 1-step after
q in δ) and there is a valuation σ such that σ |= R(q) ∧ ϕ (i.e., σ satisfies the
precondition R(q) and the guard ϕ) and σ′ is a result of executing command c
under σ.

The following lemma guarantees that F soundly approximates the transition
of an DTSTS.

Lemma 4.2. If σ1 |= R(q1) and 〈q1, σ1〉 →δ 〈q2, σ2〉, then σ2 |= F(R)(q2).

Proof. Assume σ1 |= R(q1) and 〈q1, σ1〉 →δ 〈q2, σ2〉. Then, by definition,
(q1, ϕ, ϕ′, q2) ∈ δ and σ1 |= ϕ and σ1 ∪ σ′

2 |= ϕc for some ϕ and ϕc.
σ′′

1 ∪ σ2 |= [x′′/x]R(q1) follows from σ1 |= R(q1). σ′′
1 ∪ σ2 |= [x′′/x]ϕ fol-

lows from σ1 |= ϕ. σ′′
1 ∪ σ2 |= [x/x′,x′′/x]ϕc follows from σ1 ∪ σ′

2 |= ϕc.
Therefore, σ′′

1 ∪ σ2 |= [x′′/x]R(q1) ∧ [x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc. Hence, we have
σ2 |= ∃x′′.[x′′/x]R(q) ∧ [x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc as required.

By using the forward predicate transformer F , we can formalize the intuition
about configuration M || R0, . . . , RN ;N explained so far as follows.

Definition 4.3. Let SD be 〈Q, q0, ϕ0, δ〉, F be the forward predicate transformer
determined by SD, and ϕP be the safety condition to be verified. A configura-
tion C is said to be consistent if it is (1) of the form Valid, (2) of the form
Model 〈σ, q0, 0〉 M , or (3) of the form M || R0, . . . , RN ;N that satisfies all of
the following conditions:

– (Con-A) R0(q0) = ϕ0 and R0(qi) = false if qi �= q0;
– (Con-B) |= Ri(q) =⇒ Ri+1(q) for any q;
– (Con-C) |= Ri(q) =⇒ ϕP for any q and i < N ;
– (Con-D) |= F(Ri)(q) =⇒ Ri+1(q) for any i < N and q;
– (Con-E) if 〈σ, q,N〉 ∈ M , then σ |= RN (q) ∧ ¬ϕP

2; and
– (Con-F) if 〈σ1, q1, i〉 , 〈σ2, q2, i + 1〉 ∈ M and i < N , then 〈q1, ϕ, ϕc, q2〉 ∈ δ

and σ1, σ
′
2 |= Ri(q1) ∧ ϕ ∧ ϕc.

If C is consistent, we write Con(C).
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Initialize R0 := (λq.false);N := 0
if ∀q ∈ Q. |= R0(q) =⇒ ϕP

Valid M || A Valid
if ∃i < N.∀q ∈ Q. |= Ri(q) =⇒ Ri−1(q)

Unfold M || A ∅ || A[RN+1 := λq.true;N := N + 1]
if ∀q ∈ Q. |= RN (q) =⇒ ϕP

Induction M || A ∅ || A[Rj := λq.Rj(q) ∧ R(q)]i+1
j=1

if ∀q ∈ Q. |= (λq.Ri(q) ∧ R(q))(q) =⇒ R(q)
Candidate ∅ || A σ, q, N A

if σ |= RN (q) ∧ ¬ϕP

Decide σ2, q2, i + 1 M || A σ1, q1, i σ2, q2, i + 1 M || A
if q1, ϕ, ϕc, q2 δ andσ1, σ2 |= Ri(q1) ∧ ϕ ∧ ϕc

Model σ, q0, 0 M || A Model σ, q0, 0 M

Conflict σ , q , i + 1 M || A ∅ || A[Rj ← λq.Rj(q) ∧ R(q)]i+1
j=1

if |= R(q ) =⇒ ¬σ and∀q ∈ Q. |= (Ri)(q) =⇒ R(q)

Fig. 3. The rules for the original PDR. Recall that ¬σ′ in the rule Conflict denotes

the formula ¬
( ∧

x∈V

x = σ′(x)

)
.

The GPDR procedure rewrites a configuration following the (nondeterminis-
tic) rewriting rules in Fig. 3. We add a brief explanation below; for more detailed
exposition, see [20]. Although the order of the applications of the rules in Fig. 3
is arbitrary, we fix one scenario of the rule applications in the following for
explanation.

1. The procedure initializes M to ∅, R0 to F(λq.false), and N to 0 (Initialize).
2. If there are a valuation σ and a location q such that σ |= RN (q) ∧ ¬ϕP

(Candidate), then the procedure adds 〈σ, q,N〉 to M . The condition σ |=
RN (q)∧¬ϕP guarantees that the state 〈q, σ〉 violates the safety condition ϕP ;
therefore, the candidate 〈σ, q,N〉 needs to be refuted. If not, then the frame
sequence is extended by setting N to N + 1 and RN+1 to λq.true (Unfold);
this is allowed since ∀q ∈ Q. |= RN (q) =⇒ ϕP in this case.

3. The discovered 〈q, σ〉 is backpropagated by successive applications of Decide:
In each application of Decide, for 〈q2, σ2, i + 1〉 in M , the procedure tries to
find σ and q such that 〈q1, ϕ, ϕc, q2〉 ∈ δ and σ1, σ

′
2 |= Ri(q1) ∧ ϕ ∧ ϕc where

σ′
2 is the valuation obtained by replacing the domain of σ2 with their primed

counterpart. These conditions in combination guarantee 〈q1, σ1〉 →δ 〈q2, σ2〉
and σ1 |= Ri(q1).
(a) If this backpropagation reaches R0 (the rule Model), then it reports the

trace of the backpropagation returning Model M .
(b) If it does not reach R0, in which case there exists i such that σ′∧F(Ri)(q′)

is not satisfiable, then we pick a frame R such that |= R(q′) =⇒ ¬σ′ and
|= F(Ri)(q) =⇒ R(q) for any q (the rule Conflict). Intuitively, R is a
frame that separates (1) the union of the initial states denoted by ϕ0 and
the states that are one-step reachable from a state denoted by Ri(q′) and

2 We hereafter write 〈σ, q, i〉 ∈ M to express that the element 〈σ, q, i〉 exists in the
sequence M although M is a sequence, not a set.



GPDR for Hybrid Systems 301

(2) the state denoted by 〈q′, σ′〉. In a GPDR term, R is a generalization
of ¬σ′. This formula is used to strengthen Rj for j ∈ {1, . . . , i + 1}.

4. The frame R obtained in the application of the rule Conflict is propa-
gated forward by applying the rule Induction. The condition ∀q ∈ Q. |=
F(λq.Ri(q) ∧ R(q))(q) =⇒ R(q) forces that R holds in the one-step transi-
tion from a states that satisfies Ri. If this condition holds, then R holds for
i + 1 steps (Theorem 4.5); therefore, we conjoin R to R1(q), . . . , Ri+1(q). In
order to maintain the consistency conditions (Con-E) and (Con-F), this rule
clears M to the empty set to keep its consistency to the updated frames.3

5. If ∀q ∈ Q. |= Ri(q) =⇒ Ri−1(q) for some i < N , then the verification
succeeds and Ri is an inductive invariant (Valid). If such i does not exist,
then we go back to Step 2.

Remark 4.4. One of the differences of the above GPDR from the original one [20]
is that ours deals with the locations of a given DTSTS explicitly. In the original
GPDR, information about locations are assumed to be encoded using a variable
that represents the program counter. Although such extension was proposed for
IC3 by Lange et al. [26], we are not aware of a variant of GPDR that treats
locations explicitly.

Soundness. We fix one DTSTS 〈Q, q0, ϕ0, δ〉 in this section. The correctness of
the GPDR procedure relies on the following lemmas.
Lemma 4.5. Con is invariant to any rule application of Fig. 3.

Theorem 4.6. If the GPDR procedure is started from the rule Initialize and
leads to Valid, then the system is safe. If the GPDR procedure is started from the
rule Initialize and leads to Model 〈σ0, q0, 0〉 . . . 〈σN , qN , N〉, then the system
is unsafe.

5 HGPDR

We now present our procedure HGPDR that is an adaptation of the original
GPDR to hybrid systems. An adaptation of GPDR to hybrid systems requires
the following two challenges to be addressed.
1. The original definition of F (Definition 4.1) captures only a discrete-time

transition. In our extension of GPDR, we need a forward predicate trans-
former that can mention a flow transition.

2. A run of an HA (Definition 3.5) differs from that of DTSTS in that its last
transition consists only of flow dynamics; see Remark 3.6.

In order to address the first challenge, we extend the logic on which F is
defined to be able to mention flow dynamics and define F on the extended
logic (Sect. 5.1). To address the second challenge, we extend the configuration
used by GPDR so that it carries an overapproximation of the states that are
reachable from the last frame by a flow transition; the GPDR procedure is also
extended to maintain this information correctly (Sect. 5.2).
3 We could filter M so that it is consistent for the updated frame. We instead discard

M here for simplicity.
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5.1 Extension of Forward Predicate Transformer

In order to extend F to accommodate flow dynamics, we extend the logic on
which F is defined with continuous reachability predicates (CRP) inspired by
the differential dynamic logic (dL) proposed by Platzer [33].

Definition 5.1. Let D be an ODE over Y := {y1, . . . , yk} ⊆ V . Let us write
σ for {y1 �→ e1, . . . , yk �→ ek} and σ′ for {y1 �→ e′

1, . . . , yk �→ e′
k}. We define a

predicate 〈D | ϕ〉ϕ′ by: σ |= 〈D | ϕ〉ϕ′ iff. ∃σ′.σ→D,ϕσ′ ∧ σ′ |= ϕ′. We call a
predicate of the form 〈D | ϕI〉ϕ a continuous reachability predicate (CRP).

Using the above predicate, we extend F as follows.

Definition 5.2. For an HA 〈Q, q0, ϕ0, F, inv , δ〉, the forward predicate trans-
former FH(R)(q′) is the following formula:

(q′ = q0 ∧ ϕ0)∨
∨

(q,ϕ,ϕc,q′)∈δ

∃x′′.
(

[x′′/x]R(q)
∧ 〈[x′′/x]F (q) | [x′′/x]inv(q)〉([x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc)

)

.

In the above definition, [x′′/x]F (q) is the ODE obtained by renaming the vari-
ables x that occur in ODE F (q) with x′′.

We also define predicate FC(R)(q′) as follows:

∃x′′.([x′′/x]R(q′) ∧ 〈[x′′/x]F (q′) | [x′′/x]inv(q′)〉x = x′′).

Intuitively, σ′ |= FH(ϕ)(q′) holds if either (1) 〈q′, σ′〉 is an initial state or (2) it
is reachable from R by a flow transition followed a jump transition. Similarly,
σ′ |= FC(R)(q′) holds if σ′ is reachable in a flow transition (not followed by
a jump transition) from a state denoted by R(q′). This definition of FH is an
extension of Definition 4.1 in that it encodes the “flow-transition” part of the
above intuition by the CRP. In the case of FC , the postcondition part of the
CRP is x = x′′ because we do not need a jump transition in this case.

Lemma 5.3. If σ1 |= R(q1) and σ1→F (q1),inv(q1)σ
I and

〈
q1, σ

I
〉 →δ 〈q2, σ2〉,

then σ2 |= FH(R)(q2).

Proof. Assume (1) σ1 |= R(q1), (2) σ1→F (q1),inv(q1)σ
I , and (3)

〈
q1, σ

I
〉 →δ

〈q2, σ2〉. Then, by definition, (4) (q1, ϕ, ϕc, q2) ∈ δ and (5) σI |= ϕ
and (6) σI ∪ σ′

2 |= ϕc for some ϕ and ϕc. We show ∃x′′. ([x′′/x]R(q)∧
〈[x′′/x]F (q) | [x′′/x]inv(q)〉([x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc)). (5) implies (7) σI ∪
σ′

2 |= ϕ. (6) and (7) imply (8) σI ′′ ∪ σ′
2 |= [x′′/x]ϕ ∧ [x′′/x]ϕc.

(2) implies (9) σ′′
1→[x′′/x]F (q1),[x

′′/x]inv(q1)σ
I ′′. Therefore, from (8) and (9),

we have (10) σ′′
1 ∪ σ2 |= 〈[x′′/x]F (q1) | [x′′/x]inv(q1)〉([x′′/x]ϕ ∧

[x′′/x,x/x′]ϕc). (Note that the variables in x′ appear only in ϕc.) σ′′
1 ∪ σ2 |=

[x′′/x]R(q1) follows from (1); therefore, we have σ′′
1 ∪ σ2 |= [x′′/x]R(q1) ∧

〈[x′′/x]F (q1) | [x′′/x]inv(q1)〉([x′′/x]ϕ ∧ [x′′/x,x/x′]ϕc). This implies
∃x′′. ([x′′/x]R(q) ∧ 〈[x′′/x]F (q) | [x′′/x]inv(q)〉([x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc)) as
required.
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Initialize R0 := H(λq.false);Rrem := λq.true;N := 0
if ∀q ∈ Q. |= R0(q) =⇒ ϕP

Valid M || A Valid
if ∃i < N.∀q ∈ Q. |= Ri(q) =⇒ Ri−1(q)

Unfold M || A ∅ || A[RN+1 := λq.true;Rrem := λq.true;N := N + 1]
if ∀q ∈ Q. |= Rrem(q) =⇒ ϕP

Induction M || A ∅ || A[Rj := λq.Rj(q) ∧ R(q)]i+1
j=1

if ∀q ∈ Q. |= H(λq.Ri(q) ∧ R(q))(q) =⇒ R(q)
Decide σ2, q2, i + 1 M || A σ1, q1, i σ2, q2, i + 1 M || A

if q1, ϕ, ϕc, q2 δ andσ1, σ2 |= Ri(q1) F (q1) | inv(q1) (ϕ ∧ ϕc)
Model σ, q0, 0 M || A Model σ, q0, 0 M

Conflict σ , q , i + 1 M || A ∅ || A[Rj := λq.Rj(q) ∧ R(q)]i+1
j=1

if |= R(q ) =⇒ ¬σ and ∀q ∈ Q. |= H(Ri)(q) =⇒ R(q)
PropagateCont M || A M || A[Rrem := λq.Rrem(q) ∧ R(q)]

if ∀q ∈ Q. |= RN (q) ∨ C(RN )(q) =⇒ R(q)
CandidateCont ∅ || A σ, q, rem A

if σ |= Rrem(q) ∧ ¬ϕP

DecideCont σ2, q, rem A σ1, q, N σ2, q, rem A
if σ1, σ2 |= RN (q) F (q) | inv(q) (x = x )

ConflictCont σ , q , rem || A ∅ || A[Rrem := λq.Rrem(q) ∧ R(q)]
if R(q ) =⇒ ¬σ , and |= RN (q ) ∨ C(RN )(q ) =⇒ R(q )

Fig. 4. The rules for HGPDR.

Lemma 5.4. If σ1 |= R(q1) and σ1→F (q1),inv(q1)σ2, then σ2 |= FC(R)(q1).

Proof. Almost the same argument as the proof of Lemma 5.3.

5.2 Extension of GPDR

We present our adaptation of GPDR for hybrid systems, which we call
HGPDR. Recall that the original GPDR in Sect. 4 maintains a configuration
of the form M || R0, . . . , RN ;N . HGPDR uses a configuration of the form
M || R0, . . . , RN ;Rrem ;N . In addition to the information in the original config-
urations, we add Rrem which we call remainder frame. Rrem overapproximates
the states that are reachable from RN within one flow transition.

Figure 4 presents the rules for HGPDR. The rules from Initialize to
Conflict are the same as Fig. 3 except that (1) Initialize and Unfold are
adapted so that they set the remainder frame to λq.true and (2) Candidate is
dropped. We explain the newly added rules.

– PropagateCont discovers a fact that holds in Rrem . The side condition
|= RN (q) ∨ FC(RN )(q) =⇒ R(q) for any q guarantees that R(q) is true at
the remainder frame; hence R is conjoined to Rrem .

– CandidateCont replaces Candidate in the original procedure. It tries to
find a candidate from the frame Rrem . The candidate 〈q, σ〉 found here is
added to M in the form 〈σ, q, rem〉 to denote that 〈q, σ〉 is found at Rrem .

– DecideCont propagates a counterexample 〈σ′, q′, rem〉 found at Rrem to the
previous frame RN . This rule computes the candidate to be added to M by
deciding σ ∪ σ′ |= RN (q) ∧ 〈F (q) | inv(q)〉(x = x′), which guarantees that σ
evolves to σ′ under the flow dynamics determined by F (q) and inv(q).

– Conflict uses FH instead of F in the original GPDR. As in the rule
Conflict in GPDR, the frame R in this rule is a generalization of ¬σ′

which is not backward reachable to Ri.
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– ConflictCont is the counterpart of Conflict for the frame Rrem . This
rule is the same as Conflict except that it uses FC instead of FH; hence,
R separates σ′ from both the states denoted by ϕ0 and the states that are
reachable from Ri in a flow transition (not followed by a jump transition).

5.3 Soundness

In order to prove the soundness of HGPDR, we adapt the definition of Con in
Definition 4.3 for HGPDR.

Definition 5.5. Let SH be 〈Q, q0, ϕ0, F, inv , δ〉, FH and FC be the forward pred-
icate transformers determined by SH , and ϕP be the safety condition to be veri-
fied. A configuration C is said to be consistent if it is Valid, Model 〈σ, q0, 0〉 M ,
or ConH(M || R0, . . . , RN ;Rrem ;N) that satisfies all of the following:

– (Con-A) R0(q0) = ϕ0 and R0(qi) = false if qi �= q0;
– (Con-B-1) |= Ri(q) =⇒ Ri+1(q) for any q and i < N ;
– (Con-B-2) |= RN (q) =⇒ Rrem(q) for any q;
– (Con-C) |= Ri(q) =⇒ ϕP if i < N ;
– (Con-D-1) |= FH(Ri)(q) =⇒ Ri+1(q) for any i < N and q;
– (Con-D-2) |= FC(RN )(q) =⇒ Rrem(q) for any q;
– (Con-E) if 〈σ, q, rem〉 ∈ M , then σ |= Rrem(q) ∧ ¬ϕP ;
– (Con-F-1) if 〈σ1, q1, i〉 , 〈σ2, q2, i + 1〉 ∈ M and i < N , then 〈q1, ϕ, ϕc, q2〉 ∈ δ

and σ1, σ
′
2 |= Ri(q1) ∧ ϕ ∧ ϕc; and

– (Con-F-2) if 〈σ1, q1, N〉 , 〈σ2, q2, rem〉 ∈ M , then 〈q1, ϕ, ϕc, q2〉 ∈ δ and
σ1, σ

′
2 |= Ri(q1) ∧ ϕ ∧ ϕc.

The soundness proof follows the same strategy as that of the original GPDR.

Lemma 5.6. ConH is invariant to any rule application of Fig. 4.

Theorem 5.7. If HGPDR is started from the rule Initialize and leads to
Valid, then the system is safe. If HGPDR is started from the rule Initialize
and leads to Model 〈σ0, q0, 0〉 . . . 〈σN , qN , N〉 〈σrem , qrem , rem〉, then the system
is unsafe.

5.4 Operational Presentation of HGPDR

The definition of HGPDR in Fig. 4 is declarative and nondeterministic. For the
sake of convenience of implementation, we derive an operational procedure from
HGPDR; we call the operational version DetHybridPDR, whose definition is
in Algorithm 1.
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Input: Hybrid automaton SH := 〈Q, q0, ϕ0, F, inv , δ〉
Output: Model(M) if SH is unsafe; M is a witnessing trace. Valid(R) if SH is

safe; R is an inductive invariant.
// Initialize

1 N := 0; R0 := λq.(if q = q0 then ϕ0 else false)
2 R1 := true; Rrem := true; M := ∅
3 while true do
4 for q ∈ Q do
5 switch querySat(Rrem(q) ∧ ¬ϕP ) do
6 case Sat(σ′) do

// CandidateCont

7 M := 〈q, σ, rem〉
8 switch RemoveTrace(M , R0, . . . , RN , Rrem , N ) do
9 case Valid(R) do

10 return Valid(R)
11 case Cont(R0, . . . , RN , Rrem) do
12 M := ∅
13 Update R0, . . . , RN , Rrem to the returned frames

14 case Model(M) do
15 return Model(M)

16 end

17 case Unsat do
// Unfold

18 M := ∅; RN+1 := λq.true; Rrem := λq.true; N := N + 1

19 end

20 end

21 end

Algorithm 1. Definition of DetHybridPDR.

Discharging Verification Conditions. An implementation of HGPDR needs to
discharge verification conditions during verification. In addition to verification
conditions expressed as a satisfiability problem of a first-order predicate, which
can be discharged by a standard SMT solver, DetHybridPDR needs to dis-
charge conditions including a CRP predicate. Specifically, DetHybridPDR
needs to deal with the following three types of problems.

– Checking whether δ := ψ ∧ 〈D | ϕI〉(∧x∈V x = σ′(x)) is satisfiable or not
for given first-order predicates ψ and ϕI , an ODE D, and a valuation σ′.
DetHybridPDR needs to discharge this type of predicates when it decides
which of DecideCont and ConflictCont should be applied if the top of M
is 〈σ′, q′, rem〉. We use Algorithm 3 for discharging δ. This algorithm searches
for a valuation σi that witnesses the satisfiability of δ by using a time-inverted
simulation of D as follows. Concretely, this algorithm numerically simulates
D−1, the time-inverted ODE of D, starting from the point {x �→ σ′(x)}. If
it reaches a point σi that satisfies ψ and if all σi+1 . . . σ′ in the obtained
solution satisfy ϕI , then σi witnesses the satisfiability of δ. If such σi does
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Input: Hybrid automaton SH := 〈Q, q0, ϕ0, F, inv , δ〉; Trace of counterexamples M ; Frames
R0, . . . , RN , Rrem ; Natural number N .

Output:
1 while M 	= ∅ do
2 if M =

〈
q′, σ′, rem

〉
M ′ then

3 switch querySatC(RN (q′) ∧ 〈F (q′) | inv(q′)〉(x = σ′(x)) do
// DecideCont

4 case Sat(σ) do
5 M :=

〈
q′, σ, N

〉
M

// ConflictCont
6 case Unsat(R) do
7 M := ∅; Rrem := λq.Rrem(q) ∧ R(q)

// PropagateCont

8 for ψ ∈ Formulas(RN (q′)) do
9 switch querySatC(RN (q′) ∧ 〈F (q′) | inv(q′)〉¬ψ) do

10 case Unsat do
11 Rrem (q′) := Rrem(q′) ∧ ψ

12 end

13 end

14 end

15 else if M =
〈
q′, σ′, 0

〉
M ′ then

// Model
16 return Model(M)

17 else if M =
〈
q′, σ′, i

〉
M ′ and 0 < i 	= rem then

18 for
〈
q, ϕ, ϕc, q′〉 ∈ δ do

19 switch querySatC(Ri−1(q) ∧ 〈F (q) | inv(q)〉(ϕ ∧ ϕc ∧ x = σ′(x))) do
// Decide

20 case Sat(σ) do
21 M := 〈q, σ〉 M

// Conflict
22 case Unsat(R) do
23 for j ∈ [1, i + 1] do
24 Rj := λq.Rj(q) ∧ R(q); M := ∅;
25 end

// Induction

26 for i ∈ [1, N − 1], ψ ∈ Formulas(Ri(q
′)) do

27 switch querySatC(Ri(q
′) ∧ ψ ∧ 〈F (q′) | inv(q′)〉¬ψ) do

28 case Unsat do
29 Rj(q

′) := Rj(q
′) ∧ ψ for j ∈ [1, i + 1]

30 end

31 end

32 end

33 end

34 end

35 end
36 if There exists i such that ∀q. |= Ri+1(q) =⇒ Ri(q) then

// Valid
37 return Valid(Ri)

38 else
// Inductive invariant is not reached yet.

39 return Cont(R0, . . . , RN , Rrem )

40 end

Algorithm 2. Definition of RemoveTrace.

not exist but there is σi such that σi �|= ϕI , then ψ is not backward reachable
from σ′ and hence δ is unsatisfiable. In this case, Algorithm 3 needs to return
a predicate that can be used as ψ′ in the rule ConflictCont in Fig. 4.
Currently, we assume that the user provides this predicate. We expect that
we can help this step of discovering ψ′ by using techniques for analyzing
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Input: Formula δ := ψ ∧ 〈D | ϕI〉(∧x∈V x = σ′(x)) to be discharged; Number T > 0.
Output: Sat(σi) if σi |= δ; Unsat(ψ′) if δ is unsatisfiable and ψ′ is a generalization of σ′;

aborts if satisfiability nor unsatisfiability is proved.
// D−1 is the time-inverted ODE of D. Therefore, p is the backward solution of D

from σ′.
1 D−1 := the ODE obtained by replacing all the occurrences of the variable t corresponding

to the time to −t and negating each time derivative;

2 Solve D−1 numerically from the initial point σ0 := σ′;
3 Let p := σ0σ1 . . . σT−1 be the solution obtained at the Step 2;

// i1 is set to ∞ if there is no such i.
4 i1 := the minimum i such that σj |= ϕI for any j < i and σi |= ψ;

// i2 is set to ∞ if there is no such i.
5 i2 := the minimum i such that σj |= ϕI for any j < i;
6 if i1 < ∞ then

// σi1 witnesses the satisfiability of δ.

7 return Sat(σi1 )

8 else if i2 < ∞ then
// σi2 is the end point of the D−1 with the stay condition ϕI, but σi2 	|= ψ.

Therefore, ψ is not backward reachable from σ′ along with D. Currently, the
user needs to provide a predicate that can be used for further refinement.

9 Obtain ψ′ such that |= ∃x0.[x0/x]ψ ∧ 〈[x0/x]D | [x0/x]ϕI〉x0 = x =⇒ ψ′ and

σ′ 	|= ψ′ from the user;

10 return Unsat(ψ′)
11 end

// Cannot conclude neither satisfiability nor unsatisfiabililty.
12 abort

Algorithm 3. Algorithm for discharging δ := ψ ∧ 〈D | ϕI〉(∧x∈V x = σ′(x)).

continuous dynamics (e.g., automated synthesizer of barrier certificates [34]
and Flow* [9] in combination with Craig interpolant synthesis procedures [2,
31]). If neither holds, then we give up the verification by aborting; this may
happen if, for example, the value of T is too small.

– Checking whether δ′ := ψ ∧ 〈F (q) | inv(q)〉(ϕ ∧ ϕc ∧ x = σ′(x)) is satisfiable
or not. DetHybridPDR needs to solve this problem in the choice between
Decide and Conflict. This query is different from the previous case in that
the formula that appears after 〈F (q) | inv(q)〉 in δ′ is ϕ ∧ ϕc ∧ x = σ′(x),
not x = σ′(x); therefore, we cannot use numerical simulation to discharge
δ′. Although it is possible to adapt Algorithm 3 to maintain the sequence of
predicates α0α1 . . . αT−1 instead of valuations so that each αi becomes the
preimage of αi−1 by D, the preimage computation at each step is prohibitively
expensive. Instead, the current implementation restricts the input system so
that there exists at most one σ such that σ |= ϕ∧ϕc ∧x = σ′(x) for any σ′; if
this is met, then one can safely use Algorithm 3 for discharging δ′. Concretely,
we allow only ϕc that corresponds to the command whose syntax is given by
c:: = skip | x := r1x + r2 | x := r1x − r2 where skip is a command that does
nothing; r1 and r2 are real constants.

– Checking whether ϕ1 ∧ 〈D | ϕI〉¬ϕ2 is unsatisfiable. DetHybridPDR
needs to discharge this type of queries when it applies Induction or
PropagateCont. This case is different from the previous case in that (1)
DetHybridPDR may answer Otherwise without aborting the entire verifi-
cation if unsatisfiability nor satisfiability is proved, and (2) DetHybridPDR
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Input: Formula ϕ1 ∧ 〈ẋ = f (x) | ϕI〉¬ϕ2 to be discharged; Number r > 0.
Output: Unsat or Otherwise; if Unsat is returned then the input formula is

unsatisfiable.
1 if ϕ1 ∧ ϕ2 is satisfiable then
2 return Otherwise

3 end
4 Let dt be a fresh symbol;

// Checking ϕ1 is invariant throughout the dynamics determined by
ẋ = f (x) and |= ϕ1 =⇒ ¬ϕ2.

5 if r > dt > 0 ∧ ϕ1 ∧ ϕI ∧ ¬[x + f (x)dt/x]ϕ1 and ϕ1 ∧ ϕ2 are unsatisfiable then
6 return Unsat

7 end
// Checking ¬ϕ2 is invariant throughout in the dynamics determined

by ẋ = f (x) and |= ϕ1 =⇒ ¬ϕ2.
8 if r > dt > 0 ∧ ¬ϕ2 ∧ ϕI ∧ [x + f (x)dt/x]ϕ2 and ϕ1 ∧ ϕ2 are unsatisfiable then
9 return Unsat

10 end
11 return Otherwise

Algorithm 4. Algorithm for discharging ϕ1 ∧ 〈ẋ = f(x) | ϕI〉¬ϕ2.

does not need to return a generalization if the given predicate is unsatisfi-
able. We use Algorithm 4 to discharge this type of queries. This algorithm first
checks the satisfiability of ϕ1 ∧ ϕ2 in Step 1; if it is satisfiable, then so is the
entire formula. Then, Step 5 tries to prove that the entire formula is unsatis-
fiable by proving (1) ϕ1 is invariant with respect to the dynamics specified by
D and ϕI and (2) ϕ1 ∧ ϕ2 is unsatisfiable. In order to prove the former, the
algorithm tries the following sufficient condition: For any positive dt that is
smaller than a positive real number r, |= ϕi∧ϕI =⇒ [x+f(x)dt/x]ϕ1, where
D ≡ ẋ = f(x).4 Step 8 tries the same strategy but tries to prove that ¬ϕ2 is
invariant. If both attempts fail, then the algorithm returns Otherwise.5 This
algorithm could be further enhanced by incorporating automated invariant-
synthesis procedures [15,28,35]; exploration of this possibilities is left as
future work.

6 Proof-of-Concept Implementation

We implemented DetHybridPDR as a semi-automated verifier. We note that
the current implementation is intended to be a proof of concept; extensive exper-
iments are left as future work. The snapshot of the source code as of writing can
be found at https://github.com/ksuenaga/HybridPDR/tree/master/src.
4 This strategy is inspired by the previous work by one of the authors on nonstandard

programming [18,30,36,37].
5 If the flow specified by D is a linear or a polynomial, then we can apply the procedure

proposed by Liu et al. [28], which is proved to be sound and complete for such a
flow.

https://github.com/ksuenaga/HybridPDR/tree/master/src
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The verifier takes a hybrid automaton SH specified with SpaceEx modeling
language [27], the initial location q0, the initial condition ϕ0, and the safety
condition ϕP as input; then, it applies DetHybridPDR to discover an inductive
invariant or a counterexample. The frontend of the verifier is implemented with
OCaml; in the backend, the verifier uses Z3 [29] and ODEPACK [1] to discharge
verification conditions.

As we mentioned in Sect. 5.4, when a candidate counterexample 〈q′, σ′, i + 1〉
turns out to be backward unreachable to Ri, then our verifier asks for a gen-
eralization of σ′ to the user; concretely, for example in an application of the
rule Conflict, the user is required to give ψ such that |= ψ =⇒ ¬σ′ and |=
(q, ϕ, ϕc, q

′) ∈ δ ∧ [x0/x]Ri(q) ∧ 〈[x0/x]F (q) | [x0/x]inv(q)〉[x0/x,x0/x](ϕ ∧
ϕc) =⇒ ψ and |= R0(q′) =⇒ ψ. Instead of throwing this query at the user in
this form, the verifier asks the following question in order to make this process
easier for the user for each (q, ϕ, ϕc, q

′) ∈ δ:

Pre:Ri(q); Flow:F (q); Stay:inv(q); Guard:ϕ; Cmd:ϕc; CE:σ′; Init:R0(q
′).

In applying ConflictCont, the verifier omits the fields Guard and Cmd.
We applied the verifier to the hybrid automaton in Fig. 2 with several initial

conditions and the safety condition ϕP := x ≤ 1. We remark that the outputs
from the verifier presented here are post-processed for readability. We explain
how verification is conducted in each setting; we write D for the ODE ẋ =
−y, ẏ = x.

– Initial condition x = 0 ∧ y = 0 at location q0: The verifier finds the inductive
invariant {q0 �→ x = 0 ∧ y = 0, q1 �→ x = 0 ∧ y = 0} after asking for proofs of
unsatisfiability to the user 5 times.

– Initial condition x ≤ 1
2 at location q0: The verifier finds a coun-

terexample {x �→ 0.490533, y �→ 1.93995}, from which the system reaches
{x �→ 2.00100, y �→ 0}. The verifier asks 5 questions, one of which is the fol-
lowing:

Pre: (x ≤ 1 ∧ y ≥ 0) ∨ x ≤ 0.5; Flow: D; Stay: y ≥ 0;
Guard: y ≤ 0; Cmd: skip; CE: {x �→ 0.998516; y �→ −1.889365};
Init: x ≤ 0.5.

Notice that the stay condition is y ≥ 0 and the guard is y ≤ 0; therefore
the predicate y = 0 holds when a jump transition happens. Since the flow
specified by D is an anticlockwise circle whose center is {x �→ 0, y �→ 0} with
the stay condition y ≥ 0, the states after the flow dynamics followed by a
jump transition is x ≤ 0.5 ∧ y = 0, which indeed does not intersect with
x = 0.998516 ∧ y = −1.889365. The verification proceeds by giving y ≥ 0 as
a generalization in this case.

– Initial condition 0 ≤ x ≤ 1
2 ∧ 0 ≤ y ≤ 1

2 at location q0: The verifier finds an
inductive invariant

R :=
{

q0 �→ (y = 0 ∧ 0 ≤ x ≤ 0.707107) ∨ (0 ≤ x ≤ 0.5 ∧ 0 ≤ y ≤ 0.5),
q1 �→ y = 0 ∧ −0.707107 ≤ x ≤ 0

}
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after asking for 8 generalizations to the user. This is indeed an inductive
invariant. Noting 0.707107 ≈ 1√

2
, we can confirm that (1) the states that are

reachable by flow dynamics followed by a jump transition is the set denoted
by R(q0); the same holds for the transition from R(q1); (2) it contains the
initial condition 0 ≤ x ≤ 0.5 ∧ 0 ≤ y ≤ 0.5 at location q0; and (3) it does not
intersect with the unsafe region x > 1. The following is one of the questions
that are asked by the verifier:

Pre: (y = 0 ∧ −0.707107 ≤ x ≤ 0) ∨ (0 ≤ x ≤ 0.5 ∧ 0 ≤ y ≤ 0.5);
Flow: D; Stay: y ≤ 0; CE: {x �→ 0.998516; y �→ −1.889365};
Init: false.

Instead of a precise overapproximation (x2 + y2 = 0.5 ∧ y ≤ 0) ∨ (0 ≤ x ≤
0.5 ∧ 0 ≤ y ≤ 0.5) of the reachable states, we give (−0.707107 ≤ y ≤ 0 ∧
−0.707107 ≤ x ≤ 0.707107) ∨ (0 ≤ x ≤ 0.5 ∧ 0 ≤ y ≤ 0.5), which progresses
the verification.

7 Related Work

Compared to its success in software verification [5,10,12,20,21], IC3/PDR for
hybrid systems is less investigated. HyComp [11,13] is a model checker that can
use several techniques (e.g., IC3, bounded model checking, and k-induction) in
its backend. Before verifying a hybrid system, HyComp discretizes its flows so
that the verification can be conducted using existing SMT solvers that do not
directly deal with continuous-time dynamics. Compared to HyComp, HGPDR
does not necessarily require prior discretization for verification. We are not aware
of an IC3/PDR-based model checking algorithm for hybrid systems that does
not require prior discretization.

Kindermann et al. [24,25] propose an application of PDR for a timed
system—a system that is equipped with clock variables; the flow dynamics of
a clock variable c is limited to ċ = 1. A clock variable may be also reset to a
constant in a jump transition. Kindermann et al. finitely abstract the state space
of clock variables by using region abstraction [38]. The abstracted system is then
verified using the standard PDR procedure. Later Isenberg et al. [22] propose
a method that abstracts clock variables by using zone abstraction [4]. They do
not deal with a hybrid system whose flow behavior at each location cannot be
described by ċ = 1; the system in Fig. 2 is out of the scope of their work.

Our continuous-reachability predicates (CRP) are inspired by Platzer’s
dL [33]. We may be able to use the theorem prover KeYmaera X for dL predi-
cates [16] for our purpose of discharging CRP.

8 Conclusion

We proposed an adaptation of GPDR to hybrid systems. For this adaptation, we
extended the logic on which the forward predicate transformer is defined with the
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continuous reachability predicates 〈D | ϕI〉ϕ inspired by the differential dynamic
logic dL. The extended forward predicate transformer can precisely express the
behavior of hybrid systems. We formalized our procedure HGPDR and proved
its soundness. We also implemented it as a semi-automated procedure, which
proves the safety of a simple hybrid system in Fig. 2.

On top of the current proof-of-concept implementation, we plan to implement
a GPDR-based model checker for hybrid systems. We expect that we need to
improve the heuristic used in the application of the rule Induction, where we
currently check sufficient conditions of the verification condition. We are also
looking at automating part of the work currently done by human in verification;
this is essential when we apply our method to a system with complex continuous-
time dynamics.
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Abstract. We study the problem of language inclusion between finite,
labeled prime event structures. Prime event structures are a formalism to
compactly represent concurrent behavior of discrete systems. A labeled
prime event structure induces a language of sequences of labels produced
by the represented system. We study the problem of deciding inclusion
and membership for languages encoded by finite prime event structures
and provide complexity results for both problems. We provide a family of
examples where prime event structures are exponentially more succinct
than formalisms that do not take concurrency into account. We provide a
decision algorithm for language inclusion that exploits this succinctness.
Furthermore, we provide an implementation of the algorithm and an
evaluation on a series of benchmarks. Finally, we demonstrate how our
results can be applied to mutation-based test case generation.
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instantiated with regular languages and finite automata [23]; an incarnation
frequently occurring in formal verification and model checking is language inclu-
sion (and intersection, respectively) for ω-regular languages and Büchi automata
[9, Chapter 7]. In the latter application, the goal is to check whether a transition
system conforms to a specification given in linear temporal logic. One challenge
arising in automata-based model checking is that the verification of concurrent
systems relies on the explicit construction of a product automaton whose size
can be exponential in the number of processes. Partial Order Reduction (POR,
see [20,41] and [9, Chapter 12], for instance) addresses this problem by exploiting
independence between transitions to avoid the construction of the full product
automaton: the reduction identifies equivalence classes of words in the language
(i.e., executions) obtained by reordering commutative edges/transitions [31] and
restricts the exploration to representative members of these classes. POR in
its simplest form can be used to check reachability and deadlock problems; for
checking temporal logic properties only transitions whose labels are “invisible”
to the property are assumed to be independent [9, Chapter 12]. This renders the
approach impractical for language inclusion if the alphabets of both languages
are the same, e.g., when checking whether a modification is language-preserving
– a question arising in the applications that motivated our work (see below).

In this paper, we focus on language inclusion for finite, labeled prime event
structures, a representation of bounded executions of concurrent systems in
which dependence (and independence) of transitions is made explicit. This rep-
resentation can be exponentially more succinct than finite automata, as shown
in Sect. 4: there are event structures with n events, such that the smallest NFA
expressing the same language has at least 2n states.

We provide an analysis of the computational complexity of checking language
membership as well as inclusion between two event structures, showing that the
former is NP-complete and the latter is Πp

2 -complete (Sect. 3). While a similar
results to the former was proven earlier for trace languages [3], to the best of
our knowledge, the latter result is novel even in the related domains of bounded
trace languages and bounded labeled Petri nets.

Besides showing the complexity of the decision problems, we provide a prac-
tical decision algorithm for solving event structure language inclusion in Sect. 4.
By finding suitable embeddings of one event structure in another, the algorithm
determines whether the language of the former is included in the language of the
latter. The algorithm iteratively refines the event structure whenever two labels
occur unordered in the former structure but ordered in the latter. Moreover, the
algorithm can provide counterexamples to inclusion encoded as event structures
representing words that occur in the former language but not in the latter.

Section 5 provides a qualitative analysis of our representation and an exper-
imental evaluation that highlights advantages and disadvantages of event struc-
tures in comparison to an automaton-based representation (for which language
inclusion is PSPACE-complete).

Our inclusion algorithm decides whether two systems, represented as event
structures, have the same behavior in terms of bounded words over a common
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vocabulary. This scenario arises in a range of applications: refinement or model
checking, where an implementation is compared against a specification; upgrade
or regression checking, where a fixed version of a software is compared against
the original version; or mutation-based test case generation, where a small mod-
ification (or bug) is introduced in code to obtain a “mutant” of the original
program, and the counterexample to inclusion then represents a test case which
discriminates between mutant and original. We use the latter scenario, which
motivated our research on language inclusion, as an exemplary application of
our approach in our experiments (Sect. 5).

2 Preliminaries

In this section we introduce labeled prime event structures. Throughout this
work, we assume that every set of labels X contains a distinct label ε, which
denotes the empty symbol. Concatenation of ε to a word does not change the
word.

Definition 1 (FLES). Given a set of labels X , a finite, X -labeled prime event
structure (FLES) is a tuple E := 〈E,<,#, h〉 where E is a finite set of events,
< ⊆E × E is a strict partial order on E, called causality relation, h : E → X
labels every event with an element of X , and # ⊆ E × E is the symmetric,
irreflexive conflict relation that is closed under <, i.e. for all e, e′, e′′ ∈ E, if
e#e′ and e′ < e′′, then e#e′′.

For an event e, we use �e� to denote the history of e as the set of events that
must happen before e according to <, formally �e� := {e′ ∈ E | e′ < e}. We
require that there is a special event ⊥ ∈ E, such that �⊥� = ∅, for all events
e ∈ E : ⊥ < e, and h(⊥) = ε. We define the direct successors dsucc of event e as
the set of events that depend on e without there being another event in-between,
formally dsucc(e) = {e′ ∈ E | e < e′ ∧ �e′′ : e < e′′ < e′}. We say that two
events e, e′ ∈ E are concurrent if e 
= e′, not (e < e′), not (e > e′), and not
(e#e′).

A central concept in assigning event structures a semantic is the notion of
configurations:

Definition 2 (Configuration). For a FLES E := 〈E,<,#, h〉, a configuration
of E is a set of events C = {e1, . . . , en} ⊆ E that is both

– Left closed: ∀e ∈ C : ∀e′ ∈ E such that e′ < e =⇒ e′ ∈ C, and
– Conflict free: ∀e, e′ ∈ C : ¬(e#e′)

A configuration C is maximal, if there is no configuration C ′ such that C ⊆C ′

and C 
= C ′. We denote by MC(E) the set of all maximal configurations of an
event structure E . A trace τ of C is a sequence of events 〈e1, . . . , en〉, where every
event e ∈ C occurs exactly once in the sequence and for all ei, ej ∈ τ : ei <
ej =⇒ i < j. We denote the set of all traces of a configuration C with T (C).
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e1

e2

e1 e2

e3 e4

Fig. 1. Event structures

Let f : C → X be a mapping on C to some set X. For a trace τ of C, we denote
by f(τ) the sequence resulting from point-wise application of f on the elements
of τ . Finally, we extend T to event structures by defining it as the union of traces
over all maximal configurations. That is, T (E) :=

⋃
C∈MC(E) T (C).

A finite, labeled prime event structure E represents a finite set of bounded
words over an alphabet X , where the bound for the length of words is given by
the size of the largest maximal configuration. We call this set the language L(E).

Definition 3 (Language of C and E ). The language of configuration C of E
is L(C) := {h(τ) | τ ∈ T (C)}. The language of E is L(E) := {h(τ) | τ ∈ T (E)}.

To illustrate this definition we give a small example.

Example 1 (Event structure and configurations). We show two event structures
in Fig. 1a and b. Boxes depict events. Inside every box is its event’s identifier,
above or below the box is its event’s label. If there is no label we implicitly assume
the label to be ε. Solid arrows depict direct successors of an event. Dashed lines
depict immediate conflicts. Two events e, e′ are in immediate conflict if e#e′ and
there are no e1, e2 ∈ E such that e1 < e ∧ e1#e′ or e2 < e′ ∧ e#e2. For better
readability, we omit all other causalities and conflicts.

Figure 1a and b both represent the language {AB,BA}. The event structure
in Fig. 1a has a single maximal configuration consisting of events {⊥, e1, e2}.
The event structure in Fig. 1b has two maximal configurations: {⊥, e1, e2} and
{⊥, e3, e4} (due to the conflict between e1 and e3 these two events cannot appear
in the same configuration).

3 Language Inclusion Problem and Complexity Results

The language inclusion problem for two event structures E1, E2 is to decide
whether L(E1) ⊆ L(E2). In this section we prove a complexity bound for the
language inclusion problem. As an intermediate step we look at the membership
problem.
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Fig. 2. EG for Theorem 2

3.1 Language Membership Is NP-complete

The finite prime event structure language membership problem for word w and
FLES E is the problem of deciding whether w ∈ L(E). Surprisingly, deciding
membership is NP-complete. In contrast, trace membership τ ∈ T (E) can be
decided in polynomial time. Trace membership can be decided simply by ver-
ifying that the set of events of τ forms a maximal configuration of E , which
requires to verify left-closure, conflict-freedom, and maximality. All of those can
be checked in polynomial time (linear time, assuming linear conflict lookup).

Intuitively, the hardness of language membership comes from the fact that
the labeling function does not need to be injective and the role of conflicts, which
together rule out a greedy algorithm that consumes the word in question symbol
by symbol in a unique way.

Theorem 1. Finite prime event structure language membership is in NP.

Proof. Let E = 〈E,<,#, h〉 be an X -labeled FLES and w = 〈σ1, . . . , σn〉 ∈ X ∗

be a word. A trace τ is a polynomially sized certificate for w ∈ L(E). Checking
that τ ∈ T (E) can be done in polynomial time, and checking whether h(τ) = w
can be done in linear time. �

To prove NP-hardness we reduce the Hamiltonian cycle (HC) problem to
the membership problem. HC is known to be NP-hard [26]. It is the problem of
deciding whether for a directed graph there exists a path that visits all vertices
once and that ends in the vertex it started. We use s(f) and t(f) to denote the
source and target of a directed edge f .

Theorem 2. Finite prime event structure language membership is NP-hard.

Proof. For a directed graph G = ({v1, . . . , vn}, {f1, . . . , fk}) we construct an
event structure EG, such that xn ∈ L(EG) iff G has a Hamiltonian cycle. EG is
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shown in Fig. 2 and we present the main arguments why this reduction is correct
here. A detailed, formal proof is given in the appendix of [14].

Configurations of the event structure encode a sequence of n edges. If event
ef,i is included in the configuration it means that edge f is at position i in the
sequence of edges. To ensure that every vertex is visited, edges with the same
target are in conflict. Since n edges need to be selected, there are n vertices, and
every vertex is a target of some selected edge, every vertex is visited once by the
selected edges. To ensure that the sequence of edges actually forms a cycle they
need to be connected. Events ef,i and ef ′,i+1modn for which the target of f is the
source of f ′ cause an x-labeled event ef,f ′,i. Therefore, only configurations that
represent a cycle form the word xn.

In summary, checking the membership of xn amounts to checking whether
there exists a Hamiltonian cycle in G. The reduction clearly is polynomial. �

3.2 Language Inclusion Is Πp
2 -complete

The finite prime event structure language inclusion problem for FLES E1 and E2

is the problem of deciding whether L(E1) ⊆ L(E2).
Πp

2 is a complexity class from the polynomial hierarchy. It intuitively repre-
sents a ∀∃ quantifier alternation. To show inclusion, we use the definition of Πp

2

given by Wrathall [46], providing semantics for the complexity class in terms of
formal languages. These languages should not be confused with the particular
type of languages we discuss in this work. In contrast, such languages encode
problem instances and candidate witnesses.

Formally, a language L is in Πp
2 iff there exists a polynomially decidable

language L′, such that x ∈ L ⇔ ∀y1∃y2[〈x, y1, y2〉 ∈ L′]. A language L′ is poly-
nomially decidable if w ∈ L′ can be decided in polynomial time. The x represents
an encoding of the problem instance as a string. The y1 and y2 represent string
encodings of witnesses to a sub-problem.

We fix two X -labeled FLES E1 = 〈E1, <1,#1, h1〉 and E2 = 〈E2, <2,#2, h2〉.
Theorem 3. Finite prime event structure language inclusion is in Πp

2 .

Proof. Language inclusion L(E1) ⊆ L(E2) amounts to checking whether ∀w ∈
L(E1) ⇒ w ∈ L(E2). In terms of traces this can be expressed as ∀τ1 ∈
T (E1). ∃τ2 ∈ T (E2). h1(τ1) = h2(τ2), meaning that for every trace in E1 there has
to be a trace in E2 corresponding to the same word in the common alphabet X .

We define L := {〈E1, E2〉 | L(E1) ⊆ L(E2)} and L′ := {〈〈E1, E2〉, τ1, τ2〉 | τ1 ∈
T (E1) ⇒ (

h1(τ1) = h2(τ2) ∧ τ2 ∈ T (E2)
)}. By the argument above, we obtain

the desired form x ∈ L iff ∀y1∃y2[〈x, y1, y2〉 ∈ L′] to show Πp
2 inclusion. Fur-

thermore, L′ can be decided deterministically in polynomial time, because trace
membership, as well as label equality, can be decided in polynomial time. �

To show Πp
2 hardness, we present a reduction from the Dynamic Hamiltonian

Cycle (DHC) problem to the finite prime event structure language inclusion
problem. Given an undirected graph G = (V, F ) and a set B ⊆ F , graph G
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Fig. 3. Event structures for the language inclusion hardness proof. We use . . . to indi-
cate omitted events.

and B form a DHC if for every set D ⊆ B with |D| ≤ |B|/2, the graph GD =
(V, F ∖ D) has a Hamiltonian cycle. We define n := |V |, k := |F |, m := |B|,
and bh := �|B|/2�. Essentially DHC, in comparison to HC, has an additional
universal quantifier over subsets of B. DHC is known to be Πp

2 -complete [27].

Theorem 4. Finite prime event structure language inclusion is Πp
2 -hard.

Proof. For an undirected graph G = (V, F ) and set B = {b1, . . . , bm} ⊆ F we
construct event structures EG,B

1 and EG,B
2 , such that L(EG,B

1 )⊆L(EG,B
2 ) iff G,B

satisfy DHC. EG,B
1 and EG,B

2 are shown in Fig. 3 and we present the main argu-
ments why this reduction is correct here. A detailed, formal proof, as well as an
example, are given in the appendix of [14].

The idea of the proof is to encode subsets D of B via events eini and eouti
with i ∈ [1,m] in both EG,B

1 and EG,B
2 . Events eini are labeled with lbi and

represent bi ∈ D, whereas eouti are labeled with ε and represent bi /∈ D. Fur-
thermore, the cardinality of D is encoded in EG,B

1 via y-labeled events eDi. In
contrast y-labeled events eDi in EG,B

2 are not used to count |D|, but to differen-
tiate whether or not a Hamiltonian cycle is required to show DHC (i.e. whether
|D| ≤ |B|

2 ). For every i ∈ [1,m], event efix i is used to guarantee the existence
of maximal configurations in EG,B

2 with i y-labeled events. In case a Hamilto-
nian cycle is required to show DHC for some set D, we encode GD using the
same event structure as in the proof of Theorem 2, excluding edges from D via
conflicts of events eini.
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Our Hamiltonian cycle encoding used in the proof of Theorem 2 operates on
directed edges, but DHC is defined for undirected graphs. Therefore, we replace
every edge f in G with two edges in opposing directions, denoted by �f and �f .
Clearly, every Hamiltonian cycle in the directed version corresponds to a Hamil-
tonian cycle in the undirected graph. In order to faithfully represent restricted
graphs GD, we make sure always to exclude all directed edges corresponding to
edges in D when looking for a Hamiltonian cycle in GD.

Every subset D of B is encoded by some word in L(EG,B
1 ) via labels lbi

of events eini. Since eini is in conflict with eouti maximal configurations can
only include one or the other. That is, words exactly enumerate all subsets D
of B. Furthermore, similarly as for the proof of Theorem 2, every w ∈ L(EG,B

1 )
contains n times the label x.

Membership of words of L(EG,B
1 ) in L(EG,B

2 ) only depends on whether the
encoded subset F ∖ D induces a Hamiltonian cycle: Words that encode a D

such that |D| > |B|
2 are always in L(EG,B

2 ), because they are trivially accepted
by events evi. In contrast, for D such that |D| ≤ |B|

2 the event efix |D| is in
concflict with ev1, thereby preventing a trivial acceptance of words in L(EG,B

1 ).
Therefore, x labels of words in L(EG,B

2 ) that encode D such that |D| ≤ |B|
2 must

be of events caused by es. The events caused by es exactly encode Hamiltionian
cycles in GD, similarly to the proof of Theorem 2.

Since the two cases are exhaustive and cover every subset D of B, we get
L(EG,B

1 )⊆L(EG,B
2 ) iff G and B satisfy DHC. The reduction is polynomial as can

be easily observed by the event structures in Fig. 3. �

4 Deciding Language Inclusion

In this section, we introduce a decision algorithm for the FLES language inclusion
problem. Furthermore, we provide a language preserving translation of event
structures into non-deterministic finite automata (NFAs), which allows us to
compare our algorithm to NFA language inclusion. We start by introducing
necessary concepts for our decision algorithm.

Configuration as an Event Structure. Given an event structure E = 〈E,<,#, h〉
and a configuration C, we denote its corresponding event structure as EC :=
〈C,<�C×C ,∅, h�C〉, where X�Y denotes the restriction of X to Y . For ease of
presentation, when describing our algorithms, we abuse notation and do not
differentiate between a configuration and its corresponding event structure. Fur-
thermore, in the following presentation of the algorithms, we assume that the
causality relations and labeling functions of configurations Ci for i ∈ {1, 2} are
implicitly given by the event structure interpretation over Ei.

ε-free configurations. For every configuration C, there is a configuration with
the same language whose only ε-labeled event is ⊥. This ε-free configuration can
be obtained simply by removing all ε-labeled events besides ⊥ from its corre-
sponding event structure, in particular from C and <�C×C . The resulting ε-free
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Fig. 4. Necessary and sufficient embeddings.
ϕ : ⊥ �→ ⊥; e1 �→ e4; e2 �→ e5; e3 �→ e6 is a necessary embedding (dotted arrows).
ϕ : ⊥ �→ ⊥; e7 �→ e4; e8 �→ e5; e9 �→ e6 is a sufficient embedding (dash-dotted arrows).

configuration has the same language as the initial configuration, because the
causality relation is transitive. Furthermore, ε-labeled events do not modify the
words and thus removing them does not influence the language of the configura-
tion. Therefore, in order to improve readability, from hereon we assume without
loss of generality that configurations are ε-free. We keep the ⊥ event to improve
readability, even though for our purpose this event is not required neither. Note
that ε-labeled events are useful during the construction phase of the event struc-
ture representing, for example, hidden transitions or non-deterministic choices.

Embeddings. An embedding is a structure-preserving one-to-one mapping
between events of two configurations from different event structures. We con-
sider two different types of embeddings that vary in their strictness in terms
of structure preservation. Since embeddings are defined between configurations,
conflicts do not play a role in these considerations. In order to use these embed-
dings for deciding language inclusion between two FLES, we assume that in a
step prior to searching for embeddings, the maximal configurations of both E1

and E2 are computed. This can, for example, be achieved with the algorithm
presented in [38].

In the following we consider two configurations C1 and C2 of two X -labeled
FLES E1 = 〈E1, <1,#1, h1〉 respectively E2 = 〈E2, <2,#2, h2〉.
Definition 4 (Necessary Embedding). A mapping ϕ : C1 → C2 is a neces-
sary embedding if (A) ϕ is bijective, (B) ∀e ∈ C1 : h1(e) = h2(ϕ(e)), and (C)
∀e ∈ C1 : ¬(

e(<1 ∪ <ϕ
2 )+e

)
, where .+ denotes transitive closure and <ϕ

2 denotes
the relation <2 mapped to the events of C1. Formally <ϕ

2 := {(ϕ−1(e1), ϕ−1(e2)) |
∃e1, e2 ∈ C2. e1 <2 e2}. For a necessary embedding ϕ from C1 to C2, we write
C1 ∼ϕ

N C2. We write C1 ∼N C2 if there exists a necessary embedding ϕ such
that C1 ∼ϕ

N C2.

A necessary embedding implies that the two configurations have a common
word, by requiring they have the same number of events with the same labels
and that their partial orders are not contradicting each other. Note that the
relation ∼N is symmetric, since for a necessary embedding ϕ : C1 → C2, ϕ−1 is
a necessary embedding from C2 onto C1.
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Example 2. Consider the configurations in Fig. 4a and b. There are only two
label-preserving bijections between the configurations: ϕ1 : ⊥ �→ ⊥; e1 �→
e6; e2 �→ e5; e3 �→ e4 and ϕ2 : ⊥ �→ ⊥; e1 �→ e4; e2 �→ e5; e3 �→ e6.

The mapping ϕ1 is not a necessary embedding, since e2(<1 ∪ <ϕ
2 )e2, which

violates C). To see this, consider the chain of events e2 <1 e3 <ϕ
2 e2, where e3 =

ϕ−1(e4), e2 = ϕ−1(e5), and e4 <2 e5. In contrast, ϕ2 is a necessary embedding
and a witness to the common word ABA of both configurations.

Lemma 1. Let C1 and C2 be maximal configuration of FLES E1 respectively E2.
C1 ∼N C2 if and only if L(C1) ∩ L(C2) 
= ∅.

The following corollary gives rise to a termination criterion of the decision
algorithm. If we find a configuration C in E1, such that there exists no config-
uration in E2 that shares a word with C, we can abort the search and report
non-inclusion.

Corollary 1. Let C,C1, . . . , Cn be configurations such that C 
= ∅. If (∀i =
1, . . . , n : Ci �N C) then L(C) �

⋃n
i=1 L(Ci).

The second type of embedding has a stronger requirement on structure
preservation. Intuitively, it requires that the source of such an embedding is
at least as strict in terms of causality as the target.

Definition 5 (Sufficient Embedding). A mapping ϕ : C1 → C2 is a suffi-
cient embedding if (A) ϕ is bijective, (B) ∀e ∈ C1 : h1(e) = h2(ϕ(e)), and
(C) ∀e1, e2 ∈ C1 : ϕ(e1) <2 ϕ(e2) =⇒ e1 <1 e2. If there exists a sufficient
embedding ϕ from C1 to C2, we write C1 �ϕ

S C2. We write C1 �S C2 if there
exists sufficient embedding ϕ, such that C1 �ϕ

S C2.

A sufficient embedding is a witness to language inclusion between config-
urations. The reason to work with two kinds of embeddings is that we can
construct necessary embeddings using a backtracking algorithm. It is easy to
check whether a necessary embedding is also sufficient, whereas it is not straight
forward to construct a sufficient embedding from scratch.

Example 3. Consider the configurations in Fig. 4b and c. The mapping ϕ1 : ⊥ �→
⊥; e7 �→ e4; e8 �→ e5; e9 �→ e6 is a sufficient embedding. The only non-trivial
causality to check is e4 <2 e5, for which we have ϕ−1

1 (e4) = e7 <3 e8 = ϕ−1
1 (e5).

In contrast, ϕ2 : ⊥ �→ ⊥; e7 �→ e6; e8 �→ e5; e9 �→ e4 is not a sufficient embedding,
since in this case e4 <2 e5 and ϕ−1

1 (e4) = e9 ≮3 e8 = ϕ−1
1 (e5). This shows that

the language of the event structure in Fig. 4c is included in language of the event
structure in Fig. 4b.

The following Lemma provides a connection between sufficient embeddings
and language inclusion. In case there exists a sufficient embedding, the respective
languages are included.

Lemma 2. Let C1 and C2 be maximal configurations of FLES E1 and E2 respec-
tively. If C1 �S C2 then L(C1) ⊆ L(C2).
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The converse statement is not always true. To see this, consider a configura-
tion C1 = {⊥, e1, e

′
1} such that e1 and e′

1 are concurrent and h(e1) = h(e′
1) = A.

Furthermore, consider a configuration C2 = {⊥, e2, e
′
2} such that e2 and e′

2 are
sequential and h(e2) = h(e′

2) = A. Clearly, the configurations have the same
language {AA}. However, there is no sufficient embedding from C1 to C2.

Our decision algorithm performs an additional refinement step in such a case
and concludes language inclusion only after checking the refined configurations.
In the appendix of [14], we provide a proof that in the case of unique labels, the
converse statement also holds.

Splits. Our language inclusion decision algorithm continuously performs config-
uration refinement steps that we call splits. To be precise, we refine the causality
relation of its corresponding event structure.

Definition 6 (Split). Let C be a configuration of event structure 〈E,<,#, h〉
and let e1, e2 ∈ C be two concurrent events. The split of C on e1 before e2 is
Ce1<e2 := 〈C, (< ∪{(e1, e2)})+�C×C ,∅, h�C〉 where .+ denotes transitive closure.

A split on two concurrent events e1 and e2 simply adds an additional ordering
constraint between the two events. In our algorithm, we always split both ways,
creating two new configurations that order concurrent events e1 and e2 one way
and the other. Note that in order to avoid duplication of events, in practice splits
can be implemented via additional, optional causalities on the event structure.
The following lemma states that splitting a configuration in both ways produces
two new configurations with languages whose union is the original language.

Lemma 3. Let C be a configuration and e1, e2 ∈ C be concurrent events,
then L(C) = L(Ce1<e2) ∪ L(Ce2<e1). If h is injective (labels are unique), then
L(Ce1<e2) ∩ L(Ce2<e1) = ∅.

The following lemma guarantees progress of our algorithm. It states that
if we find a necessary, but not sufficient embedding, there are events that can
be used to split C1. The goal is that after a finite number of splits a sufficient
embedding can be established.

Lemma 4. Let C1, C2 be maximal configuration of FLES E1 respectively E2.
Furthermore, let C1 ∼ϕ

N C2 and C1 ⊏̸
ϕ
S C2. Then there are concurrent events

e, e′ ∈ C1, such that ϕ(e) <2 ϕ(e′).

4.1 Language Inclusion Decision Algorithm

We present our decision algorithm in Algorithm 1. Inputs to the algorithm are
finite, labeled prime event structures E1 and E2.

The first step of the algorithm is to calculate the maximal configurations
of the event structure, which can be done with the algorithm described in [38].
For every maximal configuration C1 of E1, the function Check() attempts to
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Algorithm 1. Language inclusion decision algorithm
Input: Finite, labeled Prime Event Structures E1 and E2

Result: L(E1) ⊆ L(E2)
1 {C1

1 , . . . , Cn
1 }, {C1

2 , . . . , Cm
2 } ← all maximal configurations of E1 respectively E2

2 return
∧

C1∈{C1
1 ,...,Cn

1 } Check(C1, {C1
2 , . . . , Cm

2 })
3 Function Check(C1, {Ci1

2 , . . . , C
il
2 }):

Result: L(C1) ⊆
⋃l

j=1 L(C
ij
2 )

4 Candidates ← {Ci1
2 , . . . , C

il
2 }

5 foreach C2 ∈ {Ci1
2 , . . . , C

il
2 } do

6 if ∃ϕ : C1 → C2. C1 ∼ϕ
N C2 then

7 return SuffOrSplit(C1, C2, ϕ, Candidates)
8 else
9 Candidates ← Candidates ∖ {C2}

10 return false � counter-example C1

11 Function SuffOrSplit(C1, C2, ϕ, Candidates):
12 if C1 �ϕ

S C2 then
13 return true
14 Let e, e′ ∈ C1 be concurrent and ϕ(e) <2 ϕ(e′) � always exist (Lemma 4)
15 return SuffOrSplit(Ce<e′ , C2, ϕ, Candidates) ∧

Check(Ce′<e, Candidates)

show that L(C1) is a subset of L(E2). This is achieved by searching for sufficient
embeddings from (refined versions of) C1 to maximal configurations of E2.

In order to construct candidate sufficient embeddings, in Line 6 the algorithm
attempts to construct necessary embeddings, using Algorithm 2. In the following
line, function SuffOrSplit() checks whether a necessary embedding ϕ is also
sufficient. This can be done by checking ∀e ∈ C2 : ∀e′ ∈ dsucc(e) : ϕ−1(e) is not
concurrent with ϕ−1(e′). In case ϕ is not a sufficient embedding, such a pair of
events is guaranteed to exist by Lemma 4. For efficiency, this check can already
be done during construction of the necessary embedding.

In case ϕ is not sufficient, Lemma 4 guarantees the existence of a pair of con-
current events that can be split. The resulting split configurations are recursively
checked for language inclusion in Line 15. Lemma 4 guarantees us that ϕ is a
necessary embedding for one of the splits (say Ce<e′). Therefore, for Ce<e′ we do
not need to construct a new necessary embedding again, but can immediately
check whether ϕ is a sufficient embedding for Ce<e′ .

In case no necessary embedding can be found for some configuration C1 and
its candidates, according to Lemma 1, we can conclude L(C1)∩L(E) = ∅, i.e. all
words in C1 are counter-examples to language inclusion. Once Line 10 is reached
we know that C1 does not share any word with any {C1

2 , . . . , Cm
2 }, therefore C1

is a counter-example to language inclusion.
The algorithm terminates, because the notions of necessary and sufficient

embedding collapse in case the configuration contains only a single trace, which
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Algorithm 2. ∼N decision algorithm
Input: Configurations C1, C2

Result: ϕ : C1 → C2 if C1 ∼ϕ
N C2, None otherwise

1 if ∃x ∈ X . |{e ∈ C1 | h1(e) = x}| 
= |{e ∈ C2 | h2(e) = x}| then
2 return false
3 return NEmbedding({⊥1}, {⊥1 �→ ⊥2})
4 NEmbedding(frontier , ϕ):

Input: frontier stack of events C1

Input: ϕ : C1 → C2 (partial mapping)
Result: ϕ : E1 → E2 if C1 ∼ϕ

N C2, None otherwise
5 if frontier = ∅ then
6 return ϕ
7 e ← frontier .pop()
8 foreach e′ ∈ dsuccEC1 (e) do � direct successors of e in C1

9 frontier .push(e′)
10 foreach e′′ ∈ C2 such that h1(e) = h2(e

′′) ∧ e′′ /∈ range(ϕ) do
11 ϕ′ ← ϕ ∪ {e �→ e′′}
12 if �e1, e2 ∈ E1. e1 <1 e2 ∧ ϕ′(e2) <2 ϕ′(e1) then � check for cycle
13 ϕ′′ ← NEmbedding(frontier , ϕ′)
14 if ϕ′′ 
= None then
15 return ϕ′′

16 return None

is the case when the causality relation is a total order on the events of the
configuration (see [14], Lemma 6).

As the algorithm recursively searches for sufficient embeddings, for efficiency,
we can reduce the set of candidate configurations, because in case there is no nec-
essary embedding between two configurations, there is clearly also no necessary
embedding between any of their split configurations.

We present the algorithm to construct necessary embeddings in Algorithm
2. Intuitively, the algorithm is a combined depth first search over the causality
relation, as well as the space of possible bijective, label-preserving mappings.

The algorithm starts by dismissing configurations that can never have a
necessary embedding because the number of events with the same label dif-
fers (Line 1). The actual embedding is established with the recursive function
NEmbedding(). The recursion maintains a frontier of events that are yet to be
explored and a partial mapping of already explored events. It ends if the frontier
becomes empty (Line 5). The exploration is done on C1 by adding the successors
of the current event e to the frontier (Line 8). Then for every event e′′ in C2

with the same label as e a mapping ϕ′ is created and a cycle check performed.
If this mapping does not introduce a cycle we recurs on it (Line 13). The first
valid (not None) mapping that is returned by a recursion is returned. If no such
mapping is found, then None is returned. The cycle check in Line 12 basically
checks if the two causality relations <1 and <2 are compatible for the mapped
events, in the sense that the events can be brought in an order that respects



Language Inclusion for Finite Prime Event Structures 327

both causality relations. The procedure can be implemented using any of the
well known cycle detection algorithms over the graph with nodes being events
of C1 and edges being causalities <1 ∪ <ϕ

2 .
The worst-case runtime of the decision algorithm is exponential in O(22n),

where n = |E1| + |E2|, which is not surprising for an algorithm solving a Πp
2

hard problem. There are two dominant factors of the exponential complexity.
First, the number of maximal configurations can be exponential in n and

Algorithm 1 potentially has to compare all pairs of maximal configurations.
The CCNFS benchmark in Sect. 5 is an example for an event structure with an
exponential number of maximal configurations in n.

Second, the number of mappings between configurations that need to be
considered as candidates for necessary embeddings can be exponential in n. That
is, algorithm Algorithm 2 has worst case runtime exponential in n. Note that for
a fixed mapping, the algorithm performs a linear search over the configuration
and the combined causality relation.

Note that the number of possible embeddings decreases with the number of
calls to Check and the size of maximal configurations decreases relative to n with
the number of maximal configurations. Therefore, the amortized runtime should
be much better than the worst case complexity.

4.2 Automaton Based Language Inclusion

We provide a language preserving encoding of event structures into non-
deterministic finite automata (NFA). The encoding allows us to compare our
algorithm to well researched language inclusion algorithms in our evaluation
(Sect. 5).

The encoding has a state for every configuration of the event structure. There
is a transition between two states, if the difference between the corresponding
configurations is just one event. The transition is labeled with the label of that
event. In essence, the encoding is an automaton representation of what is known
as the configuration structure of a prime event structure [19].

Definition 7 (Automaton Encoding). Let E = 〈E,<,#, h〉 be a finite prime
event structure with labels X . We define the non-deterministic finite automaton
AE = 〈QE , ΩE , δE , qE

0 , F E〉 as QE = {qE
C | C is a configuration of E}, ΩE = X ,

(qE
C1

, σ, qE
C2

) ∈ δE iff there is e ∈ E, such that C1 ∪ {e} = C2 and h(e) = σ,
qE
0 := qE

{⊥}, and F E = {qE
C | C is maximal}.

Lemma 5. Let E be a labeled, finite prime event structure, then L(E) = L(AE).

The provided encoding is not optimal in general due to conflicts and the fact
that events of prime event structures are caused in a unique way, which is a well
known caveat of prime event structures [43]. However, for the family of event
structures that consists of the ⊥ event and n concurrent events (c.f. the proof of
Theorem 5 in the appendix of [14]), our encoding contains exactly 2n +1 states,
which is one state more than the provably optimal NFA accepting the language
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of the event structure. Furthermore, in our experiments, we apply optimized
NFA reduction techniques [30] before checking language inclusion on automata.

Theorem 5. There is a family of event structures En with events En, such that
|En| = n+1, |L(En)| = n!, and |QE | = 2n +1. Every NFA A with L(A) = L(En)
has at least 2n states.

5 Application and Evaluation

Our motivation to investigate event structures and language inclusion was model-
based mutation testing. The goal of model-based testing (MBT) is to derive test-
cases from a model of a system. The model may, for example, be a UML state
machine and the test may be a sequence of inputs and outputs of the system.
The simplest way of obtaining such test cases would be to randomly explore
the state machine and record the produced input/output (IO) sequences. These
tests can then be run against an implementation at a later point.

Model-based mutation testing (MBMT) compares the original model to a
mutated version of it, where a mutation is a small change in the model, such as
removing or adding a transition. A test case is only generated if an observable
difference between the original and the mutated model can be witnessed. This
form of test case generation can be easily expressed using language inclusion
between the two versions of the system: The test is exactly the word that is a
member of the mutant, but not of the original.

The application of finite prime event structures to this problem is motivated
by three factors. Firstly, models often use concurrent state machine that syn-
chronize rarely. Secondly, mutation analysis on reactive models can be performed
by exploring models in bounded segments [13], where a bounded segment refers
to all events occurring between two consecutive inputs. These bounded segments
can be represented as finite event structures. Thirdly, it is desirable express inde-
pendence in test cases in order to produce minimal test suites that do not need
to list all variations of a test that differ only in terms of independent events.
Such test cases can be obtained as counter-examples to language inclusion, as
discussed in Sect. 4.

To this end, we implemented the presented prime event structure language
inclusion algorithm in the model-based mutation testing tool MoMuT [13].
MoMuT accepts models written as object-oriented action systems (OOAS). The
models can be understood as labeled transition systems, where labels are either
observable, controllable or hidden (ε). OOAS models can model highly con-
current systems. In order to construct test cases for such concurrent models
efficiently, we need to apply partial order reduction during model exploration.
In [38] a partial order reduction based algorithm for constructing labeled prime
event structures from transition systems is given. We implemented this algo-
rithm, using a static dependency relation based on variable reads and writes,
and use it during model exploration, obtaining finite labeled event structures
representing bounded segments of the model. Each segment corresponds to all



Language Inclusion for Finite Prime Event Structures 329

output or hidden transitions following some input until either a new input is
required by the model to progress further or the model is in a terminating state.
We operate on models that exclude infinite sequences of outputs or hidden tran-
sitions. Thus, the discussed segments are indeed bounded in our case.

The event structures constructed during partial order reduction are labeled
with (potentially hidden) transitions of the explored model. However, for muta-
tion analysis, we want to find observable differences between event structures
for given controllable inputs, in contrast to any difference in transition labels.
Therefore, in addition to using transition labels during partial order reduction,
we use projected, visible (input & output) labels and perform language inclusion
on the languages over the latter kind.

During model exploration, which is described in detail in [13], we construct
event structures EB of the original model and EA of mutants, representing
bounded segments (as described above) following the same sequence of inputs.
We perform language inclusion checks L(EA)⊆L(EB) using Algorithm 1 to decide
whether the corresponding mutant is killed by the sequence of inputs and a test
case can be produced.

In our experimental evaluation, we report measurements of these language
inclusion checks during test case generation on a sequence of benchmark models.
For comparison and in addition to event structure based language inclusion, we
perform language inclusion via automaton encoding, as described in Sect. 4.2. To
this end, we encode the produced event structures as NFAs and check language
inclusion using the tool RABIT [30].

5.1 Benchmarks and Results

We use the following benchmarks for our experimental evaluation. All benchmark
models, scripts to instantiate the models for any parameter value, and the version
of MoMuT used in the experiments can be found in the publicly available artifact
of this paper [15], which can be run with the virtual machine provided in [8].

– The Paxos (n,m, k) benchmark models the Paxos distributed consensus pro-
tocol [28] with n proposers, m acceptors, and k learners. The protocol specifies
how the different actors can exchange certain messages to achieve consensus
on some proposed value. The actions of the actors are largely independent of
each other, which introduces lots of concurrency to the model. Furthermore,
test cases extracted from our method should be interesting to concertize and
run against implementations of the Paxos algorithm.

– The Semaphore (n) benchmark models n threads that are synchronized by
a semaphore. Exactly n − 1 threads are allowed to enter and compute in a
critical section at the same time. The amount of parallelism of this model
is proportional to n. Furthermore, the model exhibits lots of conflicts, as all
operations on the semaphore are in conflict with each other.

– The ParSum (n) benchmark models a parallel summation algorithm. The
sequence 0, . . . , n2−1 is split into n equally sized chunks, which are summed
up concurrently. Then the partial results are summed up centrally when all
parallel threads are finished.
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Table 1. Benchmark results for language inclusion checks L(EA) ⊆ L(EB) respectively
L(AEA) ⊆ L(AEB ).

Name |EB | PC Inclusion Non-Incl. |AEB | Inclusion Non-Incl.

Time Num Time Num Time Num Time Num

Paxos (2, 3, 1) 80 4.1 – 0 4.1·103 65 23469 TO TO TO TO

Paxos (3, 6, 1) 716 4.1 – 0 4.0·103 94 TO TO TO TO TO

Semaphore (3) 9 1.2 – 0 23.8 78 5 – 0 324.0 78

Semaphore (11) 25 2.3 3.5 2 48.9 84 9 – 0 564.2 80

ParSum (3) 18 2.2 1.1 80 170.5 92 218 2.5·103 80 9.3·103 84

ParSum (5) 38 3.8 342.0 84 67.6 94 TO TO TO TO TO

ParSum (10) 123 8.2 – 0 12.6 23 TO TO TO TO TO

CCNFS (3) 15 1.7 3.9 88 1.2 88 9 262.7 88 610.9 88

CCNFS (6) 77 2.7 501.8 108 84.0 92 65 379.7 108 1.2·103 92

CCNFS (10) 1045 4.0 303·103 98 17·103 102 59050 TO TO TO TO

AllPar (10) 12 4.0 1.4 56 8.6 144 1025 10·103 56 82·103 144

AllPar (50) 52 17.3 3.2 44 93.3 156 TO TO TO TO TO

AllPar (500) 502 167.3 361.9 40 7.7·103 160 TO TO TO TO TO

Sharing (5, 20) 111 1.0 7.2 26 4.2 174 23 338.1 26 1.1·103 174

Sharing (50, 50) 2601 1.0 1.9·103 38 527.2 162 53 255.4 38 1.5·103 162

– The CCNFS (n) benchmark models a system with n events and unique
labels, such that the 2i′th event is in conflict exactly with the 2i+1′th event.
Every set of independent events induces an event resetting the state. This
benchmark is interesting, because its number of maximal configurations 2� n

2 	

(each configuration contains either 2i or 2i+1 for each i = 1 . . . �n
2 �) is expo-

nential in the number of events n. Due to the high number of maximal con-
figurations, this benchmark is challenging for our algorithm.

– The AllPar (n) benchmark models a system with n independent events and
unique labels. The benchmark is the ideal case for our algorithm, because
its event structure consists of only one maximal configuration with all events
in parallel. In contrast, the benchmark is a very bad case for NFA language
inclusion, as the smallest NFA to encode all permutations of n symbols is
exponential in n (Theorem 5).

– The Sharing (n,m) benchmark models a system that has n different pre-
fixes that all share the same suffix of length m. The benchmark particularly
exhibits the well known shortcoming of event structures not being able to
encode shared causes. The NFA is able to express the common suffix more
succinct in comparison to the event structure.

We present the results of our experimental evaluation in Table 1. For every
benchmark, we report measurements of language inclusion checks for the largest
bounded segment encountered during model exploration. As described above,
every such bounded segment corresponds to all output and hidden transitions
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following some input transition. We report measurements of event structure
based language inclusion L(EA) ⊆ L(EB) and automaton based language inclu-
sion L(AEA) ⊆ L(AEB ). We separate the results into the cases where language
inclusion holds (Inclusion) respectively does not hold (Non-Incl.). Column
|EB| shows the size of EB in terms of the number of its events. Column |AEB |
shows the size of AEB in terms of the number of its states. Columns Num show
the number of inclusion checks performed on the respective bounded segment
(which is the number of mutants relevant in the segment). Columns Time show
the average time for the inclusion checks in milliseconds. Finally, column PC
shows a measurement of the degree of concurrency. For a single configuration C,
the measurement is defined as |C|/maxe∈Cdepth(e) and we report the average
measurement of all maximal configurations in the respective event structure.

The reported time for language inclusion of event structures is the time for
calculation of the maximal configurations plus the time for the actual language
inclusion check. The reported time for language inclusion of automata is the time
for the language inclusion check on a pre-reduced automaton. The construction
and minimization of the NFAs is not included.

The results show that our language inclusion algorithm performs well on
models with a lot of concurrency, i.e. those with high ParCoeff. Furthermore,
the automaton translation clearly fails in cases with lots of concurrency that
are easy for our method (c.f. the AllPar benchmark). For these examples our
algorithm is very useful. This result is not surprising, since our method exploits
concurrency, whereas the NFA encoding does not include any notion of con-
currency. Nevertheless, the result demonstrates that the benefits of exploiting
concurrency with our method outweigh optimizations and fine-tuning of a well
established language inclusion algorithm that has no notion of concurrency.

However, as the Sharing benchmark shows, the inability of prime event
structures to encode shared causes of events is a limitation of the approach.
In contrast, the reduced automaton representation can be significantly more
compact than the event structure representation, rendering the automaton-based
language inclusion superior.

6 Related Work

Prime event structures are a widely used formalism to express concurrency of dis-
crete systems [43] that can be obtained from transition systems via the method
presented in [38], or its extended version in [34]. There are multiple other variants
of event structures, such as stable event structures [43] and flow event structures
[5]. Studying language inclusion for these event structure variants is interesting
future work.

Event structure containment based on causality and conflict refinement is
considered in [43,44]. However, as we demonstrate in our work, causality preser-
vation is not necessary for language inclusion. In [18,42] equivalence of event
structures under action refinement is investigated. This line of research is orthog-
onal to our approach, as it considers refinement of event structures, while we
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compare event structures that can be obtained in multiple different ways. More-
over, there is almost never language inclusion between an event structure and
the event structure with refined actions by design.

Model checking over particular types of event structures has been studied in
[36] for event structures labeled with atomic propositions and in [29] for event
structures labeled with trace languages. However, the proposed model-checking
methods are not based on language inclusion, which is one of the interesting
future directions for our research. Instead, formulas are directly interpreted over
the event structure.

Several formalisms to express concurrency of discrete systems have been pro-
posed and their relationships have been worked out in [45]. In particular, trace
languages and Petri nets are formalisms closely related to event structures, for
which languages and language related problems have been studied.

The theory of trace languages [31,32] studies closure of string languages
under independence relations. [6] presents an efficient method to show trace
language inclusion over languages defined by non-deterministic finite automata.
In [7] decidability results of rational trace languages are studied. In particular,
it is shown that language inclusion of rational (closed under union, concatena-
tion, and Kleene-star) trace languages is decidable if and only if the common
independence relation is transitive. Language membership for context free and
regular trace languages was shown to be NP-complete in [3]. In [4], comparison
of concurrent programs via trace languages is studied. The suggested trace lan-
guages abstract the program executions by considering statement ordering, as
well as read and write accesses on a subset of relevant variables and synchroniza-
tion primitives. Trace language refinement is then reduced to assertion checking.
Interestingly, for Boolean programs this refinement check has complexity ΔP

2

for bounded abstraction precision and ΣP
2 for unbounded abstraction precision.

In contrast to arbitrary event labels considered in our work, the authors of [4]
consider refinement on languages of a more concrete program and dependency
model.

Our problem is orthogonal to trace language inclusion in three aspects.
Firstly, we do not assume the independence relations of the compared systems
to be equal. Secondly, we do not require the independence relation to be defined
over labels. That is, we can study systems where two labels occur concurrently in
one place, while the labels occur sequentially in another. This can occur because
different events can have the same label. Finally, in contrast to automata, which
are often used to define trace languages, event structures are acyclic. Therefore,
event structures are less expressive than automata. However, the price of the
additional expressivity is that trace language inclusion over automata is unde-
cidable in general [2], whereas our problem is decidable.

Petri nets are a formalism for concurrent systems that is closely related to
event structures [35]. A manifold of complexity questions have been studied for
Petri nets, see [10,11,25] for surveys. In particular, language related problems
of labeled Petri nets have been studied, see [17,37] for an overview over the
types of considered languages and complexity results. Since Petri nets typically
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describe languages on infinite words and many Petri net related problems are
undecidable, complexity results on language related Petri nets problems focus
on establishing the boundary between decidability and undecidability. Language
inclusion and equivalence were shown to be undecidable for a wide range of types
of Petri nets [11,21,24]. Language inclusion is decidable for languages of firing
of regular Petri nets [40] and certain types of deterministic Petri nets [17]. In
contrast, language membership is decidable for a large class of Petri nets and
language types [22,37]. Similarly to trace languages, the additional expressivity
of Petri nets over finite prime event structures manifests in increased complexity
of solving language inclusion. However, as we demonstrated with our application,
finite prime event structures are sufficient for interesting practical problems.

Finite asynchronous automata [12] express concurrent systems succinctly in
the same spirit as prime event structures. Furthermore, asynchronous automata
accept trace languages [47]. However, to the best of our knowledge, there is
neither an algorithm, nor a tool to check language inclusion for (loop free) finite
asynchronous automata.

Language inclusion of regular languages is a classic problem of computer
science [16,23,33,39]. Algorithms for the problem are well studied and highly
optimized [1,6,30]. However, as we demonstrate in the evaluation section, our
procedure can outperform these algorithms in the realm of highly concurrent
systems. Adapting methods for classic automaton based language inclusions to
event structures is interesting future work.

7 Conclusion and Future Work

In this paper we showed that the language inclusion problem between two event
structures is computationally hard, but our application and evaluation show
that there are numerous benchmarks where the use of event structures and
their comparison is beneficial. However, the experiments also manifested a well
known shortcoming of prime event structures, namely their inability to succinctly
encode shared causes of events.

Interesting future work includes adapting our language inclusion method to
different variants of event structures that do not suffer this problem. Further-
more, we want to study whether our language inclusion procedure can be used to
perform model checking over event structures. Finally, we want to further study
the test cases generated for the Paxos distributed consensus algorithm. Concer-
tizing the resulting test cases and running them against an implementation of
the protocol might yield interesting results.
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Abstract. We investigate the satisfaction of specifications in Prompt
Linear Temporal Logic (Prompt-LTL) by concurrent systems. Prompt-
LTL is an extension of LTL that allows to specify parametric bounds
on the satisfaction of eventualities, thus adding a quantitative aspect
to the specification language. We establish a connection between
bounded fairness, bounded stutter equivalence, and the satisfaction of
Prompt-LTL\X formulas. Based on this connection, we prove the first
cutoff results for different classes of systems with a parametric number
of components and quantitative specifications, thereby identifying previ-
ously unknown decidable fragments of the parameterized model checking
problem.

1 Introduction

Concurrent systems are notoriously hard to get correct, and are therefore a
promising application area for formal methods like model checking or synthesis.
However, these methods usually give correctness guarantees only for systems
with a given, fixed number of components, and the state explosion problem
prevents us from using them for systems with a large number of components.
To ensure that desired properties hold for systems with a very large or even
an arbitrary number of components, methods for parameterized model checking
and synthesis have been devised.

While parameterized model checking is undecidable even for simple safety
properties and systems with uniform finite-state components [33], there exist
a number of methods that decide the problem for specific classes of sys-
tems [2,10,12–15,17,20,29], some of which have been collected in surveys of
the literature recently [8,16]. Additionally, there are semi-decision procedures
that are successful in many interesting cases [9,11,25,28,30]. However, most of
these approaches only support safety properties, or their support for progress
or liveness properties is limited, e.g., because global fairness properties are not
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considered and cannot be expressed in the supported logic (cp. Außerlechner
et al. [5]).

In this paper, we investigate cases in which we can guarantee that a sys-
tem with an arbitrary number of components satisfies strong liveness proper-
ties, including a quantitative version of liveness called promptness. The idea of
promptness is that a desired event should not only happen at some time in
the future, but there should exist a bound on the time that can pass before
it happens. We consider specifications in Prompt-LTL, an extension of LTL
with an operator that expresses prompt eventualities [27], i.e., the logic puts a
symbolic bound on the satisfaction of the eventuality, and the model checking
problem asks if there is a value for this symbolic bound such that the property
is guaranteed to be satisfied with respect to this value. In many settings, adding
promptness comes for free in terms of asymptotic complexity [27], e.g., model
checking and synthesis [24].1 Hence, here we study parameterized model check-
ing for Prompt-LTL and show that in many cases adding promptness is also free
for this problem.

More precisely, as is common in the analysis of concurrent systems, we
abstract concurrency by an interleaving semantics and consider the satisfac-
tion of a specification up to stuttering. Therefore, we limit our specifications to
Prompt-LTL\X, an extension of the stutter-insensitive logic LTL\X that does
not have the next-time operator. Determining satisfaction of Prompt-LTL\X
specifications by concurrent systems brings new challenges and has not been
investigated in detail before.

initr

tr

∀¬w

w

tw

∀¬{w, r}

Motivating Example. For instance, con-
sider the reader-writer protocol on the right
which models access to shared data between
processes. If a process wants to “read”, it
enters the state tr (“try-read”) that has
a direct transition to the reading state r.
However, this transition is guarded by ∀¬w,
which stands for the set of all states except
w, the “writing” state. That is, the transition is only enabled if no other pro-
cess is currently in state w. Likewise, if a process wants to enter w it has to go
through tw, but the transition to w is enabled only if no other process is reading
or writing.

For such systems, previous results [5,14] provide cutoff results for parame-
terized verification of properties from LTL\X, e.g.,

∀i.G ((tri → Fri) ∧ (twi → Fwi)) ,

1 Prompt-LTL can be seen as a fragment of parametric LTL, a logic introduced by Alur
et al. [1]. However, since most decision problems for parametric LTL, including model
checking, can be reduced to those for Prompt-LTL, we can restrict our attention to
the simpler logic.
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In this paper we investigate whether the same cutoffs still hold if we consider
specifications in Prompt-LTL\X, e.g., if we substitute the LTL eventually opera-
tor F above with the prompt-eventually operator Fp, while imposing a bounded
fairness assumption on the scheduler.

Contributions. As a first step, we note that Prompt-LTL\X is not a stutter-
insensitive logic, since unbounded stuttering could invalidate a promptness prop-
erty. This leads us to define the notion of bounded stutter equivalence, and proving
that Prompt-LTL\X is bounded stutter insensitive.

This observation is then used in an investigation of existing approaches that
solve parameterized model checking by the cutoff method, which reduces prob-
lems from systems with an arbitrary number of components to systems with a
fixed number of components. More precisely, these approaches prove that for
every trace in a large system, a stutter-equivalent trace in the cutoff system
exists, and vice versa. We show that in many cases, modifications of these con-
structions allow us to obtain traces that are bounded stutter equivalent, and
therefore the cutoff results extend to specifications in Prompt-LTL\X. The types
of systems for which we prove these results include guarded protocols, as intro-
duced by Emerson and Kahlon [14], and token-passing systems, as introduced
by Emerson and Namjoshi [13] for uni-directional rings, and by Clarke et al. [10]
for arbitrary topologies. Parameterized model checking for both of these system
classes has recently been further investigated [2,3,5,22,31,32], but thus far not
in a context that includes promptness properties. Due to space constraints, we
omit detailed proofs in some cases. They can be found in the full version of the
paper [23].

2 Prompt-LTL\X and Bounded Stutter Equivalence

We assume that the reader is aware of standard notions such as finite-state
transition systems and linear temporal logic (LTL) [6].

We consider concurrent systems that are represented as an interleaving com-
position of finite-state transition systems, possibly with synchronizing transitions
where multiple processes take a step at the same time. In such systems, a process
may stay in the same state for many global transitions while other processes are
moving. From the perspective of that process, these are stuttering steps.

Stuttering is a well-known phenomenon, and temporal languages that include
the next-time operator X are stutter sensitive: they can require some atomic
proposition to hold at the next moment in time, and the insertion of a stuttering
step may change whether the formula is satisfied or not. On the other hand,
LTL \ X, which does not have the X operator, is stutter-insensitive: two words
that only differ in stuttering steps cannot be distinguished by the logic [6].

In the following, we introduce Prompt-LTL\X, an extension of LTL\X, and
investigate its properties with respect to stuttering.
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2.1 Prompt-LTL\X
Let AP be the set of atomic propositions. The syntax of Prompt-LTL\X formu-
las over AP is given by the following grammar:

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | Fpϕ | ϕUϕ | ϕRϕ,where a ∈ AP

The semantics of Prompt-LTL\X formulas is defined over infinite words w =
w0w1 . . . ∈ (2AP )ω, positions i ∈ N, and bounds k ∈ N. The semantics of the
prompt-eventually operator Fp is defined as follows:

(w, i, k) |= Fpϕ iff there exists j such that i ≤ j ≤ i + k and (w, j, k) |= ϕ.

All other operators ignore the bound k and have the same semantics as in
LTL, moreover we define F and G in terms of U and R as usual.

2.2 Prompt-LTL and Stuttering

Our first observation is that Prompt-LTL\X is stutter sensitive: to satisfy the
formula ϕ = GFpq with respect to a bound k, q has to appear at least once in
every k steps. Given a word w that satisfies ϕ for some bound k, we can construct
a word that does not satisfy ϕ for any bound k by introducing an increasing (and
unbounded) number of stuttering steps between every two appearances of q. In
the following, we show that Prompt-LTL\X is stutter insensitive if and only if
there is a bound on the number of consecutive stuttering steps.

Bounded Stutter Equivalence. A finite word w ∈ (2AP )+ is a block if ∃α ⊆
AP such that w = α|w|. Two blocks w,w′ ∈ (2AP )+ are d-compatible if ∃α ⊆ AP
such that w = α|w|, w′ = α|w′|, |w| ≤ d · |w′| and |w′| ≤ d · |w|. Two infinite
sequences of blocks w0w1w2 . . ., w′

0w
′
1w

′
2 . . . are d-compatible if wi, w

′
i are d-

compatible for all i.
Two words w,w′ ∈ (2AP )ω are d-stutter equivalent, denoted w ≡d w′, if they

can be written as d-compatible sequences of blocks. They are bounded stutter
equivalent if they are d-stutter equivalent for some d. We denote by ŵ a sequence
of blocks that corresponds to a word w.

Given an infinite sequence of blocks ŵ = w0, w1, w2 . . ., let N ŵ
i =

{∑i−1
l=0 |wl|, . . . ,

∑i−1
l=0 |wl| + |wi| − 1} be the set of positions of the ith block.

Given a position n, there is a unique i such that n ∈ N ŵ
i .

To prove that Prompt-LTL\X is bounded stutter insensitive, i.e., it cannot
distinguish two words that are bounded stutter equivalent, we define a function
that maps between positions in two d-compatible sequences of blocks: given two
infinite d-stutter equivalent words w,w′ such that ŵ, ŵ′ are d-compatible, define
the function f : N → 2N where: f(j) = N ŵ′

i ⇔ j ∈ N ŵ
i . Note that ∀j′ ∈ f(j)

we have w(j) = w′(j′), where w(i) denotes the ith symbol in w. For an infinite
word w, let w[i,∞) denote its suffix starting at position i, and w[i : j] its infix
starting at i and ending at j. Then we can state the following.
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Remark 1. Given two words w and w′, if w ≡d w′, then ∀j ∈ N ∀j′ ∈ f(j) :
w[j,∞) ≡d w′[j′,∞).

Now, we can state our first theorem.

Theorem 1 (Prompt-LTL\X is Bounded Stutter Insensitive). Let w,w′

be d-stutter equivalent words, ϕ a Prompt-LTL\X formula, and f as defined
above. Then ∀i, k ∈ N:

(w, i, k) |= ϕ ⇒ ∀j ∈ f(i) : (w′, j, d · k) |= ϕ

Proof. The proof works inductively over the structure of ϕ. Let ŵ = w0, w1, . . .
and ŵ′ = w′

0, w
′
1, . . . be two d-compatible sequences of w and w′. We denote

by ni,mi the number of elements inside Nw
i , Nw′

i respectively. We consider two
cases, the other cases are trivial or similar to Case 2:

Case 1: ϕ = Fpϕ. (w, i, k) |= Fpϕ ⇔ ∃e, x : i ≤ e ≤ i + k, e ∈ N ŵ
x , and

(w, e, k) |= ϕ where (
∑x−1

l=0 nl) ≤ e < (
∑x

l=0 nl). Then by induction hypothesis
we have: ∀j ∈ f(e)(w′, j, d · k) |= ϕ. Let s be the smallest position in f(e), then
s =

∑x−1
l=0 ml. There exists y ∈ N s.t. i ∈ N ŵ

y then s =
∑y−1

l=0 ml +
∑x−1

l=y ml ≤
∑y−1

l=0 ml +
∑x−1

l=y nl.d ≤ ∑y−1
l=0 ml + d.(

∑x−1
l=y nl) ≤ ∑y−1

l=0 ml + k · d (note that
i ∈ N ŵ

y and (w, i, k) |= Fpϕ). As
∑y−1

l=0 ml is the smallest position in f(i), then
∀j ∈ f(i) : (w′, j, d · k) |= Fpϕ.

Case 2: ϕ = ϕ1Uϕ2. (w, i, k) |= ϕ1Uϕ2 ⇔ ∃j ≥ i : (w, j, k) |= ϕ2 and ∀e <
j : (w, e, k) |= ϕ1. Then, by induction hypothesis we have: ∀e < j ∀l ∈ f(e) :
(w′, l, d · k) |= ϕ1 and ∀l ∈ f(j) : (w′, l, d · k) |= ϕ2, therefore ∀j ∈ f(i) :
(w′, j, d · k) |= ϕ1Uϕ2. ��

Our later proofs will be based on the existence of counterexamples to a given
property, and will use the following consequence of Theorem 1.

Corollary 1. Let w,w′ be d-stutter equivalent words, ϕ a Prompt-LTL\X for-
mula, and f as defined above. Then ∀k ∈ N:

(w, i, k) �|= ϕ ⇒ ∀j ∈ f(i) : (w′, j, k/d) �|= ϕ

3 Guarded Protocols and Parameterized Model Checking

In the following, we introduce a system model for concurrent systems, called
guarded protocols. However, we will see that some of our results are of interest
for other classes of concurrent and parameterized systems, e.g., the token-passing
systems that we investigate in Sect. 6.
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3.1 System Model: Guarded Protocols

We consider systems of the form A‖Bn, consisting of one copy of a process
template A and n copies of a process template B, in an interleaving parallel
composition. We distinguish objects that belong to different templates by index-
ing them with the template. E.g., for process template U ∈ {A,B}, QU is the
set of states of U . For this section, fix a finite set of states Q = QA ∪̇ QB and a
positive integer n, and let G = {∃,∀} × 2Q be the set of guards.

Processes. A process template is a transition system U = (QU , initU , δU ) where

– QU ⊆ Q is a finite set of states including the initial state initU ,
– δU ⊆ QU × G × QU is a guarded transition relation.

Guarded Protocols. The semantics of A‖Bn is given by the transition system
(S, inits,Δ), where2

– S = QA × (QB)n is the set of (global) states,
– initS = (initA, initB , . . . , initB) is the global initial state, and
– Δ ⊆ S×S is the global transition relation. Δ will be defined by local guarded

transitions of the process templates A and B in the following.

We distinguish different copies of process template B in A‖Bn by subscript,
and each Bi is called a B-process. We denote the set {A,B1, . . . , Bn} as P, and
a process in P as p. For a global state s ∈ S and p ∈ P, let the local state of p
in s be the projection of s onto that process, denoted s(p).

Then a local transition (q, g, q′) of process p ∈ P is enabled in global state s
if s(p) = q and either

– g = (∃, G) and ∃p′ ∈ P \ {p} : s(p′) ∈ G, or
– g = (∀, G) and ∀p′ ∈ P \ {p} : s(p′) ∈ G.

Finally, (s, s′) ∈ Δ if there exists p ∈ P such that (s(p), g, s′(p)) ∈ δp is
enabled in s, and s(p′) = s′(p′) for all p′ ∈ P \ {p}. We say that the transition
(s, s′) is based on the local transition (s(p), g, s′(p)) of p.

Disjunctive and Conjunctive Systems. We distinguish disjunctive and con-
junctive systems, as defined by Emerson and Kahlon [14]. In a disjunctive process
template, every guard is of the form (∃, G) for some G ⊆ Q. In a conjunctive pro-
cess template, every guard is of the form (∀, G), and {initA, initB} ⊆ G, i.e., ini-
tial states act as neutral states for all transitions. A disjunctive (conjuctive) sys-
tem consists of only disjunctive (conjunctive) process templates. For conjunctive

2 By similar arguments as in Emerson and Kahlon [14], our results can be extended
to systems with an arbitrary (but fixed) number of process templates. The same
holds for open process templates that can receive inputs from an environment, as
considered by Außerlechner et al. [5].
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systems we additionally assume that processes are initializing, i.e., any process
that moves infinitely often visits its initial state infinitely often.3

Runs. A path of a system A‖Bn is a sequence x = s0s1 . . . of global states such
that for all i < |x| there is a transition (si, si+1) ∈ Δ based on a local transition
of some process p ∈ P. We say that p moves at moment i. A path can be finite
or infinite, and a maximal path is a path that cannot be extended, i.e., it is either
infinite or ends in a global state where no local transition is enabled, also called
a deadlock. A run is a maximal path starting in initS . We write x ∈ A‖Bn to
denote that x is a run of A‖Bn.

Given a path x = s0s1 . . . and a process p, the local path of p in x is
the projection x(p) = s0(p)s1(p) . . . of x onto local states of p. It is a local
run of p if x is a run. Additionally we denote by x(p1, . . . , pk) the projection
s0(p1, . . . , pk)s1(p1, . . . , pk) . . . of x onto the processes p1, . . . , pk ∈ P.

Fairness. We say a process p is enabled in global state s if at least one of its
transitions is enabled in s, otherwise it is disabled. Then, an infinite run x of a
system A‖Bn is

– strongly fair if for every process p, if p is enabled infinitely often, then p moves
infinitely often.

– unconditionally fair, denoted u-fair(x), if every process moves infinitely often.
– globally b-bounded fair, denoted b-gfair(x), for some b ∈ N, if

∀p ∈ P ∀m ∈ N ∃j ∈ N : m ≤ j ≤ m + b and p moves at moment j.

– locally b-bounded fair for E ⊆ P, denoted b-lfair(x,E), if it is unconditionally
fair and

∀p ∈ E ∀m ∈ N ∃j ∈ N : m ≤ j ≤ m + b and p moves at moment j.

Bounded-fair System. We consider systems that keep track of bounded fair-
ness explicitly by running in parallel to A‖Bn one counter for each process. In
a step of the system where process p moves, the counter of p is reset, and all
other counters are incremented. If one of the counters exceeds the bound b, the
counter goes into a failure state from which no transition is enabled. We call
such a system a bounded-fair system, and denote it A‖bB

n.
A path of a bounded-fair system A‖bB

n is given as x = (s0, b0)(s1, b1) . . ., and
extends a path of A‖Bn by valuations bi ∈ {0, . . . , b}n+1 of the counters. Note
that a run (i.e., a maximal path) of A‖bB

n is finite iff either it is deadlocked
(in which case also its projection to a run of A‖Bn is deadlocked) or a failure
state is reached. Thus, the projection of all infinite runs of A‖bB

n to A‖Bn are
exactly the globally b-bounded fair runs of A‖Bn.

3 This restriction has already been considered by Außerlechner et al. [5], and was
necessary to support global fairness assumptions.
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3.2 Parameterized Model Checking and Cutoffs

Prompt-LTL\X Specifications. Given a system A‖Bn, we consider specifi-
cations over AP = QA ∪ (QB × {1, . . . , n}), i.e., states of processes are used as
atomic propositions. For i1, . . . , ic ∈ {1, . . . , n}, we write ϕ(A,Bi1 , . . . , Bic

) for
a formula that contains only atomic propositions from QA ∪ (QB ×{i1, . . . , ic}).

In the absence of fairness considerations, we say that A‖Bn satisfies ϕ if

∃k ∈ N ∀x ∈ A‖Bn : (x, 0, k) |= ϕ.

We say that A‖Bn satisfies ϕ(A,B1, . . . , Bc) under global bounded fairness,
written A‖Bn |=gb ϕ(A,B1, . . . , Bc), if

∀b ∈ N ∃k ∈ N ∀x ∈ A‖Bn : b-gfair(x) ⇒ (x, 0, k) |= ϕ(A,B1, . . . , Bc).

Finally, for local bounded fairness we usually require bounded fairness for
all processes that appear in the formula ϕ(A,B1, . . . , Bc). Thus, we say that
A‖Bn satisfies ϕ(A,B1, . . . , Bc) under local bounded fairness, written A‖Bn |=lb

ϕ(A,B1, . . . , Bc), if

∀b ∈ N ∃k ∈ N ∀x ∈ A‖Bn : b-lfair(x, {1, . . . , c}) ⇒ (x, 0, k) |= ϕ(A,B1, . . . , Bc).

Parameterized Specifications. A parameterized specification is a Prompt-
LTL\X formula with quantification over the indices of atomic propositions. A
h-indexed formula is of the form ∀i1, . . . ,∀ih.ϕ(A,Bi1 , . . . , Bih

). Let f ∈ {gb, lb},
then for given n ≥ h,

A‖Bn |=f ∀i1, . . .,∀ih.ϕ(A,Bi1 , . . ., Bih
)

⇔

∀j1 �= . . . �= jh ∈ {1, . . . , n} : A‖Bn |=f ϕ(A,Bj1 , . . ., Bjh
).

By symmetry of guarded protocols, this is equivalent (cp. [14]) to A‖Bn |=f

ϕ(A,B1, . . . , Bh). The latter formula is denoted by ϕ(A,B(h)), and we often use
it instead of the original ∀i1, . . . ,∀ih.ϕ(A,Bi1 , ..., Bih

).

(Parameterized) Model Checking Problems. For n ∈ N, a specification
ϕ(A,B(h)) with n ≥ h, and f ∈ {gb, lb}:

– the model checking problem is to decide whether A‖Bn |=f ϕ(A,B(h)),
– the parameterized model checking problem (PMCP) is to decide whether ∀m ≥

n : A‖Bm |=f ϕ(A,B(h)).

Cutoffs and Decidability. We define cutoffs with respect to a class of systems
(either disjunctive or conjunctive), a class of process templates P , e.g., tem-
plates of bounded size, and a class of properties, e.g. satisfaction of h-indexed
Prompt-LTL\X formulas under a given fairness notion.
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A cutoff for a given class of systems with processes from P , a fairness notion
f ∈ {lb, gb} and a set of Prompt-LTL\X formulas Φ is a number c ∈ N such that

∀A,B ∈ P ∀ϕ ∈ Φ ∀n ≥ c : A‖Bn |=f ϕ ⇔ A‖Bc |=f ϕ.

Note that the existence of a cutoff implies that the PMCP is decidable iff
the model checking problem for the cutoff system A‖Bc is decidable. Decid-
ability of model checking for finite transition systems with specifications in
Prompt-LTL\X and bounded fairness follows from the fact that bounded fair-
ness can be expressed in Prompt-LTL\X, and from results on decidability of
assume-guarantee model checking for Prompt-LTL (cf. Kupferman et al. [27]
and Faymonville and Zimmermann [19][Lemmas 8, 9]).

4 Cutoffs for Disjunctive Systems

In this section, we prove cutoff results for disjunctive systems under bounded
fairness and stutter-insensitive specifications with or without promptness. To
this end, in Sect. 4.1 we prove two lemmas that show how to simulate, up to
bounded stuttering, local runs from a system of given size n in a smaller or larger
disjunctive system. We then use these two lemmas in Subsects. 4.2 and 4.3 to
obtain cutoffs for specifications in LTL\X and Prompt-LTL\X, respectively.

Moreover for the proofs of these two lemmas we utilize the same construction
techniques that were used in [4,5,14], but in addition we analyze their effects
on bounded fairness and bounded stutter equivalence. Note that we will only
consider formulas of the form ϕ(A,B(1)), however, as in previous work [4,14],
our results extend to specifications over an arbitrary number h of B-processes.

Table 1 summarizes the results of this section: for specifications in LTL\X and
Prompt-LTL\X we obtain a cutoff that depends on the size of process template
B, as well as on the number h of quantified index variables. The table states
generalizations of Theorems 2 and 3 from the 2-indexed case to the h-indexed
case for arbitrary h ∈ N. For one of the cases we were not able to obtain a cutoff
result (as explained in the full version [23]).

r

∃nw

nr

∃nw

Fig. 1.
Reader

w

∃r

nw

Fig. 2.
Writer

Simple Reader-Writer Example. Consider the
disjunctive system W‖Rn, where W is a writer pro-
cess (Fig. 2), and R is a reader process (Fig. 1). Let
the specification ϕ be ∀i G(w → Fp[(w ∧ nri)]), i.e.,
if process W is in state w, then eventually all the
R processes will be in state nr, while W is in w.
According to Table 1, the cutoff for checking whether
W‖Rn |=lb ϕ is 5.
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Table 1. Cutoffs for disjunctive systems

Local bounded fairness Global bounded fairness

h-indexed LTL\X 2|QB | + h 2|QB | + h

h-indexed Prompt-LTL\X 2|QB | + h -

4.1 Simulation up to Bounded Stutter Equivalence

Definitions. Fix a run x = x0x1... of the disjunctive system A‖Bn. Our con-
structions are based on the following definitions, where q ∈ QB :

– appearsBi(q) is the set of all moments in x where process Bi is in state q:
appearsBi(q) = {m ∈ N | xm(Bi) = q}.

– appears(q) is the set of all moments in x where at least one B-process is in
state q: appears(q) = {m ∈ N | ∃i ∈ {1, . . . , n} : xm(Bi) = q}.

– fq is the first moment in x where q appears: fq = min(appears(q)), and
firstq ∈ {1, . . . , n} is the index of a B-process where q appears first, i.e., with
xfq

(Bfirstq ) = q.
– if appears(q) is finite, then lq = max(appears(q)) is the last moment where q

appears, and lastq ∈ {1, . . . , n} is a process index with xlq (Blastq ) = q

– let Visitedinf = {q ∈ QB | ∃Bi ∈ {B2, . . . , Bn} : appearsBi(q) is infinite}
and Visitedfin = {q ∈ QB | ∀Bi ∈ {B2, . . . , Bn} : appearsBi(q) is finite}.

– Set(xi) is the set of all state that are visited by some process at moment i:
Set(xi) = {q|q ∈ (QA ∪ QB) and ∃p ∈ P : xi(p) = q}.

Our first lemma states that any behavior of processes A and B1 in a system
A‖Bn can be simulated up to bounded stuttering in a system A‖Bn+1. This
type of lemma is called a monotonicity lemma.

Lemma 1 (Monotonicity Lemma for Bounded Stutter Equivalence).
Let A,B be disjunctive process templates, n ≥ 2, b ∈ N and x ∈ A‖Bn with
b-lfair(x, {A,B1}). Then there exists y ∈ A‖Bn+1 with 2b-lfair(y, {A,B1}) and
x(A,B1) ≡2 y(A,B1).

Proof. Let x be a run of A‖Bn where b-lfair(x, {A,B1}). Let y(A) = x(A) and
y(Bj) = x(Bj) for all Bj ∈ {B1, . . . , Bn} and let the new process Bn+1 copy one
of the B-processes of A‖Bn, i.e., y(Bn+1) = x(Bi) for some i ∈ {1, . . . , n}. Copy-
ing a local run violates the interleaving semantics as two processes will be moving
at the same time. To solve this problem, we split every transition (yl, yl+1) where
the interleaving semantics is violated by Bi and Bn+1 executing local transitions
(qi, g, q′

i) and (qn+1, g, q′
n+1), respectively. To do this, replace (yl, yl+1) with two

consecutive transitions (yl, u)(u, yl+1), where (yl, u) is based on the local transi-
tion (qi, g, q′

i) and (u, yl+1) is based on the local transition (qn+1, g, q′
n+1). Note

that both of these local transitions are enabled in the constructed run y since
the transition (qi, g, q′

i) is enabled in the original run x. Moreover, run y inher-
its unconditional fairness from x. Finally, it is easy to see that for every local
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transition of process Bi in x, establishing interleaving semantics has added one
additional stuttering step to every local run in y including processes A and B1.
Therefore we have that 2b-lfair(y, {A,B1}) and x(A,B1) ≡2 y(A,B1). ��
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Reader-Writer Example. Consider
the run x of the system W ||R2 in
Fig. 3 where W and R are as defined
in Figs. 1 and 2. We construct a run y
of the system W ||R3 (see Fig. 4) such
that x(W,R1) ≡2 y(W,R1). The local
run of process R3 is obtained by (i)
copying the run of R2, and (ii) estab-
lishing the interleaving semantics as
in the proof of Lemma 1.

As mentioned in the above construction, if a local run of x is d-bounded fair
for some d ∈ N, then it will be 2d-bounded fair in the constructed run y. This
observation leads to the following corollary.

Corollary 2. Let A, B be disjunctive process templates, n ≥ 2, b ∈ N and
x ∈ A‖Bn with b-gfair(x). Then there exists y ∈ A‖Bn+1 with 2b-gfair(y) and
x(A,B1) ≡2 y(A,B1).

Our second lemma is a bounding lemma which states that any behavior of pro-
cesses A and B1 in a disjunctive system A‖Bn can be simulated up to bounded
stuttering in a system A‖Bc, if c is chosen to be sufficiently large and n ≥ c.

Lemma 2 (Bounding Lemma for Bounded Stutter Equivalence). Let
A,B be disjunctive process templates, c = 2|QB |+1, n ≥ c, b ∈ N and x ∈ A‖Bn

with b-lfair(x, {A,B1}). Then there exists y ∈ A‖Bc with (b · c)-lfair(y, {A,B1})
and x(A,B1) ≡c y(A,B1).

Proof. Let x be a run of A‖Bn where b-lfair(x, {A,B1}). We show how to con-
struct a run y of A‖Bc where (b · c)-lfair(y, {A,B1}) and x(A,B1) ≡c y(A,B1).

The basic idea is that, in order to ensure that all transitions in y are enabled
at the time they are taken, we “flood” every state q that is visited in x with
one or more processes that enter q and stay there. Additionally, we need to take
care of fairness, which requires a more complicated construction that allows
every such process to move infinitely often. Therefore, some processes have to
leave the state they have flooded (if that state only appears finitely often in the
original run), and every process needs to eventually enter a loop that allows it
to move infinitely often. In the following, we construct such runs formally.
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Construction:

1. (Flooding with evacuation): To every q ∈ Visitedfin(x), devote one process
Biq

that copies Bfirstq until the time fq, then stutters in q until time lq where
it starts copying Blastq

forever. Formally:

y(Biq
) = x(Bfirstq )[0 : fq].(q)lq−fq .x(Blastq

)[lq + 1 : ∞]

2. (Flooding with fair extension): For every q ∈ Visitedinf(x), let Binf
q be a

process that visits q infinitely often in x. We devote to q two processes Biq1

and Biq2
that both copy Bfirstq until the time fq, and then stutter in q until

Binf
q reaches q for the first time. After that, let Biq1

and Biq2
copy Binf

q in
turns as follows: Biq1

copies Binf
q until it reaches q while Biq2

stutters in q,
then Biq2

copies Binf
q until it reaches q while Biq1

stutters in q and so on.
3. Establish interleaving semantics as in the proof of Lemma 1.

After steps 1 and 2, the following property holds: at any time t we have
that Set(xt) ⊆ Set(yt), which guarantees that every transition along the run is
enabled. Note that establishing the interleaving semantics preserves this prop-
erty.

Finally, establishing interleaving semantics could introduce additional stut-
tering steps to the local runs of processes A and B1 whenever steps 1 or 2 of the
construction use the same local run from x more than once (e.g. if ∃qi, qj ∈ QB

with firstqi
= firstqj

). A local run of x can be used in the above construction at
most 2|QB | times, therefore we have x(A,B1) ≡c y(A,B1). Moreover, since the
upper bound of consecutive stuttering steps in A or B1 is (2|QB | + 1) · b, we get
(b · c)-lfair(y, {A,B1}). ��

Reader-Writer Example. Consider again the reader-writer system in Figs. 1
and 2. For any run x of W‖Rn, using the construction above we obtain a run y
of W‖R5 (or even a smaller system) with x(W,R1) ≡5 y(W,R1).

4.2 Cutoffs for Specifications in LTL\X Under Bounded Fairness

The PMCP for disjunctive systems with specifications from LTL\X has been
considered in several previous works [5,14,22]. In the following we extend these
results by proving cutoff results under bounded fairness.

Theorem 2 (Cutoff for LTL\X with Global Bounded Fairness). Let A,
B be disjunctive process templates, c = 2|QB | + 1, n ≥ c, and ϕ(A,B(1)) a
specification with ϕ ∈ LTL\X. Then:

(
∀b ∈ N : A‖bB

n |= ϕ(A,B(1))
)

⇔
(
∀b′ ∈ N : A‖b′Bc |= ϕ(A,B(1))

)

We prove the theorem by proving two lemmas, one for each direction of the
equivalence.
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Lemma 3 (Monotonicity Lemma for LTL\X). Let A, B be disjunctive pro-
cess templates, n ≥ 1, and ϕ(A,B(1)) a specification with ϕ ∈ LTL\X. Then:

(
∃b ∈ N : A‖bB

n �|= ϕ(A,B(1))
)

⇒
(
∃b′ ∈ N : A‖b′Bn+1 �|= ϕ(A,B(1))

)

Proof. Assume ∃b ∈ N : A‖bB
n �|= ϕ(A,B(1)). Then there exists a run x of A‖Bn

where x is b-gfair(x) and x �|= ϕ(A,B(1)). According to Corollary 2 there exists
y of A‖Bn+1 where 2b-gfair(y) and x(A,B1) ≡2 y(A,B1), which guarantees that
y �|= ϕ(A,B(1)). ��

For the corresponding bounding lemma, our construction is based on that of
Lemma 2. However, the local runs resulting from that construction might stutter
in some local states for an unbounded time (e.g. local runs devoted for states in
VisitedfinF ). To bound stuttering in such constructions, given an arbitrary run of
a system A‖Bn, we first show that whenever there exists a bounded-fair run that
violates a specification in LTL\X, then there also exists an ultimately periodic
run with the same property.

A (non-deterministic) Büchi automaton is a tuple A = (Σ,QA, δ, a0, α),
where Σ is a finite alphabet, QA is a finite set of states, δ : QA × Σ → 2QA

is a transition function, a0 ∈ QA is an initial state, and α ⊆ QA is a Büchi
acceptance condition. Given an LTL specification ϕ, we denote by Aϕ the Büchi
automaton that accepts exactly all words that satisfy ϕ [34].

Lemma 4 (Ultimately Periodic Counter-Example). Let ϕ ∈ LTL and
b ∈ N. If A‖bB

n �|= ϕ then there exists a run x = uvω of A‖Bn with b-gfair(x),
and x �|= ϕ, where u, v are finite paths, and |u|, |v| ≤ 2 · |QA| · |QB |n ·bn+1 · |QA¬ϕ

|.
Now, we have all the ingredients to prove the bounding lemma for the case

of LTL\X specifications and (global) bounded fairness.

Lemma 5 (Bounding Lemma for LTL\X). Let A, B be disjunctive process
templates, c = 2|QB |+1, n ≥ c, and ϕ(A,B(1)) a specification with ϕ ∈ LTL\X.
Then:

(
∃b ∈ N : A‖bB

n �|= ϕ(A,B(1))
)

⇒
(
∃b′ ∈ N : A‖b′Bc �|= ϕ(A,B(1))

)

Proof. Assume ∃b ∈ N : A‖bB
n �|= ϕ(A,B(1)). Then by Lemma 4 there is a run

x = uvω of A‖Bn, where b-gfair(x) and |u|, |v| ≤ 2 · |QA| · |QB |n · bn+1 · |QA¬ϕ
|.

According to Lemma 2, we can construct out of x a run y of A‖Bc where
b′′-lfair(y, {A,B1}), and x(A,B1) ≡d y(A,B1) with d = 2|QB |+1 and b′′ = b ·d.
The latter guarantees that y �|= ϕ(A,B(1)). We still need to show that b′-gfair(y)
for some b′ ∈ N. As x = uvω, we observe that the construction of Lemma 2
ensures the following:

– The number of consecutive stuttering steps per process introduced in step 1
is bounded by |u|.
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– The number of consecutive stuttering steps introduced in step 2 for a given
process is bounded by |u| + 2|v| because Binf

q needs up to |u| + |v| steps to
reach q, and one of the processes has to wait for up to |v| additional global
steps before it can move.

In addition to the stuttering steps introduced in step 1 and 2, if more than
one of the constructed processes simulate the same local run of x then estab-
lishing the interleaving semantics would be required, which in turn introduces
additional stuttering steps. Therefore the upper bound of consecutive stutter-
ing steps introduced in step 3 of the construction is (2|QB | + 1) · b. Therefore
b′-gfair(y) where b′ = (2|QB | + 1) · b + 6 · |QA| · |QB |n · bn+1 · |QA¬ϕ

|. ��
Remark 2. With a more complex construction that uses a stutter-insensitive
automaton A [18] to represent the specification and considers runs of the com-
position of system and automaton, we can obtain a much smaller b′ that is also
independent of n. This is based on the observation that if in y some process is
consecutively stuttering for more than |A‖Bc × A| steps, then there must be a
repetition of states from the product in this time, and we can simply cut the
infix between the repeating states from the constructed run y.

4.3 Cutoffs for Specifications in Prompt-LTL\X
LTL specifications cannot enforce boundedness of the time that elapses before a
liveness property is satisfied. Prompt-LTL solves this problem by introducing the
prompt-eventually operator explained in Sect. 2.1. Since we consider concurrent
asynchronous systems, the satisfaction of a Prompt-LTL formula can also depend
on the scheduling of processes. If scheduling can introduce unbounded delays
for a process, then promptness can in general not be guaranteed. Hence, non-
trivial Prompt-LTL specifications can only be satisfied under the assumption of
bounded fairness, and therefore this is the only case we consider here.

Theorem 3 (Cutoff for Prompt-LTL\X with Local Bounded Fairness).
Let A, B be disjunctive process templates, c = 2|QB | + 1 n ≥ c, and ϕ(A,B(1))
a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bc |=lb ϕ(A,B(1)) ⇔ A‖Bn |=lb ϕ(A,B(1)).

Again, we prove the theorem by proving a monotonicity and a bounding lemma.
Note that A‖Bn �|=lb ϕ(A,B(1)) iff

∃b ∈ N ∀k ∈ N ∃x ∈ A‖Bn:b-lfair(x, {A,B(1)}) ∧ (x, 0, k) �|= ϕ(A,B(1)).

Lemma 6 (Monotonicity Lemma for Prompt-LTL\X). Let A, B be dis-
junctive process templates, n ≥ 2, and ϕ(A,B(1)) a specification with ϕ ∈
Prompt-LTL\X. Then:

A‖Bn �|=lb ϕ(A,B(1)) ⇒ A‖Bn+1 �|=lb ϕ(A,B(1)).
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Proof. Assume A‖Bn �|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N

there is a run x of A‖Bn where b-lfair(x, {A,B(1)}), and (x, 0, 2·k) �|= ϕ(A,B(1)).
Then according to Lemma 1 there exists y of A‖Bn+1 where 2b-lfair(y, {A,B(1)})
and x(A,B1) ≡2 y(A,B1), which guarantees, according to Corollary 1, that
(y, 0, k) �|= ϕ(A,B(1)). As a consequence there exists b ∈ N such that ∀k ∈ N

there is a run y of A‖Bc where 2b-lfair(y, {A,B(1)}) and (y, 0, k) �|= ϕ(A,B(1)),
thus A‖Bc �|=lb ϕ(A,B(1)). ��

Using the same argument of the above proof but by using Corollary 2 instead
of Lemma 1 to construct the globally bounded fair counter example, we obtain
the following:

Corollary 3 Let A, B be disjunctive process templates, n ≥ 2, and ϕ(A,B(1))
a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn �|=gb ϕ(A,B(1)) ⇒ A‖Bn+1 �|=gb ϕ(A,B(1)).

Lemma 7 (Bounding Lemma for Prompt-LTL\X). Let A, B be disjunc-
tive process templates, c = 2|QB | + 1, n ≥ c, and ϕ(A,B(1)) a specification with
ϕ ∈ Prompt-LTL\X. Then:

A‖Bn �|=lb ϕ(A,B(1)) ⇒ A‖Bc �|=lb ϕ(A,B(1)).

Proof. Assume A‖Bn �|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N

there is a run x of A‖Bn where b-lfair(x, {A,B(1)}) and (x, 0, d ·k) �|= ϕ(A,B(1))
with d = (2|QB |+1). According to Lemma 2 we can construct for every such x a
run y of A‖Bc where (d · b)-lfair(y, {A,B(1)}), and x(A,B1) ≡d y(A,B1), which
guarantees that (y, 0, k) �|= ϕ(A,B(1)) (see Corollary 1). Thus, there exists b ∈ N

such that ∀k ∈ N there is a run y of A‖Bc where (d · b)-lfair(y, {A,B(1)}) and
(y, 0, k) �|= ϕ(A,B(1)), thus A‖Bc �|=lb ϕ(A,B(1)). ��

5 Cutoffs for Conjunctive Systems

In this section we investigate cutoff results for conjunctive systems under
bounded fairness and specifications in Prompt-LTL\X. Table 2 summarizes the
results of this section, as generalizations of Theorems 4 and 5 to h-indexed spec-
ifications. Note that for results marked with a ∗ we require processes to be
bounded initializing, i.e., that every cycle in the process template contains the
initial state.4

5.1 Cutoffs Under Local Bounded Fairness

Theorem 4 (Cutoff for Prompt-LTL\X with Local Bounded Fairness).
Let A,B be conjunctive process templates, n ≥ 2, and ϕ(A,B(1)) a specification
with ϕ ∈ Prompt-LTL\X. Then:

A‖B2 |=lb ϕ(A,B(1)) ⇔ A‖Bn |=lb ϕ(A,B(1)).
4 This is only slightly more restrictive than the assumption that they are initializing,

as stated in the definition of conjunctive systems in Sect. 3.1.
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Table 2. Cutoffs for conjunctive systems

Local bounded fairness Global bounded fairness

h-indexed LTL\X h + 1 h + 1∗

h-indexed Prompt-LTL\X h + 1 h + 1∗

We prove the theorem by proving two lemmas, one for each direction of the
equivalence. Note that A‖Bn �|=lb ϕ(A,B(1)) iff ∃b ∈ N ∀k ∈ N ∃x ∈ A‖Bn :
b-gfair(x) ∧ (x, 0, k) �|= ϕ(A,B(1)).

Lemma 8 (Monotonicity Lemma, Prompt-LTL\X with Local
Bounded Fairness). Let A,B be conjunctive process templates, n ≥ 2, and
ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn �|=lb ϕ(A,B(1)) ⇒ A‖Bn+1 �|=lb ϕ(A,B(1)).

Proof. Assume A‖Bn �|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N

there is a run x of A‖Bn where b-gfair(x) and (x, 0, k) �|= ϕ(A,B(1)). For every
such x, we construct a run y of A‖Bn+1 with b-lfair(y) and (y, 0, k) �|= ϕ(A,B(1)).
Let y(A) = x(A) and y(Bj) = x(Bj) for all Bj ∈ {B1, . . . , Bn} and let the
new process Bn+1 “share” a local run x(Bi) with an existing process Bi of
A‖Bn+1 in the following way: one process stutters in initB while the other
makes transitions from x(Bi), and whenever x(Bi) enters initB the roles are
reversed. Since this changes the behavior of Bi, Bi cannot be a process that is
mentioned in the formula, i.e. we need n ≥ 2 for a formula ϕ(A,B(1)). Then
we have b-lfair(y, {A,B1}) as the run of Bn+1 inherits the unconditional fairness
behavior from the local run of the process Bi in x. Note that it is not guaranteed
that the local runs y(Bi) and y(Bn+1) are bounded fair as the time between two
occurrences of initB in x(Bi) is not bounded. Moreover we have x(A,B1) ≡1

y(A,B1), which according to Corollary 1 implies (y(A,B1), k) �|= ϕ(A,B(1)). ��
Lemma 9 (Bounding Lemma, Prompt-LTL\X, Local Bounded Fair-
ness). Let A,B be conjunctive process templates, n ≥ 1, and ϕ(A,B(1)) a spec-
ification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn �|=lb ϕ(A,B(1)) ⇒ A‖B1 �|=lb ϕ(A,B(1)).

Proof. Assume A‖Bn �|=lb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N

there is a run x of A‖Bn where b-gfair(x), and (x, 0, b · k) �|= ϕ(A,B(1)). For
every such x, we construct a run y in the cutoff system A‖B1 by copying the
local runs of processes A and B1 in x and deleting stuttering steps. It is easy
to see that b-gfair(y) then we have x(A,B1) ≡b y(A,B1), and by Corollary 1
(y(A,B1), k) �|= ϕ(A,B(1)). ��

Note that this is the same proof construction as in Außerlechner et al. [5],
and we simply observe that this construction preserves bounded fairness.
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5.2 Cutoffs Under Global Bounded Fairness

As mentioned before, to obtain a result that preserves global bounded fairness,
we need to restrict process template B to be bounded initializing.

Theorem 5 (Cutoff for Prompt-LTL\X with Global Bounded Fair-
ness). Let A,B be conjunctive process templates, where B is bounded initializing,
n ≥ 2, and ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖B2 |=gb ϕ(A,B(1)) ⇔ A‖Bn |=gb ϕ(A,B(1)).

Again, the theorem can be separated into two lemmas.

Lemma 10 (Monotonicity Lemma, Prompt-LTL\X, Global Bounded
Fairness). Let A,B be conjunctive process templates, where B is bounded ini-
tializing, n ≥ 2, and ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn �|=gb ϕ(A,B(1)) ⇒ A‖Bn+1 �|=gb ϕ(A,B(1)).

Proof. Assume A‖Bn �|=gb ϕ(A,B(1)). Then there exists b ∈ N such that ∀k ∈ N

there is a run x of A‖Bn where b-gfair(x), and (x, 0, (b+ |QB |) ·k) �|= ϕ(A,B(1)).
For every such x, we construct a run y of A‖Bn+1 in the same way we did in
the proof of Lemma 8. Then we have b′-gfair(y) with b′ = b+ |QB | as initB is on
every cycle of the process template B. Moreover we have x(A,B1) ≡1 y(A,B1)
which according to Corollary 1 implies that (y(A,B1), k) �|= ϕ(A,B(1)). ��
Lemma 11 (Bounding Lemma, Prompt-LTL\X, Global Bounded Fair-
ness). Let A,B be conjunctive process templates, where B is bounded initializ-
ing, n ≥ 1, and ϕ(A,B(1)) a specification with ϕ ∈ Prompt-LTL\X. Then:

A‖Bn �|=gb ϕ(A,B(1)) ⇒ A‖B1 �|=gb ϕ(A,B(1)).

Proof. Under the given assumptions, we can observe that the construction from
Lemma 9 also preserves global bounded fairness.

6 Token Passing Systems

In this section, we first introduce a system model for token passing systems and
then show how to obtain cutoff results for this class of systems.

6.1 System Model

Processes. A token passing process is a transition system T = (QT , IT , ΣT , δ)
where

– QT = QT × {0, 1} is a finite set of states. QT is a finite non-empty set. The
boolean component {0, 1} indicates the possession of the token.

– IT is the set of initial states with IT ∩ (QT ×{0}) �= ∅ and IT ∩ (QT ×{1}) �= ∅.
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– ΣT = {ε, rcv, snd} is the set of actions, where ε is an asynchronous action,
and {rcv, snd} are the actions to receive and send the token.

– δT = QT × ΣT × QT is a transition relation, such that ((q, b), a, (q′, b′)) ∈ δT

iff all of the following hold:
• a = ε ⇒ b = b′.
• a = snd ⇒ b = 1 and b′ = 0
• a = rcv ⇒ b = 0 and b′ = 1

Token Passing System. Let G = (V,E) be a finite directed graph without
self loops where V = {1, . . . , n} is the set of vertices, and E ⊆ V × V is the
set of edges. A token passing system Tn

G is a concurrent system containing n
instances of process T where the only synchronization between the processes
is the sending/receiving of a token according to the graph G. Formally, Tn

G =
(S, initS ,Δ) with:

– S = (QT )n.
– initS = {s ∈ (IT )n such that exactly one process holds the token},
– Δ ⊆ S × S such that ((q1, . . . , qn), (q′

1, . . . , q
′
n)) ∈ Δ iff:

• Asynchronous Transition. ∃i ∈ V such that (qi, ε, q
′
i) ∈ δTi

, and ∀j �= i
we have qj = q′

j .
• Synchronous Transition. ∃(i, j) ∈ E such that (qi, snd, q′

i) ∈ δTi
,

(qj , rcv, q′
j) ∈ δTj

, and ∀z ∈ V \ {i, j} we have qz = q′
z.

Runs. A configuration of a system Tn
G is a tuple (s, ac) where s ∈ S, and either

ac = ai with a ∈ ΣT , and i ∈ V is a process index, or ac = (sndi, rcvj) where
i, j ∈ V are two process indices with i �= j. A run is an infinite sequence of
configurations x = (s0, ac0)(s1, ac1) . . . where s0 ∈ initS and si+1 results from
executing action aci in si. Additionally we denote by x(i, . . . , j) the projection
(s0(i, . . . , j), ac0(i, . . . , j))(s1(i, . . . , j), ac1(i, . . . , j)) . . . where se(i, . . . , j) is the
projection of se on the local states of (Ti, . . . , Tj) and

ac(i, . . . , j) =

⎧
⎨

⎩

⊥ if ac = am and m �∈ {i, . . . , j}
⊥ if ac = (sndm, rcvn) and m,n �∈ {i, . . . , j}
ac otherwise

Bounded Fairness. A run x of a token passing system Tn
G is b-gfair(x) if for

every moment m and every process Ti, Ti receives the token at least once between
moments m and m + b.

Cutoffs for Complex Networks. In the presence of different network topolo-
gies, represented by the graph G, we define a cutoff to be a bound on the size of
G that is sufficient to decide the PMCP. Note that, in order to obtain a decision
procedure for the PMCP, we not only need to know the size of the graphs, but
also which graphs of this size we need to investigate. This is straightforward if
the graph always falls into a simple class, such as rings, cliques, or stars, but is
more challenging if the graph can become more complex with increasing size.
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6.2 Cutoff Results for Token Passing Systems

Table 3 summarizes the results of this section, generalizing Theorem 6 to the
case of h-indexed specifications. Similar to previous sections, the specifications
are over states of processes. The results for local bounded fairness follow from
the results for global bounded fairness.

To prove the results of this section, we need some additional definitions.

Table 3. Cutoff results for token passing systems

Local bounded fairness Global bounded fairness

h-indexed LTL\X 2h 2h

h-indexed Prompt-LTL\X 2h 2h

Connectivity Vector [10]. Given two indices i, j ∈ V in a finite directed
graph G, we define the connectivity vector v(G, i, j) = (u1, u2, u3, u4, u5, u6)
as follows:

– u1 = 1 if there is a non-empty path from i to i that does not contain j. u1 = 0
otherwise.

– u2 = 1 if there is a path from i to j via vertices different from i and j. u2 = 0
otherwise.

– u3 = 1 if there is a direct edge from i to j. u3 = 0 otherwise.
– u4, u5, u6 are defined like u1, u2, u3, respectively where i is replaced by j and

vice versa.

Immediately Sends. Given a token passing process T , we fix two local states
qsnd and qrcv, such that there is (i) a local path qinit, . . . , qrcv where qinit ∈
IT ∩ (QT × {0}), (ii) a local path qrcv, . . . , qsnd that starts with a receive action,
and (iii) a local path qsnd, . . . , qrcv that starts with a send action.

When constructing a local run for a process Ti that is currently in local state
qrcv, we say that Ti immediately sends the token if and only if:

1. Ti executes consecutively all the actions on a simple path qrcv, . . . , qsnd, then
sends the token, and then executes consecutively all the actions on a simple
path qsnd, . . . , qrcv.

2. All other processes remain idle until Ti reaches qrcv.

Note that, when Ti immediately sends the token, it executes at most |QT | actions,
since the two paths cannot share any states except qrcv and qsnd.

Theorem 6 (Cutoff for Prompt-LTL\X). Let Tn
G be a token-passing system,

g, h ∈ V , and ϕ(Tg, Th) a specification with ϕ ∈ Prompt-LTL\X. Then there
exists a system T 4

G′ with G′ = (V ′, E′) and i, j ∈ V ′ such that v(G, g, h) =
v(G′, i, j), and

Tn
G |=gb ϕ(Tg, Th) ⇔ T 4

G′ |=gb ϕ(Ti, Tj).



356 S. Jacobs et al.

We prove the theorem by proving two lemmas, one for each direction of
the equivalence. Note that Tn

G �|=gb ϕ(Tg, Th) iff ∃b ∈ N ∀k ∈ N ∃x ∈ Tn
G :

b-gfair(x) ∧ (x, 0, k) �|= ϕ(Tg, Th).

Lemma 12 (Monotonicity Lemma). Let Tn
G be a token-passing system with

n ≥ 3 and g, h ∈ V , and ϕ(Tg, Th) a specification with ϕ ∈ Prompt-LTL\X.
Then there exists a system Tn+1

G′ with G′ = (V ′, E′) and i, j ∈ V ′ such that
v(G, g, h) = v(G′, i, j) and

Tn
G �|=gb ϕ(Tg, Th) ⇒ Tn+1

G′ �|=gb ϕ(Ti, Tj).

Proof. Let a be a vertex of G with a �∈ {g, h}. Then we construct G′ from G as
follows: Let V ′ = V ∪ {n + 1}, and E′ = (E ∪ {(n + 1,m)|(a,m) ∈ E for some
m ∈ V } ∪ {(a, n + 1)}) \ {(a,m)|(a,m) ∈ E for some m ∈ V }, i.e. we copy all
the outgoing edges of a to the vertex n + 1, and replace all the outgoing edges
of a by one outgoing edge to n + 1.

Assume Tn
G �|=gb ϕ(Tg, Th). Then there exists b ∈ N such that ∀k′ ∈ N

there is a run x of Tn
G where b-gfair(x), and (x, 0, |QT | · k′) �|= ϕ(Tg, Th). Let

b′ = b+(b−n+2) · |QT |, and d = |QT |+1. We will construct for every such run
x a run y of Tn+1

G′ where b′-gfair(y), and x(Tg, Th) ≡d y(Ti, Tj) which guarantees
that (y, 0, k′) �|= ϕ(Ti, Tj) (see Corollary 1).

Construction. The construction is such that we keep the local paths of the n
existing processes up to bounded stuttering, and we add a process Tn+1 that
always immediately sends the token after receiving it, with qrcv, qsnd and the
corresponding paths as defined above. In the following, as a short-hand nota-
tion, if s = (q1, . . . , qn) is a global state of Tn

G and q ∈ QT , we write (s, q) for
(q1, . . . , qn, q).

Let x = (s0, ac0)(s1, ac1) . . . and y′ = ((s0, q
rcv), ac0)((s1, q

rcv), ac1) . . ..
Note that y′ is a sequence of configurations of Tn+1

G′ , but not a run. To
obtain a run, first let y′′ = ((s0, q

init), ε) . . . ((s0, q
rcv), ac0)((s1, q

rcv), ac1) . . ..
Finally, replace every occurrence of a pair of consecutive configurations
((s, qrcv), (snda, rcvz)), ((s′, qrcv), ac′), where s, s′ ∈ Qn

T
, z ∈ V, ac′ ∈ Σ, with the

sequence ((s, qrcv), (snda, rcvn+1)) . . . ((s, qsnd), (sndn+1, rcvz)) . . . ((s′, qrcv),
ac′).

In other words, instead of sending the token to Tz, Ta sends the token to
Tn+1, and Tn+1 sends the token immediately to Tz. Furthermore, in x between
moments t and t+b, Ta can send the token at most b−n+1 times, and whenever
Tn+1 receives the token, it takes at most |QT | steps before reaching qrcv again.
Finally, note that the number of steps Tn+1 takes to reach qrcv for the first time
is also bounded by |QT |. Therefore we have b′-gfair(y) and x(Tg, Th) ≡d y(Ti, Tj)
(as b′ ≤ b · d) which by Corollary 1 implies that (y, 0, k′) �|= ϕ(Ti, Tj). ��
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Lemma 13 (Bounding Lemma). Let Tn
G be a system with n ≥ 4 and g, h ∈

V , and ϕ(Tg, Th) a specification with ϕ ∈ Prompt-LTL\X. Then there exists a
system T 4

G′ with G′ = (V ′, E′) and i, j ∈ V ′ such that v(G, g, h) = v(G′, i, j) and

Tn
G �|=gb ϕ(Tg, Th) ⇒ T 4

G′ �|=gb ϕ(Ti, Tj).

Proof (Proof idea). First, note that the existence of G′ and i, j ∈ V ′ with
v(G, g, h) = v(G′, i, j) follows directly from Proposition 1 in Clarke et al. [10].
As usual, assuming that Tn

G �|=gb ϕ(Tg, Th), we need to construct counterexample
runs of T 4

G′ for some b′ ∈ N and all k′ ∈ N.
The construction is based on the same ideas as in the proof of Lemma 12, with

the following modifications: (i) instead of keeping all local runs of a run x ∈ Tn
G,

we only keep the local runs of Tg and Th (now assigned to Ti and Tj), (ii) instead
of constructing one local run for the new process, we now construct local runs for
two new processes Tk and Tl (basically, each of them is responsible for passing the
token to Ti or Tj , respectively), and (iii) the details of the construction of these
runs depend on the connectivity vector v(G, g, h), which essentially determines
which of the new processes holds the token when neither Ti nor Tj have it.

As usual, the construction ensures that y is globally bounded fair and that
y(Ti, Tj) ≡d x(Tg, Th) for some d, which by Corollary 1 implies that (y, 0, k′) �|=
ϕ(Ti, Tj). ��

7 Conclusions

We have investigated the behavior of concurrent systems with respect to prompt-
ness properties specified in Prompt-LTL\X. Our first important observation is
that Prompt-LTL\X is not stutter insensitive, so the standard notion of stutter
equivalence is insufficient to compare traces of concurrent systems if we are inter-
ested in promptness. Based on this, we have defined bounded stutter equivalence,
and have shown that Prompt-LTL\X is bounded stutter insensitive.

We have shown how this allows us to obtain cutoff results for guarded pro-
tocols and token-passing systems, and have obtained cutoffs for Prompt-LTL\X
(with locally or globally bounded fairness) that are the same as those that were
previously shown for LTL\X (with unbounded fairness). This implies that, for
the cases where we do obtain cutoffs, the PMCP for Prompt-LTL\X has the
same asymptotic complexity as the PMCP for LTL\X.

One case that we investigated remains open: disjunctive systems with global
bounded fairness. In future work, we will try to solve this open problem, and
investigate whether other cutoff results in the literature can also be lifted from
LTL\X to Prompt-LTL\X.

Finally, we note that together with methods for distributed synthesis from
Prompt-LTL\X specifications, our cutoff results enable the synthesis of param-
eterized systems based on the parameterized synthesis approach [21] that has
been used to solve challenging synthesis benchmarks by reducing them to sys-
tems with a small number of components [7,26].
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Abstract. Linear arithmetic with stars, LIA�, is an extension of Pres-
burger arithmetic that allows forming indefinite summations over val-
ues that satisfy a formula. It has found uses in decision procedures for
multi-sets and for vector addition systems. LIA� formulas can be trans-
lated back into Presburger arithmetic, but with non-trivial space over-
head. In this paper we develop a decision procedure for LIA� that checks
satisfiability of LIA� formulas. By refining on-demand under and over-
approximations of LIA� formulas, it can avoid the space overhead that is
integral to previous approaches. We have implemented our procedure in a
prototype and report on encouraging results that suggest that LIA� for-
mulas can be checked for satisfiability without computing a prohibitively
large equivalent Presburger formula.

1 Introduction

Decision procedures for Presburger arithmetic, also known as linear integer arith-
metic, LIA, are fundamental to many uses of SMT solvers. LIA is a first-order
theory of integers that includes addition and subtraction, but does not include
multiplication between variables. Reasoning about linear integer arithmetic is
widely used in verification. Furthermore, there are several decidable theories for
which the satisfiability problem reduces to reasoning in LIA [13,16]. Yet, LIA is
a mild subset of the highly undecidable Peano arithmetic.

In this paper, we pursue an extension of LIA called LIA�. LIA� extends
LIA by admitting predicates of the form x ∈ {y | F}�, where F is a LIA (or
in the nested case, a LIA�) formula. The set of x that satisfy the formula are
sums of values that satisfy F , thus x =

∑n
i=0 vi, for some n ≥ 0 and such that

F (vi) for each vi. We describe an efficient algorithm, also empirically tested in
practice, for reasoning about LIA�. To our knowledge it is the first available
approach for solving LIA� without requiring eagerly computing a semilinear set
representation explicitly or using a large template as suggested in [17]. Our algo-
rithm maintains under- and over-approximations of a star formula in the form
of LIA formulas. The approximations are refined iteratively until they converge
c© Springer Nature Switzerland AG 2020
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LIA� formulas: ϕ ::= F1 ∧ x1 ∈ {x2 | F2}�

such that dim(x1) = dim(x2) and free-vars(F2) ⊆ x2

LIA formulas:
F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F1 | ∃x. F | ∀x. F
A ::= T1 ≤ T2 | T1 = T2
T ::= x | C | T1 + T2 | C · T1 | ite(F, T1, T2)

terminals: x - integer variable; C - integer constant

Fig. 1. Presburger Arithmetic and an extension with the Star Operator.

to the actual solution: the under-approximation may determine satisfiability,
while the over-approximation may determine unsatisfiability. Technically, the
under-approximation is weakened by extending an underapproximate semilinear
representation of the formula, while the over-approximation is strengthened via
interpolation exploiting a characterization of the star operator as a solution to
a set of Constraint Horn Clauses (CHCs). In the limit, the algorithm creates a
semilinear set representation of a LIA formula, but only if it is unable to deter-
mine satisfiability using an approximation. The algorithm we present considers
the class of formulas studied in [17]. They involve only a single star formula in a
conjunction. Handling these formulas suffices for an evaluation based on multi-
set formulas, as well as formulas from the more specialized theory of Boolean
Algebra over Presburger Arithmetic, BAPA [12].

We have also investigated how to handle full LIA� allowing an arbitrary nest-
ing of star operators with negations, other Boolean connectives and quantifiers.
Full LIA� extends the ∃LIA� fragment from [9], which does not admit alternating
negations and universal quantifiers with stars. The generalization, which we do
not describe in this paper, can be accomplished using a scheme that also works
with under- and over-approximations of each subformula. We plan to describe
this generalization in future work. While the lower bound complexity of ∃LIA�

is known [9], we do not know the lower bound complexity of full LIA�.

2 Linear Integer Arithmetic with the Star Operator

In this section we introduce LIA� formally. The definition of the LIA� logic
relies on the crucial new operator, the star operator, defined over a set of integer
vectors S, as follows:

S� �
{

n∑

i=1

si | ∀i.1 ≤ i ≤ n. si ∈ S

}

(1)

In other words, the set S� is a set of all linear combinations of vectors from
S. Implicitly, 0 ∈ S�, for every set S. Figure 1 contains the definition of the LIA�

logic. A LIA� formula is a conjunction of a LIA formula F1 and a star formula
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y

x

F2

F1

(a) Integer solutions of formulas F1 and
F2 lie within the shaded areas. Note that
the solution set for F1 is unbounded.

y

x

F2 F1

(b) The vector (6, 6) is a solution for
F1(x, y) ∧ F ∗

2 (x, y)

Fig. 2. An illustration of a LIA� formula F1(x, y) ∧ F ∗
2 (x, y), such that F1(x, y) ⇔

y + 2x ≥ 17 ∧ 6x − y ≤ 47 and F2(x, y) ⇔ 5x + 2y ≥ 17 ∧ 3x − y ≤ 8 ∧ 2x + 3y ≤ 20.

x1 ∈ {x2 | F2}� that states that the vector x1 is a linear combination of solution
vectors x2 of the LIA formula F2. General LIA� formulas allow arbitrary Boolean
combinations as well as nesting of the star operator.

Through the rest of the paper we often use ϕ�(x1), or simply ϕ�, as a short-
hand for x1 ∈ {x2 | ϕ}�.

Example 1. Consider a simple LIA� example given in Fig. 2. The solid lines indi-
cate borders within which lie integer solutions of each formula. As it is clear from
Fig. 2a, formula F1(x, y) ∧ F2(x, y) is unsatisfiable. However, the LIA� formula
F1(x, y) ∧ F ∗

2 (x, y) is satisfiable. The dashed lines in Fig. 2b outline the borders
within which lie integer vectors satisfying F ∗

2 (x, y) – they are indicated by the
points. Consider, for example, the vector (6, 6): it satisfies F1(6, 6), while at the
same time (6, 6) = 2 ∗ (3, 3) and F2(3, 3) holds.

Checking satisfiability of a LIA� formula is decidable [16]. Furthermore, when
restricting the underlying LIA formulas to be quantifier free, it is an NP complete
problem [17]. The key insight is that (i) the set of solutions of every LIA formula
is a semilinear set, as proved in [8], and (ii) the representation of the solutions
as a semilinear set allows to eliminate the star operator (cf. Theorem 2).

Definition 1. A linear set LS(a, B) is defined by an integer vector a and a
finite set of integer vectors B = {b1, . . . , bn}, all of the same dimension, as
follows:

LS(a, B) �
{

a +
n∑

i=1

λibi |
n∧

i=1

λi ≥ 0

}

(2)

The vector a is called the shift vector, and the vectors b1, . . . , bn ∈ B are called
the offset vectors.

A semilinear set SLS(ls1, . . . , lsn) is a finite union of linear sets ls1, . . . , lsn,
i.e., SLS(ls1, . . . , lsn) =

⋃n
i=1 lsi.



Solving LIA* Using Approximations 363

A linear set LS(a, B) can be seen as Minkowski sum {a} + B∗. In the sequel,
we often view B as a matrix and use λB as a shorthand for

∑n
i=1 λibi .

Theorem 1 (Theorem 1.3 in [8]). Let f be a LIA formula. Then the set of
vectors that satisfy f forms a semilinear set. Furthermore, any semilinear set
U = SLS(LS(a1, B1), . . . , LS(ak , Bk)) can be characterized by a LIA formula,
defined as follows:

Lia(U)(x) �
k∨

i=1

∃λ ≥ 0 . x = ai + λBi (3)

Theorem 2 (Lemmas 2 and 3 in [17]). Let f be a LIA formula and let U =
SLS(LS(a1, B1), . . . , LS(ak , Bk)) be the semilinear set of vectors that satisfy
f . Then f�(x) ≡ StarLia(U)(x), where StarLia(U) is a LIA formula that
characterizes U� and is defined as follows:

StarLia(U)(x) � ∃μ1 ≥ 0, . . . , μk ≥ 0,λ1 ≥ 0, . . . λk ≥ 0 .

x =
k∑

i=1

μiai + λiBi ∧
k∧

i=1

(μi = 0 → λi = 0) (4)

Given a LIA� formula F1 ∧x ∈ {y | F2}�, where F1 and F2 are LIA formulas,
Theorem 1 ensures that there is a semilinear set describing the set of solutions
of F2. Theorem 2 shows how to use that semilinear set to eliminate the star
operator. The resulting LIA formula is equivalent to x ∈ {y | F2}�, thereby
reducing satisfiability checking to LIA.

3 Reasoning About Multisets as a LIA� Problem

Multisets can be seen as a generalization of sets: they are mathematical objects
where an element can appear multiple times in a collection. For example, if a set
contains an element, adding that same element to the set does not change the
set. However, in the same scenario, adding an element to a multiset results in a
different multiset. Formally, a multiset can be defined as a function from some
unbounded set of elements E to the set of natural numbers N. Formulas involv-
ing multisets with cardinality constraints naturally arise in verification when a
container data structure is abstracted in a way that it only tracks the elements
appearing in the data structure. While there are several decision procedures for
multisets [15–17,20], they were essentially impractical, until now.

Multisets And Presburger Arithmetic (MAPA) formulas allow an arbitrary
Boolean combination of atomic formulas that compare multisets for equality
(m1 = m2) or inclusion (m1 ⊆ m2), and quantifier-free LIA formulas, where
arithmetic terms are extended with a cardinality operator for multisets; The
syntax is given in Fig. 3. The cardinality operator returns the number of ele-
ments in the multiset; the same elements are counted as many times as they
appear. To count the number of distinct elements in a multiset m, we can use



364 M. Levatich et al.

top-level formulas:
F ::= A | F ∧ F | F ∨ F | ¬F
A ::= M=M | M ⊆ M | FLIA

quantifier-free linear arithmetic formulas:
FLIA ::= ALIA | FLIA ∧ FLIA | FLIA ∨ FLIA | ¬FLIA
ALIA ::= t ≤ t | t=t

linear arithmetic terms:
t ::= x | |M| | C | t + t | C · t | ite(FLIA, t, t)

multiset expressions:
M ::= m | ∅ | M ∩ M | M ∪ M | M � M | M \ M | M \\ M | set(M)

terminals:
m - multiset variables; x - integer variable; C - integer constant

Fig. 3. MAPA: quantifier-free multiset constraints with cardinality operator

the expression |set(m)|. The set(·) function converts a multiset into a set. As an
illustration, two different multisets {a, a, a, b, b} and {a, a, b, b, b} as sets are the
same: set({a, a, a, b, b}) = set({a, a, b, b, b}) = {a, b}. Using the set(·) function,
we can easily express standard BAPA benchmarks as MAPA benchmarks. All
standard set expressions are also defined on multisets. In addition the disjoint
union, �, operator produces a multiset where the multiplicity of elements are
added. Figure 3 provides a grammar for quantifier-free MAPA.

The semantics of MAPA is provided in Fig. 4, which describes how every
MAPA formula can be reduced to an equisatisfiable LIA� formula in linear time.
The reduction follows a sequence of rewriting steps corresponding to the defini-
tions of multiset operators. A justification for this translation is provided in [16].

Example 2. Consider the following constraint: if an element is removed from a
multiset, its size will decrease by one. In MAPA, this property can be expressed
as s ⊆ L∧|s| = 1 ⇒ |L\s| = |L|−1. To prove its validity, we apply the algorithm
given in Fig. 4 to check the satisfiability of the formula s ⊆ L∧ |s| = 1∧ |L\ s| �=
|L| − 1. The first step flattens the formula and we introduce new variables for
all non-trivial expressions:

x1 �= x2 − 1 ∧ x3 = 1 ∧ |m| = x1 ∧ |L| = x2 ∧ |s| = x3 ∧ m = L \ s ∧ s ⊆ L

The resulting formula has three parts: a part that is a pure LIA, a part which
defines cardinality constraints, and a part that is only about multisets without
cardinality constraints. Every MAPA formula can be reduced to this form.

The next step is to translate the resulting formula into a LIA� formula. For
every multiset variable M we introduce an integer variable M̃ . After some basic
simplifications the above formula becomes:

x1 �= x2 − 1 ∧ x3 = 1 ∧ (x1, x2, x3) ∈ {(m̃, L̃, s̃) | m̃ = L̃ − s̃ ∧ s̃ ≤ m̃}�

For brevity, we suppress the sign constraints m̃ ≥ 0, L̃ ≥ 0 and s̃ ≥ 0.
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INPUT: a multiset formula in the syntax of Figure 3
OUTPUT: an equisatisfiable LIA� formula

1. Occurrences of multiset equalities M1 = M2 that are not top-level are rewrit-
ten to |M1| = |M2| ∧ |M1 \ M2| = 0 ∧ |M2 \ M1| = 0, and similar with
M1 ⊆ M2.

2. Flatten all expressions e where e is one of the expressions ∅, M1 ∪ M2,
M1 ∪ M2, M1 � M2, M1 \ M2, M1 \\ M2, set(M1), |M1|, and where the
occurrence of e is not already in a top-level conjunct x = e or e = x for
some variable x:

C[e] � (xf = e ∧ C[xf ]), where xf is a fresh variable.

3. Furthermore, for multi-set variable Mi introduce a top-level conjunction xi =
|Mi| if it doesn’t already exist for fresh xi.

4. Create a LIA� formula. The step eliminates all multisets Mi using a corre-
sponding fresh integer variable M̃i. Let x1 = |M1|, . . . , xn = |Mn| be the
cardinality equalities, then the integer variables are M̃1, . . . , M̃n. All the
rewrite steps are applying the following schema:

F ∧ Fmul � F ∧ (x1, . . . , xn) ∈ {(M̃1, . . . , M̃n) | FLIA ∧
∧

i

M̃i ≥ 0}∗

The schema is applied to the following pairs of multiset and LIA formula:
Fmul : M0 = ∅ � FLIA : M̃0 = 0
Fmul : M0 = M1 ∩ M2 � FLIA : M̃0 = ite(M̃1 ≤ M̃2, M̃1, M̃2)
Fmul : M0 = M1 ∪ M2 � FLIA : M̃0 = ite(M̃1 ≤ M̃2, M̃2, M̃1)
Fmul : M0 = M1 � M2 � FLIA : M̃0 = M̃1 + M̃2

Fmul : M0 = M1 \ M2 � FLIA : M̃0 = ite(M̃1 ≤ M̃2, 0, M̃1 − M̃2)
Fmul : M0 = M1 \\M2 � FLIA : M̃0 = ite(M̃2 = 0, M̃1, 0)
Fmul : M0 = set(M1) � FLIA : M̃0 = ite(1 ≤ M̃1, 1, 0)
Fmul : M1 ⊆ M2 � FLIA : M̃1 ≤ M̃2

Fmul : M1 = M2 � FLIA : M̃1 = M̃2
Fmul : xi = |Mi| � true

Fig. 4. Algorithm for converting MAPA formulas to LIA� formulas.

The final step is the elimination of the star operator. A semilinear set
describing all the solutions of the formula m̃ = L̃ − s̃ ∧ s̃ ≤ m̃ is a linear
set LS((0, 0, 0), {(1, 1, 0), (0, 1, 1)}). Having the zero vector as the shift vector,
simplified the process of eliminating the star operator:

(x1, x2, x3) ∈ {(m̃, L̃, s̃) | m̃ = L̃ − s̃ ∧ s̃ ≤ m̃}� ⇔
∃λ1, λ2.(x1, x2, x3) = λ1(1, 1, 0) + λ2(0, 1, 1)
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The final formula x1 �= x2 − 1∧x3 = 1∧ (x1, x2, x3) = λ1(1, 1, 0)+λ2(0, 1, 1)
is unsatisfiable, proving that the originally given formula was valid.

4 Checking Satisfiability of LIA� Formulas
by Approximating from Above and Below

In this section, we explain our algorithm for checking satisfiability of LIA� for-
mulas.

We fix a LIA� formula g ∧ x ∈ {y | f}�. Observe that the set of solutions
of f� is the least fixpoint of the following set of equations (Constrained Horn
Clauses):

x = 0 −→ f�(x)
f�(y) ∧ f(z) ∧ x = y + z −→ f�(x)

(5)

However, to determine unsatisfiability of g ∧ f�, it suffices to find an over-
approximation o of f� such that g ∧ o is UNSAT, while satisfiability may be
determined based on satisfiability of an under-approximation u. As such, rather
than computing a LIA formula that captures f�, the algorithm approximates
this set and uses the approximations for checking satisfiability of g ∧ f�. To do
so, the algorithm maintains:

– A LIA formula u that underapproximates f�, i.e., u → f�.
– A LIA formula o that overapproximates f�, i.e., f� → o.

Algorithm 1 displays the steps for checking satisfiability of g ∧ f� as a set
of inference rules. The algorithm manipulates three types of states: initial states
of the form 〈g, ϕ〉, internal states of the form 〈g, u, ϕ, o〉 and terminal states
[u, o], where g, u, o, f ∈ LIA and ϕ = f�. The formulas u and o are under-
and overapproximations, respectively, of ϕ, and as such every state satisfies the
invariant that u → ϕ → o.

On input g ∧ f�, the algorithm starts at the initial state 〈g, f�〉. From the
initial state it follows the �-Init rule and transitions to the internal state 〈g,x =
0, f�, true〉 that maintains in addition to g and f� also approximations of f�. �-
Init initializes the underapproximation of f� to include only 0, and initializes
the overapproximation to true.

Transitions between (internal) states refine the approximations according to
the inference rules: weaken the underapproximation of f� (rule �-Weaken) or
strengthen its overapproximation (rule �-Strengthen). These transitions take
the form

〈g, u, ϕ, o〉 =⇒ 〈g, u′, ϕ, o′〉 such that u → u′ → ϕ → o′ → o .

We explain �-Strengthen in Sect. 4.1, and �-Weaken in Sect. 4.2.
The �-Converge rule identifies the case where the underapproximation u

has become an over-approximation of f�. This happens when u satisfies Eq. (5)
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Algorithm 1. Procedure for checking satisfiability of a LIA� formula g ∧
x ∈ {y | f}�.

Initial states: 〈g, ϕ〉 ∈ LIA × LIA�

Internal states: 〈g, u, ϕ, o〉 ∈ LIA × LIA × LIA� × LIA s.t. o → ϕ → u
Terminal states: [u, o] ∈ LIA × LIA

〈g, f�〉 =⇒ 〈g, x = 0, f�, true〉 �-Init

g ∧ o is UNSAT
Exit-UNSAT〈g, u, f�, o〉 =⇒ [u, o]

g ∧ u is SAT
Exit-SAT〈g, u, f�, o〉 =⇒ [u, o]

f(x) ∧ ¬u(x) is UNSAT
�-Converge〈g, u, f�, o〉 =⇒ 〈g, u, f�, u〉

x = v |= f(x) ∧ ¬u(x)

u′ = WeakenUnder(u,v)
�-Weaken〈g, u, f�, o〉 =⇒ 〈g, u′, f�, o〉

u(x) ∧ f≤2n(y) ∧ g(x + y) is UNSAT

o′ = StrengthenOver(o,u,f≤n,g)
�-Strengthen〈g, u, f�, o〉 =⇒ 〈g, u, f�, o′〉

(recall that f� is the least solution of these equations). �-Converge recognizes
this case by unsatisfiability of the test f(x) ∧ ¬u(x) since this test is equi-
satisfiable to the “inductiveness” test u(y) ∧ f(x) ∧ ¬u(x + y) (because u(0)
and u is closed under addition, as we will see in Sect. 4.2). When this condition
holds, it indicates that the under-approximation has converged to a LIA formula
that is equivalent to f�, and satisfiability of g ∧ f� reduces to satisfiability of
g ∧ u, as they are equi-satisfiable.

In fact, u need not be equivalent to f� to enable determining satisfiability of
g ∧ f�. Equi-satisfiability of u and f� with respect to g is a sufficient condition
for that, which is in turn ensured by equi-satisfiability of u and o with respect
to g (since u → f� → o). Accordingly, we say that:

Definition 2. An internal state 〈g, u, ϕ, o〉 is determined when g ∧ u and g ∧ o
are equi-satisfiable.

Such a state is called determined since equi-satisfiability of the under- and over-
approximations with respect to g implies that they are both equi-satisfiable to
f� with respect to g. Equivalently, the under-approximation is satisfiable or the
over-approximation is unsatisfiable when conjoined with g:

Lemma 1. An internal state 〈g, u, ϕ, o〉 is determined if and only if g ∧ u is
SAT or g ∧ o is UNSAT.
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Algorithm 2. StrengthenOver(o,u,f≤n,g)

/* Procedure for computing an over-approximation o of f� */

1 f1 := u(y) ∧ f≤n(z) ∧ x = y + z ; f2 := ¬(x = y′ + z′ ∧ f≤n(y′) ∧ g(z′))
2 if f1 → f2 then
3 Itp(x) := interpolant between f1 and f2

4 C := conjunction of all interpolants produced so far
5 o := the maximal subset of C such that o(x) ∧ f(y) → o(x + y)
6 return o

The Exit-SAT and Exit-UNSAT rules establish these cases as exit criteria
that lead to terminal states.

Note that the exit rules may be applicable before the approximations con-
verge to a formula that is equivalent to f�. However, in the worst case the
algorithm terminates after �-Converge is applied.

We discuss correctness and termination of the algorithm in Sect. 4.3, after we
fill in the missing details for weakening and strengthening the approximations.

4.1 Computing Over-Approximations of f�

Our approach for obtaining an over-approximation of f�, depicted in
Algorithm 2, is through reverse interpolation against g. Recall that f� is the
least solution of Eq. (5). Hence, any solution to these equations is an overap-
proximation of f�. Recall further that the overapproximation o is used for early
detection of unsatisfiability of g∧f� (rule Exit-UNSAT). Hence, the “optimal”
overapproximation (in case g ∧ f� is unsatisfiable) is a solution for the following
set of equations:

x = 0 −→ o(x)
o(y) ∧ f(z) ∧ x = y + z −→ o(x)

o(x) −→ ¬g(x)

As a step towards finding such a solution, we use interpolation. For a given
underapproximation u that covers in general an unbounded number of f� solu-
tions (including x = 0) and where u(y) ∧ f(z) ∧ x = y + z ∧ g(x) is UNSAT,
we can query an interpolation procedure for a predicate Itp(x) such that

u(y) ∧ f(z) ∧ x = y + z → Itp(x) and Itp(x) → ¬g(x),

The interpolant Itp(x) is disjoint from g. However, it is not in general an over-
approximation of f�(x); rather, it is an over-approximation of a single unfolding
of f from u. We therefore do not use Itp as is, but use it as the basis for obtaining
an overapproximation of f�.

Similar to how IC3 propagates clauses through frames that represent increas-
ing unfoldings of the transition relation, and in the essence of the Houdini app-
roach for learning conjunctions of inductive predicates from a candidate set of
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predicates, our approach is to use conjunctions generated from all the interpo-
lation queries to strengthen a global “inductive invariant”, i.e., a formula o(x)
such that x = 0 −→ o(x) and o(y)∧ f(z)∧x = y +z −→ o(x). Such a formula
may not be disjoint from g but it is guaranteed to overapproximate f� (which is
the least solution of these equations). Our task of producing a global invariant
concludes when it implies ¬g(x); or u(x) witnesses satisfiability.

A drawback of posing the interpolation query with only one unfolding of
f is that it could easily find a biased interpolant based on g(x) or u(x). We
therefore pose more general interpolation queries that are forced to produce
separating predicates that generalize beyond 0 or 1 unfoldings with f as follows.
We consider n unfoldings of f :

Definition 3 (f≤n(y)).

f≤0(y) � y = 0
f≤n+1(y) � y = 0 ∨ (∃y1,y2 . y = y1 + y2 ∧ f(y1) ∧ f≤n(y2))

Given some choice of n such that u(y) ∧ f≤2n(x) ∧ g(x + y) is unsatisfiable,
Algorithm 2 computes an interpolant:

u(y) ∧ f≤n(z) ∧ x = y + z → Itp(x) and

Itp(x) → ¬(x = y′ + z′ ∧ f≤n(y′) ∧ g(z′))

and uses it as the basis for computing an over approximation as explained above.
(If the above formula is satisfiable, the over approximation is not modified.)

4.2 Computing Under-Approximations of f�

The procedure WeakenUnder extends the current under-approximation u of
f� to include a solution v of f (and hence also of f�) that is not yet covered by
u. Recall that such a solution also establishes that u is not yet inductive since
the test f(x) ∧ ¬u(x) is equi-satisfiable to the test u(y) ∧ f(x) ∧ ¬u(x + y).
The procedure returns a weaker under-approximation u′ such that u → u′ → f�

and x = v |= u′. The procedure relies on (i) computing a semilinear set U that
underapproximates the solutions of f and includes v, and (ii) using Theorem 2
to express its star using a LIA formula. Since the star operator is monotone, we
are guaranteed that applying the star operator on the underapproximation of f
results in an underapproximation of f�.

We start by describing a procedure, called LIA2SLS, for computing a semi-
linear representation of the LIA formula f with access to a LIA oracle only.
WeakenUnder does not invoke that procedure per se, but it uses some of its
ingredients, where it acts as the LIA oracle, as we explain in the sequel.

Definition 4 (LIA oracle). By a LIA oracle we will understand a decision
procedure for LIA, which, given a LIA formula f , returns a model for f if it is
satisfiable, and returns UNSAT otherwise.
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Generating Semilinear Representation of a LIA Formula via Underapproxima-
tions. The LIA2SLS procedure, displayed in Algorithm 3, generates increasing
under-approximations of f in the form of semilinear sets that converge to a
representation of f .

One should observe that at any given point, LIA2SLS maintains a semilinear
set SLS(LS(a1, B1), . . . , LS(ak , Bk)) that under-approximates (the set of solu-
tions of) f . The semilinear set is represented as a set U of linear sets LS(ai , Bi),
where each of them is represented by its shift vector and offset vectors. In the
sequel, we sometimes identify U with the semilinear set. Using this terminology,
an invariant of the procedure is that Lia(U) → f (where Lia(U) denotes the
formula associated with the semilinear set, as defined in Eq. (3)).

Initially, the under-approximation U is the empty set (rule Init). The proce-
dure then augments the under-approximation until f → Lia(U), in which case
f ≡ Lia(U) and U is its representation as a semilinear set (rule Exit). As long
as this is not the case, Augment extends U by adding a solution of f that is
not yet covered, followed by a saturation procedure. Saturation applies the rules
Merge, Shift Down and Offset Down that use coordinate-wise comparison
between vectors, defined below, in order to minimize shift and offset vectors and,
as we will see, ensure termination.

Definition 5 (a � b). For two integer vectors a and b define

a � b �
∧

0<i≤dim(a)

(0 ≤ ai ≤ bi ∨ 0 ≥ ai ≥ bi) (6)

Algorithm 3. LIA2SLS

Init U := ∅.
Augment Let v be a solution to f(x) ∧ ¬Lia(U)(x). Add the linear set

LS (v, ∅) to U , and apply Saturate(U) until convergence.
Exit If f ∧ ¬Lia(U) is UNSAT, then return Lia(U).

Saturate(U):

Merge Let LS (a1, B1) and LS (a2, B2) be two linear sets in U such that
a2 � a1. If ∀λ1,λ2, λ3 . f(a2 + λ1B1 + λ2B2 + λ3(a1 − a2)) is valid
(equivalently, ¬f(a2 + λ1B1 + λ2B2 + λ3(a1 − a2)) is unsatisfiable)
then replace the two linear sets by LS (a2, B1 ∪ B2 ∪ {a1 − a2}) in U .

Shift Down Let LS (a1, B1) be a linear set in U . If there is a b ∈ B1, such
that b � a1 and ∀λ . f(a1 − b + λB1) is valid, then replace LS (a1, B1)
by LS (a1 − b, B1).

Offset Down Let LS (a1, B1) be a linear set in U . If there are b1, b2 ∈ B1,
such that b2 � b1 and ∀λ . f(a1 + λB′

1) is valid for
B′

1 := (B1 \ {b1}) ∪ {b1 − b2}, then replace LS (a1, B1) by LS (a1, B
′
1)

in U .
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It follows by inspecting the steps that the procedure always augments U to an
improved under-approximation of f . In other words, it maintains the invariant
Lia(U) → f .

Lemma 2. Let U be the set computed after any number of steps of Algorithm 3,
and let Lia(U) be the formula associated with it (per Eq. (3)). Then Lia(U) → f .

Proof (sketch). The Augment rule adds to U a single solution of f . Any of the
other rules checks whether the newly added linear set, when converted into a
LIA formula via Eq. (3), implies f .

In each step, the under-approximation is improved as it has more solutions or
a smaller representation. Termination is obtained since � is a well quasi order
(wqo) [11] (a reflexive and transitive relation where any infinite sequence of
elements v1,v2, . . . contains an increasing pair vi � vj with i < j).

Lemma 3 (Termination). Algorithm 3 terminates in a finite number of steps.

Proof. Observe that � is a pointwise application of well quasi orders. Hence,
by Dickson’s lemma [7], it is also a well quasi order. This ensures that for any
finite set U , any of the rules Merge, Shift Down and Offset Down may only
be applied finitely many times (since a wqo does not have infinite descending
sequences). Hence, to establish termination it remains to show that Augment
cannot be applied infinitely many times. Assume to the contrary that Augment
generates an infinite sequence v1,v2, . . .. Each vector in the sequence belongs
to one of the finitely many linear sets defining f . Hence, there is an infinite
subsequence of v1,v2, . . . where all vectors are members of the same linear set
L(a, B), and further are all merged together by Merge. Further, since � is a
wqo, this subsequence has an infinite increasing subsequence vi1 � vi2 � . . ..

For each vector vij , we denote by set(ij) = LS (aij , Bij ) the linear set in U
to which vij belongs after the (single) application of Augment that generated
it followed by an iterative application of Merge, Offset Down, Shift Down,
until they converge. An invariant that follows by induction is that aij = a+λB
for some λ and, similarly, each vector in Bij is a linear combination of vectors
in B, i.e., is equal to λB for some λ (it is easy to verify that Offset Down
and Shift Down preserve this property; for Merge we rely on our choice of
vectors). The vector aij may be decreased only finitely many times, hence at
some point it stabilizes to some vector ã. Similarly, each vector b in Bij may
be decreased by Offset Down at most finitely many times. Hence, for each Bij

there exists a time step after which all the vectors that originated from it are no
longer decremented. Denote the set that contains the vectors originating from
Bij after stabilization by B̃ij .

Hence, the infinite sequence vi1 � vi2 � . . . gives rise to an infinite sequence
of sets of vectors B̃i1 ⊆ B̃i2 , . . . as defined above (inclusion follows since the
vectors in B̃ij no longer evolve). Note that by construction, LS (ã,

⋃
j B̃ij ) spans

all vectors in vi1 ,vi2 , . . .. Further,
⋃

B̃ij must be finite since all the vectors
in it are incomparable (as all vectors have stabilized) and � is a wqo. However,
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Algorithm 4. WeakenUnder(u,v)
U := getSLS(u)
Add LS (v, ∅) to U and apply Saturate(U) until convergence.
Return StarLia(U).

this implies that LS (ã,
⋃

j B̃ij ) is added to U after a finite number of steps, after
which no vector from v1,v2, . . . may be generated by Augment, in contradiction
to our assumption that infinitely many of them are generated. ��

Note that by strengthening the queries into the LIA oracle to find minimal
solutions modulo � we can effectively bound the number of queries that produce
new vectors to be the same as the size of a minimal semilinear set representation.
Our proof doesn’t assume minimality of vectors and therefore relies on using
properties of well quasi orderings.

Computing Under-Approximations of f�. WeakenUnder (Algorithm 4) relies
on Algorithm 3 to generate a semilinear set U that under-approximates f . From
U it produces an under-approximation StarLia(U) of f� through Eq. (4).

In order to compute U , WeakenUnder first extracts from u, the current
under-approximation of f , the semilinear set U such that u = StarLia(U). Since
all underapproximations are computed by WeakenUnder, all of them follow
Eq. (4), which makes it easy to extract U from u. WeakenUnder then simu-
lates an iteration of Algorithm 3 (a step of Augment followed by saturation)
that extends U based on a new solution to f , except that it uses the provided
uncovered solution v of f rather than obtaining one from the LIA-oracle.

Recall that the solution v provided to WeakenUnder is taken from x =
v |= f(x)∧¬u(x). Hence, v is a solution to f that is not yet covered by u. This
means that v is not yet covered neither by U nor by U�.

Iteratively applying WeakenUnder results in a variant of Algorithm 3,
where in each iteration, U is extended not with an arbitrary solution of
f ∧ ¬Lia(U) (that may or may not be covered by U�), but rather with a
solution of f ∧ ¬StarLia(U) as the algorithm is geared towards computing
a representation of f�. Similarly to Algorithm 3, iterative application of Weak-
enUnder is guaranteed to converge to a precise representation U of f within a
finite number of iterations, in which case StarLia(U), returned as the under-
approximation of f�, is also precise (i.e., equivalent to f�). It may terminate
earlier, as StarLia(U) may be equivalent to f� even though Lia(U) is not yet
equivalent to f .

4.3 Correctness

The following lemma is a simple corollary of the invariants maintained by the
algorithm.
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Lemma 4 (Partial Correctness). If 〈g, f�〉 =⇒∗ [u, o] then g ∧ u, g ∧ o and
g ∧ f� are all equi-satisfiable.

To argue termination of Algorithm 1, we must require a fair scheduling of
the transitions: namely, each of the rules must be scheduled infinitely often.

Lemma 5 (Termination). Any fair execution of Algorithm 1 starting from
state 〈g, f�〉 terminates in a finite number of steps.

As explained in the previous section, iterative application of weakening, which
gradually refines u, mimics Algorithm 3. Hence, u must converge to a LIA for-
mula that is equivalent to f� within a finite number of steps, in which case when
Algorithm 1 applies �-Converge it reaches a determined state, and terminates
in one of the exit rules. Note that the termination argument relies only on the
under-approximations and their convergence to f�. However, in practice, the
over-approximations are also important for termination as they facilitate early
termination without convergence to a LIA formula that is equivalent to f�.

5 Evaluation

To empirically test our decision procedure, we implemented Algorithm 1. In
addition, we also implemented the translation algorithm given in Fig. 4. This way
we can evaluate our tool on real-world MAPA problems. The implementation
is written in Python, using the Python binding for Z3 as our LIA oracle. The
implementation and benchmarks are publicly available at https://github.com/
mlevatich/sls-reachability.

As it was pointed out in [18], there is a lack of native MAPA benchmarks.
For our evaluation, we tested the code on 240 BAPA benchmarks derived from
a set of benchmarks used for reasoning about distributed algorithms [1]. Since
the BAPA problems involve reasoning about sets and not multisets, we used
the set(·) operator which explicitly states that a multiset variable M is a set,
meaning that an element can appear at most once.

Before we expand further upon the results for each table presented here,
we divide the benchmarks into classes based on their size, where the size of a
benchmark is determined by the number of conjunctions in its LIA� represen-
tation. Due to our translation, this value also scales evenly with the number of
free variables in the formula, and is a rough measure of a problem’s complexity.
For each class, we give the number of benchmarks in that class, and how many
of them were sat or unsat, or timed out. We provide average statistics for the
solved examples in that class about the size of the final computed semilinear
set (measured as total number of vectors in its linear sets, including the offset
vector for each set), the number of calls made to z3, and the total runtime of
the algorithm. For all evaluations, we arbitrarily chose a timeout of 50 s.

The results of our initial evaluation are given by Table 1. We found that our
tool handled the BAPA benchmarks very effectively – most benchmarks finished
quickly and severely under-approximated the full semilinear set representation

https://github.com/mlevatich/sls-reachability
https://github.com/mlevatich/sls-reachability
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of the problem. This experiment used a single unfolding when computing inter-
polants in Algorithm 2.

We noticed that the set(·) operator and at-most-one appearance constraints
increase each benchmark’s difficulty, reflected by the larger semilinear sets, many
Z3 calls, and longer average running times. To test how our decision procedure
performs on its native theory, MAPA. We converted all 240 of the BAPA bench-
marks into genuine MAPA problems by simply omitting the set(·) constraints
from the translation. This change means that the set variables in the origi-
nal benchmarks are no longer considered sets but multisets. Our only intent in
doing this was to create suitable benchmarks for evaluating our tool – we are not
concerned with whether or not MAPA is suitable for modeling the same prob-
lems as the original benchmarks. By turning the BAPA benchmarks into MAPA
benchmarks, we could exercise true multiset reasoning. The results of MAPA
benchmarks are given by Table 2, in which we see a considerable speedup – even
though multisets are more complex objects than sets, the omission of the multi-
plicity constraints results in a shorter and more efficient representation, showing
the effectiveness of our tool on genuine MAPA problems.

Using the MAPA representation of the benchmarks, we further studied the
reverse interpolation procedure for computing over-approximations. We applied
the unfolding method given by Definition 3 with n = 5 to produce more general
interpolants. Table 3 presents the performance of the benchmarks with unfolding
added (also using MAPA semantics). By unfolding, we force Z3 to generate
interpolants which are more likely to be inductive, resulting in a significant
speedup and the ability to solve far more of the hard problems in the 13–16 size
range.

To demonstrate the need for interpolation, we also ran our procedure with
no interpolation at all. Without interpolation, unsatisfiability can only be shown
when the entire semilinear set representation is computed, which is prohibitively
expensive. The summary of the results is given in Table 4 (for MAPA seman-
tics). In this case, the algorithm struggles to prove that complex examples are
unsatisfiable, and must resort to generating larger semilinear sets.

Table 1. BAPA evaluation summary for n = 1 unfoldings.

Problem size # of Problems Sat/Unsat/TO SLS size Z3 Invocations Time (s)

6 106 76/30/0 6 76 1.6

7–9 64 34/30/0 7 75 1.8

10–12 13 1/9/3 18 575 21.7

13–16 46 3/0/43 20 780 33.9

19–22 11 0/0/11 N/A N/A N/A

Finally, in Table 5 we provide the running times of our procedure, giving
the average time spent by each evaluation on different parts of the procedure.
In general, the algorithm performs very well for smaller problem sizes and the
intrinsic complexity of the problem is visible on the problems of a bigger size.
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Table 2. MAPA evaluation summary for n = 1 unfoldings.

Problem size # of Problems Sat/Unsat/TO SLS size Z3 Invocations Time (s)

6 106 76/30/0 4 22 0.6

7–9 64 34/30/0 5 30 0.9

10–12 13 2/8/3 11 225 7.5

13–16 46 2/2/42 10 200 8.4

19–22 11 0/0/11 N/A N/A N/A

Table 3. MAPA evaluation summary for n = 5 unfoldings.

Problem size # of Problems Sat/Unsat/TO SLS size Z3 Invocations Time (s)

6 106 76/30/0 4 17 0.6

7–9 64 34/30/0 3 15 0.7

10–12 13 0/11/2 2 11 0.8

13–16 46 3/15/28 4 76 7.9

19–22 11 0/0/11 N/A N/A N/A

Table 4. MAPA evaluation summary without interpolation.

Problem size # of Problems Sat/Unsat/TO SLS size Z3 Invocations Time (s)

6 106 76/30/0 5 18 0.6

7–9 64 34/30/0 5 20 0.7

10–12 13 0/0/13 N/A N/A N/A

13–16 46 8/0/38 10 93 4.7

19–22 11 0/0/11 N/A N/A N/A

Table 5. Runtime performance profile of the procedure.

Augmentation (s) Interpolation (s) Reduction (s) Sat checking (s)

BAPA 0.23 0.87 0.92 1.09

MAPA 0.07 0.48 0.17 0.33

UNFOLD-5 0.04 0.86 0.07 0.17

NO-INTERP 0.08 0 0.2 0.32

One observation is that the MAPA evaluation is much faster than BAPA
– while our algorithm generalizes to BAPA, the set(·) operator results in the
increase of the ite(·, ·, ·) expressions, which can potentially lead to an exponen-
tial blow up in size of the input formula. On the positive side, our efficient rep-
resentation means that modeling multisets is comparatively easy despite their
complexity, opening the opportunity for easy use of multisets in verification.

The MAPA evaluation, when compared to NO-INTERP (Table 4), also show-
cases the benefits of using the semilinear set over-approximation. NO-INTERP
was unable to prove a single complex problem unsatisfiable, because the full semi-
linear set representation that witnesses unsatisfiability is too large to compute
even with our reduction and augmentation cycle. NO-INTERP solved slightly
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more satisfiable examples than MAPA, since the algorithm could spend more
time growing the semilinear set before timing out (because it was not interpo-
lating).

The most effective evaluation was UNFOLD-5 (Table 3). Compared to
MAPA, UNFOLD-5 solved 14 more of the problems of size 13–16, out of 46
total, and was faster on average for all classes of problems. The general inter-
polants that unfolding demands are far more likely to be inductive and, for
many real-world MAPA problems, can prove unsatisfiability almost instantly.
The trade-off is that the interpolation problems become heavier, as shown in
Table 5, and because interpolants serve as over-approximations, they do not help
for satisfiable problems.

It is possible that by tuning the unfolding by experimenting more thoroughly
with different values for n, we could increase the speed and effectiveness of the
algorithm even further. We can also apply the benefits of unfolding to satisfiable
MAPA problems by introducing unfoldings when checking for satisfiability –
even before the semilinear set underapproximation is able to reach a solution,
a finite unfolding allows it to flexibly step outside itself and look for nearby
solutions.

Overall, our initial results are quite promising, and there is still room for
potential optimizations to be made to the basic algorithm.

6 Related Work

Several decidable extensions of LIA have been studied, such as LIA with divis-
ibility constraints [10] and Büchi arithmetic [4,5] that has a predicate that can
distinguish whether a number is a power of two. The existential fragment of
LIA� with unbounded nesting of stars, ∃LIA�, was established to be NEXP-
complete in [9]. Although quantifier-free LIA formulas with bounded nesting of
star operators lie in the NP-complete fragment, as established in [17], there is no
implementation and the proposed algorithm relies on computing the semilinear
representation of the solution, which is mainly unfeasible in practice. In general
semilinear sets require a number of generators that is exponential in the size of
the input LIA formula [19]. There are algorithms that are based on enumerative
search for possible generators of a semilinear set [6], following the size ordering
and yielding a potentially doubly exponential number of vectors that need to
be considered. The other approach, suggested in [19], uses the bounds on the
vectors in a standard basis (as obtained from a Hilbert basis). The fact that
the number of basis vectors easily explodes precludes implementations that can
efficiently find semilinear sets for a given formula.

To avoid explicit computation of semilinear sets, Piskac and Kuncak [17]
devised a novel decision procedure that for a given LIA� formula F1 ∧ x ∈ {y |
F2}�, constructs an equisatisfiable LIA formula F1 ∧ F ′

2 by using only solution
vectors for formula F2. The number of the solution vectors is high: it is bounded
by O(n2 log n), where n is the size of the formula. Although this approach does
not compute semilinear sets, the algorithm was still not applicable in practice.
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The decision procedure constructs formula F ′
2 in a monolithic way, producing

immediately a very large formula that could not be solved by existing tools, not
even for the most simple cases. It should be clear that for modest values of n,
the bound n2 log n grows very quickly.

Zarba [20] studied a combination of multisets and linear integer arithmetic.
The logic did not support the cardinality operator, but there was a count oper-
ator that would return how many times an element appears in a multiset.
Lugiez [15] considered a logic of multisets with a limited cardinality operator
that would return only the number of distinct elements. Piskac and Kuncak [16]
introduced a more general logic that allows the standard definition of the car-
dinality operator. We use MAPA, a simplified, but equally expressive version of
their logic. This name is chosen to also indicate that MAPA can be seen as a
generalization of BAPA (Boolean Algebra and Presburger Arithmetic) [12,13],
a logic that is used to express properties about sets with cardinality constraints.
The BAPA logic is used in verification of data structures [3] and distributed
protocols [1].

7 Conclusion

In this paper we developed and evaluated a decision procedure for LIA�. The
evaluation, using our prototype, suggested that samples extracted from BAPA
applications benefited from the incremental nature of our solver. In addition, it
suggested that interpolants based on bounded unfoldings were useful for finding
over-approximations that were helpful determining unsatisfiability. The proto-
type could be improved in many ways, including notably a tighter integration
within a native LIA� solver. The benefits of a native integration includes incre-
mentality, access to preprocessing simplifications, and alternative heuristics such
as sampling f for creating a large initial basis, and sound, but incomplete, infer-
ence rules. Nevertheless, we feel encouraged by the overall approach given the
promising results from the prototype.

While our initial motivation for this work was to find an efficient decision
procedure for reasoning about multisets with cardinality constraints, reasoning
about LIA� formulas suggested new application areas. For instance, there are
numerous classes of integer vector addition systems with states (VASS), where
the set of reachable states is described with a semilinear set (for a classification
of VASS see for example [2,14]). We conjecture that our solver for LIA� formulas
could be used for checking VASS reachability for those classes.
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5. Büchi, J.R.: Weak second-order arithmetic and finite automata. Math. Logic Q.
6(1–6), 66–92 (1960)

6. Contejean, E., Devie, H.: An efficient incremental algorithm for solving systems of
linear Diophantine equations. Inf. Comput. 113(1), 143–172 (1994)

7. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Am. J. Math. 35, 413–422 (1913)

8. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac.
J. Math. 16(2), 285–296 (1966)

9. Haase, C., Zetzsche, G.: Presburger arithmetic with stars, rational subsets of graph
groups, and nested zero tests. In: LICS, pp. 1–14. IEEE (2019)

10. Jovanovic, D., de Moura, L.: Cutting to the chase - solving linear integer arithmetic.
J. Autom. Reason. 51(1), 79–108 (2013)

11. Kruskal, J.B.: The theory of well-quasi-ordering: a frequently discovered concept.
J. Comb. Theory Ser. A 13(3), 297–305 (1972)

12. Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean
algebra with Presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS
(LNAI), vol. 3632, pp. 260–277. Springer, Heidelberg (2005). https://doi.org/10.
1007/11532231 20

13. Kuncak, V., Nguyen, H.H., Rinard, M.C.: Deciding Boolean algebra with Pres-
burger arithmetic. J. Autom. Reason. 36(3), 213–239 (2006)

14. Leroux, J.: The general vector addition system reachability problem by Presburger
inductive invariants. Logic. Methods Comput. Sci. 6(3) (2010)

15. Lugiez, D.: Multitree automata that count. Theor. Comput. Sci. 333(1–2), 225–263
(2005)

16. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality con-
straints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 218–232. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78163-9 20

17. Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 268–280. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-70545-1 25

18. Piskac, R., Kuncak, V.: MUNCH - automated reasoner for sets and multisets. In:
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1 Université Paris Diderot, Paris, France
{abou,cenea}@irif.fr

2 Chennai Mathematical Institute, Chennai, India
{madhavan,gautshen,spsuresh}@cmi.ac.in
3 CNRS UMI 2000 ReLaX, Chennai, India

Abstract. Developers of distributed data-stores must trade consistency
for performance and availability. Such systems may in fact implement
weak consistency models, e.g., causal consistency or eventual consis-
tency, corresponding to different costs and guarantees to the clients. We
consider the case of distributed systems that offer not just one level of
consistency but multiple levels of consistency to the clients. This corre-
sponds to many practical situations. For instance, popular data-stores
such as Amazon DynamoDB and Apache’s Cassandra allow applications
to tag each query within the same session with a separate consistency
level. In this paper, we provide a formal framework for the specifica-
tion of multilevel consistency, and we address the problem of checking
the conformance of a computation to such a specification. We provide a
principled algorithmic approach to this problem and apply it to several
instances of models with multilevel consistency.

1 Introduction

To achieve availability and scalability, modern data-stores (key-value stores) rely
on optimistic replication, allowing multiple clients to issue operations on shared
data on a number of replicas, which communicate changes to each other using
message passing. One benefit of such architectures is that the replicas remain
locally available to clients even when network connections fail. Unfortunately,
the famous CAP theorem [15] shows that such high Availability and tolerance
to network Partitions are incompatible with strong Consistency, i.e., the illusion
of a single centralized replica handling all operations. For this reason, modern
replicated data-stores often provide weaker forms of consistency such as eventual
consistency [23] or causal consistency [19], which have been formalized only
recently [6,7,10,22].

Programming applications on top of weakly-consistent data-stores is diffi-
cult. Some form of synchronization is often unavoidable to preserve correctness.

Partially supported by CEFIPRA DST-Inria-CNRS Project 2014-1, AVeCSo.

c© Springer Nature Switzerland AG 2020
D. Beyer and D. Zufferey (Eds.): VMCAI 2020, LNCS 11990, pp. 379–400, 2020.
https://doi.org/10.1007/978-3-030-39322-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39322-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-39322-9_18


380 A. Bouajjani et al.

Therefore, popular data-stores such as Amazon DynamoDB and Apache’s Cas-
sandra provide different levels of consistencies, ranging from weaker forms to
strong consistency. Applications can tag queries to the data-store with a suit-
able level of consistency depending on their needs.

Implementations of large-scale data-stores are difficult to build and test. For
instance, they must account for partial failures, where some components or the
network can fail and produce incomplete results. Ensuring fault-tolerance relies
on intricate protocols which are difficult to design and reason about. The black-
box testing framework Jepsen1 found a remarkably large number of subtle prob-
lems in many production distributed data-stores.

Testing a data-store raises two issues: (1) deriving a suitable set of testing
scenarios, e.g., faults to inject into the system and the set of operations to be
executed, and (2) efficient algorithms for checking whether a given execution
satisfies the considered consistency models. The Jepsen framework shows that
the first issue can be solved using randomization, e.g., introducing faults at
random and choosing the operations randomly. The effectiveness of this solution
has been proved formally in recent work [21]. The second issue is dependent on
a suitable formalization of the consistency models.

In this work, we consider the problem of specifying data-stores which provide
multiple levels of consistency and derive algorithms to check whether a given
execution adheres to such a multilevel consistency specification.

We build on the specification framework in [10] which formalizes consistency
models using two auxiliary relations: (i) a visibility relation, which specifies the
set of operations observed by each operation, and (ii) an arbitration order, which
specifies the order in which concurrent operations should be viewed by all repli-
cas. An execution is said to satisfy a consistency criterion if there exists a visibil-
ity relation and an arbitration order that obey an associated set of constraints.
For the case of a data-store providing multiple levels of consistency, we consider
multiple visibility relations and arbitration orders, one for each level of consis-
tency. Then, we consider a set of formulas which specifies each consistency level
in isolation, and also, how visibility relations and arbitration orders of different
consistency levels are related.

Based on this formalization, we investigate the problem of checking whether
a given execution satisfies a certain multilevel consistency specification. In gen-
eral, this problem is known to be NP-COMPLETE [6]. However, we show that
for executions where each value is written at most once to a key, this problem
is polynomial time for many practically-interesting multilevel consistency speci-
fications. Since practical data-store implementations are data-independent [24],
i.e., their behaviour doesn’t depend on the concrete values read or written in
the transactions, it suffices to consider executions where each value is written at
most once. This complexity result uses the idea of bad patterns introduced in [6]
for the case of causal consistency. Intuitively, a bad pattern is a set of opera-
tions occurring in a particular order corresponding to a consistency violation.
In this paper, we provide a systematic methodology for deriving bad patterns
characterizing a wide range of consistency models and combinations thereof.

1 Available at http://jepsen.io.

http://jepsen.io
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Our contributions form an effective algorithmic framework for the verification
of modern data-stores providing multiple levels of consistency. To the best of our
knowledge, we are the first to investigate the asymptotic complexity for such a
wide class of consistency models and their combinations, despite their prevalence
in practice.

The paper is organized as follows. We begin with some real-life examples
of multilevel consistency. In Sect. 3, we present a formal model for specifying
and reasoning about multilevel consistency. Section 4 describes algorithms for
verifying multilevel consistency. We conclude with a discussion of related work.
Detailed proofs can be found in the technical report [8].

2 Multilevel Consistency in the Wild

In this section we present some real-world instances of multilevel consistency. We
restrict our attention to distributed read-write key-value data-stores (henceforth
referred to as read-write stores), consisting of unique memory locations addressed
by keys or variables. We use keys and variables interchangeably in this work.
The contents of these memory locations come from a domain, called values.

The read-write data-store provides two APIs to access and modify the con-
tents of a particular memory location. The API to read the content of a particular
memory location is typically named Read or Get, and the API to store a value
into a particular memory location is typically named Write or Put. In this paper,
we refer to these two methods as Read and Write respectively. The Read method
does not update the state of the data-store and only reveals part of the state
to the application session which invokes the method. The Write method on the
other hand modifies the state of the data-store.

Typically, an application reads a location of the data-store, performs some
local computation and writes a value back to the data-store. A sequence of
related read and write operations performed by an application is called a session.

Applications expect some sort of consistency guarantee from the data-store
in terms of how fresh or stale the data value is that they read from the data-
store. They also seek some guarantees pertaining to monotonicity of the results
that are presented to them. These guarantees provided by the data-store to the
applications are called consistency criterion. Some of the popular consistency
criteria include:

– Read-Your-Writes: The effects of prior operations in the session will be
visible to later operations in the same session.

– Monotonic Reads: Once the effect of an operation becomes visible within
a session, it remains visible to all subsequent operations in that session.

– Monotonic Writes: If the effect of a remote operation is visible in a session,
then the effects of all prior operations in the session of the remote operation
are also visible.

– Causal consistency: Effects of prior operations in a session are always vis-
ible to later operations. Further, if the effect of an operation is visible to
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another operation, then every operation that has seen the effects of the latter
would have seen the effects of the former.

– Sequential Consistency: Effects of the operations can be explained from
a single sequential execution obtained by interleaving the reads and writes
performed at individual sessions.

Most of the existing literature on testing the behaviour of read-write stores
focuses on testing the correctness with respect to specific consistency crite-
ria [6,7,14]. However, there are cases where data-stores such as DynamoDB and
Cassandra offer to applications the choice of specifying the consistency level per
read-operation [11]. There are distributed data-store libraries that allow consis-
tency rationing [18] and also allow incremental consistency guarantees for the
read operations [17]. In each of these cases we need to reason about the correct-
ness of the behaviour of the data-store with respect to more than one consistency
criterion.

We now look at some examples of multilevel consistency in the real world.
In this work, we assume that the Read and the Write APIs are as follows.

Definition 1 (Read and Write APIs). Let x be a key/variable, val denote a
value read-from/written-to the data-store and level denote the consistency level.

– Write(x, val) : Updates the content of the memory location addressed by the
key/variable x with the value val .

– Read(x, val , level) : The content of the memory location whose key is x is val
with respect to the consistency level level .

Read-Write Stores with Strong and Weak Reads

Consider the case of the data-store Cassandra, which allows the application a
more fine grained choice of consistency levels, such as ANY, ONE, QUORUM, ALL. It
achieves this by ensuring that when the Read is executed with ANY, the return
value is provided by consulting any available replica of the data store. Similarly,
if the Read operation is submitted with ONE, the return value is provided by con-
sulting a replica that is known to contain at least one value for that key. On the
other hand, if the Read is executed with QUORUM, the data-store returns the value
after consulting a majority of the replicas. Finally, if Read is executed with ALL,
then all the replicas are consulted before returning the response. Clearly, ANY
is the weakest consistency criterion while ALL is the strongest consistency crite-
rion. In general, a data-store offers responses pertaining to different consistency
criteria by consulting the required subset of replicas to answer the query.

Typically a read operation under the stronger consistency criterion will take
more time, since it might have to wait for all pending operations to become
visible, or run a consensus protocol before returning the result. In certain cases,
applications may be satisfied with Read operations that return values that are
correct with respect to some weaker consistency criterion. Consider a web-
application that displays the available seats in a movie theater. The application
can choose to read the available seats based on a weaker consistency criterion,
since:



Formalizing and Checking Multilevel Consistency 383

– The number of users attempting to book seats is usually more than the seats
available. Waiting for a consensus or a quorum can slow down the reads for
everyone. So a quicker response is desirable.

– There is a lag between the time the user gets to see available seats and the time
when the user decides to book particular seats. Since concurrent bookings are
ongoing, the data displayed can become stale by the time the user books the
seat.

– Users can change their minds before finally settling on a set of seats, and
paying for them.

Thus, the web-application can opt for a read satisfying a weaker consistency
criterion while allowing the user to pick a seat, and then perform a read satisfying
a stronger consistency criterion only when the user pays for it.

Consider the example in Fig. 1 where all write requests are processed at the
same replica. For each session, there is a (potentially different) designated replica
from which the responses to the weak reads are returned.

Session 1
A : Write(x, 5)

B : Read(x, 5, st)

C : Read(x, 4,wk)

D : Read(y, 3, st)

E : Read(x, 6, st)

F : Read(x, 4,wk)

so

so

so

so

so

Session 2
G : Write(x, 4)

H : Write(y, 3)
so

Session 3
I : Write(x, 6)

Fig. 1. An example of a read-write store behaviour with strong and weak reads. The so
relation relates read and write operations from the same session in the order in which
they happened in that session.

In this scenario, the strong reads (corresponding to the consistency level ALL)
satisfy sequential consistency while the weak reads obey monotonic reads consis-
tency. Hence, the fragment consisting of all the writes and the weak reads should
be correct with respect to monotonic reads. Similarly, the fragment consisting of
all the writes and the strong reads should be correct with respect to sequential
consistency.

The weak fragment corresponding to the example in Fig. 1 can be seen in
Fig. 2(a). This fragment is correct with respect to monotonic reads; once the
write G is visible at session 1 to the read C, it remains visible throughout the
session. The write I is not visible to any of the other sessions yet.

The strong fragment is represented in Fig. 2(b). This is correct with respect to
sequential consistency, where the order of the operations obtained by consensus
is A −→ B −→ G −→ H −→ I −→ D −→ E.
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Session 1
A : Write(x, 5)

C : Read(x, 4,wk)

F : Read(x, 4,wk)

so

so

Session 2
G : Write(x, 4)

H : Write(y, 3)
so

Session 3
I : Write(x, 6)

(a) Weak Fragment from Figure 1

Session 1
A : Write(x, 5)

B : Read(x, 5, st)

D : Read(y, 3, st)

E : Read(x, 6, st)

so

so

so

Session 2
G : Write(x, 4)

H : Write(y, 3)
so

Session 3
I : Write(x, 6)

(b) Strong Fragment from Figure 1

Fig. 2. Strong and Weak fragments of the hybrid behaviour

However, since the strong reads correspond to the level ALL where all the
replicas have seen the prior writes and have agreed on the order of the con-
current writes, it behooves a weak read following a strong read to take into
consideration the effects seen by the earlier strong read. Thus the data-store
imposes an additional constraint. Once a write is visible to a strong read in a
session, it is visible to all the subsequent weak reads in that session. This ensures
that the weaker reads do incorporate the prior results seen by the session. Sim-
ilarly, a write visible to a weak read is made from a replica which participates
in the subsequent strong reads corresponding to the level ALL. Thus the effects
visible to the prior weak reads in a session are also visible to the subsequent
strong reads.

With these additional constraints, we can no longer explain the read opera-
tion F , since the effects of writes G and I are both visible at read F . The strong
consistency criterion has already guaranteed that write I has happened after
write G, thereby effectively overwriting the value 4 with the value 6. Hence this
behaviour is incorrect in the multilevel setting.

Now consider the behaviour of Cassandra where writes are performed at one
of the replicas (corresponds to the level ONE), weak reads are performed at one
of the replicas (corresponds to the level ONE) and strong reads are performed at
a quorum of replicas (corresponds to the level QUORUM). In this situation, it is
not necessary that the effects of writes visible to prior weaker reads are visible
at subsequent stronger reads, since the replica from which the weaker read is
performed may be missing from the quorum of replicas from which the stronger
read is made. Similarly, the effects of writes visible to prior stronger reads of a
session need not be visible to the subsequent weaker reads in the session, as the
writes from the quorum may not have reached the replica from which the weaker
read is performed. Thus, the stronger and weaker reads can be independent of
each other.

Finally consider the case of Amazon DynamoDB Accelerator (DAX) [1],
which contains a write-through cache sitting between the application and the
DynamoDB backend. Every write made by the application is first submitted to
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the DynamoDB backend and also updated at the cache. By default, the reads
are eventually consistent, i.e., the reads are performed from the cache. If the
item does not exist in the cache, then it is fetched from the backend data-store
and the cache is updated with the item before the value is returned to the appli-
cation. However, the application can also request strongly consistent reads by
invoking ConsistentRead. In this case, the value is read from the backend and
returned to the application, without caching the results. Any subsequent eventu-
ally consistent reads made by the application may not reflect the value returned
by the prior strongly consistent read. In the case of DAX, it can be observed
that the effects of the writes visible to the weak eventually consistent reads are
also visible to the subsequent strongly consistent reads as those writes are also
present in the DynamoDB backend. However, it is not necessary that the effects
of writes visible to the strongly consistent reads are visible to the subsequent
weak eventually consistent reads.

From these examples of multilevel consistency, we can see that the presence
of another consistency criterion can impose additional constraints on the choice
of the visibility and arbitration relations chosen to explain the correctness of
the history. In the next section, we provide a formal framework for modelling
behaviours of read-write data-stores with multiple consistency levels.

3 Formalizing Multilevel Consistency

We extend the formal framework provided in [9] for modelling the behaviours of
read-write stores. Each operation submitted to the data-store by the application
is either a Read or a Write operation whose signature is given in Definition 1.

We denote the set of all variables in the read-write store by Vars and assume
that each value written to the read-write store is a natural number val ∈ N. We
assume that all variables are initially undefined, with value ⊥.

For simplicity, we assume only two consistency levels, weak and strong,
denoted by wk and st, respectively, where the consistency criterion corresponding
to wk-level is strictly weaker than then the consistency criterion corresponding
to the st-level. Comparison between consistency criteria is formally defined in
Definition 7.

The behaviour of the read-write data-store as observed by an application is
the sequence of reads and writes that it performs on the stores. The sequence of
related read and write operations is termed a session. Thus the behaviour of the
read-write store seen by each session is a total order of read/write operations
performed in that session.

The behaviour of the read-write store is the collection of behaviours seen by
all the sessions. In Fig. 1 we saw the behaviour of the data-store as observed by
the three sessions accessing the data-store. We call such a behaviour a hybrid
history, formally defined as follows:

Definition 2 (Hybrid History). A hybrid history of a read-write store is a
pair H = (O, so) where O is the set of read-write operations and so is a collection
of total orders called session orders.
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For a history H, we define the following subsets of O.

– ORead is the set of read operations occurring in H.
– OWrite is the set of write operations occurring in H.
– Owk = OWrite ∪ {Read(x, val , level) ∈ ORead | level = wk} (the set of weak

operations occurring in H).
– Ost = OWrite ∪ {Read(x, val , level) ∈ ORead | level = st} (the set of strong

operations occurring in H).

The weak fragment of the history H is denoted Hwk and defined to be
(Owk, so ∩(Owk×Owk)). Similarly the strong fragment of the history H is denoted
Hst and is defined to be (Ost, so∩ (Ost × Ost)). Note that we take the write oper-
ations to be part of both the strong and weak fragments.

– For X ⊆ O × O and � ∈ {Read,Write,wk, st}, X ��= X ∩ (O� × O�).
– For X,Y ⊆ O × O, X;Y = {(x, y) | ∃z : (x, z) ∈ X and (z, y) ∈ Y } is the

composition of X and Y .
– For X ⊆ O × O, total(X) is used to mean that X is a total order.

When a replica of the read-write store receives an operation from an applica-
tion, it decides how the effects of the older operations known to the replica (either
received from applications, or from other replicas of the data-store) should be
made visible to the new operation. A visibility relation over a history specifies
the set of operations visible to an operation.

Definition 3 (Visibility Relation). A visibility relation vis over a history
H = (O, so) is an acyclic relation over O. For o, o′ ∈ O, we write o

vis−→ o′ to
indicate that the effects of the operation o are visible to the operation o′.

If a pair of operations o, o′ are not related by vis, we term them concurrent
operations, denoted by o ‖vis o′.

We define the view of an operation o with respect to a visibility relation vis,
denoted Viewvis(o) to be the set of all the Write operations visible to it.

For the history in Fig. 1, we can define a visibility relation to be

{A
vis−→ B,G

vis−→ C,G
vis−→ D,H

vis−→ D,G
vis−→ E,H

vis−→ E, I
vis−→ E,G

vis−→ F}
When the replicas communicate with each other, they need to reconcile the

effects of concurrent write operations in order to converge to the same state
eventually. In case of convergent data-stores this is done using a rule such as
Last Writer Wins which totally orders all write operations. This is abstracted
by an arbitration relation, which is a total order over all write operations in
the history. We will denote the arbitration relation by arb. We assume that the
arbitration relation is consistent with the visibility relation, in the sense that for
a pair of writes o and o′, if o is visible to o′ then o is before o′ in arb.

Definition 4 (Arbitration Relation). An arbitration relation arb over a
hybrid history H = (O, so) is a total order over OWrite. For oi, oj ∈ O, we

say oi
arb−−→ oj to indicate that operation oi has been ordered before the operation

operation oj.
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For the history in Fig. 1 the arbitration relation can be the total order

A
arb−−→ G

arb−−→ H
arb−−→ I

We define the correctness of a hybrid history in terms of the functional spec-
ification of read-write stores.

Let H be a hybrid history. Let vis and arb be visibility and arbitration rela-
tions over H.

We say that a write operation o′ is a related-write of a read operation o
iff o′ is in the view of o and both o and o′ operate on the same variable. The
set of all related writes of o, denoted RelWritesvis(o), is defined to be the set
{o′ ∈ Viewvis(o) | o and o′ operate on the same variable}.

MaxRelWritesvis(o), the set of maximal elements among these related writes
with respect to vis, is defined to be

{o′ ∈ RelWritesvis(o) | ∀o′′ ∈ RelWritesvis(o) : o′′ vis−→ o′ ∨ o′′ ‖vis o′}
The effective write of a read-operation o, denoted by EffWritearb

vis (o) is defined
to be the maximum write operation from the set of maximal related writes of o
as per the arbitration relation.

EffWritearb
vis (o) =

{
max (arb�MaxRelWritesvis(o)) if MaxRelWritesvis(o) �= ∅
⊥ otherwise

Definition 5 (Functional Correctness for Read-Write Stores). Let H =
(O, so) be a hybrid history of a read-write data store with visibility relation vis
and arbitration relation arb. We say that (H, vis, arb) is functionally correct iff
for every read operation o = Read(x, val , level), the following conditions hold.

– EffWritearb
vis (o) = ⊥ iff val = ⊥ (i.e., there was no write operation on x when

o happened).
– If o′ = EffWritearb

vis (o) then o′ wrote the value val .

Next, we formally define consistency criteria in terms of a set of formulas. Our
definition is adapted from the definitions of constraints in [13].

Definition 6 (Consistency Criteria). A relation term τ is a composition of
the form r1; · · · ; rk (k ≥ 1), where each ri ∈ {so, vis}. A consistency criterion
is a subset of

{τ ⊆ vis | τ is a relation term} ∪ {total(vis)}.

Thus a consistency criterion is a possibly empty collection of visibility con-
straints and an optional totality constraint. For simplicity of notation, we usually
write a constraint as a conjunction.

Note that so and vis are variables which are usually interpreted as restrictions
of the so and vis relations in a history. As we will see below, we always require an
additional constraint that vis �Write⊆ arb (and hence it is not explicitly included
in the consistency criteria).
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For a consistency criterion α, RelTerms(α) is the set of all relation terms occur-
ring in α, and VisBasic(α) is the collection of all visibility constraints in α
excluding the totality constraint total(vis).

Definition 7 (Consistency Criterion in a history). Let H = (O, so) be a
hybrid history, let vis and arb be a visibility and arbitration relation over H, and
let α be a consistency criterion. We say that H, vis |= α iff:

1. for every τ ⊆ vis in α, τ [so := so, vis := vis] ⊆ vis, and
2. if total(vis) ∈ α, then total(vis) holds.

Further we say that H, vis, arb |= α iff H, vis |= α and vis�Write⊆ arb.

Some well known consistency criteria are given in Table 1.

Table 1. Well known consistency criteria

Name Description

Basic Eventual Consistency (BEC) �
Read Your Writes (RYW) so ⊆ vis

Monotonic Reads (MR) vis; so ⊆ vis

Monotonic Writes (MW) so; vis ⊆ vis

Strong Eventual Consistency (SEC) so ⊆ vis ∧ vis; so ⊆ vis

FIFO Consistency (FIFO) so ⊆ vis ∧ vis; so ⊆ vis ∧ so; vis ⊆ vis

Causal Consistency (CC) so ⊆ vis ∧ vis; vis ⊆ vis

Sequential Consistency (SEQ) so ⊆ vis ∧ vis; vis ⊆ vis ∧ total(vis)

We say that a consistency criterion α is at least as strong as another consis-
tency criterion α′ if for every history H, visibility relation vis, and arbitration
relation arb over H, if H, vis, arb |= α then H, vis, arb |= α′.

Suppose H = (O, so) is a hybrid history. Let αw and αs respectively be
the wk and st consistency criteria. We then want to choose wk and st visibil-
ity relations viswk, visst, respectively, and an arbitration relations arb such that
Hwk, viswk, arb |= αw and Hst, visst, arb |= αs .

As we had noted in the previous section, in a multilevel setting, it is not
sufficient to separately satisfy the constraints corresponding to the wk and st
consistency criteria. We now proceed to modelling multilevel consistency con-
straints.

Modelling Multilevel Consistency

Taking inspiration from DAX [1] and the cache-hierarchy in modern processors,
we can model multilevel consistency as a series of data-stores arranged in increas-
ing order of the consistency they guarantee, such that the data-store offering the
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weakest level of consistency is closest to the application, and the data-store offer-
ing the strongest level of consistency is farthest away from the application. We
shall further assume that these data-stores use the same arbitration strategy to
order concurrent write operations and every weaker data-store has the capability
to update its state to match that of a stronger data-store.

For the purpose of this paper, since we are restricting ourselves to only two
levels, namely wk and st, this will reduce to having just two data-stores, where
the data-store corresponding to the weaker consistency criterion sits as a cache
between the application and the data-store corresponding to the stronger con-
sistency criterion.

All the wk-reads are performed from the wk data-store.
There are two possible ways in which the writes can be performed.

1. Write-Through: The write is first performed at the st-data-store and eventually
will be propagated to the wk-data-store.

2. Write-Back: The write is first performed at the wk-data-store and eventually
will be propagated to the st-data-store.

There are two possible ways in which st-reads can be performed.

(a) Read-Through: The result of the st-read performed at the st-data-store is
directly sent to the application bypassing the wk-data-store.

(b) Read-Back: The result of the st-read is updated at the wk-data-store before
it is propagated to the application.

Thus, the system picks one of two ways to perform the write, and one of the
two ways to perform the st-read.

Note that a system which picks the Write-Through strategy for performing the
write will ensure that any write visible at the wk data-store will also be visible
to the st data-store, as all the writes are first performed at the st data-store
before they are propagated to the wk one. Hence, the effects of write operations
visible to a wk-read operation are also visible to the subsequent st-operations in
the session.

Similarly a system which picks the Read-Back strategy for performing the
st-reads will ensure that any write that is visible to a strong-read will also be
visible at a subsequent wk-read in the session as before returning the result of
the st-read to the application, the result is merged into the wk data-store.

However, the Write-Back and Read-Through strategies do not provide any
guarantees between the effects of writes visible to wk (resp. st) reads in relation
to the subsequent st (resp. wk) reads in that session.

We now define the guarantees provided by each of these four strategies in
the form of a constraint.

Definition 8 (Multilevel Constraints). We define the following formulas:

– ψwrite
thru := (viswk ; so)�st⊆ visst

– ψwrite
back := �

– ψread
thru := �
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– ψread
back := (visst ; so)�wk⊆ viswk

A multilevel constraint ϕ is a conjunction of the form ψread ∧ ψwrite , where
ψread ∈ {ψread

thru , ψread
back} and ψwrite ∈ {ψwrite

thru , ψwrite
back }.

Suppose H = (O, so) is a history, and viswk and visst are two visibility relations
respectively over Owk and Ost. Let ϕ be a multilevel constraint. We say that
H, viswk, visst |= ϕ iff ϕ[so := so, viswk := viswk, visst := visst] is true.

The formula ψwrite
thru imposes the constraint that the strong operations see the

effects seen by the prior weak operations in the session. Similarly, the formula
ψread
back imposes the constraint that the weak operations see the effects seen by the

prior strong operations in the session. These two guarantee that the effect seen
by reads of one consistency level remain monotonically visible to the subsequent
reads of another consistency level.

Consider Cassandra’s multilevel consistency with writes performed at level
ONE, weak-reads at level ONE and strong-reads at level ALL which ensure that
weaker reads see the effects visible to prior stronger reads and vice-versa. This
can be modelled using ψwrite

thru ∧ ψread
back .

On the other hand, Cassandra’s multilevel consistency with writes performed
at level ONE, weak-reads at level ONE and strong-reads at level QUORUM neither
ensures that weaker reads see the effects visible to prior stronger reads nor the
converse. This can be modelled using ψwrite

back ∧ ψread
thru .

The DynamoDB’s DAX case can be modelled using ψwrite
thru ∧ψread

thru which only
allows for the effects of prior weak reads to be visible to subsequent stronger
reads, but not the converse.

We now formally define when a hybrid history is correct.

Definition 9 (Multilevel Correctness of a Hybrid History). A hybrid
history H = (O, so) of a read-write store is said to be multilevel correct with
respect to a wk-consistency criterion αw , st-consistency criterion αs and multi-
level consistency constraint ϕ, iff there exists visibility relations viswk and visst
over Hwk and Hst respectively and arbitration relation arb such that

– (Hwk, viswk, arb) and (Hst, visst, arb) are functionally correct,
– Hwk, viswk, arb |= αw ,
– Hst, visst, arb |= αs , and
– H, viswk, visst |= ϕ.

4 Testing Multilevel Correctness of a Hybrid History

Given a read-write hybrid history H = (O, so), we want to test it for multi-level
correctness with respect to weak and strong consistency criteria αw and αs and
multilevel constraints given by ϕ.

We note that for the history to be correct, for every read operation that
returns a value that is not ⊥, there should exist a write operation writing the
same value to the variable that was read. The reads-from relation associates a
write operation to the read that reads its effect. Our strategy for testing the
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multilevel correctness of H is to enumerate all such reads-from relations rf, for
each rf we find visibility relations viswk and visst, respectively, containing rfwk and
rfst, such that they satisfy the visibility constraints imposed by the individual
consistency criteria, as well as the multilevel constraints, i.e., Hwk, viswk |= αw ,
Hst, visst |= αs and H, viswk, visst |= ϕ. We then check for the presence of a finite
number of bad-patterns in these visibility relations. The presence of a bad-pattern
implies that for every arbitration relation arb, there is some level � ∈ {wk, st}
such that either the arbitration constraint vis� �Write⊆ arb is not satisfied, or the
history (H�, vis�, arb) is not functionally correct.

If the history is multi-level correct, then we will find a witness consisting
of a reads-from relation rf and visibility relations viswk and visst extending rfwk
and rfst such that all the constraints are satisfied and there are no bad-patterns.
If the history is not multi-level correct, then for every pair of weak and strong
visibility relation extending every reads-from relation, either some constraint is
not satisfied or there exists a bad-pattern.

We present the bad-pattern characterization for multilevel correctness of a
hybrid history in the next subsection. In the following subsection, we provide
a procedure for computing the minimal visibility relations viswk and visst for a
given reads-from relation rf that satisfies αw , αs and ϕ.

4.1 Bad Pattern Characterization for Multilevel Correctness

We now characterize the correctness of hybrid histories based on the non-
existence of certain bad patterns. This is a generalization of the bad-pattern
characterization for causal consistency in [6].

Given a hybrid history, we can associate each Read with a unique write
operation from the history whose effect the Read operation reads from. We call
this the reads-from relation.

Definition 10 (Reads-From). A reads-from relation rf over a history H =
(O, so) is a binary relation such that

1. (oi, oj) ∈ rf =⇒ oi is a Write, oj is a Read, both on the same variable, such
that the value returned by oj is the value written by oi.

2. (oi, oj) ∈ rf ∧ (ok, oj) ∈ rf =⇒ oi = ok.
3. For all oj = Read(x, val , level) ∈ ORead

[∃ o ∈ OWrite which writes val to x =⇒ ∃ oi ∈ OWrite : (oi, oj) ∈ rf.]

Condition 1 associates a read operation with a write operation only if they
operate on the same variable and that the return value of the read operation
matches the argument of the write operation.

Condition 2 ensures that a read operation is associated with at most one
write operation.

Finally, Condition 3 insists that if a Read is not related to any Write via rf,
it is only because there is no matching Write in the hybrid history (i.e. a write
of the same value to the same variable).
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Let rf be a reads-from relation on a hybrid history H = (O, so). For a Read
operation o ∈ O, if there exists a Write operation o′ such that (o′, o) ∈ rf, then
we say that rf−1(o) = o′. If no such o′ exists, we set rf−1(o) = ⊥.

Further, we denote by rfwk and rfst the reads-from relation restricted to Hwk

and Hst respectively.
Suppose rf� is a reads-from relation over H�. We say that a visibility relation

vis� over H� extends rf� iff rf� ⊆ vis�. Suppose arb is an arbitration relation over
H�. Then, we say that (vis�, arb) realize rf� iff for all read operations o ∈ O�,
rf−1

� (o) = EffWritearb
vis�(o).

Given a reads-from relation rf� and a visibility relation vis� that extends it,
we can define a conflict relation that orders all the remaining maximal related
writes in MaxRelWritesvis�(o) of a read-operation o before the write-operation
rf−1

� (o). The conflict relation captures the essence of the arbitration relation for
a given reads-from relation and a visibility relation extending it.

Definition 11 (Conflict Relation). Let H� = (O�, so�) be a history. Let rf�
be a reads-from relation over H�. Let vis� ⊇ rf� be a visibility relation over H�.
We define the conflict relation for rf� and vis�, denoted CF(rf�, vis�), as the set

{(o′′, o′) | ∃o ∈ O� �Read: o′′, o′ ∈ MaxRelWritesvis(o) ∧ o′ = rf−1
� (o)}.

We now define the bad patterns that characterize the correctness of the
hybrid history.

Definition 12 (Bad Patterns for a hybrid history). Let H = (O, so) be a
hybrid history with weak and strong consistency criteria αw and αs respectively
and multilevel constraints ϕ. Let rf be a reads-from relation over H. For � ∈
{wk, st}, let vis� be a relation over O� with vis� ⊇ rf� such that Hwk, viswk |= αw ,
Hst, visst |= αs and H, viswk, visst |= ϕ. We define the following bad patterns for
(H, rf, viswk, visst). For some � ∈ {wk, st}:

– BADVISIBILITY: Cyclic(vis�)
– THINAIR: ∃o ∈ ORead ��: o returns a value that is not ⊥, but rf−1

� (o) = ⊥
– BADINITREAD: ∃o ∈ ORead ��: o returns ⊥ but RelWritesvis�(o) �= ∅
– BADREAD: ∃o ∈ ORead ��: rf−1

� (o) �∈ MaxRelWritesvis�(o)
– BADARB: Cyclic(

⋃
�∈{wk,st}

(CF(rf�, vis�) ∪ (vis�)Write))

BADVISIBILITY says that one of the visibility relations has a cycle.
THINAIR says that there exists a read in the history which reads a non-initial

value which is not written by any write operation in the hybrid history.
BADINITREAD says that there is a read operation on a variable which reads

the initial value despite having a non-initial write to that variable in its view.
BADREAD says that the write operation from which the read-operation reads

is not a maximal write, and there are other writes in the view of the read
operation that would have overwritten the value written by that write.
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BADARB says that the union of the conflict relations along visibility relation
restricted to only the Write operations has a cycle indicating that there exists
no total-order arb over OWrite, such that (vis�, arb) realizes rf�.

Multi-level correctness of a hybrid history can be characterized in terms of
non-existence of these bad patterns. The proof can be found in the full version
of this paper [8].

Theorem 1 (Bad patterns characterization). A hybrid history H =
(O, so) is said to be multilevel correct with respect to weak and strong consis-
tency criteria αw , αs and multilevel constraint ϕ iff there exists a reads-from
relation rf, and relations viswk ⊇ rfwk and visst ⊇ rfst respectively over Owk and
Ost such that Hwk, viswk |= αw , Hst, visst |= αs and H, viswk, visst |= ϕ and no bad
pattern exists in (H, rf, viswk, visst).

4.2 Constructing Minimal Visibility Relations

Suppose H = (O, so) is a hybrid history. Let αw and αs be the formulas defining
the weak and strong consistency criteria, and let ϕ be the formula defining the
multilevel constraints. Let α′

w = VisBasic(αw ) and α′
s = VisBasic(αs).

We provide a procedure that iterates over all the possible reads-from rela-
tions and constructs a minimal visibility relation extending the reads-from rela-
tion such that it satisfies αw , αs and ϕ. The pseudo-code for the procedure is
presented in Algorithm 1 and 2.

In Lines 1–12 we have a method MinVisOne that takes as input a visibil-
ity relation vis� for the history (O�, so�) and constructs an extension visn that
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satisfies the formula VisBasic(α�). We achieve this by iterating over the
RelTerms appearing in RelTerms(α�) (Line 6) and extending the previous visi-
bility relation visp with the evaluation of the term (Line 7). We do this until we
obtain a relation visn which we can no longer extend (Line 9). This final visibility
relation visn extends vis� and satisfies the formula VisBasic(α�).

In Lines 21–40, we have the procedure MinVisMulti which takes as inputs
the hybrid history (O, so), visibility relations viswk and visst and an individual
conjunct ψ appearing in the multilevel constraint ϕ. Since every visibility relation
trivially satisfies ψwrite

back or ψread
thru , for these multilevel constraint, we simply return

without modifying viswk or visst (Lines 22–23). In the remaining cases, when the
multi-level constraint is either ψwrite

back or ψread
thru , for �, �′ ∈ {wk, st}, the multilevel

constraints relates the write operations visible to the operations of level � in terms
of the writes seen by operations of level �′ that have occured previously in the
session. Depending on the conjunct ψ, we set � and �′ appropriately(Lines 24–27).
We then extend the visibility relation for level � by relating each �-operation to
the Writes that have been seen by any of the �′-operations prior to the �-operation
in its session (Line 33). The visibility relation for level �′ remains unchanged in
this case (Line 34).

We return these extended visibility relations as a pair, where the wk visibility
extension is followed by st visibility extension (Lines 36–39).

In Lines 43–61 we have the procedure ComputeStableExt which takes history
(O, so) a pair of visibility relations viswk and visst and extends it to visnwk and visnst
such that they individually satisfy VisBasic(αw ) (Line 49) and VisBasic(αs)
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(Line 51) respectively and jointly satisfy ϕ (Lines 53–56). We repeat this till we
can extend these relations no longer, which implies that they have satisfied all
the constraints (Lines 58–59).

The procedure TestMultiCorrect in Lines 42–57 takes as input a hybrid history
H = (O, so) whose multilevel correctness we want to check with respect to
formulas αw , αs and ϕ.

We first enumerate the set of possible reads-from relations on the history
(line 43). We then iterate through each of the reads-from relations rf to see
whether it can be extended to construct a minimal visibility relation satisfy-
ing all the constraints and having no bad-patterns (Lines 44–55). For each rf,
we construct minimal visibility relations vismin

wk and vismin
st extending rfwk and

rfst respectively and satisfying the subformulas VisBasic(αw ) and VisBasic(αs)
respectively (Lines 45, 48).

If αw (resp. αs) contains the subformula total(vis), we enumerate the set of all
the total orders extending vismin

wk (resp. vismin
st ) in the set visSetwk (resp. visSetst)

in Line 46 (resp. Line 49). If αw (resp. αs) does not contain the subformula
total(vis), then, visSetwk (resp. visSetst) will contain the only minimum visibility
relation extending rfwk (resp. rfst), i.e., vismin

wk (resp. vismin
st .).

For each pair of visibility relations from visSetwk and visSetst we compute
their stable extensions visstbwk and visstbst which individually satisfy αw and αs ,
respectively, and jointly satisfy ϕ (line 52). We then check if this computed
extension has a bad pattern (Line 54). If no bad patterns are found, we return
the (rf, viswk, visst) as the witness.

If none of the rf can be extended to obtain the required visibility relation,
we declare that the history is a bad history. We formally prove the correctness
of TestMultiCorrect in the full version of this work [8].

Theorem 2 (Correctness of TestMultiCorrect procedure). For a hybrid
read-write history H = (O, so) with weak and strong consistency criteria given
by αw and αs , respectively, and multilevel constraints given by ϕ, the procedure
TestMultiCorrect returns a witness (rf, viswk, visst) over H iff H is multi-level cor-
rect with respect to αw , αs and ϕ.

4.3 Complexity

Suppose H = (O, so) is history with |O| = N .
We note that in the procedure ComputeStableExt, at the end of every iteration

of the outer while-loop, the values of visnwk and visnst monotonically increase from
the end of the previous iteration. Since they are binary relations over finite
history H = (O, so) their size is upper bounded by O(N2). The time taken
to evaluate each term in RelTerms(α�) is again polynomial in N . Hence, the
time-complexity of ComputeStableExt is polynomial in N , say f(N).

We can observe from the procedure TestMultiCorrect that the main part that
adds to the complexity is iterating through all the reads-from relation, as well
as the total orders if αw or αs contain the subformula total(vis). Suppose the
number of read operations are k. Then the number of write operations is N − k,
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and there are O((N − k)k) reads-from relations. Since k = O(N), this can be
bound by O(2N log N ). Furthermore, for a given rf, if any of the levels � ∈ {wk, st}
require that the visibility relation be a total order, then we iterate over all
the total-orders containing the minimal visibility relation extending rf. Iterating
through this requires time bounded by O(2N log N ). Thus the worst case time
complexity of the procedure is O(f(N).2N log N ).

In general, the problem of testing the correctness of a hybrid history is in
NP. We need to guess the reads-from relation, and then, extend it to obtain the
minimal visibility relations satisfying the visibility constraints of the wk and the
st consistency criteria. If the visibility relation is required to be a total order,
we can guess the order. Extending this to derive fixed-point minimal visibility
relations that satisfy all the visibility constraints via ComputeStableExt requires
polynomial time. Subsequently checking for each of the bad-patterns requires
polynomial time.

Note that we can reduce the testing of the correctness of a regular history
(that contains only a single level of Read and Write operations) with respect to
consistency criterion α to this procedure by defining the level of all the read
operations to st. We set αs to α, αw to �, and ϕ to ψwrite

back ∧ ψread
thru . For any

reads-from relation rf, rfwk = ∅. Thus viswk = ∅, trivially satisfying αw as well
as ϕ. Thus, the lower bound for testing the correctness of the hybrid history
H is the complexity of testing the correctness of the Hwk and Hst with respect
to their respective consistency criteria. It has been shown in [14] that testing
the correctness of a read-write history with respect to sequential consistency
is NP-COMPLETE. In [6], the authors use the same reduction to show that
testing the correctness with respect to causal consistency is NP-COMPLETE.
However, it can be shown that the reduction works for any consistency criterion
stronger than FIFO consistency, and checking correctness with respect to such
a consistency criterion is NP-COMPLETE. Thus, in general, though testing the
multi-level correctness of a hybrid history is a hard problem, the hardness is not
due to the multilevel constraints but due to the constraints of the individual
consistency criteria and the read-write specification.

In [6], the authors identify the class of read-write data-stores called data-
independent data-stores whose behaviour is not dependent on the exact values
written to the keys. Thus, for such stores, if there is a bad history, there is an
equivalent bad differentiated history where a particular value is written to a
particular memory location at most once. Thus, we can restrict our testing to
only the correctness of differentiated histories. The authors show that the prob-
lem of testing the correctness of differentiated-histories with respect to causal
consistency is solvable in polynomial time.

Note that for differentiated histories, there is exactly one reads-from relation
which associates every Read operation with at most one Write operation which
has written that value to the memory location read by the Read operation.
Thus, if neither of αw or αs contain the subformula total(vis), the procedure
TestMultiCorrect terminates in polynomial time. Thus, our procedure general-
izes the result from [6] to all the consistency criteria defined in terms of the
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set of formulas involving only visibility, but not totality constraints. Our proce-
dure checks the multi-level correctness of hybrid histories where the individual
consistency levels do not require the visibility relation to be a total order, in
polynomial time.

On the other hand, if one of αw or αs contains total(vis), then the worst case
complexity remains O(2N log N ). Once again, this does not come as a surprise,
since the problem of testing the correctness of a differentiated history w.r.t.
sequential consistency is not known to have a polynomial time solution.

5 Related Work

There is prior work that illustrates the need for multiple levels of consistency
provided by the distributed data-stores to provide a trade off between consistency
and availability/latency [2,17,18,20]. The work by Kraska et al. [18] provides a
transactional paradigm that allows applications to define the consistency level on
data instead of transactions, and also allows the application to switch consistency
guarantees at runtime. In the work by Guerraoui et al. [17], the authors provide
a generic library that allows applications to request multiple responses to the
same query, where the response that comes later in time is more-correct than
the prior responses. Thus, later responses are supposed to have more knowledge
of the state of the system compared to earlier responses. In our work, we have
defined multilevel constraints, which can model the requirement of incremental
consistency guarantees by requiring that subsequent strong responses see the
effects observed by prior weak responses.

Burckhardt [9] provides a generic methodology for formalizing the specifi-
cation of distributed data-stores in terms of histories, visibility and arbitration
orders and provides an axiomatic characterization for consistency criteria. In
our work, we have derived the specification for read-write stores based on this
formalism. We have adapted this characterization to define consistency criteria
as a conjunction of individual formulas. Our work extends [9] in terms of the
definition of hybrid histories and provides a definition of multi-level correctness
for read-write stores.

There is prior work on verifying the correctness of a behaviour with respect
to individual consistency criteria. Examples include [7], which deals with ver-
ifying the correctness with respect to eventual consistency, [5], which investi-
gates the feasibility of checking a concurrent implementation with respect to
a consistency criterion that has a sequential specification, including sequential
consistency, linearizability and conflict-serializability and [6], which focusses on
correctness with respect to causal consistency. Our work provides a generic pro-
cedure for checking the correctness of read-write histories for all these individual
consistency criteria. Further, [6] show that verification of correctness of a history
with respect to causal consistency is NP-COMPLETE. However, for differentiated
histories, the problem is solvable in polynomial time. In our work, we generalize
the technique of computing the minimal visibility relation and checking for the
absence of bad patterns for all the consistency criteria defined using our syn-
tax. In [12], the authors model quiescent consistency using Mazurkiewicz Trace
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Theory. They show that the testing problem (which they call the membership
problem) for a history is NP-COMPLETE. We cannot model quiescent consis-
tency in our framework since we cannot model a quiescent point. In [14], the
authors present a detailed complexity analysis of the problem of testing the
correctness of a history with respect to various consistency criteria. Our find-
ings are consistent with the results from [14] with respect to hardness of testing
consistency criteria that require the visibility relation to be a total order. In a
recent work [13], the authors provide a technique for testing the correctness of a
history of a data-store with respect to a weak consistency criterion. That work
also characterizes correctness in terms of minimal visibility relation extending
the session order (called program-order there) and the happened-before relation
(called returns-before relation in [9]). Our work applies this concept to read-write
stores, where we observe that correctness with respect to visibility constraints
can be satisfied by constructing a minimal visibility relation while the correct-
ness with respect to read-write specifications and arbitration constraints can be
reduced to checking for absence of certain bad patterns. In particular, our char-
acterization of the arbitration relation in terms of the conflict relation saves the
step of searching through all possible arbitration relations which is used in [13].

[16] deals with verification of red-blue consistency where, in a history, a subset
of operations are labelled red while the remaining are labelled blue. The blue
operations are expected to satisfy a weaker consistency criterion, while the red
operations are supposed to satisfy a stronger consistency criterion. The effects
of the strong operations and weak operations are visible to each other. We can
model this by setting ϕ = ψwrite

thru ∧ ψread
back .

Our work should also be contrasted with [3], which addresses the problem
of checking the consistency of CRDTs against their specifications, and covers a
wide range of CRDTs including replicated sets, flags, counters, registers, etc. The
relevant data structure in our case is registers, where the results are comparable
(checking w.r.t. the weaker consistency criterion is tractable). However, we also
consider registers with multiple consistency criteria in this paper, which is not
considered there.

Another related work is [4], which uses the reads-from relation (called
the write-read relation there) to show that testing the correctness of an exe-
cution (containing transactions) with respect to various consistency criteria like
Read Committed (RC), Read Atomic (RA), Causal Consistency (CC), Prefix
Consistency, and Snapshot Isolation. The key difference in the current work
is that we consider histories having multiple consistency levels simultaneously
while [4] considers executions consisting of transactions, under a single consis-
tency criterion.
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Abstract. Modern concurrent and distributed software is highly com-
plex. Techniques to reason about the correct behaviour of such software
are essential to ensure its reliability. To be able to reason about realistic
programs, these techniques must be modular and compositional as well as
practical by being supported by automated tools. However, many exist-
ing approaches for concurrency verification are theoretical and focus on
expressivity and generality. This paper contributes a technique for veri-
fying behavioural properties of concurrent and distributed programs that
makes a trade-off between expressivity and usability. The key idea of the
approach is that program behaviour is abstractly modelled using process
algebra, and analysed separately. The main difficulty is presented by
the typical abstraction gap between program implementations and their
models. Our approach bridges this gap by providing a deductive tech-
nique for formally linking programs with their process-algebraic models.
Our verification technique is modular and compositional, is proven sound
with Coq, and has been implemented in the automated concurrency ver-
ifier VerCors. Moreover, our technique is demonstrated on multiple case
studies, including the verification of a leader election protocol.

1 Introduction

Modern software is typically composed of multiple concurrent components that
communicate via shared or distributed interfaces. The concurrent nature of the
interactions between (sub)components makes such software highly complex as
well as notoriously difficult to develop correctly. To ensure the reliability of mod-
ern software, verification techniques are much-needed to aid software developers
to comprehend all possible concurrent system behaviours. To be able to reason
about realistic programs, these techniques must be modular and compositional,
but must also be practical by being supported by automated verifiers.

Even though verification of concurrent and distributed software is a very
active research field [11,13,30,41,44,50], most work is theoretical and focuses
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primarily on expressivity and generality. This paper contributes a scalable and
practical technique for verifying global behavioural properties of concurrent and
distributed programs that makes a trade-off between expressivity and usability:
rather than aiming for a unified approach to concurrency reasoning, we propose
a powerful sound technique that is implemented in an automated verification
tool, to reason automatically about realistic programs.

Reasoning about complex concurrent program behaviours is only practical if
conducted at a suitable level of abstraction that hides irrelevant implementation
details. This is because any real concurrent programming language with shared
memory, threads and locks, has only very little algebraic behaviour. In contrast,
process algebra offers an abstract, mathematically elegant way of expressing pro-
gram behaviour. For this reason, many believe that process algebra provides a
language for modelling and reasoning about the behaviour of concurrent pro-
grams at a suitable level of abstraction [1]. Our approach therefore uses process
algebra as a language for specifying program behaviour. Such a specification
can be seen as a model, the properties of which can additionally be checked
(say, by model checking against temporal logic formulas). The main difficulty
of this approach is dealing with the typical abstraction gap between program
implementations and their models. The unique contribution of our approach is
that it bridges this gap by providing a deductive technique for formally linking
programs with their process-algebraic models. These formal links preserve safety
properties; we leave the preservation of liveness properties for future work.

The key idea of the approach rests in the use of concurrent separation logic
to reason not only about data races and memory safety, which is standard, but
also about process-algebraic models (i.e., specified program behaviours), viewing
the latter as resources that can be split and consumed. This results in a modular
and compositional approach to establish that a program behaves as specified by
its abstract model. Our approach is formally justified by correctness results that
have mechanically been proven using Coq, including a machine-checked sound-
ness proof of the proof system, stating that any verified program is a refinement
of its abstract model. The verification technique has been been implemented
in the VerCors verifier for automated deductive verification of concurrent soft-
ware [6]. Finally, the approach has been applied on various case studies [34],
including a leader election protocol that is included in this paper.

We also recently successfully applied the techniques presented in this paper
on an industrial case study, concerning the formal verification of a safety-critical
traffic tunnel control system that is currently in use in Dutch traffic [36]. For
this case study we made a process algebraic model of the control software that
we analysed with mCRL2, and used the techniques presented in this paper to
prove that this model is a sound abstraction of the program’s behaviour.

An extended version of this paper is available as a technical report [46], which
contains more details on the formalisation of the approach and the case study.
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Contributions. This paper contributes a verification technique to reason about
the behaviour of shared-memory concurrent programs that is modular, compo-
sitional, sound (proven with Coq), and implemented in an automated verifier.

First Sect. 2 illustrates the technique on a small Owicki–Gries example. Then
Sect. 3 gives theoretical justification of the verification technique, as a concur-
rent separation logic with special constructs to handle process-algebraic models.
Section 4 gives more details on the Coq embedding of the program logic and its
soundness proof, and on its implementation in VerCors. Section 5 demonstrates
the approach on a larger case study: the verification of a leader election protocol.
Finally, Sect. 6 discusses related work and Sect. 7 concludes.

2 Approach

We first illustrate the approach on a simple example. In short, we abstractly
specify concurrent program behaviour as process algebra terms. Process algebra
terms are composed of atomic, indivisible actions. In our approach the actions are
logical descriptions of shared-memory modifications: they describe what changes
are allowed to a specified region of shared memory in the program. Actions
are then linked to the concrete instructions in the program code that compute
the memory updates. These links between the program and its abstract model
are established deductively, using a concurrent separation logic that is presented
later. Well-known techniques for process-algebraic reasoning can then be applied
to guarantee safety properties over all possible state changes, as described by
their compositions of actions. The novelty of the approach is that these safety
properties can then be relied upon in the program logic due to the established
formal connection between the program and its process-algebraic model.

Example Program. Consider the following program, which is a simple variant
of the classical concurrent Owicki–Gries example [38].

atomic
{

X := [E]; [E] := X + 4
} ∣∣∣∣∣

∣∣∣∣∣ atomic
{

Y := [E]; [E] := Y ∗ 4
}

This program consists of two concurrent threads: one that atomically incre-
ments the value at heap location E by four, while the other atomically multiplies
the value at E by four. The notation [E] denotes heap dereferencing, where E is
an expression whose evaluation determines the heap location to dereference.

The challenge is to modularly deduce the classical Owicki-Gries postcondi-
tion: after termination of both threads, the value at heap location E is either
4 ∗ (oldE + 4) or (4 ∗ oldE ) + 4 (depending on the interleaving of threads), where
oldE is the old value at E—the value of E at the pre-state of the computation.

Well-known classical approaches to deal with such concurrent programs [42]
include auxiliary state [38] and interference abstraction via rely-guarantee rea-
soning [20]. Modern program logics employ more intricate constructs, like atomic
Hoare triples [41] in the context of TaDa, or higher-order ghost state [23] in the
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context of Iris. However, the mentioned classical approaches typically do not
scale well, whereas such modern, theoretical approaches are hard to integrate
into (semi-)automated verifiers like VeriFast or VerCors.

In contrast, our approach is a balanced trade-off between expressivity and
usability: it is scalable as well as implemented in an automated deductive veri-
fier. The approach consists of the following three steps: (1) defining a process-
algebraic model OG = incr(4) ‖ mult(4) that is composed out of two actions, incr
and mult, that abstract the atomic sub-programs; (2) verifying the Owicki–Gries
postcondition algorithmically on the OG process; and (3) deductively verifying
that OG is a correct behavioural specification of the program’s execution flow
(i.e., verifying that all atomic state changes in the program have a corresponding
action in OG).The following paragraphs give more detail on these three steps.

Step 1: Specifying Program Behaviour. The first step is to construct a beha-
vioural specification OG of the example program. This process is defined as
the parallel composition of the actions incr(4) and mult(4), which specify the
behaviour of the atomic increment and multiplication in the program, respec-
tively. In our approach, program behaviour is specified logically, by associating
a contract to every action. For our example program, incr and mult have the
following contract:

requires true;
ensures x = \old(x) + n;
action incr(int n);

requires true;
ensures x = \old(x) ∗ n;
action mult(int n);

The variable x is a free, process-algebraic variable that is later linked to a
concrete heap location in the program (namely E). Moreover, the increment and
multiplication of 4 has now been generalised to an arbitrary integer n.

These two actions may be composed into a full behavioural specification of
the example program, by also assigning a top-level contract to OG:

requires true;
ensures x = (\old(x) + n) ∗ n ∨ x = (\old(x) ∗ n) + n;
process OG(int n) := incr(n) ‖ mult(n);

Step 2: Process-Algebraic Reasoning. The next step is to verify that OG satisfies
its contract, which can be reduced to standard process-algebraic analysis. We
say that OG satisfies its contract if all finite, action contract-complying traces of
OG satisfy the ensures clause. The standard approach to analyse OG is to first
linearise it to the bisimilar process term incr(n) · mult(n) + mult(n) · incr(n), and
then to prove its correctness by analysing all branches. VerCors currently does
the analysis by encoding the linearised process as input to the Viper verifier [29].
VerCors can indeed automatically establish that OG satisfies its postcondition.

Step 3: Deductively Linking Processes to Programs. The key idea of our approach
is that, by analysing how contract-complying action sequences change the values
of process-algebraic variables, we may indirectly reason about how the content
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1 oldE := [E];
2 M := process OG(4) over {x �→ E};
3 atomic {
4 X := [E];
5 action incr(4) do {
6 [E] := X + 4;
7 }
8 }

9 atomic {
10 Y := [E];
11 action mult(4) do {
12 [E] := Y ∗ 4;
13 }
14 }

15 finish M ;
16 assert E

1
↪−→ (oldE + 4) ∗ 4 ∨ E

1
↪−→ (oldE ∗ 4) + 4;

Fig. 1. The annotated Owicki–Gries example (the annotations are coloured blue).
(Color figure online)

at heap location E evolves over time. So the final step is to project this process-
algebraic reasoning onto program behaviour, by annotating the program.

Figure 1 shows the required program annotations. First, x is connected to E
by initialising a new model M on line 2 that executes according to OG(4). The
actions incr and mult are then linked to the corresponding subprograms on lines
5–7 and 11–13 by identifying action blocks in the code, using special program
annotations. We use these action annotations to verify in a thread-modular way
that the left thread performs the incr(4) action (on lines 5–7) and that the right
thread performs mult(4) (lines 11–13). As a result, when the program reaches the
finish annotation on line 15 all the actions of OG will have been performed. This
indirectly means that the content at heap location E has evolved as described
by OG, thus allowing the asserted postcondition on line 16 to be derived.

3 Formalisation

This section gives theoretical justification of the verification approach and
explains the underlying logical machinery. First, Sects. 3.1 and 3.2 briefly discuss
the syntax and semantics of process algebraic models and programs, respectively.
Then Sect. 3.3 presents the program logic as a concurrent separation logic with
assertions that allow to specify program behaviour as a process algebraic model.
Section 3.4 discusses the proof rules. Finally, Sect. 3.6 discusses soundness of the
approach. All these components have been fully formalised in Coq.

Due to space constraints, the technical presentation assumes a certain famil-
iarity with process algebra and separation logic. For more details we refer to the
accompanying technical report or to the Coq formalisation [46].

3.1 Process Algebraic Models

Process algebraic models are defined by the language Proc as follows, with
a, b, · · · ∈ Act the domain of actions, x, y, z, · · · ∈ ProcVar the domain of process
algebraic variables, and m,n, · · · ∈ Lit the domain of literals.
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Successful termination

ε↓ P ↓ Q↓
P · Q↓

P ↓
P + Q↓

Q↓
P + Q↓

P ↓ Q↓
P ‖ Q↓ P ∗ ↓

Small-step reduction rules (excerpt)

pstep-seq-l

(P, σ) a−−→ (P ′, σ′)

(P · Q, σ) a−−→ (P ′ · Q, σ′)

pstep-seq-r

P ↓ (Q, σ) a−−→ (Q′, σ′)

(P · Q, σ) a−−→ (Q′, σ′)

pstep-act
[[pre(a)]](σ) [[post(a)]](σ′)

(a, σ) a−−→ (ε, σ′)

Fig. 2. The small-step operational semantics of process algebraic models.

Definition 1 (Process expressions, Process conditions, Processes).

e ∈ ProcExpr ::= m | x | e + e | e − e | · · ·
b ∈ ProcCond ::= true | false | ¬b | b ∧ b | e = e | e < e | · · ·

P,Q ∈ Proc ::= ε | δ | a | P · Q | P + Q | P ‖ Q | P ∗

As usual, ε is the empty process that has no behaviour, whereas δ is the dead-
locked process that neither progresses nor terminates. The process P · Q is the
sequential composition of P and Q, while P +Q denotes their non-deterministic
choice. The process P ‖ Q is the parallel composition P and Q. Finally, P ∗ is
the Kleene iteration of P and denotes a sequence of zero or more P ’s.

The verification approach uses process algebraic models in the presence of
data, implemented via action contracts. These action contracts make the process
algebra language non-standard. Action contracts consist of pre- and postcondi-
tions that logically describe the state changes imposed by the action. Each action
is assumed to have an associated contract that can be obtained via the functions
pre, post : Act → ProcCond . All pre- and postconditions are of type ProcCond ,
which is the domain of Boolean expressions over process algebraic variables.

Semantics. The operational semantics of processes is expressed as a binary
reduction relation · ·−→ · ⊆ ProcConf × Act × ProcConf over process configura-
tions ProcConf � Proc ×ProcStore, labelled with actions from Act . The notion
of data is implemented via process stores σ ∈ ProcStore � ProcVar → Val that
map process algebraic variables to a semantic domain Val of values.

Most of the reduction rules are standard. Figure 2 gives an overview of the
non-standard rules. All other transition rules are deferred to [46].

To define the transition rule pstep-seq-r for sequential composition, it is
common in process algebra with ε to use an explicit notion of successful termi-
nation [4]. Successful termination P ↓ of any process P intuitively means that
P has the choice to have no further behaviour and thus to behave as ε. Further-
more, the pstep-act transition rule for action handling permits state to change
in any way that complies with the corresponding action contract.
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step-proc-init
(X := process P over Π, h, s) � (skip, h, s)

step-proc-finish
(finish X, h, s) � (skip, h, s)

step-act
(C, h, s) � (C′, h′, s′)

(action X.a do C, h, s) � (action X.a do C′, h′, s′)

step-act-finish
(action X.a do skip, h, s) � (skip, h, s)

Fig. 3. An excerpt of the small-step operational semantics of programs.

The program logic allows one to handle process algebraic models up to bisim-
ulation. We write P ∼= Q to denote that P and Q are bisimilar (i.e., behaviourally
equivalent). Bisimilarity is a congruence with respect to all process algebraic
connectives. Moreover, we indeed have that P ↓ implies P ∼= P + ε for any P .

3.2 Programs

Our approach is formalised on the following simple concurrent pointer language,
where X,Y,Z, · · · ∈ Var are (program) variables.

Definition 2 (Expressions, Conditions, Programs).

E ∈ Expr ::= n | X | E + E | E − E | · · ·
B ∈ Cond ::= true | false | ¬B | B ∧ B | E = E | E < E | · · ·

Π ∈ AbstrBinder ::= {x0 �→ E0, . . . , xn �→ En}
C ∈ Cmd ::= skip | X := E | X := [E] | [E] := E | C;C | C ‖ C

| X := alloc E | dispose E | atomic C

| if B then C else C | while B do C

| X := process P over Π | action X.a do C | finish X

This language is a variation of the language proposed by [9,32], extended with
specification-only commands (displayed in blue) for handling process algebraic
models in the logic. These commands are ignored during program execution.

Specification-wise, X := process P over Π initialises a new process alge-
braic model that is represented by the process term P , with Π a finite mapping
from process algebraic variables to heap locations. Π is used to connect abstract
state (i.e., the state of process algebraic models) to concrete program state (i.e.,
heap entries) and is therefore referred to as an abstraction binder.

The finish X command concludes the model that is identified by X, given
that the associated process successfully terminates. By concludes we mean that
the model’s postcondition can be relied upon and used in the proof system.

Finally, action X.a do C executes the command C in the context of the
abstract model X as the action a. In particular, this specification command
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states that, by executing C (according to the operational semantics of programs),
the action a is executed in the specified process algebraic model.

Semantics. The operational semantics of programs is expressed as a small-
step reduction relation · � · ⊆ Conf × Conf , between (program) configurations
Conf � Cmd × Heap × Store. Program configurations (C, h, s) ∈ Conf consist
of a program C, as well as a heap h ∈ Heap � Val ⇀fin Val that models shared
memory and a store s ∈ Store � Var → Val that models thread-local memory.

Figure 3 shows an excerpt of the new reduction rules for ghost commands.
All other reduction rules are standard in spirit and are deferred to [46].

Most importantly, all ghost commands are specification constructs: they do
not affect the program state and are essentially handled as if they were com-
ments. However, observe that step-proc-finish and step-act-finish are aux-
iliary transition steps that reduce a finished process or action to skip. These are
not strictly needed, but make it more convenient to prove soundness of the logic.

3.3 Program Logic

Our program logic builds on intuitionistic1 concurrent separation logic (CSL),
where the assertion language is defined by the following grammar.

Definition 3 (Assertions).

t ∈ PointsToType ::= std | proc | act
P,Q,R, · · · ∈ Assn ::= B | ∀X.P | ∃X.P | P ∨ Q | P ∗ Q | P −∗Q

| ∗i∈IPi | E
π

↪−→t E | Procπ(X, b, P,Π)

The assertion P ∗ Q is the separating conjunction of separation logic and
states that P and Q hold on disjoint parts of the heap. This for example means
that P and Q cannot both express write access to the same heap entry. The
assertion ∗i∈IPi is the iteration of ∗ and is equivalent to P0 ∗ · · · ∗ Pn given that
I = {0, . . . , n}. Furthermore, the −∗ connective from separation logic is known
as the magic wand and expresses hypothetical modifications of the current state.

Apart from these standard CSL connectives, the assertion language contains
three different heap ownership predicates π

↪−→t, with π ∈ (0, 1]Q a fractional per-
mission in the style of Boyland [8] and t the heap ownership type, where:

– E
π

↪−→std E′ is the standard heap ownership predicate from separation logic,
that provides read-only access for 0 < π < 1 and write access in case π = 1.

– E
π

↪−→proc E′ is the process heap ownership predicate, which indicates that
the heap location E is bound to an active process algebraic model, but in a
read-only manner: it only provides read-only access, even when π = 1.

1 This intuitively means that the program logic is able to “forget” about resources,
which fits naturally with garbage collecting languages like Java and C#.
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– E
π

↪−→act E′ is the action heap ownership predicate, which indicates that the
heap location E is bound by an active process algebraic model and is used in
the context of an action block, in a read/write manner.

The distinction between different types of heap ownership is needed for the
program logic to be sound, for example to disallow the deallocation of memory
that is bound by a process algebraic model. Moreover, observe that E

π
↪−→proc E′

predicates never provide write access to E. However, we shall later see that the
proof system allows one to upgrade π

↪−→proc predicates to π
↪−→act inside action

blocks, and π
↪−→act again provides write access if π = 1. This system of upgrading

enforces that all modifications to E happen in the context of action X.a do C
commands, and can therefore be recorded in the model X as the action a.

Finally, the Procπ(X, b, P,Π) assertion expresses ownership of the program
model that is identified by X and is represented by the process P . The con-
dition b is the postcondition of the abstract model. Furthermore, Π connects
the abstract model to the concrete program, by mapping the models’ process
algebraic variables to heap locations in the program. And last, the fractional
permission π is needed to implement the ownership system of program models.
Fractional permissions are only used here to be able to reconstruct the full Proc1
predicate.

Semantics of Assertions. The interpretation of assertions is defined as a
modelling relation ph, pm, s, g |= P, where the models (ph, pm, s, g) consist of
the following four components:

– A permission heap, ph ∈ PermHeap � Var → free | 〈v〉π
t , that maps values

(heap locations) to either free (unoccupied) or to occupied entries 〈v〉π
t . Occu-

pied heap cells store a value v, as well as a type t to associate heap cells to
the three different kinds of heap ownership predicates used in the logic.

– A process map, pm ∈ ProcMap � Var → free | 〈b, P, Λ〉π, defined as a total
mapping from values (process identifiers) to process map entries. Occupied
entries have the form 〈b, P, Λ〉π and model ownership of process algebraic
models in the program logic. The components Λ ∈ ProcVar ⇀fin Val in turn
define the models of the abstraction binders (that were defined in Defini-
tion 2).

– Two stores, s, g ∈ Store, that gives an interpretation to all variables used in
program and ghost code, respectively. Ghost variables do not interfere with
regular program execution and are therefore separated from program variables
and maintained in an extra store g, referred to as the ghost store.

The semantics of assertions is defined as a modelling relation · |= · between
models of the logic PermHeap×ProcMap×Store2 and assertions Assn as follows:

Definition 4 (Semantics of assertions (excerpt)). The interpretation of
assertions ph, pm, s, g |= P is defined by structural recursion on P in the stan-
dard way, except for the following two cases:
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↪−→-splitmerge
E1

π1+π2↪−−−−→t E2 �	 E1
π1↪−→t E2 ∗ E1

π2↪−→t E2

proc-splitmerge
Procπ1+π2(X, b, P1 ‖ P2, Π) �	 Procπ1(X, b, P1, Π) ∗ Procπ2(X, b, P2, Π)

proc-∼=
P ∼= Q

Procπ(X, b, P, Π) �	 Procπ(X, b, Q, Π)

Fig. 4. Selected entailment rules of the program logic.

ph, pm, s, g |= E1
π

↪−→t E2 iff ph([[E1]](s)) = 〈[[E2]](s)〉π′
t ∧ π ≤ π′

ph, pm, s, g |= Procπ(X, b, P,Π) iff ∃P ′ . pm(g(X)) = 〈b, P ‖P ′, [[Π]](s)〉π′

∧ π ≤ π′ ∧ (π = 1 =⇒ P ′ = ε)

The full definition of the semantics of assertions can be found in [46].
Clarifying the non-standard cases, E

π
↪−→t E′ is satisfied if ph holds an entry at

location E that matches with the ownership type t, with an associated fractional
permission that is at least π. Process ownership assertions Procπ(X, b, P,Π) are
satisfied if pm holds a matching entry with a fractional permission at least π, as
well as a process that has at least the behaviour of P . The denotation [[Π]](s)
gives the model of the abstraction binder Π, and is defined as follows:

Definition 5 (Semantics of abstraction binders).

[[{x0 �→ E0, . . . , xn �→ En}]](s) � {x0 �→ [[E0]](s), . . . , xn �→ [[En]](s)}

3.4 Entailment Rules

Figure 4 shows the non-standard entailment rules of the program logic. All other,
standard rules can be found in [46]. The notation P �� Q is a shorthand notation
for P � Q and Q � P, and indicates that the rule can be used in both directions.
All rules have shown to be sound in the standard sense, using Coq.

Clarifying the entailment rules, ↪−→-splitmerge expresses that heap owner-
ship predicates π

↪−→t of any type t may be split (in the left-to-right direction) and
be merged (right-to-left) along π. This allows one to distribute heap ownership
among the different threads in the program. Likewise, proc-splitmerge allows
one to split and merge process ownership along parallel compositions inside
abstract models, to distribute them over different threads. More specifically, by
splitting a predicate Procπ1+π2(X, b, P1 ‖ P2,Π) into two, both parts can be dis-
tributed over different concurrent threads, so that thread i can establish that it
executes as prescribed by its part Procπi

(X, b, Pi,Π) of the abstraction. After-
wards, when the threads join again, the remaining partial abstractions can be
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ht-procinit
fv(b1) ⊆ dom(Π) = {x0, . . . , xn}

I = {0, . . . , n} X �∈ fv(R, E0, . . . , En) B = b1[xi/Ei]∀i∈I

Γ, {b1} P {b2};R 	

{
∗i∈IΠ(xi)

1
↪−→std Ei ∗ B

}
X := processP overΠ{∗i∈IΠ(xi)

1
↪−→proc Ei ∗ B ∗

Proc1(X, b2, P, Π)

}

ht-procupdate
fv(a) = {x0, . . . , xn} ⊆ dom(Π) I = {0, . . . , n}
B1 = pre(a)[xi/Ei]∀i∈I B2 = post(a)[xi/Ei]∀i∈I

Γ ;R 	 {∗i∈IΠ(xi)
πi↪−→act Ei ∗ B1 ∗ P} C {∗i∈IΠ(xi)

πi↪−→act E′
i ∗ B2 ∗ Q}

Γ ;R 	

{ ∗i∈IΠ(xi)
πi↪−→proc Ei ∗ B1 ∗

Procπ(X, b, a · P + Q, Π) ∗ P

}

action X.a do C{∗i∈IΠ(xi)
πi↪−→proc E′

i ∗ B2 ∗
Procπ(X, b, P, Π) ∗ Q

}

ht-procfinish
fv(b) ⊆ dom(Π) = {x0, . . . , xn} I = {0, . . . , n} B = b[xi/Ei]∀i∈I P ↓

Γ ;R 	
{∗i∈IΠ(xi)

1
↪−→proc Ei ∗

Proc1(X, b, P, Π)

}
finish X

{
∗i∈IΠ(xi)

1
↪−→std Ei ∗ B

}

Fig. 5. The non-standard Hoare proof rules related to abstract models.

merged back into a single predicate. This system thus provides a compositional
way of verifying that programs meet their abstract models.

Finally, proc-∼= allows one to replace program abstractions by bisimilar ones.
This rule is used to rewrite processes in a canonic form used by some other rules.

3.5 Program Judgments

Judgments of programs are defined as sequents of the form Γ ;R � {P}C {Q},
where R is a resource invariant [9], and Γ is a process environment :

Definition 6 (Process environment).

Γ ::= ∅ | Γ, {b}P {b}
Process environments are defined in the style of interface specifications [33],

and are essentially a series of Hoare-triples {b1}P {b2} for processes P , that
constitute the top-level contracts of the programs’ abstract models.

The intuitive meaning of a program judgment Γ ;R � {P}C {Q} is that,
starting from any state satisfying P ∗ R, the invariant R is maintained through-
out execution of C, and any final state upon termination of C will satisfy Q ∗ R.
Moreover, the proof derivation of C may use any abstract model that is in Γ .
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Figure 5 presents the proof rules that handle process algebraic abstractions.
All other proof rules are deferred to [46] due to space constraints.

The ht-procinit rule handles initialisation of an abstract model P over a
set of heap locations as specified by Π. Standard points-to predicates with write-
permission are required for any heap location that is to be bound by P , and these
are converted to 1

↪−→proc. Moreover, ht-procinit requires that the precondition
of P holds, which is constructed from b1 by replacing all process variables by the
symbolic values at the corresponding heap locations. A Proc1 predicate with full
permission is ensured, containing the postcondition b2 of the abstract model.

The ht-procupdate rule handles updates to program abstractions, by per-
forming an action a in the context of an action X.a do C program, provided
that C respects the contract of a. As a precondition, a predicate of the form
Procπ(X, b, a · P + Q,Π) is required for some π. The process component of this
predicate must be of the form a · P + Q to allow performing the a action. After
performing a, this process component will be reduced to P , thereby discarding
Q as the choice is made not to follow execution as prescribed by Q. In order to
get process components into the required format a · P + Q, the proc-∼= rule can
be used to rewrite process components up to bisimilarity. Furthermore, π

↪−→proc

predicates are required for any heap location that is bound by Π. These points-to
predicates are needed to resolve the pre- and postcondition of a.

Finally, ht-procfinish handles finalisation of program models that success-
fully terminate. A predicate Proc1(X, b, P,Π) with full permission is required,
which means that no other thread can have any fragment of the model. This
predicate is exchanged for the postcondition of the abstraction. This postcon-
dition can be established, since (i) the contracts of processes in Γ are assumed
as their validity is checked externally, and b is a postcondition of one of these
contracts; (ii) the abstraction has been initialised in a state satisfying the pre-
condition of that contract; and (iii) the leftover process P is able to successfully
terminate. Lastly, all 1

↪−→proc predicates are converted back to 1
↪−→std to indicate

that the associated heap locations are no longer bound by the abstraction.

3.6 Soundness

The soundness proof of the program logic has been fully mechanised using the
Coq proof assistant, as a deep embedding that is inspired by [53]. The overall Coq
implementation comprises roughly 15.000 lines of code. Proving soundness was
non-trivial and required substantial auxiliary definitions. The Coq development
and its documentation can be found at [46].

The soundness theorem relates program judgments to the operational seman-
tics of programs, and amounts to the following: if a proof Γ ;R � {P}C {Q} can
be derived for any program C, and if the contracts in Γ of all abstract models
of C are satisfied, then C executes safely for any number of computation steps.
To concretise this, we first define the semantics of program judgments.
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Definition 7 (Semantics of program judgments).

Γ ;R |= {P}C {Q} � |= Γ =⇒ ∀n, ph, pm, s, g .

ph, pm, s, g |= P =⇒ safen
Γ (C, ph, pm, s, g,R,Q)

The entailment |= Γ intuitively means that, for any Hoare triple {b1}P {b2}
in Γ and for any σ such that [[b1]](σ), we have that any run (P, σ) −→∗ (P ′, σ′)
that terminates (i.e., P ′ ↓) ends up with a store σ′ for which [[b2]](σ′) holds.

The predicate safen
Γ defines execution safety for n computation steps, mean-

ing that the program is: data-race free, memory safe, complies with its pre-
and postconditions, and refines its process algebraic models, for n computation
steps. This definition extends the well-known inductive definition of configura-
tion safety of Vafeiadis [53] by adding machinery to handle process algebraic
models. The most important extension is a simulation argument between pro-
gram execution (with respect to �) and the execution of all active models (with
respect to a−−→). However, as the reduction steps of these two semantics do not
directly correspond one-to-one, this simulation is established via an intermedi-
ate, instrumented semantics. This intermediate semantics is defined in terms of
�ghost transitions that define the lock-step execution of program transitions �
and the transitions a−−→ of their abstractions. Our definition of “executing safely
for n execution steps” includes that all � steps can be simulated by �ghost

steps and vice versa, for n execution steps. Thus, the end-result is a refinement
between programs and their abstract models.

Theorem 1 (Soundness). Γ ;R � {P}C {Q} =⇒ Γ ;R |= {P}C {Q}
The underlying idea of the above definition, i.e., having a continuation-

passing style definition for program judgments, has first been applied in [2] and
has further been generalised in [16] and [17]. Moreover, the idea of defining (pro-
gram) execution safety in terms of an inductive predicate originates from [3].
These two concepts have been reconciled in [53] into a formalisation for the clas-
sical CSL of Brookes [9], that has been encoded and mechanically been proven in
both Isabelle and Coq. Our definition builds on the latter, by having a refinement
between programs and abstractions encoded in safe.

4 Implementation

The verification approach has been implemented in the VerCors verifier, which
specialises in automated verification of parallel and concurrent programs writ-
ten in high-level languages, like (subsets of) Java and C [6]. VerCors applies a
correctness-preserving translation of the input program into a sequential imper-
ative language, and delegates the generation of verification conditions to the
Viper verifier [29] and their verification ultimately to Z3.

Tool support for our technique has been implemented in VerCors for lan-
guages with fork/join concurrency and statically-scoped parallel constructs [34].
This is done defining an axiomatic domain for processes in Viper, consisting of
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constructors for all process-algebraic connectives, supported by standard process-
algebraic axioms. The Procπ assertions are encoded as predicates over these pro-
cess types. The three different ownership types π

↪−→t are encoded by defining extra
fields that maintain the ownership status t for each global reference.

To analyse process-algebraic models, VerCors first linearises all processes and
then encodes the linear processes and their contracts into Viper. The linearisa-
tion algorithm is based on a rewrite system that uses a subset of the standard
process-algebraic axioms as rewrite rules [51] to eliminate parallel connectives.

The VerCors implementation of the abstraction approach is much richer than
the simple language of Sect. 3 that is used to formalise the approach on. Notably,
the abstraction language in VerCors supports general recursion instead of Kleene
iteration, and allows parameterising process and action declarations by data.
VerCors also has support for several axiomatic data types that enrich the expres-
sivity of reasoning with abstractions, like (multi)sets and sequences.

5 Case Study

Finally, we demonstrate our verification approach on a well-known version of the
leader election protocol [35] that is based on shared memory. Most importantly,
this case study shows how our approach bridges the typical abstraction gap
between process algebraic models and program implementations. In particular,
it shows how a high-level process algebraic model of a leader election protocol,
together with a contract for this model (checked with mCRL2 for various inputs),
is formally connected to an actual program implementation of the protocol.

The protocol is performed by N concurrent workers that are organised in a
ring, so that worker i only sends to worker i + 1 and only receives from worker
i−1, modulo N . The goal is to determine a leader among these workers. To find
a leader, the election procedure assumes that each worker i receives a unique
integer value to start with, and then operates in N rounds. In every round (i)
each worker sends the highest value it encountered so far to its right neighbour,
(ii) receives a value from its left neighbour, and (iii) remembers the highest of
the two. The result after N rounds is that all workers know the highest unique
value in the network, allowing its original owner to announce itself as leader.

The case study has been verified with VerCors using the presented approach.
All workers communicate via two standard non-blocking operations for message
passing: mp send(r,msg) for sending a message msg to the worker with rank
r2, and msg := mp recv(r) for receiving a message from worker r. The election
protocol is implemented on top of this message passing system.

The main challenge of this case study is to define a message passing system
on the process algebra level that matches this implementation. To design such
a system we follow the ideas of [35]; by defining two actions, send(r,msg) and
recv(r,msg), that abstractly describe the behaviour of the concrete implementa-
tions in mp send and mp recv, respectively. Moreover, process algebraic summa-
tion Σx∈DP is used to quantify over the possible messages that mp recv might
2 The identifiers of workers are typically called ranks in message passing terminology.
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1 seq〈seq〈Msg〉〉 chan; // communication channels between workers
2 int lead ; // rank of the worker that is announced as leader
3

4 /∗ Action for sending messages. ∗/
5 requires 0 ≤ rank < |chan|;
6 ensures chan[rank ] = \old(chan[rank ]) + {msg};
7 ensures ∀r′ : int . (0 ≤ r′ < |chan| ∧ r′ �= rank) ⇒ chan[r′] = \old(chan[r′]);
8 action send(int rank , Msg msg);
9

10 /∗ Action for receiving messages. ∗/
11 requires 0 ≤ rank < |chan|;
12 ensures {msg} + chan[rank ] = \old(chan[rank ]);
13 ensures ∀r′ : int . (0 ≤ r′ < |chan| ∧ r′ �= rank) ⇒ chan[r′] = \old(chan[r′]);
14 action recv(int rank, Msg msg);
15

16 /∗ Action for announcing a leader. ∗/
17 requires 0 ≤ rank < |chan|;
18 ensures lead = rank ;
19 action announce(int rank);
20

21 /∗ Local behavioural specification for each worker. ∗/
22 requires 0 ≤ n ≤ |chan| ∧ 0 ≤ rank < |chan|;
23 process Elect(int rank , Msg v0, Msg v, int n) �
24 if 0 < n then send((rank + 1)% |chan|, v) ·
25 Σv′∈Msg recv(rank , v′) · Elect(rank , v0, (v, v′), n − 1)
26 else (if v = v0 then announce(rank) else ε);
27

28 /∗ Global behavioural specification of the election protocol. ∗/
29 requires |vs| = |chan|;
30 requires ∀i, j : int . (0 ≤ i < |vs| ∧ 0 ≤ j < |vs| ∧ vs[i] = vs[j]) ⇒ i = j;
31 ensures |vs| = |chan| ∧ 0 ≤ lead < |vs|;
32 ensures ∀i : int . (0 ≤ i < |vs|) ⇒ vs[i] ≤ vs[lead ];
33 process ParElect(seq〈Msg〉 vs) �
34 Elect(0, vs[0], vs[0], |vs|) ‖ · · · ‖ Elect(|vs|−1, vs[|vs|−1], vs[|vs|−1], |vs|);

Fig. 6. Behavioural specification of the leader election protocol.

receive. The summation operator Σx∈DP quantifies over a set D = {d0, . . . , dn}
of data and is defined as the (finite) sequence P [x/d0] + · · · + P [x/dn] of non-
deterministic choices. The following two rules illustrate how the abstract send
and recv actions are connected to mp send and mp recv (observe that both these
actions are parameterised by data3).

3 Recall that the VerCors implementation of our abstraction technique is much richer
than the simple language of Sect. 3 that is used to formalise the approach on.
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{send(r,msg) · P} mp send(r,msg) {P}
{Σx∈Msg recv(r, x) · P}msg := mp recv(r) {P [x/msg ]}

Finally, we construct a process-algebraic model of the election protocol using
send and recv, and verify that the implementation adheres to this model. This
model has been analysed with mCRL2 for various inputs (since mCRL2 is essen-
tially finite-state) to establish the global property of announcing the correct
leader. The deductive proof of the program can then rely on this property.

5.1 Behavioural Specification

Our main goal is proving that the implementation determines the correct leader
upon termination. To prove this, we first define a behavioural specification of
the election protocol that hides all irrelevant implementation details, and prove
the correctness property on this specification. Process algebra provides a proper
abstraction level that suits our needs well, as the behaviour of leader election
can concisely be specified in terms of sequences of sends and receives.

Figure 6 presents the process algebraic specification. In particular, ParElect
specifies the global behaviour whereas Elect specifies the thread-local behaviour.
The ParElect process encodes the parallel composition of all eligible participants.
ParElect takes a sequence vs of initial values as argument, whose length equals
the total number of workers by its precondition. ParElect’s postcondition states
that lead must be a valid rank after termination and that vs[lead ] be the highest
initial worker value. It follows that worker lead is the correctly chosen leader.

The Elect process takes four arguments, which are: the rank of the worker, the
initial unique value v0 of that worker, the current highest value v encountered
by that worker, and finally the number n of remaining rounds. The rounds are
implemented via general recursion. In each round all workers send their current
highest value v to their right neighbour (on line 24), receive a value v’ in return
from their left neighbour (line 25), and continue with the highest of the two.
The extra announce action is declared and used to announce the leader after n
rounds. The postcondition of announce is that lead stores the leader’s rank.

The contracts of send and recv describe the behaviour of standard non-
blocking message passing. Communication on the specification level is imple-
mented via message queues. Message queues are defined as sequences of messages
that are taken from a finite domain Msg . Since workers are organised in a ring
in this case, every worker can do with only a single queue and the global com-
munication channel architecture can be defined as a sequence of message queues:
chan in the figure. The action contract of send(r,msg) expresses enqueuing the
message msg onto the message queue chan[r] of the worker with rank r. The
postcondition of send is that msg has been enqueued onto chan[r] and that
the queues chan[r′] for any r′ �= r have not been altered. Likewise, the contract
of recv(r,msg) expresses dequeuing msg from chan[r]. The expression \old(e)
indicates that e is to be evaluated with respect to the pre-state of computation.
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1 global seq〈seq〈Msg〉〉 C; // implementation of communication channels
2 global int N ; // total number of workers
3 global int L; // rank of the leader to be announced
4

5 lock invariant L
1

↪−→proc − ∗ ∃c : seq〈seq〈Msg〉〉 . C
1

↪−→proc c ∗ N
1
2↪−→proc |c|;

6

7 given p, P, Q, Π, π, π′;
8 context {chan �→ C} ∈ Π ∗ ∃n . N

π
↪−→proc n ∗ 0 ≤ rank < n;

9 requires Procπ′(X, p, send(rank , msg) · P + Q, Π);
10 ensures Procπ′(X, p, P, Π);
11 void (ref X, int rank , Msg msg) { /∗ omitted ∗/ }
12

13 given p, P, Q, Π, π, π′;
14 context {chan �→ C} ∈ Π ∗ ∃n . N

π
↪−→proc n ∗ 0 ≤ rank < n;

15 requires Procπ′(X, p, Σm∈Msg recv(rank , m) · P + Q, Π);
16 ensures Procπ′(X, p, P [m/\result], Π);
17 Msg (ref X, int rank) { /∗ omitted ∗/ }
18

19 given n, p, Π, π, π′;
20 context {lead �→ L, chan �→ C} ∈ Π ∗ N

π
↪−→proc n ∗ 0 ≤ rank < n;

21 requires Procπ′(X, p,Elect(rank , v0, v, n), Π);
22 ensures Procπ′(X, p, ε, Π);
23 void (ref X, int rank , Msg v0, Msg v) {
24 loop invariant 0 ≤ i ≤ n;
25 loop invariant Procπ′(X, p,Elect(rank , v0, v, n − i), Π);
26 for (int i := 0 to N) {
27 (X, (rank + 1)%N , v) with {
28 P := Σx∈Msg recv(rank , x) · Elect(rank , v0, (v, x), n − i − 1),
29 Q := ε, p := p, Π := Π, π := π, π′ := π′

30 };
31 Msg v′ := (X, rank) with {
32 P := Elect(rank , v0, (v, v′), n − i − 1),
33 Q := ε, p := p, Π := Π, π := π, π′ := π′

34 };
35 v := (v, v′);
36 }
37 if (v = v0) {
38 atomic { action X.announce(rank) do L := rank ; }
39 }
40 }

Fig. 7. The annotated implementation of the leader election protocol. Annotations of
the form context P are shorthand for requires P; ensures P.
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41 given p, Π;
42 context N

1
2↪−→proc |vs| ∗ 0 < |vs|;

43 requires Proc1(X, p,ParElect(vs), Π);
44 ensures Proc1(X, p, ε, Π);
45 void parelect(ref X, seq〈Msg〉 vs) {
46 context 0 ≤ rank < |vs|;
47 requires Proc1/|vs|(X, p,Elect(rank , vs[rank ], vs[rank ], |vs|), Π ′);
48 ensures Proc1/|vs|(X, p, ε, Π);
49 par (int rank := 0 to N) {
50 elect(X, vs[rank ], vs[rank ]) with {
51 n := N , p := p, Π := Π, π := 1/(4|vs|), π′ := 1/|vs|
52 };
53 }
54 }
55

56 context N
1

↪−→std − ∗ C
1

↪−→std − ∗ L
1

↪−→std −;
57 requires ∀i, j : int . (0 ≤ i < |vs| ∧ 0 ≤ j < |vs| ∧ vs[i] = vs[j]) ⇒ i = j;
58 ensures 0 ≤ \result < |vs|;
59 ensures ∀i : int . (0 ≤ i < |vs|) ⇒ vs[i] ≤ vs[\result];
60 int main(seq〈Msg〉 vs) {
61 N := |vs|, C := initialiseChannels(N);
62 X := process ParElect(vs) over {chan �→ C, lead �→ L};
63 commitLock(); // initialise the lock invariant
64 parelect(X, vs) with { p := ParElect(vs), Π := {chan �→ C, lead �→ L} };
65 uncommitLock(); // reclaim the lock invariant
66 finish X; // obtain the global correctness property from the abstraction
67 return L; // return rank of leader
68 }

Fig. 8. Bootstrap procedures of the leader election protocol.

5.2 Protocol Implementation

Figure 7 presents the annotated implementation of the election protocol4. The
elect method contains the code that is executed by every worker. The contract
of elect(X, rank , v0, v) states that the method body adheres to the behavioural
description Elect(rank , v0, v, N) of the election protocol. Each worker perform-
ing elect enters a for-loop that iterates N times, whose loop invariant states
that, at iteration i, the remaining program behaves as prescribed by the process
Elect(rank , v0, v, i − 1). The invocations to mp send and mp recv on lines 27 and
31 are annotated with with clauses that resolve the assignments required by the

4 It should be noted that the presentation is slightly different from the version that is
verified by VerCors, to better connect to the theory discussed in the earlier sections to
the case study. Notably, VerCors uses Implicit Dynamic Frames [27] as the underlying
logical framework, which is equivalent to separation logic [39] but handles ownership
slightly differently. The details of this are deferred to [6,21].
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given clauses in the contracts of mp send and mp recv. The given η annotation
expresses that the parameter list η are extra ghost arguments for the sake of
specification. After N rounds all workers with v = v0 announce themselves as
leader. However, since the initial values are chosen to be unique there can only
be one such worker. Finally, we can verify that at the post-state of elect the
abstract model has been fully executed and thus reduced to ε.

The mp send(X, rank , msg) method implements the operation of enqueuing
msg onto the message queue of worker rank . Its implementation has been omitted
for brevity. The contract of mp send expresses that the enqueuing operation is
encapsulated as a send(rank , msg) action that is prescribed by an abstract model
identified by X. The mp recv(X, rank) function implements the operation of
dequeuing and returns the first message of the message queue of worker rank .
The receive is prescribed as the recv action on the abstraction level, where the
potential received message is ranged over by the summation on lines 15.

Figure 8 presents bootstrapping code for the implementation of message pass-
ing. The main function initialises the communication channels whereas parelect
spawns all worker threads. main(vs) additionally initialises and finalises the
abstraction ParElect(vs) on the specification level (on line 62 and 66, respec-
tively), whose analysis allows one to establish the postconditions of main. The
function parelect(X, vs) implements the abstract model ParElect(vs) by spawn-
ing N workers that all execute the elect program. The contract associated to
the parallel block (lines 46–48) is called an iteration contract and assigns pre-
and postconditions to every parallel instance. For more details on iteration con-
tracts we refer to [5]. Most importantly, the iteration contract of each parallel
worker states (on line 47) that the worker behaves as specified by Elect. Thus,
we deductively verify in a thread-modular way that the program implements its
behavioural specification. Lastly, all the required ownership for the global fields
and the Proc1 predicate is split and distributed among the individual workers
via the iteration contract and the with clause on lines 50–52.

6 Related Work

Significant progress has been made on the theory of concurrent software veri-
fication over the last years [11–13,30,41,48–50]. This line of research proposes
advanced program logics that all provide some notion of expressing and restrict-
ing thread interference of various complexity, via protocols [24]: formal descrip-
tions of how shared-memory is allowed to evolve over time. In our approach
protocols have the form of process algebraic abstractions.

The original work on CSL [32] allows specifying simple thread interference
in shared-memory programs via resource invariants and critical regions. Later,
RGSep [54] merges CSL with rely-guarantee reasoning to enable describing more
fine-grained inter-thread interference by identifying atomic concurrent actions.
Many modern program logics build on these principles and propose even more
advanced ways of verifying shared-memory concurrency. For example, TaDa [41]
and CaReSL [50] express thread interference protocols through state-transition
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systems. iCAP [48] and Iris [25] propose a more unified approach by accept-
ing user-defined monoids to express protocols on shared state, together with
invariants restricting these protocols. Iris provides reasoning support for proving
language properties in Coq, where our focus is on proving programs correct.

In the distributed setting, Disel [44] allows specifying protocols for distributed
systems. Disel builds on dependent type theory and is implemented as a shallow
embedding in Coq. Even though their approach is more expressive than ours, it
can only semi-automatically be applied in the context of Coq. Villard et al. [55]
present a program logic for message passing concurrency, where threads may
communicate over channels using native send/receive primitives. This program
logic allows specifying protocols via contracts, which are state-machines in the
style of Session Types [18], to describe channel behaviour. Our technique is more
general, as the approach of Villard et al. is tailored specifically to basic shared-
memory message passing. Actor Services [47] is a program logic with assertions
to express the consequences of asynchronous message transfers between actors.
However, the meta-theory of Actor Services has not been proven sound.

Most of the related work given so far is essentially theoretical and mainly
focuses on expressiveness and generality. Our approach is a trade-off between
expressivity and usability. It allows specifying process algebraic protocols over
a general class of concurrent systems, while also allowing the approach to be
implemented in automated verifiers for concurrency like VerCors. Related con-
currency verifiers are SmallfootRG [10], VeriFast [19], CIVL [45], Threader [14]
and Viper [22,29]; the latter tool is used as the main back-end of VerCors. Small-
footRG is a memory-safety verifier based on RGSep. VeriFast is a rich toolset for
verifying (multi-threaded) Java and C programs using separation logic. Notably,
Penninckx et al. [40] extend VeriFast with a Petri-net extension to reason about
the I/O behaviour of programs. This Petri-net approach is similar to ours, how-
ever our technique supports reasoning about abstract models and allows reason-
ing about more than just I/O behaviour. The CIVL framework can reason about
race-freedom and functional correctness of MPI programs written in C [28,57].
The reasoning is done via bounded model checking combined with symbolic
execution. Threader is an automated verifier for multi-threaded C, based on
model checking and counterexample-guided abstraction refinement.

Apart from the proposed technique, VerCors also allows using process alge-
braic abstractions as histories [7,56]. Also related in this respect are the time-
stamped histories of [43], which records atomic state changes in concurrent pro-
grams as a history, which are, likewise to our approach, handled as resources in
the logic. However, history recording is only suitable for terminating programs.

Finally, there is a lot of more general work on proving linearisability [15,26,
52], which essentially allows reasoning about fine-grained concurrency by using
sequential verification techniques. Our technique, as well as the history-based
technique of [7], uses process algebraic linearisation to do so.
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7 Conclusion

To reason effectively about realistic concurrent and distributed software, we have
presented a verification technique that performs the reasoning at a suitable level
of abstraction that hides irrelevant implementation details, is scalable to real-
istic programs by being modular and compositional, and is practical by being
supported by automated tools. The approach is expressive enough to allow rea-
soning about realistic software as is demonstrated by the case study as well as
by [36], and can be implemented as part of an automated deductive program
verifier (viz. VerCors). The proof system underlying our technique has mechan-
ically been proven sound using Coq. Our technique is therefore supported by a
strong combination of theoretical justification and practical usability.

We consider the presented technique as just the beginning of a comprehen-
sive verification framework that aims to capture many different concurrent and
distributed programming paradigms. To illustrate, we recently adapted the pre-
sented approach to the distributed case, by allowing process algebraic models to
describe message passing behaviour of distributed programs [37].

We are currently further investigating the use of mCRL2 and Ivy to reason
algorithmically about program abstractions, e.g., [31]. Moreover, we are planning
to investigate the preservation of liveness properties in addition to safety.
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Abstract. First-order (FO) transition systems have recently attracted
attention for the verification of parametric systems such as network pro-
tocols, software-defined networks or multi-agent workflows like confer-
ence management systems. Functional correctness or noninterference of
these systems have conveniently been formulated as safety or hypersafety
properties, respectively. In this article, we take the step from verification
to synthesis—tackling the question whether it is possible to automat-
ically synthesize predicates to enforce safety or hypersafety properties
like noninterference. For that, we generalize FO transition systems to
FO safety games. For FO games with monadic predicates only, we pro-
vide a complete classification into decidable and undecidable cases. For
games with non-monadic predicates, we concentrate on universal first-
order invariants, since these are sufficient to express a large class of
properties—for example noninterference. We identify a non-trivial sub-
class where invariants can be proven inductive and FO winning strategies
be effectively constructed. We also show how the extraction of weakest
FO winning strategies can be reduced to SO quantifier elimination itself.
We demonstrate the usefulness of our approach by automatically syn-
thesizing nontrivial FO specifications of messages in a leader election
protocol as well as for paper assignment in a conference management
system to exclude unappreciated disclosure of reports.

Keywords: First order safety games · Universal invariants · First
Order Logic · Second order quantifier elimination
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automatically synthesize a strategy for paper assignment so that no PC member
is able to obtain illegitimate information about reports? Parametric systems like
conference management systems can readily be formalized as first order (FO)
transition systems where the attained states of agents are given as a FO struc-
ture, i.e., a finite set of relations. This approach was pioneered by abstract state
machines (ASMs) [15], and has found many practical applications, for example
in the verification of network protocols [27], software defined networks [3], and
multi-agent workflows [12,13,23]. FO transition systems rely on input predicates
to receive information from the environment such as network events, intercon-
nection topologies, or decisions of agents. In addition to the externally provided
inputs, there are also internal decisions that are made to ensure well-behaviour
of the system. This separation of input predicates into these two groups turns the
underlying transition system into a two-player game. In order to systematically
explore possibilities of synthesizing message contents in protocols or strategies
in workflows, we generalize FO transition systems to FO games.
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msg(a, i, b) := next(a, b) ∧ B(a, i, b)

leader(b) := ∃a.msg(a, b, b)

msg(a, i, b) := A(a) ∧ next(a, b) ∧ ∃c.msg(c, i, a) ∧ a ≤ i

Fig. 1. FO safety game for the running leader election example

Example 1. Figure 1 shows a slightly simplified version of the network leader
election protocol from [27] turned into a FO game. The topology of the network,
here a ring, is given by the predicates next and ≤, which are appropriately
axiomatized. The participating agents communicate via messages through the
predicate msg but are only allowed to send messages to the next agent in the
ring topology. In the first step, agents can send any message (determined via the
input predicate B) to their neighbor. Afterwards they check if they have received
a message containing their own id. If so, they declare themselves leader and add
themselves to the leader relation. Then, a subset of processes determined by the
input predicate A decides to send any id to their next neighbor that they have
received which is not exceeded by their own.

At no point more than one process should have declared itself leader—
regardless of the size of the ring. This property is enforced, e.g., if the initial
message to be sent is given by the id of the sending process itself, i.e., B(a, i, b)
is given by the literal (i = a). ��

Example 2. Consider the workflow of a conference management system as spec-
ified in Fig. 2. The specification maintains the binary predicates Conflict and
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Conflict(x, p) := A1(x, p)

Assign(x, p) := B1(x, p)

Review(x, p, r) := Assign(x, p) ∧ A2(x, p, r)

Read(x, p, r) += ∃y.Assign(x, p) ∧ Review(y, p, r)

Review(x, p, r) += Assign(x, p) ∧ A3(x, p, r)

Fig. 2. FO safety game for the running conference management example

Assign together with the ternary predicates Review and Read to record conflicts
of interest between PC members and papers, the paper assignment as well as the
reports provided by PC members for papers. After the initial declaration of con-
flicts of interest, PC members write reviews for the papers they are assigned and
update them after reading the other reviews to the same paper. The predicates
A1, A2, A3 represent choices by PC members, while the predicate B1 is under
control of the PC chair. The operator += adds tuples to a relation instead of
replacing all contents. Specifically, Rȳ += ϕ abbreviates Rȳ := Rȳ ∨ ϕ. ��
One property to be checked in Example 2 is that no PC member can learn
anything about papers she has declared conflict with. Noninterference properties
like this one can be formalized as hyper-safety properties, but can be reduced
to safety properties of suitable self-compositions of the system in question [23].
This reduction is explained in the appendix at [31]. A plain safety property in
this example would be, e.g., the more humble objective that no PC member x
is going to read a report on a paper p which she herself has authored, i.e.,

∀x, p, r.¬(Conflict(x, p) ∧ Read(x, p, r))

Obvious choices for B1 to enforce this property are
B1(x, p) := ¬Conflict(x, p) or
B1(x, p) := false

The second choice is rather trivial. The first choice, on the other hand, which
happens to be the weakest possible, represents a meaningful strategy.

In this paper, we therefore investigate cases where safety is decidable and
winning strategies for safety player are effectively computable and as weak as
possible. For FO transition systems as specified by the Relational Modeling Lan-
guage (RML) [27], typed update commands are restricted to preserve Bernays-
Schönfinkel-Ramsey (also called effectively propositional) formulas. As a conse-
quence, inductiveness of a universal invariant can be checked automatically. We
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show that this observation can be extended to FO safety games—given that
appropriate winning strategies for safety player are either provided or can be
effectively constructed (see Sect. 5). We also provide sufficient conditions under
which a weakest such strategy can be constructed (see Sect. 6).

The question arises whether a similar transfer of the decidability of the logic
to the decidability of the verification problem is possible for other decidable
fragments of FO logic. A both natural and useful candidate is monadic logic.
Interestingly, this transfer is only possible for specific fragments of monadic FO
safety games, while in general safety is undecidable. For FO safety games using
arbitrary predicates, we restrict ourselves to FO universal invariants only, since
the safety properties, e.g., arising from noninterference can be expressed in this
fragment. For universal invariants, we show how general methods for second
order quantifier elimination can be instantiated to compute winning strategies.
Existential SO quantifier elimination, though, is not always possible. Still, we
provide a non-trivial class of universal invariants where optimal strategies can be
synthesized. In the general case and, likewise, when existential FO quantifiers
are introduced during game solving, we resort to abstraction as in [23]. This
allows us to automatically construct strategies that guarantee safety or, in the
case of information-flow, to enforce noninterference.

The paper is organized as follows. In Sects. 2 and 3, the notion of first-order
safety games is introduced. We prove that safety player indeed has a positional
winning strategy, whenever the game is safe. We also prove that safety of finite
games is already inter-reducible to SO predicate logic. In Sect. 4, we consider the
important class of FO safety games where all predicates are either monadic or
boolean flags. Despite the fact that this logic is decidable and admits SO quanti-
fier elimination, safety for this class is undecidable. Nonetheless, we identify three
subclasses of monadic games where decidability is retained. Section 5 proves that
even when a universally quantified FO candidate for an inductive invariant of the
safety game is already provided, checking whether or not the candidate invariant
is inductive, can be reduced to SO existential quantifier elimination. Section 6
provides background techniques for SO universal as well as existential quanti-
fier elimination. It proves that for universal FO formulas, the construction of a
weakest SO Hilbert choice operator can be reduced to SO quantifier elimination
itself. Moreover, it provides sufficient conditions when a universal invariant for
a FO safety game can effectively proven inductive and a corresponding weakest
strategy for safety player be extracted. Based on the candidates for the second-
order Hilbert choice operator from Sect. 6, and abstraction techniques from [23],
a practical implementation is presented in Sect. 7 which allows to infer inductive
invariants and FO definable winning strategies for safety player. Finally, Sect. 8
provides a more detailed comparison with related work while Sect. 9 concludes.

2 First-Order Transition Systems

Assume that we are given finite sets Rstate , Rinput , C of relation symbols and con-
stants, respectively. A first-order (FO) transition system S (over Rstate , Rinput
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and C) consists of a control-flow graph (V,E, v0) underlying S where V is a finite
set of program points, v0 ∈ V is the start point and E is a finite set of edges
between vertices in V . Each edge thereby is of the form (v, θ, v′) where θ sig-
nifies how the first-order structure for program point v′ is determined in terms
of a first-order structure at program point v. Thus, θ is defined as a mapping
which provides for each predicate R ∈ Rstate of arity r, a first-order formula Rθ
with free variables from C as well as a dedicated sequence of fresh FO variables
ȳ = y1 . . . yr. Each formula Rθ may use FO quantification, equality or disequal-
ity literals as well as predicates from Rstate . Additionally, we allow occurrences
of dedicated input predicates from Rinput . For convenience, we denote a substi-
tution θ of predicates R1, . . . , Rn with ϕ1, . . . , ϕn by

θ = {R1ȳ1 := ϕ1, . . . , Rnȳn := ϕn}

where ȳj = y1 . . . yrj
are the formal parameters of Ri and may occur free in ϕi.

Example 3. In the example from Fig. 2, the state predicates in Rstate are
Conflict, Assign, Review and Read, while the input predicates Rinput consist
of A1, A2, A3 and B1. As there are no global constants, C is empty. For the
edge from node 2 to node 3, θ maps Review to the formula Assign(y1, y2) ∧
A2(y1, y2, y3) and each other predicate R from Rstate to itself (applied to
the appropriate list of formal parameters). Thus, θ maps, e.g., Conflict to
Conflict(y1, y2). ��

Let U be some universe and ρ : C → U be a valuation of the globally
free variables. Let Rn

state denote the set of predicates with arity n. A state
s :

⋃
n≥0 Rn

state × Un → B is an evaluation of the predicates Rstate by means of
relations over U . Let StatesU denote the set of all states with universe U . For
an edge (v, θ, v′), a valuation ω of the input predicates, and states s, s′, there
is a transition from (v, s) to (v′, s′) iff for each predicate R ∈ Rstate of arity r
together with a vector ȳ = y1 . . . yr and an element u ∈ Ur

s′, ρ ⊕ {y 
→ u} |= Ry iff s ⊕ ω, ρ ⊕ {y 
→ u} |= (Rθ)

holds. Here, the operator “⊕” is meant to update the assignment in the left
argument with the variable/value pairs listed in the second argument. The set
of all pairs ((v, s), (v′, s′)) constructed in this way, constitute the transition rela-
tion ΔU,ρ of S (relative to universe U and valuation ρ). A finite trace from
(v, s) to (v′, s′) is a finite sequence (v0, s0), . . . , (vn, sn) with (v, s) = (v0, s0) and
(vn, sn) = (v, s′) such that for each i = 0, . . . , n−1, ((vi, si), (vi+1, si+1)) ∈ ΔU,ρ

holds. We denote the set of all finite traces of a transition system S as Traces(S).

Example 4. Let us instantiate the running example from Fig. 2 for the universe
{x1, x2, p1, p2, r1}. A possible state attainable at node 2 could have Conflict =
{(x1, p1)}, Assign = {(x1, p2), (x2, p1), (x2, p2)} and all other relations empty.
For the valuation A2 = {(x2, p2, r1)} of the input predicate, there would be a
transition to node 3 and a state where Review = {(x2, p2, r1)}, with Conflict and
Assign unchanged and Read still empty. ��
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3 First-Order Safety Games

For a first-order transition system, a FO assertion is a mapping I that assigns
to each program point v ∈ V a FO formula I[v] with relation symbols from
Rstate and free variables from C. Assume that additionally we are given a FO
formula Init (also with relation symbols from Rstate and free variables from C)
describing the potential initial states. The assertion I holds if for all universes
U , all valuations ρ, all states s with s, ρ |= Init and all finite traces τ from (v0, s)
to (v, s′), we have that s′, ρ |= I[v]. In that case, we say that I is an invariant
of the transition system (w.r.t. the initial condition Init).

Example 5. For our running example from Fig. 2, the initial condition specifies
that all relations R in Rstate are empty, i.e., Init =

∧
R∈Rstate

∀ȳ.¬Rȳ where we
assume that the length of the sequence of variables ȳ matches the rank of the
corresponding predicate R. Since the example assertion should hold everywhere,
we have for every u, I[u] = ∀x, p, r.¬(Conflict(x, p) ∧ Read(x, p, r)). ��
We now generalize FO transition systems to FO safety games, i.e., 2-player games
where reachability player A aims at violating the given assertion I while safety
player B tries to establish I as an invariant. To do so, player A is able to choose
the universe, which outgoing edges are chosen at a given node and all interpre-
tations of relations under his control. Accordingly, we partition the set of input
predicates Rinput into subsets RA and RB. While player B controls the valuation
of the predicates in RB, player A has control over the valuations of predicates in
RA as well as over the universe and the valuation of the FO variables in C. For
notational convenience, we assume that each substitution θ in the control-flow
graph contains at most one input predicate, and that all these are distinct1. Also
we consider a partition of the set E of edges into the subsets EA and EB where
the substitutions only at edges from EB may use predicates from RB. Edges in
EA or EB will also be called A-edges or B-edges, respectively. For a particular
universe U and valuation ρ, a trace τ starting in some (v0, s) with s, ρ |= Init
and ending in some pair (v, s′) is considered a play. For a given play, player A
wins iff s′, ρ �|= I[v] and player B wins otherwise.

A strategy σ for player B is a mapping which for each B-edge e = (u, θ, v) with
input predicate Be (of some arity r), each universe U , valuation ρ, each state s
and each play τ reaching (u, s), returns a relation B′ ⊆ Ur. Thus, σ provides
for each universe, the history of the play and the next edge controlled by B, a
possible choice. σ is positional or memoryless, if it depends on the universe U ,
the valuation ρ, the state s and the B-edge (u, θ, v) only.

A play τ conforms to a strategy σ for safety player B, if all input relations
at B-edges occurring in τ are chosen according to σ. The strategy σ is winning
for B if B wins all plays that conform to σ. An FO safety game can be won by
B iff there exists a winning strategy for B. In this case, the game is safe.
1 In general, edges may use multiple input predicates of the same type. This can,

however, always be simulated by a sequence of edges that stores the contents of the
input relations in auxiliary predicates from Rstate one by one, before realizing the
substitution of the initial edge by means of the auxiliary predicates.
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Example 6. In the running conference management Example 2, player A, who
wants to reach a state where the invariant from Example 5 is violated (a state
where someone reads a review to his own paper before the official release) has
control over the predicates A1, A2, A3 and thus provides the values for the
predicates Conflict and Review and also determines how often the loop body is
iterated. Player B only has control over predicate B1 which is used to determine
the value of predicate Assign. This particular game is safe, and player B has
several winning strategies, e.g., B1(x, p) := ¬Conflict(x, p). ��

Lemma 1. If there exists a winning strategy for player B, then there also exists
a winning strategy that is positional.

Proof. Once a universe U is fixed, together with a valuation ρ of the globally free
variables, the FO safety game G turns into a reachability game GU,ρ where the
positions are given by all pairs (v, s) ∈ V × StatesU (controlled by reachability
player A) together with all pairs (s, e) ∈ StatesU × E controlled by safety player
B if e ∈ EB and by A otherwise. For an edge e = (v, θ, v′) in G, GU,ρ contains
all edges (v, s) → (s, e), together with all edges (s, e) → (v′, s′) where s′ is a
successor state of s w.r.t. e and ρ.

Let InitU,ρ denote the set of all positions (v0, s) where s, ρ |= Init, and IU,ρ the
set of all positions (v, s) where s, ρ |= I[v] together with all positions (s, e) where
s, ρ |= I[v] for edges e starting in v. Then GU,ρ is safe iff safety player B has a
strategy σU,ρ to force each play started in some position InitU,ρ to stay within
the set IU,ρ. Assuming the axiom of choice for set theory, the set of positions can
be well-ordered. Therefore, the strategy σU,ρ for safety player B can be chosen
positionally, see, e.g., Lemma 2.12 of [21]. Putting all positional strategies σU,ρ

for safety player B together, we obtain a single positional strategy for B. ��

In case the game is safe, we are interested in strategies that can be included
into the FO transition system itself, i.e., are themselves first-order definable.
Lemma 1 as is, gives no clue whether or not there is a winning strategy which is
positional and can be expressed in FO logic, let alone be effectively computed.

Theorem 1. There exist safe FO safety games where no winning strategy is
expressible in FO logic.

Proof. Consider a game with Rstate = {E,R1, R2}, RA = {A1, A2} and RB =
{B1}, performing three steps in sequence:

E(x, y) := A1(x, y); R1(x, y) := B1(x, y); R2(x, y) := A2(x, y)

In this example, reachability player A chooses an arbitrary relation E, then
safety player B chooses R1 and player A chooses R2. The assertion I ensures
that at the endpoint R1 is at least the transitive closure of E and R1 is smaller
or equal to R2 (provided A chose R2 to include the closure of E) i.e.,

closure(R2, E) → (closure(R1, E) ∧ ∀x, y.(R1(x, y) → R2(x, y)))
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where closure(R,E) is given by ∀x, y.R(x, y) ← (E(x, y) ∨ ∃z.R(x, z) ∧ E(z, y)).
The only winning strategy for safety player B (choosing R1) is to select the
smallest relation R1 satisfying closure(R1, E), which is the transitive closure of
E. In this case, no matter what reachability player A chooses for R2, safety
player B wins, but the winning strategy for B is not expressible in FO logic. ��

Despite this negative result, effective means are sought for of computing FO
definable strategies, whenever they exist. In order to do so, we rely on a weakest
precondition operator �e�� corresponding to edge e = (u, θ, v) of the control-flow
graph of a FO safety game T by

�e��Ψ =
{

∀Ae.(Ψθ) if e A-edge
∃Be.(Ψθ) if e B-edge

The weakest pre-condition operator captures the minimal requirement at the
start point of an edge to meet the post-condition Ψ at the end point. That
operator allows to define the following iteration: Let T denote a game and I an
assertion. For h ≥ 0, let the assignment Ψ (h) of program points v to formulas
be

Ψ (0)[v] = I[v]
Ψ (h)[v] = Ψ (h−1)[v] ∧

∧
e∈out(v)�e�

�Ψ (h−1) for h > 0 (1)

where out(v) are the outgoing edges of node v. Then the following holds:

Theorem 2. A FO safety game T is safe iff Init → Ψ (h)[v0] holds for all h ≥ 0.

The proof can be found in the appendix at [31]. The characterization of safety
due to Theorem 2 is precise—but may require to construct infinitely many Ψ (h).
Whenever, though, the safety game T is finite, i.e., the underlying control-flow
graph of G is acyclic, then G is safe iff Init → Ψ (h)[v0] where h equals the length
of the longest path in the control-flow graph of G starting in v0. As a result, we
get that finite first order safety games are as powerful as second order logic.

Theorem 3. Deciding a finite FO safety game with predicates from Rstate is
inter-reducible to satisfiability of SO formulas with predicates from Rstate .

Proof. We already showed that solving a finite FO safety game can be achieved
by solving the SO formula ψ(h) for some sufficiently large h. For the reverse
implication, consider an arbitrary closed formula ϕ in SO Logic. W.l.o.g., assume
that ϕ has no function symbols and is in prenex normal form where no SO
Quantifier falls into the scope of a FO quantifier [19]. Thus, ϕ is of the form
Q1C1 . . . QnCn. ψ where all Qn are SO quantifiers and ψ is a relational formula
in FO logic.

We then construct a FO safety game T as follows. The set Rstate of predicates
consists of all predicates that occur freely in ϕ together with copies R′

i of all
quantified relations Ci. The control-flow graph consists of n+1 nodes v0, . . . , vn,
together with edges (vi−1, θi, vi) for i = 1, . . . , n. Thus, the maximal length of
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any path is exactly n. An edge e = (vi−1, θi, vi) is used to simulate the quantifier
QiCi. The substitution θi is the identity on all predicates from Rstate except R′

i

which is mapped to Ci. If Qi is a universal quantifier, Ci is included into RA,
and e is an A-edge. Similarly, if Qi is existential, Ci is included into RB and e
is a B-edge. Assume that ψ′ is obtained from ψ by replacing every relation Ri

with R′
i. As FO assertion I, we then use I[vi] = true for i = 0, . . . , n − 1 and

I[vn] = ψ′. Then Ψ (n)[vn] = ϕ. Accordingly for Init = true, player B can win the
game iff ϕ is universally true. ��

Theorem 3 implies that a FO definable winning strategy for safety player B (if
it exists) can be constructed whenever the SO quantifiers introduced by the
choices of the respective players can be eliminated. Theorem 3, though, gives no
clue how to decide whether or not safety player B has a winning strategy and if
so, whether it can be effectively represented.

4 Monadic FO Safety Games

Assuming that the universe is finite and bounded in size by some h ≥ 0, then
FO games reduce to finite games (of tremendous size, though). This means that,
at least in principle, both checking of invariants as well as the construction of a
winning strategy (in case that the game is safe) is effectively possible. A more
complicated scenario arises when the universe consists of several disjoints sorts
of which some are bounded in size and some are unbounded.

We will now consider the special case where each predicate has at most one
argument which takes elements of an unbounded sort. In the conference man-
agement example, we could, e.g., assume that PC members, papers and reports
constitute disjoint sorts of bounded cardinalities, while the number of (versions
of) reviews is unbounded. By encoding the tuples of elements of finite sorts into
predicate names, we obtain FO games where all predicates are either nullary
or monadic. Monadic FO logic is remarkable since satisfiability of formulas in
that logic is decidable, and monadic SO quantifiers can be effectively eliminated
[4,35]. Due to Theorem 3, we therefore conclude for finite monadic safety games
that safety is decidable. Moreover, in case the game is safe, a positional winning
strategy for safety player B can be effectively computed.

Monadic safety games which are not finite, turn out to be very close in
expressive power to multi-counter machines, for which reachability is undecidable
[17,29]. The first statement of the following theorem has been communicated to
us by Igor Walukiewicz:

Theorem 4. For monadic safety games, safety is undecidable when one of the
following conditions is met:

1. there are both A-edges as well as B-edges;
2. there are A-edges and substitutions with equalities or disequalities;
3. there are B-edges and substitutions with equalities or disequalities.
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The proof of statement (1) is by using monadic predicates to simulate the coun-
ters of a multi-counter machine. Statements (2) and (3) follow from the obser-
vation that one player in this simulation can be replaced by substitutions using
equality or disequality literals (see [31] for details of the simulation).

There are, though, interesting cases that do not fall into the listed classes
and can be effectively decided. Let us first consider monadic safety games where
no predicate is under the control of either player, i.e., RA = RB = ∅, but
both equalities and disequalities are allowed. Then, safety of the game collapses
to the question if player A can pick universe and control-flow such that the
assertion is violated at some point. For this case, we show that the conjunction
of preconditions from Sect. 3 necessarily stabilizes.

Theorem 5. Assume that T is a monadic safety game, possibly containing
equalities and/or disequalities with RA = RB = ∅. Then for some h ≥ 0,
Ψ (h) = Ψ (h+1). Therefore, safety of T is decidable.

Theorem 5 relies on the observation that when applying substitutions alone, i.e.,
without additional SO quantification, the number of equalities and disequalities
involving FO variables, remains bounded. Our proof relies on variants of the
counting quantifier normal form for monadic FO formulas [4] (see the appendix
of [31]).

Interestingly, decidability is also retained for assertions I that only contain
disequalities, if no equalities between bound variables are introduced during the
weakest precondition computation. This can only be guaranteed if safety player
B does not have control over any predicates.2

Theorem 6. Assume that T is a monadic safety game without B-edges (i.e.
RB = ∅) and

1. there are no disequalities between bound variables in I,
2. in all literals x = y or x �= y in Init and substitutions θ, x ∈ C or y ∈ C.

Then it is decidable whether T is safe.

The proof is based on the following observation: Assume that C is a set of
variables of cardinality d, and formulas ϕ1, ϕ2 have free variables only from C. If
ϕ1, ϕ2 contain no disequalities between bound variables, then ϕ1, ϕ2 are equiv-
alent for all models and all valuations ρ iff they are equivalent for models and
valuations with multiplicity exceeding d. Here, the multiplicity μ(s) of a model s
is the minimal cardinality of a non-empty equivalence class of U w.r.t. indistin-
guishability. We call two elements u, u′ of the universe U indistinguishable in a
model s iff (s, {x 
→ u} |= Rx) ↔ (s, {x 
→ u′} |= Rx) for all relations R. Then,
when computing Ψ (h), we use an abstraction by formulas without equalities,
which is shown to be a weakest strengthening (see the appendix at [31]).

Analogously, decidability is retained for assertions that only contain positive
equalities if there are no disequalities introduced during the weakest precondition
2 Predicates under the control of player B can be used to introduce equalities through

SO existential quantifier elimination (see [31]).
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computation. This is only the case when RA = ∅, i.e., reachability player A only
selects universe and control-flow path. As a consequence, we obtain:

Theorem 7. Assume that T is a monadic safety game without A-edges where

1. there are no equalities between bound variables in I,
2. in all literals x = y, x �= y in Init and substitutions θ, either x ∈ C or y ∈ C.

Then it is decidable whether T is safe.

The proof is analogous to the Proof of Theorem6 where the abstraction
of equalities now is replaced with an abstraction of disequalities (see [31]). In
summary, we have shown that even though monadic logic is decidable, 2-player
monadic FO safety games are undecidable in general. However, for games where
one of the players does not choose interpretations for any relation, decidabil-
ity can be salvaged if the safety condition has acceptable equality/disequality
literals only and neither Init, nor the transition relation introduce further equal-
ity/disequality literals between bound variables.

5 Proving Invariants Inductive

Even though the general problem of verification is already hard for monadic FO
games, there are useful incomplete algorithms to still prove general FO safety
games safe. One approach for verifying infinite state systems is to come up with
a candidate invariant which then is proven inductive (see, e.g., [27]). This idea
can be extended to safety games where, additionally strategies must either be
provided or extracted.

In the context of FO safety games, an invariant Ψ is called inductive iff for
all edges e = (u, θ, v), Ψ [u] → �e��(Ψ [v]) holds. We have:

Lemma 2. Assume that Ψ is inductive, and Ψ [v] → I[v] for all nodes v. Then

1. For all h ≥ 0, Ψ [v] → Ψ (h)[v];
2. The game G is safe, whenever Init → Ψ [v0] holds.

We remark that, under the assumptions of Lemma2, a positional winning strat-
egy σ for safety player B exists. Checking an FO safety game T for safety thus
boils down to the following tasks:

1. Come up with a candidate invariant Ψ so that
– Ψ [v] → I[v] for all nodes v, and
– Init → Ψ [v0] hold;

2. Come up with a strategy σ which assigns some FO formula to each predicate
in RB;

3. Prove that Ψ is inductive for the FO transition system T σ which is obtained
from T by substituting each occurrence of B with σ(B) for all B ∈ RB.

For monadic FO safety games, we thereby obtain:
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Theorem 8. Assume that T is a monadic FO safety game with initial condition
Init and assertion I. Assume further that Ψ is a monadic FO invariant, i.e., maps
each program point to a monadic formula. Then the following holds:

1. It is decidable whether Init → Ψ [v0] as well as Ψ [v] → I[v] holds for each
program point v;

2. It is decidable whether Ψ is inductive, and if so, an FO definable strategy σ
can be constructed which upholds Ψ .

The proof is by showing that all formulas fall into a decidable fragment—in this
case Monadic Second Order logic. A monadic FO safety game can thus be proven
safe by providing an appropriate monadic FO invariant Ψ : the winning strategy
itself can be effectively computed.

Another important instance is when the candidate invariant Ψ as well as I
consists of universal FO formulas only, while Init is in the Bernays-Schönfinkel-
Ramsey (BSR) fragment3.

Theorem 9. Let T denote a safety game where each substitution θ occurring
at edges of the control-flow graph uses non-nested FO quantifiers only. Let Ψ
denote a universal FO invariant for T , i.e., Ψ [v] is a universal FO formula for
each node v.

1. It is decidable whether Init → Ψ [v0] as well as Ψ [v] → I[v] holds for each
program point v;

2. Assume that no B ∈ RB occurs in the scope of an existential FO quantifier,
and σ is a strategy which provides a universal FO formula for each B ∈ RB.
Then it is decidable whether or not Ψ is inductive for T σ.

The proof is by showing that all mentioned formulas can be solved by checking
satisfiability of a formula in the decidable fragment ∃∗∀∗FOL. Theorem 9 states
that (under mild restrictions on the substitutions occurring at B-edges), the can-
didate invariant Ψ can be checked for inductiveness—at least when a positional
strategy of B is provided which is expressed by means of universal FO formulas.
In particular, this implies decidability for the case when the set EB is empty.
The proof works by showing that all verification conditions fall into the BSR
fragment of FO Logic. For the verification of inductive invariants for FO transi-
tion systems (no B edges), the Ivy system essentially relies on the observations
summarized in Theorem 9 [27].

Besides finding promising strategies σ, the question remains how for a given
assertion I a suitable inductive invariant can be inferred. One option is to itera-
tively compute the sequence Ψ (h), h ≥ 0 as in (1). In general that iteration may
never reach a fixpoint. Here, however, FO definability implies termination:

3 The Bernays-Schönfinkel-Ramsey fragment contains all formulas of First Order Logic
that have a quantifier prefix of ∃∗∀∗ and do not contain function symbols. Satisfia-
bility of formulas in BSR is known to be decidable [28].
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Theorem 10. Assume that for all program points u and h ≥ 0, Ψ (h)[u] is FO
definable as well as the infinite conjunction

∧
h≥0 Ψ (h)[u]. Then there exists some

m ≥ 0 such that Ψ (m) = Ψ (m+k) holds for each k ≥ 0. Thus,
∧

h≥0 Ψ (h)[u] =
Ψ (m)[u] for all u.

Proof. Let ϕu denote the first order formula which is equivalent
∧

h≥0 Ψ (h)[u]. In
particular, this means that ϕu → Ψ (h)[u] for each h ≥ 0. On the other hand, we
know that

∧
h≥0 Ψ (h)[u] implies ϕu. Since ϕu as well as each Ψ (h)[u] are assumed

to be FO definable, it follows from Gödel’s compactness theorem that there is a
finite subset J ⊆ N such that

∧
h∈J Ψ (h)[u] implies ϕu. Let m be the maximal

element in J . Then,
∧

h∈J Ψ (h)[u] = Ψ (m)[u] since the Ψ (h)[u] form a decreasing
sequence of formulas. Together, this proves that ϕu is equivalent to Ψ (m)[u]. ��

Theorem 10 proves that if there exists an inductive invariant proving a given FO
game safe, then fixpoint iteration will definitely terminate and find it.

For the case of monadic FO safety games, this means that the corresponding
infinite conjunction is not always FO definable—otherwise decidability would
follow. In general, not every invariant I can be strengthened to an inductive Ψ ,
and universal strategies need not be sufficient to win a universal safety game.
Nonetheless, there is a variety of non-trivial cases where existential SO quanti-
fiers can be effectively eliminated, e.g., by Second Order quantifier elimination
algorithms SCAN or DLS∗ (see the overview in [14]). In our case, in addition
to plain elimination we need an explicit construction of the corresponding strat-
egy, expressed as a FO formula. We remark that following Theorem9, it is not
necessary to perform exact quantifier elimination: instead, a sufficiently weak
strengthening may suffice. Techniques for such approximate SO existential quan-
tifier elimination are provided in the next section.

6 Hilbert’s Choice Operator for Second Order Quantifiers

In this section, we concentrate on formulas with universal FO quantifiers only.
First, we recall the following observation:

Lemma 3. (see Fact 1, [23]). Consider a disjunction c of the form

F ∨ ∨k
i=1 Az̄i ∨ ∨l

j=1 ¬Az̄′
i

for some formula F without occurrences of predicate A. Then ∀A.c is equivalent
to F ∨

∨
i,j(z̄i = z̄′

j) for sequences of variables z̄i = zi1 . . . zir, z̄′
j = z′

j1 . . . z′
jr,

where z̄i = z̄j is an abbreviation for
∧r

k=1 zik = z′
jk. ��

As a consequence, universal SO quantification can always be eliminated from
universal formulas.
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Example 7. Consider the assertion I = ∀x, p, r.¬(Conflict(x, p)∧Review(x, p, r))
and substitution θ from the edge between program points 2 and 3 in Fig. 2,
given by Review(x, p, r) := Assign(x, p) ∧ A3(x, p, r) and Conflict(x, p) :=
Conflict(x, p). Since Iθ contains only negative occurrences of A3, we obtain:

∀A3.(Iθ) = ∀x, p, r.∀A3.¬Conflict(x, p) ∨ ¬Assign(x, p) ∨ ¬A3(x, p, r)
= ∀x, p, r.¬Conflict(x, p) ∨ ¬Assign(x, p)

��
As we have seen in Sect. 5, checking whether a universal FO invariant is inductive
can be reduced to SO existential quantifier elimination. While universal SO
quantifiers can always be eliminated in formulas with universal FO quantifiers
only, this is not necessarily the case for existential SO quantifiers. As already
observed by Ackermann [1], the formula

∃B.Ba ∧ ¬Bb ∧ ∀x, y.¬Bx ∨ ¬Rxy ∨ By

expresses that b is not reachable from a via the edge relation R and thus cannot
be expressed in FO logic. This negative result, though, does not exclude that in
a variety of meaningful cases, equivalent FO formulas can be constructed. For
formulas with universal FO quantifiers only, we provide a simplified algorithm for
existential SO quantifier elimination. Moreover, we show that the construction of
a weakest SO Hilbert choice operator can be reduced to existential SO quantifier
elimination itself. In terms of FO safety games, the latter operator enables us to
extract weakest winning strategies for safety player B. For an in-depth treatment
on SO existential quantifier elimination, we refer to [14].

Let ϕ denote some universally quantified formula, possibly containing a pred-
icate B of arity r. Let ȳ = y1 . . . yr, and ȳ′ = y′

1 . . . y′
r. We remark that for any

formula ψ with free variables in y, ϕ[ψ/B] → ∃B.ϕ holds. Here, this SO substi-
tution means that every literal Bz̄ and every literal ¬Bz̄′ is replaced with ψ[z̄/ȳ]
and ¬ψ[z̄′/ȳ], respectively. Let HB,ϕ denote the set of all FO formulas ψ such
that ∃B.ϕ is equivalent to ϕ[ψ/B]. A general construction for B and ϕ (at least
from some suitably restricted class of formulas) of some FO formula ψ ∈ HB,ϕ

is an instance of Hilbert’s (second-order) choice operator. If it exists, we write
ψ = HB(ϕ). In order to better understand the construction of such operators,
we prefer to consider universal FO formulas in normal form.

Lemma 4. Every universal FO formula ϕ possibly containing occurrences of B
is equivalent to a formula

E ∧ (∀ȳ.F ∨ Bȳ) ∧ (∀ȳ′.G ∨ ¬Bȳ′) ∧ (∀ȳȳ′.H ∨ Bȳ ∨ ¬Bȳ′) (2)

where E,F,G,H are universal formulas without B.

For the corresponding construction see [31]. The construction introduces dise-
qualities between variables as well as fresh auxiliary variables ȳ and ȳ′, where
the sequence ȳ′ is only required when both positive and negative B literals occur
within the same clause. In case these are missing, the formula is said to be in
simple normal form. For that case, Ackermann’s lemma applies:
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Lemma 5. (Ackermann’s lemma [1]). Assume that ϕ is in simple normal
form E ∧ (∀ȳ.F ∨ Bȳ) ∧ (∀ȳ.G ∨ ¬Bȳ). Then we have:

1. ∃B.ϕ = E ∧ (∀ȳ.F ∨ G);
2. For every FO formula ψ, ∃B.ϕ = ϕ[ψ/B] iff (E ∧ ¬F ) → ψ and ψ →

(¬E ∨ G). ��

For formulas in simple normal form a Hilbert choice operator thus is given by:

HBϕ = ¬E ∨ G (3)

—which is the weakest ψ for which ∃B.ϕ is equivalent to ϕ[ψ/B].

Example 8. For the invariant from Example 5, the weakest precondition w.r.t.
the second statement amounts to: ∃B1.∀x, p.¬Conflict(x, p)∨¬B1(x, p) which is
true for any formula Ψ for B1 (with free x, p) implying ¬Conflict(x, p). ��

The strongest solution according to Example 8 thus is that the PC chair decides
to assign papers to no PC member. While guaranteeing safety, this choice is
not very useful. The weakest choice on the other hand, provides us here with a
decent strategy. In the following we therefore will aim at constructing as weak
strategies as possible.

Ackermann’s Lemma gives rise to a nontrivial class of safety games where
existential SO quantifier elimination succeeds. We call B ∈ RB ackermannian in
the substitution θ iff for every predicate R ∈ Rstate , if θ(R) contains B literals,
θ(R) is quantifierfree and its CNF does not contain clauses with both positive
and negative B literals.

Theorem 11. Assume we are given a FO Safety Game T where all substitu-
tions contain nonnested quantifiers only, and a universal inductive invariant Ψ .
Assume further that the following holds:

1. All predicates B under the control of safety player B are ackermannian in all
substitutions θ;

2. For every B-edge e = (u, θ, v), every clause of Ψ [v] contains at most one literal
with a predicate R where θ(R) has a predicate from RB.

Then the weakest FO strategy for safety player B can be effectively computed for
which Ψ is inductive.

Proof. Consider an edge (u, θ, v) where the predicate B under control of safety
player occurs in θ. Assume that Ψ [v] = ∀z̄.Ψ ′ where Ψ ′ is quantifierfree and in
conjunctive normal form. Since θ is ackermannian and due to the restrictions
given for Ψ ′, Ψ ′ can be written as Ψ ′ = Ψ0 ∧ Ψ1 ∧ Ψ2 where Ψ0, Ψ1, Ψ2 are the
conjunctions of clauses c of Ψ ′ where θ(c) contains none, only positive or only
negative occurrences of B-literals, respectively. In particular, θ(Ψ0) is a FO for-
mula without nested quantifiers. The formula θ(Ψ1) is equivalent to a conjunction
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of formulas of the form F ∨ Bȳ1 ∨ . . . Bȳr where F has non-nested quantifiers
only, which thus are equivalent to

∀ȳ.F ∨ (ȳ1 �= ȳ) ∧ . . . ∧ (ȳr �= ȳ) ∨ Bȳ

Likewise, θ(Ψ2) is equivalent to a conjunction of formulas of the form G∨¬Bȳ1∨
. . . ¬Bȳr where G has non-nested quantifiers only, which thus are equivalent to

∀ȳ.G ∨ (ȳ1 �= ȳ) ∧ . . . ∧ (ȳr �= ȳ) ∨ ¬Bȳ

Therefore, we can apply Ackermann’s lemma to obtain a formula Ψ̄ in ∀∗∃∗FOL
equivalent to ∃B. θ(Ψ [v]). Likewise, we obtain a weakest FO formula ϕ for B so
that θ(Ψ [v])[ϕ/B] = Ψ̄ . Since Ψ [u] only contains universal quantifiers, Ψ [u] → Ψ̄
is effectively decidable. ��
Example 9. Consider the leader election protocol from Example 1, together with
the invariant from [27]. Therein, the predicate B is ackermannian, and msg
appears once in two different clauses of the invariant. Thus by Theorem11,
the weakest safe strategy for player B can be effectively computed. Our solver,
described in Sect. 7 finds it to be

B(a, i, b) := ¬E ∨ ¬next(a, b) ∨
(

∀n. (i ≥ n ∨ b �= i) ∧
∀n. (¬between(b, i, n) ∨ i > n)

)

where E axiomatizes the ring architecture, i.e., the predicate between as the
transitive closure of next together with the predicate ≤. The given strategy is
weaker than the intuitive (and also safe) strategy of (i = a), and allows for more
behaviours—for example a can send messages that are greater than its own id
in case they are not greater than the ids of nodes along the way from b back
to a. ��

In general, though, existential SO quantifier elimination must be applied
to universally quantified formulas which cannot be brought into simple normal
form. In particular, we provide a sequence of candidates for the Hilbert choice
operator which provides the weakest Hilbert choice operator—whenever it is FO
definable. Consider a formula ϕ in normal form (2). Therein, the sub-formula ¬H
can be understood as a binary predicate between the variables ȳ′ and ȳ which
may be composed, iterated, post-applied to predicates on ȳ′ and pre-applied to
predicates on ȳ. We define Hk, k ≥ 0, with free variables from ȳ, ȳ′ by

H0 = ȳ �= ȳ′

Hk = ∀ȳ1.H
k−1[ȳ1/ȳ′] ∨ H[ȳ1/ȳ] for k > 0

We remark that by this definition,

Hk+l = ∀y1.H
k[ȳ1/ȳ′] ∨ Hl[ȳ1/ȳ]

for all k, l ≥ 0. Furthermore, we define the formulas:

G ◦ Hk = ∀ȳ.G[ȳ/ȳ′] ∨ Hk

G ◦ Hk ◦ F = ∀ȳ′.(G ◦ Hk) ∨ F [ȳ′/ȳ]

Then, we have:
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Lemma 6. If ∃B.ϕ is FO definable, then it is equivalent to E ∧
∧k

i=0 G◦Hi ◦F
for some k ≥ 0.

Starting from G and iteratively composing with H, provides us with a sequence
of candidate SO Hilbert choice operators. Let

γk = ¬E ∨
∧k

i=0(G ◦ Hi)[ȳ/ȳ′] (4)

for k ≥ 0. The candidate γk takes all ifold compositions of H with i ≤ k into
account. Then the following holds:

Lemma 7. For every k ≥ 0,

1. ϕ[γk/B] implies ∃B.ϕ;
2. If ∃B.ϕ is equivalent to ϕ[ψ/B] for some FO formula ψ, then ψ → γk.
3. γk+1 → γk, and if γk → γk+1, then ϕ[γk/B] = ∃B.ϕ.

As a result, the γk form a decreasing sequence of candidate strategies for safety
player B. We remark that due to statement (2), the sequence γk results in the
weakest Hilbert choice operator—whenever it becomes stable.

We close this section by noting that there is a SO Hilbert choice operator
which can be expressed in SO logic itself. The following theorem is related to
Corollary 6.20 of [14], but avoids the explicit use of fixpoint operators in the
logic.

Theorem 12. The weakest Hilbert choice operator HBϕ for the universal for-
mula (2) is definable by the SO formula:

¬E ∨ ∃B.Bȳ ∧ (∀ȳ′.G ∨ ¬Bȳ′) ∧ (∀ȳȳ′.H ∨ Bȳ ∨ ¬Bȳ′)

The weakest Hilbert choice operator itself can thus be obtained by SO exis-
tential quantifier elimination. The proof is by rewriting the formula and can be
found in [31].

7 Implementation

We have extended our solver NIWO for FO transition systems [23] to a solver
for FO safety games which is able to verify inductive universal FO invariants
and extract corresponding winning strategies for safety player B. It has been
packaged and published under [32]. Our solver supports inference of inductive
invariants if the given candidate invariant is not yet inductive. For that it relies
on the abstraction techniques from [23] to strengthen arbitrary FO formulas by
means of FO formulas using universal FO quantifiers only. For the simplification
of FO formulas as well as for satisfiability of BSR formulas, it relies on the EPR
algorithms of the automated theorem prover Z3 [9].

We evaluate our solver on three kinds of benchmark problems. First, we con-
sider FO games with safety properties such as the running example “Conference,
Safety” from Fig. 2 and Example 5. For all of its variants, the fixpoint iteration



How to Win First-Order Safety Games 443

Name Mode Size Invariant #Str. Max. inv. Time
Conference, Safety synthesis 6 inferred 4 50 736 ms
Leader Election verification 4 inductive 0 42 351 ms
Leader Election synthesis 4 inductive 0 42 346 ms
Conference, NI, stubborn verification 6 inferred 4 850 6782 ms
Conference, NI, stubborn synthesis 6 inferred 4 850 6817 ms
Conference acyclic, NI, causal synthesis 8 inferred 4 137 1985 ms
Conference, NI, causal verification 11 counterex. 7 - 2114 ms
Conference, NI, causal synthesis 11 inferred 2 102 2460 ms
Conference, NI, causal, approx. synthesis 11 inferred 8 5090 3359 ms

Fig. 3. Experimental results

(1) terminates in less than one second with a weakest winning strategy (w.r.t. the
found inductive invariant) whenever possible. The second group “Leader Elec-
tion” considers variants of the leader election protocol from Example 1, initially
taken from [27]. Since the inductive invariant implies some transitively closed
property, it cannot be inferred automatically by our means. Yet, our solver suc-
ceeds in proving the invariant from [27] inductive, and moreover, infers a FO
definition for the message to be forwarded to arrive at a single leader. The third
group “Conference, NI” deals with noninterference for variants of the conference
management example where the acyclic version has been obtained by unrolling
the loop twice. The difference between the stubborn and causal settings is the
considered angle of attack (see [13] for an in-depth explanation). In the setting
of stubborn agents, the attackers try to break the Noninterference property with
no specific intent of working together. Here, the solver infers inductive invari-
ants together with winning FO strategies (where possible) in 5–7 s. The setting
of causal agents is inherently more complex as it allows for groups of unbounded
size that are working together to extract secrets from the system. This allows
for elaborate attacks where multiple agents conspire to defeat noninterference
[12]. The weakest strategy that is safe for stubborn agents (¬Conflict(x, p) as
a strategy for B1) can no longer be proven correct—instead the solver finds a
counterexample for universes of size ≥5. To infer an inductive invariant and a
safe strategy for causal agents, multiple iterates of the fixpoint iteration from
Sect. 3 must be computed. Each iteration requires formulas to be brought into
conjunctive normal form—possibly increasing formula size drastically. To cope
with that increase, formula simplification turns out not to be sufficient. We try
two different approaches to overcome this challenge: First, we provide the solver
with parts of the inductive invariant, so fewer strengthening steps are needed.
Given the initial direction, inference terminates much faster and provides us with
a useful strategy. For the second approach, we do not supply an initial invari-
ant, but accelerate fixpoint iteration by further strengthening of formulas. This
enforces termination while still verifying safety. The extracted strategy, though,
is much stronger and essentially rules out all intended behaviours of the system.
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All benchmarks were run on a workstation running Debian Linux on an Intel
i7-3820 clocked at 3.60 GHz with 15.7 GiB of RAM. The results are summarized
in Fig. 3. The table gives the group and type of experiment as well as the size
of the transition system in the number of nodes of the graph. For the examples
that regard Noninterference, the agent model is given. For verification bench-
marks, the solver either proves the given invariant inductive or infers an inductive
invariant if the property is not yet inductive. For synthesis benchmarks, it addi-
tionally extracts a universal formula for each B ∈ RB to be used as a strategy.
The remaining columns give the results of the solver: Could the given invari-
ant be proven inductive, could an inductive strengthening be found, or did the
solver find a counterexample violating the invariant? We list the number of times
any label of the invariant needed to be strengthened during the inference algo-
rithm, the size of the largest label formula of the inferred invariant measured
in the number of nodes of the syntax tree and the time the solver needed in
milliseconds (averaged over 10 runs).

Altogether, the experiments confirm that verification of provided invariants
as well as synthesis of inductive invariants and winning strategies is possible for
nontrivial transition systems with safety as well as noninterference objectives.

8 Related Work

In AI, First Order Logic has a long tradition for representing potentially changing
states of the environment [7]. First-order transition systems have then been used
to model reachability problems that arise in robot planning (see, e.g., chapters
8–10 in [30]). The system GOLOG [20], for instance, is a programming language
based on FO logic. A GOLOG program specifies the behavior of the agents
in the system. The program is then evaluated with a theorem prover, and thus
assertions about the program can be checked for validity. Automated synthesis of
predicates to enforce safety of the resulting system has not yet been considered.

There is a rich body of work on abstract state machines (ASMs) [15], i.e.,
state machines whose states are first-order structures. ASMs have been used
to give comprehensive specifications of programming languages such as Prolog,
C, and Java, and design languages, like UML and SDL (cf. [5]). A number
of tools for the verification and validation of ASMs are available [6]. Known
decidability results for ASMs require, however, on strong restrictions such as
sequential nullary ASMs [33].

In [3,24], it is shown that the semantics of switch controllers of software-
defined networks as expressed by Core SDN can be nicely compiled into FO
transition systems. The goal then is to use this translation to verify given invari-
ants by proving them inductive. Inductivity of invariants is checked by means
of the theorem prover Z3 [9]. The authors report that, if their invariants are
not already inductive, a single strengthening, corresponding to the computation
of Ψ (1) is often sufficient. In [25], the difficulty of inferring universal inductive
invariants is investigated for classes of transition systems whose transition rela-
tion is expressed by FO logic formulas over theories of data structures. The
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authors show that inferring universal inductive invariants is decidable when the
transition relation is expressed by formulas with unary predicates and a single
binary predicate restricted by the theory of linked lists and becomes undecid-
able as soon as the binary symbol is not restricted by background theory. By
excluding the binary predicate, this result is related to our result for transition
systems with monadic predicates, equality and disequality, but neither A- nor
B-predicates. In [18], an inference method is provided for universal invariants
as an extension of Bradley’s PDR/IC3 algorithm for inference of propositional
invariants [8]. The method is applied to variants of FO transition systems (no
games) within a fragment of FO logic which enjoys the finite model property
and is decidable. Whenever it terminates, it either returns a universal invariant
which is inductive, or a counter-example. This line of research has led to the tool
Ivy which generally applies FO predicate logic for the verification of parametric
systems [22,27]. Relying on a language similar to [3,24], it meanwhile has been
used, e.g., for the verification of network protocols such as leader election in ring
topologies and the PAXOS protocol [26].

In [12,13,23], hypersafety properties such as noninterference are studied for
multi-agent workflows. These workflows are naturally generalized by our notion
of FO transition systems. The transformation for reducing noninterference to
universal invariants originates from [23] which also provides an approximative
approach for inferring inductive invariants. When the attempt fails, a counter-
example can be extracted—but might be spurious.

All works discussed so far are concerned with verification rather than synthe-
sis. For synthesizing controllers for systems with an infinite state space, several
approaches have been introduced that automatically construct, from a symbolic
description of a given concrete game, a finite-state abstract game [2,10,11,16,34].
The main method to obtain the abstract state space is predicate abstraction,
which partitions the states according to the truth values of a set of predicates.
States that satisfy the same predicates are indistinguishable in the abstract
game. The abstraction is iteratively refined by introducing new predicates. Appli-
cations include the control of real-time systems [11] and the synthesis of drivers
for I/O devices [34]. In comparison, our approach provides a general modelling
framework of First Order Safety Games to unify different applications of syn-
thesis for infinite-state systems.

9 Conclusion

We have introduced First Order Safety Games as a model for reasoning about
games on parametric systems where attained states are modeled as FO struc-
tures. We showed that this approach allows to model interesting real-world syn-
thesis problems from the domains network protocols and information flow in
multiagent systems. We examined the important case where all occurring predi-
cates are monadic or nullary and provided a complete classification into decidable
and undecidable cases. For the non-monadic case, we concentrated on univer-
sal FO safety properties. We provided techniques for certifying safety and also
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designed methods for synthesizing FO definitions of predicates as strategies to
enforce the given safety objective. We have implemented our approach and suc-
ceeded to infer contents of particular messages in the leader election protocol
from [27] in order to prove the given invariant inductive. Our implementation
also allowed us to synthesize predicates for parametric workflow systems as in
[23], to enforce noninterference in presence of declassification. In this application,
however, we additionally must take into account that the synthesized formulas
only depend on predicates whose values are independent of the secret. Restrict-
ing the subset of predicates possibly used by strategies, turns FO safety games
into partial information safety games. It remains for future work, to explore this
connection in greater detail in order, e.g., to determine whether strategies can
be automatically synthesized which only refer to specific admissible predicates
and, perhaps, also take the history of plays into account.
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Abstract. Parity games are infinite two-player games played on node-
weighted directed graphs. Formal verification problems such as verify-
ing and synthesizing automata, bounded model checking of LTL, CTL*,
propositional μ-calculus, . . . reduce to problems over parity games. The
core problem of parity game solving is deciding the winner of some (or
all) nodes in a parity game. In this paper, we improve several parity game
solvers by using a justification graph. Experimental evaluation shows our
algorithms improve upon the state-of-the-art.

1 Introduction

Parity games are infinite two player games played on node-weighted directed
graphs without leaves. Priorities, the weights of the nodes, are integers in an
interval [1, d] with d a parameter of the parity game. All nodes belong to one
player, either Even or Odd. The players play by moving one token from node
to node following the edges of the graph. The owner of the node on which the
token lands, plays next. The winner of this infinite path, a play, is Even if the
maximal priority that occurs infinitely often is even, otherwise Odd wins. A
parity game solver determines for each node the winner and a winning strategy.
Many problems over boolean equation systems [5,13], μ-calculus [10,20], nested
fixpoints [11] and temporal logics such as LTL, CTL and CTL* [10] reduce to
parity games.

The algorithm with the best known time complexity [4,7] is quasi-polynomial
in the number of weights. However, in practice, it is outperformed by sev-
eral exponential algorithms, most notably: fixpoint induction [3], Zielonka’s
algorithm [21], multiple variants of strategy-improvement [16], priority promo-
tion [1,2] and tangle learning [18]. Currently, Zielonka’s algorithm and priority
promotion are considered the two fastest algorithms though there is experimental
evidence that tangle learning is faster on large random graphs [18].
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Our contribution is to extend these algorithms with a justification graph data
structure. For fixpoint induction this allows us to efficiently reconstruct winning
strategies; more importantly, it enables optimizations in the computation of a
solution. Furthermore, we applied these optimisations for Zielonka’s algorithm,
and tangle learning. As our experiments show, adding justifications to these
algorithms improve their performance. Overall, tangle learning extended with
justifications performs best over the whole of our benchmark set.

In Sect. 2, the preliminaries, we formally define the parity game problem,
introduce the μ-formula [20] that determines the winners of a parity game and a
parity game solving fixpoint algorithm by Bruse et al. [3]. In Sect. 3, we introduce
justifications, integrate them in the fixpoint algorithm and argue correctness is
preserved. In Sect. 4 this technique is applied to Zielonka’s algorithm and tangle
learning. Next, in Sect. 5, we evaluate our three justification based implementa-
tions. We round up in Sect. 6.

2 Preliminaries

2.1 Parity Games

A parity game is a two player game with players 0 (Even) and 1 (Odd). We
use α to denote a player with α ∈ {0, 1} and use ᾱ to denote the opponent of
player α. Formally, a parity game is a tuple PG = (V,E, V0, V1, P r) consisting
of a finite game graph (V,E) with outgoing edges for every node, a partition
{V0, V1} of nodes V and a priority function Pr : V → P , with P an interval of
integer priorities {1 . . . d}. In nodes of V0, player Even plays, and in those of V1,
it is player Odd. Without loss of generality we assume d is even.

Given a set of nodes S, a player α, a priority i and a relation ∼ in the set
{=, �=,≤,≥, <,>,≡2, �≡2}: S|α denotes the set S ∩ Vα and S∼i denotes the set
of nodes {v ∈ S|Pr(v) ∼ i}. E.g., V <i is {v ∈ V |Pr(v) < i} and V ≡20 is the set
of nodes with a priority which is equivalent – modulo 2 – with priority 0, i.e.,
the nodes with an even priority.

A play is an infinite sequence of nodes 〈v0v1 . . . vn . . . 〉 where ∀i ∈ N :
vi ∈ V ∧ (vi, vi+1) ∈ E. We use π to denote a play. Since every node has
outgoing edges, there exist plays in every node. The winner of a play is the
player with the parity of the highest priority that occurs infinitely often:
Winner(π) = limi→+∞ max {Pr(vj)|j ≥ i} mod 2.

A strategy for α is a partial function σα : Vα → V for which for every x in the
domain of σα: (x, σα(x)) ∈ E. A play π is consistent with σα if vn+1 = σα(vn)
for every vn in the domain of σα. A strategy σα is winning in v if α is the winner
of every play in v consistent with σα. A node v is won by α if there exists a
strategy σα that is winning in v. The set of nodes won by α is denoted as Wα.

Strategies, as defined here, are positional: they do not depend on the history
of the play. Furthermore, both players α have at least one strategy σα that is
winning for every node in Wα. Such strategies are winning. Most algorithms in
this paper compute winning strategies.
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2.2 Nested Fixpoint Iteration for Parity Games

A basic algorithm for computing the winning positions of a parity game uses
a nested fixpoint computation. For a given set T , an operator Φ : 2T → 2T

that is monotone with respect to ⊆ has a least and a greatest fixpoint, denoted
μS.Φ(S) resp. νS.Φ(S). The least fixpoint is the limit of the ascending sequence
∅, Φ(∅), Φ2(∅), . . . , while the greatest fixpoint is the limit of the descending
sequence T, Φ(T ), Φ2(T ), . . . For a given operator Φ :

(
2T

)2 → 2T that is
monotone in both arguments, it is not difficult to show that the functions
Ψμ : S2 �→ μS1.Φ(S2, S1) and Ψν : S2 �→ νS1.Ψ(S2, S1) are monotone functions.
Hence, their least and greatest fixpoints are well-defined and can be computed
in the standard way, leading to a nested fixpoint computation.

Let Φ be d-ary operator of 2T that is monotone in all its arguments. Then
νSd.μSd−1. . . . νS2.μS1.Φ(Sd, . . . , S1) is a unique and well-defined set that can
be computed by a nested least and greatest fixpoint computation. This algorithm
was originally used by Emerson and Lei [6] for evaluating μ-calculus formulae in
transition systems. For a finite set T , Φ is evaluated |T |d times by the algorithm
in the worst case. An improved algorithm by Long et al. [15] reduced the number
of evaluations to |T |�d/2�.

Solving a parity game amounts to computing the positions won by Even and
Odd and a winning strategy for both. Walukiewicz [20] characterized the winning
positions of Even with a fixpoint calculation νSd.μSd−1. . . . μS1.Φ(Sd, . . . , S1)
with

Φ(Sd, . . . , S1) = {v ∈ V0|∃w : (v, w) ∈ E ∧ w ∈ Si with i = Pr(w)} ∪
{v ∈ V1|∀w : (v, w) ∈ E ⇒ w ∈ Si with i = Pr(w)}

Since the inner operator Φ is monotone in all of its arguments Sd, . . . , S1,
the corresponding fixpoint computation has a unique and well-defined outcome
which is also computed by Algorithm 1. Note that Si is initialized with respec-
tively V for even i (a greatest fixpoint), and ∅ for odd i (a least fixpoint).

Bruse et al. [3] observe that it suffices to store elements of priority i in Si;
indeed computing Φ only checks if w ∈ Si for i = Pr(w), hence: Φ(Sd, . . . , S1) =
Φ(S=d

d , . . . , S=1
1 ). Omitting the irrelevant elements, all Si can be combined in a

single set S = ∪iS
=i
i ; finally, the operation Φ(Sd, . . . , S1) is to be replaced by:

φ(S) = {v ∈ V0|∃w : (v, w) ∈ E ∧ w ∈ S}∪
{v ∈ V1|∀w : (v, w) ∈ E ⇒ w ∈ S}

A second optimization, developed by Long et al. [15], partially eliminates
re-initializations. Instead of resetting all nodes of lower priority than i to their
initial state (S<i

R ← V <i ∩ V ≡20), only nodes with a priority of opposite parity
are reset (Algorithm 2, Lines 9 to 12): If i is even then the nodes with even
priority are kept and nodes with an odd priority are removed; analogously, if i
is odd, odd nodes are kept and nodes with an even priority are added.

The first optimization reduces the memory use by a factor d, the sec-
ond is, according to Seidl [17], sufficient to reduce the time complexity to
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input: A parity game
output: Sd: nodes won by Even

1 Func basic((V, E, V0, V1, P r)):
2 for i ∈ {1 . . . d} do
3 if i is even then Si←V ;
4 else Si←∅;

5 do
6 Sφ ← Φ(Sd, . . . , S2, S1)
7 i ← 1
8 while Si = Sφ ∧ i ≤ d do
9 i←i + 1

10 if i ≤ d then
11 Si←Sφ

12 for j ∈ {i − 1 . . . 1} do
13 if j is even then Sj←V ;
14 else Sj←∅;

15 until i = d + 1;
16 return Sd

Algorithm 1. A basic fixpoint itera-
tion algorithm

input: A parity game
output: S: the nodes won by Even

1 Func time((V, E, V0, V1, P r)):
2 S ← {v ∈ V |Pr(v) is even}
3 while S �= φ(S) do
4 S←next(S)
5 return S

6 Func next(S):
7 Sφ←φ(S)
8 i←min {Pr(v)|v ∈ S � Sφ}
9 if i is even then

10 SR←S \ V ≡21

11 else
12 SR←S ∪ V ≡20

13 return S>i ∪ S=i
φ ∪ S<i

R

Algorithm 2. The time- and
memory-efficient algorithm of
Bruse et al. [3]. � is the symm-
etric set difference.

O(|E| ·n�d/2�) with n = |V |/d+1. These two optimizations result in Algorithm 2
which calculates the nodes won by Even as S.

The following example shows a simulation of Algorithm 2 for the small parity
game in Fig. 1.

Example 1. Initially, the nodes won by Even are
estimated as S = {v6, v4}. In the first iteration is
Sφ = {v3, v7} and S � Sφ = {v3, v4, v6, v7}. Node
v3 is the only node of priority i = 3. Even wins
v3 by playing to v4 and S is updated to

{
v6, v4,

v3

}
. Five iterations later is S, the current estim-

ate for Even, equal to {v7, v6, v4, v3, v1}. In the
next iteration is Sφ = {v7, v4, v3, v1}: node v6 is
won by Odd by playing to v9. The reset opera-
tion removes nodes v3 and v1 (and adds v4).
The set S is now {v7, v4}. In the final iterations,
Even wins v1 by playing to v7, and wins v3 by playing to v4. Now, the estimate
is S = {v7, v4, v3, v1}; as this is a fixpoint, this is the set of nodes won by Even.

v9 v7 v4

v6 v1 v3

Fig. 1. A small parity game. The
priority of node vi is i. Even plays
in diamond nodes and Odd in the
square node v6.

It would be useful if we could construct a winning strategy from the previous
calculation. However, this is tricky. E.g., in the final steps we derived that Even
wins v1 using its move to v7, suggesting that in node v1 Even should play to v7.
This is wrong: Even must play to v3 to win.

Bruse et al. [3] then extended Algorithm2 to compute winning strategies
(with domain Wα|α). The algorithm works by recording for every iteration, for
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every player, for every node of that player that is supposed to be won by that
player in that iteration, a winning move for that node. After the run, for each
player one global winning strategy, called the eventually-positional winning strat-
egy, is extracted from this data structure. A disadvantage of this method is that
its memory use is proportional to the running time. This leads to exponential
memory consumption in terms of the parity games’ size.

3 Speeding up Fixpoint Iteration with Justifications

The first contribution of this paper is to propose an algorithm that maintains
an improved datastructure called a justification graph, to store a single (partial)
winning strategy during execution. Justification graphs as we use it here, were
first introduced in Hou et al. [11] in the context of a semantic study of nested
least and greatest fixpoint definitions.

Below, we view the set S in Algorithm 2 as the current estimate of the nodes
won by Even, and V \ S as the nodes won by Odd. If v ∈ S, we say that v is
won by Even according to S (or Even is the winner of v according to S), and if
v �∈ S, we say that v is won by Odd according to S.

Definition 1 (Justification). A pair (S, J) is a justification if S is a set of
nodes, an estimation of nodes won by Even, and J is a sub-graph of the game
graph (V,E), an extended candidate winning strategy, satisfying two constraints:

(i) Each node v won according to S by its owner (i.e., v ∈ S|0 ∪ (V \ S)|1) has
either no outgoing edges or one outgoing edge.

(ii) Each node v won according to S by the opponent of its owner (i.e., v ∈
S|1 ∪ (V \ S)|0) has either no outgoing edges or all outgoing edges of that
node.

If in J , the node v has outgoing edges, we call v justified in J , otherwise we call
v unjustified in J . We denote the set of nodes that are unjustified in J as U(J).
A justification is complete if every node is justified.

Definition 2 (Winning justification). A justification (S, J) is winning if all
connected nodes are won by the same player according to S and if every infinite
path in J starting in a node v is a play won by the winner of v according to S.

Note that paths in winning justifications are fragments of winning strategies
(for Even when it is a path of nodes in S and for Odd when it is a path of nodes
outside S).

Lemma 1. Let (S, J) be a complete and winning justification, σ0 = {v �→ w :
(v, w) ∈ J, v ∈ S|0} and σ1 = {v �→ w : (v, w) ∈ J, v ∈ (V \ S)|1}. Then every
play starting in a node v ∈ S and consistent with σ0 is an infinite path in J and
every play starting in a node v �∈ S and consistent with σ1 is an infinite path in
J . Furthermore, S equals W0, the set of nodes won by Even, and V \ S equals
W1, the set of nodes won by Odd and, σ0 and σ1 are global winning strategies
for respectively Even and Odd.
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input: A parity game
G = (V, E, V0, V1, P r)

output: S: nodes won by Even,
J : a justification

1 Func compute J(G):
2 S← {v ∈ V |Pr(v) is even}
3 J ← ∅
4 while U(J) �= ∅ do
5 (S, J)←next(S, J)
6 return S, J

7 Func strategyα(S, U):
8 J←∅
9 for v ∈ U do

10 if v ∈ Vα then
11 Wv← {w|(v, w) ∈ E ∧ w ∈ S}
12 else
13 Wv← {w|(v, w) ∈ E ∧ w �∈ S}
14 if Wv �= ∅ then
15 w←choose(Wv)
16 J←J ∪ {(v, w)}
17 else
18 J←J ∪ {(v, w′)|(v, w′) ∈ E}
19 return J

1 Func next(S, J):
2 i←min {Pr(v)|v ∈ U(J)}
3 U←U(J)=i

4 Upd←(φ(S) � S) ∩ U
5 if Upd �= ∅ then
6 R←Reaches(J, Upd)
7 if i is even then
8 SR←(S \ R≡21) ∩ V <i

9 else
10 SR←(S ∪ R≡20) ∩ V <i

11 Jt←J \ (R × V )
12 J ′←Jt ∪ strategy0(S, Upd)

13 S′←S>i ∪ (S � Upd) ∪ SR

14 else
15 J ′←J ∪ strategy0(S, U)
16 S′←S

17 return (S′, J ′)

Algorithm 3. compute J determi-
nes winning strategies for both players

Proof. Let v0 be won by α according to S and let π = v0v1v2 . . . be an arbi-
trary play in v0 consistent with σα. Since (S, J) is a complete justification, v0

is justified in J . Let v0v1v2 . . . vi be an initial segment of π that is a path in J .
All connected nodes in J share the same winner according to S, hence, also vi

is won by α according to S. Since (S, J) is complete, if vi ∈ Vα, vi has one child
in J , namely σα(vi). Since π is consistent with σα, this node is vi+1. If on the
other hand vi ∈ Vᾱ, then J contains all outgoing edges from vi in E, including
vi+1. Either way, v1 . . . vi+1 is a path in J . Using induction on i, we conclude
that the entire play π is an infinite path in J . Since (S, J) is winning, π is won
by α. It follows that σα is a winning strategy for α in v0. Hence, the elements of
S belong to W0 and those of V \ S to W1. We obtain S = W0 and V \ S = W1.

We now present an improved algorithm that makes use of justifications: Algo-
rithm3 extends Algorithm 2 with management of such justification graph J . It
uses the auxiliaries U(J), the set of unjustified nodes of J , and Reaches(J,X),
the set of nodes that have a path in J to an element of X. It also uses the auxiliary
procedure strategyα(S,X) which chooses justifications for nodes v ∈ X ⊆ U1.
The parameter α of the procedure is the player that wins the set S; here this is
always Even (Lines 12 and 15 of next); in some later algorithms, it can be Odd.
For the player that owns an unjustified node v ∈ X, σα selects a winning move

1 To make strategyα deterministic, choose can return, e.g., the smallest element.
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if one exists (Line 11/13 with Lines 15, 16 of strategyα); otherwise, it selects all
moves for v in E (Line 18).

Initially, J contains no edges. Subsequent calls to next are made until all
nodes are justified. At each iteration, the lowest priority i with non-empty set
U of unjustified nodes is determined by Line 2. The subset Upd of nodes with a
revised winner is determined ((φ(S) � S) ∩ U). If Upd is not empty, the set R
of nodes with a path to Upd is computed (Line 6). Such paths represent partial
plays to leafs won according to S, but these paths are outdated now. Therefore,
the winners of these nodes are reset to their initial values (Lines 7–10) and their
justifications are removed (Line 11). It will be proven that nodes in R belong to
V <i and that all nodes in R are won by α = i mod 2 according to S. Thus, all
nodes of R belong to S if i is even and to V \S if i is odd. Nodes in R need to be
reset to their initial winner: if i is even, it suffices to remove the nodes of R of odd
priority (R≡21) from S; if i is odd, it suffices to add nodes of R of even priority
(R≡20) to S. The set SR is computed as the result of this update to S<i. After
resetting the nodes in R, new justifications for the nodes in Upd are computed
in Line 12. Finally, the updated set of nodes won by Even, S′, is computed by
applying the update Upd and by using the reset-update SR (Line 13).

The other case, when Upd is empty, is simpler: no nodes at level i are revised,
S is unchanged and J is extended with justifications for all nodes in U (Line 15).

v9 v7 v4

v6 v1 v3

Fig. 2. The justification of
Example 2 after 6 iterations.

When the algorithm is finished, the nodes in S are won by Even, non-elements
of S are won by Odd and J is a complete justification. For both players, the
strategy for a node is given by the unique edge in the justification of that node.

Example 2. We apply Algorithm 3 on the parity
game of Fig. 1. The first iteration selects a justi-
fication for node v1: v1 is won by Odd by playi-
ng to v3. The justification J is then {(v1, v3)}.
The algorithm then follows Example 1. By choo-
sing2 node v7 as winning move for v6, the algori-
thm reaches an equivalent state after six iterat-
ions: S is {v7, v6, v4, v3, v1} and the solid edges
in Fig. 2 express the current justification graph.

The next iteration shows the crucial difference between the previous and
the new algorithms. Node v6 is the unjustified node with the lowest prior-
ity; it is won by Odd by playing to v9. The previous algorithm resets nodes
v1 and v3. However, since nodes v1 and v3 do not depend on v6 they are
not reset in Algorithm 3. The new justification consists of S = {v7, v4, v3, v1}
and J = {(v1, v3), (v3, v4), (v4, v1), (v7, v4), (v6, v9)}. The final iteration adds, for
node v9, the following justification to J : (v9, v9). The fixpoint has been reached
and the final justification graph can be projected to a winning strategy. Note
that, according to J , in node v1 Even must play to v3.

2 Choosing v9 as winning move for v6 never resets node v6, avoiding the difficulties of
Example 1.
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3.1 Correctness

The goal of the algorithm is to find a complete winning justification. We prove
the loop invariant that (S, J) is a wining justification at the end of every iteration
and that J grows monotonically to a complete justification w.r.t a finite order.
To bring this about we prove invariance for three additional properties: the
justification (S, J) in Algorithm 3 is coherent, dominating and default.

Definition 3 (Coherent). A justification (S, J) is coherent if two connected
nodes in J are won by the same player: ∀(v, w) ∈ J : v ∈ S ⇔ w ∈ S.

Definition 4 (Default). The default winner of a node is Even if its priority
is even and Odd if its priority is odd. A justification (S, J) is default if every
unjustified node is won by the default winner of that node according to S : ∀v ∈
U(J) : v ∈ S ⇔ Pr(v) ≡2 0.

Definition 5 (Dominating). A sub-graph J of a parity game is dominating
if every leaf of J (every v ∈ U(J)) has a priority strictly larger than the priority
of nodes on paths to that leaf. Formally: ∀w ∈ U(J),∀v ∈ Reaches(J, {w}) :
Pr(v) < Pr(w).

Adding a justification for an unjustified node v can introduce a cycle. If so,
dominance of J ensures that the priority of v is the highest priority in the cycle
and hence this priority determines the winner of this cycle. Moreover, if (S, J)
is default, then the winner of that new cycle is the winner according to S.

The following invariant of Algorithm3 proves correctness:

Invariant 1. The pair (S, J) for each iteration of the while-loop is a coherent,
dominating, default and winning justification.

In the proof, we use the notation J(v) = {w | (v, w) ∈ J}, and likewise
E(v) = {w | (v, w) ∈ E}. Recall that (S, J) is a justification iff for every node
v ∈ V , J(v) = ∅ or v’s owner wins in v according to S and J(v) is a singleton
subset of E(v) or v’s owner looses in v according to S and J(v) = E(v).

Proof. We prove this invariant by induction.
The initial pair (S, J) = ({v ∈ V | Pr(v) is even }, ∅) is, by construction, a

winning, coherent, dominating and default justification.
We prove in the induction step that if the justification (S, J) is winning,

coherent, dominating and default then so is (S′, J ′) = next(S, J):

Justification: This invariant is at risk at a node v when a justification is set to
v, or when v is added or removed from S since this modifies the assigned winner
of v. For unjustified nodes v in U(J)=i, the calls to strategy0 in Lines 12 and 15
create a correct justification for v for its winner according to φ(S). As for updates
of S, this occurs for nodes v in Upd and in the reset nodes in R. For v ∈ Upd, the
call to strategy0 creates a correct justification for v while for reset nodes v ∈ R,
the justification of v is removed in Line 11 which also preserves the invariant.
As such (S′, J ′) is a justification.
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Coherent: It is easy to check that the edges returned by strategy0 are coherent
with φ(S). Thus the edges added to J will be coherent since S′ ∩ U is exactly
φ(S) ∩ U . We still need to prove that edges (v, w) in J preserved in J ′ remain
coherent. This follows from the fact if the edge (v, w) is preserved in J , then also
the winners of v and w according to S must be preserved. Indeed, whenever v
or w is assigned a different winner, v ends up in R and its edge to w is removed.

Default: Initially, all nodes are unjustified and won, according to S, by their
default winner. When the winner of an unjustified node changes according to S,
then the node becomes justified. When a node becomes unjustified, the winner
is reset to the default winner.

Dominating: If Upd is non-empty, then first for nodes v in Reaches(J, Upd),
the justification is removed and each becomes an unreachable leaf of J ′ (edges
from and to v are removed). This preserves the invariant. Then for every node v
in Upd, justifying edges (v, w) are created where w is won by the opposite player
according to S. Since (S, J) is coherent and default, all reachable unjustified
nodes from w are won by the opposite player, hence have a priority different
than i and hence, strictly larger than i (i is the least priority with unjustified
nodes). Thus, the newly reachable unjustified nodes from v, and from nodes
that can reach v (which by dominance of J have priority < i), have priority
> i. Hence, dominance is preserved. If Upd is empty, all nodes v with priority
i are assigned a justification, and all newly reachable unjustified nodes from v
and from nodes that could reach v have strictly higher priority than i. Again,
dominance is preserved.

Winning: The first condition, all connected nodes have the same winner accord-
ing to S′, follows from coherence. The second condition remains to be proven:
Let π be an infinite path of J ′ consisting of nodes won by α according to S′. It
must be proven that α is the winner of π.

Assume π has an index j such that the tail 〈vj , vj+1, . . . 〉 is a path in J . Since
(S, J) is a winning justification, α is the winner of the tail, and hence of π itself.

Assume π does not have a tail preserved from J . Then π passes infinitely
often over new edges (v, w) ∈ J ′ \J , where v ∈ U(J) and v has priority i. In the
play π there exist two types of nodes: nodes unjustified in J , of priority i, and
nodes justified in J . The justified nodes have a path in J along π to the next
unjustified node which has priority i. Since J is dominating, it follows that these
justified nodes have a priority less than i. So the highest priority of the play that
occurs infinitely often is i and π is won by player i mod 2. From the proof of
dominating, it follows that truly new infinite paths are only possible when Upd
is empty. Since Upd is empty, player i mod 2 is, according to S′, the winner of
all nodes on π. Thus player α wins the play π. Therefore, (S′, J ′) is a winning
justification.

To ensure termination, we define the size of a justification and argue that
the size decreases in every cycle until the justification is complete.
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Definition 6 (Justification size). The size of a justification, denoted size(J),
is a d-tuple (ad, ad−1, . . . , a1) where each ai counts the number of unjustified
nodes of priority i. Justification sizes are ordered lexicographically:

(ad, ad−1, . . . , a1) < (bd, bd−1, . . . , b1) iff ∃i : ai < bi ∧ ∀j > i : aj = bj.

Theorem 1 (Total correctness). Algorithm3 terminates with a complete
winning justification (S, J).

Proof. If Upd is empty, the algorithm strictly reduces the number of unjustified
nodes of priority i to zero. Otherwise, if Upd is not empty, the algorithm strictly
reduces the number of unjustified nodes at priority i (and may increase the
number of unjustified nodes at strictly lower levels). Either way, the size of J
strictly decreases at each iteration. Hence, the algorithm terminates.

Furthermore, the algorithm terminates when no unjustified nodes exist. At
this point, (S, J) is complete.

No improvements in time complexity are expected:

Theorem 2 (Time complexity). Algorithm has time complexity O
(|E| ·

n�d/2�) with n = |V |/d + 1.

Proof omitted.

4 Integrating Justifications in Other Algorithms

Currently, three algorithms are considered as state-of-the-art: Zielonka’s algo-
rithm [21], priority promotion [1,2] and tangle learning [19]. While studying
related work the applicability of justifications to these algorithms was noticed:
while all algorithms calculate a winning strategy, only region recovery, a pri-
ority promotion variant, and tangle learning use this strategy to improve the
algorithm. In this section we sketch how to extend Zielonka’s algorithm and
tangle learning with justifications. While justifications do not improve the time
complexity, one can expect a performance improvement. This is confirmed by
the experimental evaluation. In the future work section we argue that applying
justifications to priority promotion is an improvement of the region recovery
variant.

Zielonka’s Algorithm. Zielonka’s algorithm determines the winners by recur-
sively decomposing a game G in a smaller sub-game G′ and first solving the
sub-game. Once the winners of G′ are determined, it returns to the nodes not in
G′ and, if needed, another sub-game is created and solved.

The algorithm is based on the notion of the attracted node set of a set S,
denoted Attrα(S). Informally, this is the set of all nodes from which α can force a
play to S. Formally, this set can be computed using a least fixpoint computation:

Attrα(V, S) = μA.S ∪{v ∈ Vα|∃w : (v, w) ∈ E ∧ w ∈ A}
∪ {v ∈ Vᾱ|∀w : (v, w) ∈ E ⇒ w ∈ A}
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In addition, Zielonka’s algorithm computes a corresponding α-strategy σAttr :
A|α \S → A for all attracted nodes which shows how any play starting in a node
v ∈ A eventually ends in S.

For correctness, Zielonka’s algorithm depends on two properties of Attrα: (i)
if all nodes of S can be won by α then all attracted nodes are won by α and (ii)
if all nodes in S have priority p ≡2 α and all attracted nodes have a lower (or
equal) priority then all moves from S to Attrα(S) are won by α.

For a game G and a set of nodes A we define G \A as the removal of A from
all parts of G: the nodes, and edges, owners, and priorities.

In the original algorithm, Algorithm4, empty games are immediately solved.
For non-empty games, the maximal priority p is calculated. Then the algorithm
calculates the set A together with a strategy σA for all nodes attracted to the
heads, i.e., nodes with the maximal priority, V =p. A play π starting in a head
and consistent with σA has two options: either π stays in A and forms an infinite
play with highest priority p, won by α, or π escapes to an unattracted node in
V \ A. To finally determine the winner the sub-game G \ A is recursively solved
to determine W ′

0 and W ′
1 (Line 7). If all nodes in this sub-game are also won by

α, then, in this case, all nodes of this game are won by α. All that remains is
finding a strategy for the heads since the moves for these nodes are explicitly not
included in σA (Line 10). In the other case, some nodes are won by the opponent:
heads may be attracted or forced to W ′

ᾱ and consequently attract more nodes
of A (Line 14). These nodes are attracted to a set B and removed to create a
second sub-game G \ B. The solution of this sub-game together with nodes B
won by ᾱ and the corresponding strategy σB form the final solution of G.

v4v1 v2

Fig. 3. A small parity game. Nodes vi have priority i. Even plays in v4. Odd plays in
v1 and v2.

One weakness of the algorithm is that it resets all attracted nodes if a single
node is attracted to the opponent. For sufficient complex game this results in an
increased number of solved sub-games:

Example 3. We simulate Algorithm 4 for the parity game in Fig. 3. Initially we
solve the game with all three nodes. v4 does not attract. This node is removed
and the sub-game with nodes v1, v2 is solved. v2 does not attract v1; it is removed
to solve the sub-game with one node, v1. v1 is the last node, the empty sub-game
is solved trivially.

For the sub-game with only v1, no nodes are won by Wᾱ, v1 is won by Odd
by playing to itself. For the sub-game with v1 and v2, v1 is won by Wᾱ, v1 does
not attract v2 thus the sub-game with only v2 is solved. The steps of solving this
game are skipped, v2 is won by Even. For the sub-game with v1 and v2, v1 is won



460 R. Lapauw et al.

input: A parity game
G = (V, E, V0, V1, P r)

output: W0, W1: winning nodes,
σ0, σ1: strategies

1 Func zielonka(G):
2 if V = ∅ then
3 return (∅, ∅, ∅, ∅)
4 p←max {Pr(v)|v ∈ V }
5 α←p mod 2
6 A, σA←Attrα(V <p, V =p)
7 W0, W1, σ0, σ1←zielonka(G \ A)
8 if Wᾱ = ∅ then
9 Wα←Wα ∪ A

10 σF ←strategyα(Wα, V =p ∩ V |α)
11 σα←σα ∪ σA ∪ σF

12 return W0, W1, σ0, σ1

13 else
14 B, σB←Attrᾱ(V, Wᾱ)
15 W ′

0, W
′
1, σ

′
0, σ

′
1←zielonka(G \ B)

16 W ′
ᾱ←W ′

ᾱ ∪ B
17 σ′

ᾱ←σ′
ᾱ ∪ σB

18 return W ′
0, W

′
1, σ

′
0, σ

′
1

Algorithm 4. Zielonka’s algorithm

input: A parity game
G = (V, E, V0, V1, P r)

output: W0, W1: winning nodes,
J : justification

1 Func zielonka j(G):
2 if V = ∅ then
3 return (∅, ∅, ∅)
4 p←max {Pr(v)|v ∈ V }
5 α←p mod 2
6 Wα←V =p, Wᾱ←∅
7 R←V <p, J←∅
8 while true do
9 A, JA←Attrα(R, Wα)

10 Wα←Wα ∪ A
11 G′←(G \ Wα) \ Wᾱ

12 W ′
0, W

′
1, JZ←zielonka j(G′)

13 (W0, W1)←(W0 ∪ W ′
0, W1 ∪ W ′

1)
14 J←J ∪ JZ ∪ JA

15 if W ′
ᾱ = ∅ then

16 JF ←strategyα(Wα, Wα ∩ V =p)
17 return (W0, W1, J ∪ JF )

18 B, JB←Attrᾱ(V, Wᾱ)
19 R←Reaches(J, B)
20 J←(J \ (R × V )) ∪ JB

21 Wα←Wα \ R, Wᾱ←Wᾱ ∪ B

Algorithm 5. Zielonka’s algorithm
with justifications

by Odd, v2 is won by Even. In the sub-game of v1, v2 and v4, Wᾱ contains v1.
v2 and v4 are not attracted to v1 thus the sub-game with v2 and v4 is solved. v4

does not attract v2, the sub-game with only v2 is solved again. For the sub-game
with v2 and v4, v4 wins by playing to itself, v2 is won by Even with either move.
The game is solved: v1 is won by Odd, v2 and v4 are won by Even.

This example shows that the sub-game with only v2 is solved multiple times
with the same results. Moreover, there was no reason to solve the sub-game with
v1 and v2. Using justifications, we can do better by further partitioning A \ B
with the help of σA: the nodes that depended on nodes in B and safe nodes.
Only the former nodes need to be recalculated in the new sub-game.

Algorithm 5 integrates a justification graph. The essential difference between
the two algorithms is Line 19. To make this line useful the algorithm needs to be
reformulated. First, the strategy variables σ0, σ1 are extended and merged into a
single justification graph J which allows to easily calculate reachability. Second,
the recursive tail-call in Algorithm 4 at Line 15 is transformed into a loop which
is interrupted when W ′

ᾱ = ∅. The iterative representation allows for a stateful
algorithm to recover and modify previously calculated information.
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After applying these two changes, the difference between the original algo-
rithm and the justification variant is a single line: if R is overestimated as W 
=p

α

on Line 19 the behaviour of the algorithm reverts to the original Zielonka algo-
rithm. In the justification variant of the algorithm the algorithm must, after
attracting for the opponent (Line 18), create a new sub-game. It first calcu-
lates the set of nodes R that depended on nodes that changed winner (Line 19).
Subsequently Line 20 fixes the justification J : it removes the justifications for all
nodes in R and adds the justifications for nodes attracted for ᾱ. Then it removes
these nodes from the set Wα, as the properties of Attr have been lost for nodes
in R, while adding the attracted nodes to Wᾱ. Now the loop is ready to restart
with first attracting reset nodes that have a different way of playing to Wα and
then solving the sub-game of nodes that are still not attracted.

As for correctness, similarly to Algorithm 3, the pair (S, J) with S = W0 ∪
(V ≡20 \ W1) remains a coherent, dominating, default and winning justification
while the size of the justification increases every iteration of the while-loop at
Line 8. We omit further details.

Tangle Learning. Tangle learning [18,19] is a recent state-of-the-art algorithm
based on deriving and attracting tangles. Tangles are sub-games won by a single
player α with a strongly connected strategy:

Definition 7 (Tangles). An α-tangle is a set of nodes τ ⊂ V for which there
exists a tangle-strategy σ : τ |α → τ such that the graph (τ, Eτ ) with Eτ =
E ∩ (σ ∪ (τ |ᾱ × τ)) has at least one edge, is strongly connected, and all cycles
within (τ, Eτ ) are won by α.

A play starting in a node of an α-tangle can either stay within the tangle or
ᾱ can escape to a node in Ext(τ) = {w|(v, w) ∈ E, v ∈ τ |ᾱ, w �∈ τ}. Thus if all
escapes are won by α then all nodes in the α-tangle are won by α.

Integrating the tangles involves an extension to the attraction function used
by Zielonka’s algorithm. Recall that nodes are attracted for a player α if that
player can force a play to a given set, rules (i) and (ii). For tangle learning the
property is extended to either playing to the given set or α wins the infinite play.
This property is satisfied for α-tangles: all nodes of an α-tangle are attracted if
all escapes of the tangle are attracted, rule (iii).

Formally, given the set of tangles T (with the α-tangles of T denoted as T |α),
the set of nodes V , the set of edges E, the subset of nodes attracted to S is:

TAttrα(T, V,E, S) = μA. S
∪ {v ∈ Vα|∃w : (v, w) ∈ E ∧ w ∈ A} (i)
∪ {v ∈ Vᾱ|∀w : (v, w) ∈ E ⇒ w ∈ A} (ii)
∪ {v ∈ t ∩ V |t ∈ T |α ∧ (Ext(t) ∩ V ) �= ∅ ∧ (Ext(t) ∩ V ) ⊆ A} (iii)

The second part of the algorithm consists of learning tangles. They are found
after attracting: Assume A, σA = TAttrα(T, V, S). If a node v ∈ Sα can play
within A or if a node v ∈ Sᾱ must play within A then the possibility of a cycle
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exists. Furthermore, if all nodes in S have the same priority p ≡2 α and all
attracted nodes A have a lower priority then all cycles are won by α. The tangle
learning algorithm will only attract nodes and tangles of a lower priority by
invariant. Thus every non-trivial cycle will be an α-tangle. The problem then
consists of determining the non-trivial strongly connected components in (A,EA)
with EA = E ∩ (σA ∪ (Aᾱ × A)).

Tangle learning consists of first finding tangles and then, to progress, attract-
ing them. If a tangle is used a second time, some work is saved. The more complex
the tangle, the more work is saved. First a tangle learning algorithm without
justifications is shown, then a new variant with justifications is discussed.

The original tangle learning algorithm (Algorithm 6). First, we explain some key
variables: (i) tangles found so far: T , (ii) new tangles to be used in the next
iteration, Y , and (iii) the region mappings: L. The solution of the parity game
is accumulated in the output variables W0,W1, σ0, σ1.

The region mapping, L : V → P , is a function that determines the priority
to which every node is currently attracted. The notation (L \ A) ∪ (A �→ p) is
used to map the value of the nodes in the set A with p. For a region mapping
L : V → P , a relation in the set {=, �=, <,>,≡2, �≡2} and a priority p ∈ P the
notation L−1

∼p denotes {v ∈ V |L(v) ∼ p}.
The core loop of the algorithm runs from Lines 6 to 21: until all nodes have

a region, the algorithm selects the highest priority among the nodes without
a region, extends the set of nodes with this priority with all nodes attracted
to them and computes all tangles in this set. The final winner can be assigned
to such a tangle in case it has no externals (the for-loop at line 15) and the
involved nodes will be removed from the game before the next iteration starts;
other tangles are added to the set Y and all involved nodes are assigned region p.
When all nodes have been assigned a region, at least one tangle has been found.
The new tangles in Y are then “promoted” to the set T and the algorithm starts
a new iteration with resetting L.

Similar to Attr, TAttr records how nodes are attracted as a strategy σA or
as part of a justification JA. The strategy for attracted nodes is unchanged while
the strategy for attracted nodes of a tangle is determined by σt.

Given the strategy σA, the procedure extract tangles returns the set of all
promotable tangles within A. It obtains them by calculating all strongly con-
nected components with, e.g., Tarjan’s strongly connected component algorithm.
A tangle is promotable if the regions of all its externals are larger than the pri-
ority of the tangle. Unpromotable tangles are not returned by extract tangles.

Like Zielonka’s algorithm, tangle learning removes all information depending
on faulty assumptions; indeed, it empties the region information L (Line 5). By
adding justifications, we can do better.

Tangle learning with justifications (Algorithm 7). Like the previous algorithms,
the changes are centred around the reset-phase. This variant makes full use of
the region information L. This information is never fully reset; instead, impr
determines outdated information and the justification J is used to selectively
withdraw invalid information.
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input: A parity game
G = (V, E, V0, V1, P r)

output: W0, W1: winning nodes,
σ0, σ1: strategies

1 Func tangle learning(G):
2 T←∅
3 W0←∅, W1←∅, σ0←∅, σ1←∅
4 while V �= ∅ do
5 L←(V �→ ∅), Y ←∅
6 while L−1

=∅ �= ∅ do
7 V ′←V ∩ L−1

=∅
8 E′←E ∩ (V ′ × V ′)
9 p←max {Pr(v)|v ∈ V ′}

10 α←p mod 2
11 A, σA←TAttrα(T, V ′, E′, V ′=p)
12 L←L ∪ (A �→ p)
13 New←extract tangles(A, σA)
14 Dom← {t ∈ New|ET (t) = ∅}
15 for (t, σt) ∈ Dom do
16 D, σ←TAttrα(T, V, t)
17 Wα←Wα ∪ D
18 σα←σα ∪ σ
19 L←L \ D
20 V ←V \ D

21 Y ←Y ∪ (New \ Dom)

22 T←T ∪ Y

23 return W0, W1, σ0, σ1

Algorithm 6. Tangle learning

input: A parity game
G = (V, E, V0, V1, P r)

output: W0, W1: winning nodes,
J : justification

1 Func tl just(G):
2 L←(V �→∅), T←∅
3 W0←∅, W1←∅, J←∅
4 while V �= ∅ do
5 Y ←∅
6 while impr(V, T, L) �= ∅ do
7 V ′←V ∩ L−1

≤p

8 E′←E ∩ (V ′ × V ′)
9 p←max(impr(V, T, L))

10 α←p mod 2

11 H←L−1
=p ∪ (L−1

=∅ ∩ V =p)
12 A, JA←TAttrα(T, V ′, E′, H)

13 R←Reaches(J, A ∩ L−1
<p,�≡2p)

14 J←(J \ ((R ∪ A) × V )) ∪ JA

15 L←(L \ R) ∪ (R �→ ∅)
16 L←(L \ A) ∪ (A �→ p)
17 New←extract tangles(A, JA)
18 Dom← {t ∈ New|ET (t) = ∅}
19 for (t, σt) ∈ Dom do
20 D, JD←TAttrα(T, V, t)
21 Wα←Wα ∪ D
22 Jα←Jα ∪ JD

23 L←L \ D, V ←V \ D

24 Y ←Y ∪ (New \ Dom)

25 T←T ∪ Y

26 return W0, W1, J

Algorithm 7. Tangle learning
improved with justifications

The function impr determines for which nodes and tangles the region L can
be improved. If no such nodes exist, either the algorithm is finished or some
tangles must have been found which are not yet available for attraction; the
inner while loop is exited, the new tangles are added to T and their region
is reset to ∅ (Line 25). Otherwise we are interested in the nodes and tangles
available for improvement that have the maximal priority p.

Line 9 identifies the maximal priority for which improvements are possible,
Line 11 determines which nodes can be improved and Line 12 determines the
attracting nodes. After resetting the nodes that become invalid (Lines 13 to 15),
the improved region is assigned for all attracted nodes (Line 16). At this point,
the set of nodes with region p is the same as in the non-justification algorithm
(given the same set of tangles T ). However, this does not guarantee that the set
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of extracted tangles will be the equal as it is possible that the chosen strategy
σA and justification J differ.

As for correctness, similarly to Algorithm 3, the pair (S, J) with S = W0 ∪
L≡20 ∪ (V ≡20 \L≡21 \W1) remains a coherent, dominating, default and winning
justification while the size of the justification increases every iteration of the
while-loop at Line 8. We omit further details.

Overall, the algorithm improves two facets of the attraction: first, unchanged
regions are skipped and secondly even when extending the region, nodes already
belonging to the region are not re-attracted.

5 Experimental Results

In the literature, we selected three parity game solving projects:

– PGSolver [8,9] (github.com/tcsprojects/pgsolver) is a collection of tools for
solving parity games written in OCaml. We refer to its algorithms with
pgsolver-*.

– Oink [18,19] (github.com/trolando/oink) is a recent parity game solver suite
written in C++. We refer to its algorithms with oink-*.

– pbespgsolver (www.mcrl2.org) is part of the mCRL2 toolset [5], centred
around formal verification of automata. We refer to its algorithms with
pbes-*.

Each project implements several algorithms, among them are fixpoint itera-
tion (referred as *-fp, Zielonka’s algorithm (referred as *-zlk), priority promo-
tion (referred as *-pp) and tangle learning (referred as *-tl). For example, with
oink-tl we refer to the tangle learning algorithm in the Oink solver. In total, 13
algorithms are benchmarked, 8 from the above three solvers and 5 algorithms we
implemented. One of them, oink-zlk-just, is a modification of the implemen-
tation of Zielonka’s algorithm in Oink. The fixpoint iteration algorithm is only
implemented in PGSolver which, as Table 1 shows, has the worst performance
of all three solvers. So it looks as a bad idea to modify that implementation.
Therefore, we implemented our own version of the fixpoint algorithm (prty-fp)
and an extension with justifications (prty-fp-just). As for priority promotion
and tangle learning, we did not have the time to extend both with justifications.
We selected the best performing one, tangle learning. However, extending the
Oink implementation was too involved: tangle learning is significantly more com-
plex than Zielonka’s algorithm. We started from scratch, implementing a base-
line prty-tl and an extension with justifications (prty-tl-just). All prty-*
solvers are implemented in Rust and are available at bitbucket.org/krr/prty.

In literature, we found information on two benchmarks. The parity game
benchmark [14] and one with large random graphs used for benchmarking tangle
learning [18]. These benchmarks3 have been executed for the selected algorithms
3 The benchmarks can be reproduced in the VMCAI 2020 virtual machine (https://

doi.org/10.5281/zenodo.3533104) with the artifact at https://doi.org/10.5281/
zenodo.3510292.

https://github.com/tcsprojects/pgsolver
https://github.com/trolando/oink
www.mcrl2.org
https://bitbucket.org/krr/prty
https://doi.org/10.5281/zenodo.3533104
https://doi.org/10.5281/zenodo.3533104
https://doi.org/10.5281/zenodo.3510292
https://doi.org/10.5281/zenodo.3510292
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Table 1. Number of solved instances in less than 1, 10, and 100 s and par2 score (lower
is better), sorted by the par2 score

Configuration 6 GB Both benchmarks (1297 instances)

<1 s <10 s <100 s par2 (s)

prty-tl-just 976 1215 1289 4912

prty-tl 959 1207 1288 5729

oink-tl 947 1209 1277 7193

oink-zlk-just 947 1206 1260 10464

oink-pp 952 1188 1245 13295

oink-zlk 932 1186 1239 14471

pbes-pp 919 1141 1205 21406

pbes-zlk 860 1072 1140 34437

prty-fp-just 863 1094 1134 34866

pgsolver-pp 698 1034 1138 36453

pgsolver-zlk 625 910 1035 56824

prty-fp 590 780 845 92529

pgsolver-fp 532 743 807 100616

with a time-limit of 100 s and a memory limit of 6 GB on a PC with an Intel
‘i7-4770’ CPU. A summary of the results for these benchmarks is reported in
Table 1: the number of games solved within 1 s, 10 s, and within the time-limit.
The par2 score is also reported, it is the sum of the run-times of all solved games
and a penalty of twice the time-limit (200 s) for each unsolved game.

This benchmark ranks the base algorithms as follows: tangle learning per-
forms best, priority promotion performs better than Zielonka’s algorithm and
fixpoint iteration is the worst algorithm. The frameworks can also be ranked by
comparing different implementations of the same algorithm: Oink performs best,
then pbespgsolver second-best and PGSolver ranks last. More interesting is the
effect of adding justifications to various algorithms. The table shows that each
justification variant performs better than the corresponding base algorithm.

The fixpoint algorithm prty-fp-just outperforms prty-fp with 289 addi-
tional solved instances. As it ranks below the best algorithms, we do not analyse
it in more detail but focus on the other two implementations with justifications.

Figure 4 is a cactusplot of the 100 most time consuming instances; it zooms
in on the top six algorithms. The figure shows that adding justifications results
in a clear performance improvement for Zielonka’s algorithm (oink-zlk vs
oink-zlk-just) and tangle learning (prty-tl vs prty-tl-just). Both the
table and the figure show that our baseline tangle learning algorithm, prty-tl,
performs better than oink-tl. Further analysis learned us that the cause is a
solvable memory inefficiency in Oink. To measure the effect more in detail we
considered the 1277 instance solved by both versions: oink-tl needs 2626 s to
solve them while our baseline, prty-tl, only needs 2541 s.
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Fig. 4. Cactusplot showing runtime of the slowest 100 parity games for the top six
algorithms

(a) Comparison for Zielonka’s al-
gorithm

(b) Comparison for tangle learning

Fig. 5. Comparisons of run times

Figure 5 zooms in on the differences in run-time for all instances solved by
both versions of an algorithm. Below the black line are instances for which the
justification version is faster; above the line those for which the justification ver-
sion is slower. Figure 5a compares oink-zlk with oink-zlk-just. While there
are examples with a large speed-up, there are also examples with a significant
slowdown. We assume that most of the variability is caused by the explicit rep-
resentation of the justification graph that uses hashing for direct access to the
inverse of the justification function. Indeed, performance analysis showed that a
major chunk of time is spent maintaining this data structure. Overall, there are
more examples with a significant speed-up than with a significant slowdown and
the overall time for solving the 1233 common examples is reduced from 2629 s to
2293 s. Considering that oink-zlk-just solves 21 extra instances, we conclude
that adding justifications improves Zielonka’s algorithm.
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Table 2. The reduction of runtime is coupled to a reduction in number of attracted
nodes

Instance Runtime (s) # attracted nodes

prty-tl -just prty-tl -just

jurdzinskigame(500,50) 2.8 0.7 663k 51k

jurdzinskigame(500,100) 7.2 1.3 2.6M 101k

jurdzinskigame(100,500) 9.4 1.9 13M 101k

jurdzinskigame(500,200) 28.6 2.0 10M 201k

jurdzinskigame(200,500) 30.2 3.3 25M 201k

jurdzinskigame(500,500) (190) 7.7 63M 502k

ABP Onebit (3,1,1,weak-bisim) 70.6 66.7 177M 40M

rn-1000000-1000000-1-2-4 75.8 58.4 163M 157M

rn-1000000-1000000-1-2-9 79.0 62.6 168M 164M

SWP(4,3,infinitely often rw) 79.1 78.9 104M 27M

rn-700000-700000-1-2-5 94.6 81.9 217M 235M

rn-700000-700000-1-2-4 99.4 81.4 224M 220M

As the explicit justification graph used in Zielonka’s algorithm caused a lot
of variability in the run-time of individual instances, we opted for an implicit
representation of the justification graph in tangle learning; it derives the jus-
tification graph from the existing information about nodes. Figure 5b, which
compares prty-tl with prty-tl-just, indeed shows much less variability and
we see, for instances requiring more than 10 s, a modest but almost consistent
improvement. The overall time to solve the 1277 instances is reduced from 2541 s
to 2159 s which is a 15% improvement.

The figure also shows a few examples with a significant speed-up while none
with a significant slowdown. It turns out all these instances are so called Jurdzin-
ski games [12]. A detailed profiling learned us that up to 80% of the time is spent
on attracting nodes and that justifications reduce the number of attracted and
reset nodes in Jurdzinski games with several orders of magnitude. Table 2 shows
details about the Jurdzinski game instances as well as some other hard instances.
It also includes the 500 by 500 Jurdzinski game, the most difficult Jurdzinski
game in the data set, which is not part of Fig. 5b as it requires more than 100 s
to solve. In this game, the number of attracted nodes is reduced from 126M to
501k nodes and the run-time from 190 s to less than 8 s. The other instances in
Table 2 are representative for the instances in the top right of Fig. 5b. Justifica-
tions reduce the number of attracted nodes by only a fraction of the total. Still,
there are a small improvements in run-time. We conclude that justifications are
a significant improvement for tangle learning.

Conclusion. Our experiments demonstrate that adding a justification graph to
a parity game solver algorithm is beneficial to the performance. Also, we have
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shown that prty-tl-just, a tangle learning solver with justifications, is improv-
ing upon the state of the art.

6 Conclusion

In this paper we explored the use of justification graphs in parity game solvers.
We started with the nested fixpoint induction algorithm for parity games [3].
Besides storing the winning strategy of a node, the justification can also be used
to save work. Indeed, upon each update of winning nodes, the basic algorithm
resets all lower priority nodes to the static overestimation of their winner. The
justification allows one to dynamically select the nodes for which the current
winner is invalidated and only resets those nodes to the default assumption of
their winner. Experimental evaluation showed that this results in a substantial
speed-up of the algorithm.

Encouraged by these results we also explored the use of justifications in
other algorithms. Our analysis learned us that also Zielonka’s algorithm [21],
priority promotion [1,2] and tangle learning [18] can potentially benefit from
justifications as it allows one to reset fewer nodes to their default settings at the
beginning of a new iteration. So far we could only implement two of these three
algorithms, namely Zielonka’s algorithm and tangle learning. Our evaluation
meets our expectations, for both algorithms we obtained a good performance
improvement for the whole of our benchmarkset. Moreover, our best algorithm
improves upon the state of the art.

Future Work. For Zielonka’s algorithm, we expect that replacing the explicit
justification graph with an implicit one will improve the performance and will
result in a more consistent speed-up over all instances of the benchmark.

We predict that adding justifications to priority promotion speed up the
algorithm. Moreover, the region-recovery variant of priority promotion shows
parallels to justification-based resetting: it uses the witness strategy to safeguard
regions (a set of nodes) if none of the nodes depend on a reset region. This is,
however, coarser than justifications: if a single nodes depends on a reset region
then all nodes in that region are reset which cascades for all dependent regions.
We predict that games improved by region recovery are also improved when
using a justifications-based algorithm.

There is a need to develop a benchmark set with harder instances: The best
algorithm solves 1289 out of 1297 instances and solves all instances in 400 s with
15 GB of memory. Furthermore, only 82 instances need more than 10 s to solve.

Finally, one can imagine that justifications are excellent for incremental par-
ity game solving. When a small part of a parity game is revised, justifications
allows one to identify the affected part of the solution, to reset the nodes in that
part to the default winners and to start the search for a solution form there. So
far we are not aware of applications that could use such an incremental parity
game solver.
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