
Jean-Michel Bruel · Manuel Mazzara ·
Bertrand Meyer (Eds.)

LN
CS

 1
20

55

Second International Workshop, DEVOPS 2019
Château de Villebrumier, France, May 6–8, 2019
Revised Selected Papers

Software Engineering Aspects
of Continuous Development
and New Paradigms of Software
Production and Deployment

Lecture Notes in Computer Science 12055

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Jean-Michel Bruel • Manuel Mazzara •

Bertrand Meyer (Eds.)

Software Engineering Aspects
of Continuous Development
and New Paradigms of Software
Production and Deployment
Second International Workshop, DEVOPS 2019
Château de Villebrumier, France, May 6–8, 2019
Revised Selected Papers

123

Editors
Jean-Michel Bruel
Université de Toulouse
Toulouse, France

Manuel Mazzara
Innopolis University
Innopolis, Russia

Bertrand Meyer
Schaffhausen Institute of Technology
Schaffhausen, Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-39305-2 ISBN 978-3-030-39306-9 (eBook)
https://doi.org/10.1007/978-3-030-39306-9

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3653-0148
https://orcid.org/0000-0002-3860-4948
https://orcid.org/0000-0002-5985-7434
https://doi.org/10.1007/978-3-030-39306-9

Preface

The study of software development processes has a long and respectable history as a
subdiscipline of software engineering, so long and venerable indeed that the field
became a bit sleepy and complacent when the jolt of agile methods caught it by surprise
in the 2000s. Another incentive to question long-established wisdom was the spec-
tacular rise of technologies made possible by the World-Wide-Web, notably cloud
computing and software-as-a-service. No longer could we content ourselves with the
well-honed scheme in which a software system is analyzed, then designed, then pro-
grammed and tested, then released unto the world, then updated at a leisurely pace as
problem reports and requests for new features get filed, weeded out, and patiently
implemented. The pace frantically increases: for idea-development-deployment cycles
that we used to think of as spreading over months, the timeline now is days, hours,
even minutes.

In 2009 Patrick Debois coined the term DevOps to cover this new framework of
software development. He and his colleague Andrew Shafer understood the need to
combine the skills of software development and system administration, long considered
disjoint. They also realized the critical role of deployment, often considered a sec-
ondary matter as compared to development. DevOps poses endless challenges to
experts in software engineering: which of the traditional lessons gained over five
decades of the discipline’s development stand, and which ones need to be replaced in
the dizzying world of immediate deployment? An example of a question that takes on a
full new life is quality assurance: the stakes are quite different if you have a V&V
(validation & verification) phase of a few weeks to prepare for the next release, as in
the old world (“old” in IT means, like, 15 years ago), and in the brave new world of
deploying this morning’s change in the afternoon for the millions of users of your
Web-based offering.

DEVOPS 2019 (https://www.laser-foundation.org/devops/devops-2019/), held dur-
ing May 6–8, 2019, at the Château de Villebrumier, France, builds on top of the
success of the first edition (DEVOPS 2018) also published by LNCS. The venue is one
of the first scientific events devoted to the software engineering issues raised by the
new development models and aims at building a community around this topic of
interest. The event was kicked off by an outstanding introduction to the field by
Professor Gail Murphy, Vice-President of Research & Innovation at the University of
British Columbia. The participants came from diverse organizations, with a represen-
tation of both industry and academia. This volume gathers their papers, considerably
enhanced thanks to the feedback received during the conference and during two dif-
ferent peer review phases.

The contributions cover a wide range of problems arising from DevOps and related
approaches: current tools, rapid development-deployment processes, modeling frame-
works, anomaly detection in software releases, DevDataOps, microservices, and other
related topics, reflecting the thriving state of the discipline and, as is to be expected in

https://www.laser-foundation.org/devops/devops-2019/

such a fledgling field, raising new questions when addressing known ones. The topic of
education and training is also covered, as a number of increasing specialists have to
teach the new development paradigms to both university students and developers in
companies. This contribution provides a fascinating insight into the state of the art in
this new discipline.

DEVOPS 2019 is the second of a series of scientific events held at the new LASER
center in Villebrumier near Montauban and Toulouse, France. Inspired by the presti-
gious precedent of the Dagstuhl center in Germany (the model for all such ventures),
but adding its own sunny touch of accent du sud-ouest (the songful tones of Southwest
France), the LASER center (http://laser-foundation.org, site of the foundation which
also organizes the LASER summer school in Elba, Italy) provides a venue for high-tech
events of a few days to a week in a beautiful setup in the midst of a region rich with
historical, cultural, and culinary attractions. The proceedings enjoy publication in a
subseries of the Springer Lecture Notes in Computer Science.

We hope that you will benefit from the results of DEVOPS 2019 as presented in the
following pages and you may join one of the future events in Villebrumier.

November 2019 Jean-Michel Bruel
Manuel Mazzara
Bertrand Meyer

vi Preface

http://laser-foundation.org

Organization

Program Committee

Muhammad Ahmad University of Messina, Italy
Xavier Blanc University of Bordeaux, France
Francis Bordeleau École de Technologie Supérieure (ETS)

and Université du Québec, Canada
Jean-Michel Bruel Irit, France
Antonio Bucchiarone FBK-irst, Germany
Alfredo Capozucca University of Luxembourg, Luxembourg
Benoit Combemale University of Toulouse and Inria, France
Rustem Dautov South-East European Research Centre, Greece
Martina De Sanctis Gran Sasso Science Institute, Italy
Salvatore Distefano University of Messina, Italy
Nicola Dragoni Technical University of Denmark, Denmark
Mohamed Elwakil Innopolis University, Russia
Nicolas Guelfi University of Luxembourg, Luxembourg
Manuel Mazzara Innopolis University, Russia
Bertrand Meyer ETH Zurich, Switzerland
Samim Mirhosseini North Carolina State University, USA
Fabrizio Montesi University of Southern Denmark, Denmark
Alberto Sillitti Innopolis University, Russia

Additional Reviewers

Jahic, Benjamin
Katsikouli, Panagiota
Khan, Asad
Konchenko, Stanislav
Kuzminykh, Ievgeniia
Ries, Benoît

Contents

Teaching DevOps in Academia and Industry: Reflections and Vision 1
Evgeny Bobrov, Antonio Bucchiarone, Alfredo Capozucca,
Nicolas Guelfi, Manuel Mazzara, and Sergey Masyagin

A Model-Driven Approach Towards Automatic Migration
to Microservices . 15

Antonio Bucchiarone, Kemal Soysal, and Claudio Guidi

Anomaly Detection in DevOps Toolchain . 37
Antonio Capizzi, Salvatore Distefano, Luiz J. P. Araújo,
Manuel Mazzara, Muhammad Ahmad, and Evgeny Bobrov

From DevOps to DevDataOps: Data Management in DevOps Processes 52
Antonio Capizzi, Salvatore Distefano, and Manuel Mazzara

Exploiting Agile Practices to Teach Computational Thinking 63
Paolo Ciancarini, Marcello Missiroli, and Daniel Russo

Towards a Model-Based DevOps for Cyber-Physical Systems 84
Benoit Combemale and Manuel Wimmer

A DevOps Perspective for QoS-Aware Adaptive Applications 95
Martina De Sanctis, Antonio Bucchiarone, and Catia Trubiani

Learning Agility from Dancers – Experience and Lesson Learnt 112
Irina Erofeeva, Vladimir Ivanov, Sergey Masyagin, and Giancarlo Succi

Development and Operation of Trustworthy Smart IoT Systems:
The ENACT Framework . 121

Nicolas Ferry, Jacek Dominiak, Anne Gallon, Elena González,
Eider Iturbe, Stéphane Lavirotte, Saturnino Martinez, Andreas Metzger,
Victor Muntés-Mulero, Phu H. Nguyen, Alexander Palm, Angel Rego,
Erkuden Rios, Diego Riviera, Arnor Solberg, Hui Song, Jean-Yves Tigli,
and Thierry Winter

Towards Modeling Framework for DevOps: Requirements Derived
from Industry Use Case . 139

Francis Bordeleau, Jordi Cabot, Juergen Dingel, Bassem S. Rabil,
and Patrick Renaud

Towards Designing Smart Learning Environments with IoT 152
Mohamad Kassab and Manuel Mazzara

Opunit: Sanity Checks for Computing Environments 167
Samim Mirhosseini and Chris Parnin

Towards Bridging the Value Gap in DevOps . 181
Gail C. Murphy and Mik Kersten

ArchiMate as a Specification Language for Big Data Applications -
DataBio Example . 191

Andrey Sadovykh, Alessandra Bagnato, Arne J. Berre,
and Stale Walderhaug

Fallacies and Pitfalls on the Road to DevOps:
A Longitudinal Industrial Study . 200

Alessandro Caprarelli, Elisabetta Di Nitto,
and Damian Andrew Tamburri

Author Index . 211

x Contents

Teaching DevOps in Academia and
Industry: Reflections and Vision

Evgeny Bobrov1, Antonio Bucchiarone3(B), Alfredo Capozucca2,
Nicolas Guelfi2, Manuel Mazzara1, and Sergey Masyagin1

1 Innopolis University, Innopolis, Russian Federation
{e.bobrov,m.mazzara,s.masiagin}@innopolis.ru

2 University of Luxembourg, Luxembourg, Luxembourg
{alfredo.capozucca,nicolas.guelfi}@uni.lu

3 Fondazione Bruno Kessler, Trento, Italy
bucchiarone@fbk.eu

Abstract. The new century brought us a kind of renaissance in soft-
ware development methods. The advent of the Agile manifesto has led to
greater appreciation of methodologies aimed at producing valuable soft-
ware through continuous incremental cycles. More recently, a new set of
practices enclosed under the term DevOps has appeared to attain man-
ifesto’s objectives in more efficient manner. The software development
community has already noticed the benefits brought by DevOps. Thus,
the necessity of education in the field becomes more and more impor-
tant, both from the technical and organisational point of view. This
paper describes parallel experiences of teaching both undergraduate and
graduate students at the university, and junior professional developers in
industry, compares the two approaches and sums up the lessons learnt.
A vision driven by the DevOps practices aimed at implementing a shift
in the Software Engineering Higher Education curricula to takeover its
current limitations is also reported at the end of the paper.

1 Introduction

DevOps is a natural evolution of the Agile approaches [1,2] from the software
itself to the overall infrastructure and operations. This evolution was made pos-
sible by the spread of cloud-based technologies and the everything-as-a-service
approaches. Adopting DevOps is however more complex than adopting Agile [3]
since changes at organisation level are required. Furthermore, a complete new
skill set has to be developed in the teams [4]. The educational process is therefore
of major importance for students, developers and managers.

DevOps way of working has introduced a set of software engineering activities
and corresponding supporting tools that has disrupted the way individual devel-
opers and teams produce software. This has led both the world of research and
industry to review software engineering life-cycle and all the supporting tech-
niques to develop software in continuous operation and evolution. If we want to
enclose DevOps in one word, it is continuous. Modelling, integration, testing,
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 1–14, 2020.
https://doi.org/10.1007/978-3-030-39306-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_1

2 E. Bobrov et al.

and delivery are significant part of DevOps life-cycle that, respect to enterprise
or monolithic applications developed some years ago, must be revised continu-
ously to permit the continuous evolution of the software and especially an easy
adaptability at context changes and new requirements. Adopting the DevOps
paradigm helps software teams to release applications faster and with more qual-
ity. In this paper, we consider two sides of the same coin that are the usage of
DevOps in academia and in industry.

Research in traditional software engineering settings has mainly focused on
providing batch automation, as in the case of translation and re-engineering of
legacy code [5], or on helping developers keep track of their changes, as in the
case of version control [6]. The radically new development processes, introducing
with the DevOps, have required major changes to traditional software practices
[7]. New versions of software components are developed, released, and deployed
continuously to meet new requirements and fix problems. A study performed
by Puppet Labs in 20151 testifies that using DevOps practices and automated
deployment led organisations to ship code 30 times faster, complete deployments
8,000 times faster, have 50% fewer failed deployments, and restore service 12
times faster than their peers. Due to the dramatically growing of the DevOps
supporting tools2, has seen a big change in the role played by the software
engineers of a team. The latter today have the complication of covering both
management and development aspects of a software product. They are part of
a team and have the following responsibilities: (1) to be aligned with the new
technologies to ensure that the high-performance software is released using smart
tools to specify, develop, deploy and execute scalable software systems, (2) to
define procedures to guarantee the high security level of the running code, (3) to
monitor the software in operation and guarantee the right level of adaptability.

As long as DevOps became a widespread philosophy, the necessity of edu-
cation in the field become more and more important, both from the technical
and organisational point of view [4]. This paper describes parallel experiences
of teaching both undergraduate and graduate students at the university, and
junior professional developers in industry. There are similarities and differences
in these two activities, and each side can learn from the other. We will discuss
here some common issues and some common solutions. We also propose a vision
to implement a shift in the Software Engineering Higher Education curricula.

The paper is organised as follows: after this introduction of the context in
Sect. 1, we first discuss the experience gained in teaching DevOps at the univer-
sity (Sect. 2). We then present the key elements of training and consultancies
delivered in industry on the same subject (Sect. 3) and we analyse similarities
and differences in Sect. 4. Section 5 proposes a vision to implement a shift in the
Software Engineering Higher Education curricula. Finally, in Sect. 6 we present
our conclusion.

1 https://puppet.com/resources/whitepaper/2015-state-devops-report.
2 https://raygun.com/blog/best-devops-tools/.

https://puppet.com/resources/whitepaper/2015-state-devops-report
https://raygun.com/blog/best-devops-tools/

Teaching DevOps in Academia and Industry: Reflections and Vision 3

2 Teaching in Academia

DevOps experienced significant success in the industrial sector, but still received
minor attention in higher education. One of the few and very first courses in
Europe focusing on DevOps was delivered at the university of Luxembourg [8].

This course is part of a graduate programme aimed at students pursuing a
degree in computer science. Students following this programme either continue
their development either in the private sector or doing a PhD at the same uni-
versity (most of the cases). Therefore, most of the courses in such a programme
are designed as a sequence of theoretical lectures and assessed by a mid-term
and final exam. Our course is the exception in the programme as it is designed
according to the Problem-based learning (PBL) method.

Organisation and Delivery

Following a problem-based approach, the learning of the students is centred on a
complex problem which does not have a single correct answer. The complex prob-
lem addressed by the course corresponds to the implementation of a Deployment
Pipeline, which needs to satisfy certain functional and non-functional require-
ments. These requirements are:

– Functional Requirements (FR)
• Create separated environments (Integration, Test, and Production).
• Make use of a version control system.
• Make use of a continuous integration (CI) server.
• Automate the build of the selected product.
• Automate the execution of the test cases.
• Automate the deploy and release of the selected product.

– Non-Functional Requirements (NFR)
• Rely on technologies open-source and available for Unix-based OS.
• The Product to test the functioning of the pipeline should be a Web App

(SaaS) done in Java, if possible with an already available set of test cases.

This means that students work in groups all along the course duration to
produce a solution to the given problem. By working in groups students are
immerse in a context where interactions problems may arise, and so allowing
them to learn soft-skills to deal with such as problems. Therefore, the success
to achieve a solution to the problem depends on not only the technical abilities,
but also the soft-skills capacities each group member either has already had or
is able to acquire during the course. Notice that DevOps is not only about tools,
but also people and processes. Thus, soft-skills capabilities are a must for future
software engineers working expected to work in a DevOps-oriented organisations.

4 E. Bobrov et al.

Structure

The course is organised as a mix of lectures, project follow-up sessions (aimed
at having a close monitoring of the work done for each group member and
helping solve any encountered impediments), and checkpoints (sessions where
each group presents the advances regarding the project’s objectives). Lectures
are aimed at presenting the fundamental DevOps-related concepts required to
implement a Deployment Pipeline (Configuration Management, Build Manage-
ment, Test Management, and Deployment Management). Obviously, the course
opens with a general introduction to DevOps and a (both procedural and archi-
tectural) description of what a Deployment Pipeline is. In the first project follow-
up session each group presents the chosen product they will use to demonstrate
the functioning of the pipeline. The remaining of the course is an interleaving
between lectures and follow-up sessions. The first check-point takes place at the
fifth week, and the second one at the tenth week. The final checkpoint, where
each group has to make a demo of the Deployment pipeline, takes place at the
last session of the course.

Execution

Most of the work done by the students to develop the Deployment Pipeline was
done outside of the course hours due to the limited in-class time assigned to
the course. However, examples (e.g. virtual environments creation, initial setup
and provisioning) and references to well-documented tools (e.g. Vagrant, Ansi-
ble, GitLab, Jenkins, Maven, Katalon) provided during the sessions helped stu-
dents on moving the project ahead. Moreover, students had the possibility to
request support either upon appointment or simply signalling the faced issues
with enough time in advance to be handled during a follow-up session, the teach-
ing. Nevertheless, the staff was closely supervising the deployment pipeline devel-
opment by both monitoring the activity on the groups’ working repositories and
either asking technical questions or requesting live demos during the in-class
sessions.

Assessment

As described in [8], each kind of activity is precisely specified, so it lets students
know exactly what they have to do. This also applies to the course assessment:
while the project counts for 50% of the final grade, the other half is composed of a
report (12.5%) and the average of the checkpoints (12.5%). The aim at requesting
to each group submit a report is to let students face with the challenge of doing
collaborative writing in the same way most researchers do nowadays. Moreover,
this activity makes the course to remain aligned with programme’s objectives:
prepare the student to continue a research career. It is also in this direction
the we have introduced peer-reviewing: each student is requested to review (at
least one) no-authored report (this activity also contributes to the individual
grading of the student). Despite of these writing and reviewing activities may

Teaching DevOps in Academia and Industry: Reflections and Vision 5

seem specific to the programme where the course fits, we do believe that they
also contribute to the development of the required skills software engineers need
to have.

Latest Experience and Feedback

Based on our latest experience the relevant points to highlight are: (1) the pos-
itive feedback obtained from students, (2) the absence of drops out, and (3) the
quality of the achieved project deliverables. Regarding the first point, the evi-
dence was found through a survey filled out by students once the course was over:
100% strongly agreed that the course was well organised and ran smoothly, 75%
(25%) agreed (strongly agreed) the technologies used in the course were inter-
esting, and 75% was satisfied with the quality of this course. We are very happy
about the second point as it was one of the objectives (i.e. reduced the number
of drops out - it used to reach up to 70%) when we decided to redesign the course
to its current format. Moreover, the absence of drops out can also be confirmed
by the fact that (based on the survey) 75% of the students would advise other
students to take the course, if it were optional. Last, but not least, the survey
also helped to confirm that PBL is the right pedagogical approach to tackle sub-
jects like DevOps (and any others related to software engineering): 100% of the
students agreed that they would like to have more project-oriented courses like
this one. The third relevant point was about the quality of the project deliver-
ables: considering the limited time to present and work out the subjects related
to a Deployment Pipeline, each group succeed to provide deliverables able to
meet the given functional and non-functional requirements.

3 Teaching in Industry

Our team is specialised in delivering corporate training for management and
developers and has long experience of research in the service-oriented area [9–
11]. In recent years we have provided courses, training and consultancies to a
number of companies with particular focus on east Europe [12]. For example,
only in 2018 more than 400 h of training were conducted involving more than 500
employees in 4 international companies. Although we cannot share the details
of the companies involved, they are mid to large size and employ more than 10k
people.

The trainings are typically focusing on:

– Agile methods and their application [3].
– DevOps philosophy, approach and tools [13].
– Microservices [14,15].

Organisation and Delivery

In order for the companies to absorb the DevOps philosophy and practice, our
action has to focus on people and processes as much as on tools. The target

6 E. Bobrov et al.

group is generally a team (or multiple teams) of developers, testers and often
mid-management. We also suggest companies to include representatives from
businesses and technical analysts, marketing and security departments. These
participants could also benefit from participation and from the DevOps culture.
The nature of the delivery depends on the target group: sessions for management
focus more on effective team building and establishment of processes. When
the audience is a technical team, the focus goes more on tools and effective
collaboration within and across the teams.

Structure

The events are typically organised in several sessions run over a one-day to three-
day format made or frontal presentations and practical sessions. The sessions are
generally conducted at the office of the customer in a space suitably arranged
after the previous discussion with the local management. Whenever possible
the agenda and schedule of the activities have to be shared in advance. In this
way, the participants know what to expect, and sometime a preparatory work is
required.

Limitations of the Set-Up

One of the limitations we had to cope with, often but not always, is the fact that
bilateral previous communication with teams is not always possible or facilitated,
and the information goes through some local contact and line manager. At times
this demands for an on-the-fly on-site adaptation of the agenda. In order to
collect as much information as possible on the participants and the environment,
we typically send a survey to be completed a few days in advance, and we analyse
question by question to give specific advice depending on the answers.

Lessons Learnt and Optimisation

In retrospective, the most effective training for DevOps and Agile were those in
which the audience consisted of both management and developers. Indeed the
biggest challenge our customer encountered was not how to automatise existing
processes, but in fact how to set up the DevOps approach itself from scratch.
Generally, technical people know how to set up automatisation, but they may
have partial understanding about the importance and the benefits for the com-
pany, for other departments, the customer and ultimately for themselves. It is
important therefore to show the bigger picture and help them understanding
how their work affects other groups, and how this in turn affects themselves in
a feedback loop. The presence of management is very useful in this process. The
technical perspective is often left for self-study or for additional sessions.

Teaching DevOps in Academia and Industry: Reflections and Vision 7

Latest Experience and Feedback

The feedback from participants surpassed our expectation. In synthesis, this are
the major achievements of the past sessions:

– Marketers now understand how they may use A/B testing and check the
hypothesis.

– Security engineers find positive to approve small pieces of new features, not
the major releases.

– Developers developed ways to communicate with other departments and fulfil
their needs step by step based on the collaboration.

– Testers shifted their focus on product testing (integration-, regression-, soak-,
mutation-, penetration- testing) rather than unit testing, and usually set
future goals for continuing self-education on the subject.

Often multiple session can be useful. The primary objective is to educate
DevOps ambassadors, but it is also important to create an environment that
can support the establishment of DevOps processes and the realisation of a solid
DevOps culture, when every department welcome these changes. This does not
typically happen in a few days.

4 Discussion

The experience of teaching in both an academic and industrial context empha-
sised some similarities and some differences that we would like to discuss here.
Understanding these two realities may help in offering better pedagogical pro-
gramme from the future since each domain can be cross-fertilised by the ideas
taken by the other.

What we have seen in terms of similarities:

– Pragmatism: Both students and developers appreciate hands-on sessions.
– Hype: Interest and curiosity in the topic has been seen both in academia

and industry, demonstrating the relevance of the topic.
– Asymmetry: Classic education and developers training put more important

on Development than Operations and presenting the two sides as interrelated
strengthen the knowledge and increase efficacy.

What we have seen in terms of differences:

– Learners initial state: based on the academic curriculum where the course
is included, it is possible to know (or at least to presume) the already acquired
knowledge for the participant students. This may not be the case in a corpo-
rate environment, where the audience is generally composed by people with
different profiles and backgrounds.

8 E. Bobrov et al.

– Learners attitude: different motivations move different kind of audience.
Students too often are grade-focused and put effort depending on how they
will be assessed, they tend to find shortcuts to reach their objectives. Devel-
opers may not have a bigger picture of the company and a long-term vision,
they are interested in the approach as long as it can improve their working
conditions, so it is important to focus on this aspect in the delivery. Manager
see things in terms of cost savings and care less about technical details.

– Pace of education: short and intense in a corporate environment, can be
long and diluted in academia.

– Assessment/measure of success: classic exam-based at the university, a
corporate environment often does not require a direct assessment at the end
of the sessions and the success should be observed in the long run.

– Expectation: corporate audience is more demanding. This may nor be a
surprise given the costs and what is a stake. Students are also subject to a
cost, but it is more moderate and spread over a number of course attended
in one year.

5 Vision

After reporting experiences in teaching DevOps-based courses in both academic
and industrial environments (reflection), in this section we will look at the future
and we will describe our vision for the modernisation of university curricula
in Computer Science, in particular for the Software Engineering tracks. While
our vision and conclusions can be effectively applied in every Higher Education
institution, we are here considering a specific case study: Innopolis University, a
new IT educational institution in the Russian Federation. This is the reality we
have more direct experience of. In [16] the first five years of Innopolis Univer-
sity and the development of the internationalisation strategy is discussed, while
[17] presents some teaching innovations and peculiarities of the university. At
Innopolis University students have a 4-year bachelor, the first two years are fun-
damental, and a specific track is chosen at the third year (Software Engineering,
Data Science, Security and Network Engineering or Artificial Intelligence and
Robotics). There are also 2-year Master Programs, following exactly the same
four tracks. The last two years of the bachelors are characterised by a fewer
number of courses. Moreover, some of these courses are elective, and delivered
either by academic or industrial lecturers. These elective courses are aimed at
covering specific topics required by industry.

While working with industry we realised that the obstacles for the full adop-
tion of DevOps are not only of technical nature, but also of mindset. This issue
is difficult to solve since companies need to establish a radically new culture and
transfer it to the new employees who join the company with a legacy mindset.
The same situation may occur for fresh graduates. Classic curricula are very
often based on the idea of system as a monolith and process as a waterfall. Of
course, in the last twenty years, innovations have been added to the plan of study
worldwide. However, when focusing on the first two years of Bachelor education,

Teaching DevOps in Academia and Industry: Reflections and Vision 9

it can be seen that the backbone of the curricula is still outdated (due to legacy
reasons, and sometimes, ideological ones). It is therefore necessary to explain
students the DevOps values from scratch, establishing clear connections of every
course with DevOps, and describing how fundamental knowledge works within
the frame of this philosophy. Furthermore, Computer Science curricula have a
strong emphasis on the “Dev” part, but cover the “Ops” part only marginally,
for example as little modules inside courses such as Operating Systems and
Databases.

To cover the “Ops” part we need to teach how to engineer innovative software
systems that can react to changes and new needs properly, without compromis-
ing the effectiveness of the system and without imposing cumbersome a priori
analyses. To this end, we need to introduce courses on learning and adaptation
theories, algorithms and tools, since they are becoming the key enablers for con-
ceiving and operating quality software systems that can automatically evolve to
cope with errors, changes in the environment, and new functionalities. At the
same time, to continuously assess the evolved system, we need also to think to
teach validation and verification techniques pushing more them at runtime.

The DevOps philosophy is broad, inclusive, and at the same time, flexible
enough to work as a skeleton for Software Engineering education. This is what
drives our vision and we described in the next parts of this section.

5.1 Phases of Software Engineering Education

The DevOps philosophy presents recurring and neat phases. It has been shown
that companies willing to establish a strong DevOps culture have to pay atten-
tion to every single phase [18]. Missing a phase, or even a simple aspect of it,
might lead to poor overall results. This attention to every single phase should
also be applied also to university education.

In this interpretation (or proposal), every phase corresponds to a series of
concepts and a skill-set that the student has to acquire along the process. It is
therefore possible to organise the educational process and define a curriculum
for software engineering using the DevOps phases as a backbone (Fig. 1 sum-
marises these phases). This path would allow students to realise the connection
between different courses and apply the knowledge in their future career. The
plan described here is what we are considering to experiment at Innopolis Uni-
versity, expanding the experience acquired on the delivery of specialised DevOps
courses to the entire plan of study. We will use the idea described in [19] as a
backbone for curriculum innovation.

We consider ideal an incremental and iterative approach for bachelors to
fully understand and implement the DevOps philosophy. We utilise the following
taxonomy:

1. How to code.
2. How to create software.
3. How to create software in a team.
4. How to create software in a team that someone needs.
5. How to create software in a team that business needs.

10 E. Bobrov et al.

Fig. 1. DevOps phases

In details, this is the path we propose for the bachelor3 programme, based
on Agile and DevOps according to the taxonomy:

1. The first three semesters are devoted to fundamental knowledge of hard and
soft skills, which are essential to create software, especially following Agile and
DevOps. We want to educate the next generations of students providing them
not only with knowledge of programming languages and algorithms, but also
with software architectures, design patterns and testing. This way students
know how to create quality software fulfilling the essential non-functional
requirements (such as reliability, maintainability, and scalability).

2. The fourth semester has a software project course (to be considered as an
introduction to the software engineering track) based on the trial and error
approach without any initial constraints and thorough analysis of identified
problems in the second part of the semester.

3. The fifth semester has a new iteration of the software project course with
a deep understanding of the Agile philosophy and the most popular Agile
frameworks.

4. The sixth semester is based on the same project that has been created earlier
and adds automaton, optimisation of the Development, and it introduces the
Operational part and the feedback concept.

5. During the last two semesters (i.e. seventh and eighth), students start to work
with real customers from industry and try to establish all processes and tools
learnt in the previous three years.

6. During the third and fourth years, we propose additional core and elective
courses in order to explore deeper modern technologies, best practices, pat-
terns and frameworks.

3 4-year.

Teaching DevOps in Academia and Industry: Reflections and Vision 11

5.2 Transition Towards the New Curriculum

In this section we will address the transition from the current curriculum to the
new one identifying the iterations and steps year by year until the full implemen-
tation, and we will emphasise the role of industry in this process. For the last
years since foundation (2012), the curriculum for Software Engineers at Innopo-
lis University was mostly waterfall-based with a clear focus on hard skills. Each
course was delivering methods and tools specific of a certain phase, but not
always the “fil rouge” between courses was emphasised. Courses connecting the
dots and providing the basis for an iterative and incremental approach are now
under development. The first four semesters of the bachelor provide the prereq-
uisites for Software Engineering (and for Computer Science in general), whereas
the last four semesters are track-based (see Figs. 2 and 3).

The transition is planned to happen in 5-year time:

– Year 1. Make minor changes to the curriculum, targeting in particular two
courses: Software Project for second-year spring semester, and Project for
Software Engineers at the third year, fall semester. The first one has to be
adapted to teach students how to establish processes and develop software
according to Agile. The second one will be increased by adding the possibility
to collaborate with industry and develop actual projects. The students inter-
act with industry representatives and define project objectives with industry
under the control of the university.

– Year 2. Work more closely with industry and add more elective courses
covering skills required by companies. A course on DevOps will be added
to the spring semester of the third year of the bachelor to be intended as a
continuation of Software Project. The content of some courses will be adjusted
to contain DevOps philosophy.

– Year 3. Update fundamental courses at the first and second year accord-
ing to the Software Engineering Body of Knowledge (SWEBOK) standard
[20] (chapters “Mathematical Foundations”, “Computing Foundations” and
“Engineering Foundations”). Furthermore, soft skills courses such as “per-
sonal software process”, “critical writing” and “effective presentations” will
be added to the first three semesters.

– Year 4. Follow the SWEBOK and deliver the most essential knowledge areas.
– Year 5. Analyse the results of the changes introduced, and then tune the

fundamental courses with more notions of DevOps and Agile philosophies
along with incremental-iterative approaches. By year 5 we are planning to
establish a framework helping to update the curriculum to give more focus
on industry demands and IT evolution.

12 E. Bobrov et al.

Fig. 2. Curriculum of year 1 and year 2

Fig. 3. Curriculum for software engineering track

6 Conclusions

Ultimately, DevOps [2,13] and the microservices architectural style [14] with its
domains of interests [21–23] may have the potential of changing how companies
run their systems in the same way Agile has changed the way of developing
software. The critical importance of such cultural change should not be under-
valued. It is in this regard that higher education institutions should put a major
effort to fine tune their curricula and cooperative programme in order to meet
this challenge.

In terms of pedagogical innovation, the authors of this paper have exper-
imented for long with novel approaches under different forms [17]. However,
DevOps represents a newer and significant challenge. Despite of the fact cur-
rent educational approaches in academia and industry show some similarities,
they are indeed significantly different in terms of attitude of the learners, their

Teaching DevOps in Academia and Industry: Reflections and Vision 13

expectation, delivery pace and measure of success. Similarities lay more on the
perceived hype of the topic, its typical pragmatic and applicative nature, and
the minor relevance that education classically reserves to “Operations”. While
similarities can help in defining a common content for the courses, the differences
clearly suggest a completely different nature of the modalities of delivery.

From the current experience we plan to adjust educational programs asbreak
follows:

– University teaching: trying to move the focus out of final grade, empha-
sising more the learning aspect and give less importance to the final exam,
maybe increasing the relevance of practical assignments. It may be also use-
ful to intensify the theoretical delivery to keep the attention higher and have
more time for hand-on sessions. Ultimately, our vision is to build a Software
Engineering curricula on the backbone derived from the DevOps philosophy.

– Corporate training: it is important not to focus all the training activity as
a frontal session university-like. Often the customers themselves require this
classical format, maybe due to the influence of their university education. We
believe that this makes things less effective and we advocate for a change of
paradigm.

References

1. Kim, G., Debois, P., Willis, J., Humble, J.: The DevOps Handbook: How to Cre-
ate World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution Press, Portland (2016)

2. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective, 1st edn.
Addison-Wesley Professional, Boston (2015)

3. Agile and DevOps: Friends or Foes? https://www.atlassian.com/agile/devops.
Accessed 01 July 2018

4. Bucena, I., Kirikova, M.: Simplifying the DevOps adoption process. In: Joint Pro-
ceedings of the BIR 2017 Pre-BIR Forum, Workshops and Doctoral Consortium
Co-Located with 16th International Conference on Perspectives in Business Infor-
matics Research (BIR 2017), Copenhagen, Denmark, 28–30 August 2017

5. Trudel, M., Furia, C.A., Nordio, M., Meyer, B.: Really automatic scalable object-
oriented reengineering. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp.
477–501. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39038-
8 20

6. Estler, H.-C., Nordio, M., Furia, C.A., Meyer, B.: Unifying configuration manage-
ment with merge conflict detection and awareness systems. In: Australian Software
Engineering Conference, pp. 201–210. IEEE Computer Society (2013)

7. Bass, L.J., Weber, I.M., Zhu, L.: DevOps - A Software Architect’s Perspective. SEI
Series in Software Engineering. Addison-Wesley, Boston (2015)

8. Capozucca, A., Guelfi, N., Ries, B.: Design of a (yet another?) DevOps course. In:
Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp.
1–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06019-0 1

9. Mazzara, M.: Towards abstractions for web services composition. Ph.D. thesis.
University of Bologna (2006)

https://www.atlassian.com/agile/devops
https://doi.org/10.1007/978-3-642-39038-8_20
https://doi.org/10.1007/978-3-642-39038-8_20
https://doi.org/10.1007/978-3-030-06019-0_1

14 E. Bobrov et al.

10. Yan, Z., Mazzara, M., Cimpian, E., Urbanec, A.: Business process modeling: clas-
sifications and perspectives. In: Business Process and Services Computing: 1st
International Working Conference on Business Process and Services Computing,
BPSC 2007, Leipzig, Germany, 25–26 September 2007, p. 222 (2007)

11. Yan, Z., Cimpian, E., Zaremba, M., Mazzara, M.: BPMO: semantic business pro-
cess modeling and WSMO extension. In: 2007 IEEE International Conference on
Web Services (ICWS 2007), Salt Lake City, Utah, USA, 9–13 July 2007, pp. 1185–
1186 (2007)

12. Mazzara, M., Naumchev, A., Safina, L., Sillitti, A., Urysov, K.: Teaching DevOps
in corporate environments: an experience report. In: Bruel, J.-M., Mazzara, M.,
Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 100–111. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-06019-0 8

13. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps?: a system-
atic mapping study on definitions and practices. In: Proceedings of the Scientific
Workshop Proceedings of XP 2016, XP 2016 Workshops, pp. 12:1–12:11. ACM,
New York (2016)

14. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M.,
Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67425-4 12

15. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: how to make your application scale. In: Petrenko, A.K., Voronkov,
A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 8

16. Karapetyan, S., Dolgoborodov, A., Masyagin, S., Mazzara, M., Messina, A.,
Protsko, E.: Innopolis going global: internationalization of a Young IT Univer-
sity. In: Ciancarini, P., Mazzara, M., Messina, A., Sillitti, A., Succi, G. (eds.)
SEDA 2018. AISC, vol. 925, pp. 138–145. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-14687-0 12

17. de Carvalho, D., et al.: Teaching programming and design-by-contract. In: Auer,
M.E., Tsiatsos, T. (eds.) ICL 2018. AISC, vol. 916, pp. 68–76. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-11932-4 7

18. Building a healthy DevOps culture. https://www.wired.com/insights/2013/06/
building-a-healthy-devops-culture/. Accessed 08 Feb 2019

19. Avoid failure by developing a toolchain that enables DevOps, October
2017. https://www.gartner.com/doc/3810934/avoid-failure-developing-toolchain-
enables

20. IEEE Computer Society, Bourque, P., Fairley, R.E.: Guide to the Software Engi-
neering Body of Knowledge (SWEBOK(R)): Version 3.0, 3rd edn. IEEE Computer
Society Press, Los Alamitos (2014)

21. Salikhov, D., Khanda, K., Gusmanov, K., Mazzara, M., Mavridis, N.: Microservice-
based IoT for smart buildings. In: Proceedings of the 31st International Confer-
ence on Advanced Information Networking and Applications Workshops (WAINA)
(2017)

22. Nalin, M., Baroni, I., Mazzara, M.: A holistic infrastructure to support elderlies’
independent living. In: Cruz-Cunha, M.M., Miranda, I.M., Martinho, R., Rijo, R.
(eds.) Encyclopedia of E-Health and Telemedicine. IGI Global, Hershey (2016)

23. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: From mono-
lithic to microservices: an experience report from the banking domain. IEEE Softw.
35(3), 50–55 (2018)

https://doi.org/10.1007/978-3-030-06019-0_8
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-030-14687-0_12
https://doi.org/10.1007/978-3-030-14687-0_12
https://doi.org/10.1007/978-3-030-11932-4_7
https://www.wired.com/insights/2013/06/building-a-healthy-devops-culture/
https://www.wired.com/insights/2013/06/building-a-healthy-devops-culture/
https://www.gartner.com/doc/3810934/avoid-failure-developing-toolchain-enables
https://www.gartner.com/doc/3810934/avoid-failure-developing-toolchain-enables

A Model-Driven Approach Towards
Automatic Migration to Microservices

Antonio Bucchiarone1(B), Kemal Soysal2, and Claudio Guidi3

1 Fondazione Bruno Kessler, Trento, Italy
bucchiarone@fbk.eu

2 LS IT-Solutions GmbH, Berlin, Germany
kemal.Soysal@ls-it-solutions.de

3 italianaSoftware s.r.l., Imola, Italy
cguidi@italianasoftware.com

Abstract. Microservices have received and are still receiving an increas-
ing attention, both from academia and the industrial world. To guaran-
tee scalability and availability while developing modern software systems,
microservices allow developers to realize complex systems as a set of small
services that operate independently and that are easy to maintain and
evolve. Migration from monolithic applications to microservices-based
application is a challenging task that very often it is done manually by the
developers taking into account the main business functionalities of the
input application and without a supporting tool. In this paper, we present
a model-driven approach for the automatic migration to microservices.
The approach is implemented by means of JetBrains MPS, a text-based
metamodelling framework, and validated using a first migration exam-
ple from a Java-based application to Jolie - a programming language for
defining microservices.

1 Introduction

The life cycle of an application is bound to changes of domain and technical
requirements. Non functional requirements as scalability and availability may
lead to a rewrite of the application as is for a new architecture or programming
language. DevOps [1] and Microservices-based Applications (MSA) [2,3] appear
to be an indivisible pair for organizations aiming at delivering applications and
services at high velocity. The philosophy may be introduced in the company with
adequate training, but only if certain technological, organizational and cultural
prerequisites are present [4–6]. If not, the prerequisites should be developed
to guarantee adequate instruments to model and verify software systems and
support developers all along the development process in order to deploy correct
software.

Microservices allow developers to break up monolithic applications (MA) in
a set of small and independent services where each of them represents a single
business capability and can be delivered and updated autonomously without
any impact on other services and on their releases. In common practice, it is
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 15–36, 2020.
https://doi.org/10.1007/978-3-030-39306-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_2

16 A. Bucchiarone et al.

also expected that a single service can be developed and managed by a single
team [7,8]. Microservices [8] recently demonstrated to be an effective architec-
tural paradigm to cope with scalability in a number of domains [9], however, the
paradigm still misses a conceptual model able to support engineers starting from
the early phases of development. Several companies are evaluating pros and cons
of a migrating to microservices [6].

Model-driven software development [10,11] supports expressing domain
requirements regarding contained data, function points, workflows, configura-
tions, requirement tracking, test cases, etc. by appropriate domain specific lan-
guages [12]. In this respect, this work discusses the provision of an model-driven
approach for the automatic migration of monolithic applications to microser-
vices. In particular, domain-specific languages (DSLs) [13] allow the definition
and deployment of microservices, while model transformations are exploited to
automatize the migration and the containerization phases.

The implementation of the migration framework is realised by means of Jet-
Brains MPS (briefly, MPS)1. MPS is a meta-programming framework that can
be exploited as modelling languages workbench, it is text-based, and provides
projectional editors [14]. The choice of MPS is due to the inherent characteristics
of MSAs, which are by nature collections of small services that must interacts to
satisfy the overall business goal. In this respect, graphical languages do not scale
with the complexity of the MSAs. Moreover, MPS smoothly supports languages
embedding, such that our definition of microservice mining, specification, and
deployment phases for the migration that are easily implemented.

As a validation of our approach, we have migrated a simple Java applica-
tion in the corresponding Jolie2 [15] microservices deployed inside the Docker3

container.

1.1 Structure of the Paper

The remainder of the paper is organized as follows: Sect. 2 presents the basics
about microservices, the metamodelling framework used in the proposed app-
roach and the Jolie language for defining and deploying microservices. Starting
from this preliminary information, Sect. 3 surveys related works, Sect. 4 presents
the migration framework proposed, and Sect. 5 shows its implementation. We
conclude the paper with final remarks in Sect. 6.

2 Background

2.1 Microservices

Microservices [8] is an architectural style originating from Service-Oriented
Architectures (SOAs) [16]. The main idea is to structure systems by compos-
ing small independent building blocks communicating exclusively via message
1 http://www.jetbrains.com/mps/.
2 http://www.jolie-lang.org/.
3 https://www.docker.com.

http://www.jetbrains.com/mps/
http://www.jolie-lang.org/
https://www.docker.com

A Model-Driven Approach Towards Automatic Migration to Microservices 17

passing. These components are called microservices. The characteristic differen-
tiating the new style from monolithic architectures and classic Service-Oriented
is the emphasis on scalability, independence, and semantic cohesiveness of each
unit constituting the system.

Each microservice it is expected to implement a single business capability,
bringing benefits in terms of service maintainability and extendability. Since
each microservice represents a single business capability, which is delivered and
updated independently, discovering bugs or adding a minor improvements do
not have any impact on other services and on their releases.

Microservices have seen their popularity blossoming with an explosion of con-
crete applications seen in real-life software [17]. Several companies are involved
in a major refactoring of their backend systems in order to improve scalability
[9].

Such a notable success gave rise to academic and commercial interest, and
ad-hoc programming languages arose to address the new architectural style [18].
In principle, any general-purpose language could be used to program microser-
vices. However, some of them are more oriented towards scalable applications
and concurrency [19]. The Jolie programming language (see Sect. 2.4), crystalizes
the basic mechanisms of service oriented computing within a unique linguistic
domain in order to simplify the design and the development phases of microser-
vices. As another advantage, Jolie has already a community of users and devel-
opers [20] and it has been validated in production environments. Finally, Jolie
is available on Docker and is possible to develop and run a microservice inside a
container4.

2.2 Model-Driven Engineering and Domain Specific Languages

Model-Driven Engineering (MDE) [12] is a software engineering methodology
that proposes to shift the focus of the development from coding to modelling.
The goal is to reduce the complexity of software development by raising the
level of abstraction, analyzing application properties earlier, and introducing
automation in the process. In fact, models are expected to allow domain experts
to reason about a certain solution by means of concerns closer to their area of
expertise than to implementation details. Moreover, automated mechanisms, i.e.
model transformations, can manipulate those models to evaluate attributes of
the application and/or to generate implementation code.

Domain Specific Languages (DSLs) have been introduced with the aim of
meeting the needs of particular software applications, industry or business chal-
lenges that would be less effectively addressed by using mainstream general-
purpose languages. In fact, DSLs are languages introduced for expressing prob-
lems by using terms closer to a particular domain of application [21].

The definition of DSLs can be challenging due to a number of reasons, notably
the nature of the specific domain, how the concepts should be interconnected
to ease the modelling activity without sacrificing the quality of the produced

4 https://jolielang.gitbook.io/docs/containerization/docker.

https://jolielang.gitbook.io/docs/containerization/docker

18 A. Bucchiarone et al.

models, what kind of concrete syntaxes the users desire to exploit, and so forth.
To support the development of DSLs, it is common practice to use a language
workbench, that is a toolkit supporting the definition of various aspects of the
DSL under development (syntax, semantics, validation constraints, generators)
as well as user interaction features (code completion, syntax coloring, find usages,
refactorings, etc.).

2.3 JetBrains MPS: A Text-Based Metamodelling Framework

MPS by JetBrains5 is a text-based meta-programming system that enables lan-
guage oriented programming [22]. MPS is open source and is used to imple-
ment interesting languages with different notations [14]. In particular, based on
MPS BaseLanguage it is possible to define new custom languages through exten-
sion and composition of concepts [23]. A new language is composed by different
aspects making its specification modular and therefore easy to maintain [13,24].
Notably, the Structure Definition aspect is used to define the Abstract Syntax
Tree (AST) of a language as a collection of concepts. Each concept is composed of
properties, children, and relationships, and can possibly extend other concepts.
The Editor Definition aspect deals with the definition of the concrete syntax for
a DSL: it specifies both the notation (i.e., tabular, diagram, tree, etc.) and the
interaction behavior of the editor. The Generators Definition aspect is used to
define the denotational semantics for the language concepts. In particular, two
kinds of transformation are supported: (1) AST to text (model-to-text), and (2)
AST to AST (model-to-model). Other aspects like the Type System Definition,
the Constraints Definition, etc. are provided. For the sake of brevity, we refer
the reader to [25] and [26].

2.4 Jolie Language for Microservices

Jolie [15] is a programming language which offers a native linguistic tool for
defining microservices following a structured service oriented paradigm. In Jolie
some basic concepts of service oriented computing have a direct representation
within the primitives of the language. In particular:

– it provides an integrated syntax for defining API interfaces and types;
– it provides specific communication primitives for dealing with communication

both synchronous and asynchronous;
– it allows for defining the service behaviour in a workflow manner thus allowing

for an easy definition of orchestrators and coordinators of services.

Thanks to these features, we considered Jolie as a good candidate for demon-
strating how our approach works because it allows us to directly map the
microservice meta-model into a unique linguistic technology instead of exploiting
a mix of technologies. Such a characteristic permits us to avoid specific techni-
calities related to the chosen technology selection and focusing just on the core
5 https://www.jetbrains.com/mps/.

https://www.jetbrains.com/mps/

A Model-Driven Approach Towards Automatic Migration to Microservices 19

concepts of microservices. Starting from a jolie representation, the microservice
generation can be easily extended to other technologies. A detailed discussion
about Jolie is out of the scope of this paper, the reader may consult the techni-
cal documentation of Jolie for a deeper investigation [15]. In order to show how
the basic primitives of Jolie work, in the following we present a simple example
where a calculator is implemented in Jolie.

A Calculator in Jolie. The design of a Jolie service always starts from the
design of its interface which permits to define the operations exposed by the
service and its related message types.

Listing 1: Microservice Interface in Jolie

type CalculatorRequest: void {
.operand [1 ,*]: double

}
type DivisionRequest: void {

.dividend: double

.divisor: double
}
interfaces CalculatorInterface {
RequestResponse:

sum(CalculatorRequest)(double),
sub(CalculatorRequest)(double),
mul(CalculatorRequest)(double),
div(DivisionRequest)(double)

throws DivisionByZeroError
}

In the example above we defined an interface for a calculator service which
exposes four operations: sum, sub, mul and div. Their definitions are scoped
within the language keyword interfaces followed by the name of the interface
CalculatorInterface. Note that each operation comes with a request message
and a response message, thus we are defining synchronous operations which
receive a request message and will reply with a response one. In Jolie request-
response operations are defined below the keyword RequestResponse within the
interface definition. In the example three operations (sum, sub and mul) have
the same signature whereas operation div has a different one. In particular, the
first operations receive a message with type CalculatorRequest and reply with a
native type double. On the contrary, the last operation receive a message with
type DivisionRequest and reply with a double. Moreover, operation div could also
raise a fault called DivisionByZeroError. The type CalculatorRequest defines an
array of double operands which will be elaborated by the related operation,
whereas the type DivisionRequest define a couple of field, one for the dividend
and the other for the divisor. It is worth noting that in Jolie all the messages
and the internal variables are structured as trees where each node is potentially
a vector of elements. Moreover, in Jolie it is possible to express the cardinality
for each node of tree structure as it happens for the node operand where it must
contain at least one element (minimum cardinality is 1) and it can have as many

20 A. Bucchiarone et al.

elements as preferred (maximum cardinality is *). Such a structure recalls those
of XML trees and JSON trees, indeed a Jolie value can be easily converted in
one of them.

Once a Jolie interface has been defined, it is possible to implement its oper-
ations within a service. In the following we report a possible implementation of
the CalculatorInterface:

Listing 2: Microservice implementation in Jolie

include "CalcultorInterface.iol"

execution{ concurrent }

inputPort Calculator {
Location: "socket :// localhost :8000"
Protocol: sodep
Interfaces: CalculatorInterface
}

main {
[sum(request)(response) {

response = request.operand[0]
for(i = 0, i < #request.operand , i++) {

response = response + request.operand[i]
}

}]

[sub(request)(response) {
response = request.operand[0]
for(i = 1, i < #request.operand , i++) {

response = response - request.operand[i]
}

}]

[mul(request)(response) {
response = request.operand[0]
for(i = 0, i < #request.operand , i++) {

response = response * request.operand[i]
}

}]

[div(request)(response) {
if (request.divisor == 0) {

throw(DivisionByZeroError)
} else {

response = request.dividend/request.divisor
}

}]
}

The definition of a service in Jolie is mainly divided in two parts: a declarative
part where all the interfaces and ports are defined, a behavioral part, represented
by the scope main, where the implementation of the operations is provided.
Note that in the definition of the service above we use the primitive include
for automatically import the code written in file CalculatorInterface.iol where
we suppose we saved the definition of interface CalculatorInterface. In this case
the Jolie engine reads the content of the file and put it instead of the include

A Model-Driven Approach Towards Automatic Migration to Microservices 21

declaration. The primitive execution defines the execution modality of the service
which can assume three possible values:

– concurrent : the engine will serve all the received request concurrently;
– sequential : the engine will serve all the received request sequentially;
– single: the engine will execute the behaviour once then the service will stop.

Finally, the definition of the inputPort permits to define the listener where the
messages will be received by the service. The inputPort is also in charge to dis-
patch the message to the right operation. The inputPort requires three elements
in order to be correctly defined:

– Location: it defines where the service is listening for messages. Briefly, a
location defines the medium (socket, the IP (in the example is localhost)
and the port (in the example is 8000)).

– Protocol: it defines the protocol used for performing the communication. It
could be HTTP, HTTPS, SOAP, etc. In the example we use sodep that is
binary protocol released with the Jolie engine which does not require any
particular header like it happens for other protocols.

– Interfaces: it lists all the interfaces joined with that port, thus it defines all
the operations enabled to receive messages on that listener.

Note that more than one input port could be defined in the same Jolie service.
Finally, let us analyze the implementation of the operations. Note that each

of them is defined to store the received message in a variable called request
and take the response message from a variable called response. The response
is automatically sent to the invoker once the body of the request response is
successfully finished. This means that inside the body of each operations, the
developer must fill the variable response with a proper message which matches
with the related type defined in the interface. Indeed, if we analyze the code
of the first three operations, we see that the service ranges over the array of
operands calculating the related operation (+, − or *). in the case of operation
div, the service checks if the divisor is equal to zero and, if it is the case, it raises
a fault DivisionByZeroError which is automatically sent to the invoker instead
of a usual response.

The calculator service can be run by simply typing the following command
on a shell:

jolie calculator.ol

where calculator.ol is the name of the file which contains the definition of service
depicted above.

Before continuing, here we also show how to create and run a Jolie client
which uses the operation of the service calculator.

22 A. Bucchiarone et al.

Listing 3: Jolie Client implementation

include "CalcultorInterface.iol"
include "console.iol"

execution{ single }

outputPort Calculator {
Location: "socket :// localhost :8000"
Protocol: sodep
Interfaces: CalculatorInterface
}

main {
with(request) {

.operand[0] = 1;

.operand[1] = 2;

.operand[2] = 3;

.operand[3] = 4
}
sum@Calculator(request)(result)
println@Console(result)()

}

This Jolie client calls the calculator service on its operation sum passing an
array of four elements and receiving as a reply their sum (10). The result is then
printed out on the shell exploiting the operation println@Console(result)()
which comes with the built-in Jolie service imported at the beginning (include
“console.iol”). Note that the invocation of the calculator is performed with the
line

sum@Calculator(request)(result)

where we specify the name of the operation (sum) and the output port to be
used (Calculator). The output port Calculator is defined before the scope main
and it identifies the endpoint to which sending the message. It is not a case
indeed, that the elements Location, Protocol and Interfaces of the outputPort
correspond to those of the inputPort of the calculator service. The client can be
easily run in a shell typing the following command:

jolie client.ol

where client.ol is the name of the file which contains the definition of the client.

The Calculator Example in Java. In the following we report how the Jolie
example of the calculator described in the previous section can be implemented
as a Java class.

A Model-Driven Approach Towards Automatic Migration to Microservices 23

Listing 1: Java implementation of the Calculator

import java.util.ArrayList;

public class JavaCalculator {

public Double sum(ArrayList <Double > operand) throws Exception {
if (operand.size() > 0) {
throw new Exception("At�least�one�operand�must�be�specified");

}
Double response = operand.get(0);
for(int i = 1; i < operand.size (); i++) {

response = response + operand.get(i);
}
return response;

}

public Double sub(ArrayList <Double > operand) throws Exception {
if (operand.size() > 0) {
throw new Exception("At�least�one�operand�must�be�specified");

}
Double response = operand.get(0);
for(int i = 1; i < operand.size (); i++) {

response = response - operand.get(i);
}

return response;
}

public Double mul(ArrayList <Double > operand) throws Exception {
if (operand.size() > 0) {

throw new Exception("At�least�one�operand�must�be�specified");
}
Double response = operand.get(0);
for(int i = 1; i < operand.size (); i++) {

response = response * operand.get(i);
}
return response;

}
public Double div(Double dividend , Double divisor)

throws Exception {
Double response = new Double (0);
if (divisor == 0) {

throw new Exception("Division�by�Zero�Error");
}
response = dividend / divisor;
return response;

}
}

Note that in the case of Java we need to check at the beginning of methods
sum, sub and mul that the received array contains at least one element. In Jolie
the type checking is automatically performed by the engine.

Deploying a Jolie Service in a Docker Container. Deploying a jolie
microservice within a Docker container is very simple. The first thing to do
is preparing the image of the container starting from the public and available
image jolielang/jolie which provides a core layer where both Java and Jolie are
installed. In the following we show the Dockerfile which allows for the creation
of the docker image of the service calculator described in the previous section.

24 A. Bucchiarone et al.

Listing 4: Docker file for a microservice

FROM jolielang/jolie
EXPOSE 8000
COPY calculator.ol
CMD jolie calculator.ol

Such a Dockerfile can be used as an input for the command docker build
for actually creating the image of the container. Note that the file calculator.ol
must be located in the same directory from which the command docker build is
executed. The file calculator.ol indeed, will be directly copied within the image.
Once the image is created, a container which derives from it can be easily run
following the standard procedure of Docker.

3 Related Work

Since the 2014, as shown by Balalaie et al. [27], microservices steadily grown
as a concept, and plenty of businesses decided to migrate their monolithic and
service-oriented architectures to microservices ones. Taibi et al. [6] conducted
an empirical investigation and interviewed experienced practitioners in order
to identify the common motivations that led to the migration of monoliths to
microservices, as well as the issues they ran into. According to the interviewees,
the main reasons for migrating from a monolithic architecture to a microservices
one were both maintainability and scalability. Unsurprisingly, the main issue
related to migration was the monetary expenditure that such operation entails.
Finally, from such interviews, the authors outlined three different migration pro-
cesses adopted by practitioners.

In another study, Knoche and Hasselbring [28] report that discussions with
practitioners highlighted how industry looks at microservices as a promising
architecture to solve maintainability issues, even in those cases where scalabil-
ity is not a critical priority. First, this work shows that incremental approaches
that gradually decompose a monolith in separated microservices are the most
adopted, even though cases of full-scale code rewriting exist as well. Then, based
on their industrial experience, the authors provide a decomposition process to
achieve an incremental migration. Besides, authors argue that when dealing with
critical migrations, it makes sense to first migrate clients applications, while
implementing new functionalities in the existing monolith, and then incremen-
tally migrate all the services to the microservices architecture. On the contrary,
when dealing with less critical instances, authors acknowledge that these efforts
are not justified, and suggest to directly implement all the new services as
microservices.

Di Francesco et al. [5] conducted another empirical study, similar to the one
conducted by Taibi et al. [6] but with two main differences. First, in this study
the authors put greater focus on the details of each migration phase; second,
they investigated not only migrations of monolithic architecture to microservices

A Model-Driven Approach Towards Automatic Migration to Microservices 25

architectures, but also of service-oriented architectures to microservice architec-
tures. Again, authors highlight that there is no unified strategy into approaching
the migration, as some businesses choose to proceed by means of increments,
whereas others tackle down the problem as a single big project. They also report
a surprising result, where more than half of the participants reported that the
existing data is not migrated together with the architecture, arguing that this
does not align well with the two microservices typical principles: hiding internal
implementations details, and managing data in a decentralized fashion.

In a 2015 manuscript, Levcovitz et al. [29] proposed a technique to identify,
within monoliths, service candidates for migrating to microservices based on
mapping the dependencies between databases, business functions, and facades.
The authors evaluated their technique on a real case study (a 750 KLOC mono-
lith programmed in C) in the banking domain, and show that they identified
successfully candidate subsystems. To the best of our knowledge, apart from our
work, this is the only alternative publication that discusses migration techniques
applied to a specific banking case study. Moreover, it is useful to notice that while
their approach aims to automatize the identification based on the legacy mono-
lithic deployment, our case study was primarily business-driven. Therefore, our
approach had to be necessarily manual and iterative.

Again, Balalaie et al. [27,30] reported their experience of performing an incre-
mental migration of a mobile back-end as a service (MBaaS) to microservices,
coupling with DevOps methodologies. Citing the on-demand capability as the
main driver of migration, they caution a posteriori about two important lessons
learned. In first instance, the authors warn that the service contracts are criti-
cal and that changing a lot of services that only interact with each other could
expose to a number of errors, as small errors in the contracts can break down
substantial part of the architecture. Second, they caution against considering
microservices a silver bullet, as it can be beneficial to bring scalability to ser-
vices, but it can introduce higher complexity as well.

Following the previous works, the authors collected and reported some empir-
ical migration patterns derived from medium to large-scale industrial projects,
aiming to help others to perform a smooth migration [31]. They evaluate such
patterns through qualitative empirical research, and cite as future work the
development of a pattern language that would allow to automatically compose
the patterns.

In a recent work, Furda et al. [32] agree on defining the migration to microser-
vices a promising way to modernize monolithic architectures and to enable full-
scale utilization of cloud computing. At the same time, they identify three major
challenges in migrating monolithic architectures to microservices ones, namely:
multitenancy, statefulness, and data consistency.

Finally, Bucchiarone et al. [33] report an experience from of a real-world
case study in the banking domain, of how scalability is positively affected by re-
implementing a monolithic architecture into microservices. Even if it presents
a real and complex application migration, the approach proposed was not
supported by an automatic migration tool but was only business-driven and

26 A. Bucchiarone et al.

outside-in, i.e., the system has been designed and implemented one business
functionality at a time.

Analyzing all the lessons learned by the previous works we can conclude
saying that despite the fact that there is an extreme and increasingly emerg-
ing need to migrate applications from monolithic to microservices, rare are the
approaches that try to make this process automatic and tool supported. Most
of the migration approaches proposed are guided by the developers experience
and are not supported by a specific tool or language. They consider case by case
whether a functionality should result in a new service or not. If the business
functionality seemed isolated and big enough, or it was shared among numerous
other business functionalities, then it resulted in a new service.

At the same time, to the best of our knowledge, there is no Model-Driven
Engineering approach addressing the support of migration in the sense addressed
in this paper. The migration approach introduced in the next section shows
our solution in this direction with the aim towards the realization of a general
framework for automatic migration to microservices.

4 Model-Driven Migration Approach

In this Section we introduce the migration process, showing how a MA can be
converted into a MSA and deployed in a Docker container. In this respect, our
contribution is visualized in Fig. 1, which depicts the different artifacts real-
ized and their relations. Technically, the solution is composed by two funda-
mental components: (a) the Microservices Miner and (b) the Microservices
Generator, by two Domain Specific Languages (DSLs) (i.e., for the Microservice
specification and for their Deployment), by a set of generators used to support
the overall migration from MA (developed in Java) to MSA (developed using
Jolie) and the corresponding deployment in a Docker Container. The following
sections provide detailed descriptions of each of the previous artifacts.

Fig. 1. The model-driven migration approach.

A Model-Driven Approach Towards Automatic Migration to Microservices 27

4.1 The Microservice Language

The Microservice language relies on how microservices can be defined in Jolie
(see Sect. 2.4) and allows the developers to design concrete microservices. An
excerpt on the concepts defined to realize this DSL are depicted in Fig. 2. In
particular at this level of abstraction the developer can specify a microservice
including its interface, inputPort, outputPort and the respective behavior.
Moreover it comprises a property called directive that is used to set the exe-
cution modality. For example setting it to concurrent will allow the service to
process all the incoming requests concurrently. The behaviour children of the
Microservice concept is used to define the implementation of the functionalities
offered by a microservice.

Fig. 2. Concepts of the microservice language.

The Interface concept is used to specify the type of each exchanged message
(i.e., requestResponseMessage) in a microservice. To enable a communication
between microservices, we need to specify the input and the output endpoints.
In Jolie this is done by using primitives input ports and output ports. In our
DSL we have introduced two concepts. InputPort is used for defining a listener
endpoint whereas the OutputPort concept is used for sending messages to an
inputPort.

28 A. Bucchiarone et al.

Figure 3 shows how the calculator microservice can be specified using the
Microservice language. The calculator microservice provides an inputPort
which is listening on port 8999 where the CalculatorInterface is defined.

Fig. 3. Calculator microservice model.

In this interface the request also contains the subnode .op:string, which
permits to specify the operation type (i.e., SUM or SUBT). Moreover, it includes
also a fault sent as a response (i.e., OperationNotSupported).

The interface called OperationServiceInterface provides a RequestResponse
operation called execute. A RequestResponse operation is an operation which
receives a request message and replies with a response message. In this case, the
request message type is defined by ExecuteRequest, which contains two subnodes:
x and y. Both of them are integers. On the other hand, the response is just an
integer.

The outputPort of the calculator microservice requires the same parameters
of the inputPort (i.e., Location, Protocol, Interfaces) but in our example the
Location is omitted because it is dynamically bound at runtime depending on
the value of request node op. Indeed, we bind the port Operation to a different
location depending on if we call the service SUM or the service SUBT in the
microservice behavior (i.e., main part of the calculator microservice).

A Model-Driven Approach Towards Automatic Migration to Microservices 29

4.2 The Deployment Language

In this Section we show how a microservice modelled using our approach can
be deployed inside a Docker container. Basically, the only thing to do is to
create a Dockerfile which allows for creating a Docker image that can be used
for generating containers. For this purpose we have defined a specific language
called Deployment (see Fig. 4) devoted to the specification of the microservices
Dockerfiles. At the same time is important to know that there is a Docker
image which provides a container where Jolie is installed. Such an image can
be found on dockerhub6 and is used as base layer for deploying jolie services
modelled or automatically generated by our approach.

Fig. 4. DockerImage concept of the deployment language.

To create a docker image of a microservice (as the one in Fig. 3), it is nec-
essary to specify down a Dockerfile exploiting the DockerImage concept of the
Deployment language. To do this we have created an MPS editor (as shown in
Fig. 5 left side) that helps developers to specify Dockerfile models as depicted
in the right side of Fig. 5.

The FROM child of the DockerImage concept us used to load the image
jolielang/jolie, while the MAINTAINER is used to specify the name and the email
address of the file maintainer. EXPOSE is used to expose the port 8000 to be used
by external invokers of the microservice. This means that the jolie microservice
always listens on this port within the container. COPY is used to copy the file
calculatore.ol within the image renaming it into main.ol. Finally CMD speci-
fies the command to be executed by Docker when a container will be start from
the image described by this Dockerfile.

4.3 Microservices Miner

To analyze the monolithic application written in Java and to retrieve from it the
set of needed microservices, we have implemented the Microservices Miner com-
ponent. Its main task is to search in the abstract syntax tree of the imported Java
6 https://hub.docker.com/r/jolielang/jolie.

https://hub.docker.com/r/jolielang/jolie

30 A. Bucchiarone et al.

Fig. 5. Dockerfile editor and model.

code for patterns of interest and suggest to the developer the set of microservices
for the migration. This is done thanks the realization of two subcomponents, the
orchestrator and a set of searchers. The orchestrator is a generic implemented
action in the miner language and can be invoked on the MPS logical view or on
the specific imported Java code editor.

Fig. 6. Microservice finder in action.

The MPS logical view shows a tree presenting the project structure. When
the implemented finder is selected (the Find microservices action in Fig. 6),
MPS, using the searchers available in the project executes the searchers. The
result of this search is usually visualized in the Usage View, as depicted at

A Model-Driven Approach Towards Automatic Migration to Microservices 31

the bottom of Fig. 6, and contains the occurrences of the pattern specified
in the specific searcher. Each searcher is realized by implementing the inter-
face or the abstract implementation and finds nodes in the AST that com-
ply to the semantic understanding of the searcher. As a simple example, Fig. 7
presents the PlusExpressionFinder definition and its usage in the more general
MicroServiceSearcher. When it is invoked in the project logical view it searches
for all the occurrences of the plus expression in the Java source code and returns
all the occurrences retrieved in the Usage View. This outcome is exploited by
the developer to identify the set of microservices that must be specified using the
Microservice language introduced in Sect. 4.1 and that can be directly deployed
in a Docker container using the Microservice Generator illustrated in the next
Section.

Fig. 7. Microservice miner.

4.4 Microservices Generator

To generate all the needed files to deploy a microservice in a Docker container we
have used one of the transformation feature provided by MPS, it is the AST to
text (model-to-text) transformation. As we have already introduced in Sect. 2, to
run a microservice we need to provide one file for the service specification (with
extension .ol), one file for each interface the microservice uses (with extension
.iol), and the Dockerfile used to deploy the microservice in a Docker container.
To do this we have implemented three generators (depicted in Fig. 1) called:

32 A. Bucchiarone et al.

Microservice TextGen, Interface TextGen, and DockerImage TextGen. As illus-
trated in Figs. 8 and 9, generators specifications are given by means of template
mechanisms. Templates are written by using the output language (i.e., Jolie
and Dockerfile in our case), and are parametric with respect to the elements
retrievable from the input model through Macros, denoted by the $ symbol. In
our case, the Microservice and the Interface generators are used to generate
the corresponding Jolie .ol and .iol files. The Dockerfile generator instead is
used to generate the corresponding Dockerfile document needed to deploy the
microservice in a Docker container.

Fig. 8. Microservice and Interface generators.

Fig. 9. Dockerfile generator.

A Model-Driven Approach Towards Automatic Migration to Microservices 33

F
ig
.
1
0
.
P
ro
to
ty
p
e
ex
ec
u
ti
o
n
st
ep

s.

34 A. Bucchiarone et al.

5 Prototype Implementation

As a first iteration towards realizing the framework proposed in this paper, we
developed the model-driven approach described in Sect. 47. The implementation
includes all the phases depicted in Fig. 10 and has been experimented using the
motivating scenario presented in Sect. 2.4.

Using our solution, a developer can start the migration process importing
the Java source code of the monolithic application in phase 1 . This is done
using the native MPS action Get Models Content from Source that can be
invoked by the main menu. In this way the Java code is parsed into MPS’ base
language and imported in the editor as input Java models. Phase 2 is used
to interrogate the imported Java models for patterns of used packages, classes,
methods and members to identify microservice candidates. In phase 3 , with the
Microservice domain specific language in the hand the developer can create the
different models of the identified microservices. In phase 4 , using the provided
generators described in Sect. 4.4, the microservices models with their respective
interfaces are transformed in the target Jolie files. In the end, in phase 5 , for
each Jolie microservice a Dockerfile is created and used to deploy the overall
application in a Docker container.

6 Conclusion

In this paper we presented the experiences matured in the development of a
Model-Driven approach for the migration of monolithic applications to microser-
vice applications. The proposed solution is based on the definition of two domain
specific languages, one for the microservices specification and one for their
deployment in a Docker container, and on a set of generators that make the
migration approach automatic and with less manual intervention by developers.
The framework have been implemented by means of the MPS text-based lan-
guage workbench and evaluated with an initial with the aim to demonstrate the
feasibility of the approach, and calls for future research. To make is scalable and
usable in real contexts we are interested to test it using different industrial case
studies to further investigate the soundness of the proposed methodology and
eventually to extend the specification of the provided DSLs in MPS to make it
more general.

References

1. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Reading (2015)

2. Fowler, M., Lewis, J.: Microservices, ThoughtWorks (2014)

7 A prototype implementation of the approach and the related artefacts are available
at the GitHub repository: https://github.com/antbucc/Migration.git.

https://github.com/antbucc/Migration.git

A Model-Driven Approach Towards Automatic Migration to Microservices 35

3. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: the
journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

4. Mazzara, M., Naumchev, A., Safina, L., Sillitti, A., Urysov, K.: Teaching DevOps in
corporate environments: an experience report, CoRR, vol. abs/1807.01632 (2018)

5. Francesco, P.D., Lago, P., Malavolta, I.: Migrating towards microservice architec-
tures: an industrial survey. In: 2018 IEEE International Conference on Software
Architecture (ICSA), pp. 29–2909, April 2018

6. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating
to microservices architectures: an empirical investigation. IEEE Cloud Comput. 4,
22–32 (2017)

7. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15, 1053–1058 (1972)

8. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara,
M., Meyer, B., et al. (eds.) Present and Ulterior Software Engineering, pp. 195–216.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67425-4 12

9. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: how to make your application scale. In: Petrenko, A.K., Voronkov,
A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 8

10. France, R., Rumpe, B.: Model-based development. Softw. Syst. Model. 7(1), 1–2
(2008)

11. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation.
IEEE Softw. 20, 36–41 (2003)

12. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39, 25–31 (2006)

13. Voelter, M., et al.: DSL Engineering - Designing, Implementing and Using Domain-
Specific Languages (2013). dslbook.org

14. Voelter, M., Lisson, S.: Supporting diverse notations in MPS’ projectional editor.
In: Proceedings of the 2nd International Workshop on the Globalization of Mod-
eling Languages Co-located with ACM/IEEE 17th International Conference on
Model Driven Engineering Languages and Systems, GEMOC@Models 2014, pp.
7–16 (2014)

15. The Jolie language website. http://www.jolie-lang.org/
16. MacKenzie, M.C., Laskey, K., McCabe, F., Brown, P.F., Metz, R., Hamilton, B.A.:

Reference model for service oriented architecture 1.0, vol. 12. OASIS Standard
(2006)

17. Newman, S.: Building Microservices. O’Reilly Media Inc, Sebastopol (2015)
18. Montesi, F., Guidi, C., Zavattaro, G.: Service-Oriented Programming with Jolie.

In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds.) Web Services Foundations, pp.
81–107. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-7 4

19. Guidi, C., Lanese, I., Mazzara, M., Montesi, F.: Microservices: a language-based
approach. Present and Ulterior Software Engineering, pp. 217–225. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67425-4 13

20. Bandura, A., Kurilenko, N., Mazzara, M., Rivera, V., Safina, L., Tchitchigin, A.:
Jolie community on the rise. In: SOCA, pp. 40–43. IEEE Computer Society (2016)

21. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35(6), 26–36 (2000)

22. Ward, M.: Language oriented programming. Softw. Concepts Tools 15, 147–161
(1994)

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
http://dslbook.org
http://www.jolie-lang.org/
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-3-319-67425-4_13

36 A. Bucchiarone et al.

23. Voelter, M.: Language and IDE modularization and composition with MPS. In:
Generative and Transformational Techniques in Software Engineering IV, GTTSE
2011, pp. 383–430. International Summer School (2011)

24. Voelter, M., Pech, V.: Language modularity with the MPS language workbench. In:
34th International Conference on Software Engineering, ICSE 2012, pp. 1449–1450
(2012)

25. Campagne, F.: The MPS Language Workbench, vol. 1, 1st edn. CreateSpace Inde-
pendent Publishing Platform, Hamburg (2014)

26. Campagne, F.: The MPS Language Workbench Volume II: The Meta Programming
System, vol. 2, 1st edn. CreateSpace Independent Publishing Platform, Hamburg
(2016)

27. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33, 42–52 (2016)

28. Knoche, H., Hasselbring, W.: Using microservices for legacy software moderniza-
tion. IEEE Softw. 35, 44–49 (2018)

29. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting
microservices from monolithic enterprise systems. In: III Workshop de Visual-
ização, Evolução e Manutenção de Software (VEM), pp. 97–104 (2015)

30. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33313-7 15

31. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T.: Microser-
vices migration patterns. Softw. Pract. Exp. 48, 2019–2042 (2018)

32. Furda, A., Fidge, C., Zimmermann, O., Kelly, W., Barros, A.: Migrating enter-
prise legacy source code to microservices: on multitenancy, statefulness, and data
consistency. IEEE Softw. 35, 63–72 (2018)

33. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: From mono-
lithic to microservices: an experience report from the banking domain. IEEE Softw.
35(3), 50–55 (2018)

https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15

Anomaly Detection in DevOps Toolchain

Antonio Capizzi1, Salvatore Distefano1, Luiz J. P. Araújo2,
Manuel Mazzara2(B), Muhammad Ahmad1,3, and Evgeny Bobrov2

1 University of Messina, Messina, Italy
2 Innopolis University, Innopolis, Respublika Tatarstan, Russian Federation

m.mazzara@innopolis.ru
3 Department of Computer Engineering, Khwaja Fareed University of Engineering

and Information Technology, Rahim Yar Khan, Pakistan

Abstract. The tools employed in the DevOps Toolchain generates a
large quantity of data that is typically ignored or inspected only on
particular occasions, at most. However, the analysis of such data could
enable the extraction of useful information about the status and evolu-
tion of the project. For example, metrics like the “lines of code added
since the last release” or “failures detected in the staging environment”
are good indicators for predicting potential risks in the incoming release.
In order to prevent problems appearing in later stages of production,
an anomaly detection system can operate in the staging environment to
compare the current incoming release with previous ones according to
predefined metrics. The analysis is conducted before going into produc-
tion to identify anomalies which should be addressed by human oper-
ators that address false-positive and negatives that can appear. In this
paper, we describe a prototypical implementation of the aforementioned
idea in the form of a “proof of concept”. The current study effectively
demonstrates the feasibility of the approach for a set of implemented
functionalities.

1 Introduction

Evolution of software engineering spans over more than fifty years where differ-
ent problems have been presented, and solutions explored [1]. From “structured
programming” to “life cycle models” and “software development methodologies”,
researchers and developers have better understood the software development pro-
cess and its complexity. Meanwhile, a fast-speed growing technological progress
has transformed the usage of computers from devices for numerical and scientific
computation into every-day ubiquitous devices. This progress has not stopped,
and an increasing number of companies are moving to Agile methodologies, also
including in the software development process feedback from operational stages
in a DevOps [2,3] fashion.

Continuous delivery (CD) is an important concept part of the DevOps phi-
losophy and practice as it enables organizations to deliver new features quickly
as well as to create a repeatable and reliable process incrementally improving to
bring software from concept to customer. The goal of CD is to enable a constant
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 37–51, 2020.
https://doi.org/10.1007/978-3-030-39306-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_3

38 A. Capizzi et al.

flow of changes into the production via an automated software production line -
the continuous delivery pipeline. The CD pipeline has a variable complexity and
can be constituted by several phases supported by different tools. However, the
core idea is always the same: when a developer integrates or fixes a functionality
into the software, a set of software tools automatically builds the application,
starts the automatic tests and, finally, delivers the new feature.

CD is made possible via automation to eliminate several manual routines dur-
ing software production, testing, and delivery. CD pipeline automation involves
in the toolchain different tools, each generating messages, data and logs. How-
ever, the amount of recorded data can prevent its manual inspection when one
searches for a specific issue or traces back abnormal behavior. Inside a DevOps
toolchain, data is generated and stored in different formats. The analysis of
such data is a daunting task even for an experienced professional as well as its
processing, recognition, mining and, consequently, addressing of critical aspects.

In this paper, we discuss how to automatically analyze the data generated
during a DevOps toolchain integrated to anomaly detection (AD) methods for
identifying potentially harmful software releases. As a result, software releases
that can lead to potential malfunctioning during the normal system life could be
identified. The implemented approach could still lead to false-positives and false-
negatives since no approach can overcome this theoretical limitation [4]; however,
developers are provided with an instrument to validate and maintain the code.
This investigation focuses on an ongoing project structured according to the
DevOps philosophy, and we will apply analytical techniques to gain insights for
professionals involved in the software development process.

In Sect. 2, background is provided, with specific regard to DevOps toolchains
and AD techniques and tools. In Sect. 3, we presented an approach for integrating
AD into a project structured with DevOps. After that, Sect. 4 describes the case
study, in details: the SpaceViewer application, the corresponding DevOps process
and toolchain and the developed AD module, the SpaceViewer AD system -
SVADS. Section 5 then reports on the experiments and obtained results, also
compared against those obtained by offline tools on the full SpaceViewer dataset,
demonstrating the effectiveness of the proposed approach. Section 6 summarises
the key aspects of the proposed approach and future work.

2 Background

This section introduce some technical background for this work project and its
implementation. This research is bringing together two different communities
with research literature and vocabulary sporadically overlapping. Thus, we first
discuss the details of DevOps toolchains, and then we report on data science
techniques adopted in the software development process.

2.1 The DevOps Toolchain

DevOps [2] consists of a set of practices to promote collaboration between
the developers, IT professionals (in particular sysadmin, i.e. who works on

Anomaly Detection in DevOps Toolchain 39

IT operations) and quality assurance personnel. DevOps is implemented via
a set of software tools [5] that enable the management of an environment in
which software can be built, tested and released quickly, frequently, and a more
reliable manner. In addition to CD, continuous integration (CI) stands as a key
concept in DevOps approaches. A typical example of CI consists of continuously
integrating changes made by developers into a repository, then a project build
is automatically executed, if the build works well automatic tests are started. IF
also automatic tests passes, the change is integrated into the code through CD
and published in production environment.

One of the main objectives of DevOps is to mitigate problems in produc-
tion, which is done by reducing the gap between development and testing envi-
ronments with the production environment. Collaborations between “Dev” and
“Ops” aiming to reduce this gap make use of a complex toolchain including,
at least, some version control tool (e.g. Git), CI/CD automation tools (e.g.
Jenkins), package managers (e.g. NPM) and test tools (e.g. JUnit). Other addi-
tional tools used in DevOps are configuration management tools (e.g. Ansible),
monitoring tools (e.g. Nagios), security tools (e.g. SonarCube), team collabo-
ration tools (e.g. Jira) and database management tools (e.g. Flyway). DevOps
infrastructures are typically either fully implemented on cloud platforms. It is
a good practice in DevOps to build the entire infrastructure using containers;
therefore, tools for containerization (e.g. Docker) are employed, sometimes cou-
pled by tools for containers orchestration (e.g. Kubernetes).

An outcome from the complex pipeline involved in a DevOps project is the
generation of a large amount of data, in particular, log files and metrics generated
in each stage. Examples of activities that generate considerable data on the
project cycle include changes made by developers; the application building and
its corresponding entries on the compilation and dependencies of the project;
the execution of automatic tests; and software usage by end-users after release
into the production.

A large amount of the data generated in a DevOps toolchain requires some
form of automation and possibly dimensionality reduction and feature selection
[6]. However, collecting, storing, and analysing such a high dimensional data
could enable insights into how to improve the DevOps pipeline [7]. For example,
historical data can be analyzed to estimate a probabilistic measure of the success
of a new release.

2.2 Anomaly Detection in Software Development

The application of data science techniques to software development processes has
become increasingly popular in the last decades, in part due to the availability of
a growing amount of data generated during the development process. Methods
like data preprocessing and machine learning have been used for tasks including
estimating programming effort, predicting risks to the project and identifying
defects in the produced artefacts [8].

In recent years, the term “AIOps” has been coined to refer to a set of tech-
niques which employ machine learning and artificial intelligence to enable the

40 A. Capizzi et al.

analysis of data from IT operation tools [9]. As a result, there has been a notice-
able improvement in service delivery, IT efficiency and superior user experience
[10]. Applications of AIOps to DevOps processes, mainly to analyze data pro-
duced by the toolchain, specifically in operation, have been proposed in literature
[11]. In another example, AIops has been used to support software development
processes within an organization during the migration from waterfall processes
to Agile/DevOps [12].

AD has been an increasingly popular approach for identifying observations
that deviate from the expected pattern in the data. In data science, AD refers to a
set of techniques used for identifying observations which occur with low frequency
in the dataset, i.e. entries that do not conform to the expected distribution or
pattern. Such data entries raise suspicion and represent potential risk depending
on the context in which data has been collected. Examples of applications of AD
in different problem domains include detection of bank frauds [13], structural
defects in building construction [14], system health monitoring and errors in a
text [15]. It is trustworthy mentioning that there has been limited literature
demonstrating the application of AD methods in the context of DevOps. An
example of AD applied to DevOps operations in a Cloud platform was reported
in [16].

3 Integrating Anomaly Detection into DevOps

As mentioned previously, the vast amount of data generated by the DevOps
toolchain enables the use of AD techniques to reduce the probability of soft-
ware errors released in production. An AD system can compare the multivariate
features of the prospective release with the collected data from previous ver-
sions. The DevOps study analyzed in this work is following the development,
staging, and production model. In this model, the activities are sorted in three
deployment environments, detailed as follows:

– Development: environment in which the developers work and can quickly
test new features.

– Staging: testing environment to experiment and test the new features that
have to be merged to the system.

– Production: environment in which the software is released and utilised by
end-users.

The development and staging environments offer an opportunity for assessing
the correctness of the prospective release. Moreover, the data collected during
these stages enable the application of data science techniques such as AD for
preventing software errors. The most suitable approach depends on the char-
acteristics of the data. For example, if a considerable amount of labeled data
is available, supervised learning techniques (e.g. support vector machine) can
lead to satisfactory predictive accuracy. In case there is no information whether
each observation in the training dataset is an anomaly, an unsupervised learning
technique is the most suitable approach.

Anomaly Detection in DevOps Toolchain 41

This study employs the local outlier factor (LOF) algorithm, which is an
unsupervised AD technique which computes the local density deviation of a
multivariate data point compared to its neighbors. This method enables the
identification and plotting of anomalies in the data and supports better decision-
making [17]. The LOF algorithm is used before a new version of the software is
moved from the staging phase to the release phase. In other words, it identifies
whether the prospective release significantly deviates from exiting distributions
in the following set of metrics: the number of pushes, builds and errors, lines of
code that have been changed and the number of failed tests. Figure 1 shows the
operational flow, which consists of three macro-phases distinguishing develop-
ment, AD and recovery activities.

Fig. 1. The anomaly detection task in the proposed DevOps workflow.

In the development stage, software development and testing are implemented
in the development and staging environments as described previously. These
activities are performed between the current release and the next version. The
activities in this stage are mostly executed by the development team. In the
detection stage, AD using the LOF algorithm is employed and possibly coupled
with advanced computational techniques like artificial intelligence and machine
learning. Moreover, the comparison of distinct AD methods can provide more a
well-informed decision in the recovery phase, when a human actor assesses the
identified anomalies.

42 A. Capizzi et al.

4 A Case Study: SpaceViewer

This section describes a proof-of-concept application developed by exploiting a
DevOps approach and toolchain proposed in this work. It consists of a Web
application developed by adopting a DevOps process: SpaceViewer [18]. Space-
Viewer is a ReactJS [19] project enabling queries for interacting and interfacing
the NASA space archive exploiting their Open APIs [20]. A client-server app has
been implemented where the server-side small back-end interface [21] (developed
in Python 3.7 [22] using Flask 1.0.2 [23]) sends a token to the client app neces-
sary to query the NASA DB. Figure 2 reports the SpaceViewer homepage with
the main features implemented.

Fig. 2. SpaceViewer ReactJS web-application

4.1 DevOps Toolchain

The DevOps toolchain adopted in the SpaceViewer app development is composed
of the following tools

– Jenkins [24]: CI/CD and automation
– GitHub [25]: version control
– CodeClimate [26]: assessment of the quality of the source code
– Docker [27]: deployment tool
– Slack [28]: team collaboration and management of automatic alerts from

Jenkins Jobs
– Node Package Manager - NPM [29]: run build, deploy, and automatic

test of the ReactJS application

Anomaly Detection in DevOps Toolchain 43

– SpaceViewer Anomaly Detection System - SVADS [30]: this tool
was created specifically for this experimentation, it will be described in the
Sect. 4.2.

As discussed in Sect. 3, the deployment environments have been implemented as
follows:

– Development environment: local in developer machines.
– Staging environment: remote server deployed in a Docker container and

triggered by Jenkins. Whenever a new version of the software is pushed on
the GitHub repository, the staging environment is automatically rebuilt.

– Production environment: remote server in a Docker container triggered
by Jenkins. Before a build in production, SVADS is triggered.

Fig. 3. SpaceViewer Jenkins Jobs (pipelines).

The Jenkins tool has been set up to manage such deployment environ-
ments. Figure 3 depicts the Jenkins Jobs created for the SpaceViewer case
study, thus establishing a Jenkins pipelines [31]. Jenkins jobs are mainly
instantiated for deploying in staging (SpaceViewer Staging) and production
(SpaceViewer Production), while additional jobs are created to run the back-end
process (SpaceViewer Backend) and perform AD before launching the produc-
tion job (SpaceViewer AnomalyDetection).

Fig. 4. Staging/production pipelines stages

The pipelines for both the Staging and the Production deployments consist
of the stages shown in Fig. 4. An automatic system in Jenkins triggering the
rebuild in Staging at every Development push on the GitHub repository has been
deployed. As stated above, before deploying in Production, the AD job has to be
performed to detect any possible anomaly or issue in the DevOps development

44 A. Capizzi et al.

process. Then, if no anomalies are detected, the Production job is automatically
triggered and the SpaceViewer software version is released in Production. In the
SpaceViewer DevOps pipeline, Jenkins is also connected through a specific plugin
[32] to the messaging software Slack [28]. This way, the team can receive real-time
automatic alerts regarding Jenkins jobs outcomes (e.g. failure and success).

Fig. 5. SpaceViewer DevOps process and toolchain.

The overall SpaceViewer DevOps process and toolchain are shown in Fig. 5,
highlighting the different stages of the process and the main tools involved.
The swim-lanes identify the three environments taken into account, correlating
their activities with the different stages of the process. As stated above, the lat-
ter two environments are deployed into two independent containers, while the
Development one runs locally into the development/developer machines. The
only step that is not directly involved in the SpaceViewer automated DevOps
process is the initial Plan one. After planning, coding activities (Code) trig-
ger the DevOps pipeline with specific metrics from the development environ-
ment and tools (ReactJS and GitHub), as discussed in the following section.
Once implemented, SpaceViewer modules are ready for unit testing and build-
ing loop (Build exploiting the NPM tool) and, after that, they are automat-
ically released to the Staging Environment for Integration and System Test-
ing by the Jenkins SpaceViewer Staging job, triggered by GitHub pushes into

Anomaly Detection in DevOps Toolchain 45

the repository. This stage loops until related activities, mainly testing ones,
are performed and successfully passed, then triggering the release if ready for
that, always orchestrated by the SpaceViewer Staging job (see Fig. 3). If so,
the AD job (SpaceViewer AnomalyDetection) is launched and run the SVADS
tool. In the case of anomaly the control is demanded to the people involved in
project for further Manual Checking, automatically informing the team about
the anomaly through a Slack chat, the procedure of release is suspended and
in production remains the latest version of application. On the other hand, if
there are no anomalies, the SpaceViewer Production job (see Fig. 3) is triggered
by SVADS, the production environment is rebuilt and the latest features are
integrated (Release, Deploy, Operate, Monitor) through the corresponding tools
in the pipeline.

4.2 Space Viewer Anomaly Detection System

The tool for AD - Space Viewer Anomaly Detection System, SVADS in short -
has been developed in Python and, in the SpaceViewer case study [30], consists
of a script launched by the Jenkins before the delivery in Production of a new
version of the software. SVADS retrieves data relating to the last development
period (i.e. since the day after the last release, to the day the new release is
being executed), generated by the DevOps toolchain and collected by the system
meanwhile, to perform AD. The SVADS algorithm is mainly tasked at detecting
outliers in the SpaceViewer software release to Production, to avoid potential
issues for the software in Production. It implements the Local Outlier Factor
(LOF) algorithm [33] by exploiting the scikit-learn Python Library [34]. After
executing the SVADS algorithm, the system fills the FLAG attribute indicating
the presence/absence of an anomaly, and stores latest data in the dataset for
future release AD.

Specifically, such a dataset is comprised of performance metrics collected via
Rest APIs provided by the DevOps toolchain shown in Fig. 5. The parameters
taken into account by the SVADS dataset are reported below and, as discussed
above, are related to the modifications done exclusively in the last DevOps cycle:

– Number of lines of code (NLoC) added, modified or deleted divided by
the number of commits (NCom) from GitHub in the Code stage - P1 =
NLoC/NComm

– Number of builds that failed when executing the Jenkins pipeline to deploy
in staging from the Integration and System Testing phase - P2

– Number of automatic tests that failed when executing the Jenkins pipeline
to deploy in staging from the Integration and System Testing phase - P3

– Number of deliveries that failed when executing the Jenkins pipeline to deploy
in staging from the Integration and System Testing phase - P4

– Number of issues reported by CodeClimate from the Code and Monitor phases
- P5

– Number of issues reported in GitHub from Operation and Monitor phases -
P6

46 A. Capizzi et al.

Each entry in the dataset corresponds to a software release and the parameters
P1 − P6 are the number of occurrences of related events since the last release.
They are therefore reset by any new release. The values of such attributes are
normalized according to the number of working days elapsed since the last release
to mitigate the effects of longer periods of maintenance. It also reflects the good
practice of performing regular “small” commits in contrast to doing few but
substantial commits. The following attributes capturing meta-data of each entry
are also added to the dataset:

– A unique identifier - ID
– The date of the release, i.e. when the parameter values are collected and

written into the dataset - DATE

Some of the above DevOps toolchain metrics are often used to also support better
decision-making regarding potential risks in a software release. For example, a
high number of failed builds, automated tests and deliveries in Staging might
be an indicator that a specific release requires additional management effort. It
is trustworthy mentioning that such a dataset can also enable the observation
of complex patterns involving different parameters related to the occurrence of
software defects, errors or faults.

It is important to point out that the SVADS tool was created for this case
study, but it can be used for any project that has a DevOps Toolchain like the
one used in this study.

5 Experiments, Results and Discussion

The experimentation of the proposed approach for the DevOps toolchain in
the SpaceViewer case study started in early July 2019 and took approximately
one month. In this experimentation, data entries conforming the format defined
in Sect. 4.2 were added to the SpaceViewer dataset at the moment of every
software release in production by the SVADS tool. Table 1 reports the full dataset
describing 25 subsequent releases between 4th of July and 8th of August, uniquely
identified by the attribute ID.

Firstly, an initial dataset was generated to attend the requirement of a con-
siderable quantity of observations to perform an unsupervised AD method. In
this study, data concerning software releases were collected for ten days without
being processed by the SVADS module. After this initial period, the AD system
was then activated, thus starting operating on the SpaceViewer DevOps process,
as shown in Fig. 5. For each new release, the LOF algorithm was trained with the
dataset comprising previous releases and the current candidate release. Finally,
the data describing the last release is appended to the dataset and available for
future use. Figure 6 illustrates the output from the LOF model after the 25th

release, i.e. the outlier scores for each observation. It should be noted that only
two features are displayed in this graph (tests failed and commits), but in the
elaboration performed during the experimentation, the algorithm used all the
features.

Anomaly Detection in DevOps Toolchain 47

Table 1. The SpaceViewer dataset.

P1 P2 P3 P4 P5 P6 ID DATE

22.57 0.04 0.06 0.08 0 0 1 7/4/2019

59 2 3 5 0 1 2 7/5/2019

87 1 4 6 0 1 3 7/6/2019

13 1 3 6 0 0 4 7/7/2019

130 3 4 5 1 0 5 7/8/2019

135 3 6 8 3 0 6 7/9/2019

27 2 4 7 6 0 7 7/10/2019

10 2 4 6 4 0 8 7/11/2019

40 0 1 3 6 0 9 7/12/2019

21 3 5 6 6 0 10 7/13/2019

33 3 5 6 6 0 11 7/14/2019

65 6 8 10 8 0 12 7/15/2019

90 3 4 6 8 0 13 7/16/2019

114 6 7 10 13 0 14 7/17/2019

255 5 9 9 12 0 15 7/18/2019

44 3 4 5 13 0 16 7/19/2019

123 4 6 8 17 0 17 7/22/2019

171 5 7 8 23 0 18 7/24/2019

100 3 4 5 23 0 19 7/25/2019

42 1 5 6 23 0 20 7/26/2019

94 1 3 4 8 0 21 7/29/2019

243 29 30 31 13 0 22 7/30/2019

28 5 6 8 15 0 23 7/31/2019

244 45 48 50 0 0 24 8/1/2019

35 6 7 8 0 0 25 8/8/2019

Figure 6 enables the observation of several insights into the integration of
AD into DevOps. First, SVADS supports the identification of data entries, i.e.
software releases, that clearly fails to conform expected patterns in data. For
example, IDs 15, 22 and 24 have higher outlier scores and easily distinguished
from their peers. Second, SVADS requires some degree of human interference for
labelling data with edging feature values. For example, the release with ID in
Fig. 6 is closer to most of the releases than to the clearly identified anomalies.
In larger projects in the real-world, SVADS would flag such releases as requiring
further assessment by the project manager. Finally, the collection and analysis
of such data enable the observation of patterns between features such as lines of
codes, stages of development and occurrences of anomalies. In the implemented

48 A. Capizzi et al.

Fig. 6. Outlier scores for the dataset using LOF for anomaly detection on the full
SpaceViewer dataset.

case study, for example, anomaly releases have been mostly identified by higher
code volumes or Staging failures.

An interesting matter that deserves further consideration is whether an unsu-
pervised AD (outlier detection) method should be employed instead of super-
vised AD (novelty detection). For the first case, at the moment of a new release,
the AD model is trained with the entire dataset and outlier scores above a spec-
ified threshold indicate anomalies. In the second method, it is assumed that
there is the availability of a significant number of software releases. Moreover,
it is also necessary that each release has been labeled by a specialist (e.g. the
project manager) whether it is an anomaly. Hence, the latter method can be
noticed as closer to a policy-based approach for AD.

The implemented method was validated against other offline statistical and
machine learning techniques. Several statistical methods can be utilised for iden-
tifying outliers, including the popular k-nearest neighbors and LOF. Moreover,
some AD models outperform others depending on the characteristics of the data
and the problem domain. Figure 6 illustrates four different AD models trained
using the generated dataset.

These outcomes from the models in Fig. 7 reinforce the usefulness of the
proposed SVADS approach. In fact, an ensemble of AD models enables a more
precise and undisputed decision regarding software releases that are likely to
result in an error in the production environment. Finally, some AD models can
provide decision boundaries for classifying anomalies which enable one to gain
insights regarding which features that are more likely yo result in a risk to the
ongoing project.

Anomaly Detection in DevOps Toolchain 49

Fig. 7. Comparing different AD methods and decision boundaries on the SpaceViewer
Dataset.

6 Conclusions

DevOps is becoming an increasingly adopted approach in software development,
gaining attention from both industry and academia as per the rising number
of projects, conferences, and training programs in this field [3,35]. A DevOps
toolchain typically generates a large amount of data that enables the extraction
of information regarding the status and progress of the addressing project. In
this paper, we described a prototypical implementation of a system for detecting
anomalies in software release adopting DevOps development process.

Despite the small number of functionalities implemented in our SpaceViewer
case study, this paper demonstrates the feasibility of the proposed workflow.
Obtained results and their comparison against powerful solution integrating sev-
eral AD models proves the validity of the proposed approach and its effectiveness
as a tool for supporting decision-making and precise identification of potentially
harmful candidate releases in the production. Furthermore, a dataset on AD for
software release in the DevOps toolchain has been generated and made publicly
available for the community.

50 A. Capizzi et al.

Future work will approach the stabilization of the current implementation
and broader experimentation in real-world production environments and an more
extensive number of features, which has been scarcely reported in the literature.
Moreover, future research will approach a broader discussion on how to consider
the fluctuation of feature values can indicate anomalies through the project life-
cycle.

References

1. Wasserman, A.I.: Modern software development methodologies and their environ-
ments. Comput. Phys. Commun. 38(2), 119–134 (1985)

2. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective, 1st edn.
Addison-Wesley Professional, Boston (2015)

3. Bruel, J.-M., Mazzara, M., Meyer, B. (eds.): DEVOPS 2018. LNCS, vol. 11350.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06019-0

4. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Pearson International Edition, Addison-
Wesley, Boston (2007)

5. Kersten, M.: A cambrian explosion of devops tools. IEEE Softw. 35, 14–17 (2018)
6. Protasov, S., Khan, A.M., Sozykin, K., Ahmad, M.: Using deep features for video

scene detection and annotation. SIViP 12, 991–999 (2018)
7. Kontogiannis, K., et al.: 2nd workshop on DevOps and software analytics for con-

tinuous engineering and improvement. In: Proceedings of the 28th Annual Interna-
tional Conference on Computer Science and Software Engineering, CASCON 2018,
Riverton, NJ, USA, pp. 369–370. IBM Corp (2018)

8. Akinsanya, B., et al.: Machine learning and value generation in software devel-
opment: a survey. In: Software Testing, Machine Learning and Complex Process
Analysis (TMPA 2019), pp. 1–10. Springer International Publishing (2019, forth-
coming)

9. Li, Z., Dang, Y.: AIOps: Challenges and Experiences in Azure. USENIX Associa-
tion, Santa Clara (2019)

10. Yang, Y., Falessi, D., Menzies, T., Hihn, J.: Actionable analytics for software engi-
neering. IEEE Softw. 35, 51–53 (2018)

11. Hoffman, J.: How AIOps Supports a DevOps World. https://thenewstack.io/how-
aiops-supports-a-devops-world/

12. Snyder, B., Curtis, B.: Using analytics to guide improvement during an Agile-
DevOps transformation. IEEE Softw. 35, 78–83 (2018)

13. Guo, C., Wang, H., Dai, H., Cheng, S., Wang, T.: Fraud risk monitoring system for
e-banking transactions. In: 2018 IEEE 16th Intl Conf on Dependable, Autonomic
and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Comput-
ing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 100–105,
August 2018

14. Chen, P., Yang, S., McCann, J.A.: Distributed real-time anomaly detection in
networked industrial sensing systems. IEEE Trans. Industr. Electron. 62, 3832–
3842 (2015)

15. Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection, pp. 1–15. Springer,
Boston (2016). https://doi.org/10.1007/978-1-4899-7502-7

https://doi.org/10.1007/978-3-030-06019-0
https://thenewstack.io/how-aiops-supports-a-devops-world/
https://thenewstack.io/how-aiops-supports-a-devops-world/
https://doi.org/10.1007/978-1-4899-7502-7

Anomaly Detection in DevOps Toolchain 51

16. Sun, D., Fu, M., Zhu, L., Li, G., Lu, Q.: Non-intrusive anomaly detection with
streaming performance metrics and logs for devops in public clouds: a case study
in aws. IEEE Trans. Emerg. Top. Comput. 4, 278–289 (2016)

17. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell.
Rev. 22, 85–126 (2004)

18. Capizzi, A.: SpaceViewer - a ReactJS portal for NASA Open API consultation.
https://github.com/antoniocapizzi95/SpaceViewer/

19. Facebook: ReactJS - A JavaScript library for building user interfaces. https://
reactjs.org/

20. NASA: NASA Open API. https://api.nasa.gov/
21. Capizzi, A.: SpaceViewer - little back end. https://github.com/antoniocapizzi95/

SpaceViewer BE/
22. P. S. Foundation: Python - Programming Language. https://www.python.org/
23. T. P. Projects: Flask is a lightweight WSGI web application framework. https://

palletsprojects.com/p/flask/
24. Kawaguchi, K.: Jenkins - an open source automation server which enables devel-

opers around the world to reliably build, test, and deploy their software. https://
jenkins.io/

25. Preston-Werner, S.C.P.J.H.T., Wanstrath, C.: GitHub - The world’s leading soft-
ware development platform. https://github.com/

26. CodeClimate: CodeClimate Quality. https://codeclimate.com/quality/
27. Docker, I.: Docker - Build, Share, and Run Any App, Anywhere. https://www.

docker.com/
28. S. Technologies: Slack is where work flows. It’s where the people you need, the

information you share, and the tools you use come together to get things done.
https://slack.com/

29. Schlueter, K.M.I.Z., Turner, R.: Node Package Manager. https://www.npmjs.com/
30. Capizzi, A.: Anomaly Detection System used for SpaceViewer DevOps Toolchain.

https://github.com/antoniocapizzi95/SpaceViewer ADS/
31. Kawaguchi, K.: Jenkins Pipeline Documentation. https://jenkins.io/doc/book/

pipeline/
32. Jacomb, T.: Slack Notification Plugin for Jenkins. https://plugins.jenkins.io/slack
33. scikit learn: Novelty detection with Local Outlier Factor (LOF). https://scikit-

learn.org/stable/auto examples/neighbors/plot lof novelty detection.html/
34. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
35. Mazzara, M., Naumchev, A., Safina, L., Sillitti, A., Urysov, K.: Teaching DevOps in

corporate environments. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS
2018. LNCS, vol. 11350, pp. 100–111. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-06019-0 8

https://github.com/antoniocapizzi95/SpaceViewer/
https://reactjs.org/
https://reactjs.org/
https://api.nasa.gov/
https://github.com/antoniocapizzi95/SpaceViewer_BE/
https://github.com/antoniocapizzi95/SpaceViewer_BE/
https://www.python.org/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://jenkins.io/
https://jenkins.io/
https://github.com/
https://codeclimate.com/quality/
https://www.docker.com/
https://www.docker.com/
https://slack.com/
https://www.npmjs.com/
https://github.com/antoniocapizzi95/SpaceViewer_ADS/
https://jenkins.io/doc/book/pipeline/
https://jenkins.io/doc/book/pipeline/
https://plugins.jenkins.io/slack
https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_novelty_detection.html/
https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_novelty_detection.html/
https://doi.org/10.1007/978-3-030-06019-0_8
https://doi.org/10.1007/978-3-030-06019-0_8

From DevOps to DevDataOps: Data
Management in DevOps Processes

Antonio Capizzi1, Salvatore Distefano1, and Manuel Mazzara2(B)

1 University of Messina, Messina, Italy
2 Innopolis University, Innopolis, Respublika Tatarstan, Russian Federation

m.mazzara@innopolis.ru

Abstract. DevOps is a quite effective approach for managing software
development and operation, as confirmed by plenty of success stories in
real applications and case studies. DevOps is now becoming the main-
stream solution adopted by the software industry in development, able to
reduce the time to market and costs while improving quality and ensur-
ing evolvability and adaptability of the resulting software architecture.
Among the aspects to take into account in a DevOps process, data is
assuming strategic importance, since it allows to gain insights from the
operation directly into the development, the main objective of a DevOps
approach. Data can be therefore considered as the fuel of the DevOps
process, requiring proper solutions for its management. Based on the
amount of data generated, its variety, velocity, variability, value and other
relevant features, DevOps data management can be mainly framed into
the BigData category. This allows exploiting BigData solutions for the
management of DevOps data generated throughout the process, includ-
ing artefacts, code, documentation, logs and so on. This paper aims at
investigating data management in DevOps processes, identifying related
issues, challenges and potential solutions taken from the BigData world
as well as from new trends adopting and adapting DevOps approaches
in data management, i.e. DataOps.

1 Introduction

DevOps [1,2] is an approach for software development and (IT) system operation
combining best practices from both such domains to improve the overall quality
of the software-system while reducing costs and shortening time-to-market. Its
effectiveness is demonstrated by the quite widely adoption of DevOps approaches
in business contexts, where there is a big demand of specific professionals such
as DevOps engineers as well as data scientists, just partially, minimally covered
by current offer.

The DevOps philosophy can be generalized as a way, a good practice for
improving a generic product or service development and operation, by connect-
ing these through a feedback from operation to development. An important fea-
ture of DevOps is the automation of such a process: continuous delivery (CD)

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 52–62, 2020.
https://doi.org/10.1007/978-3-030-39306-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_4

From DevOps to DevDataOps: Data Management in DevOps Processes 53

enables organizations to deliver new features quickly and incrementally by imple-
menting a flow of changes into the production via an automated “assembly line”
- the continuous delivery pipeline. This is coupled with continuous integration
(CI) that aims at automating the software/product integration process of codes,
modules and parts, thus identifying a CI/CD pipeline.

The tools adopted to implement this high degree of automation in the
DevOps process identifies a toolchain. DevOps toolchain tools are usually encap-
sulated into different, independent containers deployed into physical or virtual
servers (typically on Cloud), and then managed by specific scripts and/or tools
(e.g. Jenkins), able to orchestrate and coordinate them automatically.

Such DevOps principles have been therefore either specialized to some specific
software/application domains (security - SecOps, SecDevOps, DevSecOps [3],
system administration - SysOps [4], Web - WebOps or WebDevOps [5]) or even
adopted, rethought and adapted in other contexts such as artificial intelligence
(AIOps [6]) and machine learning (MLOps, DeepOps [7]), and data management
(DataOps [8]). The latter, DataOps, aims at mainly organizing data manage-
ment according to DevOps principles and best practices. To this end, DataOps
introduces the concept of dataflow pipeline and toolchain, to be deployed in
containerized (Cloud) environment providing feedback on performance and QoS
of the overall data management process, used to real-time tune the pipeline to
actual operational needs and requirements.

As discussed above, the DevOps pipeline automation involves in the toolchain
different tools, each continuously generating messages, logs and data including
artifacts. To achieve DevOps aims and goals, such data has to be properly man-
aged, collected, processed and stored to provide insights from operations to the
development stages. DevOps data management could therefore be quite chal-
lenging, due to the large amount of data to be considered as well as its variety,
variability and similar metrics usually identified as V properties in the BigData
community, to which we have to refer to. BigData approaches, indeed, could be a
good solution to consider in the management of a DevOps process and toolchain.

In light of these considerations, in this paper we focus on DevOps data man-
agement, proposing to adopt BigData approaches and solutions. More specifi-
cally, the main goal of this paper is to explore the convergence between DevOps
and DataOps approaches, defining a possible (big)dataflow pipeline for DevOps
processes and toolchains and organizing it following a DataOps process, towards
DevDataOps. This way, we investigate on the adoption of DataOps, mainly
implementing a BigData pipeline and toolchain, in DevOps contexts, i.e. for
improving the development and operation of a software architecture.

To this extent, Sect. 2 describes the DevOps and DataOps processes and
toolchains. Section 3 discusses about DevOps artifacts and data in the BigData
context. Then, Sect. 4 proposes a DevOps (big) dataflow pipeline and related
implementation in the DataOps philosophy. Section 5 summarises the key aspects
of the proposed approach and future work.

54 A. Capizzi et al.

2 DevOps and DataOps

2.1 The DevOps Process and Toolchain

DevOps [1] consists of a set of practices to promote collaboration between the
developers, IT professionals (in particular sysadmin, i.e. who works on IT opera-
tions) and quality assurance personnel. DevOps is implemented via a set of soft-
ware tools [2] that enable the management of an environment in which software
can be built, tested and released quickly, frequently, and a more reliable manner.
In addition to continuous delivery (CD), which aims at developing “small” soft-
ware releases in reasonably short cycles, continuous integration (CI) stands as a
key concept in DevOps approaches. A typical example of CI consists of contin-
uously integrating changes made by developers into a repository, then a project
build is automatically executed, and if the build the modifications are integrated
into the code through CD and published in the production environment.

A DevOps process is usually composed of different stages and phases, which
can be periodically reiterated for proper development and operation of the soft-
ware architecture, in an evolutionary fashion able to caught new requirements,
features and behaviors arising from operation. This way, a DevOps process
belongs to the category of agile process, not plan driver, where the number
of development cycle is unknown a-priori. Consequently, the amount of data
generated by a DevOps process is usually unpredictable and could be really
high. There is no standard definition of a DevOps process, but several different
versions and implementations have been provided by the related community.
Among them, main DevOps stages can be summarized below.

– Plan: activity planning and task scheduling for the current release. This step
is usually dealt with by project managers in collaboration with the team and
exploiting project management tools such as Trello, Asana, Clarizen, Jira,
Azure DevOps, to name a few.

– Code: code development and code review. Developers are the most closely
involved in this activity using IDE and tools for source code management
such as GitHub, Artfactory, CodeClimate, etc.

– Build : is when source code is converted into a stand-alone form that can be
run on a computer system. In this activity are involved various professional
figures, mainly developers and sysadmins. The tools used in this phase are:
CI tools (for example Jenkins, TravisCI), build tools (for example Maven)
etc.

– Test : in this phase the software is tested by the quality assurance staff using
tools for (automatic) testing and similar. Examples of such kind of tools are
JUnit, Jmeter, Selenium, etc.

– Release: triggered when a new version of software is ready to be released
to end users. In this activity, various professionals of the development team
are involved, primarily developers and sysadmins. Release management tools
(such as Spinnaker) or similar support such an activity.

From DevOps to DevDataOps: Data Management in DevOps Processes 55

– Deploy : it deals with the installation and execution of the new software release
in the production environment and infrastructure. At this stage, the collab-
oration between developers and syadmins is mandatory. The tools used for
deployment depend on the target infrastructure (physical or virtual nodes,
Cloud, etc.) as well as on the adopted system software (OS, virtualization,
containerization, middleware, compilers, libraries), thus identifying a wide
set of possible options for deployment management (VmWare, Virtualbox,
Docker, LXD, Kubertenes, AWS CodeDeploy, ElasticBox etc.).

– Operate: is the activity that maintains and adapts the infrastructure in which
the software is running. This activity is mainly driven by sysadmins, sup-
ported by configuration management tools (such as Ansible, Puppet, Chef),
security tools (such as Sonarqube, Fortify SCA, Veracode), database manage-
ment tools (such as Flyway, MongoDB), recovery tools (PowerShell, Ravello),
etc.

– Monitor : in this activity the software in production is monitored by mainly
sysadmins, operators and others managing the project. The tools used are:
tools that monitor the performance of the service, tools that analyze the
logs (for example Logstash, Nagios, Zabbix), tools that analyze the end user
experience (Zenoss).

One of the main objectives of DevOps is to mitigate issues in production, which
is done by reducing the gap among development and testing environments to
the production one. To this purpose, several tools as the one mentioned above
are usually used and combined into a set identified as the “DevOps Toolchain”,
which can be considered as a scaffold built around the development project. To
compose a Toolchain, in general, there are no fixed rules, it is necessary to follow
the DevOps principles and best practices to choose the tools according to the
project characteristics. For a small project 3 or 4 tools might be enough, while
in a larger project 10 or more tools might be necessary. A minimal (CI/CD)
DevOps toolchain might include, at least, some version control tool (e.g. Git),
automation tools (e.g. Jenkins), package managers (e.g. NPM) and test tools
(e.g. JUnit). DevOps infrastructures are typically fully implemented on Cloud
platforms. It is a good practice in DevOps to build the entire infrastructure using
containers to minimize portability issues. For that, containerization technologies
such as Docker, LXD or similar are adopted, sometimes coupled by tools for
containers orchestration (e.g. Kubernetes or Swarm).

2.2 DataOps

DataOps is a new approach that aims to improve quality and responsiveness
of data analytics life-cycle [8–10]. This approach is based on DevOps rules, in
particular DataOps aims to bring DevOps benefits to data analytics, adopting
Agile rules and Lean concepts. When the volume of data is larger and larger, the
purpose of DataOps is to improve the life cycle of analytics by taking advantage
of DevOps principles such as communication between teams (data scientists,
ETL, analysts, etc.), cooperation, automation, integration, etc. To achieve this it

56 A. Capizzi et al.

is necessary to apply a set of human practices and dedicated tools. With DataOps
a new professional figure called “DataOps Engineer” was born, to deal with the
automation and orchestration of the process. A large DataOps community issued
a Manifesto1 that contains 18 rules, the mission and best practices to apply
DataOps. However, this is the most concrete activity behind DataOps, that is
still mainly a set of rules, concepts and ideas to be applied to data management.
There is, indeed, a lack of examples, dataflow pipelines, toolchians and standard
process for DataOps.

However, despite the DataOps approach is still mainly abstract, it can be
mostly summarized with the DataOps principles detailed in the Manifesto, some
implementations of the DataOps idea start to be defined and fixed. For example,
a DataOps process can be broadly organized into three steps2:

– Build - In this step, the data is taken from a source point (e.g. a database, a
log file, etc.), transformed by applying one or more actions, and then written
to a destination point. The flow executed by these actions is called “dataflow
or DataOps pipeline”. In the Build phase you can also have multiple pipelines
connected to each other.

– Execute - at this stage the build pipelines are put into production in a running
environment e.g. clusters, datacenters, Clouds. It is important, for a company
adopting DataOps, to be able to use the existing infrastructure to run the
pipeline, in order to avoid incurring in additional costs.

– Operate - When this step is reached, the system is running on an environment,
it is necessary to monitor it and react to any change (for example when larger
volumes of data arrive and it is required to scale the infrastructure to cope
with burst). One approach used in DataOps (borrowed from Agile) is to start
with small instances and increase their resources when the demand grows.

3 DevOps Data

An outcome from the complex pipeline involved in a DevOps project is the gener-
ation of a large amount of data, considering the process artefacts and the log files
generated in each stage. Examples of activities that generate considerable data
on the project cycle include changes made by developers; the application building
and its corresponding entries on the compilation and dependencies of the project;
the execution of automatic tests; software usage by end-users after release into
the production. Furthermore, the number of cycle of a DevOps process is usually
unknown, and typically lasting years, so reaching hundreds, or even thousands of
releases each generating a considerable amount of data that should be adequately
preserved and managed for gaining insights and the process.

Artifacts and data produced in a DevOps process are quite large and widely
different. These can include software artifacts (code, documentation, test, exe-
cutable, prototypes) and other information generated by the DevOps toolchain

1 https://www.dataopsmanifesto.org/.
2 https://dzone.com/articles/dataops-applying-devops-to-data-continuous-dataflo.

https://www.dataopsmanifesto.org/
https://dzone.com/articles/dataops-applying-devops-to-data-continuous-dataflo

From DevOps to DevDataOps: Data Management in DevOps Processes 57

(logs, configuration files, traces,...). More specifically, based on the above DevOps
reference process, the data associated to each stage is reported below.

– Plan: planning artifacts and data are software design blueprint, requirement
documentations (UML or similar, if any), project environment information
including user stories, tasks, activities, backlog, and statistics.

– Code: development artifacts include codes, versions, prototypes and related
info such as lines of code, version differences and relevant parameters.

– Build : mainly executable files, packages, logs and metrics that contain infor-
mation about builds and may indicate compilation errors, warnings, successes,
failures etc.

– Test : code for automatic tests, logs from automatic test tools that indicates
unit tests failed or passed, system tests results, or documentation written by
Quality Assurance staff about verification on software in development.

– Release: documentation about releases (for example new features introduced),
new final version of executable files or packages, logs and metrics from release
orchestration tools.

– Deploy : configuration files, scripts and logs originating from Deploy tools that
may contain errors or warnings.

– Operate: data generated by the software, logs from the tools involved in this
stage and system logs from (physical or virtual) servers.

– Monitor : logs, metrics and other information from monitoring tools, the data
retrieved in this phase is important to obtain a feedback from users.

It could be worth to invest in a data management system for a DevOps pro-
cess, where the high volume of generated data is not only properly collected
and stored but also managed, filtered, aggregated and possibly made available
for further processing, to gain insights on the overall process to achieve essen-
tial DevOps aims and goals. This calls for proper data management techniques,
providing mechanisms for collection, aggregation, storage filtering, aggregation,
fusion, archival, mining and feature extraction, local and global analytics prefer-
ably in an automated manner [11], to improve the DevOps pipeline [12]. For
example, historical data can be analyzed to estimate a probabilistic measure of
the success of a new release, or for identifying potential source of bugs (root-cause
analysis) or even to prevent them.

From a data/information-oriented perspective therefore, a DevOps process
can be considered as a data-intensive process, in the sense that it could gen-
erate large amount of data. To this purpose, DevOps data management issues
and challenges can be framed into the BigData context. Considering the refer-
ence DevOps process and toolchain described in Sect. 2.1, it could be interesting
to characterize such a process in BigData terms. To this purpose, we refer to
well-known and widely used Bigdata metrics: the “Vs”. BigData V properties
are usually used in the community to categorize an application, and range in
number from original 3 (Volume, Velocity, Variety) to 10 or even more. Shortly,
volume is probably the best known characteristic of big data, quantifying the
amount of data generated; velocity refers to the speed at which data is being

58 A. Capizzi et al.

generated, produced, created, or refreshed; variety is related to the “structured-
ness” of data: we don’t only have to handle structured data (logs, traces, DB)
but also semistructured and mostly unstructured data (images, multimedia files,
social media updates) as well; variability refers to inconsistencies in the data, to
the multitude of data dimensions resulting from multiple disparate data types
and sources and to the inconsistent speed at which big data is loaded into DB;
veracity is the confidence or trust in the data, mainly referring to the prove-
nance or reliability of the data source, its context, and how meaningful it is to
the analysis based on it; validity refers to how accurate and correct the data is
for its intended use; vulnerability is concerned with big data security, privacy and
confidentiality; volatility refers to data “lifetime”, i.e. the amount of time needed
for data to be considered irrelevant, historic, or not useful any longer; visualiza-
tion faces technical challenges due to limitations of in-memory technology and
poor scalability, functionality, and response time to represent big data (billion
data points) such as data clustering or using tree maps, sunbursts, parallel coor-
dinates, circular network diagrams, or cone trees; value is the property to be
derived from the data through processing and analytics. In the DevOps context,
the process data value is exploited to support decision making in development.
This way, Table 1 reports the characterization of a DevOps pipeline from a Big-
Data perspective, expressed in terms of V metric values ranges for a “mid-size”
DevOps reference process.

Table 1. DevOps project Bigdata Vs.

Stage/Vs Volume Velocity Variety Variability Veracity Validity Vulnerability Volatility Visualization Value

Plan 10KB–1GB Week UnStr. Medium/
High

High Low Low Week/
Days

Poor High

Code 1–100MB Hours SemiStr. High High High Medium Hours Poor High

Build 1–10GB Hours SemiStr Medium Low Low Medium Hours High High

Test 10KB–1GB Minutes Str Medium High High Medium Days High Medium

Release 1–10GB Week UnStr High Medium Medium Medium Week/
Month

Medium High

Deploy 1–100MB Week UnStr High Medium Medium Medium Week/
Month

Medium High

Operate 10KB–1GB Hours SemiStr High High High Medium Hours Medium High

Monitor 10KB–1GB Seconds/
Minutes

SemiStr High High High High Hours High High

4 DevDataOps

4.1 DevOps Dataflow Pipeline

The data generated by a DevOps pipeline is therefore quite complex and hetero-
geneous, and consequently quite hard to manage and maintain [13]. The DevOps
data life-cycle and workflow can be decomposed into different stages and steps
identifying the dataflow pipeline shown in Fig. 1. This could be considered as

From DevOps to DevDataOps: Data Management in DevOps Processes 59

Generation

Collection

Filter

Stream
Processing/

Analysis

Alert

Aggregation

Delivery

Preprocessing
Ordering Grouping
Fusion Cleansing

Storage Update
Archive

Batch
Processing/

Analytics

Alert

Fig. 1. DevOps dataflow pipeline

a quite generic DataOps pipeline that can be generally applied to any DevOps
process, after adaptation, represented in Fig. 1 by the conditional diamonds mod-
eling the presence or absence of a specific step in the DevOps dataflow-DataOps
pipeline.

– Generation: Each module of the DevOps pipeline generates a log stream
reporting its operation through a specific monitoring process.

– Collection: The generated logs are collected, reordered according to their
timestamps, and grouped altogether to provide a snapshot of the whole
DevOps process for each time interval.

– Filtering: Logs are then filtered to remove outliers, replicas, or observations
that may contain errors or are undesirable for analysis. Logs filters are usually
based on temporal statistics, i.e. based on previously logs average or similar
statistical moments.

– Stream processing, analysis and alerting: The processing of single logs
streams is locally performed in nearly real-time to identify potential flaws,
defects or errors in a particular DevOps pipeline stage. In such cases, warning,
error messages or activities are triggered by the alerting tool.

60 A. Capizzi et al.

– Aggregation: The logs are aggregated and expressed in a summary form
for statistical analysis. The main goal of the aggregation is to compress the
volume of data.

– Delivery: The logs are made available to end-users and applications. This
data is typically transmitted through networks using related protocols to
physical and virtual servers.

– Preprocessing, ordering, grouping, cleansing, and fusion: The logs
are reordered according to their timestamp and grouped to provide a snap-
shot of the DevOps process at each time interval. Next, the logs have to be
cleaned, that is, having redundancies removed and being integrated with dif-
ferent sources into a unified schema before storage. The schema integration
has to provide an abstract definition of a consistent way to access the logs
without having to customize access for each log source format. Still during the
preprocessing stage, logs undergo through a fusion process aiming to integrate
multiple sources to produce a more consistent and accurate information.

– Storage, update and archiving: This phase aims the efficient storage and
organization as well as a continuous update of logs as they become available.
Archiving refers to the long-term offline storage of logs. The core of the cen-
tralized storage is the deployment of structures that adapt to the various data
types and the frequency of the capture (e.g. relational database management
systems).

– Processing and analytics: Ongoing retrieval and analysis operations on
stored and archived logs, mainly offline for root cause analysis, to identify any
correlation among stages, predict behaviors and support decisions. Analytics
is the discovery, interpretation, and communication of meaningful patterns in
data in the logs and can be performed at different levels with different objec-
tives: descriptive (what happened), diagnostic (why something happened),
predictive (what is likely to happen) and prescriptive (what action to take).

4.2 DataOps Implementation

The DevOps dataflow pipeline should be then implemented according to a
DataOps approach, as reported below

Build - To implement the DevOps dataflow pipeline of Fig. 1 in a DataOps fash-
ion, following the process described in Sect. 2.2, we have to start with building
the toolchain, thus identifying the tools associated with each of the pipeline
step. In this case, the real benefit of adopting BigData solutions in DataOps is
clearly manifested: this way, the DevOps dataflow pipeline of Fig. 1 can be just
considered as a BigData workflow to be deployed exploiting a tool among the
plethora available to manage BigData workflow (Hadoop, Spark, Storm, Flink,
Samza, NiFi, Kafka, NodRed, Crosser.io, to name but a few). Mainly belonging
to the Apache (big) family, they allows to define and manage BigData workflows
composed of different tasks or processes, highly customizable and configurable,
then linked through specific mechanisms and tools able to enforce the workflow
topology, or even to further parallelize and optimize it.

From DevOps to DevDataOps: Data Management in DevOps Processes 61

Execute - Once built as a BigData workflow, the DataOps toolchain needs to be
deployed and executed. At this stage, therefore, automation tools such as Jenk-
ins and deployment tools such as Docker or Jupiter could be used to support
and further automate the BigData one, by for example containerising tasks or
connecting them with tools (monitoring) external to the BigData workflow. Usu-
ally, the target deployment infrastructure for a DataOps toolchain is the Cloud,
public as Microsoft Azure and Amazon EC2, or private such as those managed
locally by OpenStack or similar middleware.

Operate - The operation stage is mainly tasked at providing a feedback on
the DataOps toolchain to the DataOps engineers that have to tune it based
on this feedback. Both the process and the underlying infrastructure running
the toolchains have to be monitored. Metric of interest to be benchmarked
in this case could be system parameters (CPU, memory, storage utilization),
process non functional properties (response time, reliability, availability, energy
consumption), or even specific V properties (volume, velocity, variety, etc, see
Sect. 3) In this step, tools for monitoring such as Prometheus or Nagios, and for
managing the infrastructure such as Chef, Puppet etc. can be exploited.

5 Conclusions

DevOps is a modern approach to software development aiming at accelerating the
build lifecycle via automation. Google, Amazon and many other companies can
now release software multiple times per day making the old concept of “release”
obsolete. Data is at the centre of all the DevOps process and requires BigData
solutions to be managed. Despite of the growing importance of DevOps practices
in software development, management of the data generated by the toolchain is
still undervalued, if not entirely neglected.

In this paper we investigated this cutting-edge aspect of software development
identifying related issues, challenges and potential solutions. Solutions do not
need to be entirely new since large literature has been already published in the
field of BigData. This emerging field of research is often referred to as DataOps.
While DevOps was created to serve the needs of software developers, DataOps
users are often data scientists or analysts.

The current work has just started scratching the surface of such a complex
subject, and in the limited space could not explore all the detailed aspects of
analytics. One of the project on which our team is working at the moment is the
analysis of data generated by the DevOps toolchain in order to identify anomalies
in the incoming releases [14]. The same idea can be applied to Microservices
monitoring, and this is exactly our next goal towards NoOps.

References

1. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective, 1st edn.
Addison-Wesley Professional, Reading (2015)

62 A. Capizzi et al.

2. Kersten, M.: A cambrian explosion of DevOps tools. IEEE Softw. 35, 14–17 (2018)
3. Mohan, V., Othmane, L.B.: SecDEVOps: is it a marketing buzzword?-mapping

research on security in DevOps. In: 2016 11th International Conference on Avail-
ability, Reliability and Security (ARES), pp. 542–547. IEEE (2016)

4. Burgess, E., et al.: DevOps the future of sysadmin? vol. 38, no. 2 (2013). Usenix.org
login

5. Sacks, M.: DevOps principles for successful web sites. In: Sacks, M. (ed.) Pro
Website Development and Operations. Apress, Berkeley (2012). https://doi.org/
10.1007/978-1-4302-3970-3 1

6. Hoffman, J.: How AIOps supports a DevOps world. https://thenewstack.io/how-
aiops-supports-a-devops-world/

7. Lim, J., Lee, H., Won, Y., Yeon, H.: MLOP lifecycle scheme for vision-based
inspection process in manufacturing. In: 2019 USENIX Conference on Operational
Machine Learning (OpML 2019), pp. 9–11 (2019)

8. Khalajzadeh, H., Abdelrazek, M., Grundy, J., Hosking, J., He, Q.: A survey of
current end-user data analytics tool support. In: 2018 IEEE International Congress
on Big Data (BigData Congress), pp. 41–48. IEEE (2018)

9. Ereth, J.: DataOps - towards a definition, November 2018
10. Kale, V.: Big Data Computing: A Guide for Business and Technology Managers.

Chapman and Hall/CRC, Boca Raton (2016)
11. Protasov, S., Khan, A.M., Sozykin, K., Ahmad, M.: Using deep features for video

scene detection and annotation. Signal, Image Video Process. 12, 991–999 (2018)
12. Kontogiannis, K., et al.: 2nd workshop on DevOps and software analytics for con-

tinuous engineering and improvement. In: Proceedings of the 28th Annual Interna-
tional Conference on Computer Science and Software Engineering, CASCON 2018,
Riverton, NJ, USA, pp. 369–370, IBM Corp. (2018)

13. Chen, B.: Improving the software logging practices in DevOps. In: 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pp. 194–197, May 2019

14. Capizzi, A., Distefano, S., Bobrov, E., Araújo, L.J.P., Mazzara, M., Ahmad, M.:
Anomaly detection in DevOps toolchain. In: Bruel, J.-M., et al. (eds.) DEVOPS
2019, LNCS, vol. 12055, pp. 37–51 (2019)

https://doi.org/10.1007/978-1-4302-3970-3_1
https://doi.org/10.1007/978-1-4302-3970-3_1
https://thenewstack.io/how-aiops-supports-a-devops-world/
https://thenewstack.io/how-aiops-supports-a-devops-world/

Exploiting Agile Practices to Teach
Computational Thinking

Paolo Ciancarini1,2(B), Marcello Missiroli1, and Daniel Russo3

1 DISI, University of Bologna, Bologna, Italy
paolo.ciancarini@unibo.it

2 Innopolis University, Innopolis, Russian Federation
3 Department of Computer Science, Aalborg University, Aalborg, Denmark

Abstract. Computational Thinking has been introduced as a funda-
mental skill to acquire, just like basic skills like reading, writing, and
numeracy. The reason is that Computational Thinking is one of the
most important skills for XXI century citizens, in particular for pro-
grammers and scientists at large. Currently, Computer Science teaching
practices focus on individual programming and Computational Thinking
first, and only later address students to work in teams. We study how
Computational Thinking can be enhanced with social skills and team-
ing practices, aiming at training our students in Computational Think-
ing exploiting Agile values and practices. Based on prior studies, we
describe and compare the four traditional software development learning
approaches: solo programmer, pair programmers, self-organized teams,
and directed teams. Such approaches have been explored in a number
of teaching experiments, involving a significant number of students, over
several years. Accordingly, we induced a model that we call Cooperative
Thinking, based on such previous evidence and grounded in literature.
This paper provides a research synthesis of previous works contextual-
ized in a pedagogical framework, and proposes a new learning paradigm
for software engineering education.

Keywords: Computer education · Agile methods · Computational
Thinking · Meta–analysis · Cooperative Thinking

1 Introduction

Computational Thinking is a new form of literacy [62]. It is a concept that has
enjoyed increasing popularity during the last decade, especially in the educa-
tional field. Computational Thinking is usually considered an individual skill,
and practiced and trained as such [31,63].

However, such an approach does not match current teaming structures of
both science and business, where problems and projects have become so com-
plex that a single individual cannot handle them within a reasonable time frame.
To handle the increasing complexity, especially in engineering software sys-
tems, developers should be educated to act and operate as a team [17]. This
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 63–83, 2020.
https://doi.org/10.1007/978-3-030-39306-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_5

64 P. Ciancarini et al.

is already happening in the business world. In fact, teaming is considered the
key driver to Digital Transformation, where solutions are not provided by indi-
viduals but by self-organizing teams [18]. Digital Transformation is often subject
to“wicked problems”, which do not have an unique solution but many Pareto-
optimal ones [47]. This also applies to software development when complexity
becomes very high [20]. Moreover, the DevOps technological trend needs specific
approaches to support the training of developers/operators [5]

In Software Engineering, the role of the team and teamwork in general is
especially crucial when Agile methods are used. The Agile principles acknowl-
edge that important information and know-how might not be available at the
beginning of a project [46]. Reaching the development goal requires several iter-
ations, to build incremental solutions of increasing value for the users.

A key agile team–building factor is self-organization, meaning that any mem-
ber of the developing team contributes with her knowledge, ability, and technical
skills in order to work out a solution. Since each team member is responsible
for the project as a whole, it is in everybody’s interest to organize work at best
– not bounce responsibilities. Moreover, teams are not static but they modify
their structure according to necessities, which change over time. Not surprisingly,
some organizations have built their competitive advantage and success on this
model [1]. They comply with Conway’s Law, according to which “organizations
which design systems [...] are constrained to produce designs which are copies of
the communication structures of these organizations” [10]. A consequence of this
observation is that organizations have to modify their communication structures
accordingly to the problem which need to be solved. Therefore, flexible and self-
organizing teams are best suited to comply with such pivotal evidence for any
organization.

We argue that Agile principles and values should enrich the current efforts
to establish Computational Thinking as a fundamental literacy ability. We call
such a combination Cooperative Computational Thinking, or Cooperative Think-
ing for short. From a pedagogical perspective, it is grounded in Johnson &
Johnson’s Cooperative Learning approach, where students must work in groups
to complete tasks collectively toward academic goals [28]. We suggest a team-
oriented approach to educate software engineers in Computational Thinking.
Educators should not just promote some good software engineering practices;
rather, they should foster collaboration skills and train student teams to coop-
erate on wicked problems. Programming skills are usually considered personal
ones; in most cases—job interviews, university exams, official certifications—the
focus is always the performance of the individual. We lack a general approach
to enable group skills in this context. Even if this idea may be widely shared
by the community, we did not find any evidence of a comprehensive approach
to it. This is probably due to the lack of explicit awareness of such concept as
enabler of Digital Transformation processes: we may use it implicitly without
recognizing it.

In this paper we analyze processes and interactions in four different learn-
ing modalities that mirror some standard software development models: solo

Exploiting Agile Practices to Teach Computational Thinking 65

programmer, pair programmers, self-organized teams, and directed teams. We
report differences, practical and educational issues, their relative strengths with
respect to developing Computational Thinking skills on one hand and how they
impact Agile team-related skills, that form the base of Cooperative Thinking,
on the other.

As a result, we developed a model for Cooperative Thinking, contextualiz-
ing in relevant pedagogical theories. We provide results based on empirical and
theoretical evidence; they can be applied to daily teaching practices.

This paper is organized as follows. Section 2 provides background informa-
tion on related research on Computational Thinking and Agile education. In
Sect. 3 we present the methodological framework used for this research synthe-
sis. Section 4 presents the investigations we performed in teaching Cooperative
Thinking comparing four modalities for organizing software development classes.
Aggregated insights from our synthesis are presented in Sect. 5, where we pro-
pose actionable solution for educational practitioners. We discuss the synthesis of
our research in Sect. 6, presenting the details of the extension of Computational
Thinking with Agile practices, that we call Cooperative Thinking: self-organized
teams are an effective way to enact and support Cooperative Thinking. Finally,
in Sect. 7, we summarize our vision, outline our future research, and draw our
conclusions.

2 Related Works

Computational Thinking has generated a lot of interest in the scientific commu-
nity [62]. It is related to problem solving [44] and algorithms [33], because it is
the ability of formulating a problem and expressing its solution process so that
a human or a machine can effectively find a solution to the stated problem.

However, several scholars argue whether the Computational Thinking con-
cept is too vague to have a real effect. For instance, a recent critique has been
advanced by [15]. He claims that Computational Thinking is too vaguely defined
and, most important in an educational context, its evaluation is very difficult
to have practical effects. This same idea can be found in the CS Teaching com-
munity. [2] and [24] for example, try to decompose the Computational Thinking
idea itself, in order to have an operative definition. [23] notes that computing
education has been too slow moving from the computing programming model to
a more general one. [4] even wonders if the Computational Thinking concept is at
all useful in Computer Science, since it puts too much importance on abstracts
ideas. It is also remarkable that there is some research trying to correlate CS
and learning styles [25,57], but generally inconclusive.

Though the Agile approach to software development is eventually going main-
stream in the professional world, teaching the Agile methodology is still relatively
uncommon, especially at the K-12 level. Moreover, a Waterfall-like development
model is often the main development strategy taught in universities [35]. Moreso,
it is usually limited to an introductory level and rarely tested firsthand. In prac-
tice, Agile is learned “on the field”, often after attending ad hoc seminars. Inter-
est in the field is however rising, and curricula are being updated to reflect

66 P. Ciancarini et al.

this [36,55]. An interesting and complete proposal has been proposed by [37].
The paper presents the “Agile Constructionist Mentoring Methodology” and
its year-long implementation in high school; it considers all aspects of software
development, with a strong pedagogical support.

To summarize, programming remains a difficult topic to learn and even to
teach, both at university and high school level; the ability to design and develop
software remains an individual skill and taught as such.

Some studies, however, tackle the idea that hard skills expertise should be
complemented with soft skills, possibly introducing active and cooperative learn-
ing [30]. For example, in [48], a long list of so-called soft skills expertise is paired
with various developer roles. In [8] the problem is well analyzed, but arguably the
proposed solution is not comprehensive. [38] presents an example of how to pro-
mote cooperation within a software project; however generalizing the proposed
scheme seems difficult. We note however that the approach is hardly systematic,
and no general consensus exists on how to proceed along this line.

3 Research Methodology

Meta-analysis is a widely known and old research procedure, firstly method-
ologically supported by the work of [21]. The first meta-analysis was probably
carried out by Andronicus of Rhodes in 60 BC, editing Aristotle’s 250 year older
manuscripts, concerning the work The Metaphysics. The prefix meta- was then
used to design studies whose aim is to provide new insights by grouping, compar-
ing, and analyzing previous contributions. Accordingly, we use the term meta-
analysis to indicate an analysis of analyses. In this sense, there are a variety
of analysis of analyses, like systematic literature reviews, systematic mapping
studies, and research synthesis.

According to [12], a research synthesis can be defined as the conjunction of a
particular set of literature review characteristics with a different focus and goal.
Research synthesis aim to integrate empirical research in order to generalize
findings. The first effort to systematize from a methodological perspective a
research synthesis was performed by [11], building on the work of [27], proposing
a multi-stage model. The stages are the following: (i) problem definition, (ii)
collection of research evidence, (iii) evaluation of the correspondence between
methods, (iv) analysis of individual studies, (v) interpretation of cumulative
evidence, and (vi) presentation of results.

Following the multi-stage framework suggested in [11], we provide our prob-
lem definition, set as Research Question (RQ).

RQ: Is Computational Thinking scalable to teamwork?
To answer this question, we looked back to some previous works investigating

the phenomenon on different perspectives.
All analyzed papers are both homogeneous and comparable, as depicted in

Table 1.
We both provided insights on single papers in Sect. 4, and provide an inter-

pretation of cumulative evidence in Sect. 5.

Exploiting Agile Practices to Teach Computational Thinking 67

Table 1. Investigation list

Title Focus of experiment # Subjects Ref

Learning Agile software
development in high school: an
investigation

Pair Programming,
Timeboxing,
User Stories,
Team Development

84 [39]

Teaching Test-First Programming:
assessment and solutions

Pair Programming,
Social dynamics

102 [41]

Agile for Millennials: a
comparative study

User Stories,
Scrum,
Waterfall,
Team Development,
Timeboxing

160 [40]

As an outcome we propose a new educational framework, namely Cooperative
Thinking, which we use to answer to our research question in Sect. 6.

4 Results

We performed some experiments collecting several insights regarding teaming
for solving computational problems, as listed in Table 1.

For the purpose of this research synthesis, we abstracted empirical knowledge
and mapped learning models to learner types. To do so, we used the well–known
Kolb’s learning style inventory [32,34], consisting in:

– Individual learning (best suited to Assimilators)
– Paired learning (best suited to Convergers)
– Directed group learning (best suited to Divergers)
– Self-determined group learning (best suited to Accommodators)

This classification supports our inductive epistemological approach, allowing
us to contextualize already collected evidence into a broader theoretical frame-
work. Hereafter, we make our considerations for the four learner groups.

4.1 Individual Learning

Directed Individual learning (short: Individual Learning) corresponds to the
most common form of teaching, practiced everywhere in practically every sub-
ject and most often associated to Directed Instruction. The typical form consists
of a lecture on a new topic, followed by individual study and exercises, then
finalized in some kind of assessment (test and/or capstone project); teaching
is generally sequential, each concept built on previously acquired knowledge.
The main advantages of this model are its simplicity and efficiency; a single
individual can teach a full class of people at the same time; moreover, we all

68 P. Ciancarini et al.

already have plentiful experience with this method. More recently, by using
modern technology this model can scale almost indefinitely. Practical examples
include the Khan Academy, Udacity, and other MOOCs. An interesting aspect is
that the sequential progression is ideal for stimulating Computational Thinking
concepts—especially Problem Solving. Once a topic is mastered, it can be used
to tackle more complex concepts or deepen and reinforce the significance of an
acquired one. Another advantage is assessment; for instance, it is very easy to
evaluate a program written by a student thanks to standard testing frameworks,
to the point that automatic evaluation is becoming more and more common—a
decisive point in case of e-learning on very large classes.

This model is dominant, however it has several limitations. One of most
important ones is the fairness of the assessment. The difficulty of the assessment
test is usually tailored upon the average student, resulting in a Gaussian curve
grade distribution. In this model, students falling behind at the beginning of
the course rarely have the capacity to catch up, as the time allotted is the
same for every student; additional information, requirements, time–demanding
exercises pile up very quickly. People experiencing learning difficulties have very
few options. Those who can afford it resort to privately paid tuition, but for the
rest the road a failing grade is almost certain. A consequence is the so called
“Ability Myth”: it states that each of us is born with a set of abilities that hardly
change during our lifetime [56]; in fact, this phenomenon is in most cases the
effect of accumulated advantages [54].

Another drawback is the absence of positive social interaction. Direct
teacher/student communication is constrained by the available time. Student/
student interaction rarely includes exchanges of ideas or effective cooperation;
more often than not, it results in direct competition or in nonconstructive and
illegal help (i.e. cheating). All of this might have a negative influence on overall
motivation, especially in less-than-average performing students.

In experiments [39,40], we simulated a working day in a software house; the
teacher assumed the role of the software house boss, and selected a number of
students who were previously categorized as either “good”, “average” or “poor”
programmers. Each student was given a moderately difficult task using a new
work methodology (either TFD or User stories) within a limited time-frame.
Without much surprise, both performance and the perceived utility of the activ-
ity mirrored their current skill level.

Individual learning help foster Computational Thinking but it is not useful
(or maybe detrimental) to develop social skills needed for Cooperative Think-
ing. According to Kolb’s learning inventory [34], this teaching model best suits
Assimiliative learners, since they like organized and structured understanding
and respect the knowledge of experts. They also prefer to work alone.

4.2 Paired Learning

Paired learning (also called Dyadic Cooperative Learning Strategy [53]) is also a
common technique but far less popular than the previous one. The basic principle
involves the teacher posing a question or presenting a problem, then the students

Exploiting Agile Practices to Teach Computational Thinking 69

discuss in pairs and find their own way toward the solution; pair members are
often switched, sometimes even during the activity.

The role of the teacher in this case is quite limited, as she acts as a general
coordinator and facilitator of the class of pairs. In the software development
field, we find an obvious transposition of this model in Pair Programming, one
of the key Agile programming practices and, to a lesser extent, in some training
techniques (Randori and Code Retreats among others [50]).

According to [14], this model has beneficial influence on retention, under-
standing, recall, and elaborate skills at the cognitive level; it is particularly
effective on mood and social skills, and introduces the idea of software being an
iterative, evolutionary process. As it promotes knowledge sharing, it can help
less skilled individuals to improve themselves taking inspiration from their part-
ners. However, it is more difficult to develop a teaching progression using only
this model, and in any event, it would be rather slow. In addition, psychologi-
cal and personal factors become important, since partner incompatibilities and
social difficulties might dramatically change both the learning outcomes and the
quality of the code produced. Assessment is more difficult than in the previous
case; though automatic evaluation is still possible, some extra steps are required
by the teacher to deduce the effective contribution of each member of the pair
to the final work.

We tested firsthand this effect in experiments [39,41]. We proposed the same
method and problems stated in Sect. 4.1, but in this case we paired students
according to six possible pair types, classified as homogeneous (good-good,
average-average, poor-poor) or as non-homogeneous (good-average, average-
poor, good-poor).

According to results, homogeneous pairs performed generally equal or worse
than their solo counterparts, but non-homogeneous pairs had statistically better
results. In the latter case a form of epistemic curiosity [29] appeared, possi-
bly unconsciously, and was a key motivating factor for the pair; the resulting
interaction helped both to solve the task at hand and to develop social skills.
Computational Thinking was also stimulated, but a little less than with the
previous model, since the “effort” was split and each single task was not really
challenging, requiring expertise more than logical reasoning.

In addition, both students and teachers praised the new methodology and its
positive effect on mood. However, the retention rate was very low, much worse
than expected; in an interview conducted some time after the experiment was
over, students generally only had a vague idea of the techniques used and only
about 5% of them was able to name them correctly.

To summarize, paired learning has beneficial effects on social skills related to
Agile development, and generally is useful in leveling skills upwards. Knowledge
building will however be much slower than in the traditional approach. This
teaching model better suits Convergent learner types, since they want to learn
by understanding how things work in practice, like practical activities and seek
to make things efficient by making small and careful changes.

70 P. Ciancarini et al.

4.3 Directed Group Learning

Group learning is one of the many facets of Cooperative Learning, which is
becoming fairly common in modern, constructivist-influenced education [6]. It
is also a common practice in some working environments, notably in the health
context for nurses [61]. Group learning in a software engineering lab class is best
exploited by developing a full software project, not simple exercises or abstract
analyses. So, it is natural to join Group Learning and Project-Based Learning
strategies, especially using the Jonassen variant [26]: a complex task taken from
real-life with authentic evaluation, comprehensive of all phases of development.

We are aware that many software development methodologies exist, and each
of them can be transposed in an educational context promoting different behav-
iors and skills. One of them is the Waterfall model, probably the oldest one but
still quite popular in the industry.

Waterfall embodies in many ways all the tenets of our prevailing culture,
such as linear hierarchies, top-down decision making, accepting the assumptions,
acquire all information in order to prepare a detailed plan and then following
it—values that have forged the way traditional education was conceived and in
most cases is still carried out.

A Waterfall school project will see the teacher assume the role similar to
that of a senior project leader, assigning tasks and roles to students according to
their skill, knowledge, and ability and applying a certain degree of control. The
teacher’s role will be very important at the beginning of the project, as students
generally lack the ability to perform a thorough analysis and comprehensive
design phase. As the project continues its course, the role will be more oriented
to control, checking that documents are properly written, modules developed
and tested, directing the flow of the entire operation. Assessing a group project
is considerably more complex that both previous model, since it involves not
only the final product, but also the process used and the interaction among the
student and their relative contributions. To resolve it, usually a combination of
traditional evaluation (automated or not), direct teacher observation and peer
evaluation is used, forcing students to evaluate and reflect on the quality of their
work.

In a different experiment, we decided to give students a very challenging task,
almost impossible to solve. They had to build from scratch a complete dynamic
website, a task we estimated in about 30 man-hours to complete when handled
by experts. We only gave them 6 h. This forced teams to make hard decision as
to what was the most suitable course of action in order to make the best use of
the allotted time and resources.

Then some extra restraints were imposed on the group, such as:

– A rich set of artifacts, such as a complete SRS, ER-diagrams, management
priorities, UI-Mockups.

– Specific roles (programmer, UI-expert, tester, . . .) and hierarchies (chief pro-
grammer, for example) were imposed.

– A predefined time schedule.

Exploiting Agile Practices to Teach Computational Thinking 71

From an educational viewpoint, the target product was definitely outside a
single student’s zone of proxymal development [59], but was theoretically doable
as a team effort. From a different viewpoint, such a target looks like a wicked
problem, since students lacked the knowledge and the competence to complete
the task, and were requested to acquire them along the way [60]. The great
amount of information and in general the directive role of the teacher gives the
opportunity to highlight whatever learning goal is deemed important.

Results show that, under these conditions, groups tend to concentrate on
non-functional requirements and process-related goals instead of pursuing the
main goal: delivering a working product to the “customer”. The products, on
average, had very few working features, but the defects were hidden under a
pleasant user interface, close to the one proposed by the “management”. Roles
were interpreted rather closely to the given instructions (barring a few cases
of internal dissent), timing was impeccable, and even the documentation was
acceptable. Teacher-student interactions were not intense, but rather limited to
simple yes-no questions. Students reported great satisfaction for both the activity
and the product realized, asserting it was an activity both useful and fun [40].

To summarize, this teaching model promotes the use of social skills, while
leaving the steering wheel in the hand of the teacher. This power can be used to
provide a meaningful learning path, though slower that Individual Learning and
with a non-trivial evaluation method. It also does not seem to stimulate enough
other interesting skills, such as decision making. It better suits Divergent learner
types, since they and will start from detail to logically work up to the big picture.
They like working with others but prefer things to remain calm.

4.4 Self-directed Group Learning

This model is a different version of Group Learning, radically different than the
previous one in that students have a strong degree of autonomy. It applies to
K-12, adult education and business/industrial environments, for example [22].

In this case, the teacher becomes a mentor and a facilitator, and invests a
large amount of trust on the learners.

Most of what we said on Project-Based Learning in the previous subsection
holds. In this case, the granted freedom can be a powerful weapon in the hands
of the group, but it might also backfire.

It is easy to see that several Agile values are connected to this learning model:
most prominently, shared responsibility and courage. Agile strongly promotes
an adaptive approach to software development, where each iteration acts as a
feedback for the next one. Teams should be self-organized, and great emphasis
is put on communication, both within the team and with the stakeholders. This
means that the teacher must become part of the team in order to maintain a
high level of communication. It also means that the teacher cannot distribute
grades in a standard way, as he will be directly involved in the process (effectively
becoming a ‘pig‘, and not a ‘chicken’, referring to the classic Agile metaphor).
Grades should therefore come from reflections, group and/or personal and peer
evaluation, and must include an evaluation of teacher work, as any other team
member.

72 P. Ciancarini et al.

In experiment, we kept the same general structure outlined in Sect. 4.3, but
within the same class we assigned the same project to a different, potentially
equivalent, team. This allowed for a direct comparison of results, since it ruled
out biases due to different teachers, learning environments, or curricula. We
have chosen the Scrum methodology, because it is arguably very different from
Waterfall and it does not really mandate any practices, giving maximum freedom
to the teams [52]. The teacher assumed the role of the Product Owner in this
specific case; alternatively, the Scrum Master role could be chosen as well [40].

The teams were given much less information and limitations with respect to
Waterfall teams:

– A list of prioritized user stories.
– A ‘definition of done’ (as in Scrum): it is a definition of how a result can be

considered to have some value, in terms of simple activities like writing code
in a standard format, adding comments, performing unit testing, etc.

– The sprint length.

Everything else was to be decided by the team. Scrum teams also had the
additional difficulty of having no experience with self-organization, whereas tra-
ditional Waterfall methodologies and roles were taught as part of standard cur-
riculum.

Results show that Agile teams performed generally better than their Water-
fall counterpart in the same class with respect to overall product completion
and number of featured delivered. This is not surprising, since Agile privileges
the functional dimension over the non-functional ones. It is interesting to note
that many chose challenging but interesting tasks, possibly failing along the way.
However, with respect to code quality, Agile teams fared worse than their coun-
terparts. First, code was less readable and with worse Cyclomatic Complexity
evaluation; second, the final product on average had severe usability problems,
since this was not an explicitly stated goal. In general, teams underestimated the
effort needed on the first sprint but guessed much better their second sprint, dur-
ing which they were much more productive. Teacher-student interaction was also
not very intense – suddenly cooperating at peer level with an older, experienced
superior is not an easy task for anyone. Students reported great satisfaction for
this activity, slightly more than for the previous model.

So, both types of Group learning (directed like Waterfall and self-directed like
Scrum) missed the main point of the activity, which was to provide a valuable
product for the customer. What is interesting is the motivation for such failures.
Scrum teams concentrated their effort to reach a goal, possibly a difficult one,
displaying Courage, a key XP value. Waterfall groups tended to “play safe”, and
concentrated on less risky objectives (user interface, process oriented goals) and
working on what they most comfortable with, a pattern more in line with logical
reasoning.

The self-directed group model strongly promotes the use of social skills and
other qualities relevant to Cooperative Thinking. However, the learning rate
could be exceedingly slow; moreover, evaluation requires great attention and

Exploiting Agile Practices to Teach Computational Thinking 73

Fig. 1. Teaching activities mapped to learner types, following the taxonomy of [34]

balance. It better suits Accomodative learner types, since they display a strong
preference for doing rather than thinking. They do not like routine tasks and
will take creative risks to see what happens.

5 Implications for Practice

Kolb’s model identifies four basic types of learning experiences (Active Experi-
mentation, Concrete Experience, Reflective Observation) and four basic types of
learners (Converging, Accommodating, Diverging, Assimilating). Kolb suggests
to alternate these learning modalities in order to stimulate different aspects of
the learners’ mind, even if an individual is more oriented to a specific king of
learning activity. We therefore classified four types of learning experiences specif-
ically related to lab classes that can be appealing to a particular learner type,
as shown in Fig. 1.

Table 2 summarizes the content of this section. Traditional teaching concen-
trates on individual learning, thus favoring Assimilating students; we argue that
a more balanced approach is beneficial in general, and in particular can stimu-
late and develop focused social skills that are essential for developing an effective
Cooperative Thinker.

Table 2. Learning model influence on learner and teacher’s role

Teacher

role

Learning

path

Computational

thinking

Social

skills

Agile

skills

Ease of

evaluation

Preferred Kolb

learner type

Individual

learning

Boss +++ ++ – – ++ Assimilator

Paired learning Facilitator – + + ++ + Convergent

Directed group

learning

Project

leader

+ = ++ + – Divergent

Self-directed

group learning

Teammate – = +++ +++ – Accommodator

74 P. Ciancarini et al.

We understand that Kolb’s classification is crude, as it cannot capture the
complexity of teaching and learning in a social environment, be it at school or
on the workplace; yet, even this simple model is powerful enough to analyze the
situation and plan activities to reach our goals.

Cooperative Thinking is a general theoretical concept, just like Computa-
tional Thinking. Educators should do their best in order to have students under-
stand and be able to put theory into practice. Is the educational system able to
accept this change? Our discussion concentrates on teaching software develop-
ment lab classes.

Usually, only individual performances are evaluated in lab classes of both
high schools and colleges alike: it is less common to evaluate the teamwork.
We will now describe some teaching models that can be used to promote the
emergence of the two pillars of Cooperative Thinking: Computational Thinking
and Agile practices. We have evaluated the impact on students designing and
performing a series of learning experiments that exposed software development
students to Agile practices and values.

In this article we analyzed a series of teaching strategies for software devel-
opment, each with advantages and disadvantages and having a different impact
on cognitive, reasoning and social skills that collectively concur to create what
we called Cooperative Thinking.

Traditionally, education has considered literacy and knowledge in a broad
sense. Consequently, the quality of education is often tied to fundamental skill
expertise; one of the most recognized indicator is the result of the international
PISA test, that evaluates how effective a country has been at deploying their
prescribed math, science, and reading curricula. In this perspective, it makes
perfect sense for educational institutions worldwide (and universities foremost)
to favor individual learning as the primary – if not only – teaching strategy.
For instance, a consequence of this is that several efforts are spent in schools
on overcoming individual differences among students: see for instance the well
known discussion of the “Matthew effect” in [54], which is a social selection
process resulting in a concentration of resources and talent.

However, in the future, “pure” knowledge might become less important, even
to the point of becoming a commodity, and soft skills could raise in importance.
An educational system focusing on hard, technical skills could have difficul-
ties in promoting soft skills. As [64] pointed out, there is an inverse correlation
between PISA test scores and entrepreneurial capacity, a measured by the Global
Entrepreneurship Monitor (GEM), the world’s largest entrepreneurship study.
Specifically, the countries with the top PISA scores had an average GEM:PISA
ratio of less than half of the mid- and low-scoring countries, indicating a poten-
tial shortfall in PISA’s measuring purpose to understand if students are “well-
prepared to participate in society” [42]. And this might as well be true in Com-
puter Science.

Notably, the ability to solve complex issues or wicked problems, is a require-
ment for new product development and innovation & entrepreneurship in general
[7]. Wicked problems usually have no single perfect solution but many Pareto-

Exploiting Agile Practices to Teach Computational Thinking 75

optimal solutions. The traditional educational paradigm is not tailored to train
people able to handle similar situations; PISA-like evaluations are meaningless to
determine the educational system’s efficiency, since the only offers an evaluation
of the individual.

So, the gap between a formal educational background and real-life wicked
and complex problems becomes larger. Actually, it will increase along with Dig-
ital Transformation processes, where the level of predictability decreases and
uncertainties increases [45].

Therefore, the introduction of other teaching strategies that foster social
skills and cooperation is very important, and should also be factored in grading
activities. Note that we do not advocate a complete suppression of the Individ-
ual Learning strategy; on the contrary, it should be complemented with other
strategies in order to obtain an overall balanced and blended mix tailored to
specific situations – there is no silver bullet in education. This proposal will also
have the extra bonus of potentially appeal to all learner types, even those that
traditionally are less inclined to pick Computer Science as their course of study.

Given all the above considerations, we recommend all strategies we men-
tioned be used in teaching software development, in order to promote different
but equally important skills and possibly favoring different learning styles. This
strategy mix should begin as soon as possible and continue throughout the entire
study path, up to and including the university tier. Otherwise, it might be too
late to develop the full potential of Agile-related skills and, consequently, Coop-
erative Thinking.

5.1 Learning Path

Most CS courses are strongly oriented toward individual learning, the goal being
to introduce and grasp the basic elements of CS and, specifically, programming
[49]; a short to medium-length programming project of average difficulty is usu-
ally included.

As soon as possible, Pair Learning should also be presented. Specifically, Pair
Programming should be introduced first and actively enforced as one of the main
practices for class exercises throughout the course. Other Agile practices could be
introduced (such as Test-First Development, Continuous integration, ...) along
with the necessary software tools (like git or Jira). A project that verifies what
students learned should be simple in terms of programming complexity but rich
in process experiences, in that elements of Agile must be used and their use
verified.

Next, forming the team is an important factor. We know that simply putting
together people and telling them to work on a project is not enough to have
an even decently efficient group. Preparation is in order, requiring some careful
people selection, team-building exercises, and some short project to test how the
teams work. Finally, a team-oriented project of moderate to high difficulty and
length should be realized by the students.

The final step is, of course, proposing a demanding project to the teams and
give them ample freedom. At this point students should have a solid knowl-

76 P. Ciancarini et al.

edge of the programming language and development methods, a grasp of basic
Agile practices, and some working experience with all necessary tools; moreover
teams should know their strengths and weaknesses. This activity can actually
be a course capstone project and should contribute significantly to the students’
grade.

Our proposal requires formalization, testing, and formal validation. Though
every step is nothing new or complicated, the overall teach process is. Our
research group is currently working on a comprehensive proposal and its field
testing in both K-12 and university classes.

5.2 The Influence of the Context

We discuss now the validity of this study in the different contexts of High School
and University classes.

First, we examine some distinctive features of learning in high school:

– The learning activities encompass several years. During this long time period,
teachers and learners get to know well each other and develop a relationship
that has strong effect on the quality of their cooperation.

– The evaluation of the students is based on several factors. One is certainly
the overall performance (tests, lab results), but many other aspects are fac-
tored in: initial level, handicaps, effort, proper behavior. This implies that
the teacher must exert some form of control and surveillance, even due to age
considerations.

– Learning goals tend to be broad-scoped, leaving advanced topics only to the
best students.

The University learning context seems to be completely different. Instructors
usually teach for a single semester, a time insufficient to establish a personal
relationship. Performance evaluation is far more important, overshadowing other
factors; standardized tests and procedures are used, focused on both general and
specific topics. Higher levels of personal responsibility and self-organization are
expected, so teacher control is generally limited.

However, in the specific case at hand, differences are not so well marked.
We performed our experiments in high school courses (total: about 250 stu-
dents) which are programming intensive, featuring around nine programming
hours - labs included - per week for three full years. They cover basic and inter-
mediate programming issues, including dynamic data structures, recursion, and
databases for an average of 300 programming class hours per year, personal
study not included. While we do not claim that this kind of education to soft-
ware development is equivalent to a standard undergraduate level lab class in
software development, it is undoubtedly comparable, on average compensating
subject depth and personal motivation with more time spent in practical expe-
riences. Our experiments on undergraduate students (total: about 90 students)
confirm these impressions.

Not surprisingly, we found that our teaching strategies had to be adapted
to the different educative levels. For example, students in high schools require

Exploiting Agile Practices to Teach Computational Thinking 77

learning activities on Agile to be repeated and, at least partially, integrated into
standard teaching activities. Failing to do so inexorably results in limited long-
term retention, as some interviews sadly demonstrated. Moreover, students must
concentrate on Agile practices rather than on the overall development process;
they are only able to handle a software project of limited scope and complexity,
so setting up a full-fledged development environment (be it Agile or else) looks
like an overkill.

Conversely, undergraduates are able to make the most out of one-shot activi-
ties; they are expected to reinforce their knowledge and skills with personal work,
and most of them indeed do. They have sufficient capabilities and time to prop-
erly apply a standard Agile development cycle, especially in capstone projects.
The problem in this case is the large amount of topics to cover: the instructor has
the responsibility to select the topics that must be taught. In addition, under-
graduates have a higher degree of freedom, so they cannot be forced to adopt
a given method or practice. The effective use of Agile by students depends on
their personal and, for some part, on the charisma of the instructors.

6 Discussion

In 2006, Jeannette Wing’s paper defined and popularized the concept of Compu-
tational Thinking [62], portrayed as a fundamental skill in all fields, not only in
Computer Science. It is a way to approach complex problems, breaking them
down in smaller problems (decomposition), taking into account how similar
problems have been solved (pattern recognition), ignoring irrelevant informa-
tion (abstraction), and producing a general, deterministic solution (algorithm).

Even after more than a decade, the impact of this idea is strong. Eventually,
some governments realized that future citizens should be creators in the digital
economy, not just consumers, and also become active citizens in a technology-
driven world.

Computational Thinking needs to be properly learned and, therefore, is being
inserted as a fundamental topic in school programs worldwide. This is a welcomed
change away from old educational policies that equated computer literacy in
schools to the ability of using productivity tools for word processing, presenting
slide shows, rote learning of basic concepts. Though useful in the past, they are
currently outdated and even possibly harmful. The US initiatives “21st Century
Skills” [58] and curriculum redefinition, along with “Europe’s Key Skills for
Lifelong Learning” [19] should be viewed in this perspective.

However, these approaches might not be sufficient in the long run. Current
educational approaches concentrate on coding (as an example, consider the Hour
of Coding initiative), but this it not the end to it. Computational Thinking is
made of complex, tacit knowledge, that overcomes limited resources and requires
deep engagement, lots of deliberate practice, and expert guidance. Coding is one
aspect, and not necessarily the most important one.

Tasks solved by software systems are becoming more complex by the day,
and many of these in the real world could be classified as wicked problems [47].

78 P. Ciancarini et al.

There is no single “best solution” to many such problems, only Pareto-optimal
ones which may change over time. In this situation, satisfying expectations and
requirements becomes harder and harder as they are beyond the limit of solv-
ability for any single programmer.

This is well known in the fields of Science and Business. The most common
approach to trying to solve wicked problems in these fields is by forming teams
including people with complementary backgrounds, trained to face problems
and reach the goal – together. These new cooperative entities benefit from a
high degree of independence and autonomy to deal with the assigned task; the
idea is to solve a problem attacking it from different points of view.

Even if Computational Thinking has been defined as a problem-solving skill,
and has benn taken as the basis for several ongoing activities, by itself alone it
does not offer the variety of viewpoints required to solve difficult or wicked prob-
lems. Computational Thinking has traditionally been considered an individual
skill, and taught as such. Teamwork and soft skills are generally not factored in,
and even shunned as “cheating” in some introductory programming courses.

In our view, the general approach to Computational Thinking needs to be
updated, by enhancing it with a complementary concept: Agile values and prac-
tices. The Agile Manifesto was published in 2001, just a few years before Wing’s
paper. In just 68 words, it proposed a quite original perspective on software
development, recalling values that clashed with the established culture of time,
based on top-down hierarchies, linear decision making and, in general, pursuing
unsustainable management plans. The most significant change introduced by the
Agile movement is the paramount importance assigned to face-to-face commu-
nication and social interaction, superseding the internal organizational rigidity,
documentation, contracts, roles, and more [46].

Including some Agile principles and learning-as-execute experiences in train-
ing for Computational Thinking is beneficial. We name Cooperative Thinking
this Agile extension of Computational Thinking, and define it as follows:

“Cooperative Thinking is the ability to
describe, recognize, decompose, and computationally solve problems

teaming in a socially sustainable way”

This definition joins the basic values of both Computational Thinking and
the Agile Manifesto.

Computational Thinking is based on the power of abstraction, problem
recognition and decomposition, and algorithms. Agile principles include self-
organizing teams, interaction and communication, and shared responsibility.
Both Computational Thinking and Agile value the concepts of evolution and
reflection of problems and solutions. Both approaches share the idea of problem
solving by incremental practices based on learning by trial and error. Moreover,
our definition of Cooperative Thinking underlines sustainability, since “solu-
tions” as such have little impact, if not related to the available resources.

In sum, Computational Thinking is the individual skill to solve problems in
an effective way. We found that Agile values are central not only for developers

Exploiting Agile Practices to Teach Computational Thinking 79

Fig. 2. Cooperative Thinking, Computational Thinking and Agile values breakdown
(according to Computing at School [13] and [3])

but also for educating individuals. Cooperative Thinking adds a variety of points
of view required to solve really demanding and complex tasks, like for instance
developing critical systems [9,43,51]. Enhancing Computational Thinking with
Agile values and principles allows to exploit the power of a team of diverse
backgrounds towards a common goal. Being mentally flexible, understanding
the others’ points of view and synthesizing a common solution are crucial skills
for teaming developers.

7 Conclusions

In this paper we explored Cooperative Thinking, a concept that expands Com-
putational Thinking embracing Agile values. The proposal is graphically sum-
marized in Fig. 2.

Cooperative Thinking is the extension of Computational Thinking with Agile
Values. We considered the skill breakdown proposed for Computational Think-
ing by Computing at School [13] and grouped the skills into three broad cat-
egories: Problem solving, Evolution, and Reflection. Correspondingly, we con-
sidered Kent Beck’s XP values and practices list [3] as representative of Agile
values and practices in general; list items were also grouped in three categories:
Social Skills, Evolution, and Reflection.

Cooperative Thinking is a complex skill to acquire and master, but in our
view, is the way to go to obtain teaming individuals able to tackle and resolve
the challenges and questions that the future will present them.

We examined four different learning models, each with a different balance of
traditional, Agile, and Cooperative learning, showing the impact they had on
students in developing Cooperative Thinking. Specifically, Individual learning is
strongly related to Problem Solving, Social Skills to Self-directed group learning;
all other aspects have a varying degree of relationship to the different models.

80 P. Ciancarini et al.

Experiments showed a significant effect on the learning outcomes. Cooper-
ative Thinkers will enjoy an edge on the job marketplace, making them more
flexible, socially aware, and more able to handle future challenges, be they related
to software development or not.

In order to educate students to Cooperative Thinking, we suggest that a mix
of learning strategies be used, in order to expose students to Agile practices
and values and develop teaming skills without forgetting basic Computational
Thinking skills, such as abstraction. While we do not claim the superiority of
Agile practices as such, we do observe their effectiveness as enablers of Cooper-
ative Thinking, since they promote interaction, force efficient resource handling,
and are strongly goal-oriented, substantially more than individual learning.

We propose to define and evaluate innovative educational programs promot-
ing Cooperative Thinking. Mixed methods assessments for educational construct
validation with Structural Equation Modeling as also fine granular performance
indicator for Pareto-optimal solutions need to be validated. However, finding
the exact blend of teaching strategies will be the real challenge for the software
engineering community; this is exactly what we are investigating now, both at
K-12 and undergraduate level.

Another line of research that we intend to pursue concerns the constructs
which constitute Cooperative Thinking, especially concerning teaming [16]. For
instance, the dynamic structure of teams is interesting: we have seen in the exper-
iments that in pair programming asymmetry of competences is quite effective.
In teams including more people, say four or five students, we intend to study
the emergence of mentors as facilitators rather than leaders, and the impact of
such figures on self-organization of teams.

References

1. Amabile, T., Fisher, C., Pillemer, J.: Ideo’s culture of helping. Harv. Bus. Rev.
92(1–2), 54–61 (2014)

2. Barr, V., Stephenson, C.: Bringing computational thinking to K-12: what is
involved and what is the role of the computer science education community? ACM
Inroads 2(1), 48–54 (2011)

3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison Wesley, Boston (2004)

4. Blackwell, A., Church, L., Green, T.R.: The abstract is ‘an enemy’: alternative per-
spectives to computational thinking. In: Proceedings of the 20th Annual Workshop
of the Psychology of Programming Interest Group, vol. 8, pp. 34–43 (2008)

5. Bobrov, E., et al.: DevOps and its philosophy: education matters! CoRR
abs/1904.02469 (2019). http://arxiv.org/abs/1904.02469

6. Brown, S.: 500 Tips on Group Learning. Routledge, New York (2014)
7. Buchanan, R.: Wicked problems in design thinking. Des. Issues 8(2), 5–21 (1992)
8. Carter, L.: Ideas for adding soft skills education to service learning and capstone

courses for computer science students. In: Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, SIGCSE 2011, pp. 517–522. ACM,
New York (2011). https://doi.org/10.1145/1953163.1953312. http://doi.acm.org/
10.1145/1953163.1953312

http://arxiv.org/abs/1904.02469
https://doi.org/10.1145/1953163.1953312
http://doi.acm.org/10.1145/1953163.1953312
http://doi.acm.org/10.1145/1953163.1953312

Exploiting Agile Practices to Teach Computational Thinking 81

9. Ciancarini, P., Messina, A., Poggi, F., Russo, D.: Agile knowledge engineering for
mission critical software requirements. In: Nalepa, G.J., Baumeister, J. (eds.) Syn-
ergies Between Knowledge Engineering and Software Engineering. AISC, vol. 626,
pp. 151–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64161-4 8

10. Conway, M.: How do committees invent. Datamation 14(4), 28–31 (1968)
11. Cooper, H.: Scientific guidelines for conducting integrative research reviews. Rev.

Educ. Res. 52(2), 291–302 (1982)
12. Cooper, H., Hedges, L., Valentine, J.: The Handbook of Research Synthesis and

Meta-Analysis. Sage, New York (2009)
13. Csizmadia, A., et al.: Computational thinking: A guide for teachers. Computing

at Schools (2015)
14. Dansereau, D.F.: Cooperative learning strategies. In: Weinstein, C., Goetz, E.,

Alexander, P. (eds.) Learning and Study Strategies: Issues in Assessment, Instruc-
tion, and Evaluation, pp. 103–120. Academic Press, Cambridge (1988)

15. Denning, P.: Remaining trouble spots with computational thinking. Commun.
ACM 60(6), 33–39 (2017)

16. Dingsøyr, T., Fægri, T.E., Dyb̊a, T., Haugset, B., Lindsjørn, Y.: Team perfor-
mance in software development: research results versus agile principles. IEEE
Softw. 33(4), 106–110 (2016)

17. Edmonson, A.: Teaming to Innovate. Wiley, Hoboken (2013)
18. Edmonson, A.: Wicked problem solvers. Harv. Bus. Rev. 94(June), 52 (2016)
19. European Community: Key competences for lifelong learning: European

Reference Framework (2007). http://eur-lex.europa.eu/legal-content/EN/TXT/
HTML/?uri=LEGISSUM:c1109

20. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Future of Software Engineering, FOSE 2007, pp. 37–54. IEEE Com-
puter Society, Washington, DC (2007)

21. Glass, G.: Primary, secondary, and meta-analysis of research. Educ. Researcher
5(10), 3–8 (1976)

22. Guglielmino, L.M., Guglielmino, P.J.: Practical experience with self-directed learn-
ing in business and industry human resource development. New Dir. Adult Con-
tinuing Educ. 1994(64), 39–46 (1994)

23. Henderson, P.B.: Ubiquitous computational thinking. IEEE Comput. 42(10), 100–
102 (2009)

24. Hoskey, A., Zhang, S.: Computational thinking: what does it really mean for the
K-16 computer science education community. J. Comput. Sci. Coll. 32(3), 129–135
(2017)

25. Howard, R.A., Carver, C.A., Lane, W.D.: Felder’s learning styles, Bloom’s taxon-
omy, and the Kolb learning cycle: tying it all together in the CS2 course. In: ACM
SIGCSE Bulletin, vol. 28, pp. 227–231. ACM (1996)

26. Hung, W., Jonassen, D.H., Liu, R., et al.: Problem-based learning. In: Handbook
of Research on Educational Communications and Technology, vol. 3, pp. 485–506
(2008)

27. Jackson, G.: Methods for integrative reviews. Rev. Educ. Res. 50(3), 438–460
(1980)

28. Johnson, D., Johnson, R.: Learning Together and Alone: Cooperative, Competitive,
and Individualistic Learning. Prentice-Hall, Upper Saddle River (1987)

29. Johnson, D., Johnson, R., Smith, K.: Active Learning: Cooperation in the College
Classroom. ERIC (1998)

30. Johnson, D., et al.: Cooperative Learning in the Classroom. ERIC (1994)

https://doi.org/10.1007/978-3-319-64161-4_8
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:c1109
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:c1109

82 P. Ciancarini et al.

31. Johnson, M.: Should my kid learn to code? (2015). http://googleforeducation.
blogspot.gr/2015/07/should-my-kid-learn-to-code.html

32. Joy, S., Kolb, D.A.: Are there cultural differences in learning style? Int. J. Inter-
cultural Relat. 33(1), 69–85 (2009)

33. Katz, D.L.: Conference report on the use of computers in engineering classroom
instruction. Commun. ACM 3(10), 522–527 (1960)

34. Kolb, D.: Learning Style Inventory Technical Manual. McBer, Boston (1976)
35. Kropp, M., Meier, A.: Teaching agile software development at university level: val-

ues, management, and craftsmanship. In: Proceedings of the 26th IEEE Conference
on Software Engineering Education and Training (CSEE&T), pp. 179–188 (2013)

36. Kropp, M., Meier, A.: New sustainable teaching approaches in software engineering
education. In: Proceedings of the IEEE Global Engineering Education Conference
(EDUCON), pp. 1019–1022 (2014)

37. Meerbaum-Salant, O., Hazzan, O.: An agile constructionist mentoring methodol-
ogy for software projects in the high school. ACM Trans. Comput. Educ. 9(4)
(2010)

38. Meier, A., Kropp, M., Perellano, G.: Experience report of teaching agile collabora-
tion and values: agile software development in large student teams. In: Proceedings
of the 29th IEEE Conference on Software Engineering Education and Training
(CSEE&T), pp. 76–80 (2016)

39. Missiroli, M., Russo, D., Ciancarini, P.: Learning agile software development in
high school: an investigation. In: Proceedings of the 38th International Conference
on Software Engineering (ICSE), pp. 293–302 (2016)

40. Missiroli, M., Russo, D., Ciancarini, P.: Agile for Millennials: a comparative study.
In: Proceedings of the 1st International Workshop on Software Engineering Cur-
ricula for Millennials, pp. 47–53. IEEE Press (2017)

41. Missiroli, M., Russo, D., Ciancarini, P.: Teaching test-first programming: assess-
ment and solutions. In: COMPSAC, 2017. IEEE (2017)

42. Pasupathy, S., Asad, A., Teng, P.Y.: Rethinking k-20 education transformation for
a new age (2016). www.atkearney.com/about-us/social-impact/related-publica
tions-detail/-/asset publisher/EVxmHENiBa8V/content/rethinking-k-20-educati
on-transformation-for-a-new-age/10192

43. Poggi, F., Rossi, D., Ciancarini, P., Bompani, L.: An application of semantic
technologies to self adaptations. In: Proceedings of International Conference on
Research and Technologies for Society and Industry Leveraging a Better Tomor-
row (RTSI), pp. 1–6. IEEE (2016)

44. Polya, G.: How to Solve It: A New Aspect of Mathematical Method. Princeton
University Press, Princeton (1957)

45. Raskino, M., Waller, G.: Digital to the Core: Remastering Leadership for Your
Industry, Your Enterprise, and Yourself. Routledge, New York (2016)

46. Rigby, D., Sutherland, J., Takeuchi, H.: Embracing agile. Harv. Bus. Rev. 94(5),
40–50 (2016)

47. Rittel, H., Webber, M.M.: 2.3 planning problems are wicked. Polity 4, 155–169
(1973)

48. Rivera-Ibarra, J.G., Rodŕıguez-Jacobo, J., Serrano-Vargas, M.A.: Competency
framework for software engineers. In: Proceedings of the 23rd IEEE Conference
on Software Engineering Education and Training (CSEE&T), pp. 33–40 (2010)

49. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: a
review and discussion. Comput. Sci. Educ. 13(2), 137–172 (2003)

http://googleforeducation.blogspot.gr/2015/07/should-my-kid-learn-to-code.html
http://googleforeducation.blogspot.gr/2015/07/should-my-kid-learn-to-code.html
www.atkearney.com/about-us/social-impact/related-publications-detail/-/asset_publisher/EVxmHENiBa8V/content/rethinking-k-20-education-transformation-for-a-new-age/10192
www.atkearney.com/about-us/social-impact/related-publications-detail/-/asset_publisher/EVxmHENiBa8V/content/rethinking-k-20-education-transformation-for-a-new-age/10192
www.atkearney.com/about-us/social-impact/related-publications-detail/-/asset_publisher/EVxmHENiBa8V/content/rethinking-k-20-education-transformation-for-a-new-age/10192

Exploiting Agile Practices to Teach Computational Thinking 83

50. Rooksby, J., Hunt, J., Wang, X.: The theory and practice of Randori coding Dojos.
In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 251–259.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06862-6 18

51. Rossi, D., Poggi, F., Ciancarini, P.: An application of semantic technologies to self
adaptations. In: Proceedings of the 33rd Symposium on Applied Computingm, pp.
128–137. ACM (2018)

52. Rubin, K.: Essential Scrum: A Practical Guide to the Most Popular Agile Process.
Addison Wesley, Boston (2012)

53. Slavin, R.: Cooperative learning. In: Learning and Cognition in Education, pp.
160–166 (2011)

54. Stanovich, K.: Matthew effects in reading: some consequences of individual differ-
ences in the acquisition of literacy. Read. Res. Q. 22, 360–407 (1986)

55. Steghöfer, J.P., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., Ericsson, M.:
Teaching Agile: addressing the conflict between project delivery and application of
Agile methods. In: Proceedings of the 38th International Conference on Software
Engineering (ICSE), pp. 303–312. ACM (2016)

56. Stobart, G.: The Expert Learner. McGraw-Hill Education, New York (2014)
57. Thomas, L., Ratcliffe, M., Woodbury, J., Jarman, E.: Learning styles and perfor-

mance in the introductory programming sequence. In: ACM SIGCSE Bulletin, vol.
34, pp. 33–37. ACM (2002)

58. Vv.Aa.: The Glossary of Education Reform: 21st century skills (2016). http://
edglossary.org/21st-century-skills/

59. Vygotsky, L.: Zone of proximal development. In: John-Steiner, V., Scribner, S.,
Souberman, E. (eds.) Mind in Society: The Development of Higher Psychological
Processes, vol. 5291, p. 157. Harvard University Press, Cambridge (1987)

60. Weber, E.P., Khademian, A.M.: Wicked problems, knowledge challenges, and col-
laborative capacity builders in network settings. Public Adm. Rev. 68(2), 334–349
(2008)

61. White, P., Rowland, A., Pesis-Katz, I.: Peer-led team learning model in a graduate-
level nursing course. J. Nurs. Educ. 51(8), 471–475 (2012)

62. Wing, J.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
63. Yadav, A., Good, J., Voogt, J., Fisser, P.: Computational thinking as an emerging

competence domain. In: Mulder, M. (ed.) Competence-based Vocational and Pro-
fessional Education. TVETICP, vol. 23, pp. 1051–1067. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-41713-4 49

64. Zhao, Y.: World Class Learners: Educating Creative and Entrepreneurial Students.
Corwin Press, Thousand Oaks (2012)

https://doi.org/10.1007/978-3-319-06862-6_18
http://edglossary.org/21st-century-skills/
http://edglossary.org/21st-century-skills/
https://doi.org/10.1007/978-3-319-41713-4_49

Towards a Model-Based DevOps
for Cyber-Physical Systems

Benoit Combemale1(B) and Manuel Wimmer2

1 University Toulouse & Inria, Rennes, France
benoit.combemale@irisa.fr

2 Johannes Kepler University Linz & CDL-MINT, Linz, Austria
manuel.wimmer@jku.at

Abstract. The emerging field of Cyber-Physical Systems (CPS) calls
for new scenarios of the use of models. In particular, CPS require to
support both the integration of physical and cyber parts in innovative
complex systems or production chains, together with the management
of the data gathered from the environment to drive dynamic reconfig-
uration at runtime or finding improved designs. In such a context, the
engineering of CPS must rely on models to uniformly reason about var-
ious heterogeneous concerns all along the system life cycle. In the last
decades, the use of models has been intensively investigated both at
design time for driving the development of complex systems, and at run-
time as a reasoning layer to support deployment, monitoring and runtime
adaptations. However, the approaches remain mostly independent. With
the advent of DevOps principles, the engineering of CPS would benefit
from supporting a smooth continuum of models from design to runtime,
and vice versa. In this vision paper, we introduce a vision for supporting
model-based DevOps practices, and we infer the corresponding research
roadmap for the modeling community to address this vision by discussing
a CPS demonstrator.

1 Introduction

We are currently facing a dramatically increasing complexity in the develop-
ment and operation of systems with the emergence of Cyber-Physical Systems
(CPS) [9]. This demands for more comprehensive and systematic views on all
aspects of systems (e.g., mechanics, electronics, software, and network) not only
in the engineering process, but in the operation process as well [2]. Moreover,
flexible approaches are needed to adapt the systems’ behavior to ever-changing
requirements and tasks, unexpected conditions, as well as structural transforma-
tions [6].

To engineer interdisciplinary systems such as CPS, modeling is considered as
the universal technique to understand and simplify reality through abstraction,
and thus, models are used throughout interdisciplinary activities within engi-
neering processes which is often referred to Model-Based Systems Engineering
(MBSE) [3]. However, in order to deal with current requirements such as the
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 84–94, 2020.
https://doi.org/10.1007/978-3-030-39306-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_6

Towards a Model-Based DevOps for Cyber-Physical Systems 85

flexible adaption of CPS to changing requirements, the operation processes of
CPS as well as their interplay with the engineering processes and vice versa
has to be taken into consideration. This raises the question how model-based
DevOps practices for CPS can be achieved. Such practices are currently highly
needed to reduce the time between identifying the necessity for a change and
putting the appropriate change into production.

This paper discusses a vision for model-based DevOps practices for CPS
(Sect. 2) as well as the challenges which have to be tackled in order to realize
this vision by the help of a CPS demonstrator (Sect. 3). Finally, we conclude with
an outlook on several research lines which may build on the discussed model-
based DevOps practices, in the form of a short term research roadmap (Sect. 4)
and long term perspectives (Sect. 5).

2 Overall Vision

While current DevOps principles apply to code integration, deployment, delivery
and maintenance in the software industry, we envision the application of the very
same principles at the model level for the development of CPS. In such a vision,
the various domain-specific development models are seamlessly integrated with
operations, either via models at runtime (e.g., model-based MAPE-K loop or
digital twins) or via a combination of software and hardware components within
a given environment.

Initially introduced for the design phases in software development, model-
driven engineering (MDE) approaches cover nowadays the entire life cycle. First
extended to support the elicitation of the requirements and the expected use
cases, models have been then intensively used for automating the development
and analysis of complex systems, and more recently to support dynamic recon-
figurations of dynamically adaptable systems. As illustrated in Fig. 1, various
tool-supported approaches have been explored and developed to cover all these
phases. Most of these approaches are nowadays largely used in industry and help
engineers to increase the quality and productivity of modern developments [11].

MDE approaches appear particularly useful in the context of systems engi-
neering (a.k.a. MBSE), for the development of complex software-intensive sys-
tems, also referred as cyber-physical systems. Such systems involve heteroge-
neous concerns (including hardware and software). Models provide a uniform
level of abstraction to reason over the entire system and support automation for
analysis, development, monitoring and evolution.

While most of the added value in CPS comes from the software services built
on top of the physical architecture (e.g., IoT, smart systems, flexible production
systems, etc.), they face the same evolution than any other software services,
including the restricted time to market to meet the final user expectations. Inte-
grating the various approaches and ensuring a model continuum is thus the next
level for the adoption of model-based approaches, supporting continuous deliv-
ery, monitoring and improvements of the systems.

86 B. Combemale and M. Wimmer

Fig. 1. A model-based DevOps approach

Also, CPS are usually deployed in complex, ever changing, environments.
Software services provide the intrinsic required adaptability, that must be vali-
dated with regards to heterogeneous hardware. DevOps principles bring moni-
toring at the first glance, and automate the continuous improvement while guar-
anteeing this is free of regression.

While it appears obvious that DevOps principles would be beneficial to the
development of modern CPS, this requires to promote such principles at the
model level. We review in the rest of this paper the challenges raised by such a
vision, on the basis of a concrete CPS demonstrator introduced in the following
section.

3 A CPS Demonstrator Calling for Model-Based DevOps
Practices

In this section, we discuss a CPS demonstrator developed at the Christian
Doppler Laboratory for Model-Integrated Smart Production (CDL-MINT).1
The CPS demonstrator is based on automating, operating, and maintaining
a 6-axis robot with the notion of digital twins (cf. Fig. 2) providing different
viewpoints such as logical and physical views as well as runtime data–called
digital shadow [12]. In the following, we explain the main components of this
demonstrator–being software and hardware parts.

For realizing, operating, and maintaining the gripper robot, we follow a
model-based methodology which is in line with Fig. 1. The gripper is modeled
by using the Systems Modeling Language (SysML). In particular, we employ the
block definition diagram and the state machine diagram.
1 https://cdl-mint.se.jku.at.

https://cdl-mint.se.jku.at

Towards a Model-Based DevOps for Cyber-Physical Systems 87

Fig. 2. A CPS demonstrator project.

The block definition diagram is used to define the structure of the gripper
including its properties. For instance, we model the BasePosition (BP), Main-
ArmPosition (MAP), and GripperPosition (GP) (cf. upper part of Fig. 3) to
name just a few properties. These mentioned properties describe the angle posi-
tions of the axis of the gripper. These angle positions are set for different realizing
different actions (e.g., for driving down, moving left/right, or for picking-up).

The intended behavior of the gripper is described by a state machine, i.e.,
by detailing the various states and state transitions (cf. middle part of Fig. 3).
These states are for instance DriveDown and PickUp. The states set the variable
values specifying the respective angle position to realize in these states.

During operation, the gripper acts as a continuous system and thus, moves in
its environment on the basis of a workflow described by the state machine. The
particular movements are recorded by axis sensors and returned as continuous
sensor value streams. In our excerpt of the system, we show three sensor value
streams for the three properties defined in the block definition diagram (cf. lower
part of Fig. 3).

The building blocks for the development process as well as for the operation
and maintenance processes of the discussed CPS demonstrator are as follows:

– Logical modeling languages to define the intended logical structure and
behaviour of the system (provided by the SysML language).

– 3D CAD modeling language for representing the geometry and kinematics
of the physical components of the gripper.

– Code generator to produce the necessary control code from the logical
models for the particular controller platform.

88 B. Combemale and M. Wimmer

Fig. 3. Design view and runtime view of the CPS demonstrator (Excerpt).

– Controller, an extended version of a Raspberry Pi, with connections to the
sensors and actuators of the physical device. For the gripper, every axis has
a dedicated actuator and sensor which are connected to the controller via
GPIO (general-purpose input/output) pins.

– Physical device, i.e., the gripper, with sensors and actuators.

In order to move from a classical model-based engineering to a model-based
DevOps process as outlined in Fig. 1, dedicated extensions to the previously
described setting are required in order to realize an efficient and effective usage
of models. In particular, design models have been employed for development
in many different settings and domains and allowed for automating the code
generation process. In addition, several work also proposed to use runtime models
during the operation of a system. However, the transition from development to
operation and vice versa has been mostly overlooked. In the following, we shortly
summarize the need to take these transitions into account.

– Moving from Dev-to-Ops: While most MDE tooling allow for moving
from the model level to the code level, further activities in the direction of
operations are often not explicitly supported. However, for settings such as
described for the CPS demonstrator, we need further support to test the
controller combined with the system to automatize before moving to the
actual system level as well as to automatically deploy the control code on
particular platforms.

Towards a Model-Based DevOps for Cyber-Physical Systems 89

– Moving from Ops-to-Dev: In addition to the use of runtime models to
perform self-configuration and optimization within a particular design, moni-
toring is important to understand the actual operation of a system to explore
new designs. This means, in addition to prescriptive and predictive runtime
models, we also need descriptive runtime models which can be linked back to
the design to reason about possible re-designs, model improvements such as
providing a higher precision or energy minimisation. In summary, we need a
way to link the data streams from the systems to our design models to close
the loop.

In the following section, we detail these two research dimensions by the con-
crete challenges we are facing and outline some directions to take.

4 Research Roadmap

In this section, we present our research roadmap (cf. Fig. 4) by discussing a set
of important challenges which have to be tackled to realize the aforementioned
vision (cf. Fig. 1). We categorize the challenges in two kinds: (i) we present the
challenges to continuously move from model-based development to operations,
and (ii) the challenges to continuously move from operations to model-based
development. We ground the challenges by giving concrete links to the CPS
demonstrator introduced in the previous section.

4.1 From Dev to Ops

C1: Integration of MDE Techniques: In the past decade, a plethora of dif-
ferent techniques for validation, verification, evolution, transformation of mod-
els have been proposed. However, how these techniques may be bundled into
a pipeline for continuously integrating, building, testing, and deploying models
into production environments is less explored. The only exception is the work
by García and Cabot [4] who married continuous deployment technologies and
model-driven technologies.

For the CPS demonstrator, model changes have to trigger code generation
scripts, test case generators, deployment scripts for running the code on a virtual
representation of the physical gripper, i.e., its digital twin, in the simulation
platform. As soon as this virtual level is certified, the code has to be deployed in
the production environment to test it on the real physical device. For this process,
we require a pipeline which can connect modeling tools, simulation tools, code
generators, testing tools, as well as continuous deployment tools. In the best
case, these pipeline should allow for incremental techniques to save computation
costs and to guarantee an instant re-deployment.
C2: Integration of Heterogeneous Artefacts: While current model-based
technologies provide common services for model-based artefacts by following
certain meta-modeling standards or other conventions, other artefact kinds such
as technical drawings, software components or hardware descriptions cannot be

90 B. Combemale and M. Wimmer

(C1) MDE Tool
Integration

(C2) Model
Integration

(C4) Data to Model
Alignement

(C5) Data Visualization
in Design Models

(C3+C7) DSLs for DevOps Pipeline
Modeling and Enactment

Ground
Work

(C6) Continuous improvement
of Design Models

Reaping the
Benefits

Rigorous
Automation

t

Dev2Ops

Ops2Dev

Fig. 4. Summary of the research challenges to support a model-based DevOps for
Cyber-Physical systems.

directly integrated with models. However, this would be highly needed in order
to allow for a progressive integration starting in the engineering process and
going until the deployment process.

For the CPS demonstrator, integration between the logical controller model
and the physical models, i.e., the 3D CAD models, is required in order to run
virtual simulations before moving to the production site. Currently, these type
of tools are often realized on different technologies with different languages (even
legacy meta-languages used to define these languages) and simulators.

C3: Languages for Dev-to-Ops Pipelines: Previously a lot of research has
been spent on languages for megamodeling, i.e., how different models are con-
nected, and for model transformation chains, i.e., how models are pushed through
a network of transformations. However, more specific languages may be needed
to describe the pipelines from Dev-to-Ops. Such languages would allow to explic-
itly model the process instead of scripting these processes in different technolo-
gies. We proposed one approach going in this direction in the past by extending
Gradle with explicit megamodeling and transformation chain DSL [10].

For the CPS demonstrator, we first require open APIs on all levels: software
modeling tool, 3D CAD modeling tool, programming IDEs, simulation platforms,
etc. In addition to open tools, a particular language to describe the complex
process of moving from the modeling activities to the finally deployed system
with necessary interaction points, e.g., a human has to validate the graphical
simulation of the virtual gripper models, is required.

4.2 From Ops to Dev

C4: Tracing Operational Data to Design Models: The first challenge in
this category is to map back the runtime data (e.g., measures about performance,
energy consumption, masses, costs, etc.) into the documentation provided on
top of development design models. Existing modeling languages often lack a
viewpoint for operations or provide do not provide dedicated guidelines how

Towards a Model-Based DevOps for Cyber-Physical Systems 91

such information may be represented, e.g., see UML, SysML, and many DSLs.
Dedicated extensions to these languages are required to link to operational data
or to store summaries of operational data in models.

For the CPS demonstrator, we have to record and represent the realized
positions of the gripper to reason about tolerance ranges on the model level
and to validate the precision of the final system. In SysML such information
is currently not representable. However, there are some dedicated efforts for
SysML in the standardization process of SysML v22 to provide state histories
for components.

C5: Embedded Visualization of Operational Data in Design Models:
Operational data is naturally becoming huge in size for complex systems. Even if
operational data is already traced to design models, current modeling languages
and modeling editors most often fail short in visualization aspects. Additional
requirements for visualization of design models occur such as how to visualize the
underlying quality of the data such as uncertainties. Integrating sophisticated
visualization techniques from the information visualization community [1] seems
beneficial in order to provide an understanding of operational data embedded in
design models at a glance.

For the CPS demonstrator, dedicated diagrams have to be supported to visu-
alize the runtime data (we refer again to the bottom of Fig. 3). Just showing large
runtime data in property windows in current modeling editors is not helpful for
modelers to reason on runtime events and values. New diagram types are needed
for our current modeling languages and tools to visualize time series information
(for instance as different kind of charts3) or time series visualization tools have
to be integrated in the engineering tools.

C6: Utilizing Operational Data for Continuous Checks and Improve-
ments of Design Models: Runtime models have gained considerable attention
in model-driven engineering, mostly in the context of self-* systems. Exploiting
runtime models for continuously checking, profiling, enriching and improving
design models (possibly through additional predictive models) would allow to
reason about the next versions of a system’s design [7]. Runtime models are
indeed already very helpful here, but currently not all runtime models are in
line with the design models. For instance, assume the transform of the runtime
models back into traces which can be replayed by simulators for animation,
exploration, etc., on the design models.

For the CPS demonstrator, we need the possibility to play in the runtime
traces from the physical system, e.g., to reproduce errors which occurred during
operation, in the virtual representation (both, physical and logical view)). This
may require dedicated transformations of runtime logs of the system to the design
model level. These data transformations may be systematically engineered as

2 http://www.omgsysml.org/SysML-2.htm.
3 For an example, see: https://sparxsystems.com/enterprise_architect_user_guide/

14.0/model_publishing/define_a_time_series_chart.html.

http://www.omgsysml.org/SysML-2.htm
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_publishing/define_a_time_series_chart.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_publishing/define_a_time_series_chart.html

92 B. Combemale and M. Wimmer

coupled transformations with respect to the design time model transformations
employed to reach the code level.

C7: Languages for Ops-to-Dev Pipelines: Dedicated languages are needed
to support the modeling of Ops-to-Dev pipelines. For instance, such languages
are required to provide provenance for the extracted runtime models and linked
design models, for the specification of indicators, e.g., metrics, KPIs, of interest,
as well as the required data exchange between different monitoring, analysis, and
design tools.

For the CPS demonstrator, we need dedicated languages to describe prop-
erties such as state realizations, request/response times, precision of certain
actions, etc. This further requires to have a hybrid query language which is
on the one hand powerful on very large data, e.g., time series recorded on the
system level and on the other hand is able to produce at the same time model
structures to populate runtime models and to compute derived properties which
may be attached to the design models, e.g., for a given command for the gripper
to move to a particular position, the average realized position may be annotated
to the action in the state machine.

4.3 Synopsis

To sum up, the road ahead summarized in Fig. 4 we see as follows. In particular,
in stage 1, the challenges C1, C2, C4, and C5 can be considered as ground work
which is required to lift MDE to the next level for both phases, design and oper-
ation. As soon as these challenges are tackled, a rigorous automation support
is required to build and enact DevOps pipeline efficiently. Thus, challenges C3
and C7 have to be tackled in stage 2. Finally, as soon as the foundations are
achieved and an appropriate level of automation support is reached, the bene-
fits of realizing a continuous engineering process by continuously improving the
design models based on runtime data (cf. challenge C6) may be realized in the
final stage.

5 Looking Ahead

Looking ahead the vision presented in this paper, we present in this section
different perspectives that would leverage the implementation of the proposed
research roadmap.

Business concerns, as presented in the BizDevOps approach [5], require to
reason over the global system. Such an approach would benefit from the appli-
cation of the DevOps principles at the model level as models are closer to the
application domain and provide a comprehensive representation of the system,
including its environment and possible extra functional properties related to
business concerns. For this, an additional integration dimension opens up. In
particular, there is the need for aligning enterprise models and design models
which is provided by reference enterprise architecture frameworks. Finally, for

Towards a Model-Based DevOps for Cyber-Physical Systems 93

reporting back the performance of the system on the business level, runtime
monitoring of requirements as well as enterprise models seems beneficial.4

The smooth combination of the Dev-to-Ops and Ops-to-Dev continuums
would provide advanced feature to support live modeling [8]. Live modeling envi-
ronments would provide continuous and immediate feedback to modelers about
the impact of their changes on the execution behavior of a model eliminating
any delay between modelers’ actions and feedback on their effects. Therewith,
they should offer flexibly to explore the design space easing the development
of complex software-intensive systems, facilitating learning, and improve quality
and efficiency in the development process. In addition to applying operations at
the level of the digital twin or the system itself, this would enable the simulation
of the operations themselves to explore what if scenarios.

Finally, promoting DevOps principles at the model level enables to push
backward its use early in the development process. Hence, DevOps principles
would not only apply to the integration, deployment and delivery of the global
system, but can also apply at a finer grain for the different concerns addressed
during the development process, and across the various abstraction levels. These
two dimensions (separation of concerns and levels of abstraction) complement the
Dev-Ops dimension, and would possibly lead to powerful development process
where automation and continuous feedback is not only available at the level of
the global system, but also at the level of the different concerns and across the
various levels of abstraction.

Acknowledgments. This work has been partially supported and funded by the Aus-
trian Federal Ministry for Digital and Economic Affairs, the National Foundation for
Research, Technology and Development, by the FWF under the grant numbers P28519-
N31 and P30525-N31, and the Inria/Safran collaboration GLOSE.

References

1. Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-
Oriented Data. Human-Computer Interaction Series. Springer, London (2011).
https://doi.org/10.1007/978-0-85729-079-3

2. Broy, M., Schmidt, A.: Challenges in engineering cyber-physical systems. Computer
47(2), 70–72 (2014)

3. Estefan, J.: Survey of model-based systems engineering (MBSE) methodologies.
INCOSE MBSE Focus Group 1–47 (2007)

4. García, J., Cabot, J.: Stepwise adoption of continuous delivery in model-driven
engineering. In: Proceedings of DEVOPS (2018)

5. Gruhn, V., Schäfer, C.: BizDevOps: because DevOps is not the end of the story. In:
Fujita, H., Guizzi, G. (eds.) SoMeT 2015. CCIS, vol. 532, pp. 388–398. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22689-7_30

6. Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of the 11th
IEEE International Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC), pp. 363–369 (2008)

4 As an example from industry see: https://www.softwareag.com/info/innovation/
enterprise_digital_twin/default.html.

https://doi.org/10.1007/978-0-85729-079-3
https://doi.org/10.1007/978-3-319-22689-7_30
https://www.softwareag.com/info/innovation/enterprise_digital_twin/default.html
https://www.softwareag.com/info/innovation/enterprise_digital_twin/default.html

94 B. Combemale and M. Wimmer

7. Mazak, A., Wimmer, M.: Towards liquid models: an evolutionary modeling app-
roach. In: Proceedings of the 18th IEEE Conference on Business Informatics (CBI),
pp. 104–112 (2016). https://doi.org/10.1109/CBI.2016.20

8. Tendeloo, Y.V., Mierlo, S.V., Vangheluwe, H.: A multi-paradigm modelling app-
roach to live modelling. Softw. Syst. Model. 18(5), 2821–2842 (2019). https://doi.
org/10.1007/s10270-018-0700-7

9. Vangheluwe, H., et al.: MPM4CPS: multi-paradigm modelling for cyber-physical
systems. In: Proceedings of the Project Showcase @ STAF 2015, pp. 1–10 (2016)

10. Weghofer, S.: Moola - a Groovy-based model operation orchestration language.
Master’s thesis, TU Wien (2017)

11. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Software 31(3), 79–85 (2014)

12. Wolny, S., Mazak, A., Wimmer, M., Konlechner, R., Kappel, G.: Model-driven
time-series analytics. Enterp. Model. Inf. Syst. Archit. 13(Special), 252–261 (2018).
https://doi.org/10.18417/emisa.si.hcm.19

https://doi.org/10.1109/CBI.2016.20
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.18417/emisa.si.hcm.19

A DevOps Perspective for QoS-Aware
Adaptive Applications

Martina De Sanctis1(B), Antonio Bucchiarone2, and Catia Trubiani1

1 Gran Sasso Science Institute, L’Aquila, Italy
{martina.desanctis,catia.trubiani}@gssi.it

2 Fondazione Bruno Kessler, Trento, Italy
bucchiarone@fbk.eu

Abstract. This paper presents a vision on how to apply the DevOps
paradigm in the context of QoS-aware adaptive applications. The goal is
to raise awareness on the lack of quantitative approaches that support
software designers in understanding the impact of design alternatives at
the development and operational stages. To this end, in this paper we:
(i) verify the compliance of a design for adaptation approach with the
DevOps life-cycle; (ii) perform the runtime monitoring of dynamic IoT
systems, through Quality-of-Service (QoS) evaluation of system param-
eters, to guide a QoS-based adaptation with the goal of fulfilling QoS-
based requirements over time.

1 Introduction

DevOps is a novel trend that aims to bridge the gap between software develop-
ment and operation teams, and round-trip engineering processes become essen-
tial in such a context [1]. When applied to adaptive applications, it brings new
challenges since it is still unclear when and how it is possible to enable which
adaptations, even more, when evaluating the Quality-of-Service (QoS) charac-
teristics of systems (e.g., performance and reliability) [2]. Moreover, applications
are required to face the increased flexibility and dynamism offered by modern
pervasive environments. This firmly demand for adaptive applications that are
able to adapt to their actual environment (i.e., the currently available resources)
and to new situations (e.g., missing services, changes in the user requirements
and needs). Adaptive applications are a reality, and a key challenge is to provide
the capability of dealing with the continuously changing and complex environ-
ments in which applications operate.

In our recent work [3] we introduced the automated formation of the most
suitable Emergent Configurations (ECs) [4] in the Internet-of-Things (IoT)
domain. In particular, ECs consist of a set of things that connect and coop-
erate temporarily through their functionalities, to achieve a user goal. To derive
optimal ECs in terms of QoS, we make use of a model-based approach that
embeds the specification of QoS-related properties of IoT things, and further
support the specification of a QoS-based optimization problem returning the
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 95–111, 2020.
https://doi.org/10.1007/978-3-030-39306-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_7

96 M. De Sanctis et al.

most suitable EC. However, one of the main limitations of [3] is that the run-
time monitoring of the formed ECs has been neglected. In fact, there are some
QoS-related characteristics associated with things that may change over time,
e.g., the battery level of devices decreases when they are in use or increases after
charging. These aspects of runtime adaptation of things are not handled in [3],
where the selection of devices is driven by some preliminary check on their cur-
rent status only. The goal of this paper is to extend the approach in [3] to enable
the runtime monitoring of system parameters and trigger a QoS-based adapta-
tion (e.g., switching among actuators with similar QoS-based characteristics but
different battery level) of ECs periodically.

The rest of the paper is organized as follows. Section 2 describes a motivat-
ing example in the IoT context. Section 3 provides background information. In
Sect. 4 we discussed how to match an adaptation-based approach to the DevOps
life-cycle. The QoS-based adaptation of ECs in the IoT provided in this work,
together with the conducted experimentation, are illustrated in Sect. 5. Section 6
reports our afterthoughts, while related work and conclusion are presented in
Sect. 7.

2 Motivating Example

In this section we present the IoT Smart Light (SL) scenario, where things
cooperate to achieve a predefined light level in a lecture room. Consider, for
instance, a university campus made by different buildings hosting diverse types
of rooms, e.g., libraries, dormitories, classrooms, offices. Each room is equipped
with several IoT things, i.e., light sensors, curtains, and lamps. The things,
along with their functionalities, are configured to be controllable via a mobile
application allowing authorized users to increase/decrease the light level while
moving in different rooms, based on their needs. For instance, in a lecture room,
the lecturer can decide to decrease the light level when giving a presentation
through a projector or, to the contrary, to increase it when using the blackboard.
A possible way to achieve such goals is to dynamically identify an EC made, for
instance, by the user’s smartphone, a light sensor, and available curtain(s) and
lamp(s). The selected light sensor measures the current light level in the room,
and subsequently the lamps are turned on/off, and the curtains can be opened
or closed. In our previous work [3], the scenario has been extended by adding the
possibility of fulfilling extra-functional requirements besides the functional goal
of the application (e.g., adjusting the light level). For instance, the committer
may want to minimize the power consumption of all the devices installed in the
campus, while guaranteeing users’ satisfaction.

However, besides the static attributes (e.g., power consumption, sensing accu-
racy) that are provided by vendors and defined once for each device, other
dynamic attributes that change over time or are independent from the vendor,
must be considered when looking for the proper devices. In fact, it is necessary
to take into account the system context evolution and adapt parameters accord-
ingly. Specifically: (i) the selection of a sensor or an actuator leads to a decrease

A DevOps Perspective for QoS-Aware Adaptive Applications 97

of a certain amount its battery level and activating their charging whether it is
no longer available for the application, e.g., the battery level is lower than 50%.
The charging status may be interrupted or devices might be constrained to fill
their battery up to a certain threshold value (e.g., larger than 90%) before they
can be selected again; (ii) devices can be subject to failures, making them no
longer available for participating in the EC of devices; (iii) the light level in a
room is further affected by environmental characteristics, e.g., the ambient light
decreases while the evening comes, thus it might be that the provided light level
may no longer meet the user requirement.

3 Background

This work builds upon an existing design for adaptation approach [5,6] for adap-
tive applications. The aim of the approach is twofold: (i) introduce mechanisms
enabling adaptation in the life-cycle of applications, both in the design and in
the run-time phases and, (ii) support the continuous development and evolution
of adaptive applications operating in dynamic environments. The approach relies
on the Domain Objects (DOs) model. More precisely, DOs allow developers to
define independent and heterogeneous things/services as well as their dynamic
interactions in a uniform way. This way, they do not need to deal with the het-
erogeneity of things and their communication protocols, but they can work at
a more abstract level. At design time, to model things, developers wrap them
as DOs. Each DO implements its own behavior, namely the core process, which
models its capability (e.g., the light sensing capability of a light sensor). Then,
for its intended execution, a DO may optionally require capabilities provided by
other DOs (e.g., the light sensing and the lamp actuating capabilities are exter-
nally required by the SL application). In fact, each DO exposes one or more
fragments (e.g., the ’sense light level’ fragment) describing offered services that
can be dynamically discovered and used by other DOs. Both core process and
fragments are modeled as dynamically customizable processes, by means of the
Adaptive Pervasive Flows Language (APFL) [6]. We furthermore highlight that
the task of wrapping things as DOs is done only una tantum, i.e., when a new
device type/brand is available.

Since the actual system can vary in different execution contexts, the system
realization is performed closer to its execution, that is, when the actual environ-
ment is known. This guarantees as much as possible the success of the provided
applications (e.g., in terms of their applicability, correct execution, coherent
adaptation). The dynamic cooperation among DOs is performed by exploiting
different adaptation mechanisms and strategies [7] (e.g., refinement mechanism)
allowing applications to adapt to different situations (e.g., select the proper ser-
vices, react to a context change) at runtime. At design time, APFL allows the
partial specification of the expected behavior of a DO through abstract activities,
i.e., activities that the DO does not implement itself; they are defined only in
terms of a goal (e.g., sense the light) and they represent open points in DOs’
processes and fragments. At runtime, the refinement mechanism allows abstract

98 M. De Sanctis et al.

activities to be refined through the (composition of) fragments offered by other
DOs, whose execution leads to achieve the abstract activity’s goal. This enables
a chain of refinements, supported by advanced techniques for the dynamic and
incremental service composition and re-configuration, based on Artificial Intel-
ligence (AI) planning [8]. To experiment with this approach please refer to [9].

When considering QoS-based characteristics of adaptive applications, further
challenges arise, since it is indeed not trivial to evaluate such characteristics
(e.g., system response time) of systems subject to run-time variability (such as
workload fluctuations, services availability). In this case, adaptation needs have
to be extended to target functional goals while meeting QoS-based requirements.
To this aim, in our recent work [3] we extended the approach by embedding the
specification of QoS-related properties at the level of things. This allows the
automated formation of the most suitable ECs relying on the selection of QoS-
based optimal devices.

4 Compliance of the Design for Adaptation
with the DevOps Life-Cycle

The DevOps paradigm recently emerged [10] to decrease the gap between the
design of a software product and its operation. Such paradigm provides a process
(i.e., Dev –plan, code, build, test–, and Ops –release and deploy, operate, moni-
tor–), but it is not constrained to any specific modeling and analysis formalism,
or tool. This implies that the life-cycle is based on a set of pillars (e.g., collab-
orative development and continuous integration [11]), but its implementation is
fully decidable by the DevOps team.

Fig. 1. Detailed mapping between the design for adaptation and DevOps life-cycles.

A DevOps Perspective for QoS-Aware Adaptive Applications 99

Similarly, our design for adaptation approach [5,6] has also been defined with
the aim of reducing the distance between the design of adaptive applications and
their runtime adaptation. Hence, we are interested to investigate at what extent
the design for adaptation approach can be considered compliant with the DevOps
paradigm.

To this end, we performed a mapping between the two life-cycles, as sketched
in Fig. 1. For each DevOps phase, we describe the corresponding activities per-
formed when exploiting the design for adaptation approach.

Plan. Our approach supports the planning of application development, which
can be seen as the transition towards the code stage. This is done by defining
a domain model that describes the specific operational environment in which
the provider wants to instantiate the application to be developed (e.g., the SL
application). More precisely, the domain is modeled as a set of domain properties
describing specific concepts of the domain (e.g., light sensing, lamp actuating).
At the same time, another important task to accomplish during this phase is an
accurate analysis of the available devices/services that are part of the targeted
domain (e.g., available devices, their functionalities and brands), which will be
used in the next stages.

Code. In this phase, three main tasks are performed: (i) the identified devices
and services are wrapped as DOs; (ii) the adaptation mechanisms and strategies
provided by the approach are enabled (this task does not require any develop-
ment activity to developers); (iii) the final application, such as SL, is designed as
a DO as well. DOs are specified in the xml language while the modeling of DOs
behaviors (i.e., core processes and fragments) is performed by using APFL [6].
No further programming languages are needed at this stage. In Fig. 2 we report
an example of a light sensor (i.e., the Sensmitter1) expressed as a .xml file repre-
senting the corresponding light sensor’s DO. In particular, it shows the pointers
to the DO’s constituent parts, such as its domain knowledge (see lines 4–7), its
state (see lines 9–25), its core process (see line 27), and its fragment(s) (see
line 28). The DO’s state also contains QoS-related attributes (see lines 16–24),
besides state variables. Specifically, regarding the SL scenario, the specification
of light sensors is augmented with three metrics such as power consumption,
sensing accuracy and battery level2. Differently from the other attributes, the
battery level is dynamic, i.e., the state of the device’ battery can be dynamically
updated since it changes over time.

Build. In this phase the application is built by performing the integration
between the application and adaptation logic. Indeed, the former represents what
the application is designed to do (e.g., adjust the light level) and it is specified at
design time. The latter specifies how to do it (e.g., by combining available light
sensors and actuators), and it can vary in different execution contexts, since the
availability of things can change dynamically. To deal with this dynamicity, the

1 https://www.senssolutions.se/.
2 Note that metrics can be expressed in different units for sensors and actuators of

different brands, however such units can be converted to a common reference unit
in the DO model, thus to avoid misleading comparison.

https://www.senssolutions.se/

100 M. De Sanctis et al.

Fig. 2. Domain object model for the Sensmitter light sensor [3].

application logic includes open points where the adaptation can take place (e.g.,
dynamic devices selection).

Test. This phase deals with the testing of the final application when the adap-
tation mechanisms and strategies are in their operational stage. Currently, our
approach does not provide a testing environment able to simulate the adaptive
applications. However, as demonstrated in [8], the services composition (i.e., a
plan) returned by the adaptation planner (implementing the adaptation mech-
anisms and strategies via model-checking) is correct by construction. In other
word, if a plan is found, it is guaranteed that its execution allows the application
to reach a situation in which the goal of the adaptation problem is satisfied.

Release and Deploy. After the testing, both the SL application and the adap-
tation mechanisms and strategies are released and deployed, being ready for the
execution. Obviously, the application domain continuously evolves due to new
available services and devices (e.g., a new light sensor of a different brand has
been installed in the campus). This triggers the application evolution resulting
in continuously releasing and deploying newly defined DOs.

Operate. At operational stage, our approach provides enablers for the auto-
matic formation and adaptation of ECs. After the approach extensions made
in [3], the devices selection and composition is also driven by QoS-related require-
ments (e.g., the sensing accuracy of light sensors has to be larger than a thresh-
old). As introduced in Sect. 3, the run-time operation of applications relies on

A DevOps Perspective for QoS-Aware Adaptive Applications 101

Fig. 3. Excerpt of the Smart Light execution example [3].

different adaptation mechanisms and strategies [7] that handle the dynamicity of
the environment in which applications operate. These mechanisms are process-
based and, in particular, they rely on the use of APFL and its constructs (i.e.,
abstract activities, annotations). Figure 3 provides an example of the abstract
activity refinement mechanism to better understand the adaptation functioning.
It represents an excerpt of the SL execution, i.e., the refinement of the Light
Actuating (goal G in Fig. 3) abstract activity, depicted with a dotted line3. The
fragments composition returned for this refinement is made by two fragments
provided by those actuators in the room whose QoS-related characteristics are
compliant with the QoS-based requirements stated in the SL application (e.g.,
minimize power consumption). Specifically, the fragments Lamp and Curtain
Actuating, respectively provided by the Philips Hue Lights4 and the Stepper
Motor5 DOs are selected, composed and injected in place of the abstract activ-
ity they refine.

Monitor. The connection point between the Dev and the Ops cycles is a moni-
toring step that is in charge of enacting changes, triggered by both evolution and
adaptation needs. Indeed, in this phase, the deployment status, the application
execution flow and the domain evolution are constantly observed. Furthermore,
there are some QoS-related characteristics associated to things that may change
over time, e.g., the battery level. These aspects of runtime evolution of things
have not been handled by our approach in [3] that instead computes some pre-
liminary check on the current status of devices only. In this work, instead, we
enable a runtime monitoring to update these changing values and trigger a QoS-
based adaptation (e.g., switching among actuators showing similar QoS-based
characteristics but with different battery level) of ECs, periodically. In partic-
ular, performing a QoS-based adaptation does not lead to a new execution of
the whole DevOps life-cycle. As opposite, the detection of application’s evolu-
tion needs (e.g., availability of new device types in the operational environment)
leads to a new execution of the DevOps life-cycle.

Summarizing, the stages described above represent the DevOps-based con-
tributions of the design for adaptation approach. As expected, due to its aim

3 The complete overview of the SL execution can be found in [3].
4 https://www2.meethue.com/en-us.
5 https://bit.ly/2VmRegr.

https://www2.meethue.com/en-us
https://bit.ly/2VmRegr

102 M. De Sanctis et al.

of reducing the distance between the design of adaptive applications and their
runtime adaptations, the life-cycle of our approach easily maps with DevOps.
Moreover, the approach itself is extended in this paper to deal with the moni-
toring of QoS-based characteristics of adaptive applications subject to runtime
variabilities, thus to further contribute to the DevOps paradigm.

5 QoS-Based Evaluation of Adaptive by Design
Applications

In this section we provide an overview of the functioning of QoS-based adaptation
of previously formed and enacted ECs, and we report on a concrete example (see
Sect. 2) some experimental results demonstrating the usefulness of the approach.

5.1 Overview

The automated formation of ECs based only on purely functional requirements
shows the drawback that an optimal usage of resources is not guaranteed, pos-
sibly leading to end-users unsatisfaction. To deal with these issues, in [3] we
extended our modeling formalism to include the specification of QoS-based prop-
erties, and enable a QoS-aware formation of ECs. The specification of QoS-
related characteristics, indeed, is performed at the level of DOs, as shown in
Fig. 2. In particular, each thing is associated to an arbitrary number of metrics
inherited from its producer. Thus, we enhanced the specification of DOs (e.g.,
those representing real world things in the environment) by adding QoS-related
attributes. The default setting of extra-functional requirements (i.e., min, max,
threshold value) is enabled by developers in the setting of the SL application,
but no assurance can be given. End-users may have different preferences while
using the available things, hence they can modify such requirements. This is later
translated into the QoS-based optimization problem that guides the formation
of the most suitable ECs.

In this paper we are interested to study the usefulness of our approach in
terms of QoS-based resilience to changes and their impact on the DevOps life-
cycle. To this aim, we enabled the QoS-based adaptation of ECs, by implement-
ing a runtime monitoring, i.e., periodically monitor the dynamic attributes of
the devices involved in a running EC. Specifically, instead of considering static
attributes only, in the following we focus on dynamic attributes that require
adaptation while the system is up and running. The approach we propose in this
paper contributes to the DevOps domain since it jointly considers development
and operational properties of software systems; more in details it tackles the
following three main characteristics:

– updates of inner system parameters at operational stage, i.e., there
are some system characteristics that change overtime and it is necessary to
update their value, e.g., the battery level of mobile devices is consumed when
they are in operation and such a parameter requires to be updated accord-
ingly.

A DevOps Perspective for QoS-Aware Adaptive Applications 103

– system failures, i.e., there are some software and hardware components that
do not properly work at operational stage and it is necessary to substitute
them, or to foresee recovery techniques that allow their recovery. This last
point opens an interesting line of research that we leave as part of our near
future research.

– environment, i.e., there are some environmental characteristics that may
affect the users’ perception and contribute to the selection of different design
alternatives, e.g., the light of the day may be low, medium, and high, and
this contributes to calculating differently the required leftover. For example,
in our motivating example (see Sect. 2), if the required light level is equal to
ten, but e.g., the environment provides eight already, then lamp actuators are
required to fill the remaining two units of lighting.

5.2 Experimentation

Experimental Settings. Table 1 reports the QoS-related characteristics of
employed devices. Specifically, our scenario includes light sensors and lamps
acting as actuators. For sensors we have five different instances of a different
brand (LS1, . . . , LS5), and their sensing accuracy is specified in the first row of
the table. For lamps, we also have five different instances of a different brand
(LA1, . . . , LA5), and their light level is specified in the second row of the table.
All devices show a battery decrease unit that indicates how much their battery
is decreased when they are in operation. Such values are reported in the last row
of Table 1. All these values represent an estimation of QoS-related characteristics
for arbitrary things, however, further numbers can be considered as well when
other specification of things is available.

In the following we discuss three main experiments that have been performed
to evaluate different dynamic aspects of our motivating example.

Experiment1 - runtime availability of devices conditioned to their battery
level. In this experiment we are interested to show that the selection of devices
is currently driven by the battery level that is updated and changes over time.
This means that when selected for use, the battery of devices is decreased and,
when lower than a certain threshold (e.g., 70% in our experimentation), the
devices are set to a charging state and not available up to when they are usable
again since their battery level goes over a predefined threshold (e.g., 80% in our
experimentation).

Experiment2 - runtime availability of devices conditioned to their battery
level and failures. In this experiment we aim to demonstrate that software and
hardware failures randomly occur and they affect the operational stage of the
system. The application needs to take such failures into account. This analysis
is also helpful when considering the number of sensors and actuators to put in
place, in fact it is obvious that a restricted number of available devices may lead
to no alternative options whether all sensors and/or actuators are in a failing
state condition.

Experiment3 - runtime availability of devices conditioned to their battery
level, failures and conditions of the environment. As mentioned above, there

104 M. De Sanctis et al.

Table 1. QoS-related characteristics.

Light Sensors Lamps
LS1 LS2 LS3 LS4 LS5 LA1 LA2 LA3 LA4 LA5

sensing accuracy 4 7 2 10 8 - - - - -
light level - - - - - 4 8 6 1 3
battery decrease 1 2 3 4 5 2 4 6 8 10

might be some environmental aspects that affect the users’ perception. For exam-
ple, the light is conditioned to the time of the day and available actuators are
required to fill the gap between the perceived environment and the application
requirements. This means that depending on the time of the day, some actuators
may be not valid for the fulfillment of stated system requirements. We consid-
ered three main light environment levels (i.e., low, medium, and high) and we
investigated the availability of lamps moving among such three settings.

In the remaining of the section we argue on collected experimental results
while considering multiple observation runs (i.e., up to 100 in our experimenta-
tion) denoting several intervals of time of the same duration when the application
is up and running.

Experimental Results. In the following we describe the conducted experiments
and collected results, related to the three experiments reported above.

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90 100

number of system runs

Exp1: number of discarded devices due to battery

Fig. 4. Exp1 - runtime availability of devices conditioned to their battery level.

Figure 4 shows the runtime availability of devices conditioned to their battery
level. On the x-axis we report the number of system runs, i.e., up to 100 time

A DevOps Perspective for QoS-Aware Adaptive Applications 105

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

nu
m
be

r
of

de
vi
ce

s
discarded

failed
available

(a) 1-25 observation runs.

2

4

6

8

10

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

nu
m
be

r
of

de
vi
ce

s

discarded
failed

available

(b) 26-50 observation runs.

Fig. 5. Exp2 - runtime availability of devices conditioned to their battery level and
random failures (up to 50 observation runs).

frames. On the y-axis we show the total number of discarded devices, including
both sensors and actuators. As expected, initially all devices are up and running,
at the 16-th run one of the devices shows a low battery, later on two devices,
and so on. These discarded devices are recharged in the subsequent runs, in fact

106 M. De Sanctis et al.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Exp3: number of failed and discarded devices - low environment light

discarded-battery
failed

discarded-environment

(a) low light: 1-20 observation runs.

0

1

2

3

4

5

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Exp3: number of failed and discarded devices - medium environment light

discarded-battery
failed

discarded-environment

(b) medium light: 21-40 observation runs.

0

1

2

3

4

5

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Exp3: number of failed and discarded devices - high environment light

discarded-battery
failed

discarded-environment

(c) high light: 41-60 observation runs.

Fig. 6. Exp3 - runtime availability of devices conditioned to their battery, random
failures, and different levels of environment light.

A DevOps Perspective for QoS-Aware Adaptive Applications 107

at the 23-th run no devices are discarded, their battery is considered enough to
accomplish the planned tasks. As expected, we can notice that the availability
of devices is fluctuating, and the number of discarded devices varies between one
and six, but in average across all runs it turns out to be around three. All these
numbers are indicators of the devices availability over time due to their battery
characteristics, and these evaluations are helpful to understand the evolution of
the application under analysis.

Figure 5 depicts the runtime availability of devices conditioned to their bat-
tery level and random failures. For lack of space and readability reasons, we show
1–25 observation runs in Fig. 5(a), and 26–50 observation runs in Fig. 5(b); the
remaining runs are omitted but show a similar trend. At the first run all devices
are available, but starting from the second run and up to the 11-th run we can
notice up to two devices (per run) showing failures. At the 12-th run all the
devices are available again, and discarded devices (due to low battery) start to
appear at the 14-th run. This is because the battery decrease requires some time
to become critical, whereas failures are random and can happen anytime, even
in the first run itself. Some runs encounter a mix of failed and discarded devices,
e.g., at the 15-th run we have one discarded device and three failed ones. Later
on, we can see that few runs show the availability of all devices, but most of them
report failures and/or devices with low battery. In average, across all the 100
runs, we found 0.64 discarded devices due to low battery and 1.29 failed devices.
Similarly to the previous experiment, all these numbers represent indicators of
the devices availability over time due to battery decrease and failures, and our
application resulted to be exposed to few unavailable devices on average.

Figure 6 shows the runtime availability of devices conditioned to their battery,
random failures, and different levels of environment light. Figure 6(a) focuses on
a low environment light level (e.g., early morning), i.e., the sensing reports a
light level set from the environment that is estimated to be equal to 2. To
achieve the stated requirement (light level larger than 5 units), all the devices
contributing with a light level larger than 3 units are sufficient to fulfill the
end users need. When moving to the medium scenario (e.g., late morning), see
Fig. 6(b), we considered 4 units as the environment light level; for the high
scenario (e.g., mid day), see Fig. 6(c), we stick on 5 units that basically indicate
the suitability of all devices, no matter of their power since the environment itself
is sufficient. As expected, in Fig. 6 we can notice that the number of discarded
devices due to the environment progressively decreases while moving across the
observation runs, and this is due to an increasing environment light level. In
average, across the 60 runs, we found an average of 0.4 discarded devices (due to
battery), 1.05 failed devices, and 0.9 discarded devices (due to the environmental
conditions). Similarly to previous experiments, all these numbers indicate that
our application is marginally affected by battery, failures, and environmental
changes.

Summarizing, the presented three experiments aim to demonstrate that QoS-
based adaptation is feasible, and our approach allows the quantification of how
the design settings (i.e., the intrinsic characteristics of available devices) con-

108 M. De Sanctis et al.

tribute to some properties of the running application, thus to get further knowl-
edge on its operational stage. Note that the execution time of running 100 runs
varies in a narrow interval, and its average is less than 2 s, thus to assess the
efficiency of the approach.

6 Discussion

Our approach includes a set of limitations that we discuss in the following.

Flexible Guarantees. It may happen that, when looking for an EC, the application
is not able to provide a solution that strictly meets the stated requirements.
This problem is exacerbated when QoS-based requirements are also considered,
since they further restrict the devices selection space. As future work we plan
to introduce techniques that identify the “closest” EC, i.e., the one slightly
deviating from requirements, but probably still satisfying the end users. This can
be performed by moderately modifying the stated requirements and executing
the process as it is.

Recovery Policies. As demonstrated in our experimentation, devices are subject
to failures and this implies a lower number of suitable ECs. To address this
issue, we plan to extend our approach by minimizing the mean time to repair,
so that failed devices are fixed more efficiently and they soon become available
again. To this end, a component should be added to trigger recovery policies
that automatically provide strategies (e.g., restart, reset to default settings) for
some or all sensors/actuators.

Adaptation as a DevOps-Cycle Itself. In this paper we proposed a mapping
between the life-cycle of a design for adaptation of adaptive applications on
the classical DevOps life-cycle. This means adaptation is an integrated activity
in all the DevOps phases within the considered application. As opposite, we
can envision a DevOps-cycle focusing on adaptation mechanisms only, so that
design, build, test, deliver, operation and evolution are dedicated phases for
adaptation concerns. In other words, applications and adaptation mechanisms
should be correlated but, at the same time, able to evolve independently of each
other, also considering that they might be realized by diverse professionals with
different skills and roles.

Centralized vs. Distributed. Our approach is currently centralized, in fact it lever-
ages on an adaptation engine and a process engine, both operating in a central-
ized manner. As future work, we plan to decentralize these two engines, so that
the execution of applications can run in distributed environments. As conse-
quence, the QoS-based evaluation of adaptive applications must evolve accord-
ingly, in order to manage those QoS characteristics particularly affected by dis-
tributed executions, e.g., response time.

Adaptation and Application Testing. As discussed in Sect. 4, currently our app-
roach does not provide a testing environment and, for the correct execution of
applications, it relies on the used adaptation mechanisms and strategies that

A DevOps Perspective for QoS-Aware Adaptive Applications 109

exploit model-checking [8]. As future work, we plan to implement our own
testing environment able to verify the built applications (w.r.t. requirements)
through the evaluation of (i) applications executions, (ii) services composition,
and (iii) (QoS-based) adaptations.

7 Related Work and Conclusion

Evaluating QoS-based characteristics of adaptive systems and applications is not
trivial, in fact they are subject to run-time variability (such as workload fluctua-
tions, services availability). As we said, in this case, adaptation needs have to be
extended to target functional goals while meeting QoS-based requirements. Our
previous work in this direction focused on performance-related issues: in [12] we
make use of performance models to analyze the dynamics of performance indices;
in [13] performance models are guided by model predictive control techniques to
achieve performance guarantees; in [14] we identified the sources of uncertainties
(e.g., deployment infrastructure) affecting performance in the DevOps life-cycle.

In [15] the authors introduce ENACT aimed to enable DevOps in trustwor-
thy smart IoT systems. To this end, they propose to evolve DevOps methods
and tools to address specific IoT related challenges, as for instance the contin-
uous quality assurance. In our approach, the adaptation takes place at behav-
ioral level, by exploiting a domain-independent approach. In contrast, ENACT,
whose focus is mainly on the trustworthiness, supports architectural adaptations
at operational time and with a strong focus in the IoT domain. Cito et al. [16]
advocate the need to capture feedback from operations data and mapping them
on software development life-cycle phases, in order to drive informed decisions.
This becomes particularly relevant in the DevOps context that aims on promot-
ing synergies between the development and execution of software systems. As a
first attempt in this direction, we enabled the monitoring of dynamic QoS-based
characteristics whose changes trigger a new execution of the SL application lead-
ing to a new EC of sensors and actuators. As discussed in Sect. 6, other steps
are required to enable a feedback-loop between the Dev and Ops cycles. The
work in [17] shares with our work the idea that IoT-based applications must be
able to automatically adapt to changes in the QoS of their component services.
To this aim, the authors exploit a collaborative QoS prediction of candidate
services that enables a goal-driven service composition which, in turn, allows
a QoS-based adaptation to be performed. In [18] a DevOps environment for
design-time modeling and optimization, and runtime control is proposed. Here,
the goal is to minimize the execution cost of cloud applications providing QoS
guarantees by design. Summarizing, all the discussed approaches represent valid
competitors with our DevOps-based design for adaptation, and we plan to fur-
ther investigate the comparisons in the near future.

In this paper we presented a DevOps perspective for QoS-aware adaptive
applications. In particular, we provided a mapping between an approach for
adaptive by design applications and the DevOps life-cycle, along with QoS-based
adaptation. A motivating example illustrates the feasibility of the approach, and

110 M. De Sanctis et al.

calls for future research. Besides all the directions mentioned in Sect. 6, we are
interested to industrial case studies to further investigate the soundness of the
proposed methodology.

References

1. Jiménez, M., Castaneda, L., Villegas, N.M., Tamura, G., Müller, H.A., Wig-
glesworth, J.: DevOps round-trip engineering: traceability from Dev to Ops and
back again. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS,
vol. 11350, pp. 73–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
06019-0 6

2. Iftikhar, M.U., Weyns, D.: ActivFORMS: a runtime environment for architecture-
based adaptation with guarantees. In: International Conference on Software Archi-
tecture - Workshops, pp. 278–281 (2017)

3. De Sanctis, M., Spalazzese, R., Trubiani, C.: QoS-based formation of software
architectures in the Internet of Things. In: Bures, T., Duchien, L., Inverardi, P.
(eds.) ECSA 2019. LNCS, vol. 11681, pp. 178–194. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29983-5 12

4. Alkhabbas, F., Spalazzese, R., Davidsson, P.: Architecting emergent configurations
in the Internet of Things. In: International Conference on Software Architecture,
pp. 221–224 (2017)

5. Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Design
for adaptation of distributed service-based systems. In: Barros, A., Grigori, D.,
Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 383–393.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0 27

6. Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Incre-
mental composition for adaptive by-design service based systems. In: International
Conference on Web Services (2016)

7. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: A context-aware framework
for dynamic composition of process fragments in the internet of services. J. Internet
Serv. Appl. 8(1), 6 (2017)

8. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via
planning in asynchronous domains. Artif. Intell. 174(3–4), 316–361 (2010)

9. De Sanctis, M., Bucchiarone, A., Marconi, A.: ATLAS: a new way to exploit world-
wide mobility services. Softw. Impacts 1, 100005 (2019). http://www.sciencedirect.
com/science/article/pii/S2665963819300053

10. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

11. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, 1st edn. Addison-Wesley Professional,
Boston (2010)

12. Incerto, E., Tribastone, M., Trubiani, C.: A proactive approach for runtime self-
adaptation based on queueing network fluid analysis. In: International Workshop
on Quality-Aware DevOps, pp. 19–24 (2015)

13. Incerto, E., Tribastone, M., Trubiani, C.: Software performance self-adaptation
through efficient model predictive control. In: International Conference on Auto-
mated Software Engineering, pp. 485–496 (2017)

14. Trubiani, C., Jamshidi, P., Cito, J., Shang, W., Jiang, Z.M., Borg, M.: Performance
issues? Hey DevOps, mind the uncertainty. IEEE Softw. 36(2), 110–117 (2019)

https://doi.org/10.1007/978-3-030-06019-0_6
https://doi.org/10.1007/978-3-030-06019-0_6
https://doi.org/10.1007/978-3-030-29983-5_12
https://doi.org/10.1007/978-3-030-29983-5_12
https://doi.org/10.1007/978-3-662-48616-0_27
http://www.sciencedirect.com/science/article/pii/S2665963819300053
http://www.sciencedirect.com/science/article/pii/S2665963819300053

A DevOps Perspective for QoS-Aware Adaptive Applications 111

15. Ferry, N., et al.: ENACT: development, operation, and quality assurance of trust-
worthy smart IoT systems. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.)
DEVOPS 2018. LNCS, vol. 11350, pp. 112–127. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-06019-0 9

16. Cito, J., Wettinger, J., Lwakatare, L.E., Borg, M., Li, F.: Feedback from operations
to software development—a DevOps perspective on runtime metrics and logs. In:
Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp.
184–195. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06019-0 14

17. White, G., Palade, A., Clarke, S.: QoS prediction for reliable service composition
in IoT. In: Braubach, L., et al. (eds.) ICSOC 2017. LNCS, vol. 10797, pp. 149–160.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91764-1 12

18. Guerriero, M., Ciavotta, M., Gibilisco, G.P., Ardagna, D.: A model-driven DevOps
framework for QoS-aware cloud applications. In: International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing, pp. 345–351 (2015)

https://doi.org/10.1007/978-3-030-06019-0_9
https://doi.org/10.1007/978-3-030-06019-0_9
https://doi.org/10.1007/978-3-030-06019-0_14
https://doi.org/10.1007/978-3-319-91764-1_12

Learning Agility from
Dancers – Experience and Lesson Learnt

Irina Erofeeva, Vladimir Ivanov(B), Sergey Masyagin(B),
and Giancarlo Succi(B)

Innopolis University, Innopolis, Russian Federation
{i.erofeeva,v.ivanov,s.masyagin,g.succi}@innopolis.ru

Abstract. Being on of the youngest field of human endeavours, software
development absorbed features of other, older fields, especially engineer-
ing, mathematics, and economics. However, being software the product
of the creation and being based on a systematic discipline and technical
excellence of the participants (the developers), there could be also very
interesting interconnections with artistic disciplines. In this paper, we
concentrate on the similarities with dance. Dance has a long tradition of
instructions and development. The goal of this work is to find interesting
points of contact is to identify dancesport methods that could provide
the basis for new approaches or practices for software development.

Keywords: Software development · Development methodologies ·
Dancesport · Ballroom dancing · Comparison

1 Introduction, Motivation and Hypothesis

It is generally accepted that the field of information technology is a product of
the technical development of mankind. But what if this sphere has incorporated
not only the knowledge of mathematics and physics, but also has sources in more
creative areas of human activity? For example, the creation of currently the most
popular development methodology, Agile, actually also originated outside the IT
sphere.

The firs time it was used by the physicist and statistician Walter Shewhart
as the Plan-Do-Study-Act cycles to improve products and processes, then his
student, W. Edwards Deming, popularized this method during the reconstruc-
tion of Japan after the Second World War and then transferred this method to
the industry, which led to the creation of the famous Toyota Production System,
the primary source of modern lean manufacturing [15].

Gaining all the experience from both processes of dancesport and software
development, a comparative research was conducted to find out intersections and
beneficial differences between areas of dancing and computer science and how
this connection could be useful, finding out that no one has ever deeply compared
software development with such a seemingly distant discipline as dancing to
identify possible synergies. Dancesport have been chosen among other disciplines,
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 112–120, 2020.
https://doi.org/10.1007/978-3-030-39306-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_8

Learning Agility from Dancers – Experience and Lesson Learnt 113

because it combines both sports and art, that will help us to increase the edge
for more broad comparison.

From sport perspective it is possible to gain productivity, motivation and
passion, perseverance and ability to overcome fears, to expand barriers. From
art perspective also motivation, inspiration and creativity can be considered as a
source of innovative ideas for improving software development sphere. Increasing
the edge, the opportunity to find more similarities and profitable borrowings
grows.

The study was inspired by the notion of Agile methodology and related con-
cepts like the so-called “Heart of Agile” by Cockburn [7]. Because of this all the
examples are referring to Agile and Lean concepts. Therefore, the main objec-
tive of this research is a contribution to a development methodologies borrowing
best practices of dancesport. In order to satisfy this goal the following research
questions have to be explored:

– Can a parallel be drawn between dance as a sport and software development?
– Can the IT sphere borrow something from dance sports to improve perfor-

mance?

2 Background and Related Works

Ballroom dancing is a set of partner dances that are performed both socially and
competitively around the world. While dancesport is more narrow and refers to
the five International Standard and five International Latin style dances.

In order to discover chosen topic and related studies more journalistic articles
had been considered. This can be explained by the definition of the authority:
While authority of facts in computer sciences is evidence based and research,
the dancing authority is performance based. People who work in dance, and in
performance art, understand that authority comes from being able to do the
performance [4,5,20]. This publications are of great interest for this study, as
they illustrate all aspects of the dance sphere that have ever been identified as
common with other areas of human activity.

The purpose of this work is to apply the theory of a conceptual blending,
that is according to Gilles Fauconnier and Mark Turner a deep cognitive activity
that makes new meanings out of old. [13], in comparison of software development
and dancing spheres and analyse how techniques coming from dancesport can
be used effectively in software development.

The example of this approach is present by Brenda Laurel “Computers as
Theatre” [16]. Based on the analysis of the form and structure of the drama of
Aristotle the author shows how similar principles can help to understand what
people experience when interfacing with computers.

This metaphorical comparison was applied in the fields of dancesport and
software development by Lee [17] - also being a dancer in the past and a devel-
oper in the present, she drew several abstract parallels between these areas,
here are the main points she highlighted as similarities between learning how to

114 I. Erofeeva et al.

code and learning how to dance. She declares, that developers and dancers both
focus on the basics, strive to be well-rounded, consider collaboration crucial for
improvement.

The author of “Agile dancing. Scrum training. Is it even possible?” (2017)
has already drawn a parallelism between dancing and software development. In
particular, she has analysed how to apply the Agile methodology to her training
process, considering time between competitions as sprints, coach as a product
owner, who will know exactly what is the main priority and he will also be able
to tell if the sprint is finished with success [3].

One more possible set of parallels were drawn at a seminar at Bilkent Uni-
versity in Turkey [1]. They looked at the methods and processes of software
engineering by relating it to the systematic structure of dance. Some common
features were highlighted:

– Processes employed in software engineering, such as analysis, design, imple-
mentation and testing were associated with the rules of professional dancing

– The Waterfall model examined the steps and the structure that dancers use
while preparing a dance performance as if they were a part of engineering.

– Importance of teamwork and professionalism was considered.

Since dance comparing to programming is considered as a simpler and more
natural human activity, which children learn from an early age, a large num-
ber of courses have been created in which programming concepts are explained
through dance. There are courses for K12 students with names like “Coding
Choreography” that offer learning programming using dancing. Abstracting to
dance, students study concepts such as algorithms, conditionals, functions, loops,
patterns, etc. [2].

The course “Dancing computer by Dillon et al. [12] was prepared to teach
elementary school students both dance terminology and concepts of coding such
as sequencing and conditionals. One of the main goals of this course is to teach
children to read code before writing it.

Such courses exist not only for children, but for students, team of students
and faculty members from Clemson University also designed a program called
VEnvI (Virtual Environment Interactions) [21] that combines basic concepts of
computational thinking and basic concepts from dance, so students can dance
and pick up key computational skills at the same time. Using VEnvI, students
can learn programming concepts like sequencing, looping and conditionals.

The important topic was raised by Rosner [22] - the author states the actual
problem of Agile teams - those, that are trying to adopt it or claim following
it. Their motivation for using this methodology, such as customer orientation,
doing things quicker with less managerial overhead, eliminating planning ahead
as it is not useful, turns into real life problems:

– Unclear prioritization of customer requests
– People working on random things

Learning Agility from Dancers – Experience and Lesson Learnt 115

– Managers giving tasks directly to individuals leading to unevenly distributed
workloads

– No time estimation possible

The problematic areas are the areas of improvements - which is the goal of the
proposed study.

3 Methodology

After analysis and discussion the survey approach was chosen as the most appro-
priate one for the study. After that the research process was organized within
four steps. They include collecting information from professionals, related work,
that follows by analysis, based on the gained information:

1. Collect relevant information from dancesport representatives:
– Review of the relevant literature on dancesport, on its regulations, on the

training processes, etc.
– Interviews with experts to identify aspects not (well) covered in the lit-

erature or to clarify uncertain situations.
– Add personal observation and experience.

2. Conduct interviews among developers from local companies and professional
dance athletes to identify the main features of selected disciplines, existing
problems and ways to solve them.

3. Analyse answers and define a hypothesis for transferring useful features from
dancesport to software development methodologies.

4. Finally, validate results in the field of software through interviews with soft-
ware managers of software companies.

In order to keep corresponding questionnaires connected the GQM techniques
was applied. Initially, Goal Question Metric is a method used by organizations
in order to align their business goals with software development strategies and
allow measurement-based decision-making [18]. The main goal of this approach
is to identify a meaningful metrics for measurement process, but in terms of
this study it approach was applied to keep surveys among different professions
connected and comparable. Applying this method to the present work, the main
goal was determined as identifying the similarities between spheres of dancesport
and software development. To make it more precise it was divided into a smaller
goals more specific for the each of proposed directions. So that four corresponding
goals were identified and expanded with lists of related question:

1. Find out what are the main problems professional have and compare them
2. Identify the most profitable strategies to overcome those difficulties and com-

pare them
3. Understand motivation and self development issues of both professions and

compare them
4. Explore and compare the influence of relationship in the team

116 I. Erofeeva et al.

After two test runs: offline and online, questionnaires were corrected and expand.
Online interviews were held among 92 participants, the results were completed
with additional comments during further discussion with the part of interviewees,
who have shown a special interest in investigation to the topic.

The surveyed are 64 professional dancers and 28 developers from companies
in the city of Innopolis. The choice among professional dancers was very diverse:
from the lowest professional class (hobby) to the dancers of the most experienced
and professional category (M), performing at competitions from the city to the
international level. Some had more than 10 years of experience behind their
backs, some had already completed their careers and became coaches.

Programmers who participated in the survey also covered a wide range of
professions in this field, such as CTO, tester, senior web developer, server devel-
oper, team leader, analyst. They all had work experience from 1 to over 10 years.
Also, for a deeper understanding of the problems that exist in the field of soft-
ware development, personal interviews were conducted with the developers of a
one-year start-up company.

4 Results and Discussion

In the following section the results of a comparison, based of literature review and
interviews with the representatives of both professions, are listed. The section
ends with a proposal of improvements of software management components,
inspired by beneficial differences between the spheres.

Firstly, dance and programs are similar in their meaning - they both are just
algorithms in the beginning, but in terms of dancesport the algorithm depends
on rhythm, tempo, style of music, personal experience and experience of the
partner, the presence of each of the dancing couples on the floor.

For those who start to dance and want to develop faster there is a chance to
practice with more experienced partner. There is a special category called Pro-
Am (Professional-Amateur), where the professionals dance with novices or with
much less experienced dancers. In this situation both, beginner and professional
dancer, gain something useful for their dancesport career: beginner gets a quick
start, professional gets a chance to consolidate his knowledge and understand
the material deeper during the explanation. In software development it is present
as one variation of pair programming, where a beginner and a more experienced
developer are working together. Beginner adopts the knowledge, experience and
habits of a more experienced specialist, which helps him to learn faster [8,14].

The leading role in the dance pair is always taken by the man, that is, he
is responsible for the safety of the pair on the dance floor and for the correct
execution of composition. If there is an obstacle in the way of the pair, the
partner can change the direction of the movement or dance a more convenient
and appropriate movement for this situation, and the girl must follow it. The
appointment of a leader in a pair, who chooses strategy in a difficult situation,
helps prevent errors on the dance floor. Error prevention in the way of choosing
a leader in a team is present in software development in a role of team leader
and also project manager.

Learning Agility from Dancers – Experience and Lesson Learnt 117

Pattern is a general, reusable solution to a commonly occurring problem by
definition. It has You can start to learn dancing not only with teacher, there
are a lot of books [10,13,15] that describe every dance. In these books you will
find explanation of every dancing figure step by step and basic routines, that are
actually patterns from Christopher Alexander’s book [6].

The most common practice in ballroom dancing is recording performances for
analyzing the mistakes and revealing the work front for the following workouts.
In software development it is called retrospective [23]. Not every team runs
retrospective sessions, but every team should, because this is the way to find out
what we can do to be better.

The software development methodology called Lean concentrates on minimiz-
ing the waste and autonomation of the process and widely used in companies in
form of Agile [15]. It’s concept of elimination of waste appears in dancesport -
after a specific point in sportsman’s career, it is obligatory to choose only one
program, Standard or Latin, to develop only in one direction. It was noticed,
that dancers, who choose two programs are less successful, than those who were
concentrated on one goal.

During group practises, where participants have different levels and experi-
ence, the coach can mix partners to try different techniques with other partner,
this practice help to improve leading and following skills, and identify mistakes
that was not obvious with your own partner. In software development is nothing
else, then testing piece of software with various inputs.

For now we saw a list of similarities between spheres of dancing and software
development, but what are features, that take place in dancing and can be useful
in software, but not yet represented? There are also concepts commonly used
in the sphere of ballroom dancing, such as warm-up, constant work on basic
movements, proper nutrition, proficiency in foundations of the classical dance,
that are occasionally was not meant by IT, but they have very crucial influence
on athletes performance and success. The preliminary results of comparison is
present in Table 1.

Moving along through the proposed plan the study focused on discovering
a possibilities of fulfilling the gaps present in software development approaches.
On that stage several possible options to fulfill these gaps were proposed and
described below.

First gap corresponds to a daily warm-up activity to perform better. Dancers
do this in order to protect their body from injuries, to eliminate stress of the
muscles, also for the better performance using all the potential of their bodies.
There is a similar activity present in Agile, which is daily stand-up meetings
inside the team. This could be regarded as warm-ups, however, the main aim of
these meetings is slightly different - every member of a team should share their
progress from previous day and plans about upcoming day, while in dancesport
warming-up is at first-hand a little repetitions of the main performance. To
address this lapse, stand-up meeting could be expanded with brainstorming about
teammate’s tasks, where every member of a team will have a chance to provide
an ideas of possible solutions for tasks of every participant.

118 I. Erofeeva et al.

Table 1. Table of results

Software development Dancesport

Pair programming Pro-Am category

Project manager or Team Leader Man as a leader

Testing with different inputs Exchanging partners during trainings to
find gaps in knowledge

Retrospective sessions Reviewing competition and practicing
videos

Elimination of waste Choosing and concentrating on one program

Gap Warm-up before each activity to perform
better

Gap Constant work on basic movements, since
they represent the foundation of any
composition

Gap Proper nutrition, so your main instrument -
you body works properly

Gap Proficiency in foundations of the classical
dance as the basis for the proper operation
of all the muscles of the body

The following gap in IT stands in line with sports diets and proper nutrition.
Every professional dancer follows guidelines of healthy nutrition in order to make
their body - the main tool for athletes - to be in a perfect shape and condition
for the maximum performance rate. A possible parallel with proper nutrition
could be solving working day issues on a more serious level. By the working
day issues the features of a field of programming were meant, namely lack of
sleep, especially in start-up project teams, and lack of movement are not just a
stereotype, but a lifestyle that decrease a persons cognitive abilities. In parallel
with dancesport, this gap should be covered with restricting working hours.
While another problem - lack of movement - should be covered with weekly
team sport activities.

Constant work on the basic movements and knowledge of the basis of classical
dance as the basis for the proper functioning of all the muscles of the body are
two remaining features of dancesport that need to be further developed and
validated by specialists.

5 Conclusion

The resulting table with the proposed possibilities of adoption of the best prac-
tises from dancesport lead to the conclusion, that the research questions stated
earlier were successfully answered.

However, the results can be expanded with the help of increasing the number
of study participants, expanding the list of questions, as well as more detailed

Learning Agility from Dancers – Experience and Lesson Learnt 119

adaptation of the knowledge gained in the field of computer science, also con-
centrating in specific aspects with more “destructured” organizations, like open
source development [11], mobile development [9,24], and internet-based devel-
opment [19]. In addition, for the further work it is possible to go deeper into
biological aspect of the problem - the analysis of the brain reactions during spe-
cial activities and tasks, related to the profession. According to this comparison
it is possible to analyze the brain areas, used to accomplish different tasks. For
example, compare impulses during dance classes, perform a learned composition
and implement the algorithm just explained. In case of successful experiments,
the foundation for a discussion about productivity, attention, etc. can be built.

The remaining part of the study - validation of proposed activities based of
dancesport best practices will also improve usability of this study. It can be done
with the help of significant amount of software specialists from local Innopolis
companies to build reliable statistics. After that the most promising and suitable
options should be chosen.

Acknowledgments. We thank Innopolis University for generously funding this
research.

References

1. The meeting of software engineering and dancing, January 2012
2. Glowing Coding and Choreography (2013). Accessed 27 June 2018
3. Agile dancing. scrum training. is it even possible?, December 2017. Accessed 28

June 2018
4. Auslander, P.: Liveness: Performance in a mediatized culture (2008)
5. Boyle, M.S.: Play with authority!: radical performance and performative irony. In:

Cultural Activism, pp. 199–217 (2011)
6. Christopher Alexander, M.S., Ishikawa, S.: A pattern language (1977)
7. Cockburn, D.A.: Heart of agile
8. Coman, I.D., Sillitti, A., Succi, G.: Investigating the usefulness of pair-

programming in a mature agile team. In: Abrahamsson, P., Baskerville, R., Conboy,
K., Fitzgerald, B., Morgan, L., Wang, X. (eds.) XP 2008. LNBIP, vol. 9, pp. 127–
136. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68255-4 13

9. Corral, L., Georgiev, A.B., Sillitti, A., Succi, G.: A method for characterizing
energy consumption in Android smartphones. In: 2nd International Workshop on
Green and Sustainable Software (GREENS 2013), pp. 38–45. IEEE, May 2013

10. Daily, S.B., Leonard, A.E., Jörg, S., Babu, S., Gundersen, K., Parmar, D.: Embody-
ing computational thinking: initial design of an emerging technological learning
tool. Technol. Knowl. Learn. 20(1), 79–84 (2014)

11. Di Bella, E., Sillitti, A., Succi, G.: A multivariate classification of open source
developers. Inf. Sci. 221, 72–83 (2013)

12. Dillon, L.K., Dobbins, A., Owen, C., Evjen, M., Kanouse, D., Sallak, W., Willcuts,
B.: Dancing computer (2015). Accessed 28 Oct 2018

13. Fauconnier, G., Turner, M.: The way we think: Conceptual blending and the mind’s
hidden complexities, May 2003. Accessed 28 June 2018

https://doi.org/10.1007/978-3-540-68255-4_13

120 I. Erofeeva et al.

14. Fronza, I., Sillitti, A., Succi, G.: An interpretation of the results of the analysis
of pair programming during novices integration in a team. In: Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 2009, pp. 225–235. IEEE Computer Society (2009)

15. Janes, A., Succi, G.: Lean Software Development in Action. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-00503-9

16. Laurel, B.: Computers as theatre, September 2014
17. Lee, C.: Learning to code is just like learning to dance, May 2018. Accessed 28 Oct

2018
18. Mashiko, Y., Basili, V.R.: Using the GQM paradigm to investigate influential fac-

tors for software process improvement. J. Syst. Softw. 36(1), 17–32 (1997)
19. Maurer, F., Succi, G., Holz, H., Kötting, B., Goldmann, S., Dellen, B.: Software

process support over the internet. In: Proceedings of the 21st International Con-
ference on Software Engineering, ICSE 1999, pp. 642–645. ACM, May 1999

20. Sedgwick, E.K., Parker, A.: Performativity and Performance. Routledge, London
(2013)

21. Ravipati, S.: Students learn computer programming skills through dance, February
2016

22. Rosner, F.: Explain agile like i’m a sports student (2018)
23. Rubin, K.S.: Essential scrum: A practical guide to the most popular agile process

(2012). Accessed 27 June 2018
24. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an archi-

tecture. J. Syst. Architect. 50(7), 393–405 (2004)

https://doi.org/10.1007/978-3-642-00503-9

Development and Operation of Trustworthy
Smart IoT Systems: The ENACT Framework

Nicolas Ferry1(B), Jacek Dominiak4, Anne Gallon3, Elena González4, Eider Iturbe6,
Stéphane Lavirotte2, Saturnino Martinez6, Andreas Metzger5, Victor Muntés-Mulero4,

Phu H. Nguyen1, Alexander Palm5, Angel Rego6, Erkuden Rios6, Diego Riviera7,
Arnor Solberg8, Hui Song1, Jean-Yves Tigli2, and Thierry Winter3

1 SINTEF Digital, Oslo, Norway
{nicolas.ferry,phu.nguyen,hui.song}@sintef.no

2 Université Côte d’Azur, CNRS, I3S, Sophia Antipolis, France
{stephane.lavirotte,jean-yves.tigli}@univ-cotedazur.fr

3 EVIDIAN, Les Clayes-sous-Bois, France
{anne.gallon,thierry.winter}@evidian.com

4 Beawre Digital SL, Barcelona, Spain
{jacek.dominiak,elena.gonzalez,victor.muntes-mulero}@beawre.com

5 Paluno (The Ruhr Institute for Software Technology),
University of Duisburg-Essen, Duisburg, Germany

{andreas.metzger,alexander.palm}@paluno.uni-due.de
6 Fundación Tecnalia Research & Innovation, Derio, Spain

{eider.iturbe,saturnino.martinez,angel.rego,
erkuden.rios}@tecnalia.com

7 Montimage, Paris, France
diego.riviera@montimage.com

8 Tellu IoT AS, Oslo, Norway
arnor.solberg@tellu.no

Abstract. To unleash the full potential of IoT, it is critical to facilitate threation
and operation of trustworthy Smart IoT Systems (SIS). Software development
and delivery of SIS would greatly benefit from DevOps as devices and IoT
services requirements for reliability, quality, security and safety are paramount.
However, DevOps practices are far from widely adopted in the IoT, in particular,
due to a lack of key enabling tools. In last year paper at DevOps’18, we presented
the ENACT research roadmap that identified the critical challenges to enable
DevOps in the realm of trustworthy SIS. In this paper, we present the ENACT
DevOps Framework as our current realization of these methods and tools.

Keywords: DevOps · Internet-of-Things · Trustworthiness

1 Introduction

To fully realize the potential of the IoT, it is important to facilitate the creation and
operation of the next generation IoT systems that we denote as Smart IoT Systems
(SIS). SIS typically need to perform distributed processing and coordinated behaviour
across IoT, edge and cloud infrastructures, manage the closed loop from sensing to
c© Springer Nature Switzerland AG 2020

J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 121–138, 2020.
https://doi.org/10.1007/978-3-030-39306-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_9

122 N. Ferry et al.

actuation, and cope with vast heterogeneity, scalability and dynamicity of IoT systems
and their environments.

Major challenges are to improve the efficiency and the collaboration between oper-
ation and development teams for the rapid and agile design and evolution of the system.
To address these challenges, the ENACT H2020 project [7] embraces the DevOps app-
roach and principles. DevOps [10] has recently emerged as a software development
practice that encourages developers to continuously patch, update, or bring new fea-
tures to the system under operation without sacrificing quality. Software development
and delivery of SIS would greatly benefit from DevOps as devices and IoT services
requirements for reliability, quality, security and safety are paramount. However, even
if DevOps is not bound to any application domain, many challenges appear when the
IoT intersects with DevOps. As a result, DevOps practices are far from widely adopted
in the IoT, in particular, due to a lack of key enabling tools [13,19].

Current DevOps solutions typically lack mechanisms for continuous quality assur-
ance [13], e.g., mechanisms to ensure end-to-end security and privacy as well as mech-
anisms able to take into consideration open context and actuation conflicts (e.g., allow-
ing continuous testing of IoT systems within emulated and simulated infrastructures). It
also remains challenging to perform continuous deployment and evolution of IoT sys-
tems across IoT, edge, and cloud spaces [13]. Our recent systematic studies have found
a lack of addressing trustworthiness aspects in the current IoT deployment and orches-
tration approaches [14,15]. These are key features to provide DevOps for trustworthy
SIS.

To address this issue, ENACT will deliver a set of tools for the DevOps of trust-
worthy SIS. In our former paper [7], we presented the ENACT research roadmap that
identified the critical challenges to enable DevOps in the realm of trustworthy SIS. We
also introduced the related contribution of the ENACT project and an evolution of the
DevOps methods and tools to address these challenges. In this paper, we aim at pre-
senting the ENACT DevOps Framework as our current realization of these methods
and tools.

The remainder of this paper is organized as follows. Section 2 presents the overall
architecture of the ENACT DevOps Framework, including its architecture and details
about the different tools that form this framework. Section 3 exemplifies how they can
be used all together to develop and operate trustworthy SIS. Section 4 details how trust-
worthiness is used as a driver for feedback between Ops and Dev activities. Section 5
summarizes the list of models shared between all the ENACT tools. Finally, Sect. 6
presents related works and Sect. 7 concludes.

2 The ENACT Approach

The ENACT DevOps approach is to evolve DevOps methods and techniques to sup-
port the development and operation of smart IoT systems, which (i) are distributed, (ii)
involve sensors and actuators and (iii) need to be trustworthy (i.e., trustworthiness refers
to the preservation of security, privacy, reliability, resilience, and safety [9]).

Development and Operation of Trustworthy Smart IoT Systems 123

2.1 Conceptual Architecture of the ENACT DevOps Framework

ENACT provides an integrated DevOps Framework composed of a set of loosely cou-
pled tools. Still, these tools can be seamlessly combined, and they can easily integrate
with existing IoT platform services and enablers. Figure 1 shows the set of tools that
forms the ENACT DevOps Framework as well as the relationships between these tools.
This conceptual architecture consists of five layers, where each layer denotes a particu-
lar level of abstraction, complexity and dynamicity.

Fig. 1. The ENACT overall architecture

From the most abstract to the most concrete (i.e., from the farthest to the closest to
the running system), the layers are described as follows:

1. Evolution & Adaptation Improvement Layer: This layer provides the mecha-
nisms to continuously improve and manage the development and operation pro-
cesses of trustworthy SIS. On the one hand, the Risk Management tool helps organi-
zations to analyze the architecture of their Smart IoT Systems and detecting potential
vulnerabilities and the associated risk (in particular related to security and privacy
aspects) and propose related mitigation actions. Risk management tools typically
relates to the Plan stage in the DevOps process. However, in ENACT we will extend
the scope to provide continuous risk management. On the other hand, the Online
Learning tool focuses on improving the behaviour of the adaptation engine that will
support the operation of trustworthy SIS. This tool typically relates to the Operate
stage of the DevOps process. In general, the improvement layer provides feedback
and knowledge to all the other DevOps stages with the aim to improve the develop-
ment and operation of trustworthy SIS. Thus, in this architecture, information from
this layer are provided to the evolution and adaptation management layer with the
aim to improve it.

124 N. Ferry et al.

2. Evolution & Adaptation Management Layer: This layer first embeds a set of edi-
tors to specify the behaviours as well as the orchestration and deployment of SIS
across IoT, Edge and Cloud infrastructure. These editors integrate with mechanisms
to maximize and control the trustworthiness of the system. All together, these com-
ponents cover activities in both the Dev and Ops parts of a DevOps process and in
particular to the code, build and operate stages. The activities performed at this layer
are strongly affected by the inputs from the improvement layer.

3. Evolution & Adaptation Enactment Layer: This layer bridges the gap between
development and operation as its goal is to enact the deployment and adaptation
actions decided at the Evolution & Adaptation Management Layer. The mechanisms
of this layer monitor and manage the deployment of the running system.

4. Environment Layer: This layer consists of the running system together with the
environment and infrastructure in which it executes. This includes both production
and testing environments.

5. Monitoring and Analytics Layer: This layer is orthogonal and feeds the other four.
The tools at this layer are supporting the monitoring stage of the DevOps process
and typically aim at providing feedback from Ops to Dev. More precisely, this layer
provides mechanisms to monitor the status of the system and of its environment.
This includes mechanisms to monitor the security and privacy of a SIS. In addi-
tion, it performs analytic tasks providing: (i) high level notifications with insights on
ongoing security issues, (ii) diagnostics and recommendations on system’s failures,
and (iii) feedback on the behavioural drift of SIS (i.e., system is functioning but not
delivering the expected behaviour).

2.2 Evolution and Adaptation Improvement Layer

The improvement layer consists of two tools: (i) the Risk Management tool and (ii) the
Online Learning tool.

Risk Management: The Risk Management tool provides concepts and tools for the
agile, context-aware, and risk-driven decision support and mechanisms for application
developers and operators to support the continuous delivery of trustworthy SIS. The
approach is an evolution of the MUSA Risks management tool [17] that focused secu-
rity for cloud-based systems. The extension comes with the ability to define IoT-related
risks, both by selecting predefined risks stored in a catalogue or allowing users to define
them. It also allows for the assessment of such risks. The Risk Management tool inte-
grates with the DevOps cycle to continuously monitor the risk mitigation status through
evidences collectors and, thus, enable continuous risk management. The Risk Manage-
ment tool consumes as input a catalogue of risk treatments, catalogues of security and
privacy controls, and an orchestration and deployment model. It produces as output a
risk management plan, which includes a set of risk treatment suggestions, and contin-
uous information about the status of the implementation of the different treatments, as
well as the effectiveness of these treatments when this information is available.

Online Learning: The Online Learning tool supports a system in the way it adapts
itself. Adaptation helps a system to maintain its quality requirements in the presence

Development and Operation of Trustworthy Smart IoT Systems 125

of environment changes. To develop an adaptive system, developers need an intricate
understanding of the system implementation and its environment, and how adaptation
impacts system quality. However, due to design-time uncertainty, anticipating all poten-
tial environment changes at design-time is in most cases infeasible. Online learning
facilitates addressing design-time uncertainty. By observing the system and its environ-
ment at run-time, online learning can automatically refine a system’s adaptation capabil-
ities. One of the most widely used online learning techniques is reinforcement learning,
which can learn the effectiveness of adaptation actions through interactions with the
system’s environment. All existing reinforcement learning approaches use value-based
reinforcement learning, which are not able to cope with large, continuous environment
states (cf. Sect. 6). To address this issue we instead realize our Online Learning tool, we
employ policy-based reinforcement learning, a fundamentally different reinforcement
learning technique. In a further state the tool should be able to take behavioural drift
information as an input to trigger new learning phases. At this state the online learning
tool consumes information about the current environment state of the system to adapt,
and attributes of the system that can be used to compute a reward to evaluate the cur-
rent parameter setting. It then produces a new parameter setting which can be applied
to the system, so that a new time-step in the underlying sequential decision problem is
reached.

2.3 Evolution and Adaptation Management Layer

The evolution and adaptation management layer is composed of two main groups of
tools: (i) the editors and (ii) the trustworthiness controls.

The editors are meant to support DevOps engineers in specifying the behaviour and
deployment of SIS. This includes:

ThingML: ThingML [12] is an open source IoT framework that includes a language
and a set of generators to support the modelling of system behaviours and their auto-
matic derivation across heterogeneous and distributed devices at the IoT and edge end.
The ThingML code generation framework has been used to generate code in differ-
ent languages, targeting around 10 different target platforms (ranging from tiny 8-bit
microcontrollers to servers) and 10 different communication protocols. ThingML mod-
els can be platform specific, meaning that they can only be used to generate code for
a specific platform (for instance to exploit some specificities of the platform); or they
can be platform independent, meaning that they can be used to generate code in differ-
ent languages. In ENACT, ThingML can be used to specify the behaviour of software
components that will be part of a SIS. As part of ENACT, ThingML is extended with
mechanisms to monitor and debug the execution flow of a ThingML program. Follow-
ing the ThingML philosophy, the proposed monitoring mechanism is platform indepen-
dent, meaning that the concepts monitored at the target program execution are refined
as ThingML concepts. The ThingML run-time consumes as input ThingML programs
and produces as output an implementation of an application component.

GeneSIS: GeneSIS [6] is a tool to support the continuous orchestration and deployment
of SIS, allowing decentralized processing across heterogeneous IoT, edge, and cloud

126 N. Ferry et al.

infrastructures. GeneSIS includes: (i) a domain-specific modelling language to model
the orchestration and deployment of SIS; and (ii) an execution engine that supports the
orchestration of IoT, edge, and cloud services as well as their automatic deployment
across IoT, edge, and cloud infrastructure resources. GeneSIS is being built as part
of ENACT and inspires from CloudML [4], a tool for the deployment of multi-cloud
systems. GeneSIS will also embed the necessary concepts (both in the language and in
the execution engine) to support the deployment of security and privacy controls [5] and
monitoring mechanisms as well as for the deployment of actuation conflict managers.
Finally, GeneSIS will offer specific mechanisms to support the deployment of ThingML
programs. The GeneSIS execution engine consumes as inputs deployable artefacts (i.e.,
implementation of application components that need to be allocated on host services
and infrastructure) and a GeneSIS deployment model. It produces as output a GeneSIS
deployment model with run-time information (e.g., IP addresses), notifications about
the status of a deployed system, and actually deploys the SIS.

Actuation Conflict Manager: The Actuation Conflict Manager tool supports the iden-
tification, analysis and resolution of actuation conflicts. The identification of actuation
conflicts is done during development and thus relies on the overall architecture of the
SIS. It consists in identifying concurrent accesses to the same actuator or actuators
interacting through a shared physical environment. The analysis of the conflicts con-
sists in understanding the flow of data coming to the actuators. This includes under-
standing where the data originated from as well as the path it followed (i.e., through
which components) before reaching the actuator. The conflict resolution will provide
DevOps engineers with the ability to either (i) select an off-the-shelf actuation conflict
manager or (ii) design their own actuation conflict manager with safety requirements.
Finally, the actuation conflict manager tool will support the integration of the actuation
conflict manager into the SIS. The Actuation Conflict Manager consumes, as input, an
orchestration and deployment model and produces and provides, as output, an actua-
tion conflict manager together with a new orchestration and deployment model (that
includes the actuation conflict manager).

The trustworthiness control tools are meant to ensure the trustworthiness of a SIS.
This includes:

Diversifier: At development time, the Diversifier consumes as input a GeneSIS deploy-
ment model or a ThingML behaviour specification and produces as output multiple
diverse specifications. At the current stage, the architecture diversification is focused
on diversifying the composition of reusable blocks, and the code (behaviour) diversifier
is focused on the diversification of communication protocols. At run-time, the diversi-
fier aims at managing a large and dynamic number of sub-systems with emerging and
injected diversity, in order to achieve the robustness and resilience of the entire system.
In short, it monitors and records the diversity among subsystems, managing the lifecy-
cles of these subsystems, and controls the upgrading, deployment and modification of
software components on these subsystems.

Security and Privacy controls: Security and Privacy control tool is a set of multi-
ple mechanisms that, in a complementary way, can provide security and/or privacy to

Development and Operation of Trustworthy Smart IoT Systems 127

different elements of a SIS. It will provide security controls embedded in the IoT plat-
form related to integrity, non-repudiation and access control. Moreover, the commu-
nications sent through the IoT platform can be stopped based on specific pre-defined
rules related to the behaviour of the SIS. The tool will be further enhanced with a Secu-
rity and Privacy Control Manager that can enable, disable and configure the controls
provided within the Security and Privacy control tool.

Context-Aware Access Control: The Context-Aware Access Control tool is a solu-
tion for dynamic authorization based on context for both IT and OT (operational tech-
nologies) domains. In particular, this tool provides Context-aware risk and trust-based
dynamic authorization mechanisms ensuring (i) that an authenticated IoT node accesses
only what it is authorized to and (ii) that an IoT node can only be accessed by authorized
software components. Access authorizations will be adapted according to contextual
information. Context may be for instance the date and time an access authorization is
requested, the geolocation of this request, or it can be dynamic attributes coming from
other external sources (sensors, other applications, etc.). The Context-Aware Access
Control tool consumes as inputs rules for contextual adaptation and access control poli-
cies.

2.4 Evolution and Adaptation Enactment Layer

The adaptation enactment layer basically consists of the GeneSIS execution environ-
ment. From a deployment model specified using the GENESIS Modelling language, the
GENESIS execution environment is responsible for: (i) deploying the software compo-
nents, (ii) ensuring communication between them, (iii) provisioning cloud resources,
and (iv) monitoring the status of the deployment. The GENESIS deployment engine
implements the Models@Run-time pattern [2] to support the dynamic adaptation of a
deployment with minimal impact on the running system. It provides the other tools with
interface to dynamically adapt the orchestration and deployment of a SIS.

2.5 System Layer

In addition to the running system, this layer encompasses the test and simulation tool.

Test and simulation: Test and simulation tool provides concepts and tools for running
application scenarios against the set of programmed circumstances. The tool-set is aim-
ing to provide a baseline for performance, resilience testing as well as risk management
testing. It does replicate the behaviour of previously observed devices and is able to
play back the sensors data against the programmed scenarios. The tool consumes the
treatments from the risk management group and produces the report for the outputs of
the scenarios.

2.6 Monitoring and Analytics Layer

The monitoring and analytics layer is composed of three tools: (i) the Security and
Privacy Monitoring tool, (ii) the Root Cause Analysis tool, and (iii) the Behavioural
Drift Analysis tool.

128 N. Ferry et al.

Security and Privacy Monitoring: The Security and Privacy Monitoring tool allows the
IoT application operator to monitor the security and privacy status of the IoT system
at different layers. The tool will capture and analyse data from multiple and heteroge-
neous sources such as raw data from network, system and application layers, as well as
events from security monitoring components such as intrusion prevention and intrusion
detection systems (IPS/IDS). All the data will be processed and displayed in a common
dashboard, which includes processed information in the form of alerts, statistics and
graphs. This information will be further enhanced with a standardized classification of
security events (such as MITRE ATT&CK) and candidate security controls that can
mitigate the detected potential threat.

Root Cause Analysis: The main objective of the Root Cause Analysis (RCA) module
is to provide the ENACT platform with a reliable tool capable of detecting the origin
of failures on the system. This engine relies on both instrumentation of the software
(logs generation or specific instrumentation software) and monitoring of the devices
and network. The RCA tool will use these data as the principal input to generate a
graph of the system, which will be used to identify the scope of the detected anomalies.
Later, the graph that represents the potential impact of the anomalies will be matched
against a previously-assessed anomalies database, whose Root Cause is already known.
This process will be further enhanced with feedback from the system administrator, who
will be able to decide which is the best match for the anomaly detected. The feedback
received from the user (the correct and erroneous matches) will be used by the RCA
module to adjust its calculation and learn from the context of the system.

Behavioural Drift Analysis: The objective of the Behavioural Drift Analysis tool is to
detect whenever a SIS derives (during operation) from its expected behaviour (at devel-
opment time) and to provide the DevOps engineer with comprehensible representations
and models of the drifting behaviour. The drift is measured via a set of probes and
sensors that monitors the behaviour of the SIS and by comparing what is observed to
the behaviour modelled during development. The DevOps engineer has thus access to
a dashboard with representations that aim at facilitating drifts diagnostic by displaying
metrics and drifting behaviour models. The Behavioural Drift Analysis tool consumes,
as input, a behavioural model of the SIS as well as implementations of the monitoring
probes. It produces, as output, measurements describing behavioural drifts as well as a
behavioural model updated based on run-time observations.

3 An Example of the ENACT Workflow

Figure 2 depicts an example of workflow between the ENACT development tools.
First, a DevOps engineer can use GeneSIS (aka., the orchestration and deployment

tool) to specify the overall architecture of a SIS (1©). This model can thus serve as
input for the Risk Management tool, which will help conducting a risk analysis and
assessment and may result in a set of mitigation actions, for instance advocating the
use of a specific set of security mechanisms (2©). As a result, the DevOps engineer
may update the model describing the architecture of the SIS before its refinement into a

Development and Operation of Trustworthy Smart IoT Systems 129

Fig. 2. The ENACT development toolkit

proper deployment model. The DevOps engineer might also use ThingML to implement
some of the software components that should be deployed as part of the SIS (3©). At
this stage, the Actuation Conflict Manager enabler can be used to identify actuation
conflicts – e.g., concurrent accesses to an actuator (4©). This enabler will support the
DevOps engineer in either selecting or designing an actuation conflict manager to be
deployed as part of the SIS (typically as a proxy managing the accesses to the actuator).
Finally, the SIS can be simulated and tested, in particular against security threats and
scalability issues (5©) before being sent to GeneSIS for deployment.

As depicted in Fig. 3, before deployment, the DevOps engineer may use the Diver-
sifier to increase the overall robustness of the system (6©). This tool can generate dif-
ferent variants, but still functionally equivalent, of the components of the SIS (e.g., dif-
ferent versions of the software components are deployed making the overall SIS more
robust to security and privacy attacks). After diversification, the SIS can be deployed
using GeneSIS. Once the SIS in operation, a set of ENACT tools are responsible for
its run-time monitoring and control. Monitoring tools are depicted on the right part
of Fig. 3 (7©). First, the Behavioural Drift Analysis tool can be used to understand to
which extent a SIS behaves (in the real world) as expected (during development). This
is important as a SIS typically operates in the midst of the unpredictable physical world
and thus all the situations it may face at run-time may not have been fully understood
or anticipated during development. Second, the Security and Privacy monitoring tool
can be used to identify security and privacy breaches. Third, in case of failure, the Root
Cause Analysis tool provides DevOps teams with insights on the origin of that failure.
Control tools are depicted on the left part of Fig. 3. First, the Context-aware Access
Control tool can be used to manage accesses from services to sensors and actuators and
the other way around (8©). Accesses can be granted or removed based on context infor-
mation. Finally, the Online Learning enabler uses reinforcement learning techniques to
enhance the adaptation logic embedded into a SIS (9©).

130 N. Ferry et al.

Fig. 3. The ENACT operation toolkit

4 Trustworthiness as a Driver for Feedback Between Ops and Dev

One of the core values of DevOps is to improve synergies and communications between
development and operation activities. When software is in production it often produces
a plethora of data that ranges from logs to high level indicators (e.g., performance indi-
cators, context monitoring). All these data gathered at run-time can serve as valuable
feedback [3] from operation to development and, in particular, it can serve to evolve
and improve the SIS by triggering a new development cycle. Some of the challenges
are thus to properly integrate development and operation tools and to seamlessly inte-
grate feedbacks from run-time into development tools. In this section, we illustrate how
we address this challenge in the project.

In the context of ENACT, one of the main drivers for triggering a new development
cycle of a SIS on the basis of observations from operation is to improve its trustwor-
thiness, and in particular its security, privacy, resilience, reliability and safety. In the
following (see Fig. 4) we illustrate how security and privacy run-time information can
be used to continuously assess risk and can, in turn, lead to an evolution of a SIS.

First, a DevOps engineer can use GeneSIS (aka., the orchestration and deployment
tool) to specify the overall architecture of a SIS. The resulting deployment model can be
sent to the Risk Management enabler. The latter is thus used to perform a risk assess-
ment that will result in a set of risk treatment suggestions. A risk treatment can be a
procedure to follow in order to mitigate a risk or simply a recommendation to use a
specific software solution or mechanism (e.g., a security control solution such as the
Context-Aware Access Control). It is worth noting that a procedure can also include

Development and Operation of Trustworthy Smart IoT Systems 131

Fig. 4. Continuous risk management

a recommendation for using a specific software solution or mechanism. These recom-
mendations are typically linked to concrete implementations of the solution or mech-
anisms. In particular, it can leverage a generic security and privacy controls catalogue
that includes state of the art security and privacy solutions or the ENACT security and
privacy controls catalogue (i.e., the controls implemented in ENACT). It is worth not-
ing that by security and privacy controls we not only refer to mechanisms to implement
security or privacy measures but also to mechanisms to monitor security and privacy.
The Risk Management enabler embeds a catalogue of risk treatments and can be used
to specify and add new ones into the catalogue. From the risk treatment suggestions, the
DevOps engineer may decide to evolve its deployment model specifying that specific
security and privacy controls (whose implementation is indicated in the suggestion and
depicted in Fig. 4 as the green icons) should be deployed together with the SIS. After
deployment, GeneSIS monitors the status of the deployment whilst the Security and
Privacy controls enablers gather security and privacy data from the probes deployed
together with the systems. Both tools send some of the gathered metrics to the Risk
Management enablers. These metrics are associated to the risk models and used to con-
tinuously assess risk.

In the following (see Fig. 5), we illustrate how run-time information from the root
cause analysis and behavioural drift analysis enablers can be used to improve the
resilience, reliability and safety of a SIS.

The Behavioural drift analysis tool aims at observing the actual behaviour of a SIS at
run-time and at comparing it with the behaviour that was expected at development time.
One result of the comparison is a value called: behavioural drift metric. A behavioural
drift may result from a problem in the conception of the SIS, an indirect actuation con-
flict (e.g., applications are properly design but their actions on the physical environment
are somehow conflicting) or an unexpected reaction of the surrounding physical envi-
ronment. Because it is difficult for a DevOps engineer to understand and take actions
simply on the basis of a behavioural drift metric, the tool performs an analysis of this

132 N. Ferry et al.

Fig. 5. Continuous improvement of resilience, reliability, and safety

drift, which consists in comparing the model of the expected system’s behaviour and the
observed one on the basis of what is actually happening at run-time (e.g., the behaviour
model is no more deterministic, some probabilities of transitions between states can
increase from zero and others can decrease from one). In case a behavioural drift is
observed, the tool will provide the DevOps engineer with the analysis, the latter can in
turn adapt the SIS via GeneSIS.

The Root cause analysis tool will observe the execution of the system and, in case
of failures, report on its origin. Such report will be provided to the DevOps engineer,
who can in turn adapt the SIS via GeneSIS or perform a new risk assessment.

5 Shared Models and Artefacts

The ENACT Framework tools manipulate and exchange different types of models and
software artefacts as illustrated in Fig. 6. Models are represented as rectangles whilst
software artefacts (i.e., binaries, scripts, etc. which are generated from or are part of a
tool, and used or managed by another) are depicted by circles. A model is embedded in
a tool when it is directly used in the internal of the tool.

It is worth noting that the GeneSIS and ThingML models are the most reused
amongst the tools. This is because they are the key models specifying the architec-
ture and behavior of a SIS whilst the other are mainly used to manage trustworthiness
aspects of the SIS. In the following we shortly describe each model:

• GeneSIS deployment Model: is written in a domain-specific modelling language
to specify deployment model – i.e., the orchestration and deployment of SIS across
the IoT, edge, and cloud spaces.

• ThingMLModel: is written in a domain specific modelling language to specify the
behavior of distributed software components.

Development and Operation of Trustworthy Smart IoT Systems 133

Fig. 6. Models manipulated and exchanged in the ENACT framework

• Workflow and Interaction Model for Actuation Conflict Model: describes the
interactions between the software components that form a SIS and their relation-
ship with actuators, thus, supporting the identification of both direct and indirect
actuation conflict.

• Risk and Treatment Model: describes risk and treatment suggestions.
• ACM Strategy: takes the form of a set of extended ECA rules describing the behav-

ior of a custom actuation conflict manager.
• Context and Behavioural Drift: can be used to describe the SIS operational context

and to describe its observed behavior (compared to the expected one).
• Access Control Policy: is a set of rules that define whether a user or device must be

permitted or denied accessing to a resource.
• Context Data for Access Control: provides contextual data on a user and his

devices. These data are dynamic attributes and come from other external sources.
• Diversity Control Model: a model maintained at run-time that reflects the status in

term of deployment, software version and health of a fleet of IoT systems or sub-
systems.

• State and Action Space: for the online learning tool, the state space represents dif-
ferent environment situations, while the action space represents the different actions
the online learning tool may execute to improve the adaptation logic of the Smart
IoT system.

• Anomalies Pattern: is used to describe a set of patterns, which will be the baselines
for the RCA enabler to check the existence of anomalies and maps them to their
Root Cause.

• RCA System Graph: is a snapshot of the current status (e.g., network activity, sys-
tem logs, detected anomalies) of the monitored system.

• Security and Privacy Control Status: provides information about the status of the
security and privacy mechanisms used in the SIS. It is used to understand the current
status of the risk but also the progression of the treatment.

134 N. Ferry et al.

In the following we shortly describes each software artefact:

• Security and Privacy Monitoring Probes: are deployed together with the SIS with
the aim to monitor the status of specific security and privacy aspects. There are
probes at the network, application, and system levels.

• Root Cause Analysis Probes: retrieve information from the logs generated by the
devices on the IoT System, but they will also be able to interact with hardware-based
probes (such as the MMT-IoT Sniffer) and software-based solutions (such as Snort
and Suricata).

• Actuation Conflict Managers: are deployed together with the SIS and are respon-
sible for managing the accesses to conflicting actuators (direct or indirect). All
accesses to the actuators should go via the actuation conflict manager. Actuation
conflict managers are either provided off-the-shelf or can be designed for a specific
type of conflict.

• Security and Privacy Controls: are implementations of security and privacy mech-
anisms to be deployed together with the SIS.

• Context Monitoring Probes: are monitoring the context of a SIS. They are
deployed together with the SIS and are, in particular, used by the behavioral drift
analyzers.

• Device Data Streams: are records of devices outputs and inputs used by the test and
simulation tool to replay devices behavior.

• Behavioral Drift Analyzers: are software components generated by the Behavioral
drift analysis tool. They are responsible for analysing a specific behavior of a SIS.
Multiple Behavioral Drift Analyzers can be deployed together with the SIS.

6 Related Work

For some years now, multiple tools and solutions have emerged to support the DevOps
of software systems and in particular to automate their testing, build, deployment and
monitoring. However, to the best of our knowledge, there is no DevOps support tailored
for smart IoT systems today [13,19]. According to [19] a key reason is: “the extremely
dynamic nature of IoT systems poses additional challenges, for instance, continuous
debugging and testing of IoT systems can be very challenging because of the large
number of devices, dynamic topologies, unreliable connectivity, and heterogeneous and
sometimes invisible nature of the devices”. In the following we discuss related work for
both the development and operation of SIS.

Continuous Development of SIS: The survey in [14] illustrates a lack of approaches
and tools specifically designed for supporting the continuous deployment of software
systems over IoT, edge, and cloud infrastructure. For example, several solutions are
available on the market for the deployment of cloud-based systems such as CloudMF
[4], OpenTOSCA [18], Cloudify1, and Brooklyn2. Those are tailored to provision and
manage virtual machines or PaaS solutions. In addition, similar tools focus on the

1 http://cloudify.co/.
2 https://brooklyn.apache.org.

http://cloudify.co/
https://brooklyn.apache.org

Development and Operation of Trustworthy Smart IoT Systems 135

management and orchestration of containers, e.g., Docker Compose3, Kubernetes4.
Opposed to hypervisor virtual machines, containers such as Docker containers leverage
lightweight virtualization technology, which executes directly on the operating system
of the host. As a result, Docker shares and exploits a lot of the resources offered by
the operating system thus reducing containers’ footprint. Thanks to these characteris-
tics, container technologies are not only relevant for cloud infrastructure but can also
be used on edge devices. On the other side, few tools such as Resin.io and ioFog are
specifically designed for the IoT. In particular, Resin.io provides mechanisms for (i) the
automated deployment of code on devices, (ii) the management of a fleet of devices,
and (iii) the monitoring of the status of these devices. Resin.io supports the follow-
ing continuous deployment process. Once the code for the software component to be
deployed is pushed to the Git server of the Resin.io cloud, it is built in an environment
that matches the targeted hosting device(s) (e.g., ARMv6 for a Raspberry Pi) and a
Docker image is created before being deployed on the target hosting device(s). How-
ever, Resin.io offers limited support for the deployment and management of software
components on tiny devices that cannot host containers. The same applies to Microsoft
IoT Hub5.

In addition, the survey in [14] also highlights that very few primary IoT deployment
studies address (i) security and privacy aspects, and (ii) the management of actuators
(and actuation conflict). Even if no DevOps solutions for IoT systems embed specific
mechanisms for the management of actuation conflicts, the core of this challenge relates
to the generic problem of managing features interactions. Indeed, when a global func-
tionality is obtained from a set of shared features, there is a risk for unintended and
undesirable interactions between the features. However, because current work on this
topic do not focus on the IoT application domain, they encompass the following weak-
nesses. They give a low degree of importance to (i) the modelling of the physical envi-
ronment as part of the conflicts identification process, and (ii) to reusability, scalability
and dynamicity as part of the resolution process.

Similarly, there is a lack of risk analysis methodologies that are adapted to agile
contexts but still achieve the level of analysis and detail provided by traditional risk
assessment and mitigation techniques, in particular related to NFRs. Fitzgerald et al. [8]
illustrate how Lean Thinking [20] can be applied to continuous software engineering.
Authors even go beyond software development and consider issues such as continuous
use, continuous trust, etc., coining the term “Continuous” (Continuous Star). However,
they do not explicitly tackle challenges related to continuous risk management.

Continuous Operation of SIS: By observing the system and its environment at run-
time, online learning can automatically refine a system’s adaptation capabilities. One
of the most widely used online learning techniques is reinforcement learning, which
can learn the effectiveness of adaptation actions through interactions with the system’s
environment. However, so far, all existing reinforcement learning approaches use value-
based reinforcement learning and thus face two key limitations. First, they face the
exploration/exploitation dilemma, which requires developers to fine-tune the amount

3 https://docs.docker.com/compose/.
4 https://kubernetes.io.
5 https://azure.microsoft.com/fr-fr/services/iot-hub/.

https://docs.docker.com/compose/
https://kubernetes.io
https://azure.microsoft.com/fr-fr/services/iot-hub/

136 N. Ferry et al.

of exploration to ensure convergence of the learning process. Second, most approaches
store the learned knowledge in a lookup table, which requires developers to manually
quantify environment states to facilitate scalability. To realize the Inline Learning too,
we thus automate both these manual activities by employing policy-based reinforce-
ment learning, a fundamentally different reinforcement learning technique. Thereby,
our Online Learning tool is able to cope with large, continuous environment states. In a
further state the tool should be able to take behavioural drift information as an input to
trigger new learning phases.

Online learning is meant to be performed at run-time, considering observations
about the physical environment, the state of the system, and so the context. Context-
awareness is key to collect sensor data, to understand it and to provide valuable infor-
mation to reasoning engines. Since the first definition of context [1] a lot of middleware
and software frameworks have emerged. Already in 2014, [16] finds 50 context-aware
solutions in the scientific literature and today lot of well-known approaches are avail-
able [11] to collect sensors and probes data leveraged for modelling various contextual
concerns (location, situation, social environment, etc.). However, SIS pose new chal-
lenges. Indeed, as far as physical things are concerned, no guaranty can be made on
their availability on the long run. The underlying infrastructure of SIS can thus be
volatile. Moreover, the purpose of some of these systems can only be achieved from
interactions with the physical environment through actuators (e.g., Heating, Ventila-
tion and Air-Conditioning controllers). In this context, these systems can possibly be
affected by unanticipated physical processes over which they have no control, leading
their behaviour to potentially drift over time in the best case or to malfunction in the
worst case. As said, many platforms include context awareness and monitoring mecha-
nisms (e.g., SOFIA26, FIWARE7 with the Orion Context Broker for instance). However,
these platforms do not consider behavioural drift monitoring as an awareness criterion.
This is what is addressed by our behavioral drift analysis tool.

7 Conclusion

We presented the ENACT DevOps Framework which offers a set of novel solutions
to address challenges related to the development, operation, and quality assurance of
trustworthy smart IoT systems that need to be distributed across IoT, edge and cloud
infrastructures and involve both sensors and actuators. These enablers are under devel-
opment as part of the ENACT H2020 project and will be delivered as open source
artefacts.

Acknowledgement. The research leading to these results has received funding from the Euro-
pean Commission’s H2020 Programme under grant agreement numbers 780351 (ENACT).

6 https://sofia2.com.
7 https://www.fiware.org.

https://sofia2.com
https://www.fiware.org

Development and Operation of Trustworthy Smart IoT Systems 137

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a bet-
ter understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999.
LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48157-5 29

2. Blair, G., Bencomo, N., France, R.: Models@run.time. IEEE Comput. 42(10), 22–27 (2009).
https://doi.org/10.1109/MC.2009.326

3. Cito, J., Wettinger, J., Lwakatare, L.E., Borg, M., Li, F.: Feedback from operations to soft-
ware development—a devops perspective on runtime metrics and logs. In: Bruel, J.-M.,
Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 184–195. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-06019-0 14

4. Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M., Solberg, A.: CloudMF: model-
driven management of multi-cloud applications. ACM Trans. Internet Technol. (TOIT) 18(2),
16 (2018)

5. Ferry, N., Nguyen, P.H.: Towards model-based continuous deployment of secure IoT sys-
tems. In: 1st International Workshop on DevOps@MODELS (2019)

6. Ferry, N., et al.: Genesis: continuous orchestration and deployment of smart IoT systems.
In: 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC),
vol. 1, pp. 870–875 (2019). https://doi.org/10.1109/COMPSAC.2019.00127

7. Ferry, N., et al.: ENACT: development, operation, and quality assurance of trustworthy smart
IoT systems. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS, vol.
11350, pp. 112–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06019-0 9

8. Fitzgerald, B., Stol, K., O’Sullivan, R., O’Brien, D.: Scaling agile methods to regulated envi-
ronments: an industry case study. In: International Conference on Software Engineering,
ICSE 2013, pp. 863–872. IEEE Press (2013). http://dl.acm.org/citation.cfm?id=2486788.
2486906

9. Griffor, E.R., Greer, C., Wollman, D.A., Burns, M.J.: Framework for cyber-physical systems:
volume 1, overview. Technical report (2017)

10. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation. Addison-Wesley Professional, Boston (2010)

11. Künzler, F., Kramer, J.N., Kowatsch, T.: Efficacy of mobile context-aware notification man-
agement systems: a systematic literature review and meta-analysis. In: 2017 IEEE 13th Inter-
national Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob), pp. 131–138. IEEE (2017)

12. Morin, B., Fleurey, F., Husa, K.E., Barais, O.: A generative middleware for heterogeneous
and distributed services. In: 19th International ACM SIGSOFT Symposium on Component-
Based Software Engineering (CBSE), pp. 107–116. IEEE (2016)

13. NESSI: Software continuum: Recommendations for ICT Work Programme 2018+. Nessi
report (2016)

14. Nguyen, P.H., et al.: Advances in deployment and orchestration approaches for IoT - a sys-
tematic review. In: 2019 IEEE International Congress on Internet of Things (ICIOT), pp.
53–60, July 2019. https://doi.org/10.1109/ICIOT.2019.00021

15. Nguyen, P.H., et al.: The preliminary results of a mapping study of deployment and orches-
tration for IoT. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC 2019, pp. 2040–2043. ACM, New York (2019). https://doi.org/10.1145/3297280.
3297617. http://doi.acm.org/10.1145/3297280.3297617

16. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for
the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2013)

https://doi.org/10.1007/3-540-48157-5_29
https://doi.org/10.1007/3-540-48157-5_29
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1007/978-3-030-06019-0_14
https://doi.org/10.1109/COMPSAC.2019.00127
https://doi.org/10.1007/978-3-030-06019-0_9
http://dl.acm.org/citation.cfm?id=2486788.2486906
http://dl.acm.org/citation.cfm?id=2486788.2486906
https://doi.org/10.1109/ICIOT.2019.00021
https://doi.org/10.1145/3297280.3297617
https://doi.org/10.1145/3297280.3297617
http://doi.acm.org/10.1145/3297280.3297617

138 N. Ferry et al.

17. Rios, E., et al.: Service level agreement-based GDPR compliance and security assurance in
(multi) cloud-based systems. IET Software (2019)

18. da Silva, A.C.F., Breitenbücher, U., Képes, K., Kopp, O., Leymann, F.: OpenTOSCA for
IoT: automating the deployment of IoT applications based on the mosquitto message broker.
In: Proceedings of the 6th International Conference on the Internet of Things, pp. 181–182.
ACM (2016)

19. Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: software challenges
in the IoT era. IEEE Softw. 34(1), 72–80 (2017)

20. Womack, J., Jones, D.: Lean Thinking: Banish Waste and Create Wealth in Your Cor-
poration, Revised and Updated. Free Press (2003). https://books.google.co.uk/books?
id=l8hWAAAAYAAJ

https://books.google.co.uk/books?id=l8hWAAAAYAAJ
https://books.google.co.uk/books?id=l8hWAAAAYAAJ

Towards Modeling Framework
for DevOps: Requirements Derived

from Industry Use Case

Francis Bordeleau1(B), Jordi Cabot2, Juergen Dingel3, Bassem S. Rabil4,
and Patrick Renaud4

1 École de technologie supérieure (ETS), Université du Québec, Quebec City,
Montréal, Canada

francis.bordeleau@etsmtl.ca
2 ICREA – Open University of Catalonia (OUC), Barcelona, Spain

jordi.cabot@icrea.cat
3 Queen’s University, Kingston, Canada

dingel@cs.queensu.ca
4 Kaloom, Quebec, Montréal, Canada
{Bassem.Guendy,pare}@kaloom.com

Abstract. To succeed with the development, deployment, and opera-
tion of the new generation of complex systems, organizations need the
agility to adapt to constantly evolving environments. In this context,
DevOps has emerged as an evolution of the agile approaches. It focuses on
optimizing the flow of activities involved in the creation of end-user value,
from idea to deployed functionality and operating systems. However, in
spite of its popularity, DevOps still lacks proper engineering frameworks
to support continuous improvement. One of our key objectives is to con-
tribute to the development of a DevOps engineering framework composed
of process, methods, and tools. A core part of this framework relates to
the modeling of the different aspects of the DevOps system. To better
understand the requirements of modeling in a DevOps context, we focus
on a Product Build use case provided by an industry partner.

Keywords: DevOps · Modeling · Process

1 Introduction

The complexity of the new generation of systems developed in the context of
digital transformation, cloud, smart technologies, IoT, and 5G brings a set of
important new challenges, both from a technical and a business perspective.
To succeed with the development, deployment, and operation of these systems,
organizations must have the agility to adapt to constantly evolving environments
to deliver solutions faster and solutions that can be adapted to the needs and
environments of the users.

c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 139–151, 2020.
https://doi.org/10.1007/978-3-030-39306-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_10

140 F. Bordeleau et al.

In this new generation of systems, software has replaced hardware as the
main asset and product differentiator. This comes with important new chal-
lenges. Among other things, the success of an organization is now determined
by its agility (business and technical) to provide new software capabilities. The
success of a company directly dependents on its ability to beat its competitors
at the software level, i.e. to develop, deploy, and operate new software capabil-
ities faster and with better quality than its competitors. To achieve this goal,
organizations need to maximize the efficiency of their software development pro-
cess, increase operations efficiency, automate as much as possible, reduce time
required to deploy new software, ensure software quality, allow for the integra-
tion of new technologies both at the process and product level, support product
customization, and enable innovations.

In response to the increasing complexity of developing and managing soft-
ware products, DevOps1 has emerged in the last decade as an evolution of the
agile approaches. It focuses on optimizing the flows of activities involved in the
creation of end user value, from idea to deployed functionality. It extends agile
approaches by integrating aspects like System Operation, Customer Support,
together with Development to enable a more frequent and reliable releases, and
aims at using systematic analysis and automation to improve productivity, pre-
dictability and quality.

1.1 Problem

The overall problem we address in our research program is the lack of engineering
support for organizations to put DevOps into practice in a scalable and sustain-
able manner to achieve continuous improvement. Our main goal is to establish
an engineering framework, based on methods, process and tools, to support the
implementation and evolution of DevOps.

The first problem we address in the development of the DevOps engineer-
ing framework is the lack of modeling techniques and framework that can be
used to capture the different aspects of a DevOps system (see Sect. 2.2 for def-
inition of DevOps System). Without proper models that can be used to under-
stand and analyse the system in a systematic and scientific manner, continuous
improvement becomes an ad hoc journey, and as a result, DevOps and “agility”
much too often means “improvisation”. Thus, to achieve the DevOps vision and
enable continuous improvement, we must first capture the different aspects of
the DevOps system in a set of actionable models that allow understanding, ana-
lyzing, simulating, and automating the DevOps process and its flows.

1 The term “DevOps” was coined by Patrick Debois in 2009 in Belgium by naming
a conference “devopsdays” held in Gent, Belgium. DevOps is at the intersection of
development and operations, and it needs to include both.

Towards Modeling Framework for DevOps 141

1.2 Proposed Approach

In this context, a main research questions is: what type of modeling techniques
and framework do we need to support the continuous improvement of the DevOps
process?

Before we can start investigating and analyzing different modeling techniques,
languages, and methods, we first need to define the set of requirements that must
satisfied. Our approach consists in iteratively building the set of requirements
through the analysis of industrial use cases.

In this paper, we focus on an industrial use case provided by Kaloom2,
an industry partner of our research program. This use case describes differ-
ent aspects of DevOps currently used at Kaloom, including the product build
process, the system architecture, the product planning process, and the product
test process.

1.3 Outline of the Paper

The paper is structured as follows: Sect. 2 provides a discussion on related work,
Sect. 3 describes DevOps at Kaloom, Sect. 4 defines the set of requirements for
the development of the modeling framework, Sect. 5 discusses the future research
work, and Sect. 6 provides a conclusion.

2 Related Work

2.1 Background

DevOps is not a destination; it doesn’t have an end goal. It is a journey, or an
odyssey, that aims at continuous improvement. The three ways of DevOps are
defined in [16] as:

– Flow
– Feedback
– Continuous experimentation and learning

Before starting to do anything, it is essential to see the whole DevOps system
that is happening between development (Dev) and operations (Ops). The term
DevOps System is used in our research context to include the product, the people
involved in the different phases of its development and operations, the process
used to develop and operate the product, and the tools used to support the
different phases of the process.

The DevOps vision requires adopting a holistic approach in which these dif-
ferent constituents (product, people, and process) are considered altogether, as
opposed to looking at them separately in silos. Global improvements can only
be obtained by considering the whole DevOps system, which includes all of its

2 www.kaloom.com.

www.kaloom.com

142 F. Bordeleau et al.

parts. Otherwise, an improvement in one part may be outweighed by a nega-
tive impact on another part. For example, an improvement at the development
level may result in an unacceptable cost increase at the operations level, and
vice-versa.

Once we have the view of the DevOps system, then we need to focus on the
flows to identify the constraint that need to be eliminated to get things moving
faster to production and deployment. At this stage, as soon as we start changing
things, it is necessary to recognize the feedback loops so that we can evaluate the
impact of the changes we are making in the DevOps system (to resolve issues).
We need to be able to identify both positive and negative impacts as early and
often as possible so that we can take actions based on the feedback. Finally,
we need to foster continuous experimentation and learning to enable continuous
improvement as the DevOps system is evolving.

2.2 Current Works on DevOps Modeling

While we believe (also supported by some empirical evidence [21]) that modeling
and model-driven techniques [6] are crucial in the DevOps broad vision sketched
above, modeling support for DevOps is still in its infancy. In fact, we just held
the first International DevOps workshop at Models3.

To the best of our knowledge, there is no standard (or widely accepted) DSLs
or metamodels specific for managing DevOps processes. So far, most attempts
have attempted to reuse Cloud Modeling Languages [5]. In particular, TOSCA
(OASIS Topology and Orchestration Specification for Cloud Applications), as
done, for instance, in [24] or [1]. This can work well for web/cloud applications
but it not easily generalizable to more complex software development processes.

Such a DevOps metamodel should also reuse many of the concepts already
present in the domain of runtime models [4]. As part of this initiative, a large
number of performance, monitoring and deployment (meta)models have been
proposed. An overview of such models and the potential relationships between
them was provided [23].

Some partial proposals to apply modeling to specific parts of the DevOps
process or to specific types of systems could also be useful as inspiration for our
approach. Among them a research roadmap was proposed for enabling DevOPs
in Smart IoT Systems by Ferry et al. [9], where Smart IoT Systems typically
operate in a changing and often unpredictable environment. The ability of these
systems to continuously evolve and adapt to their new environment is deci-
sive to ensure and increase their trustworthiness, quality and user experience.
Garcia-Diaz et al. [11] proposed a prototype to combine continuous integration
practice and the model-driven engineering approach. A quantitative evaluation
was carried out for different types of development strategies. Garcia and Cabot
[10] proposed a stepwise adoption of continuous delivery tools in model-based
processes where the modeling tools and its artefacts would be fully integrated

3 https://ace-design.github.io/devops-at-models/.

https://ace-design.github.io/devops-at-models/

Towards Modeling Framework for DevOps 143

in the build systems. [3] enables the modeling of the trade-offs of alternative
deployment options.

However, as we will discuss in the next sections, just modeling specific aspects
of the DevOps process is not enough. We need modeling support to evaluate,
simulate and explore the potential alternatives by relying on a more unified,
holistic and global perspective of the full DevOps process.

3 Description of DevOps at Kaloom

Kaloom is an emerging company developing a fully automated, programmable
data center networking software solution that will disrupt how cloud and data
center networks are built, managed and operated for enterprises, cloud providers,
gaming companies, data center operators and 5G wireless providers. Kaloom
comprises technology veterans with proven track records of delivering large-scale
networking, analytics and AI-based solutions for the world’s largest networks.
Since its foundation, Kaloom has been working on different aspects of DevOps
challenges for Software Defined Systems, including the current use case focused
on the improvement and reduction of the product build time.

The time required to make a new product build, including microservices build
and packaging, is a critical part of overall product development process. Cur-
rently Kaloom is working on bringing down the product build time using avail-
able tooling and technologies, like build artifact caching, restructuring microser-
vices build, and migrate to more modern go dependency management. Kaloom’s
objective is to reduce product build down to 3 min. Applying state-of-the-art
build tools helped significantly reducing product build time, to about 11 min
(from 90 min at the end of 2018), but it is not sufficient for Kaloom’s objec-
tive. Kaloom is seeking continuous DevOps improvement to remove bottlenecks
by researching different tooling and refining the process for better evolution of
Kaloom product.

3.1 Product Build and Test Process

Figure 1 illustrates the current Kaloom Continuous Integration/Continuous
Deployment (CICD) pipeline based on microservices architecture, where the
product build phase consists of microservices builds and overall product pack-
aging. The developer starts by coding and pushing the Git commit as a
Merge Request (MR) in GitLabTM [12] towards master branch of the concerned
microservice code. The commit push triggers a build on JenkinsTM [14] to com-
pile the change and vote back on the MR; the compilation includes running
unit tests. Then after compilation of the Git commit, static code analysis using
SonarQubeTM [20] scans the change and points out issues, and vote on the
MR. The final stage of the development pipeline consists in running tests of the
microservice both on a simulated environment and a hardware test environment,
and votes back on the MR with test results. Any failure on these stages would
mark the MR to be non-mergeable to master branch until the cause of the failure

144 F. Bordeleau et al.

Fig. 1. Product Build within the Continuous Integration/Continuous Deployment
(CICD) Pipeline

is addressed. Once all development pipeline stages pass, the MR moves to the
review stage where the code is reviewed by peer(s).

After all review comments have been addressed (may require several iter-
ations), the Git commit is merged to microservice master branch and triggers
a build of the product, which includes all microservices. At this stage, every
microservice is mapped to Git sub-module of the super project which consti-
tutes the product. Then, the product is packaged together, with a new build
number assigned, and an initial Quality Level (QL) is set for this product build.
Quality level for product build indicates the testing levels that the build passed.
The higher the quality level for a product build, the more expensive and longer
testing the build passes.

To promote a product build to first Quality Level (QL1), it goes through
integration testing for the overall product on both simulated environment and
multiple types of hardware. The test framework is based on GoDog and Cucum-
ber [13] and test reporting is done using TestRail TM [22]. In parallel with
integration testing the product is baselined and tagged in source code for this
product build number. Release notes are compiled based on the Git commits
included in the product build and then release notes are pushed to Confluence
[8].

Product builds that pass QL1 integration testing are fed into stress and
stability tests which takes up to several weeks to promote the build to higher

Towards Modeling Framework for DevOps 145

Fig. 2. DevOps Agile Epics/Stories/Tasks workflow

quality levels. The quality levels are set as labels/properties of the build in
Artifactory TM [2] where the binaries are stored. A release build is expected to
have sufficient QL before the product is released.

3.2 Product Planning Process

Jira TM [15] is used for tracking Agile DevOps workflow and product planning.
Figure 2 shows the workflow to breakdown product roadmap features into prod-
uct releases. Figure 3 illustrates the release cycle, where each release is divided
into four sprints and each sprint duration is 3 weeks. In these sprints both devel-
opment and System Integration Verification/Validation (SIV&V) are working
towards the target release. An SIV&V team is responsible for developing auto-
mated test framework and integration test cases, while development team is
responsible for developing both unit tests and microservice feature tests. CICD

Fig. 3. Agile release cycles

146 F. Bordeleau et al.

Pipeline and tools are maintained and developed by CICD team. Each team has
peer code review within the team by subject expert.

4 Requirements for Process Modeling Languages
for DevOps

In this section, we define a set DevOps modeling framework requirements based
on the different Kaloom DevOps aspects described in Sect. 3. It is expected that
this set of requirements will evolve/grow as we continue to work on other aspects
of DevOps at Kaloom, start investigating similar use cases with other industry
partners, and broaden the scope to additional use cases.

In this paper, we focus on three requirement categories: general requirements,
description requirements, and analysis/simulation requirements.

4.1 General Requirements

As a starting point, the DevOps modeling framework must satisfy a set of gen-
eral requirements that are associated with the modeling of complex systems.
Some of these requirements are common to the modeling needs of any complex
environment (e.g. support for modeling at different abstraction levels, definition
of mapping relationships between the partial models, etc.), but we would like
to emphasize the following requirements that are key for the development of an
industrial DevOps-specific modeling framework.

– RG1- Support for the modeling of different aspects – As described
in the Kaloom use case, the overall DevOps system includes many different
aspects, e.g. product build, system architecture (in this case, a microservice
architecture), product planning process, and product test process. To support
the different aspects, the DevOps modeling framework must allow for the use
of a set of modeling techniques. This set of modeling techniques provides the
basis for the analysis, simulation, and automation of the different aspects of
the DevOps systems.

– RG2- Support for model integration – To ensure consistency and coher-
ence between the different models, the DevOps framework must provide sup-
port for the integration of different types of models and modeling techniques.
Because the semantics of the models can be quite different, their integration
will require the definition of a common DevOps metamodel.

– RG3- Support for tool integration – Because the set of models used
in the DevOps modeling framework require the use of different tools, the
modeling framework must also support the integration of different tools. In
the context of DevOps, lightweight integrations, often realized using scripts,
will be used to increase the agility to modify the workflows and enable fast
turnaround.

– RG4- Support for customization – Because different organizations have
different needs and way-of-working, it is essential that the DevOps model-
ing framework, and the set of modeling techniques used in the framework,

Towards Modeling Framework for DevOps 147

provides support for customization. This way, organizations can define their
own DevOps modeling environment based the DevOps modeling framework.

– RG5- Support for different viewpoints and perspectives – People
involved in a DevOps systems come from different backgrounds and have
interests related to different aspects. For this reason, the DevOps modeling
framework must support the definition of different viewpoints to enable the
use and presentation of information from different perspectives and for dif-
ferent user profiles. A set of predefined model views [7] for DevOps would be
very useful here.

4.2 Description Requirements

From a description perspective, the modeling framework is composed of set of
modeling techniques that must support the following requirements.

– RD1- Use of appropriate modeling techniques – To support the mod-
eling of different aspects (see RD1 in previous section), we need to select
an appropriate modeling technique for each of the different aspects. Based
on the Kallom context, the set of modeling techniques that will be investi-
gated includes BPMN [18] for process modeling, UML [17] and SysML [19] for
architecture modeling, and Kanban and Scrum process modeling techniques
for the project management aspect.

– RD2- Description of the flows – One specific aspect that needs to be sup-
ported is the description of the flows associated with the different processes,
together with a description of the different steps and transitions that com-
pose them. In the context of Kaloom, these flows are currently described using
informal diagrams like the ones used for the product CICD Pipeline descrip-
tion shown in Fig. 1 and the DevOps Agile Epics/Stories/Tasks Workflow
shown in Fig. 2. Similar descriptions also exist for other aspects/flows. While
these diagrams might be appropriate for documentation and communication
purposes, their informal nature doesn’t allow for analysis and transformation.
The DevOps framework must provide proper modeling techniques to replace
the current diagrams by actionable models.

– RD3- Specification of real-time properties – To enable performance
analysis of the different processes/flows, the DevOps modeling framework
must support the specification of time and timing constraints of the different
elements of the flow models. In the context of the Kaloom, this includes the
actual execution time of the different tasks and the improvement targets.

– RD4- Specification of people (roles), methods and tools – Since the
execution of the flows is realized by a combination of people (roles), meth-
ods and tools, the DevOps framework must capture this information in the
different elements (steps and transitions) of the flow models. This informa-
tion constitutes the basis for the analysis and simulation of current flows and
potential flow improvements.

148 F. Bordeleau et al.

4.3 Analysis and Simulation Requirements

A main purpose of the DevOps modeling framework is to support continuous
improvement. For this purpose, the modeling framework must not only support
the description of the different aspects of the DevOps system, but must also
support the analysis and simulation of the models.

From an analysis and simulation perspective, the framework must support
the following requirements.

– RA1- Identification of constraints – To improve a flow in a DevOps pro-
cess, we first need to identify the constraint that is preventing faster progress.
For this purpose, the DevOps modeling framework needs to provide support
for maintaining up-to-date information regarding the time spent in the dif-
ferent elements of the flow, and for analyzing the information to identify the
constraint.

– RA2- Configurability of constraint analysis – The identification of the
constraint depends on the aspect that we are focusing on improving. For
example, different constraints would be identified depending if we are focus-
ing on the product build process, the testing process, or the overall feature
delivery process. Also, we might want to identify constraints regarding dif-
ferent quality attributes, like the time required to deliver feature, or the cost
associated with the development and operations of a given feature. For this
reason, the DevOps modeling framework must support the identification of
constraints based on different user-defined global priorities.

– RA3- Open to the addition of new analysis and simulation tech-
niques – The identification of global constraints becomes increasing difficult
as we improve the DevOps system, and further improvements require the
use of more sophisticated techniques. As an example, in the Kaloom context,
to improve the product build process from 90 min to 11 min at Kaloom, the
identification of the constraints was rather simple. However, it becomes much
more complex as we work on further improvements towards the 3 min target.
In this context, the DevOps modeling framework must be developed to enable
the addition of new analysis techniques as needed.

– RA4- Support for time-based analysis and simulation – In the Kaloom
context, most of the current improvement objectives are related to the notion
of time. For example, reducing the time required for product build, reducing
the time required to deliver new features, etc. For this reason, it is essential
that the DevOps modeling framework provide first-class support for time-
based analysis and simulation. One of our short-term objectives is to eval-
uate different techniques and tools that can be integrated in the modeling
framework.

– RA5- Investigation and evaluation of different alternatives – Once
we have identified the constraint, the DevOps modeling framework needs to
provide support for the analysis of different alternatives to improve the flow.
In particular, we need to be able to properly analyze the impact of potential
modifications on the overall system to avoid cases where an improvement in
one part of the system is outweighed by a negative impact on other parts.

Towards Modeling Framework for DevOps 149

Also, we need to be able to identify both positive and negative impacts of
modifications at the analysis level so that we can take actions based on the
feedback early in the process. For this purpose, different analysis and simula-
tion techniques need to be evaluated and integrated in the DevOps modeling
framework.

– RA6- Support for tool and technology migration analysis – Tools
and technologies are constantly evolving. The quest for continuous improve-
ment requires that we don’t only focus on improving our DevOps processes,
but also that we stay on top of the evolution of tools and technologies, and
evaluate the potential use of new tools and technologies to improve our overall
DevOps system. Such changes require going through migrations that might
affect many different aspects of the DevOps system. The impact of a tool (or
technology) migration can greatly vary depending on the nature and role of
the tool (or technology). It is crucial to properly evaluate the impact of the
migration before starting the migration. For this reason, the DevOps mod-
eling framework must provide support for analyzing the impact of potential
tool and technology migrations, in terms of costs, risks, and potential gains.

5 Future Work

The plan of this research project is to engage both the modeling and DevOps
communities to develop a DevOps modeling framework based on the list of
requirements defined in the previous section. In the mid/long-term we hope to
have a kind of Digital Twin approach for DevOps that can leverage the telemetry
of the DevOps system to feed a model-based replicate of the deployed DevOps
infrastructure of a company in order to simulate, evaluate and improve it.

The next phase is planned to further formalize the requirements described
in this paper, and add new requirements coming from both the implementation
of similar product build use cases in other companies (industry partners) and
the extension of the approach to include other aspects of DevOps, e.g. product
deployment, software upgrade flow, and product planning.

In the Kaloom context, the scope of the use case presented in this paper
will need to be expanded to include other phases, like the review phase. How-
ever, in this case, we will need to consider a broader range of factors, including
non-automatable and human-based ones, like the review task that requires the
involvement of engineers who are involved in other competing activities. Putting
top priority on reviews would have a direct impact on other flows. Therefore, a
broader perspective must be considered to avoid focusing on local improvements
that would have a negative impact at the global organization level.

We are also planning to explore the use of Machine Learning (ML) and
Artificial Intelligence (AI)-based techniques to maximize the potential of the
runtime DevOps models. This can help to provide additional optimizations, early
prediction of potential problems, and trade-off analysis of possible technology
alternatives based on simulation of future scenarios derived from the current
monitoring data.

150 F. Bordeleau et al.

Finally, the modeling infrastructure to be developed can be regarded as a
complex software artifact in itself. As such, we would like to explore the poten-
tial benefits of applying a DevOps approach to complex modeling artifacts to
continue the preliminary efforts in [10].

6 Conclusion

The research work described in the paper is part of a larger project that aims
at developing an engineering framework, based on methods, process and tools,
to support the implementation and evolution of DevOps. This research project
involves close relationship with the industry to define the different aspects of the
DevOps engineering framework based on concrete industry use cases. The first
problem we are addressing is the lack modeling techniques and framework that
can be used to capture the different aspects of a DevOps system.

In this paper, we first described different aspects of the DevOps system at
Kaloom, one of our industry partners. Then, we defined a set of requirements
for the definition of a DevOps modeling framework based on the Kaloom use
case. This modeling framework is a core component of the overall DevOps engi-
neering framework that will provide the basis for the analysis, simulation, and
automating the DevOps process and its flows. Finally, we provided a discussion
on future work.

In conclusion, this paper reflects on the interplay between modeling and
DevOps. In particular, the set of requirements defined in Sect. 4 highlights the
need to propose a complete modeling framework for DevOps. Just focusing on a
DSL or metamodel would not be enough to respond to the industrial needs we
have detected in our use case.

References

1. Artač, M., Borovšak, T., Di Nitto, E., Guerriero, M., Tamburri, D.A.: Model-driven
continuous deployment for quality devOps. In: Proceedings of the 2nd International
Workshop on Quality-Aware DevOps, QUDOS 2016, pp. 40–41. ACM, New York
(2016). https://doi.org/10.1145/2945408.2945417

2. Artifactory. https://jfrog.com/artifactory
3. Babar, Z., Lapouchnian, A., Yu, E.: Modeling DevOps deployment choices using

process architecture design dimensions. In: Ralyté, J., España, S., Pastor, Ó. (eds.)
PoEM 2015. LNBIP, vol. 235, pp. 322–337. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25897-3 21

4. Bencomo, N., Götz, S., Song, H.: Models@run.time: a guided tour of the state
of the art and research challenges. Softw. Syst. Model. 18(5), 3049–3082 (2019).
https://doi.org/10.1007/s10270-018-00712-x

5. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Com-
put. Surv. 51(1), 22:1–22:38 (2018). https://doi.org/10.1145/3150227

6. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineer-
ing in Practice, Second Edition. Synthesis Lectures on Software Engi-
neering. Morgan & Claypool Publishers (2017). https://doi.org/10.2200/
S00751ED2V01Y201701SWE004

https://doi.org/10.1145/2945408.2945417
https://jfrog.com/artifactory
https://doi.org/10.1007/978-3-319-25897-3_21
https://doi.org/10.1007/978-3-319-25897-3_21
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1145/3150227
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004

Towards Modeling Framework for DevOps 151

7. Bruneliere, H., Burger, E., Cabot, J., et al.: A feature-based survey of model view
approaches. Softw. Syst. Model. 18, 1931–1952 (2019). https://doi.org/10.1007/
s10270-017-0622-9

8. Confluence. https://www.atlassian.com/software/confluence
9. Ferry, N., et al.: ENACT: development, operation, and quality assurance of trust-

worthy smart IoT systems. In: Software Engineering Aspects of Continuous Devel-
opment and New Paradigms of Software Production and Deployment - First Inter-
national Workshop, DEVOPS 2018, Chateau de Villebrumier, France, March 5–6,
2018, Revised Selected Papers, pp. 112–127 (2018). https://doi.org/10.1007/978-
3-030-06019-0 9

10. Garcia, J., Cabot, J.: Stepwise adoption of continuous delivery in model-driven
engineering. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS,
vol. 11350, pp. 19–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
06019-0 2

11. Garćıa-Dı́az, V., Espada, J.P., Núñez-Valdéz, E.R., Garćıa-Bustelo, B.C.P.,
Lovelle, J.M.C.: Combining the continuous integration practice and the model-
driven engineering approach. Comput. Inform. 35, 299–337 (2016)

12. Gitlab. https://about.gitlab.com/
13. Godog. https://github.com/DATA-DOG/godog
14. Jenkins. https://jenkins.io
15. Jira. https://www.atlassian.com/software/jira
16. Kim, G., Debois, P., Willis, J., Humble, J.: The DevOps Handbook: How to Cre-

ate World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution Press, Portland (2016)

17. Object Management Group (OMG): Unified modeling language (UML) version
2.0. Standard, Object Management Group (OMG), July 2005. https://www.omg.
org/spec/UML/2.0

18. Object Management Group (OMG): Business process model and notation version
2.0. Standard, Object Management Group (OMG), December 2011. https://www.
omg.org/spec/BPMN/2.0/

19. Object Management Group (OMG): Omg system modeling language version 1.4.
Standard, Object Management Group (OMG), August 2015. https://www.omg.
org/spec/SysML/1.4

20. Sonarqube. https://www.sonarqube.org
21. St̊ahl, D., Bosch, J.: Industry application of continuous integration modeling: a

multiple-case study. In: 2016 IEEE/ACM 38th International Conference on Soft-
ware Engineering Companion (ICSE-C), pp. 270–279, May 2016

22. Testrail. https://www.gurock.com/testrail
23. Vogel, T., Seibel, A., Giese, H.: The role of models and megamodels at runtime.

In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 224–238.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21210-9 22

24. Wettinger, J., Breitenbücher, U., Kopp, O., Leymann, F.: Streamlining devops
automation for cloud applications using TOSCA as standardized metamodel.
Future Gener. Comput. Syst. 56, 317–332 (2016). https://doi.org/10.1016/j.future.
2015.07.017

https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1007/s10270-017-0622-9
https://www.atlassian.com/software/confluence
https://doi.org/10.1007/978-3-030-06019-0_9
https://doi.org/10.1007/978-3-030-06019-0_9
https://doi.org/10.1007/978-3-030-06019-0_2
https://doi.org/10.1007/978-3-030-06019-0_2
https://about.gitlab.com/
https://github.com/DATA-DOG/godog
https://jenkins.io
https://www.atlassian.com/software/jira
https://www.omg.org/spec/UML/2.0
https://www.omg.org/spec/UML/2.0
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/SysML/1.4
https://www.omg.org/spec/SysML/1.4
https://www.sonarqube.org
https://www.gurock.com/testrail
https://doi.org/10.1007/978-3-642-21210-9_22
https://doi.org/10.1016/j.future.2015.07.017
https://doi.org/10.1016/j.future.2015.07.017

Towards Designing Smart Learning
Environments with IoT

Mohamad Kassab1 and Manuel Mazzara2(B)

1 Pennsylvania State University, Malvern, PA, USA
muk36@psu.edu

2 Innopolis University, Innopolis, Russia
m.mazzara@innopolis.ru

Abstract. Internet of Things is a rapidly growing network of a variety
of different connected objects. Now, because of their ubiquitous nature,
educational institutions are looking to incorporate IoTs technologies in
teaching and learning activities. This paper contributes to the ongo-
ing discussion on the benefits and challenges of incorporating IoTs in
education. More precisely, it provides (i) a summary that reports on
results of a systematic literature review we conducted on IoT in edu-
cation along with a framework for describing and classifying scenarios
that involve IoTs for education, (ii) a demonstration of a tool we devel-
oped to provide an adaptive learning experience in response to a remote
learner’s emotions, and (iii) a discussion on three domain-related quality
requirements to consider when designing IoTs applications for education;
namely, security, scalability and humanization.

Keywords: Internet of Things · Education · Learning · Teaching ·
IoT · Network of Things

1 Introduction

The IEEE Internet of Thing (IoT) Community defines the IoT as: “...a self-
configuring and adaptive system consisting of networks of sensors and smart
objects whose purpose is to interconnect “all” things, including every day and
industrial objects, in such a way as to make them intelligent, programmable and
more capable of interacting with humans” [1]. The term “Internet of Things” was
coined by Kevin Ashton in 1999 to refer to uniquely identifiable objects/things
and their virtual representations in an Internet-like structure [2]. Currently, there
are more than 6.4 billion devices connected to the Internet excluding computers,
cellphones, and tablets [3]. This number is projected to reach 20.8 billion devices
by 2020, with some estimates even foreseeing as many as 100+ billion connected
devices by that time. Regardless of the exact number of devices, spending in
this market is expected to increase substantially, with the International Data
Corporation (IDC) calculating that the worldwide market for IoT solutions will
reach $7.1 trillion in four years [4].
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 152–166, 2020.
https://doi.org/10.1007/978-3-030-39306-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_11

Towards Designing Smart Learning Environments with IoT 153

Because of its continuous growth, it is useful to discuss a purpose built system
within the IoT, referred to as a Network of Things (NoT) [5]. A NoT can be
described by five primitives proposed by Voas [5]:

1. Sensor is “an electronic utility (e.g. cameras and microphones) that measures
physical properties such as sound, weight, humidity, temperature, accelera-
tion”. Properties of a sensor could be the transmission of data (e.g. RFID),
Internet access, and/or be able to output data based on specific events.

2. A communication channel is “a medium by which data is transmitted (e.g.,
physical via Universal Serial Bus (USB), wireless, wired, verbal, etc.)”.

3. Aggregator is “a software implementation based on mathematical function(s)
that transforms groups of raw data into intermediate, aggregated data. Raw
data can come from any source”. Aggregators have two actors for consolidat-
ing large volumes of data into lesser amounts:
(a) Cluster is “an abstract grouping of sensors (along with the data they

output) that can appear and disappear instantaneously”.
(b) Weight is “the degree to which a particular sensor’s data will impact an

aggregator’s computation”.
4. Decision trigger “creates the final result(s) needed to satisfy the purpose,

specification and requirements of a specific NoT”. A decision trigger is a
conditional expression that triggers an action and abstractly defines the end-
purpose of a NoT. A decision trigger’s outputs can control actuators and
transactions.

5. External utility (eUtility) is “a hardware product, software or service which
executes processes or feeds data into the overall data flow of the NoT”.

Applications for the IoT are already being leveraged in diverse sectors such as
medical services field, environmental monitoring, smart homes, industrial inter-
net and smart retail. Now, because of their ubiquitous nature, educational insti-
tutions are looking to join the trend and to incorporate IoTs technologies in the
teaching and learning activities.

A systematic literature review (SLR) that we conducted on the advantages
and challenges of IoTs in education revealed that IoT applications are being pro-
posed to address a diverse range of modes, objectives, subjects, and perceptions
in education sector. For example, Gligoric et al. [6] addressed the potential of
using IoT technology to build a smart classroom: “Combining the IoT technology
with social and behavioral analysis, an ordinary classroom can be transformed
into a smart classroom that actively listens and analyzes voices, conversations,
movements, behavior, etc. in order to reach a conclusion about the lecturer’s
presentation and listener’s satisfaction”. Uzelac et al. propose another example
of a smart classroom equipped with a set of sensors able to monitor parameters
of the physical environment (for example CO2, temperature, humidity, noise)
and a Blue tooth headset used to capture lecturer’s voice with the target to
identify parameters of the physical environment in a classroom and evaluate
their influence on students’ focus [7], this model uses voice and visual sensors.
Several studies also propose incorporating IoT technologies to monitor students’

154 M. Kassab and M. Mazzara

attendance and in-class activities (e.g. [8,9]). Studies proposing the incorpo-
ration of IoTs in on-line education and on-line laboratories also exist [10–13].
The potential of using IoTs for supporting Ubiquitous Learning (UL) is also
reflected; according to many studies (e.g. [8,14,15]) in increasing access to infor-
mation sharing and enabling students to have personalized access to educational
resources.

On the other hand, the nature of education field and the physical and com-
putational constraints poses a number of challenges to systems’ developers and
designers. These include concerns related to ethical constraints (e.g. student’s
privacy), technical constraints (e.g. Big data captured from a wide range of het-
erogeneous sources), economical constraints (e.g. the added cost of technology
on education) and physical constraints (e.g. available technology, available com-
munication channels).

This paper contributes to the ongoing discussion on the benefits and chal-
lenges of incorporating IoTs in education. More precisely, it provides (i) a sum-
mary that reports on results of a systematic literature review we conducted on
IoT in education along with a framework for describing and classifying scenar-
ios that involve IoTs for education, (ii) a demonstration of a tool we developed
to provide an adaptive learning experience in response to a remote learner’s
emotions, and (iii) a discussion on three domain-related quality requirements
to consider when designing IoTs applications for education; namely, security,
scalability, and humanization.

The framework to describe the scenarios is based on Voas’s primitives [5] and
a proposed classification scheme for potential scenarios for IoTs in education
settings.

The remaining of this paper is organized as follows: Sect. 2 reports on the
results of the SLR we conducted and discuss a classification scheme of the col-
lected scenarios. Section 3 presents the tool we developed to monitor the learning
state for an on-line learner and to provide a personalized course content. Section 4
provides a discussion on domain-related quality attributes. Finally Sect. 5 con-
cludes the paper.

2 Related Work

We conducted a systematic literature review on the topic of incorporating IoT
technologies in education. The main goal of this review was to develop an under-
standing of the scenarios that involve deploying IoT in education, the benefits that
arise from this incorporation and the challenges in such a context. While the details
of the review process and the corresponding statistics from the results are not the
focus of this paper, One of the goals of the conducted SLR was to identify the
benefits of applying IoT in education on the basis of the existing scenarios in the
selected studies. The results show that we identified a significant variety of posi-
tive contributions for IoT technologies on education. In particular, we identified
three dimensions to classify emerging scenarios of IoT in education and to discuss
the benefits: delivery mode, perception and learning principles (Fig. 1).

Towards Designing Smart Learning Environments with IoT 155

Fig. 1. The three dimensional scheme for IoT in Education.

Perception: The extracted scenarios from the selected studies suggest that IoT
technologies will actively complement and enhance certain pedagogical activities
with relevance to three perceptions: instructor, student, and staff.

As for the instructor, IoT can help to manage attendance of a class and avail-
ability of required equipment/devices for each student [8,9,16,17]. “Installing
RFID reader at the entrance of school gate, library, cafeteria, dormitory and
teaching building, and other places to identify students’ RFID electronic tags,
it can obtain the students’ activities trajectory” [9]. In addition, with IoT an
instructor may initiate and manage class session with voice/facial/gesture com-
mands [18,19], communicate with remote students at different locations and/or
collect immediate feedback from students in terms of interests in an activity or
lesson and sensor data. Analytics could also be run on the sensor data to evaluate
behavior, performance, interest, and participation of each student and provide
a summary to the instructor [20,21]. IoTs can help the instructor to confirm
the identity for students [22]; it can also help the instructor to identify and help
students with special needs [23].

From a student perspective, IoT will help to communicate with classmates
(local or remote) [10], share project data, discuss and annotate learning materials
in a real-time [11], and access the learning resources remotely (e.g. remote labs)
[11–13]. In addition, IoT could also provide support to students with adapted
learning resources by integrating content that is based on location, time, date,
student-to-student interaction, knowledge level, etc. [15,24].

156 M. Kassab and M. Mazzara

From a staff perspective, IoT will play designated role in elements such as
tracking students. For example, an IoT scenario is reported in [25] on monitoring
and maintaining psychological health for students. Another reported contribu-
tion is the potential assistance for staff members in managing and tracking fixed
and portable academic resources [26,27]. “Using a noise sensor, one classroom
can communicate automatically to a neighbor classroom and inform them if the
noise level exceeds a certain level. A warning message could be displayed on
the LCD screen in the noisy room” [27]. For the public portable equipment (e.g.
portable projectors, lab equipment, sports equipment), these can be marked with
a tag to be tracked by the RFID technology. The collected data from tracking
portable equipment can be further utilized to automatically calculate patterns
and trends, and find inefficiencies. IoT can also assist staff members in managing
events (e.g. registration events [28], sports events [29]) and in managing the gen-
eral safety and security [27]. In addition, it can also play a role in institutional
energy management [27].

Learning Principle: In [30], the authors listed seven principles that underlie
effective learning: (1) student prior knowledge, (2) knowledge organization, (3)
motivation, (4) mastery, (5) practice and feedback, (6) course climate and (7)
the self-directed learning. These principles are distilled from research from a
variety of disciplines [31]. Our findings indicate that IoT technologies will make
a positive impact on each of these seven principles.

For example, in [32] the authors propose a smart assistive environment system
that uses a Heuristic Diagnostic Teaching (HDT) process where the intention is
to identify each student’s learning abilities in math as well as their creativity
traits. Their proposed system uses a computer, sensors, RFID tag reader and a
SmartBox device in order support learning for students with ASD by providing a
personalized “practice and feedback” on a case by case basis. Other studies that
discuss utilizing IoT to provide personalized learning experience include [15,33].

In [34], Improving student’s “motivation” principle is addressed through a pro-
posed scenario aiming at bridging the communication between teachers and stu-
dents using IoT. In [20], the authors proposed an innovative system based on IoT
to analyze the impact of several parameters of the physical environment in a class-
room on students’ focus, where the term “focus” refers to the students’ subjective
feeling of their ability to concentrate on a lecture at a given moment. The primary
goal was to identify those parameters that significantly affect students’ focus in the
course climate. Studies with a similar goal include [7] and [35].

In [36] The Story of Things (SoT) system is proposed to enable children to
learn the story behind every object they touch in a typical day. Inspired by Living
Media and the IoT, “the goal is to change children’s awareness through hands-on
interaction with the world they live in. A back-of-the-hand display is activated by
stick-on finger sensors when a child touches an object. They can tap the display
to select from a number of stories stored in a crowd sourced database about that
object (e.g. the materials it was made from; the processes used to make it; how
it impacts their body; how it will be disposed of; environmental or social rights

Towards Designing Smart Learning Environments with IoT 157

challenges associated with the object; and how they can take positive action)”.
This information is overlaid on the world through an augmented-reality contact
lens to enhance the “knowledge organization”. Another example of utilizing IoT
for “knowledge organization” principle is reported in [37] in which the authors
discuss a project utilizing project utilizing IoT to improve a child’s attitude
toward food via learning about food consumption and production and ways to
reduce waste on a long term basis.

Delivery Mode: Education can be delivered in one of three broad-based modes:
face-to-face, remote or hybrid. The selected studies from the SLR we conducted
were almost equally distributed between the face-to-face setting and the on-line
setting.

Taking the dimensions of learning mode, perception and learning principles
yields general 3 * 3 * 7 = 42 possible general classes to classify related IoT,
providing a general framework for constructing use cases in education. These
classes are not mutually exclusive. In addition, each scenario can be specified
further with the five primitives proposed by Voas. To demonstrate how the gen-
eral framework helps to describe IoT for education applications, we present in the
next section a tool that we developed to monitor the learning state of an on-line
learner (mode: on-line, perception: (instructor, student), learning princi-
ples: (motivation, course climate, practice and feedback)).

3 Monitoring Emotional State of On-line Learner: A Tool

There are no adequate empirically proven strategies to address the presence of
emotions in education [38,39].

Incorporating IoTs technologies combined with the power of Big Data analyt-
ics to support the detection of (and reacting) to the learner’s emotional state dur-
ing on-line learning experience can positively improve the learners’ motivation
and satisfaction with the course climate, which may decrease the drop-out rate
in an on-line program. The captured data could also lead to insights which can
be made functional for the wellbeing of the students and improve the provided
“feedback”. For example, a simple web cam combined with an already exist-
ing emotion detection API can be utilized for an affordable and non-intrusive
emotional-based e-learning to detect the facial expressions of the remote learner.
The web cam can also be used to capture the learners eye tracking (detecting
a learner’s gaze location). Companies that provide web cam eye tracking ser-
vices include GazeHawk and EyeTrackShop. Fitness monitoring devices, such as
Fitbit, can also be utilized to take the input of the heartbeat.

With this background in mind, we developed a Learning Management Sys-
tem (LMS) that supports capturing and reacting to remote learner’s emotions in
real time. The LMS was developed using Python 3.7. The system uses for client
APIs: JQuery, material for page UI and Websocket for communicating with web
server. The system utilizes for Server APIs: Tornado framework for web service,
OpenCV, Keras CNN model, and TensorFlow API for real-time face detection

158 M. Kassab and M. Mazzara

and emotion/gender classification. The integrated system captures user’s expres-
sions based on the gender against the on-line content and time stamp. It detects
seven emotion expressions: angry, disgust, fear, happy, sad, surprise, neutral.

Once a learner logs into the website, the system triggers a pop up message
notifying that the web cam will be turned on. After acknowledging the message
and while navigating through the on-line materials (Fig. 2), the system captures
facial expressions of a learner. The tool captures user’s web cam frame data with
websocket addressed once in every 100 ms.

Fig. 2. A screen-shot from the tool at run-time while a remote learner navigates
through on-line content

The system evaluates the expressions once every 10 s as per customized
parameters which can be modified by a course administrator. The system detects
whether user’s expressions match with the customized parameters while navigat-
ing particular content (e.g. a percentage of emotional expressions (sad, happy,
etc.) within any 10 s time frame). If there is a match then the system prompts a
learner with the option of supplemental learning materials customized according
to learner’s state and the particular content (Fig. 3).

In addition, an “aggregator” component sends periodically an aggregated
data on the learner’s profile and the entire on-line class state to the course
instructor. The captured data can serve for the wellbeing of the individual stu-
dent and for the entire class.

While the initial phase of project successfully integrated a facial emotional
expressions API, we are currently working on the next phase of the tool to inte-
grate eye-gaze tracking and heart beats monitoring APIs. These two additional
types of detentions will allow us to position more precisely the state of a remote
learner simultaneously while reading the course content, participating in the
on-line designated discussions forums or writing the course assignments.

Towards Designing Smart Learning Environments with IoT 159

Fig. 3. A screen-shot from the tool at run-time: The tool detects particular % of
emotional expressions and prompts the learner with supplemental learning materials
corresponding the content

A simple construct for monitoring the on-line learner state use-case scenarios
using an IoT as described in this section is shown in Table 1.

Table 1. Online learner’s state use-case construct

Model element Realization

1. Sensor Webcam, fitbit

2. Snapshot (time) Once in every 100 ms

3. Cluster Set of (2) proximity sensors per online
learner

4. Aggregator Determine learning state of the learner

5. Weight Room layout dependent

6.Communication channel Compliant network of sensors or clusters or
aggregator, wired (Internet) to eUtility

7. eUtility Remote monitoring software

8. Decision Personalized content

The initial assessment of the tool was conducted through a workshop session
in which students and faculty members from Penn State Engineering Division
were invited. The tool was presented and the attendees had the opportunity
to run an exploratory testing session with the tool. Each attendee completed
a questionnaire by the end of the session. While reporting on the assessment
of the tool is beyond the scope of this paper, most of the attendees answered

160 M. Kassab and M. Mazzara

in favor that the capabilities of the tool are likely to improve the overall on-
line learning experience. In spite of the positive impact, comments also pointed
out some challenges when incorporating the IoT in this scenario. For example,
personalization shouldn’t hinder the learner’s privacy. The cost of sensors should
be reasonable enough not to increase the learning expenses. In addition, there
is a need to harmonize heterogeneous data arriving from different sources by
different manufacturers. Common challenges related to IoT in education are
discussed in the next section.

4 Challenges of Incorporating IoT in Education

When specifying the functionality for IoT education applications, attention is
often focused on concerns such as fitness of purpose, big data, interoperabil-
ity, and so on. Conventional requirements elicitations techniques such as Qual-
ity Function Deployment (QFD), Joint Application Development (JAD) and
domain analysis among others [40] are usually adequate for these types of require-
ments. But in IoT applications for education some quality requirements are
probably of greater concern.

Based on the SLR we conducted and the initial assessment of the tool, we
identified three major qualities that may pose a challenge for IoT in education:
Security, scalability, and Humanization. We explore these three qualities further
in this section.

Security. Security requirements have always been a crucial aspect of education.
Given the increased communication and complexity of IoT technology there is
an increase in security-related concerns [41]. Out of the selected studies in the
SLR we conducted, 20% of the papers (or 18 papers) discussed security/privacy
concerns, making it the most discussed quality. Two of these studies; namely
[42,43] discussed particularly the challenge of child privacy when using IoT for
education.

It has become increasingly clear that educational systems are vulnerable to
cyber-attacks, and the number of attacks are predicted to increase [44]. Students
can easily stage cyber-attacks on their institutions; or schools/universities could
be prevented from functioning as intended. “Cascade failures may appear, caused
by the interconnectivity of a large number of devices, difficult to be simultane-
ously protected over the air transmission, with all the related problems” [41].

In fact, education, and particularly higher education, is often identified as
having a large number of reported data breaches, and at first look, the Pri-
vacy Rights Clearinghouse (PRC) database appears to confirm this view. In
the United States, there were 727 reported breaches in educational institutions
between the years 2005–2014 [45]. This number is the second highest among
seven sectors that were investigated (the first is healthcare). About 7% of all
academic institutions in U.S. have had a least one breach. From 2005 to 2014,
66% of academic institutions listed in the PRC experienced only one reported

Towards Designing Smart Learning Environments with IoT 161

breach. However, about one-third of institutions with breaches have had more
than one. Six percent of the listed institutions have experienced five or more
reported breaches.

Hacking/malware where an outside party accessed records via direct entry,
malware, or spyware was the largest proportion of the reported breaches at 36%.

“Many of the devices used in a provisioned, specialized IoT will collect various
data whether that surveillance is known or not” [46]. But why are these data
being collected? Who owns the data? And where does the data go? These are
questions that need to be answered by the legal profession, government entities
that oversee education and educational standards groups.

For example, in July 2000, the Higher Education Information Security Coun-
cil (HEISC) was established. The HEISC provides coordination and support
about information security governance, compliance, and data protection and pri-
vacy to higher education institutions. To help a better understanding the nuance
of information security issues in higher education, members of the HEISC drilled
down into the topic of information security and identified their top three strate-
gic information security issues for 2016 [47]. “Planning for and implementing
next-generation security technologies” with increasing concerns of the IoT is one
of the three strategic issues.

Scalability. By embedding sensors into front field environments as well as ter-
minal devices, an IoT network is able to collect rich sensor data that reflect
the real-time environment conditions of the front field and the events/activities
that are going on. Advanced data mining technologies can be applied to explore
in-depth business insights from these data. Since the data is collected in the
granularity of elementary event level in a 7 × 24 mode, the data volume is very
high and the data access pattern also differs considerably from traditional busi-
ness data. This has motivated a new generation of data management solution,
e.g., NoSql database, map-reduce distributed computing framework, etc. [48].

The IoT in education domain is not an exception. Incorporating IoT in educa-
tion will generate a large volume of data. Hence, the need for analyzing and treat-
ing these data in order to capture information and trends emerges. The scalability
concern is addressed in seven papers out of the selected primary studies. In [49]
the authors address the issue of scalability in the context of providing personal-
ized content to the students based on analyzing a large volume of collected student
data and activity. They propose a design for a “social recommender” system that is
based on Hadoop and its parallel computing platform. In [50], the authors discuss
the scalability concern when designing a learning management system.

With scalability, concerns regarding the discussion on cost of the IoT tech-
nology in education becomes also significant. The main question that may arise
is whether in the long run IoT devices and Big Data analysis will increase the
already existing divide into a two-class learning system: those who can disburse
these technologies and those who cannot! At the same time, if going to school
should be affordable for everyone, how will schools be able to buy and service
these devices? The financial concern of IoT in education is discussed in four
selected articles: [41,42].

162 M. Kassab and M. Mazzara

Humanization. There are questions on the moral role that IoT may play in
human lives, particularly in respect to personal control. Applications in the IoT
involve more than computers interacting with other computers.

Fundamentally, the success of the IoT will depend less on how far the tech-
nologies are connected and more on the humanization of the technologies that
are connected [51]. IoT technology may reduce people’s autonomy, shift them
towards particular habits and then shifting power to corporations focused on
financial gain. For the education system, this effectively means that the control-
ling agents are the organizations that control the tools used by the academic
professionals but not the academic professionals themselves [52].

Dehumanization of humans in interacting with machines is a valid concern
and it is discussed in two selected papers: [23,43]. Many studies indicate that
face-to-face interaction between students will not only benefit a child’s social
skills, but also positively contributes towards the character building. The issue
that may arise from increased IoT technologies in education is the partial loss
of the social aspect of going to school.

Conversely, using IoT in virtual learning environments can be of a special
support to students of special needs (e.g. dyslexic and dyscalculic needs, for
example [23]). IoT can offer students with special needs the opportunity to ran-
domly often repeat experiments without major damage to property or cost.
Thus, the students with special needs could feel reduced levels of frustration and
feel less self-conscience since they could have more time to repeat an experi-
ment. In addition, a prejudice free performance evaluation may be possible the
anonymization [23]. For dyslexic and dyscalculic students; for example, it is likely
that anonymization will be advantageous for them as possible functions because
of IoT (e.g. auto-correct) will improve any bias with a student’s score because
teachers will not know if they are assessing students with a learning challenge
or not [23].

5 Conclusions

The advances in sensors, nano-electronics, smart objects, cloud computing, Big
Data and communication on wide scale will make innovation continuous in IoT
and it will clout a great number of domains. The education domain is not an
exception. While IoT-Education is a new conceptual paradigm and it is still in
its starting phase, IoT is set to transform the education domain in many ways
in the near future. This paper presents a brief results on a SLR we conducted
on current scenarios, advantages and challenges of IoT in education domain. It
also demonstrates through a tool we developed one potential for IoT in remote
education.

The SLR was conducted by following available guidelines for conducting SLRs
[53] to search and categorize all existing and available literature on IoT in edu-
cation. Our findings from the extracted scenarios in this review were categorized
using a classification scheme with three dimensions related to education mode,
perception and learning principle. We also argued that the potential of IoT

Towards Designing Smart Learning Environments with IoT 163

to improve educational outcomes, needs to be moderated with attention to the
important challenges uncovered in this literature review. That is; security issues,
scalability, and humanization of the delivery system. New learning management
systems need to address these challenges while delivering an optimal experience
for students, teachers and other stakeholders.

Our work reinforced our belief that in planning IoT education applications,
there is strong need for domain expertise and deep inter-professional collab-
oration (in this case educators and engineers). The US National Institute of
Standards and Technologies (NIST) Special Publication SP 800-183, “Networks
of Things,” provides some guidance in this regard. SP 800-183 defines the under-
lying science for the IoT describes five primitives (sensor, aggregator, communi-
cations channel, external entity, decision trigger) [5]. These five primitives form
the basic building blocks of IoTs and a framework for developing IoT scenarios
for education domain as we demonstrated in the paper.

References

1. IEEE: IEEE Internet of Things. http://iot.ieee.org/about.html
2. Internet of Things (IoT) history. https://www.postscapes.com/internet-of-things-

history/
3. Garthner technical research, Internet of Things. http://www.gartner.com/

technology/research/internet-of-things/
4. Asseo, I., Johnson, M., Nilsson, B., Chalapathy, N., Costello, T.: The Internet of

Things: riding the wave in higher education. Educause Rev. 51, 11–31 (2016)
5. Voas, J.: Networks of things. NIST Special Publication, vol. 800, p. 183 (2016)
6. Gligorić, N., Uzelac, A., Krco, S.: Smart classroom: real-time feedback on lec-

ture quality. In: 2012 IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops), pp. 391–394. IEEE (2012)

7. Uzelac, A., Gligoric, N., Krco, S.: A comprehensive study of parameters in physical
environment that impact students’ focus during lecture using Internet of Things.
Comput. Hum. Behav. 53, 427–434 (2015)

8. Alotaibi, S.J.: Attendance system based on the Internet of Things for supporting
blended learning. In: World Congress on Internet Security (WorldCIS), pp. 78–78.
IEEE (2015)

9. Jiang, Z.: Analysis of student activities trajectory and design of attendance man-
agement based on Internet of Things. In: International Conference on Audio, Lan-
guage and Image Processing (ICALIP), pp. 600–603. IEEE (2016)

10. Yin, C., Dong, Y., Tabata, Y., Ogata, H.: Recommendation of helpers based on
personal connections in mobile learning. In: IEEE Seventh International Conference
on Wireless, Mobile and Ubiquitous Technology in Education (WMUTE), pp. 137–
141. IEEE (2012)

11. Bin, H.: The design and implementation of laboratory equipments management
system in university based on Internet of Things. In: International Conference on
Industrial Control and Electronics Engineering (ICICEE), pp. 1565–1567. IEEE
(2012)

12. Srivastava, A., Yammiyavar, P.: Augmenting tutoring of students using tangible
smart learning objects: an IoT based approach to assist student learning in labora-
tories. In: International Conference on Internet of Things and Applications (IOTA),
pp. 424–426. IEEE (2016)

http://iot.ieee.org/about.html
https://www.postscapes.com/internet-of-things-history/
https://www.postscapes.com/internet-of-things-history/
http://www.gartner.com/technology/research/internet-of-things/
http://www.gartner.com/technology/research/internet-of-things/

164 M. Kassab and M. Mazzara

13. Shi, Y., Qin, W., Suo, Y., Xiao, X.: Smart classroom: bringing pervasive computing
into distance learning. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Hand-
book of Ambient Intelligence and Smart Environments, pp. 881–910. Springer,
Boston (2010). https://doi.org/10.1007/978-0-387-93808-0 33

14. Zhiqiang, H., Junming, Z.: The application of Internet of Things in education and
its trend of development. Mod. Distance Educ. Res. 2 (2011)

15. Möller, D.P., Haas, R., Vakilzadian, H.: Ubiquitous learning: teaching modeling
and simulation with technology. In: Proceedings of the 2013 Grand Challenges on
Modeling and Simulation Conference, p. 24 (2013)

16. Borges, V., Sawant, R., Zarapkar, A., Azgaonkar, S.: Wireless automated monitor-
ing system for an educational institute using learning management system (MOO-
DLE). In: International Conference of Soft Computing and Pattern Recognition
(SoCPaR), pp. 231–236. IEEE (2011)

17. Gul, S., Asif, M., Ahmad, S., Yasir, M., Majid, M., Arshad, M.S.: A survey on role
of Internet of Things in education. IJCSNS 17(5), 159 (2017)

18. Fuse, M., Ozawa, S., Miura, S.: Role of the internet for risk management at school.
In: International Conference on Information Technology Based Higher Education
and Training (ITHET), pp. 1–6. IEEE (2012)

19. He, B.-X., Zhuang, K.-J.: Research on the intelligent information system for
the multimedia teaching equipment management. In: International Conference on
Information System and Artificial Intelligence (ISAI), pp. 129–132. IEEE (2016)

20. Elyamany, H.F., AlKhairi, A.H.: IoT-academia architecture: a profound approach.
In: 16th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 1–5.
IEEE (2015)

21. Haiyan, H., Chang, S.: The design and implementation of ISIC-CDIO learning
evaluation system based on Internet of Things. In: World Automation Congress
(WAC), pp. 1–4. IEEE (2012)

22. Wang, J.: The design of teaching management system in universities based on
biometrics identification and the Internet of Things technology. In: 10th Inter-
national Conference on Computer Science and Education (ICCSE), pp. 979–982.
IEEE (2015)

23. Lenz, L., Pomp, A., Meisen, T., Jeschke, S.: How will the Internet of Things and
big data analytics impact the education of learning-disabled students? A con-
cept paper. In: 3rd MEC International Conference on Big Data and Smart City
(ICBDSC), pp. 1–7. IEEE (2016)

24. Sula, A., Spaho, E., Matsuo, K., Barolli, L., Miho, R., Xhafa, F.: An IoT-based
system for supporting children with autism spectrum disorder. In: 2013 Eighth
International Conference on Broadband and Wireless Computing, Communication
and Applications (BWCCA), pp. 282–289. IEEE (2013)

25. Wang, Y.: The construction of the psychological health education platform based
on Internet of Things. Appl. Mech. Mater. 556, 6711–6715 (2014)

26. Han, W.: Research of intelligent campus system based on IoT. In: Jin, D., Lin, S.
(eds.) Advances in Multimedia, Software Engineering and Computing, vol. 1, pp.
165–169. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25989-
0 29

27. Caţă, M.: Smart university, a new concept in the Internet of Things. In: 14th
RoEduNet International Conference-Networking in Education and Research (RoE-
duNet NER), pp. 195–197. IEEE (2015)

28. Tan, W., Chen, S., Li, J., Li, L., Wang, T., Hu, X.: A trust evaluation model for
e-learning systems. Syst. Res. Behav. Sci. 31(3), 353–365 (2014)

https://doi.org/10.1007/978-0-387-93808-0_33
https://doi.org/10.1007/978-3-642-25989-0_29
https://doi.org/10.1007/978-3-642-25989-0_29

Towards Designing Smart Learning Environments with IoT 165

29. Yueguang, M.G.L.: Application of IoT in information teaching of ethnic colleges.
In: Proceedings of the 2013 International Conference on Information, Business and
Education Technology (2013)

30. Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovett, M.C., Norman, M.K.: How
Learning Works: Seven Research-Based Principles for Smart Teaching. Wiley,
Hoboken (2010)

31. Carnegie Mellon University, Eberly Center, principles of learning. https://www.
cmu.edu/teaching/principles/learning.html

32. Sula, A., Spaho, E., Matsuo, K., Barolli, L., Miho, R., Xhafa, F.: A smart environ-
ment and heuristic diagnostic teaching principle-based system for supporting chil-
dren with autism during learning. In: 28th International Conference on Advanced
Information Networking and Applications Workshops (WAINA), pp. 31–36. IEEE
(2014)

33. Peña-Ŕıos, A., Callaghan, V., Gardner, M., Alhaddad, M.J.: Remote mixed reality
collaborative laboratory activities: Learning activities within the InterReality por-
tal. In: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences
on Web Intelligence and Intelligent Agent Technology, vol. 03, pp. 362–366. IEEE
Computer Society (2012)

34. Wan, R.: Network interactive platform ideological and political education based
on internet technology. In: Proceedings of the 2016 International Conference on
Economy, Management and Education Technology (2016)

35. Ueda, T., Ikeda, Y.: Stimulation methods for students’ studies using wearables
technology. In: IEEE Region 10 Conference (TENCON), pp. 1043–1047. IEEE
(2016)

36. Antle, A.N., Matkin, B., Warren, J.: The story of things. In: Proceedings of the
The 15th International Conference on Interaction Design and Children, pp. 745–
750 (2016)

37. Gómez, J., Huete, J.F., Hoyos, O., Perez, L., Grigori, D.: Interaction system based
on Internet of Things as support for education. Procedia Comput. Sci. 21, 132–139
(2013)

38. Ha, I., Kim, C.: The research trends and the effectiveness of smart learning. Int.
J. Distrib. Sens. Netw. 10(5), 537346 (2014)

39. Feidakis, M., Daradoumis, T., Caballé, S.: Emotion measurement in intelligent
tutoring systems: what, when and how to measure. In: Third International Confer-
ence on Intelligent Networking and Collaborative Systems (INCoS), pp. 807–812.
IEEE (2011)

40. Laplante, P.A.: Requirements Engineering for Software and Systems. Auerbach
Publications, Boca Raton (2017)

41. Georgescu, M., Popescu, D.: How could Internet of Things change the e-learning
environment. In: The International Scientific Conference eLearning and Software
for Education, Carol I National Defence University, vol. 1, p. 68 (2015)

42. Putjorn, P., Ang, C.S., Farzin, D.: Learning IoT without the i-educational Internet
of Things in a developing context. In: Proceedings of the 2015 Workshop on Do-
it-yourself Networking: An Interdisciplinary Approach, pp. 11–13. ACM (2015)

43. Murphy, F.E., et al.: i4toys: video technology in toys for improved access to play,
entertainment, and education. In: IEEE International Symposium on Technology
and Society (ISTAS), pp. 1–6. IEEE (2015)

44. Weber, R.H.: Internet of Things-new security and privacy challenges. Comput. Law
Secur. Rev. 26(1), 23–30 (2010)

45. Grama, J.: Just in time research: data breaches in higher education. EDUCAUSE
(2014)

https://www.cmu.edu/teaching/principles/learning.html
https://www.cmu.edu/teaching/principles/learning.html

166 M. Kassab and M. Mazzara

46. Laplante, P., Laplante, N., Voas, J.: Considerations for healthcare applications in
the Internet of Things. Reliab. Dig. 61(4), 8–9 (2015)

47. Grama, J., Vogel, V.: The 2016 top 3 strategic information security issues
48. Zhang, N.: A campus big-data platform architecture for data mining and business

intelligence in education institutes. In: 6th International Conference on Machinery,
Materials, Environment, Biotechnology and Computer. Atlantis Press (2016)

49. Jagtap, A., Bodkhe, B., Gaikwad, B., Kalyana, S.: Homogenizing social networking
with smart education by means of machine learning and Hadoop: a case study. In:
International Conference on Internet of Things and Applications (IOTA), pp. 85–
90. IEEE (2016)

50. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.:
UTiLearn: a personalised ubiquitous teaching and learning system for smart soci-
eties. IEEE Access 5, 2615–2635 (2017)

51. E. Tech, Internet of Things and the humanization of health care technology
52. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a

vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

53. Budgen, D., Brereton, P.: Performing systematic literature reviews in software engi-
neering. In: Proceedings of the 28th International Conference on Software Engi-
neering, pp. 1051–1052. ACM (2006)

Opunit: Sanity Checks for Computing
Environments

Samim Mirhosseini(B) and Chris Parnin(B)

North Carolina State University, Raleigh, NC 27695, USA
{smirhos,cjparnin}@ncsu.edu

Abstract. Computing environments, including virtual machines and
containers, are essential components of modern software engineering
infrastructure. Despite emerging tools that support the creation and con-
figuration of computing environments, they are limited in testing and
validating the construction of these environments. Furthermore, profes-
sionals and students new to these concepts, lack feedback on their con-
struction efforts. In this paper, we argue that the design of environment
testing tools should fundamentally support asserting essential properties,
such as reachability and availability, in order to maximize usability and
utility. We present opunit, an environment testing tool that supports
assertion of these properties. We describe properties students failed to
check when testing computing environments, which guided the design
of opunit. Finally, we share our early experiences with using opunit
in the classroom to support education and training in configuration of
computing environments.

Keywords: Configuration management · Environment verification ·
Testing · DevOps training

1 Introduction

Software developers no longer simply build software in isolation: They now are
expected to continuously deploy fixes and experimental features to production
environments serving millions of customers. Making such ultra-fast and auto-
matic changes to production means that testing and verifying the design and
implementation of computing environments is increasingly important. However,
based on the 2018 State of DevOps Report [6], only 36% of participants have
capacity for dedicated testing of computing environments in their companies,
making environment construction easy to get wrong. For example, GitLab lost
300 GB of customer data after accidentally deleting their production database [5].
Even worse, they could not restore the data because they discovered their backup
procedure had been failing due to a mismatch in versions between the dump util-
ity (pg dump 9.2) and their database (PostgreSQL 9.6).

Unfortunately, the skills required to construct and test these computing envi-
ronments supporting continuous deployment requires expertise and training that
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 167–180, 2020.
https://doi.org/10.1007/978-3-030-39306-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_12

168 S. Mirhosseini and C. Parnin

is even more rare and highly sought than data science skills.1 For example,
Mozilla’s Kim Moir says she “recently looked at the undergrad classes required
to graduate with a computer science degree from a major university, and [she]
was struck by [a lack of] practice on deploying code. In most computer science
programs, there is little emphasis on infrastructure” [3]. Similarly, Google’s Boris
Debic claims that “Release engineering is not taught; it’s often not even men-
tioned in courses where it should be mentioned” [3]. For this reason, Facebook’s
Chuck Rossi considers hiring release engineers “is like finding unicorns.”

In this study, we used our experiences and observations from five years of
teaching over 400 students the concepts and tools related to continuous deploy-
ment in a university course [1]. Consider one assignment, where students were
installing and configuring an open-source chat server called Mattermost2, which
works much like Slack3. The computing environment requires several compo-
nents: a database, system dependencies, the Mattermost server itself, and several
configuration files (systemd services, mysql.cnf, and config.json for Matter-
most). In configuring this environment, many things could go wrong. For exam-
ple, a simple typo or malformed JSON in a configuration file could result in an
non-functioning environment, but with little hints as to why. To diagnose this
problem, students might need to check a variety of system components using
a myriad of tools and shell utilities in which they have little experience, such
as mysql shell, systemctl, journalctl, cat, grep, and jq. In response, we
would have to ask a series of questions: “did you check your mysql credentials,”
“did you check your connection string is correct,” “did you run jsonlint on your
configuration file.” Other times, strange behaviors would result from incidental
factors, which we would only resolve after asking, “did you check dns,” “did you
check your VM’s memory size.” Overall, this experience of asking students to
perform various sanity checks eventually helped, but resulted in a frustrating
and problematic learning environment for students.

To make matters worse, no single tool can support this process meaning stu-
dents must simultaneously learn many. For example, ps, top, ss, cURL, netcat,
free, lsof, who, last, dmsg, history, vmstat, dstat, iostat, htop, find and
more. In this paper, we argue for two ways to help with the mentioned shortcom-
ings: (1) Train software engineers to be able to recognize desirable properties of
a computing environment, (2) Provide them a simple means for evaluating these
properties. To this end, we formalized these checks in a simple environment ver-
ification tool, opunit. We categorized common student mistakes and issues into
violations of properties that computing environments should have. These prop-
erties can be verified to easily point out the cause of common issues related to
environment setup. Categories of the properties which we include are availabil-
ity, reachability, identifiable, and capability. They respectively indicate whether
an environment provides expected services, can access specified resources, has
certain items (files, software, etc.), and supports required operations.

1 http://stackoverflow.com/insights/survey/2017#salary.
2 https://mattermost.com/.
3 https://slack.com/.

http://stackoverflow.com/insights/survey/2017#salary
https://mattermost.com/
https://slack.com/

Opunit: Sanity Checks for Computing Environments 169

Finally, we share our early experiences with opunit as a training aid in a
DevOps course. First, we used opunit to verify the student’s initial local com-
puting environments to ensure they contained appropriate tools and capabilities
for the course. Next, we used opunit in workshops and homework assignments
to provide formative feedback on their progress (Fig. 1). Then, we administered
a usability and feedback survey. Students indicated opunit has increased their
confidence about their work because they could ensure they have completed tasks
correctly by running the tests. They also showed continued interest in using the
tool for other courses and future assignments.

To summarize, our contributions are:

– Environment properties that are root causes for the most common issues
students experience.

– opunit, a tool for environment verification, inspired by the common proper-
ties in student issues.

– A survey about opunit to suggest its effectiveness as a training tool.

2 Properties

Based on our experience with students in software engineering courses and a
specialized DevOps course, we categorized common student mistakes. Then we
identified four main properties of a computing environment which can be checked
to point out these mistakes. In this section we explain the properties that we
identified, an example of student issues related to those properties as well as a
verification method that can help point out the issue, and finally application of
those properties.

2.1 Availability

Environment functionality depends on availability of services that were set up
in previous steps of environment construction. One common issue that students
face occurs when they write a whole configuration script without intermediate
testing. As a result, they often experience errors which they incorrectly ascribe
to the last step they worked on. In reality, the errors often lie in one of the earlier
steps. By supporting the ability to check availability of services, students can
better test their configuration scripts incrementally, allowing them to establish
stepping stones of progress.

Example Problem. Expected services are not available in the environment,
because they have not been started: The goal is to run automated GUI tests for
a web application using Selenium4. Students run the tests, but the server was
not able to start successfully before the tests executed. As a result, all of the
GUI tests fail as none of web application pages can be served. They often think
4 https://docs.seleniumhq.org/.

https://docs.seleniumhq.org/

170 S. Mirhosseini and C. Parnin

Fig. 1. opunit’s verify command to test pipelines workshop

this is because of not running Selenium tests correctly, or the tests are really
failing. More careful inspection of logs is required to find the reason for the test
failures.

The failed server start up can have many different causes. For example, a bind
exeception could occurs if there is another server running on the same port and
often happens due to other instances of the same application still running in the

Opunit: Sanity Checks for Computing Environments 171

Fig. 2. Examples of students’ broken JSON files shown in red color (Color figure online)

background. Another cause can be a broken formatting in configuration files,
like an extra “,” at the end of a JSON configuration file. This was a common
failure because students used string replacements instead of using a utility like
jq, and created a broken JSON format as shown in Fig. 2 in red color.

Example Verification. If the configuration management scripts was tested
incrementally, student would have been able to send a simple HTTP request
using cURL utility to test if the server is started and can respond to requests.

Application. This property helps with ensuring availability of services before
running a task. For example, it can be implemented as a simple HTTP request to
a web server, to see if it is available. This idea has been implemented in Google
Borg’s tasks [7]. Each task implemented an internal health check end-point, and
this allowed Borg to send an HTTP request to this end-point to do a health check
on each task. Automating the steps for checking availability property allows the
user to do a quick health check without having to learn cURL utility or other
more complicated tools.

2.2 Reachability

Another common issue among students is unexpected software failures as a result
of an unreachable resource. We might not be able to access a resource because
of various reasons such as a missing/wrong configuration file, wrong file permis-
sions, and bad firewall rules. Checking reachability of these resources can help
find the reason for the failures. In other words, after discovering an unavailable
service, checking reachability of its related resources can help find the root cause
for this unavailability.

Example Problem. Database is not reachable in the environment because cre-
dentials has not been updated in a configuration file: The goal is to start a web
application that requires database access. This application uses a configura-
tion file to store database credentials. Forgetting to update and correctly ensure
appropriate access rights to configuration files is a common mistake among stu-
dents. The application may start without explicit errors, and the UI pages may
even be rendered, but the pages will be missing information. Finding the problem
will require more careful inspection of the logs from this web application.

172 S. Mirhosseini and C. Parnin

Example Verification. Existence of database configuration file should be
checked using ls -l <config file>, and this file’s permissions should be acces-
sible by the application. So students need to at least understand Unix file per-
missions and know what parameters they need to use with ls. While the check
itself may be relatively simple, students may not be well-attuned to pay atten-
tion to details such as mismatches in group permissions of a file. Automating
these steps will also require experience with tools such as grep. And finally, if
the permission needs to be changed, students also need to understand how to
use the chmod command.

Application. Reachability issues in industry, especially in microservices, is
even more crucial: “Reachability is definitely an important thing, security group
changes that make downstreams unreachable in a microservice architecture can
be dangerous.”5 Automated verification of reachability of the resources will pre-
vent reachability issues. It can be implemented as a series of requests to all the
needed resources, and triggered after each change to know when reachability is
affected.

2.3 Identifiable

Another common property that causes confusion for students is related to the
version of installed software, wrong content in configuration files, and such identi-
fiable properties or items in the environment. We called these types of properties
identifiable because of their relation to one of the core components in traditional
configuration management, “identification”.

Example Problem. Unexpected behavior when wrong version of a dependency
is installed: One of the most common observed issues with setting up an envi-
ronment for running a specific software occurs when incompatible versions of
dependencies are installed. For example, if the software required MySQL v5.7, it
may not work as expected if version v8 is installed. GitHub does not link commit
authors to their profile on GitHub: Another example of identifiable property is
when students forget to create git configuration file, .gitconfig, and as a result
their git commits are not linked to any GitHub account.

Example Verification. Most utilities use a -v or --version option to print
their current version; this can be used to check if the installed version is the
same as the expected version. Also, the content of the configuration files can
be checked by opening the files and manually checking for expected changes.
Manually checking these properties may not seem very difficult, but automating
the steps for checking them will require experience with Unix utilities such as
cat, grep, awk, and more.

5 Personal correspondence from industry.

Opunit: Sanity Checks for Computing Environments 173

Application. One of primary objectives in real-world configuration manage-
ment is to install tools and systems, and fine-grain details. Many of these details
can be categorized as identifiable properties. As we explained earlier, a serious
case of not testing this property happened at GitLab in 2017. GitLab’s version
of dump utility (pg dump 9.2) was not compatible with the version of their
database (PostgreSQL 9.6) which resulted in failure in the backup process and
unrecoverable loss of 300 GB of customer data. A simple verification of the ver-
sions could prevent such incidents. Automating the steps needed for checking
the mentioned identifiable properties of environment will enable the user have
more confident about their environment setup without having to learn how to
write a testing script.

2.4 Capability

Capability property is about ensuring that the system has sufficient resources to
support required operations. Capability of the environment is typically related
to the hardware, which is another important property that can effect how appli-
cations run. A few examples of this property are number of CPU cores, amount
of RAM, free disk space, and virtualization support.

Example Problem. One of the workshops in our software engineering and
DevOps courses focuses on provisioning virtual machines. 64-bit virtual machines
require having a CPU which supports virtualization (VT-x on Intel and AMD-V
on AMD CPUs). Most modern CPUs and laptops support virtualization but
many manufacturers disable this feature by default. So, when students try to
create a virtual machine, they receive a complicated error messages which is
hard for them to understand.

Example Verification. On Windows, virtualization status can be checked
in Windows Task Manager. On Linux virtualization support can be checked by
inspecting CPU flags and looking for vmx and svm flags. Modern Apple computers
(macOS) have virtualization enabled by default.

Application. One of the most common issues with setting up a system for
building java programs, such as a Jenkins6 executor, was memory limitations.
Students would provision instances with 1 GB of RAM, and would experience
a variety exotic errors, none of which made it clear insufficient memory was
the root cause. By introducing a capability check for RAM, we can reduce the
likelihood that students experience these issues.

6 https://jenkins.io/.

https://jenkins.io/

174 S. Mirhosseini and C. Parnin

3 Opunit

Inspired by the properties that we identified, we developed an environment test-
ing automation tool, opunit. Figure 1 shows an example of the test results on
a DevOps workshop which was about constructing a delivery pipeline using git
hooks. This workshop was completed inside a virtual machine. In this study,
we are specially concerned with the needed verification in the initial phase of
environment creation, rather than monitoring the application for changes.

The goal of opunit is to be a simple tool for verifying the construction
of a computing environment by asserting the properties we introduced. Often,
multiple properties must be verified and checked in order to understand the
cause of a misconfiguration.

3.1 Using Opunit

opunit uses a YAML configuration file, opunit.yml, to define the verification
steps. Listing 1 shows an example opunit.yml file. The verification steps are
defined under checks property. In this example, opunit will be using node
--version command to verify version of node is in semver7 range ^10.x.x.
opunit tests can be started with opunit verify command. opunit searches
the default paths for an opunit.yml file and runs the provided checks against
the target environment.

3.2 Checks

opunit uses automated scripts, checks, to implement how each property needs
to be checked. To verify the Availability property, opunit uses a check called
“availability” which runs a command on target environment followed by a HTTP
request to do a health check. A simple example of version check is shown in
Listing 1. This check has two parameters, the command that needs to be executed
to get the version, and a semver range that the version should be in. opunit has
checks to verify all the mentioned properties in Sect. 2 and each require different
parameters which are explained in more details in opunit documentation8.

7 https://semver.org/.
8 https://github.com/ottomatica/opunit.

https://semver.org/
https://github.com/ottomatica/opunit

Opunit: Sanity Checks for Computing Environments 175

In summary the supported checks are availability to check if a service can
be started successfully, reachability to check reachability of specified resources,
contains to check content of specified files, version to check version of the spec-
ified tool and comparing it with the provided semver range, service to check
status of installed Linux services, timezone to check timezone of the environ-
ment, cores to check number of available CPU cores, virt to check if virtual-
ization is supported, and disk and memory to check the memory size available
disk space.

3.3 Environments

The target Environment that opunit verifies can be the local machine, a remote
server, a virtual machine or a container. opunit also supports all three common
operating systems, macOS, Windows, and Linux. Supporting various types of
environments and operating systems allowed us to use opunit in classroom.

The environment type in some cases can be automatically inferred based
on the existence of other configuration files in the project, or the arguments
passed to the verify command. For example if there is a Vagrantfile in the
project, opunit will try to connect to that Vagrant virtual machine. Or, if
opunit is executed with opunit verify root@example.com:2222 command,
then opunit will use ssh to connect to the target environment. opunit has a
few more advanced inference rules in the tool’s documentation which we don’t
discuss in this paper.

3.4 Report

After opunit verification checks are executed, the results are printed in the
terminal window. Figure 1 shows an example of this report. The green check (✔)
indicates that a check was passed, while the red x (✖) indicates that a check
failed. The report is very verbose and includes both expected and actual values
for each check. Each check can also include a description defined in opunit.yml
file. The descriptions for the checks proved very useful for learning in workshops
as we discuss in the next sections.

4 Experiences

To better understand the impact of using opunit in the classroom, we integrated
the tool in our DevOps course. In this section we discuss the experiences of
students using opunit, as well as feedback we received from them.

4.1 Supporting Initial Course Setup

In the first week, students are required to prepare their local development environ-
ment for the rest of semester. opunit profile CSC-DevOps/profile:519.yml9

9 https://github.com/CSC-DevOps/profile/blob/master/519.yml.

https://github.com/CSC-DevOps/profile/blob/master/519.yml

176 S. Mirhosseini and C. Parnin

verifys their development environment’s configuration. profile is an opunit.yml
file hosted in a GitHub repository.

The resulting output is shown in Fig. 3. Notice that one of the checks under
“Editor Support”, fails to validate. This check looks for syntax highlighting being
enabled for vim. This check fails because the .vimrc file is not present on the
machine.

Fig. 3. Result of running an opunit profile

Opunit: Sanity Checks for Computing Environments 177

4.2 Using Opunit for Workshops

We added opunit checks in a workshop about pipelines by providing students
an opunit.yml file. In this workshop students learn how to use git hooks to run
static analysis checks before committing their code and then triggering deploy-
ment of an application on git push. We provided them an interactive way of
knowing what they need to complete for the workshop. Each opunit check had
a description that help with understanding the corresponding task. When stu-
dents start the workshop, all the opunit checks fail and as they complete the
workshop, they see opunit checks start passing.

YAML snippet in Listing 2 shows the opunit.yml file used in the workshop.
In this snippet three types of checks are shown, contains check, reachable
check and version check. contains check verifies that students have updated
the pre-commit hook to run npm test command, reachable check verifies stu-
dents created needed directories, and version check verifies they installed a
version of pm2 package in the range ^3.2.4.

4.3 Student Feedback

After students used opunit for supporting their development environment setup
and for completing a workshop, we sent them a feedback form with open-ended
responses and an usability survey [2] to collect data about their experience with
the tool. We used this feedback to find possible issues and determine if opunit
was effective in supporting students.

178 S. Mirhosseini and C. Parnin

Feedback. In the feedback form, we asked students to explain how their experi-
ence with opunit was comparing to the other assignments that they completed
without using opunit. The responses showed that using opunit made it very
easy for the students to know if they completed all the necessary tasks or they
missed something. In many instances students explained how opunit saved them
a lot of time by showing them descriptive errors about what mistakes they made
in doing a task. Students explained that they had higher level of confidence when
they completed the workshop that took advantage of opunit. Finally, students
also showed interest in using opunit in their future assignments and even in
other courses.

Usability. On the usability survey, we asked students ten multiple choice ques-
tions as shown in the Likert chart in Table 1. Summary of the survey responses
confirms the findings of our general feedback form, about higher level of confi-
dence and interest in using the tool in the furure. Additionally, student responses
showed opunit was easy to learn without spending too much time. Most of the
students also think they are likely to be able to use opunit in their future
projects, without needing assistant from us.

opunit has been effective in classroom and provided good support for train-
ing configuration of computing environments. Very few students had difficulty
in running the tool. They mostly liked seeing the green check marks after com-
pleting each task and indicated this increased their confidence. Students even
showed interest in using opunit in future assignments and other courses. We
think this is the right direction for opunit, however there are limitations which
we try to resolve, and improvements which we plan to add. We discuss these
limitations and future directions in next sections in more details.

Based on our observation, we believe one of the reasons for why students
are often confused and have a hard time when debugging environments is
that they fail to read and understand the error messages. In many cases
that students asked us for help in debugging, we noticed the errors explic-
itly and clearly indicates the problem. However, students either did not care-
fully read the error messages, or the did not understand it. An example of
such error message is “Permission 0644 for /Users/ubuntu/id rsa are too
open.” which makes SSH ignore a key. As mentioned by an StackExchange user
who asked a similar question10, a reason for not reading the error messages and
logs can be frustration.

I failed to read the output due to a combination of frustration, disillusion-
ment and pessimism

As mentioned by students in our general survey, opunit improved students’
confidence. If the written opunit.yml file includes description for the possible
causes of the failures, it can especially be helpful for student who missed the
error message details as we mentioned earlier.

It’s all about confidence and I think that opunit gives me such confidence.
10 https://superuser.com/questions/1159790/chocolatey-python-am-i-doing-it-

wrong?rq=1#comment1672782 1159793.

https://superuser.com/questions/1159790/chocolatey-python-am-i-doing-it-wrong?rq=1#comment1672782_1159793
https://superuser.com/questions/1159790/chocolatey-python-am-i-doing-it-wrong?rq=1#comment1672782_1159793

Opunit: Sanity Checks for Computing Environments 179

Table 1. Follow-up survey responses

5 Future Directions

opunit is a new tool and it’s important to realize its limitations. One limitation
is the type of checks that opunit supports. Although opunit checks cover many
common properties that we identified, there could be more properties which we
have not considered. Furthermore, current opunit checks can be extended to
support more fine-grain verification. To address this, we accept pull requests and
feature requests for the tool, and we are actively adding more checks as we find
the need for them.

After seeing promising effectiveness in the current version of opunit, we
think adding a CI system integration is an appropriate next step. Using opunit
in a CI system will allow developers and students automatically get feedback
about the changes they make on every git commit. Another possible future
direction for opunit are adding monitoring capabilities and combining our idea
of checks with chaos engineering principles [4]. This will allow developers easily
measure resilience of the environment and configuration in turbulent conditions.

Additionally we plan to extend our interviews with the professionals to find
other properties that are checked in industry and improve the list of supported
checks in opunit. The new opunit checks that we have identified and plan

180 S. Mirhosseini and C. Parnin

to implement are integration with different services. For example, support for
verifying write access of a GitHub token, or verifying needed rules in AWS11

EC2 security groups. Finally, as we mentioned earlier, the currently supported
checks still can be improved by better fine-grain verification.

6 Conclusion

This paper describes the design of an environment testing tool, opunit, guided
by experiences and observations obtained after five years of teaching the concepts
and tools related to continuous deployment. Our experience in a DevOps course
showed that our tool was effective and this could be a step in the right direction,
however there is more work to be done.

Acknowledgement. This material is based in part upon work supported by the
National Science Foundation under grant number 1814798.

References

1. DevOps 519. https://github.com/CSC-DevOps/Course/#devops-csc-519
2. Opunit Survey. https://forms.gle/uhBYmtftdsfj5TxP8
3. Adams, B., Bellomo, S., Bird, C., Marshall-Keim, T., Khomh, F., Moir, K.: The

practice and future of release engineering: a roundtable with three release engineers.
IEEE Softw. 32(2), 42–49 (2015). https://doi.org/10.1109/MS.2015.52

4. Basiri, A., Jones, N., Blohowiak, A., Hochstein, L., Rosenthal, C.: Chaos Engineer-
ing. O’Reilly Media, Inc., Newton (2017)

5. GitLab: Postmortem of database outage of January 31. https://about.gitlab.com/
2017/02/10/postmortem-of-database-outage-of-january-31/

6. Puppet: 2018 state of DevOps report. https://puppet.com/resources/whitepaper/
state-of-devops-report/

7. Verma, A., Pedrosa, L., Korupolu, M.R., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: Proceedings of the Euro-
pean Conference on Computer Systems (EuroSys), Bordeaux, France, p. 18 (2015)

11 https://aws.amazon.com/.

https://github.com/CSC-DevOps/Course/#devops-csc-519
https://forms.gle/uhBYmtftdsfj5TxP8
https://doi.org/10.1109/MS.2015.52
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://puppet.com/resources/whitepaper/state-of-devops-report/
https://puppet.com/resources/whitepaper/state-of-devops-report/
https://aws.amazon.com/

Towards Bridging the Value Gap
in DevOps

Gail C. Murphy1(B) and Mik Kersten2

1 Department of Computer Science, University of British Columbia,
Vancouver, Canada
murphy@cs.ubc.ca

2 Tasktop Technologies Inc., Vancouver, Canada
mik.kersten@tasktop.com

Abstract. The DevOps movement, which combines software develop-
ment with information technology operations, enables the more frequent
delivery of changes to a software system. Adopting DevOps practices
is seen as enabling the ability to deliver more. But is the more that is
getting done actually of value to the end user or to the producing orga-
nization? In this paper, we describe how the ideas of value streams are
being applied to software development and how more systematic han-
dling of features is key to enabling an increased focus on the delivery of
value.

Keywords: Software requirements · Value stream maps · Software
development productivity

1 Introduction

The ability of software to transform how we work and live is immense. As we
realize these opportunities, there is an ever increasing need for software. This
realization is not new: for the last 50 years, since the 1968 NATO Software Engi-
neering conference, there have been discussions about the many issues involved
in producing operational software that meets desired needs on time and on bud-
get [9]. Over the last fifty years, there have been many advances to address this
need. Whereas it used to take months or years to develop new functionality—a
feature—for a software system, by the early 2000s, the adoption of agile practices
and principles, alongside other improvements, dropped the time to develop new
features to the order of weeks [10].

Although the time required to develop a new feature decreased, organizations
in the early 2000s still faced challenges getting newly developed features deployed
into use. Often, the release of the software required shipping the software on
physical media, which might only occur once per year. In the second decade of
the 21st century, DevOps—short for Development and Operations—ideas, which
consider how to integrate development, delivery and operations of the software,
helped further accelerate the ability to develop and deliver features quickly [4],
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 181–190, 2020.
https://doi.org/10.1007/978-3-030-39306-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_13&domain=pdf
http://orcid.org/0000-0001-6768-2649
https://doi.org/10.1007/978-3-030-39306-9_13

182 G. C. Murphy and M. Kersten

with some organizations now able to deliver new features and fixes hundreds of
times per day [15].

The primary focus of DevOps practices has been on the back-end of the
software development life-cycle. This focus can be seen through the tools that
support DevOps, which focus on the build environment, continuous integra-
tion, continuous delivery and monitoring of the performance of the software in
use [3]. The metrics used to track the adoption of DevOps practices reinforce
this emphasis on the back-end of development. For instance, the DORA State
of the DevOps Report that gathers data from tens of thousands of technology
professionals focuses on such metrics as lead time, which is defined as “how long
it takes to go from code commit to code successfully running in production” [12,
p. 14].

This focus on the back-end of the software development life-cycle leaves open
the question of whether the increase in code changes deployed to operations are
seen as meaningful changes to the end users receiving the changes. The focus on
the back-end places an assumption that many features can be built quickly such
that the tracking of use of features can help weed out which carry value for the
user.

In this paper, we argue that leaving the notion of ‘value’ implicit and unre-
fined in this way limits the ability of software developers to efficiently deliver
flows of value consistently to users. We demonstrate the implicit nature of value
by reporting on the range of meanings of what a feature is across a number of
popular open source systems. We briefly outline areas of future research that
might help provide a more consistent meaning for value through features, thus
enabling a focus on value flow in the context of DevOps. Such a focus could
allow software development teams to more consistently match their effort and
work to producing value to their end users.

We begin with a short review of previous approaches that consider the notion
of value in the software development lifecycle (Sect. 2). We then discuss how a
software development lifecycle helps organize and frame the steps, methods and
tools used in software development (Sect. 3) and introduce how the concept of
value streams from manufacturing can be systematically applied to software
development (Sect. 4). We then show that there is a need to systematize how we
consider value in the form of features to enable a more meaningful application
of value stream concepts to software development (Sect. 5). We outline the value
gap (Sect. 6) and briefly suggest research that might help to bridge this gap
(Sect. 7).

2 Value in Software Engineering

The term “value” has two common English definitions.
One way in which the term “value” is used and defined is to describe the

worth or use of something. Boehm has used this meaning of the term to argue
that too many of the software development approaches and practices in use
are value-neutral, which is no longer appropriate given the need to increasingly

Towards Bridging the Value Gap in DevOps 183

consider software as part of the system, such as part of a business process, in
which the software is embedded [2]. Boehm argues that it is time to take a “value-
based” approach to software engineering in which value considerations are taken
into account as part of the many decisions made in software development. He
outlines a value-based software engineering agenda that is needed to help the
research and industrial communities consider value as an integral part of the
software development life-cycle.

In this paper, we use the term “value” in the same way as Boehm to indicate
the worth or usefulness of what is being produced as part of software develop-
ment. The directions we describe are one step towards the challenges in tracking
value through the lifecycle. In considering how value might be connected in the
front-end of software development to a back-end DevOps platform, this paper is
complementary to the growing body of work in identifying value at the require-
ments stage of development (e.g., [13]).

The second way in which the term “value” is used is to describe principles or
standards of behaviour, particularly in relation to a judgement of what is impor-
tant. Consideration of human values in software is a growing area of interest in
software engineering. For example, Mougouei and colleagues lay out a research
roadmap for defining human values related to software development, integrating
those values into design and then measuring whether the values are realized [8].

The two concepts of value—as something of worth and as something describ-
ing principles—are interlinked. We leave the exploration of the linkage of ideas
in this paper with the concept of values as principles to future work.

3 Framing the Software Development LifeCycle

To discuss the production of value, we need a frame for the production cycle.
The concept of the lifecycle of software development provides such a frame.

There is no single lifecycle model used for all software development. The
methods and tools and how they are organized and used to develop software
differ depending on the kind of software being built. For example, building the
software for a cyber-physical system, such as rover to explore the planet of Mars,
likely requires approaches that place a heavier emphasis on the use of formal
requirements approaches as there will be limited ability to alter the software
once deployed. The software development lifecycle employed in such a case may
more closely resemble a waterfall lifecycle with more up-front work placed on
the requirements of the overall system [14]. On the other hand, the methods and
tools used to build a cloud-based business system, such as a system to support
human resources at an organization, are likely to place more emphasis on the
quick development and experimentation of features, with less emphasis on the
specification of the features. The software development lifecycle employed in such
a case may be more iterative [7].

In this paper, we consider a software development lifecycle in which the front-
end is based on agile practices where specifications (requirements) consist of
epics, user stories and defects [16]. The back-end of development in this life-cycle

184 G. C. Murphy and M. Kersten

uses DevOps practices, including continuous builds, continuous integration and
continuous delivery and deployment [4]. Figure 1 presents an abstract version
of one iteration of this flow for illustration. While we consider that focus is
placed on decreasing the time from user story definition to deployment, it is not
uncommon that steps in this process are repeated for a given user story, such as
multiple iterations through continuous build and integration, before deployment.

Fig. 1. An abstract depiction of a software development lifecycle.

A key intent in adoption of such a software development lifecycle is the
faster flow of new functionality—features—to an end user. As stated in the
State of DevOps report in 2017, this approach “helps teams ship features that
customers actually want more frequently [and] [t]his faster delivery cycle lets
teams experiment, creating a feedback loop with customers” [11, p. 7].

4 Value Streams

Simply increasing the ability to produce more software through a faster flow of
feature delivery does not necessarily mean that what is produced is of value to
the end user. An analysis of six Finnish software companies showed that while
software product features are seen as the core of value creation for an end user,
“focusing on features and launching them as fast as possible can cause problems
from the perspective of customer value” [5, p. 277].

To help determine which features have value, DevOps practices advocate
the gathering of feedback on feature use, such as tracking the amount of use
of a feature by end users [4]. This form of tracking provides only one aspect
of value late in the software development life-cycle. It does not enable a soft-
ware development organization to optimize its production of value through up-
front analysis and tracking of the delivery of value through various stages of the
software development life-cycle. To better understand how to improve software
development life-cycles, software development managers can apply techniques
from lean production, such as value stream mapping. Poppendieck and Pop-
pendieck popularized the use of value stream mapping to identify waste in a
software development process [10]. When a manager maps a value stream of
software development, they consider all processing steps needed to go from cus-
tomer request for new functionality to delivery of that functionality. Surfacing
these steps enables analysis to consider how to eliminate waste and optimize

Towards Bridging the Value Gap in DevOps 185

effort in the production of value in software. Early applications of value stream
mapping to software focused on the flow of artifacts. More recent applications
also consider communication or information flows involved in the production of
software [1]. However, these approaches still focus on the steps and information
coordination of software development and do not enable a modelling or tracking
of the end-value of the items moving through the value stream map. As a result,
an organization using these approaches must focus on an analysis of process
making significant assumptions about the value of the software resulting from
the process. This implicit notion of value makes it difficult for an organization
to optimize their software development practices towards value.

Kersten has introduced a framework, called The Flow FrameworkTM1, that
enables a correlation between the artifacts flowing through a value stream of a
software development process to business outcomes [6]. This framework enables
the tracking of flow items for a value stream associated with the development
of a software product. Kersten defines flow items as features, defects, risks and
technical debt. Many organizations can map these concepts to particular con-
structs in the tools that they use, such as mapping user stories stored in an
agile tool to features. The Flow FrameworkTM can be enacted for various chains
of tools used in a software development process to allow the tracking of value
stream metrics defined by Kersten. For example, an organization can track flow
velocity, which an organization might define as the number of features completed
over a given time for a product value stream, or flow time, which can be defined
as the time taken from when a feature enters the value stream until it is done.
These metrics can then be tracked against business outcomes such as the value
of the product in revenue or the quality of the product.

5 Exploring Features in Open Source

The Flow FrameworkTM provides a means to relate flow items to business out-
comes and a means to operationalize the tracking of flow items through a software
product value stream. Applying The Flow FrameworkTM to better track, manage
and optimize value produced through a software product value stream requires
a determination of how to associate value with flow items flowing through the
stream and to then correlate that value to business outcomes. For instance,
assume value for the end-user is added to a software product by the delivery of
software features. To enable management and optimization, an organization will
either need to break desired functionality into features of similar value or will
need to normalize the value associated with features. To investigate whether
there might already be defined approaches to features and value occurring in
practice, we consider how features are defined in three popular open source
projects: Kubernetes, Moodle and Firefox. These three projects were chosen as
they represent different kinds of software systems with different kinds of end-
users:
1 The Flow FrameworkTM was created by Mik Kersten and is a trademark owned by
Tasktop Technologies.

186 G. C. Murphy and M. Kersten

– Kubernetes supports the deployment, scaling and management of container-
ized applications and is largely systems software with little interface to the
user;2

– Moodle is an open source learning platform with significant capabilities for
both authoring content to appear on the platform and for interacting with
users in different roles, such as teacher or student;3 and

– Firefox is an open source web browser, which must work across different
operating systems for users with a wide variance of computer expertise.4

We consider how features are defined and managed for each of these systems
in turn.

5.1 Kubernetes

The Kubernetes open source project involves over 1700 contributors who have
contributed over 68,000 commits with 415 releases. Kubernetes is hosted on
github.com and uses the github.com issue tracker as a means of tracking func-
tionality desired by users and developers.

To gain a sense of how features are tracked through the github.com issue
tracker for Kubernetes we analyzed the open issues for version v1.12. We found
that the Kubernetes team uses github.com labels as a means of classifying the
issues being tracked. 188 labels were in use for v1.12. Issues are tagged with
multiple labels. For example, as Fig. 2 shows an issue may carry tags indicating it
is a feature, its stage of development and so on. This approach to classifying work
tracked as issues is manual, relying on the developers to apply the appropriate
subset of the 188 available labels. There is no obvious identification in an issue
of the amount of value defined for a feature. Table 1 shows the number of closed
issues for three of the earlier releases of Kubernetes. As can be seen from the
table, there is no consistency in the number of different kinds of items per release,
calling into question how value might be associated with issues tagged as a
feature.

Table 1. Work tags for closed flow items in three versions of Kubernetes

Version v1.8 v1.9 v1.10

Bug 118 41 104

Feature 24 6 17

Technical debt 5 1 0

Area/security 6 6 3

2 github.com/kubernetes/kubernetes.
3 moodlee.org.
4 www.mozilla.org.

http://github.com/kubernetes/kubernetes
http://moodlee.org
www.mozilla.org

Towards Bridging the Value Gap in DevOps 187

5.2 Moodle

The Moodle open source project has over 450 contributors who have created over
90,000 commits with over 300 releases. Moodle uses an agile tracking tool, JIRA,
to track work to be performed. As Fig. 3 shows, developers are able to tag work
according to agile software development concepts, such as epics, stories and new
features. At the time we analyzed the Moodle JIRA, there were over 1000 open
new features. However, there was no obvious consistent linkage of the different
work items; for instance, features were not obviously related to epics. While there
is more structure to work related to features in the Moodle development, there
appear to be multiple approaches being taken to prioritize work, such as a user
association for which users can pay to prioritize features. As with Kubernetes,
the value of a given feature is still implicit.

Fig. 2. Tagged work items in Kubernetes.

5.3 Firefox

Earlier, we described that a suggested DevOps practice is to gather feedback
from usage to help gauge the value of a delivered feature. FireFox uses this
approach in its TestPilot program. One capability developed through TestPilot
was SnoozeTabs which enables pausing browser tabs to be brought back at a later
user-specified time. The development of SnoozeTabs involved feedback collected
over 400,000 sessions by over 58,000 users. Although data is provided in terms of
feedback, the Firefox development does not obviously track how different features
that are part of the delivered capability of SnoozeTabs are used. As with the
other developments, the value of features is implicit.

188 G. C. Murphy and M. Kersten

Fig. 3. Work item structure in Moodle

6 The Value Gap

Table 2 shows a comparison between the different ways features are defined and
tracked in each of the open source systems considered and the challenges with
relating those features to value. This table shows that, at least in a sample of
open source projects in the wild, there are very different approaches to defining
and tracking features. Without consistency in how features are defined and how
features relate to end user value, it is challenging, if not impossible, to manage
and optimize the development life-cycle. For instance, if the relative value of
two features is not known, how does an organization determine how to prioritize
the features against each other? An approach that simply delivers both features
and determines later if there is value creates significant work that may later be
discarded and also may cost the organization in lost opportunity to use that
effort to create a different feature of value.

7 Bridging the Gap

How do we bridge the gap between the front-end of the software development life-
cycle where value is largely implicit and inconsistent and the DevOps practices
that are enabling more to be delivered faster to users? We believe the gap can be
bridged through an enhanced focus on modelling and measuring the front-end of
the software development lifecycle. In particular, there needs to be an enhanced
focus on how features to be delivered are defined and in the linking of those
features to delivered value.

One direction that could be investigated is to be able to systematize the
work being performed for a system. For example, without substantial change to
existing processes, machine learning techniques might be applied to a system’s
issue tracking system to automatically learn how to categorize new issues as they

Towards Bridging the Value Gap in DevOps 189

Table 2. Summary of feature identification in three open source systems

Feature designation Challenges

Kubernetes Labelling Largely manual; Value implicit
and inconsistent

Moodle Issue structure and
prioritization

Multiple approaches; Value
implicit and inconsistent

Firefox (Testpilot) Unclear how relates
to feature tracking

Multiple approaches; Value
implicit and inconsistent

are entered appropriately (e.g., as a feature or technical debt). Tool support that
could help produce a well-categorized set of issues from which to learn could help
improve the learning process. The advantage of creating such an approach would
be to help ensure the items flowing into a value stream are more consistently
defined.

The consistent descriptions of work being performed through well-categorized
issues could then be connected to value through telemetry approaches or focus
groups. An area to explore is the development of rules or patterns to tag defined
work with likely value quanta. Over time, feedback could be used to refine the
tagging of likely value up-front to allow organizations to manage and optimize
their value stream. If likely value could be tagged against defined work, it might
also allow negotiation of value to be delivered with potential customers.

An enhanced early ability to consistently define features and estimate their
value, coupled with an ability to track features across the value stream of a prod-
uct, such as provided by the Flow FrameworkTM, would enable a full lifecycle
approach to delivering the features of true use and value to end users faster.

Acknowledgements. Support provided by NSERC RGPIN-2016-03758 is gratefully
acknowledged. The authors would also like to thank the anonymous reviewers for their
helpful comments in revising this work.

References

1. Ali, N.B., Petersen, K., Schneider, K.: Flow-assisted value stream mapping in the
early phases of large-scale software development. J. Syst. Softw. 111, 213–227
(2016)

2. Boehm, B.W.: Value-based software engineering. ACM SIGSOFT Softw. Eng.
Notes 28(2), 4 (2003)

3. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Software 33(3),
94–100 (2016)

4. Gene Kim, G.S., Behr, K.: The Phoenix Project. IT Revolution Press (2013)
5. Kauppinen, M., Savolainen, J., Lehtola, L., Komssi, M., Töhönen, H., Davis, A.M.:

From feature development to customer value creation. In: 17th IEEE Interna-
tional Requirements Engineering Conference, RE 2009, Atlanta, Georgia, USA, 31
August–4 September 2009, pp. 275–280 (2009)

190 G. C. Murphy and M. Kersten

6. Kersten, M.: Project to Product. IT Revolution Press (2018)
7. Larman, C., Basili, V.R.: Iterative and incremental development: a brief history.

IEEE Comput. 36, 47–56 (2003)
8. Mougouei, D., Perera, H., Hussain, W., Shams, R.A., Whittle, J.: Operationalizing

human values in software: a research roadmap. In: Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pp. 780–784 (2018)

9. Software engineering: Report on a conference sponsored by the NATO science
committee (1968). http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.
PDF

10. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Addison-Wesley, Boston (2003)

11. Research, D.: Assessment: 2017 state of DevOps (2017). http://services.google.
com/fh/files/misc/state-of-devops-2017.pdf

12. Research, D.: Assessment: Accelerate: State of DevOps: Strategies for a new econ-
omy (2018). http://services.google.com/fh/files/misc/state-of-devops-2018.pdf

13. Rodŕıguez, P., Mendes, E., Turhan, B.: Key stakeholders’ value propositions for
feature selection in software-intensive products: an industrial case study. IEEE
Trans. Softw. Eng. (2018)

14. Royce, W.: Managing the development of large software systems. Proc. IEEE
WESCON 26, 1–9 (1970)

15. Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K.L., Stumm, M.: Contin-
uous deployment at Facebook and OANDA. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering, ICSE, pp. 21–30 (2016)

16. Williams, L.: Agile software development methodologies and practices. Adv. Com-
put. 80, 1–44 (2010)

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://services.google.com/fh/files/misc/state-of-devops-2017.pdf
http://services.google.com/fh/files/misc/state-of-devops-2017.pdf
http://services.google.com/fh/files/misc/state-of-devops-2018.pdf

ArchiMate as a Specification Language for Big
Data Applications - DataBio Example

Andrey Sadovykh1(B), Alessandra Bagnato2, Arne J. Berre3, and Stale Walderhaug3

1 Innopolis University, Innopolis, Russia
andrey.sadovykh@innopolis.ru

2 Softeam, Paris, France
alessandra.bagnato@softeam.fr

3 SINTEF, Oslo, Norway
{arne.j.berre,stale.walderhaug}@sintef.no

Abstract. In this paper we discuss our method on applying the ArchiMate mod-
elling language for specification in the context of Big Data applications. The
DataBio project [1] develops the pilot applications for bioeconomy industry by
applying Big Data technologies. The project regroups 26 pilots from 17 different
countries to be implemented and deployed with more than 40 components and
services. The choice of ArchiMate [2] is motivated by the need to express the
overall business context of each pilot in conjunction with the technical architec-
ture for possible solutions from various perspectives. The ArchiMate bridges the
gap between those perspectives and can serve as an input for the model-driven
development of Big Data applications. The authors provide the essence of the
method and illustrate it with an example.

Keywords: ArchiMate · DataBio · Specification · Big Data · Bioeconomy

1 Introduction

When it comes to the requirements many approaches exist such as story points, use
cases or even formal specifications. We argue that in Big Data applications the tech-
nical requirements are strongly linked to the company strategy and should support the
business goals. Filling the gap between company goals, Big Data applications and tech-
nical infrastructure is a tedious task. Enterprise Architecture approaches and ArchiMate
modelling notation provide an interesting perspective, though they were not specifically
applied to the Big Data domain. In this paper we intend to generalize our experience in
modelling 26 Big Data applications with ArchiMate in DataBio project.

The DataBio project selected the Data-Driven Bioeconomy as data intensive target
sector for the study. The project focuses on building Big Data application pilots to
contribute to the production of the best possible raw materials from agriculture, forestry
and fishery/aquaculture for the bioeconomy industry, in order to output food, energy
and biomaterials, also considering various responsibility and sustainability issues [3].
More specifically, the project is handlingmassive flows of data collected through sensors

© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 191–199, 2020.
https://doi.org/10.1007/978-3-030-39306-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_14

192 A. Sadovykh et al.

placed in the soil and air, as well as from aerial and satellite imagery. The DataBio [1]
consortium includes 48 partners from17 countries and over 100 associated organizations.

The project’s mission is driven by the development, use and evaluation of the 26 new
pilots covering agriculture (13), forestry (7) and fishery (6). The project is deploying over
90 state-of-the-art Big Data, Earth Observation and ICT technologies, linked together
through the DataBio Platform. DataBio modelled the Big Data pilots from a number
of perspectives i.e. technical and data, business motivation and processes, strategic.
The technologies have been matched and combined with each other to form innovative
complex solutions - data pipeline for each pilot. Currently the DataBio platform - a
generic set of Big Data technology components and Big Data pipelines for all pilots are
fully developed.

Given the scale, the project faced several challenges that are addressed in part by the
authors with the approach described in this paper. These challenges include:

• Establishing communication between many business users who provided the pilots
and technology components providers.

• Specifying the business goals, technical requirements, available data sets and thought
data processing pipeline in a structured, linked manner with a possibility to trace to
the technical architecture.

The use of Enterprise Architecture paradigm is advocated bymany authors as an app-
roach to reconcile business strategy, goals, organization with IT systems. In particular,
[4] suggests the application of ArchiMate for modelling Enterprise Architectures fol-
lowing The Open Group Architecture Framework (TOGAF). This framework proposes
several layered views that allow to structure the information for different stakeholders
in an organization.

ArchiMate providesmodelling concepts on each of TOGAF layers.UsingArchiMate
as a specification tool in the DataBio project, each dataset/datastream is related explicitly
to a set of pilot systems, stakeholders, components and/or pipelines. The ArchiMate
motivation and strategy diagrams specify the goals, drivers and outcomes of each pilot
system, indicating the relevance and use of the datasets/streams in business processes.
In the following section we provide more details and give an example.

2 Applying ArchiMate to Modelling DataBio Pilot Systems

All pilots in DataBio are modelled in ArchiMate following the methodology outlined in
[5] developed in part by the authors. In this paper we present the essence of the approach
with an example.

In order to cover the most interesting aspects several ArchiMate views has been pri-
oritized for each pilots specification. Views are specific diagrams that represent relations
among certain concepts in a particular area. In the list below we provide the view name
with the major concepts to be used in modelling DataBio pilots:

ArchiMate as a Specification Language for Big Data Applications 193

1. Motivation view with the major elements including Goals1, Stakeholders, Drivers,
Assessment, Principle.

2. Strategy view has outlined major Resources, Capabilities and Course of actions.
3. For Business Processes were summarized along with involved Actors, Events,

Interactions and Functions.
4. Data Structures were modeled by borrowing Business Object and Data Object

concepts
5. For the Application Layerswe applied the Big Data Value Association (BDVA [6])

layered approach to represent the Application concepts such as Components, Func-
tion, Collaboration and Service. Those concepts contributed to map the pilot appli-
cation structure in several BDVA-specific categories including Infrastructure, Data
Management, Data Processing, Data Analytics, Visualisation and User Interface.

The ArchiMate motivation and strategy diagrams specify the goals, drivers and out-
comes of each pilot system, indicating the relevance and use of the datasets/streams.
Figure 1 shows a strategy diagram from the B2 fishery pilots where the goals and
outcomes are realized through extensive data collection and processing.

Fig. 1. ArchiMate strategy diagram showing how the pilot system will realize the defined goal.

As it is shown in Fig. 1 the major targeted Goal for that fishery pilot is to “improve
catch revenue” related tomajorOutcomes such as “Optimized routing to preferredfishing
location” and “Species distribution hindcasts and forecasts”. Those goal and outcomes

1 Note: hereafter, we will use italic in order to highlight the applied ArchiMate concepts.

194 A. Sadovykh et al.

are related to Course of action represented by “providing decision support for pelagic
fisheries planning”, which subsequently is divided into two more Courses of action. The
Courses of action are realized by strategicCapabilities such as “Data collection system”
and others. The Capabilities are supported by strategic Resources such as “SINMOD
Zooplankton model”.

Furthermore, ArchiMate is used to model pilot applications that realize outcomes.
Figure 2 shows how the “Provide decision support for pelagic fisheries planning” (shown
in Fig. 1) is supported by a set of Business Processes such as “Log catch details”, Busi-
ness Objects representing datasets such “Electronic catch report”, Stakeholders such as
“VesselMaster”,Actors such as “Pelagic Vessel Skipper” andBusiness Interactions such
as “Analyse catch”, provided through Business Interfaces such as “Fuel consumption”.

Fig. 2. ArchiMate business diagram showing the data processing, datasets and actors involved.

The information structure diagram (Fig. 3) identifies Business Objects such as
“EO Data”, “Vessel Operation Data”, “Meteorological Forecast” and “Electronic catch
reports” as required datasets/streams. Each Business Object dataset can then be broken
down into Data Objects such as for example “Air pressure” realizing “Meteorological
Forecast”.

The above example is further described in details in [5]. In parallel, the technology
partners specified their provided DataBio platform components with the ArchiMate
Technical Application view concepts as detailed in [7].

ArchiMate as a Specification Language for Big Data Applications 195

Fig. 3. ArchiMate information structure view for one of the DataBio fishery pilots (B2).

Fig. 4. The B2 fishery pilot lifecycle view showing how data is provided as input to processing
steps.

At the later stages of the DataBio project, the pilot partners such as SINTEF devel-
oped their Big Data systems using both their data sets as well as components provided by
technology partners. For coordinating the development activities and enable the sharing
of data sets and technology components, it was required to provide a global view of
pilot lifecycle. Figure 4 depicts the pipeline given by Processes such as “Collect input
Data” as participating datasets represented by Business Objects such as “Small Pelagic
Catch Data” and involved Application Components such as “Vespa Search Platform” or
widely used “SINTIUM” for satellite data provision. The pipeline is emphasized by the

196 A. Sadovykh et al.

sequence of processes such as “Prepare Data”, “Compute Derived Data” and “Publish
Derived Data”.

To further specify the application architecture, a pipeline view is created for each
pilot system as depicted in Fig. 5. The pipeline shows the Application Components such
as “Vespa Search Platform” and “Fish Prediction Component” communicating over
Application Interface such as “IF-REST-JSON”.

Fig. 5. The B2 fishery pilot pipeline view showing a logical view application components
connection over interfaces.

For Big Data application components and data location may play a critical role.
We proposed to apply a specific view to describe the location (Fig. 6). This helped to
identify the major sites and need for specific telecommunication infrastructure for the
data exchange.

This stage of the Big Data application specification is further developed in [8].

ArchiMate as a Specification Language for Big Data Applications 197

Fig. 6. The B2 fishery pilot location view specifying deployment of the application from location
point.

3 Discussion, Related Works and Conclusions

The stakeholders of the project have appreciated the ability to describe their pilots from
various perspectives. In particular the traceability integrated the Modelio ArchiMate
modelling tool [9] was helpful in linking stakeholders, processes, requirements, data sets
and technology pipelines. The technology providers could benefit from the automated
derivation of requirements to the more detailed architectural level including UML. The
data object concepts may map directly to UML classes. The ArchiMate model served to
coordinate pilot and technology development activities. The method helped us at vari-
ous stages of the project starting at the requirements specification in the very beginning
giving means to identify the business goals for the pilot development as well as impor-
tant constraints such as available data sets. In the middle of the project ArchiMate was
helpful to centralize specification of over 40 technology components to identify com-
patibilities, overlaps and complementary services. Finally, at the pilot implementation
ArchiMate provided sufficiently abstract and detailed modelling notation to represent
mapping the needs by pilots and available technology components. Last but not least,
the European Commission’s Horizon 2020 projects are heavy on documentation deliver-
ables. The ArchiMate model and tooling provided an important means for collaborative
documenting of that complex project. The important information could be extracted to
serve several reports. The tooling helped to represent that information in a consistent
way, which is always a challenge when over 40 editors are involved.

198 A. Sadovykh et al.

In Big Data context it is essential to address rapidly changing requirements both
business and technical. In this context dealing with specifications on the modelling level
helps to quickly identify the impact of changes on the technical architecture - lifecycle
and pipelines. On the other hand, the changes in the technology should be carefully
monitored with regards to their impact on the company’s business goals and strategy.
That way having the ArchiMate model as a specification facilitates communication and
helps to monitor all changes.

The ArchiMate is certainly not enough detailed to specify the technical architecture
from the developer standpoint. However, in conjunction with UML, ArchiMate may
represent an initial step to applying model-driven methods that was developed in a
set of research projects such as SHAPE [10], REMICS [11], MODACLOUDS [12],
JUNIPER [13], DICE [14] and MELODIC [15]. Moreover, as it is presented in those
studies and in particular in [16] models can be effectively applied to Cloud and Big Data
application with the goal to reduce coding and configuration by providing the right level
of abstraction for automatic generation of the technical artifacts. Furthermore, rasing in
abstraction, [17] indicated the way to apply in conjunction ArchiMate, UML and BPMN
in the Enterprise Architecture modelling by following TOGAF. However, the literature
is missing to provide concrete recipes for Big Data applicationmodelling on the business
level. In this context the current paper gives a glance at that domain.

We would like to conclude that ArchiMate allows to decrease the uncertainty about
the purpose and structure of Big Data applications. The approach helped in coordinating
efforts of many organizations involved in piloting DataBio and boosting the output of
the project. Those results include Big Data technology components, data sets, pipelines
and pilots for Bioeconomy [18] and are now publicly available.

Acknowledgments. This work is partially funded by the DataBio project grant No. 732064 under
European Commission’s Horizon 2020 research and innovative programme. In addition, this work
was supported by the Russian Science Foundation grant No. 19-19-00623.

References

1. Databio. In: DATABIO Data-driven Bioeconomy. https://www.databio.eu/. Accessed 21 Nov
2019

2. ArchiMate® 3.1 Specification. http://pubs.opengroup.org/architecture/archimate3-doc/.
Accessed 21 Nov 2019

3. DataBio European Commission’s Horizon 2020 project. In: DATABIO Data-driven Bioecon-
omy. https://www.databio.eu/. Accessed 21 Nov 2019

4. TOGAF®Framework andArchiMate®Modeling LanguageHarmonization: A Practitioner’s
Guide toUsing theTOGAF®Framework and theArchiMate®Language. https://publications.
opengroup.org/w14c. Accessed 21 Nov 2019

5. DataBio: D3.1 Fishery Pilot Definition – v1.0. https://www.databio.eu/wp-content/uploads/
2017/05/DataBio_D3.1_FisheryPilotDefinition_v1.0_2017_10_20_SINTEF_Ocean.pdf.
Accessed 25 Nov 2019

6. BDVA. http://www.bdva.eu/. Accessed 25 Nov 2019
7. DataBio: D4.3 Data sets formats and models. https://www.databio.eu/wp-content/uploads/

2017/05/DataBio_D4.3-Data-sets-formats-and-models_public-version.pdf. Accessed 21
Nov 2019

https://www.databio.eu/
http://pubs.opengroup.org/architecture/archimate3-doc/
https://www.databio.eu/
https://publications.opengroup.org/w14c
https://www.databio.eu/wp-content/uploads/2017/05/DataBio_D3.1_FisheryPilotDefinition_v1.0_2017_10_20_SINTEF_Ocean.pdf
http://www.bdva.eu/
https://www.databio.eu/wp-content/uploads/2017/05/DataBio_D4.3-Data-sets-formats-and-models_public-version.pdf

ArchiMate as a Specification Language for Big Data Applications 199

8. DataBio: D3.2 Fishery Pilots intermediate report. https://www.databio.eu/wp-content/
uploads/2017/05/DataBio_D3.2-Fishery-Pilots-intermediate-report_v1.0_2018-12-28_
AZTI1.pdf. Accessed 25 Nov 2019

9. Modelio BA - Archimate Enterprise Architect. In: Modeliosoft. https://www.modeliosoft.
com/en/products/modelio-ba-archimate-enterprise-architect.html. Accessed 21 Nov 2019

10. Sadovykh, A., Desfray, P., Elvesaeter, B., et al.: Enterprise architecturemodeling with SoaML
using BMM and BPMN - MDA approach in practice. In: 2010 6th Central and Eastern
European Software Engineering Conference (CEE-SECR) (2010)

11. Sadovykh, A., Hein, C., Morin, B., Mohagheghi, P., Berre, A.J.: REMICS- REuse andMigra-
tion of legacy applications to Interoperable Cloud Services. In: Abramowicz, W., Llorente,
I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.) ServiceWave 2011. LNCS, vol. 6994,
pp. 315–316. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24755-2_32

12. Nitto, E.D., Di Nitto, E., da Silva,M.A.A., et al.: Supporting the development and operation of
multi-cloud applications: theMODAClouds approach. In: 201315th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (2013)

13. da Silva, M.A.A., Sadovykh, A., et al.: JUNIPER. In: Proceedings of the 10th Central and
Eastern European Software Engineering Conference in Russia on CEE-SECR 2014 (2014)

14. Casale, G., Ardagna, D., Artac,M., et al.: DICE: quality-driven development of data-intensive
cloud applications. In: 2015 IEEE/ACM7th InternationalWorkshop onModeling in Software
Engineering (2015)

15. Horn, G., Skrzypek, P.: MELODIC: utility based cross cloud deployment optimisation. In:
2018 32nd International Conference on Advanced Information Networking and Applications
Workshops (WAINA) (2018)

16. Bergmayr, A., Breitenbücher, U., Ferry, N., et al.: A systematic review of cloud modeling
languages. ACM Comput. Surv. 51, 1–38 (2018)

17. Desfray, P., Raymond, G.: TOGAF, Archimate, UML et BPMN - 3e éd. Dunod (2019)
18. DataBio Hub. http://www.databiohub.eu/. Accessed 21 Nov 2019

https://www.databio.eu/wp-content/uploads/2017/05/DataBio_D3.2-Fishery-Pilots-intermediate-report_v1.0_2018-12-28_AZTI1.pdf
https://www.modeliosoft.com/en/products/modelio-ba-archimate-enterprise-architect.html
https://doi.org/10.1007/978-3-642-24755-2_32
http://www.databiohub.eu/

Fallacies and Pitfalls on the Road to
DevOps: A Longitudinal Industrial Study

Alessandro Caprarelli1, Elisabetta Di Nitto1,
and Damian Andrew Tamburri2(B)

1 Politecnico di Milano, Milan, Italy
2 TU/e - JADS, ’s-Hertogenbosch, The Netherlands

d.a.tamburri@tue.nl

Abstract. DevOps has come into play to help companies in improving
their product delivery. This paper offers an overview of the fallacies and
pitfalls faced in this context by engineers and operators in an industrial
case-study. We reveal a total of 8 key fallacies and pitfalls that span the
organisational structure, technical structures, as well as software process
and delivery mechanisms in the target case-study. Practitioners can use
these challenges as references for diagnosing their own scenario while
planning their own potential DevOps process migration strategy.

Keywords: Process migration · DevOps quality · Organizational and
technical aspects

1 Introduction

DevOps is a methodology aiming at bridging the gap between Development
(Dev) and Operations, emphasizing communication and collaboration, continu-
ous integration, quality assurance and delivery with automated deployment [1].
It is based on a variety of practices, some of which very well-known and estab-
lished such as Continuous Integration (CI) and Continuous Deployment (CD);
as an overall movement, however, DevOps bases all its approaches in breaking
down the barriers between the development and operations departments, stress-
ing the point of a more collaborative culture. DevOps [2] has gained a wide
popularity in the last decade thanks to some companies that have adopted it
and received benefits from it. However, many companies are striving at adopting
it, facing several key organisational, socio-technical, and technical challenges in
process and product engineering due to their prior assets and production cycle.

This paper offers an overview of the fallacies and pitfalls faced by the engi-
neers and operators involved in the migration to DevOps in a real-life industrial
scenario. The analysis is based on a direct ethnographic observation [3] over a
period of 9 months. We reveal a total of 8 key fallacies and pitfalls that span
the organisational structure, technical structures, as well as software process
and delivery mechanisms in the target case-study. For example, we reveal that
testing, as part of the delivery activity that packages and prepares a product
c© Springer Nature Switzerland AG 2020
J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 200–210, 2020.
https://doi.org/10.1007/978-3-030-39306-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_15

Fallacies and Pitfalls on the Road to DevOps 201

for deployment, is often subject to latency times connected bottleneck effects
[4] in the organizational structure. Similarly, manual pre-deployments are often
needed for specific components or connectors in the infrastructure—these pre-
deployments compromise the stability of the delivery pipeline and lead to time-
waste.

The rest of this paper is organized as follows: Sect. 2 introduces the ele-
ments relevant to the presented case study, that is, Continuous Integration (CI),
Continuous Deployment (CD) and DevOps; Sect. 3 presents our study and the
challenges we have identified; Sect. 4 offers a preliminary idea of how to address
the challenges and outlines a road map for further analysis aiming at assessing
the impact of the proposed solution. Finally, Sect. 5 concludes the paper.

2 Background

2.1 Continuous Integration (CI)

CI is a software development methodology that requires developer to integrate
their code more often in order to have faster feedback cycles and to reduce the
overhead and workload of bigger and postponed integration.

The term was proposed by Booch et al. [5] already in 1991. He said “In
this evolutionary approach there is no big bang integration” [5]. This practice
has then gained momentum starting from around 2010 when open source soft-
ware like Jenkins1 and Travis-CI2 had started to come out and made the life of
developers easier.

Principles and Practices. Continuous integration puts a great emphasis on
automation. Its core practice and enabler is the automation of the build process.
On top of this, and second main point of CI, there is test automation. This is
important for checking that the application is not broken whenever new commits
are integrated into the main branch.

Another key practice of CI is to commit to the main code baseline daily or
whenever an atomic development is completed [6]. Each commit should automat-
ically trigger a build and test pipeline with the goal of assuring that no breaking
code is merged into the main repository.

Benefits. One of the greatest benefits of CI is the reduced risks for develop-
ers when code integration is carried out. Bugs will always exist but thanks to
frequent tests it is easier to find and remove them [6]. This faster error detec-
tion leads to higher productivity and more code quality [7]. Such faster error
detection also increases the deployment frequencies thus reducing the time for
feedback from end users [8].

1 https://www.jenkins.com.
2 https://www.travis-ci.com.

https://www.jenkins.com
https://www.travis-ci.com

202 A. Caprarelli et al.

Typical Challenges. However, introducing CI practice is not pain-free. Orga-
nizations may face many challenges and problems in different areas, starting from
the people to the technologies used, when they try to introduce more automation
in the delivery pipeline. The most commonly found challenges from literature
are:

– Smaller changes and commit often: this can be a paradigm shift for developers
used to release big parts of code [8].

– Maintain a fast-running set of comprehensive automated unit tests: since
developers should run tests often, those tests must be optimized and the
tests suite should be easy to maintain and to enhance [6].

– Set-up and maintain the build and test system: this requires effort and work
and it can become complex and costly. However, there are both proprietary
and open-source software that can help with this [9].

– Dealing with large monolithic applications: normally legacy software is large
and monolithic and it fits with difficulty in a fast-oriented CI pipeline [9].

The challenges include all the areas of a company. The process followed for
delivering software may need some changes as well as the architecture of the
components. Also, people need to be trained and others with a diverse skills set
may need to be hired.

2.2 Continuous Delivery (CDE) and Continuous Deployment (CD)

Continuous Delivery, often abbreviated with CDE, is a software engineering app-
roach that aims at building, testing, and releasing software with greater speed
and frequency. The main idea behind CDE is keeping always the software in
a deployable state. It can be seen as an extension of CI where the level of
automation extends even to acceptance tests [10]. By doing so, almost all the
possible parts of a deployment pipeline are extensively automated [11] except
for the step that brings code from deployment to production. Automating also
this latest step results in Continuous Deployment (CD).

Principles and Practices. As in CI, the core principle is the automation of
repetitive tasks and should be based on the execution of tests in an environment
that should be as similar as possible to the production one [12].

In addition to the tools related practices, CD requires also a change in peo-
ple mentality and in the process. Big releases with a long and tense integra-
tion period are discouraged and people must collaborate more often in order to
quickly solve the problems that may arise. The main code base should always
be solid without failing tests.

Benefits. Similarly to CI, CD claims many benefits, mostly related to the heavy
usage of automation practices. The main ones are:

– Reduced Deployment Risk: smaller changes are deployed at every push and
therefore the possible problems and fixes should be smaller [11].

Fallacies and Pitfalls on the Road to DevOps 203

– Faster user feedback: once a fix or feature is ready it can be shipped to
production and a feedback from end users can be received earlier [9,11].

– More reliable releases: at every push the build system runs a test suite and
goes further only in case of successful tests. Also, since everything is auto-
mated, rollback in case of failures is almost painless [9].

– Less stress: the responsibility of a release is distributed among many actors
of the delivery pipeline such as IT operations, testers, developers [13].

Typical Challenges. A key challenge for CD is the creation of substantial and
durable test cases. More specifically, in connection to CI, tests must spread from
code tests (unit tests) to end-to-end tests (UI tests). However, test suites showing
high coverage percentages alone cannot ensure code quality, since intermittent,
non-deterministic, or unknown bugs may still remain hidden [14]. To cope with
these, approaches such as chaos tests are being developed.

2.3 Main Characteristics of DevOps

DevOps can be seen as an evolution of both CI and CD as it aims at covering
the whole lifecycle of software, from its conception to its maintenance that can
greatly benefit from the collaboration between Dev and Ops people. Thanks
to this, DevOps is now one of the hottest topic in software engineering and
has gained attention both by academic researches and industry practitioners
[1,15,16].

Principles and Practices. As stated above, DevOps definitions cover many
facets. The key principles are well summarized by the acronym CAMS, coined by
Damon Edwards and John Willis at Devopsdays in Mountainview 2010 and later
extended to CALMS [16–18]. The origin of this acronym can be traced mostly
in gray literature, specifically in industry technical reports, industry journal and
blog posts [16]. [16] and [17] both add to CALMS one more principle that is
Quality Assurance. [19] agrees on the same principles, calling them enabler cate-
gories, and stresses the collaborative culture point. Therefore, the key principles
behind a successful DevOps adoption are:

– Culture of collaboration between all the people involved in the development
and operations team.

– Automation, usually linked with deployment automation and test automa-
tion, infrastructure provisioning and management, monitoring and recovery
automation [19].

– Lean, that is, focus on incremental improvements and splitting the work into
small batches, which are then released frequently.

– Measurement of the right information to give insight on the performances
of the processes and to support the decision-making process [16].

– Quality Assurance as an integral part of the DevOps process.
– Sharing and learning among the people.

204 A. Caprarelli et al.

These principles have been instantiated in a number of practices needed for
a successful DevOps adoption [20]. These practices are grouped in the three
macro areas people, process, technology [21] that drive successful organization
transformation plans.

DevOps is historically seen as the one that evolved from CI and CD. When an
organization wants to improve its software development process, it often starts
with adding more CI practices that are the foundation for higher software quality
and more frequent releases. Then it increments the automation reaching a more
mature state (CDE) in which the software can be deliverable at any time, until
the point in which software can be automatically pushed to production without
worrying (CD). Figure 1 shows this evolution toward the complete automation
of the testing and deployment pipeline.

DevOps, however, is more than automation as it focuses also on cultural and
human aspects highlighting the roles and importance of people and emphasizing
the responsiveness of the process.

Fig. 1. CI, CD and DevOps.

Benefits. Organizing the software lifecycle around DevOps has the potential to
produce several benefits. It enables more collaboration between development and
operations, the two departments that are opposed by nature, it allows the whole
team to achieve a better understanding of the system in terms of both its design
characteristics and its properties at runtime (resilience, availability, performance,
robustness...), it increases the frequency of releases and deployment (PuppetLabs
states that deploys can increment up to 200x [13]), it results in an improvement
of system reliability thanks to a deeper understanding of the system by all the
people involved.

Fallacies and Pitfalls on the Road to DevOps 205

Typical Challenges. Even though many researches still say that there is little
about DevOps in literature, enough works already list a considerable number of
challenges faced by organizations during a DevOps adoption. First of all, DevOps
adoption requires an in-depth revision of the processes and the structure of the
involved organization. Typically, it affects departments, Dev and Ops, that are
traditionally separated. The siloed approach does not help in this case and must
be broken down. Development and operation department should be collaborating
and working together rather than relate to each other on a service basis.

Another big challenge is the lack of awareness in DevOps and in its implica-
tions and potential. The greater opportunity to share information between Dev
and Ops, implies also the need for retraining or hiring new people with a wide
range of skills on both development and operation.

Even the toolset being adopted in the software lifecycle requires a DevOps
transformation. In fact, a CI/CD pipeline, that is fundamental in DevOps,
implies the set-up and maintenance of new tools and services. In addition, auto-
mated build and test processes may require automation also in infrastructure
management and alignment of data between the development, testing and oper-
ational environments.

3 Migrating to DevOps: A Longitudinal Study

Stemming from the aforementioned background, we have analysed the case of a
company that was in the process of starting a migration toward DevOps. The
purpose was to properly elaborate on the most critical organisational, socio-
technical, and technical challenges to be faced during the migration, such that
researchers and practitioners can focus their efforts around the most dire and
urgent/impactful issues. We adopted a longitudinal study methodological app-
roach, that is research design that involves repeated observations of the same
variables (e.g., practitioners in our target organization) over long periods of time
(i.e., uses longitudinal data) [22].

3.1 Research Question and Method

This study addresses a single key Research Question (RQ):

What challenges have emerged during the DevOps adoption process?

The method employed for answering the aforementioned RQ was software pro-
cess [23] ethnography [3], where the lead author researched and studied the
available documentation, as well as observed the daily activities of the teams
involved, noting down incrementally in a fully-catalogued and coded lab jour-
nal [24] any technical, social, or organisational detail concerning the process in
question. Finally, the researcher in question applied theme coding [25] and tax-
onomy analysis [26] over the dependencies and documentation of all the available
tools and code in order to draft an overview of the delivery process. In addition
to this self-study, a round of semi-structured interviews to the 18 developers

206 A. Caprarelli et al.

involved in the study was carried out as control and triangulation data in order
to verify the correctness of the assumptions and findings elaborated via ethno-
graphic research. Moreover, the interviews served for understanding better the
real problems and for collecting possible ideas and solutions.

3.2 Case-Study Context

The studied organization is part of a big multinational operating in many sec-
tors from databases to cloud products, from Infrastructure-as-a-Service (IaaS)
to Software-as-a-Service (SaaS). The unit considered in the study is the con-
sulting unit of the company and focuses on selling and setting up Enterprise
Resource Planning (ERP) and Customer-Relationship Management (CRM) for
medium and big enterprises. In particular, the team that has been involved in
the research study works as a system integrator, with the goal of integrating the
several systems involved in this context. This practice is also known as Enterprise
Application Integration and its main goals are:

– Data integration: maintain the data consistency in the multiple systems.
– Vendor Independence: business rules are implemented in the integration layer

in order to avoid strict dependencies with the final applications.

The case under study features 1 + 5 projects, one sub-project for common and
reusable components that shape the core architecture of the project – this is
referred to as SP-C – and five sub-projects, each of them addressing different
business areas of the main project – these are referred as SP -x (x from 1 to 5).

The two types of sub-projects have different team compositions, organization
and goals. Our study has focused on all the aforementioned projects over the
duration of our longitudinal observational study.

3.3 Fallacies and Pitfalls Found

As previously outlined, the fallacies and pitfalls reported in this section stem
from the thematic coding of available longitudinal data. The coding itself was
analysed through card-sorting [27]. The challenges reported below emerged from
said card-sorting exercise. For the scope of this section, the labels {IC, FC, TST,
DEL, OPS, INT} identify roles of the 40+ people involved in the development
and operations of products maintained in our industrial case.

1. Testing Latency. Integration Consultants IC and Functional Consultants
FC wait for a long time before a release from development is deployed to
the TST environment for final testing. This is due to the insufficient number
of resources in the Delivery (DEL) and Operations (OPS) team. In Fig. 2
the problem is graphically explained and defined as the “Papillon effect”.
The Delivery and Operations team results to be a bottleneck for the delivery
process as it is composed only of two people that have to serve at least 20
DEVs and a similar number of OPS.

Fallacies and Pitfalls on the Road to DevOps 207

Fig. 2. Papillon effect, an overview.

2. Technical Re-skilling. The automation tools used for build and deploy
requires technical skills (linux, bash, network, DBs, cloud instances configu-
ration..) that not everybody owns. This prevents the possibility to open its
usage to IC and FC because this would require an intense training for them.

3. Ops Time-Waste. The workload of the people in Delivery and Opera-
tions team is extremely high. They spend an incredible amount of their time
in repeating the same instructions for deploying new components, because
nobody else is able to do it, while they should focus on more important tasks
such as controlling the health of the system and assuring high quality of the
deliverables. This is related to problems 1 and 2 where IC and FC wait for
DEL and OPS. Furthermore, the aforementioned conditions altogether reflect
conditions known as community smells which were themselves previously seen
in literature [28–30].

4. Staging Isolation. Developers do not use the automation tools for builds
and deploys to INT environment. This environment should be used for inte-
gration tests, possibly automated tests, with the objective of early detecting
problems in the release process or the deployment itself.

5. Manual Pre-deployment. Some components are being deployed manually,
pushing the artifacts to the right environment. This is prone to human error
(wrong version chosen, artifact placed and executed in wrong environment
or wrong location...) and time-consuming for the people in charge of deploy-
ing new releases. Also, the components that are deployed manually are not
tracked in the Registry tool, therefore, no information on their deployments
exist.

6. Build-Times Invisibility. No information on build time is stored in the
aforementioned Registry tool; this does not allow to improve the tool itself or
the rest of the pipeline based on the telemetry about the tool performances.

7. Build Unaccountability. The access to the build server is shared among all
the people, therefore there is no control on who has started previous builds
and deploys.

8. Test Lintering. TESTERS (IC, FC) requested to have an automated system
for doing simple integration tests at every release in order to save time and

208 A. Caprarelli et al.

early detect issues such as missing configuration, wrong naming conventions
and others blocking problems.

4 Road Map

According to interviews and final focus groups with the project stakeholders and
teams, the solution we identified and started to implement concerns the creation
of an automated infrastructure to support the work of the DEV&OPS team. We
will then be able to elaborate further on the challenges illustrated previously.

On the one hand, from a more qualitative perspective related to the afore-
mentioned challenges, we should try to enact content [31], root-cause [32], as
well as SWOT analyses [33] in a data-driven fashion (e.g., using predictive or
preemptive analytics in the scope of large-scale DevOps pipelines) to further
elaborate on each challenge and individually determine the dimensions along
which every challenge is born, evolved, and eventually reduced or solved.

On the other hand, from a more quantitative perspective, we should cross
data collected before and after the introduction of new capabilities designed to
address the aforementioned challenges. This research should bear the target of
understanding whether the introduced changes had improved (or made worse)
the delivery process performances as well as the software organizational structure
around that process.

The general purpose of both research streams should be to provide practices
and patterns that elaborate further on the identified challenges as well as auto-
mated ways to measurably quantify and manage the impact of each individual
challenge. One final research line should concentrate on embedding both afore-
mentioned research streams within state of the art and state of practice tools
currently used in DevOps pipelines.

5 Conclusions and Future Work

This paper offers a preliminary outline of the issues and fallacies connected to
the typical software process scenarios that companies typically try to address by
adopting DevOps practices. The work in this paper harnessed an ethnomethod-
ological longitudinal approach to study a real-life industrial case of migration to
DevOps. The scenario in question presented a bounty of issues and challenges
useful for practitioners to assess their own scenario with respect to a similar
case.

In terms of our own future work, we aim at investigating whether the tools we
implemented and deployed as part of the case-study DevOps pipeline actually
brought about an improvement of (1) the metrics typically used to appraise
the performances of the pipeline as well as (2) any perceivable improvement
of the software quality. The former can be addressed by analysing the metrics
previously used in the studied software process for the management appraisal of
that process—being an integral participant of the target case organisation, we
do have access to those metrics and plan to analyse them quantitatively along

Fallacies and Pitfalls on the Road to DevOps 209

the cases we studied in the context of this paper. The latter can be addressed by
studying the number of issues opened and the number of tests failing. Finally,
on the longer term, we aim at replicating the study on other organizations in
order to assess the validity of the challenges we have identified.

References

1. Jabbari, R., Ali, N., Petersen, K., Tanveer, B.: What is DevOps?: A systematic
mapping study on definitions and practices, p. 1, May 2016

2. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. SEI
Series in Software Engineering. Addison-Wesley, New York (2015)

3. Hammersley, M., Atkinson, P.: Ethnography. Routledge, London (2003)
4. Palomba, F., Tamburri, D.A., Serebrenik, A., Zaidman, A., Fontana, F.A., Oliveto,

R.: How do community smells influence code smells? In: Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings, pp.
240–241. ACM (2018)

5. Booch, G.: Object Oriented Design: With Applications. The Benjamin/Cummings
Series in Ada and Software Engineering. Benjamin/Cummings Pub., San Francisco
(1991)

6. Fowler, M., Foemmel, M.: Continuous integration (2005). http://www.
martinfowler.com/articles/continuousintegration.html

7. Infosys: getting started with continuous integration in software development (2017)
8. Duvall, P., Matyas, S., Duvall, P., Glover, A.: Continuous Integration: Improving

Software Quality and Reducing Risk. A Martin Fowler signature book. Addison-
Wesley, Boston (2007)

9. Chen, L.: Continuous delivery: huge benefits, but challenges too. IEEE Softw. 32,
50–54 (2015)

10. Ries: Continuous deployment in 5 easy steps (2009)
11. Fowler, M., Foemmel, M.: Continuous delivery (2013)
12. Thoughtworks: Continuous integration (2018)
13. PuppetLabs: Top benefits of continuous delivery: an overview (2014)
14. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests. In:

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pp. 643–653. ACM, New York (2014)

15. Dyck, A., Penners, R., Lichter, H.: Towards definitions for release engineering and
DevOps. In: 2015 IEEE/ACM 3rd International Workshop on Release Engineering,
p. 3, May 2015

16. França, B.B., Jeronimo Junior, H., Travassos, G.: Characterizing DevOps by hear-
ing multiple voices, September 2016

17. Erich, F., Amrit, C., Daneva, M.: A mapping study on cooperation between
information system development and operations. In: Jedlitschka, A., Kuvaja, P.,
Kuhrmann, M., Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014.
LNCS, vol. 8892, pp. 277–280. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13835-0 21

18. Erich, F., Amrit, C., Daneva, M.: A qualitative study of DevOps usage in practice.
J. Softw. Evol. Process. 29, e1885 (2017)

19. Luz, W.P., Pinto, G., Bonifácio, R.: Building a collaborative culture. In: Pro-
ceedings of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement - ESEM 2018 (2018)

http://www.martinfowler.com/articles/continuousintegration.html
http://www.martinfowler.com/articles/continuousintegration.html
https://doi.org/10.1007/978-3-319-13835-0_21
https://doi.org/10.1007/978-3-319-13835-0_21

210 A. Caprarelli et al.

20. Freeman, E.: DevOps For Dummies. Wiley, Hoboken (2019)
21. Leavitt, H., March, J.: Applied Organizational Change in Industry: Structural,

Technological and Humanistic Approaches. Carnegie Institute of Technology, Grad-
uate School of Industrial Administration (1962)

22. Hund, H., Gerth, S., Loßnitzer, D., Fegeler, C.: Longitudinal data driven study
design. In: Lovis, C., Séroussi, B., Hasman, A., Pape-Haugaard, L., Saka, O.,
Andersen, S.K. (eds.) MIE. Studies in Health Technology and Informatics, vol.
205, pp. 373–377. IOS Press (2014)

23. Fuggetta, A., Nitto, E.D.: Software process. In: Herbsleb, J.D., Dwyer, M.B. (eds.)
FOSE, pp. 1–12. ACM (2014)

24. Hsieh, H.F., Shannon, S.E.: Three approaches to qualitative content analysis. Qual.
Health Res. 15(9), 1277–1288 (2005)

25. Clark, A.Y., Li, Y., Jiang, Y.: Using natural language processing and qualitative
thematic coding to explore math learning and critical thinking. In: ICBDE, pp.
38–43. ACM (2018)

26. Carrion, B., Onorati, T., Dı́az, P., Triga, V.: A taxonomy generation tool for seman-
tic visual analysis of large corpus of documents. Multimed. Tools Appl. 78, 32919–
32937 (2019)

27. Lewis, K.M., Hepburn, P.: Open card sorting and factor analysis: a usability case
study. Electron. Libr. 28(3), 401–416 (2010)

28. Tamburri, D.A., Kazman, R., Fahimi, H.: The architect’s role in community shep-
herding. IEEE Softw. 33(6), 70–79 (2016)

29. Palomba, F., Tamburri, D.A.A., Arcelli Fontana, F., Oliveto, R., Zaidman, A.,
Serebrenik, A.: Beyond technical aspects: how do community smells influence the
intensity of code smells? IEEE Trans. Softw. Eng., 1 (2018)

30. Tamburri, D.A., Kazman, R., van den Heuvel, W.J.: Splicing community and soft-
ware architecture smells in agile teams: an industrial study. In: Bui, T. (ed.) HICSS,
ScholarSpace/AIS Electronic Library (AISeL), pp. 1–11 (2019)

31. Krippendorff, K.: Content Analysis: An Introduction to Its Methodology, 2nd edn.
Sage Publications, Thousand Oaks (2004)

32. Josefsson, T.: Root-cause analysis through machine learning in the cloud. Master’s
thesis (2017)

33. Khurana, A.: Understanding and using SWOT analysis. Technical report, About,
Inc. (2004). http://businessmajors.about.com/cs/casestudyhelp/a/SWOT.htm

http://businessmajors.about.com/cs/casestudyhelp/a/SWOT.htm

Author Index

Ahmad, Muhammad 37
Araújo, Luiz J. P. 37

Bagnato, Alessandra 191
Berre, Arne J. 191
Bobrov, Evgeny 1, 37
Bordeleau, Francis 139
Bucchiarone, Antonio 1, 15, 95

Cabot, Jordi 139
Capizzi, Antonio 37, 52
Capozucca, Alfredo 1
Caprarelli, Alessandro 200
Ciancarini, Paolo 63
Combemale, Benoit 84

De Sanctis, Martina 95
Di Nitto, Elisabetta 200
Dingel, Juergen 139
Distefano, Salvatore 37, 52
Dominiak, Jacek 121

Erofeeva, Irina 112

Ferry, Nicolas 121

Gallon, Anne 121
González, Elena 121
Guelfi, Nicolas 1
Guidi, Claudio 15

Iturbe, Eider 121
Ivanov, Vladimir 112

Kassab, Mohamad 152
Kersten, Mik 181

Lavirotte, Stéphane 121

Martinez, Saturnino 121
Masyagin, Sergey 1, 112
Mazzara, Manuel 1, 37, 52, 152
Metzger, Andreas 121
Mirhosseini, Samim 167
Missiroli, Marcello 63
Muntés-Mulero, Victor 121
Murphy, Gail C. 181

Nguyen, Phu H. 121

Palm, Alexander 121
Parnin, Chris 167

Rabil, Bassem S. 139
Rego, Angel 121
Renaud, Patrick 139
Rios, Erkuden 121
Riviera, Diego 121
Russo, Daniel 63

Sadovykh, Andrey 191
Solberg, Arnor 121
Song, Hui 121
Soysal, Kemal 15
Succi, Giancarlo 112

Tamburri, Damian Andrew 200
Tigli, Jean-Yves 121
Trubiani, Catia 95

Walderhaug, Stale 191
Wimmer, Manuel 84
Winter, Thierry 121

	Preface
	Organization
	Contents
	Teaching DevOps in Academia and Industry: Reflections and Vision
	1 Introduction
	2 Teaching in Academia
	3 Teaching in Industry
	4 Discussion
	5 Vision
	5.1 Phases of Software Engineering Education
	5.2 Transition Towards the New Curriculum

	6 Conclusions
	References

	A Model-Driven Approach Towards Automatic Migration to Microservices
	1 Introduction
	1.1 Structure of the Paper

	2 Background
	2.1 Microservices
	2.2 Model-Driven Engineering and Domain Specific Languages
	2.3 JetBrains MPS: A Text-Based Metamodelling Framework
	2.4 Jolie Language for Microservices

	3 Related Work
	4 Model-Driven Migration Approach
	4.1 The Microservice Language
	4.2 The Deployment Language
	4.3 Microservices Miner
	4.4 Microservices Generator

	5 Prototype Implementation
	6 Conclusion
	References

	Anomaly Detection in DevOps Toolchain
	1 Introduction
	2 Background
	2.1 The DevOps Toolchain
	2.2 Anomaly Detection in Software Development

	3 Integrating Anomaly Detection into DevOps
	4 A Case Study: SpaceViewer
	4.1 DevOps Toolchain
	4.2 Space Viewer Anomaly Detection System

	5 Experiments, Results and Discussion
	6 Conclusions
	References

	From DevOps to DevDataOps: Data Management in DevOps Processes
	1 Introduction
	2 DevOps and DataOps
	2.1 The DevOps Process and Toolchain
	2.2 DataOps

	3 DevOps Data
	4 DevDataOps
	4.1 DevOps Dataflow Pipeline
	4.2 DataOps Implementation

	5 Conclusions
	References

	Exploiting Agile Practices to Teach Computational Thinking
	1 Introduction
	2 Related Works
	3 Research Methodology
	4 Results
	4.1 Individual Learning
	4.2 Paired Learning
	4.3 Directed Group Learning
	4.4 Self-directed Group Learning

	5 Implications for Practice
	5.1 Learning Path
	5.2 The Influence of the Context

	6 Discussion
	7 Conclusions
	References

	Towards a Model-Based DevOps for Cyber-Physical Systems
	1 Introduction
	2 Overall Vision
	3 A CPS Demonstrator Calling for Model-Based DevOps Practices
	4 Research Roadmap
	4.1 From Dev to Ops
	4.2 From Ops to Dev
	4.3 Synopsis

	5 Looking Ahead
	References

	A DevOps Perspective for QoS-Aware Adaptive Applications
	1 Introduction
	2 Motivating Example
	3 Background
	4 Compliance of the Design for Adaptation with the DevOps Life-Cycle
	5 QoS-Based Evaluation of Adaptive by Design Applications
	5.1 Overview
	5.2 Experimentation

	6 Discussion
	7 Related Work and Conclusion
	References

	Learning Agility from Dancers – Experience and Lesson Learnt
	1 Introduction, Motivation and Hypothesis
	2 Background and Related Works
	3 Methodology
	4 Results and Discussion
	5 Conclusion
	References

	Development and Operation of Trustworthy Smart IoT Systems: The ENACT Framework
	1 Introduction
	2 The ENACT Approach
	2.1 Conceptual Architecture of the ENACT DevOps Framework
	2.2 Evolution and Adaptation Improvement Layer
	2.3 Evolution and Adaptation Management Layer
	2.4 Evolution and Adaptation Enactment Layer
	2.5 System Layer
	2.6 Monitoring and Analytics Layer

	3 An Example of the ENACT Workflow
	4 Trustworthiness as a Driver for Feedback Between Ops and Dev
	5 Shared Models and Artefacts
	6 Related Work
	7 Conclusion
	References

	Towards Modeling Framework for DevOps: Requirements Derived from Industry Use Case
	1 Introduction
	1.1 Problem
	1.2 Proposed Approach
	1.3 Outline of the Paper

	2 Related Work
	2.1 Background
	2.2 Current Works on DevOps Modeling

	3 Description of DevOps at Kaloom
	3.1 Product Build and Test Process
	3.2 Product Planning Process

	4 Requirements for Process Modeling Languages for DevOps
	4.1 General Requirements
	4.2 Description Requirements
	4.3 Analysis and Simulation Requirements

	5 Future Work
	6 Conclusion
	References

	Towards Designing Smart Learning Environments with IoT
	1 Introduction
	2 Related Work
	3 Monitoring Emotional State of On-line Learner: A Tool
	4 Challenges of Incorporating IoT in Education
	5 Conclusions
	References

	Opunit: Sanity Checks for Computing Environments
	1 Introduction
	2 Properties
	2.1 Availability
	2.2 Reachability
	2.3 Identifiable
	2.4 Capability

	3 Opunit
	3.1 Using Opunit
	3.2 Checks
	3.3 Environments
	3.4 Report

	4 Experiences
	4.1 Supporting Initial Course Setup
	4.2 Using Opunit for Workshops
	4.3 Student Feedback

	5 Future Directions
	6 Conclusion
	References

	Towards Bridging the Value Gap in DevOps
	1 Introduction
	2 Value in Software Engineering
	3 Framing the Software Development LifeCycle
	4 Value Streams
	5 Exploring Features in Open Source
	5.1 Kubernetes
	5.2 Moodle
	5.3 Firefox

	6 The Value Gap
	7 Bridging the Gap
	References

	ArchiMate as a Specification Language for Big Data Applications - DataBio Example
	1 Introduction
	2 Applying ArchiMate to Modelling DataBio Pilot Systems
	3 Discussion, Related Works and Conclusions
	References

	Fallacies and Pitfalls on the Road to DevOps: A Longitudinal Industrial Study
	1 Introduction
	2 Background
	2.1 Continuous Integration (CI)
	2.2 Continuous Delivery (CDE) and Continuous Deployment (CD)
	2.3 Main Characteristics of DevOps

	3 Migrating to DevOps: A Longitudinal Study
	3.1 Research Question and Method
	3.2 Case-Study Context
	3.3 Fallacies and Pitfalls Found

	4 Road Map
	5 Conclusions and Future Work
	References

	Author Index

