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Preface

Over the past few decades, digital advancements have continuously become an
essential aspect in almost all parts of the workplace. However, along with advancement
comes major threat to individuals, businesses, and government where information is
one the most valuable assets. Accordingly, compromise of these assets could lead to a
disastrous effect. Therefore, it is of paramount importance to continuously study and
developed new techniques to maintain information security.

The World Conference on Information Security Application (WISA) is one of the
main security research venues, hosted by the Korea Institute of Information Security
and Cryptography (KIISC), sponsored by the Ministry of Science, ICT and Future
Planning (MSIP), and co-sponsored by the Electronics and Telecommunication
Research Institute (ETRI), the Korea Internet and Security Agency (KISA), and the
National Security Research Institute (NSR). The conference is one of the Korean
flagships in the field of information security. In 2019, WISA celebrated its 20th
anniversary with the goal: “Towards the Best Contributor to Information Security
Applications.” It continues to serve as an open forum for the exchanging and sharing of
common research interests and results of research, development, and application in
information security areas.

This volume is composed of the extended version of papers presented at the 20th
World Conference on Information Security Applications (WISA 2019) held in Jeju
Island, South Korea, during August 21–24, 2019. This year’s conference was techni-
cally supported by Korea University, Soonchunhyang University, Soongsil University,
Pukyong National University, and Chugnam University. The purpose of the WISA
2019 was to continue bringing together researchers and engineers in security areas,
providing them with the opportunity to meet and discuss new ideas and technologies
about information security and applications. The primary focus of this year’s confer-
ence was on systems and network security including all other technical and practical
aspects of security application.

A total of 29 outstanding papers covering areas such as application and game
security, network security, blockchain, AI and machine learning, cryptography, IoT
security, and hardware security were accepted for presentation at WISA 2019. More-
over, invited keynote talks by Prof. Wenjing Lou (Virginia Tech) and Prof. Adrian
Perrig (ETH Zürich), as well as tutorial talks by Dr. Yousung Kang (ETRI), Dr. John
Choi (MarkAmy), CEO Louis Hur, and CIS Team Manager Seungjun Lee (NSHC)
augmented the conference.

With the great effort of the Organizing Committee and reviewers, support of the
sponsor and co-sponsors, and active participation of all the participants,WISA2019was a
great success during the celebration of its 20th anniversary. We would like to acknowl-
edge the contribution of each invidual ProgramCommittee member as well as our sincere
gratitude to all the reviewers, authors, and participants for their unending support.

October 2019 Ilsun You
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Show Me Your Account: Detecting
MMORPG Game Bot Leveraging
Financial Analysis with LSTM

Kyung Ho Park1, Eunjo Lee2, and Huy Kang Kim1(B)

1 Graduate School of Information Security, Korea University,
Seoul, Republic of Korea

{kyungho96,cenda}@korea.ac.kr
2 NCSOFT, Seoul, Republic of Korea

gimmesilver@ncsoft.com

Abstract. With the rapid growth of MMORPG market, game bot
detection has become an essential task for maintaining stable in-game
ecosystem. To classify bots from normal users, detection methods are
proposed in both game client and server-side. Among various classifica-
tion methods, data mining method in server-side captured unique char-
acteristics of bots efficiently. For features used in data mining, behavioral
and social actions of character are analyzed with numerous algorithms.
However, bot developers can evade the previous detection methods by
changing bot’s activities continuously. Eventually, overall maintenance
cost increases because the selected features need to be updated along
with the change of bot’s behavior.

To overcome this limitation, we propose improved bot detection
method with financial analysis. As bot’s activity absolutely necessitates
the change of financial status, analyzing financial fluctuation effectively
captures bots as a key feature. We trained and tested model with actual
data of Aion, a leading MMORPG in Asia. Leveraging that LSTM effi-
ciently recognizes time-series movement of data, we achieved meaningful
detection performance. Further on this model, we expect sustainable bot
detection system in the near future.

Keywords: MMORPG · Game bot detection · LSTM neural networks

1 Introduction

Online game plays a huge role in modern leisure. With 44.6 billion US dollars
of market share estimated by 2022, Massively Multiplayer Online Role-Playing
Game (MMORPG) takes significant position in global market [12]. MMORPG is
a game genre that users have own characters to play various activities in a virtual
world. They combat with monsters, accumulate game assets, even chat or date
with others. As various activities exist, in-game ecosystem shows similar pattern
as a real world. [2] Interestingly, people in a real world and MMORPG users
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2019, LNCS 11897, pp. 3–13, 2020.
https://doi.org/10.1007/978-3-030-39303-8_1
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pursue a common goal: a wealth. In a real world, diligent workers accumulate
wealth from salaries. Similarly, heavy users in a virtual world gather game assets
and become wealthy. Wealth in a game makes character stronger, and stronger
character gives more fun to player. Reflecting that players want better game
assets, some corporate-like entities even created Real Money Trading (RMT), a
transaction of game assets with real money [4]. However, money-related issues
created illegal activities. Some malicious users developed automated program,
called a game bot.

Game bot is an automated program playing game autonomously instead
of human users. Without any touch of human, bots automatically move around
virtual world. They behave in programmed way, repetitively do patterned actions
to collect game asset. Bots normally gather wealth faster than normal players
because program does not get tired [9]. Leveraging this efficiency, corporate-like
entities called Gold Farmer Group (GFG) started to operate thousands of bots
at the same time. GFGs collect enormous amount of in-game cash or rare items,
and sell it to buyers with real money [1].

Game companies should detect these bots and provide adequate actions
because bots create deprivation of normal users. If some users purchase items
with real money and become powerful easily, normal users would depreciate
their effort of growing characters. Moreover, in-game economy goes unstable
with affluent assets created by bots. GFG especially collects a huge amount
of game assets, and creates an inflation and overflow of asset. Inflated assets
easily break balance among users and skew the game design. As a result, bots
make gaming experience of normal users feel depreciated, leave the game, and
eventually create loss to game company.

To counteract malicious activities of bots, academia and industry have
developed bot detection methods in two main streams: client-side detection
and server-side detection. Client-side method detects bots by implementing
challenge-response program or security solution. For challenge-response method,
game client asks question that humans can easily solve. As bots are not pro-
grammed to answer unexpected questions, characters with wrong response are
classified as bots. Security solutions such as GameGuard or Warden are spe-
cially developed client-side program for bot detection. However, both meth-
ods are inadequate to apply at industry level. Challenge-response methods like
CAPTCHA excessively drop user’s game experience, as they feel disturbed dur-
ing the play. Security solutions frequently collide with vaccine programs, create
crash of the system [14].

To overcome limits of client-side methods, server-side methods have been
proposed. Server-side methods capture unique characteristic of bots leverage
data mining. Past works suggested numerous methods with data mining algo-
rithms, but there were several hurdles. First of all, previous methods optimized
detection model in a certain game, thus hard to generalize. Models performed
well in selected game, but hard to be utilized in other games as well. Moreover,
bot developers could neutralize detection methods if they recognize detection
thresholds. As bot developers figured out patterns of bot detection, they started
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to make bots mimicking human user’s behavior. For sustainable, generalized,
and secured bot detection, it is necessary to develop improved method.

In this work, we propose bot detection method to jump over limitations
of previous works. To design sustainable and commonly applicable detection
method, we performed financial analysis to each character. Considering that bots
eventually accumulate their wealth to specific character for RMT, we analyzed
flow of in-game cash and assets. This generates effectiveness in two aspects.
First, we can vividly capture bot’s behavior as bots cannot repudiate financial
patterns. If transactions among bots exist for accumulation, specific financial
patterns must exist. Furthermore, financial analysis can be applied in different
games as concept of cash or items generally exist. Most MMORPGs operate
its own economy, and transactions occur among users. We can easily compare
features used in financial analysis, and apply into different games.

Leveraging Recurrent Neural Networks (RNN) as algorithm, we trained
model with game play log of Aion, a famous MMORPG developed by NCSOFT.
We evaluated our model precisely captures financial pattern of bots, and provide
improved detection method with following contributions below:

(1) Sustainability: As financial pattern of character is inevitable record, model
effectively detects bots although bot behaves just like normal players or
change its activity pattern.

(2) Generality: As model utilizes commonly used features in general MMORPG,
game companies can easily apply model into multiple games.

(3) Individuality: Only once we train model with accumulated data, model clas-
sifies individual character as bot or normal user.

(4) Security: As neural network is a black-box model, bot developers are hard
to recognize detection thresholds.

2 Literature Review

Among previous works, server-side method analyzes game play data to capture
unique pattern of bots. We categorized features used in bot detection as Table 1,
by dividing into two streams: sufficient condition and necessary condition. The
sufficient conditions are set of features that bot’s activity probably creates, but
not absolutely accompanies. As the sufficient conditions include distinctive pat-
tern of bots, we can identify bots during certain period of time. However, analy-
sis of the sufficient conditions require repetitive updates as these conditions are
not consistent. If bot developers modify bot’s behavior, model also necessitates
update to capture changed pattern. On the other hand, the necessary condi-
tions are features must happen as a consequence of bot’s behavior. As bots are
designed to accumulate wealth efficiently, specific actions such as transaction
among bots absolutely happen. Although bot developers change bot’s behav-
ior, pattern of wealth accumulation itself still exists. Thus, we can detect bots
leveraging necessary conditions in consistent way.
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Table 1. Researches on server-side bot detection method

Category Data type Modeling Reference

Sufficient condition Behavioral action Sequence pattern [10]

Self-similarity of action [9]

Action frequency [13]

Social action Chat log analysis [5]

Party play log analysis [6]

Necessary condition Transaction Network analysis [11]

Coordinates where
asset increase or
decrease

DBSCAN [8]

Detection method with sufficient conditions analyzes two data types: behav-
ioral action and social action. Behavioral actions describe how character per-
forms physical activities such as moving, normal attack, or using skills. Lee et
al. analyzed the full action sequence of users on big data analysis platform. They
set specific behavior sequences and applied simple scoring algorithm and Naive
Bayesian algorithm to classify bots from users [10]. In another method, Lee et
al. captured similarity of character behavior to classify game bots. They divided
sequence of behavior with time window, and embedded as a feature vector. They
showed bots have similar behavior pattern during play time by applying logistic
regression algorithm with self-similarity of characters [9].

Not only behavioral characteristics, social actions also illustrate distinguish-
able patterns. Thousands of users communicate and socialize with others. They
chat, form a party to complete quests, or create guild for sense of belonging.
Leveraging chat logs among users, Kang et al. derived lexical, syntactic, seman-
tic features from chatting contents using text mining methods. As bots have
similar pattern of chatting to evade detection rules, analyzing text features with
machine learning algorithms showed such high performance [5]. Kang et al. also
analyzed party play log for game bot classification. They focused that the party
play in MMORPG requires strong interaction between game players in a short
time, which creates different party play pattern between bots and normal users.
By inspection that game parties composed of bots play in distinctive way, they
established thresholds for bot detection statistical algorithms [6].

Above methods with sufficient conditions showed significant performance,
but accompanied limitation of sustainability. If bot developers change pattern
of game bots, detection methods are easily avoidable. In this circumstance, we
should change detection rule or re-train model repetitively. Some bots in these
days started to behave and socialize like normal users. Intelligent bots are pro-
grammed to generate plausible chats, or do actions like normal users. Further-
more, if game company updates in-game ecosystem, it might blur existing detec-
tion rules. As bots change their behavior or actions following update, detection
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methods also require update of its threshold. Therefore, we acknowledged neces-
sity of sustainable detection method using different features.

To overcome this limitation, some researches suggested detection method
with necessary conditions. Financial features such as character’s asset level and
transaction are actively used. Song and Kim captured geographical tendency
that location of transaction among bots show similar pattern. They analyzed
specific coordinates of financial transaction within a map, and applied Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to
identify bots from normal users [11]. Lee et al. build a topological network of all
transactions in a virtual world, and figured out specific patterns of transactions
among bots. Especially in GFG, they illustrated bots have different roles for effi-
cient asset gathering, and proposed structure of network for clear understanding
of bot ecosystem [8].

Analysis of necessary conditions showed financial features are meaningful to
identify bots from normal users. However, bot developers still can hedge detec-
tion method by changing transaction medium. For instance, if bots send cash
or items through mailing, it does not leave location coordinates of transaction.
Topological network analysis revealed macroscopic understanding about trans-
actions among bots, but hard to capture individual bots rapidly. Building a net-
work requires heavy resources to analyze whole structure. Whole network also
necessitates repetitive update following change of transaction patterns among
bots.

To improve previous methods, we present a bot detection method leverag-
ing financial analysis. In pursuit of sustainable detection method, we analyzed
financial status of character, necessary conditions of bot’s activity. Level of cash
or number of items a character owns are examples of financial status. We uti-
lized status data rather than other features, as status itself cannot be modified.
Derived features such as transaction coordinates can be hedged or easily changed.
But status itself is a consequence of transaction, thus inevitable by bot develop-
ers. To scrutinize individual bot’s financial data, we employed Long Short-Term
Memory neural networks (LSTM) as algorithm. As neural network requires less
resource rather than topological network, it enables economic model establish-
ment process. From following sections, we propose bot detection model validated
with actual MMORPG play data.

3 Proposed Methodology

3.1 Data Collection

We collected the game play dataset from Aion, one of the most famous
MMORPGs in the world. The dataset is accumulated during the first week
of May, 2010. Through collection process, we complied the End User License
Agreement (EULA) and related laws under consent of Aion users. Anonymous
data are confidentially collected, and utilized only for analysis of this work.
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Table 2. Feature types in Aion status log

Type Detailed features

Identification Character number, account number

Location Location coordinates, map number

Playing information Health point, magical point, experience point

Social information Party identification number, alliance identification
number

Financial information Cash status, item status, inventory status

Feature Selection. To filter features with financial status, we dropped unnec-
essary information through feature selection. In log data, there exists status log
which periodically shows character’s information. Among various status features
described in Table 2, we extracted financial information, which illustrates finan-
cial status of character.

Ground-Truth Confirmation. Confirming ground-truth is an essential pro-
cess of bot detection. We labeled data as bot and normal user following judge-
ment of game company, NCSOFT. Company operates human inspectors who
observe doubtful characters by hand. To evade mistakes and bias of human
observers, company carefully labels doubtful character only when multiple
observers decided in a similar way. Company also collects reasons of decision for
comprehensive understanding. If blocked character was actually a normal user,
character label is updated as normal user again. As our ground-truth is con-
structed through these sophisticated labelling process, we regard solid ground-
truth for detection model is confirmed.

3.2 Feature Engineering

Feature engineering process takes significant position in model performance. To
make log-level raw data into trainable form, we managed two steps of feature
engineering: eliminating non-influential features, sliding time window with scal-
ing.

Table 3. Rules for identifying non-influential features

No Rule Description

1 Feature indifference A value of a feature is indifferent at bot and normal
user

2 Feature invariance Summation of a feature is 0, and standard deviation
of a feature is 0 at bot and normal user, respectively
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Eliminating Non-influential Features. To scrutinize change of financial
data, we eliminated features without meaningful level of change. To leverage
deep neural networks on bot detection, model should learn different dynamics of
data between bot and normal user. If a feature with similar pattern is provided
to the model, it blurs weights and bias of neural network. Thus, we set rules
described in Table 3 to filter non-influential features.

If a feature is caught in Rule 1, it implicates model cannot learn any different
pattern. A feature with same value between bot and normal user does not make
any different pattern, thus we dropped features fulfilling Rule 1. Rule 2 proves
that feature value is 0, creating sparsity at the training data. If we map training
data into vector space, a feature filled with zero value creates sparse input vector.
As sparse input vector blurs computation of model parameters, we dropped
features fulfilling Rule 2 to reduce sparsity. After applying two rules above, we
extracted essential features shown in Table 4 from log-level raw data.

Table 4. List of essential features

No Type Feature Description

1 Item Number of items Total number of items a character owns

2 Cash Total cash Total amount of cash a character owns

3 Cash in account Amount of cash a character carries in
inventory

4 Cash in character
bank

Amount of cash a character stores in
warehouse

5 Cash in vendor Amount of operating cash handled by
transaction vendors such as sales agent
or auction house

6 Evaluated
asset value

Evaluated asset
value

Sum of monetary value of cash and all
items evaluated by default price

7 Mailing asset
value

Sum of monetary value of all items in
sent and received by mail evaluated by
default price

8 Evaluated asset
value in character
bank

Sum of monetary value of cash and all
items stored in character’s warehouse
evaluated by default price

9 Evaluated asset
in account bank

Sum of cash and monetary value of all
items stored in account’s warehouse
evaluated by default price

Sliding Time Window with Scaling. Log-level raw data necessitates trans-
formation process to be in trainable form. As deep neural networks effectively
learn from fixed length of data, long time-series data require cutting process. We
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Fig. 1. Chosen boxplots of scaled feature distribution

set fixed length of time window, and generated training data by sliding along
log-level raw data. Moreover, we applied scaling process to mitigate different
scales of data. By calculating each feature with the equation below, we trans-
formed data to be scaled between 0 and 1. Lastly, we labeled transformed data
same as its original data.

Xnormalized =
Xi −Min(Xi)

Max(Xi) −Min(Xi)

We compared statistical difference of features to check whether they are
distinct along with labels. As illustrated in Fig. 1, features such as total cash, cash
in account, and number of items show different distribution at the same scale.
Considering these differences, we clarified financial features can differentiate bots
from normal users.

3.3 Modeling

We employed RNN as detection algorithm. RNN is one of deep neural networks
that past computation result influences next computation of model parameters.
Previous research on neural networks have shown RNN explores well with time-
series data [3]. We analyzed financial data entangles temporal dynamics, thus
utilized recurrent architecture to model. Among various types of RNN, we set
LSTM neural networks considering its performance. We provided training data
into LSTM network to identify bots and normal users. Training was performed
along prefixed size of batches, and batch normalization was applied for better
performance. For stabilized training, we also applied regularization techniques
to evade the model’s overfitting problem. After the training process finished,
we validated the model with test dataset, and record its performance with four
metrics: accuracy, precision, recall, and F1-score.
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4 Experiment Result

To gain enough records of training, we separated monthly dataset into weekly
basis. We randomly mixed data, and performed 10-fold cross validation for
assured result. Table 5 shows the result of experiment with evaluation metrics.

Table 5. Bot detection experiment result

Experiment Accuracy Precision Recall F1 score

Week 1 0.9494 0.9385 0.9759 0.9490

Week 2 0.9401 0.9168 0.9831 0.9488

Week 3 0.9487 0.9237 0.9886 0.9551

Week 4 0.9509 0.9103 0.9861 0.9476

Average 0.9473 0.9223 0.9834 0.9501

We interpret trained model detects bots with reasonable performance. Exper-
iment result shows relatively lower precision than recall, implicating existence
of false positive error. Considering characteristics of bot detection, we evaluate
this error is allowable. One of primary goals of bot detection is making a list
of doubtful accounts rather than blocking accounts. If game company blocks
normal user showing similar pattern as bots, it directly generates dissatisfac-
tion or even annoy of user. Thus, bot detection prioritizes figuring out doubtful
characters rather than direct blocking. In this viewpoint, we evaluate our model
efficiently detects bots only with a few financial features. We expect ensembling
our model with other methods would achieve more precise detection, which is
further illustrated in following Discussion section.

5 Discussion

Ensembling for Precise Detection. Ensembling our model with other meth-
ods would build powerful bot detection system. To hedge risk of false positive
error, bots are not decided by a single detection method. To reduce false positive
errors, even human-based detection method in the past required many skilled
observers. In similar way, we believe more detection methods are required to
collaborate for industry-level application. For features of ensembling, we would
leverage other necessary conditions of game bots. Transaction with other char-
acters or Non-Player Characters (NPC) can be utilized as features. Considering
more information of bots, detection model would be improved resulting powerful
performance.
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Applicability into Other MMORPGs. On following research, we would
apply this model in other MMORPGs. With the growth of game industry, game
companies operate multiple games at the same time. To put in game company’s
shoes, running different detection methods for different games is cost-ineffective.
If detection method is applicable in multiple games, it creates economies of scale.
We interpret features used in our model are commonly found. Previous research
on bot network also suggested financial features are common traces of modern
MMORPGs [7]. Therefore, we expect our model is applicable in other games to
be used in industry-level practices.

6 Conclusion

In this work, we proposed employment of financial analysis to game bot detec-
tion in real MMORPG ecosystem. Previous studies showed efficient bot detection
methods, but underlying problem was variance of bot’s activity. If bot develop-
ers change activity or make them act like normal users, it becomes resource-
consumable to update detection methods. To overcome this limitation, we uti-
lized financial information of characters which are necessary conditions of bot’s
activity. Considering purpose of bots related to RMT, patterned change of finan-
cial status is inevitable for bot characters. Through experiments, our results
reveal that financial information are highly related to bot’s activity, suggesting
effectiveness at bot detection. Leveraging time-series dynamics of financial data,
our LSTM neural networks efficiently captured pattern of bots. We validated
this efficiency with actual game data of Aion, a famous MMORPG developed
by NCSOFT.

Our detection model establishes essential contributions. First and foremost,
our model establishes sustainable detection method as bots are hard to evade
patterned financial changes. Moreover, our model is applicable into other games
as utilized features are common in modern MMORPG. Unlike macroscopic anal-
ysis of bot network, LSTM neural network is eligible to detect individual charac-
ters to generate list of doubtful characters. Finally, our model enhances security
of detection as LSTM neural network is a black-box model making bot developers
hard to predict detection thresholds. There still exists a room for improvement.
With ensembling our model with other necessary conditions of game bot, we
would like to achieve qualified bot detection system with powerful performance.
To assure generality of our model, we plan to check model’s performance on other
actual MMORPG data. In pursuit of sustainable, and general bot detection, we
will further research on financial analysis in MMORPG ecosystem.
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Turn On the Lights: User Behavior in Game
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Abstract. The proliferation of the internet has allowed various online games
such as Massive Multiplayer Online Role Playing Game (MMORPG) and First-
Person Shooter (FPS) to garner much attention. Both MMORPG and FPS
requires lower network latency, as the users are constantly required to assess and
respond to the gaming environment and other users’ decisions. Our study aims
to investigate the users’ psychological behavior by changing the gaming envi-
ronment. We present CPTED as a risk control measure. Based on the principle
of CPTED, two types of maps were designed and compared to analyze the game
violence of users in each map. In order to compare the game violence of the
users, 100 questionnaires were conducted. In this study, we used FAIR, a risk
analysis model, to assess the threat and violence of the users.

Keywords: Online game security � Risk Management � CPTED � Crime
Prevention Through Environmental Design � User behavior

1 Introduction

During the past decade, the inception of various ICT technologies have introduced
online games on numerous platforms. With the popularity and rapid growth in the
gaming industry, online games have been criticized for causing violent behaviors. Past
studies have focused on the relationship between online games and the users’ violent
behavior, however, there has been a lack of study that focuses on the relationship
between the gaming environment and user’s behavior. As such, this study aims to
investigate how the gaming environment may affect the user’s behavior.

In recent years, first-person shooter (FPS) games have become a cultural phe-
nomenon as Playerunknown’s Battlegrounds (PUBG) sold more than 50 million copies
and Fortnite: Battle Royale have generated over $2.4 billion (USD) in the year 2018
[1]. Well established video game franchises such as Call of Duty, Battlefield, and
Fortnite have pursued a format that focuses on real-time environments. The environ-
ment’s interaction with the players has a vital role in the gameplay and overall expe-
rience. Based on past studies, vacant building has been proven to increase the crime
rates [2, 3].
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In this study, we use the risk management process and the Factor Analysis of
Information Risk (FAIR) model to quantitatively analyze the risks. We also use Crime
Prevention Through Environmental Design (CPTED) as a control measure to reduce
the risk. We ascertain that the applying natural surveillance and access control, which
are the two core components of CPTED, to the environment will have a relationship to
the user’s behavior. Moreover, we posit that applying CPTED will have a positive
influence towards the user’s state of mind.

Our study is structured as follows. Section 2 discusses the background of the risk
management, FAIR Model and CPTED. Section 3 reviews the literature on user
behavior in online gaming, environmental design for security, and ‘Contagious Fire’.
The proposed method of our study is explained in Sect. 4. Section 5 contains our
findings and discussion. Finally, we present our findings in the conclusion.

2 Background

In this study, we use the Factor Analysis of Information Risk (FAIR) model, which
helps organization analyze the risk through quantitative measures. We then apply
Crime Prevention Through Environmental Design (CPTED) as a control measure to
reduce the risk. Our paper presents a framework to assess and analyze how the user’s
behavior shifts when the environment changes.

2.1 Risk Management for the Security Domain

During the past few decades, the relevance and usefulness of risk management have
strengthened, as risk management allows organizations to make rational decisions
based on the assessed risks. Villa et al. [4] define risk priority areas into four areas for
risk management: (i) the ability cope to unexpected losses, (ii) improving the knowl-
edge and implementing protocols, (iii) focusing on risk communication, and
(iv) learning from past events. Risk management is composed of risk assessment and
risk analysis. According to NORSOK Standard Z-013 [5], risk assessment consists of
six steps which are (i) establishment of the context, (ii) hazard identification, (iii) fre-
quency estimation, (iv) consequence estimation, (v) establishment of the risk picture,
and (vi) risk evaluation. Risk assessment constitutes of both quantitative and qualitative
approaches to measure and assess the risk. In this paper, we use the Factor Analysis of
Information Risk (FAIR) Model, which is a representative model of the strategic
approach, to analyze the risks.

2.2 Factor Analysis of Information Risk (FAIR) Model

The Factor Analysis of Information Risk (FAIR) model is a risk management frame-
work developed by Jack A. Jones [6]. The model calculates the risks based on the exact
probability by factoring the frequency of events, data loss, and quantitative evaluation.
The FAIR model helps assess and analyze the organization’s risk by quantitatively
measuring it. The FAIR model defines the risk with the probable frequency and
probable magnitude of future loss within a given timeframe [7]. The Loss Event

Turn On the Lights: User Behavior in Game Environment Using CPTED 15



Frequency (LEF) and Loss Magnitude (LM) are the two components that are consid-
ered when calculating the risk, as depicted in Fig. 1.

The LEF factors the Threat Event Frequency (TEF) and Vulnerability (Vul), while
the LM factors the Primary Loss (PL) and Secondary Loss (SL). The TEF considers the
Contact Frequency (CF) and Probability of Action (PoA). On the other hand, both the
Threat Capability (TCap) and Resistance Strength (RS) are factored into the Vul.
However, in our study we did not consider the Loss Magnitude.

2.3 CPTED (Crime Prevention Through Environmental Design)

Crime Prevention Through Environmental Design (CPTED) is an urban design tech-
nique to reduce crime rates by changing the physical environment. The technique relies
on environmental design to build an environment with lower crime rates with less
reliance on law enforcement. CPTED is a complex strategy that outlines the envi-
ronmental design strategies into seven related area: (i) Defensible Space, (ii) Activity
Program Support, (iii) Territoriality, (iv) Target Hardening, (v) Formal Organized
Surveillance, (vi) Natural Surveillance, and (vii) Access Control as depicted in Fig. 2
[8–11]. Installing streetlights to the urban area have been proven to help create a more
secure and safer community [12].

In this study, we use the risk management process and the Factor Analysis of
Information Risk (FAIR) model to quantitatively analyze the risks. We also use
CPTED as a control measure to reduce the risk.

Fig. 1. The FAIR (Factor Analysis of Information Risk) Model assess the organization’s risk by
factoring in the Loss Event Frequency (LEF) and Loss Magnitude (LM).
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3 Related Works

3.1 User Behavior in Online Gaming

Past studies in online game have focused mostly on Massively Multiplayer Online
Role-Playing Game (MMORPG) genres when observing the user’s behaviors [13–16].
Qin [17] analyzed the relationship between the different social behaviors such as, role
playing in online games and chatting. The study found that the environments within a
game can change the social behaviors of the individuals. Gyarmat [18] proposed a
network traffic model and user behavior model that recorded the trends of the
MMORPG players based on the time zone.

3.2 Environmental Design for Security

Prior studies on city design and Natural Surveillance argues that the environment can
have an influence on reducing crime rates [19, 20]. Jacobs [19] presented a solution to
help solve the crimes through the urban redevelopment technique, which is part of a
city design method. Jeffery [20] proposed that our approach to crime preventions
focuses on models of deterrence and retribution, however, he contends that we should
focus on preventative systems based on scientific principles. Desyllas et al. [21] states
that building heights is one of the facts that effect the crime rates in urban environment.
As such, defining boundaries and maintaining a positive image have been confirmed to
help discourage offending. Through the design and management of the physical
environment of buildings the public safety can improve, while reducing the fear of

Fig. 2. The CPTED (Crime Prevention Through Environmental Design) is an urban design
technique to reduce crime rates by changing the physical environment.
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crime. Lee et al. [22] have found that installing closed-circuit television (CCTV) can
help serve as a natural surveillance.

3.3 Shooting Performance and Contagious Fire

Knez and Niedenthal [23] conducted a psychological experiment with the lighting
setting for the digital games, and they found that players lighting affects the cognition.
By contrasting the lights with red and blue color hue, they found that the players
registered the reddish light with warmer emotions and the blueish light to evoke a cool
feeling. The study found that the individual’s response time and performance to
improve under the warmer lighting settings.

Police officers caught in a crossfire or lethal threat are sometimes unable to assess
how many bullets were fired. Furthermore, recent police shootings have coined the
term “contagious shooting”, as the initial officer’s shot triggers a cascade of shots from
the other officers [24]. Officers will fire their shots when they panic as an unconscious
response, and the number of shots will increase as the fear factors increase. In real-life
situations, police officers have admitted that they are unaware of how many shots were
fired during the crossfire as the immediate threat makes it difficult for the officers to
assess how many rounds had been shot [25].

4 Proposal Method

This paper aims to measure the risk by applying the Risk Management model to the
online game environments. Using AssaultCube, an open-source FPS game, we
designed two maps for our experiment. The first map, Map1, is the default map
provided by the AssaultCube. We changed the exposure rate of Map2 to create con-
trasting setting with the first map, Map1. To apply the CPTED method to the second
map, Map2, we added fences to the environment, as depicted in Fig. 3. By applying
contrasting settings to the two different maps, we wanted to observe if the Natural

Fig. 3. Two screenshots comparing the visual lighting with and without CPTED. Map2 (right)
presents a brighter screen in comparison to Map1 (left), and Map2 includes fences to apply
CPTED to the environment. (Color figure online)
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Surveillance and Access Control would change the user’s behavior. As mentioned in
the aforementioned section, Natural Surveillance has been proven to reduce crime rates.

We carried out an experiment with a total of 100 graduate students majoring in the
IT security domain at Korea University, Korea. We used two laptops with the identical
model (LG14Z95), specifications, and settings. The players participating in the game
used the same firearm, MF-577. The goal of the experiment was to demonstrate the
potential relationship between the natural surveillance and user’s behavior. The par-
ticipants were given a brief description of the experiment, and a detailed explanation of
the control setting was provided prior to the experiment. A survey was conducted after
the experiment was conducted to the participants, as depicted in Table 1.

The questionnaire survey consisted of questions that pertained to the different maps.
We assured the participants that there are no right or wrong answers to ensure that the
participants honestly answered the questions. The respondents were asked to recall the
situations from the first and second gameplay. We asked the participants to select the
words or phrases that best associated to their experiences. The participants were asked
to select more than one answer, and they were asked to fill out the answers for both
Map1 and Map2, as shown in Table 2.

The FAIR model, a risk analysis model, was used in our study to compare the threat
and risk between to the two different maps. The model is able to measure the risk by
factoring in the probable frequency and probable magnitude of future loss. The FAIR
model is dived into LEF and LM.

Using the Risk Management Model we proposed a risk management procedure that
consists of a five-step process. The first step is ‘determining the scope’ of the risk
management. Then the risk analysis is the next step, which consists of ‘identification of
the assets’, ‘asset value’, vulnerability evaluation’, ‘threat evaluation’. The ‘risk
assessment’ assess and quantifies the risk. The CPTED is finally applied as a control
measure, as illustrated in Fig. 4.

Table 1. The participants were asked to fill out a questionnaire that inquires about the user’s
demographic information and experience with Map1 and Map2.

Game preference questionnaire

Demographic-related items
- What is your gender?
- What is your age group do you belong to?
Items related to Map1
- How many bullets did you use?
- Select the words that best describe Map1. You can select multiple choices
Items related to Map2
- How many bullets did you use?
- Select the words that best describe Map2. You can select multiple choices
Items related to the map preference
- Which of the two maps did you prefer?
- Why did you choose the map?
- Is there anything you would have changed to Map1 or Map2?
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5 Result and Discussion

In our study, we consider the two principles, natural surveillance and access control,
from CPTED. Map1 had a low exposure setting in comparison to Map2. By adjusting
the brightness with the settings, we were able to apply natural surveillance to the Map2.
As the brighter environment served as a natural surveillance to the participants. The
fences that was installed within Map2 served as the access control, as shown in Fig. 3.

As mentioned in the previous section, we conducted a survey after the experiment.
The participants consisted of 100 students who received graduate degrees or college
degree. Over 28% of the respondents are female, and the 67.1% of the participants were
in their 20s and 32.9% were in their 30. The first question in the survey inquired about
the number of bullets the users have used.

Table 2. The respondents were asked to select multiple answers that best reflected their
thoughts and emotions from their game play from Map1 and Map2.

Positive Negative

Open environment Closed environment
Entertaining Lack of entertainment
Thrilling Boring
Bright Dark
High replay value Quit
Simple Complex
Focused Unfocused
Like Dislike
Prefer Do not prefer
Satisfied Unsatisfied

Fig. 4. The risk assessment proposed in this model of five steps: (i) determining the scope,
(ii) identification of the assets, (iii) asset value, vulnerability evaluation, threat evaluation,
(iv) risk assessment, and (v) control selection.
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Q3: How many bullets did you use in Map1?
Q5: How many bullets did you use in Map2?

Question 3, 5 were intended to measure the Threat Event Frequency (TEF). The
item was designed to ask the users to identify how many bullets were shot. In our
study, we divided the risks into five different levels: (i) Very High, (ii) High,
(iii) Moderate, (iv) Low, and (v) Very Low. We based the five different levels on the
number of bullets shots. When the number of bullets that were shot was greater or equal
to 30, the participant’s TEF was assigned a ‘Very High’ level. A ‘High’ level was
assigned to the user when they shot less than 30 rounds of bullets, but greater or equal
to 20. The ‘Moderate’ grade was assigned when the user fired less than 20 bullets, but
fired greater or equal to 10 bullets. The ‘Low’ level was assigned to the users who shot
less than 10 bullets, but shot greater or equal to 5 bullets. And the ‘Very Low’ grade
was assigned to the users who had used less than 5 bullets.

As illustrated through Table 2, we categorized the list of words that are associated
positive and negative emotions. Each word was assigned a probability value that
associated with either positive or negative values. Based on the words that the par-
ticipant selected, we were able to calculate the value of the vulnerability (Vul), as
shown in Table 4. In order to calculate the vulnerability, we assigned five different
grade to the value: (i) Very High, (ii) High, (iii) Moderate, (iv) Low, and (v) Very Low.

Q4: Select the words that best describe Map1.
Q6: Select the words that best describe Map2.

Table 4. The vulnerability value for both Map1 and Map2.

Vulnerability (Vul)
Criteria Map1 Map2 Grade

x < 30% V Very High (VH)
30% � x < 50% High (H)
50% � x < 70% Moderate (M)
70% � x < 90% V Low (L)
90% � x < 100% Very Low (VL)

Table 3. Threat Event Frequency was measured based on the number of bullets shot. A total of
50 rounds were assigned to each participants.

Threat Event Frequency (TEF)
Criteria Map1 Map2 Grade

x � 30 bullets per game Very High (VH)
20 � x < 30 bullets per game High (H)
10 � x < 20 bullets per game V V Moderate (M)
5 � x < 10 bullets per game Low (L)
x < 5 bullets per one game Very Low (VL)

Turn On the Lights: User Behavior in Game Environment Using CPTED 21



The results for the TEF from Map1 and Map2 were both assigned a ‘Moderate’
grade, as the participants fired less than 20 rounds of bullets and equal or greater than
10 bullets. The results of the two maps for the TEF is depicted in Table 3. On the other
hand, the Vul for both Map1 and Map2 had very opposing results. The results from
Map1 equates to 29% and the vulnerability value for Map2 was 70%. As such, Map1
was assigned a ‘Very High’ grade, while Map2 was assigned a ‘Low’ grade.

Based on the results from both the threat event frequency and vulnerability, we
were able to calculate the risk. The participants assigned Map1 a ‘Very High’, how-
ever, Map2 had a very opposite grade by scoring a ‘Low’. Based on the results we were
able to ascertain that applying the CPTED method to the map provides a more positive
ambiance to the overall gaming experience.

Based on the result of the TEF and Vul, we calculated the risks using a heat map
both Map1 and Map2. The participants have assigned a ‘Moderate’ grade for the risk
associated with Map1. Yet, Map2 scored a ‘Low’ as the environment reflected a more
positive feeling towards the environment, as illustrated in Figs. 5 and 6.

Fig. 5. The heat map for Map1 was assigned a ‘Moderate’ grade based on the participants’
response on the TEF and Vul.

Fig. 6. The heat map for Map2 scored a ‘Low’ grade based on the participants’ response on the
TEF and Vul.
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6 Conclusion

In recent years, many industries have been able to create virtual environments that can
replicate environments that are similar to the reality [26]. It’s also applied to the gaming
industries. The environment has played a huge role in the user’s gameplay with the
technological advancements, as FPS have incorporated new formats to the game
environment. However, academic literature on the security assessment for the envi-
ronmental design in the virtual space is limited, as most of the studies have focused on
how deterring criminal offences or reviewing the effectiveness of various security
measures. Our study utilized the FAIR model to assess the risk and examines the
environment with the virtual space by applying CPTED. We were able to introduce
new obstacles and adjust the exposure and brightness within the environment, which
helped us observe how the user’s behavior changed when the natural surveillance and
access control were applied.

Our study proposes a five-step risk management model that incorporates risk
management and risk analysis. To the best of our knowledge, our paper is one of the
first study to apply CPTED to a virtual environment. We believe our study was able to
provide a better understanding and insight towards the FAIR model and CPTED.
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Abstract. With the growing use of online digital media, it is becoming
increasingly challenging to protect copyright and intellectual property.
Data hiding techniques like digital watermarking can be used to embed
data within a signal for purposes such as digital rights management. This
paper investigates a watermarking technique for digital images using
QR codes. The advantage of using QR codes for watermarking is that
properties of the QR code structure include error correction and high
data capacity. This paper proposes a QR code watermarking technique,
and examines its robustness and security against common digital image
attacks.

Keywords: Data hiding · Discrete wavelet transform · Error
correction · Images · QR code · Watermarking

1 Introduction

The extensive use, exchange and sharing of online digital media content has
made the task of copyright and intellectual property protection increasingly
challenging. Data hiding techniques like digital watermarking can be used for
the purposes of digital rights management.

Digital watermarking is a widespread field that has been studied over many
decades [4]. The idea behind watermarking is to embed additional data within
a signal and be able to extract this data when required [5]. The embedding
of additional data within the signal must be performed in a way that does
not interfere with the normal usage of the signal. Furthermore, a successful
watermark should be robust against signal alteration, up to a point at which
the signal is damaged and loses its commercial value [13]. In light of this, there
are four key properties that affect any watermarking system; namely, invisibility,
capacity, robustness and security [4,12].

This paper investigates a QR code watermarking technique for digital images.
The purpose of this approach is to capitalize on the inherent error correction
properties of the QR code structure, along with its high data capacity. The
QR code error correction mechanism allows a QR code to be correctly decoded
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2019, LNCS 11897, pp. 25–37, 2020.
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despite the presence of slight errors in the QR code, as long as the error does
not exceed its error correction capacity. As such, by embedding a QR code as
a watermark within a digital image, the watermark can potentially withstand
distortions to the signal, provided the QR code can be reconstructed via the
watermark extraction process.

There are two primary methods for embedding watermark data within digi-
tal images in an imperceptible manner. This can be done via the spatial domain
or the frequency domain. There are a number of advantages of modifying coef-
ficients in the frequency domain, for example, it incorporates features of the
human visual system more effectively, it provides the ability to spread the
embedded signal in the frequency domain, and it operates in the compressed
domain which is also used by most compression standards [6]. Therefore, to
make the watermark imperceptible, the proposed approach uses the Discrete
Wavelet Transform (DWT) technique.

The aim of the proposed QR code watermarking approach, is to embed a QR
code symbol within one of the DWT sub-bands of a digital image. Within the fre-
quency domain, the strength of the embedded watermark can be adjusted based
on the desired tradeoff between imperceptibility and robustness. This paper
presents the proposed technique and examines its features with respect to the
key watermarking properties. In addition, the paper demonstrates the robustness
and security of the proposed QR code watermarking technique against common
digital image attacks, like image compression, noise, cropping, sharpening and
blurring, that may be carried out by an adversary.

2 Background and Related Work

2.1 The QR Code

A QR code symbol consists of a 2D array of light and dark squares, known as
modules [7]. The QR code structure contains modules for encoding data and
for function patterns. Function patterns consist of finder patterns, separators,
timing patterns and alignment patterns. For example, there are three identical
finder patterns located at the upper left and right, and lower left corner of the
symbol. The finder patterns are for a QR code reader to recognize a QR code
symbol and to determine its orientation.

In addition, the QR code structure has an inherent error correction mech-
anism that allows data to be recovered even if a certain number of modules
have been corrupted. The data capacity of a QR code depends on its version
and error correction level. There are forty different QR code versions and four
error correction levels; namely, L (low), M (medium), Q (quartile) and H (high),
which correspond to error tolerances of approximately 7%, 15%, 25% and 30%
respectively.

2.2 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) is a technique that is widely used in
image and signal processing. For digital images, the DWT technique involves the
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Fig. 1. DWT at level 3.

decomposition of an image into frequency channels of constant bandwidth on a
logarithmic scale [9,11].

When applying the DWT technique to a 2D image, the image is decomposed
into four sub-bands, which are denoted as LL (low-low), LH (low-high), HL (high-
low) and HH (high-high). Each sub-band in turn can be further decomposed at
the next level, and this process can continue until the desired number of levels is
achieved. In view of the fact that the human visual system is more sensitive to
the LL sub-band (i.e. the low frequency component), to maintain image quality
watermark information is typically embedded within one or more of the other
three sub-bands [9]. Figure 1 gives a depiction how the DWT can decompose an
image into sub-bands at 3 levels. For experiments in this paper, the watermark
was embedded within the HH3 sub-band.

2.3 Arnold Transform

The Arnold transform is a invertible transform that can be used for scrambling
the pixels in a digital image. The transform scrambles the pixels within an image
to disrupt the correlation between adjacent pixels. As such, the Arnold transform
is commonly used as part of many watermarking schemes, as it distributes the
pixels over the entire image [8]. The reason for doing this is so that any error
introduced by distorting a watermarked image will be scattered over the image,
and the watermark can still potentially be recovered despite the error.

2.4 Related Work

There have been a variety of different uses of QR codes in the area of computer
security. In previous work, Chow et al. [3] proposed the use of QR codes for water-
marking using two techniques in the frequency domain. Their proposed approach
combined the use of the DWT with the Discrete Cosine Transform (DCT) for
QR code watermarking. In other work on QR code watermarking, an authen-
tication method for medical images using a QR code based zero watermarking
scheme was proposed [14]. In the scheme, a patient’s identification details and
a link their data was encoded in the form of a QR code which served as the
watermark.

Kang et al. [8] proposed a watermarking approach based on the combina-
tion of DCT, QR codes and chaotic theory. In their approach, a QR code image
is encrypted with a chaotic system to enhance the security of the watermark,
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and embedded within DCT blocks after undergoing block based scrambling. In
related work, a digital rights management method for protecting documents by
repeatedly inserting a QR code into the DWT sub-band of a document was
investigated [1]. Others have also proposed different QR code watermarking
approaches, for example, by incorporating an attack detection feature to detect
malicious interference by an attacker [15], or by embedding QR code watermarks
using a just noticeable difference model to increase imperceptibility [10].

In related work on QR codes for security, Tkachenko et al. [16] described
a modified QR code that could contain two storage levels. They called this a
two-level QR code, as it had a public and a private storage level. The purpose of
the two-level QR code was for document authentication. In addition, QR codes
have also been used for secret sharing [2]. In this work, a method of distributing
shares by embedding them into cover QR codes was proposed. These QR codes
contained both public and private information, which allowed for the shares to
be transmitted over public channels. The public information in the QR codes
could be access by anyone, whereas only authorized individuals would be able
to obtain the private information.

3 QR Code Watermarking

The aim of the QR code watermarking technique proposed in this paper is to
embed a QR code watermark within a cover image, and to be able to extract
the watermark. Figure 2 depicts the processes involved in the embedding and
extraction processes. Details of the processes will be described in the respective
subsections to follow.

Fig. 2. Overview of the QR code watermarking processes; (a) embedding process; (b)
extraction process.
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3.1 Embedding Process

An overview of the embedding process is shown in Fig. 2(a). It can be seen from
the figure that the embedding process accepts three inputs; a QR code, W ,
which is the watermark image; a key, K, for encryption; and a cover image, I.
The output of the embedding process is a watermarked image, IW .

It should be noted that K is a random bit string, which is used to encrypt
and decrypt the watermark. The purpose of doing this is to ensure that even if
an adversary can extract W , the adversary will not be able to obtain information
about the contents of the watermark. The bits in K are to be XORed with the
light and dark modules of W . As such, the length of the bit string must match
the number of modules in W .

For the experiments in this paper, I was converted to DWT level 3 and the
encrypted and scrambled watermark, WT , was embedded within the HH3 sub-
band. The purpose of embedding information within the HH sub-band is due
to the fact the human visual system is less sensitive to perturbations in this
sub-band. The DWT coefficients C were modified based on Eq. 1 for the x and y
pixels in WT , where WT,(x,y) ∈ ±1. The λ parameter can be adjusted to balance
between watermark imperceptibility and robustness.

C ′
(x,y) = C(x,y) + λWT,(x,y)|C(x,y)| (1)

Prior to embedding the watermark, bits in the encrypted watermark were
scrambled using Arnold transform. The reason for this is to distribute the water-
mark data over the entire image. In practice, this effectively reduces localized
errors in the extracted watermark, which may result from distortions to IW by
an adversary. Algorithm 1 provides details of the steps involved in the embedding
process.

Algorithm 1. Embedding algorithm
Input: A QR code, W , a cover image, I, and a key, K.
Output: A watermarked image, IW

Step 1. Encrypt information in W by XORing the random bits in K with the
modules in W to produce WE .
Step 2. Generate a chaotic image WT by scrambling the bits of the encrypted
watermark WE using Arnold transform over a number of iterations.
Step 3. Convert I to IDWT by performing DWT to the desired level.
Step 4. Embed WT in a IDWT sub-band.
Step 5. Generate the watermarked image IW by inversing DWT.

3.2 Extraction Process

Figure 2(b) provides an overview of the extraction process, which is very much
the reverse of the embedding process. To extract the watermark image, the
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extraction algorithm requires the original cover image, I; the watermarked
image, IW ; and the key, K, for decryption. The output of the algorithm is the
reconstructed watermark, i.e. a reconstructed QR code, WR.

Algorithm 2. Extraction algorithm
Input: The original cover image, I, the watermarked image, IW , and the key, K.
Output: A reconstructed QR code, WR

Step 1. Convert I to IDWT , and IW to IWDWT , by performing DWT on the cover
image and watermarked image respectively.
Step 2. Extract W ′

T from differences in the specific sub-band (HH3 in the experi-
ments) of IDWT and IWDWT .
Step 3. Generate W ′

E by inversing the Arnold transform.
Step 4. Decrypt W ′

E using K to produce the extracted watermark image W ′.
Step 5. Clean-up the W ′ and restore the QR code function patterns to produce
WR.

It should be noted that if IW was distorted from attacks by an adversary,
W ′ will result in a noisy image. Hence, a clean-up stage is required to restore
the QR code. This is possible as long as information about the QR code is
known; namely, the QR code version, error correction level, masking pattern
and number of pixels per module. With this information, restoring the modules
involves counting the total number of black and white bits for every module in
W ′. If there are more white bits, set the module color to white, and vice versa.
Also, to ensure that the QR code is decodable, restore the QR code function
patterns which may have been corrupted to produce the reconstructed QR code,
WR.

Any QR code reader should be able to decode WR, as long as the error in WR

is below the error correction threshold of the QR code. Note that it is possible
to only embed the data modules of W in IW , since the function patterns are
restored during the clean-up stage. However, in our experiments, we chose to
embed the entire QR code because it provides information on the amount of
noise in W ′, which results from distortions made to IW . The steps involved in
the extraction algorithm are provided in Algorithm 2.

4 Results and Discussion

This section presents results of experiments conducted to evaluate the proposed
QR code watermarking technique. The experiments were performed using the
OpenCV library on three well-known test images; namely, the Lena, Peppers
and Mandrill images. These images can be seen in the tables of results shown in
Tables 1, 2, and 3 respectively.
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The images were all 512 × 512 in dimension. A QR code version 1 with error
correction level H was used in the experiments. This QR code version is made
up of 21 × 21 modules. Since the HH3 sub-band of a 512 × 512 image has a 64
× 64 resolution, we converted each module in the QR code to consist of 3 × 3
pixels, resulting in a total QR code size of 63 × 63 pixels.

4.1 Imperceptibility and Capacity

Imperceptibility is the property whereby a human cannot perceive the difference
between the original and watermarked signal. The Peak Signal-to-Noise Ratio
(PSNR) metric was used as a measure of image quality and to indicate the
perceptibility of distortions resulting from embedding a watermark within a
cover image. Figure 3 shows a plot of the PSNR values for the test images that
were obtained by varying the value of λ. Greater PSNR values indicate less
difference between I and IW . At low λ values, the human visual system is less
sensitive to distortions cause by embedding the watermark. However, increasing
the value of λ increases the distortion in the resulting image. When the distortion
is clearly visible in IW , the image looses its commercial value and usefulness.

Fig. 3. PSNR values.

Capacity, or payload, is the amount of data that can be embedded by a water-
marking scheme. The data capacity of the proposed watermarking technique is
based on the capacity of the QR code version and error correction level of W .
For a given QR code version, the higher the error correction level, the lower the
data capacity, but the more robust the resulting watermark will be to errors.
Hence, there is a tradeoff between data capacity and watermark robustness.

In addition, the size of W , is also governed by the size of I, since the water-
mark is to be embedded within a DWT sub-band of I. The higher the number of
module in W , the more data the QR code can encode. However, this also means
that for the watermark to be able to fit within a DWT sub-band, less pixels
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may have to be used to encode each module. The lower the number of pixels per
module, the less robustness the watermark, because there is a higher potential
for the pixels per module to the corrupted.

4.2 Robustness and Security

Robustness and security refer to a watermarking scheme’s ability to withstand
distortions to the watermarked signal. In the case of security, these distortions
are intentional attacks by an adversary to impair the watermark [4,12]. The
robustness and security of the proposed technique was examined by applying
various attacks to the watermarked images; namely, JPEG compression, sharp-
ening, blurring, salt-and-pepper noise, and cropping. These are common attacks
that are typically used to evaluate watermarking techniques.

For the JPEG compression attack, the images was compressed to 50% qual-
ity using the OpenCV library. For the sharpening and blurring attacks, basic
3 × 3 convolution filters were used. The weights in sharpening filter were⎡
⎣

0 −1 0
−1 5 −1
0 −1 0

⎤
⎦ and for blurring, a median filter

⎡
⎣

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

⎤
⎦ was used. For

the salt-and-pepper noise attack, 1% of the pixels in the images were randomly
overwritten with black or white pixels. Two cropping attacks were used, in the
first, the image center was removed, while in the second attack, the corners of
the image were removed. In both cropping attacks, a total of 25% of the images
was removed.

To evaluate the amount of error in the extracted watermark and the recon-
structed QR code, the Bit Error Rate (BER) and Module Error Rate (MER)
metrics were used. The BER refers to the percentage of bits that were in error in
the extracted watermark, W ′, whereas the MER is the percentage of incorrect
QR code modules in the reconstructed QR code, WR.

Tables 1, 2, and 3 demonstrate results of the various attacks on the respective
test images. The results shown the tables, were obtained using λ = 0.6. For each
test image and attack, the tables show the extracted watermark image and the
BER, as well as the reconstructed QR code and the MER. As described in
Sect. 3.2, the reconstructed QR code, WR, was obtained after cleaning up the
noise in W ′. In addition, grey modules in the reconstructed QR code depict
the modules that were incorrectly recovered. It should be noted that the error
contained in all the reconstructed QR codes were within the error correction
capacity, and thus, the reconstructed QR codes could correctly be decoded.
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Table 1. Results on Lena.

Attack
Attacked Extracted

BER
Reconstructed

MER
Image Watermark, W ′ QR Code, WR

Compression 21.10% 5.77%

Sharpening 16.61% 2.40%

Blurring 20.62% 4.33%

Noise 19.07% 3.85%

Cropping 1 17.74% 0.96%

Cropping 2 16.03% 1.44%
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Table 2. Results on Peppers.

Attack
Attacked Extracted

BER
Reconstructed

MER
Image Watermark, W ′ QR Code, WR

Compression 22.0% 4.81%

Sharpening 17.79% 5.29%

Blurring 24.04% 8.65%

Noise 19.18% 3.85%

Cropping 1 15.38% 1.44%

Cropping 2 15.92% 0.0%
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Table 3. Results on Mandrill.

Attack
Attacked Extracted

BER
Reconstructed

MER
Image Watermark, W ′ QR Code, WR

Compression 9.24% 0.0%

Sharpening 18.48% 3.85%

Blurring 21.31% 3.85%

Noise 12.44% 0.96%

Cropping 1 13.78% 0.0%

Cropping 2 14.0% 0.48%
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5 Conclusion

This paper presents a QR code watermarking technique for digital images. The
objective of the proposed watermarking technique is to embed a QR code within
a cover image in an imperceptible manner. This was achieved by embedding a
QR code within one the cover image’s DWT sub-bands. The reason for using a
QR code as a watermark is because the QR code structure incorporates an error
correction mechanism that allows it to be correctly decoded even if it contains
some error. In this paper, we discussed the properties of the proposed water-
marking technique and demonstrated its robustness against common attacks
that may be conducted by an adversary.
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Abstract. A Software-Defined Networking (SDN) controller plays a key
role for assuring the security and robustness of its underlying network
system. Previous studies focus on eliciting bugs in such SDN controller
via penetration testing or fuzzing without considering code coverage feed-
back from a target controller under testing. We propose FSF, a code
coverage-driven SDN fuzzer. We designed and implemented a fuzzing
algorithm to take into account coverage differences incurred by mutated
OpenFlow (OF) messages. FSF demonstrated its superiority in increas-
ing the code coverage of a target controller and generated unique 146
tests that trigger bugs in the latest version of Floodlight, a well-known
open-source SDN controller.

1 Introduction

Recent years have seen a surging interest in software-defined networking (SDN).
SDN is an innovative methodology to build a networking system wherein network
controlling attributes are abstracted by software referred to as an SDN controller.
SDN has been applied in diverse fields, such as cellular networks [4,31], IoT [11,
23], and broadband access [6,29] infrastructures, offering its own benefits for
large enterprises and telecommunication networks.

Meanwhile, the growing popularity of adopting SDN calls into question the
security of SDN systems. Yoon et al. pointed out that emerging SDN stacks
have introduced new attack vectors due to their design decisions on facilitat-
ing dynamic network flows and topology managements [32]. Previous studies
also introduced SDN security challenges [18,26] and manifested concrete attack
scenarios [5].

Security researchers have conducted fuzzing and penetration testing to
automatically gauge the security of off-the-shelf and open-source SDN sys-
tems [9,15,20,30]. Notably, DELTA [20] and BEADS [15] conducted fuzz test-
ing by randomly mutating seed traffic, which are generated by executing the
pingall and iperf commands from hosts. However, these approaches did not
leverage any feedback information from a controller under testing, thereby solely
depending on the input and output behaviors of the controller. They generated
tens of thousands of testing strategies, i.e., test cases, which were chosen at the
discretion of the testing analyst without any runtime feedback from a controller.
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2019, LNCS 11897, pp. 41–54, 2020.
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Consequently, the generated test cases do not trigger diverse inherent behaviors
of the controller.

In this paper, we design and implement FSF, the first code coverage-driven
SDN fuzzer. FSF is designed to find bugs in a target SDN system by feeding
unexpected test inputs to the south bound communication channels between an
SDN controller and SDN switches. The crux of our approach is to leverage the
code coverage information obtained from an SDN controller to guide the test
case generation.

We evaluated FSF using Floodlight, a popular open-source SDN controller, to
vet its capabilities of increasing testing code coverage and discovering SDN con-
troller bugs. FSF outperformed DELTA, a previous state-of-the-art SDN fuzzing
tool, in covering code coverage and produced discovered 146 of unique test inputs
that trigger bugs residing in the controller.

Our main contributions are as follows.

1. We present a novel code coverage-driven fuzz testing algorithm tailored for
testing an SDN system. The proposed technique leverages the coverage infor-
mation from a controller to evolve test cases during a fuzzing campaign.

2. We implement the proposed algorithm in our prototype and evaluate it on
the latest version of Floodlight. FSF produced unique 146 tests that trigger
critical bugs, which affect the daily operations of an entire SDN system. To
the best of our knowledge, our tool is the first feedback-driven SDN fuzzer.

2 Background and Motivation

Software-Defined Networking. A network system consists of two main
planes: a data plane that forwards network packets between routers, and a con-
trol plane that computes network paths that forward packets. In traditional
networks, the data plane and the control plane tightly coupled within a single
device, which makes it hard to insert new functionalities or updates forwarding
rules into the device. SDN has emerged to overcome this problem. It conceptually
separates the control plane from the data plane, and they communicate with a
protocol called OpenFlow [3] to exchange the routing information. Changing the
flow table with a logically centralized controller is straightforward, thus easing
the management of a network system.

SDN Fuzz Testing. Fuzzing or fuzz testing is a software testing technique
that detects software security vulnerabilities and was first used by Miller in the
early 1990s [22]. Fuzzing feeds adversarial inputs to a program under test and
monitors resulting crashes [7,13,27,28,33].

Many studies have applied SDN fuzzing to enhance the security of SDN sys-
tems [9,15,20,30]. SDN fuzzing differs from general fuzz testing schemes. Due to
the intrinsic nature of a SDN system that consists of diverse architectural com-
ponents and their complicated interconnections, the following questions should
be addressed when designing a fuzzing algorithm: (1) which components provide
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an input (testing source)? (2) which components take this input (testing target)?
(3) which bugs or threats the algorithm find (detection criteria)?

DELTA [20], for example, implements a black box fuzzing technique that tests
an entire SDN system (testing target) consisting of SDN applications, control
channels, and hosts (testing source). In particular, their testing source mutates
SDN control flow sequences and input values of the control flow. It employs seven
detection criteria, including controller crash and switch-performance degrada-
tion. Another SDN fuzzer is BEADS [15]. BEADS drops, duplicates, delays,
and changes OpenFlow packets from malicious switches and injects ARP pack-
ets from malicious hosts to test the controller. They validate OpenFlow error
messages, network state, pair-wise connectivity, controller resource usage, and
switches based on the detection criteria.

Limitations of Previous SDN Fuzzers. Previous fuzzers expose some of the
erroneous behaviors of the SDN system, but their approaches have the limitation
of only observing the input and output behaviors of the controller as a black
box. They limit the mutations of the input data without runtime feedback or
controller internal information (e.g., code coverage) that can evolve test inputs to
trigger unexpected behaviors. In fact, none of the previous SDN testing methods
has applied this feedback information to the mutations. Thus, the generated
test input often fails to cover the diverse operations of an SDN controller. For
example, to modify an ongoing OpenFlow message, BEADS uses the following
strategy; modifies a specific field of a specific type of a OpenFlow message to a
specific value. Since there is no automatic guidance or feedback to systematically
select these values (field, type, modification values), they blindly select values
that are likely to trigger inherent bugs. As a result, their approaches are not
general to elicit diverse unexpected SDN controller behaviors.

3 Threat Model

In this paper, we assume a southbound interface (SBI) attacker. An SBI is an
interface between an SDN controller and its connected switches. An SBI attacker
is capable of compromising a switch or performing a man-in-the-middle attack
that feeds malicious OpenFlow messages to the controller on the SBI. Several pre-
vious studies have shown the feasibility of compromising practical SDN switches
by exploiting network operating systems using outdated software [24,25]. Once
an attacker compromises a switch, she is able to generate an arbitrary Open-
Flow message as controller input. It is also feasible for an SBI attacker to perform
an MITM attack by exploiting the communication channel between the control
plane and the data plane. The OpenFlow specification [3] recommends the use
of SSL/TLS protection to protect OpenFlow messages. However, many exist-
ing controllers are packaged with the default setting that disables the SSL/TLS
support to ease the initial deployment. Furthermore, the protection is frequently
disabled due to its noticeable performance degradation [5,10].
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Fig. 1. FSF architecture.

4 Design

This section provides an overview of FSF and then describes each procedure for
leveraging the coverage feedback from an SDN controller under testing, which
makes FSF distinctive from other fuzzing tools, including DELTA and BEADS.

4.1 Overview

Figure 1 depicts the overall architecture of FSF. At a high level, it takes a set
of user-configurable parameters. FSF then initiates a fuzz testing campaign.
Once the campaign is completed, FSF reports a set of discovered bugs. FSF
conducts a fuzz testing campaign in tandem with an SDN testing environment.
The testing environment consists of a controller under testing, a set of SDN
switches (data plane), and proxies that connect between the switches and their
controller. FSF orchestrates these testing components to conduct a coverage-
driven fuzzing testing campaign.

Testing Infrastructure. We implemented a proxy for each channel between
the controller and its connected switches. Thus, each of these proxies is able to
model the capability of an SBI attacker (Sect. 3).

A proxy has two roles: (1) forwarding benign OpenFlow messages, and (2)
sending manipulated OpenFlow messages to a controller. The first role is required
to maintain the continuous connections between the controller and its switches,
which is an intrinsic characteristic of an SDN system. The proxy simply forwards
incoming OpenFlow messages to avoid tampering with any ongoing transactions
originating from benign switches. The second role models the capability of an SBI
attacker. In the proxy, FSF mutates OpenFlow messages according to a given
mutation policy and then sends these messages to elicit erroneous behaviors in
the controller. The user-provided configuration parameters govern the distinction
between benign and malicious switches. For instance, when Switch 1 in Fig. 1 is
configured as a malicious switch, its corresponding Proxy 1 feeds diverse tests
to elicit malicious behaviors in the controller.
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Testing Procedure. Given a configuration file, FSF conducts three phases.
Phase I collects seed messages by monitoring ongoing messages or by generating
arbitrary OpenFlow messages (Sect. 4.2). Based on the collected seed messages,
Phase II conducts a fuzzing campaign (Sect. 4.3). Specifically, it splits seed mes-
sages into several message sets, where the length of each is governed by a given
configuration parameter. For each message set, FSF randomly mutates those
messages in the set and feeds the mutated set to the controller. It then obtains
the instruction coverage of the controller and leverages the feedback for subse-
quent fuzzing iterations. Phase III determines whether each mutated message set
triggers bugs residing in the controller, thus serving as a bug oracle (Sect. 4.4).

4.2 Collecting Seed Messages

FSF begins a fuzzing campaign by collecting seed messages, which are observed
from configured proxies. Because our testing target is an SDN controller, we only
consider OpenFlow messages from a malicious switch to the controller. To diver-
sify seed messages, we first identified what types of OpenFlow messages belong
to switch-to-controller flows. According to the OpenFlow v1.3 specification [3],
of 30 message types, 15 types are switch-to-controller OpenFlow messages. Note
that DELTA [20] and BEADS [15] only covered six message types out of these
15 types (40%), which the pingall and iperf commands are able to trigger.

FSF considers all the 15 types of switch-to-controller messages. This means
that FSF covers more diverse code spots in a target controller, thereby increas-
ing the possibility of eliciting unexpected behaviors. We collect seed messages
through three methods: (1) capturing packets in the stand-by state; (2) capturing
packets after executing pre-defined commands to the control plane or data plane;
and (3) generating packets according to the OpenFlow grammar specification.

Stand-By State. A proxy gathers seed messages by capturing network pack-
ets when a controller is in the stand-by state, awaiting incoming OpenFlow
messages. In this state, the controller is involved only in (1) handshaking proce-
dures that establish connections between the controller and its switches and in
(2) checking the stability of established connections.

Commands Sent to the Control or Data Plane. To collect diverse seed
messages, FSF lets the controller and its switches execute pre-defined commands.
It then captures the packets caused by the exercised commands. FSF sends
commands to the controller via its REST API. For instance, FSF inserts a flow
rule to a switch and then removes it to generate FLOW REMOVED messages. It
also performs commands to the data plane using switch command-line interface
(CLI) or host CLI. For instance, FSF asks a switch to disconnect a connection
and reconnect it on a specific switch port to capture a PORT STATUS message.

Generating Packets. The aforementioned methods are unable to cover the
remaining four types. For these messages, FSF generates random messages
according to the OpenFlow v1.3 specification [3]. When generating these mes-
sages, FSF identifies data fields to fill as well as their constraints and then assigns
random values to generate seed messages.
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Algorithm 1. Feedback-driven SDN Fuzzing Algorithm.
1 function Fuzzing(conf, seed msgs, controller, proxy, switch)
2 cov base ← ResetComponent(controller, proxy, switch)
3 for i ← 0 to conf.sizeq do
4 subset ← RandomSample(seed msgs, conf.sizes)
5 Q.enqueue(subset, 0)

6 while Q �= ∅ do
7 subset, counter ← Q.dequeue()
8 test cases ← MutateSubset(subset)
9 proxy.send(test cases)

10 unseen msgs ← GetUnseenMsgs()
11 found bug, cov ← Evaluate(controller, proxy, switch)
12 bugs.append(found bug)
13 if cov base < cov then
14 mutated m, non mutated m ← SplitMsgs(test cases)
15 Q.enqueue(mutated m.append(unseen msgs, conf.sizes),0)
16 Q.enqueue(non mutated m.append(unseen msgs, conf.sizes),0)
17 cov base ← cov

18 else if counter < conf.thresholdc then
19 Q.enqueue(subset, counter + 1)

20 return bugs

4.3 Coverage-Driven SDN Fuzzing

Given a set of seed messages, FSF performs code coverage-driven fuzz testing
by leveraging the coverage feedback from a target SDN controller. Algorithm 1
describes the overall fuzzing procedure. The underlying idea is to discard mes-
sages that caused no increase of code coverage and to give more chances to
messages that already increased code coverage. Our assumption is that a mes-
sage that helped increase code coverage is likely to be a good seed for further
mutations, increasing code coverage.

The algorithm starts with a configuration file (conf ), seed messages
(seed msgs), and instances of a controller, proxies, and switches.

FSF begins by resetting all the components in a testing environment and
computing the baseline code coverage of the controller in Ln 2. Lns 4–5 initial-
ize a test queue Q by assigning multiple input subsets, each of which contains
randomly sampled messages from seed msgs. Ln 5 enqueues each subset with its
counter value, which is later used for discarding subsets tested multiple times.
The size of Q and subset is configurable by setting conf.sizes and conf.sizeq.

For each iteration, FSF mutates a message subset dequeued from Q, sends
the mutated messages in this subset, and evolves the message set by leverag-
ing the feedback of a code coverage difference from the target controller, as
Lns 6–19 show. The MutateSubset function in Ln 8 mutates randomly chosen
messages in the subset. There are various ways to mutate messages such as flip-
ping multiple bytes or inserting dummy bytes but, based on the results of our
empirical study (Sect. 5.1), we selected the flipping multiple bits operation. Ln 9
sends messages in test cases to the controller one by one. Note that there exist
certain messages that require the precedence of a request from the controller
(e.g., MULTIPART REPLY). To address this, FSF invokes a REST API to incur the
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corresponding request (e.g., MULTIPART REQUEST) from the SDN controller before
sending a response message from the proxy as its replying message.

The GetUnseenMsgs function in Ln 10 collects previously unobserved mes-
sages. The unseen messages are switch-to-controller messages that occur after
performing Ln 9. Their contents are unique so that FSF has not observed before-
hand. Adding unseen messages to test cases improves the diversity of seed mes-
sages on which the mutations are performed. Therefore, we put these unseen
messages in the queue later in Lns 15 and 16. Ln 11 performs an evaluation
to determine whether bugs are triggered through the implemented bug oracle
(Sect. 4.4) and to measure the cumulative code coverage in the controller.

If the mutated test cases successfully hits new code space in the controller,
FSF enqueues it to Q (Ln 13–17). As test cases consists of mutated and
non-mutated messages, FSF splits them by invoking the SplitMsgs function
in Ln 14. Ln 15 enqueues the purely mutated messages (mutated m) to Q.
Because the size of the mutated m is smaller than the conf.sizes, the num-
ber of (conf.sizes-len(mutated m)) of unseen msgs is randomly selected and
appended to mutate m. The same process is used to enqueue non-mutated mes-
sages (non mutated m) because there is a chance that they contribute to increas-
ing the code coverage when they are mutated later (Ln 16). We designed the
algorithm to refine messages by separating mutated messages from non-mutated
messages since non-mutated messages were already tried in previous iterations.
Thus, we create a new message set by adding several unseen messages to mutated
messages, which help the odd of increasing code coverage. At the same time, it
gives another chance to non-mutated messages by creating a new message set
with additional unseen messages.

If the test cases does not touch any new code spots, FSF does not discard it
immediately. We give it more chances to be used in further testing by putting
them to Q with an increased counter, as shown in Ln 19. The value of the counter
threshold conf.sizes is also determined by a given configuration file.

4.4 Bug Oracle

The bug oracle determines whether test inputs trigger bugs or not by monitor-
ing the components of the testing environment. We describe four standards to
implement a bug oracle.

Controller Process Termination. FSF checks whether the controller process
has terminated or crashed. In SDN, because multiple switches are continuously
connected to an SDN controller, the controller’s abrupt termination causes a
denial of service for the entire SDN network.

Control Plane Resource Exhaustion. FSF also checks whether the CPU
usage of the control plane process suddenly surges after sending testing messages.
The abrupt increased usage when compared to a benign baseline indicates an
opportunity for a denial of service, which impairs the controller’s ability to deal
with OpenFlow messages. Therefore, a bug that exhausts the CPU usage of the
control plane can drop the QoS of the entire network.
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Benign Switch Disconnection. We consider whether a benign switch is dis-
connected from the controller. A benign switch, e.g., switch 0 in Fig. 1, is a
switch that is not compromised by the SBI attacker. When a mutated switch-
to-controller message from a compromised switch contributes to other unrelated
switch-to-controller channels being disconnected, the bug oracle considers it a
DoS for benign switches.

Inter-host Communication Disconnection. The final bug oracle standard
is a pair-wise connectivity test to check whether the data plane network works
well. In particular, our testing scheme uses pingall command from the hosts
to check that all hosts are reachable from all other hosts. This is effective in
detecting message spoofing attacks and connectivity attacks.

5 Evaluation

We evaluated FSF using a real-world SDN system. We preliminary analyzed the
efficacy of deployed mutation operations (Sect. 5.1), and measured the perfor-
mance of FSF for improving testing code coverage (Sect. 5.2) and finding bugs
(Sect. 5.3).

Experimental Setup. We evaluated FSF on the latest version (v1.2) of Flood-
light [1]. We setup our system within a Virtual Box with an Intel core i7-9700K
CPU and 9 GB of RAM. To measure the instruction coverage of the controller
under testing, we used JaCoCo [2], a Java code coverage library. JaCoCo con-
ducts online instrumentation in which instrumentation code is inserted in Java
byte code when Java classes are loaded into main memory. We set the timeout to
be 24 h for each fuzz testing campaign, and measured the cumulative instruction
coverage of the controller during the testing time.

5.1 Operation Significance

To compare the efficacy of different mutation operations, we implemented a base
fuzzer that only uses five mutation operations but leverages no feedback from
the controller. This fuzzer takes following procedures: (1) setting the proxy to
mutates observed switch-to-controller messages with a 10% probability; (2) it
periodically generating multiple switch-to-controller messages according to the
procedure described in Sect. 4.2.

Mutation Operations. We designed five mutation operations as follows. Note
that each operation is designed to explore the diverse control flow of the con-
troller under testing.

(a) Flipping multiple bits: it selects and flips multiple random bits. The number
of bits to be mutated is randomly chosen from 1 to one tenth of all available
bits.

(b) Flipping multiple bytes: it selects and flips the selected bytes. The number
of mutated bytes is randomly selected from 1 to 10.
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Fig. 2. The instruction coverage of different fuzzers running for 24 h.

(c) Flipping single bit : it flips one randomly chosen bit in the message.
(d) Inserting dummy bytes: it inserts random bytes at the random position

within the message. The length of the dummy is randomly chosen from
one byte to 71,680 bytes.

(e) Changing multiple fields: it selects multiple random message fields, and
change the selected field values to random values while preserving the type
constraints according to the OpenFlow specification [3]. The number of
mutated fields is randomly set from 1 to 20% of all available fields.

We compared the instruction coverage of the controller when each single
mutation operation was applied. The objective here is to gauge how each muta-
tion affects on increasing the instruction coverage of the SDN controller under
testing.

Figure 2a shows the instruction coverage of preliminary base fuzzer with five
operations for 24 h. Note that the flipping multiple bits operation touched the
most number of instructions, 377,970 instructions in total. Based on the above
observation, we adopted the flipping multiple bits operation to FSF.

We further analyzed root causes of observed coverage differences among
the different mutation strategies. Floodlight internally uses OpenFlowJ, which
parses a given OpenFlow messages according to the OpenFlow protocol specifi-
cation. When a received message does not meet this specification, OpenFlowJ
raises an exception, hindering to reach a deeper code region. Furthermore,
each message field in a OpenFlow message requires a different primitive type,
such as uint8, uint32, and uint64. Non-compliance of such primitive type
requirements will also cause low code coverage. The three mutations of chang-
ing multiple fields, flipping multiple bytes, and inserting dummy bytes are
more likely to generate OpenFlow messages that do not satisfy the specifica-
tion nor the primitive type constraints. For instance, flipping multiple bytes
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often breaks a required type constraint. For example, the Capabilities field
value in a FEATURES REPLY message should have one of the following values:
0x00000000,0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000020,
0x00000040, and 0x00000100. When flipping multiple bytes of this message, this
mutation is able to generate a message with 0x00000011, which is not a valid
OpenFlow message.

Flipping multiple bits is a simple but effective mutation strategy in prac-
tice. It is widely used in many fuzzers [12,14,33]. As shown in Fig. 2a, flipping
multiple bits also was the most effective mutation strategy than other ones in
terms of improving code coverage. Bit flipping causes no significant change in
its target field, thus resulting in a high chance of not violating the aforemen-
tioned constraints. Also, flipping multiple bits is better than flipping single bit
in generating more diverse tests.

5.2 Coverage Improvement

We compared the coverage improvement of FSF with that of two other fuzzers:
(1) a preliminary base fuzzer with the flipping multiple bits operation (Sect. 5.1),
and (2) DELTA [20], a state-of-the-art SDN security assessment framework.
Unfortunately, the DELTA project [20] did not contain a fuzz testing function
at the time of writing. The project does, however, support penetration testing,
a key task of DELTA with 40 known attack scenarios. To compare our tool
with DELTA, we measured the number of covered instructions after conducting
penetration testing.

Figure 2b shows the instruction coverage of different fuzzers. We observed
that FSF and the base fuzzer significantly outperformed DELTA on instruc-
tion coverage. Recall from Sect. 4.2, both fuzzers leverage all of the switch-to-
controller OpenFlow message types, while DELTA only relies on a set of limited
known attack scenarios. Therefore, we concluded that it is important to have a
diverse set of seed messages to conduct comprehensive testing of an SDN system.

We also observed that FSF touched 4,835 more instructions than base fuzzer.
As stated in Sect. 5.1, the main difference between the preliminary base fuzzer
and FSF is the existence of a coverage feedback loop. Therefore, we note that the
difference in the instruction coverage comes from the coverage feedback iteration.

5.3 Bugs Found

We further analyzed FSF in terms of its bug finding ability. Recall from Sect. 4.4
that we consider four types of bugs as our detection criteria: (1) controller process
termination, (2) control plane resource exhaustion, (3) benign switch disconnec-
tion, and (4) inter-host communication disconnection. Table 1 summarizes the
number of test instances that trigger bugs residing in the target SDN controller.
We counted the number of distinct tests that trigger the bugs based on two
different metrics that each column represents.

The second column in Table 1 shows the number of mutated message sets
that trigger the corresponding bug. In total, 1 controller process termination,
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Table 1. The number of test instances that trigger bugs.

Bug oracle Total test instances Unique test instances

Controller process termination 1 0

Control plane resource exhaustion 0 0

Benign switch disconnection 198 132

Inter-host communication
disconnection

18 14

198 benign switch disconnection, and 18 inter-host communication disconnec-
tion bugs with their test instances were reported during the 24 h of a fuzzing
campaign. We observed that FSF successfully triggered three types of bugs.
Benign switch disconnection imposes a DoS for other benign switches. Hosts can
not communicate with each other when disconnection occurs. Furthermore, the
controller process crashes cause a DoS for the entire SDN network.

As a postmortem analysis, we extracted mutated message sets (i.e.,
test cases) that successfully triggered bugs, send each of it in initial testing
infrastructure, and see whether same bugs were triggered or not. Additionally,
we minimize the reproducible test cases by leveraging delta debugging [30,34]
technique to get a minimized message set that causes the same bug. Finally, we
compare minimized subsequence with each other in terms of sequence length,
message type, and message length to count the number of unique message sets.
As the third column in Table 1 shows, FSF found unique 146 test instances.

We further analyzed the 14 minimized unique instances that triggered the
inter-host communication disconnection and identified two unique bugs via con-
ducting postmortem analyses on the controller source with the input instances.
One bug caused the failure of ping operations between hosts under benign
switches. When a malicious switch sends an identified attack payload, this packet
contributes hosts under benign switches to disconnecting from the network, caus-
ing a remote denial of service. Another bug caused not only the failure of ping
operations but also the flooding of PACKET OUT messages, demonstrating a fea-
sible denial of service. Both bugs got assigned CVE numbers and have remained
in the reserved status at the time of writing. On the other hand, the instances
triggered the controller termination was not reproducible in the postmortem
analysis.

6 Discussion

FSF only supports the latest version of Floodlight. However, it is straightforward
to apply it to other types of SDN controllers, e.g., POX, ONOS, ODL, because
the core idea of FSF in leveraging code coverage of the controller is indeed
platform agnostic.

FSF only adopted the flipping multiple bits mutation. However, we believe
that consolidating multiple mutations will bring a better result in terms of finding
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bugs as well as improving code coverage. Also, deploying combinatorial testing [8]
that mutates fields with only known interesting values helps prune unnecessary
test cases, enabling an efficient fuzzing campaign.

Note that the mutation ratio for the flipping multiple bits mutation is an
important parameter to effectively trigger bugs [7]. Thus, exploring optimal
mutation ratios for a fuzzing campaign can be a promising future direction of
research.

We only implemented the bug oracles that detect the availability of an under-
lying SDN network. However, the bug oracles can be extended to check the
confidentiality [21] and integrity of a target SDN network.

7 Related Work

SDN Attacks and Defenses. Many previous studies have presented attacks
and defenses that can occur in SDN [5,16,17,19,26]. Benton et al. [5] presented
the feasibility of an MITM attack in control channels due to the lack of SSL/TLS
adoptions by vendors. Kazemian et al. [16] proposed an SDN system hardening
tool. They identify all state changes in the communication channel, and check
network policies in real time based on the header space analysis.

There exist previous survey studies to summarize the various SDN security
issues [17,19,30,32]. Scott-Hayward et al. [30] proposed possible DoS attacks due
to the limitations due to the design decisions, including centralized controllers
and network flow tables. Flow Wars [32] presented a survey for the possible
attacks with its attack vectors. They found 14 attacks and 22 concrete attack
scenarios. For each attack classification, they suggested defense mechanisms.

SDN Fuzzing. Based on these SDN security problems, prior studies have been
actively conducted on implementing automated testing tools to identify vulner-
abilities [9,15,20,30]. DELTA [20] deploys a blackbox fuzz testing technique. It
models the fuzzing input source to be malicious applications, control channels,
or hosts. The input sources mutate SDN control flow sequences or input values
of such control flows. BEADS [15] assumes malicious switches and hosts. It sup-
ports various mutations, including dropping, duplicating, delaying, and chang-
ing OpenFlow messages as well as ARP injection operations to elicit erroneous
behaviors in an SDN system. AIM-SDN [9] focuses on identifying problematic
data inconsistencies between data stores, which may exist in an SDN system.
It uses REST API and SBI to perform fuzz testing to find data inconsistency
problems.
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Abstract. Software-Defined Networking (SDN) has proven itself a use-
ful technology for establishing and managing configurable, dynamic net-
works with the rapid deployment of services in the past decade. Despite
these advantages, the fact that the functionality of SDN relies heavily
on the controller with a much less capable data plane creates a sin-
gle point of failure, which leaves the network susceptible to denial of
service (DoS) attacks mainly targeting the controller to affect the oper-
ation of the whole network. An effective approach for mitigating DoS
attacks in SDN requires identifying and stopping attacks as close to
their source as possible, which will require involvement of the data plane
in the mitigation strategy. In this work we propose DroPPPP, a DoS
prevention approach for SDN that operates in the data plane using the
P4 programming language. We demonstrate through experiments in the
Mininet that lightweight processing of the packets in the data plane
with DroPPPP negates significant overheads through reducing the traf-
fic between switches while keeping the controller’s CPU usage at 0% and
below 50% during spoofing and volumetric attacks.

Keywords: Software-Defined Networking · Denial of service · P4

1 Introduction

Software Defined Networking (SDN) [5] is a popular network architecture that
distinguishes itself from traditional networks in that it separates the control
plane and the data plane. In SDN, there is a centralized controller that creates
and maintains network control functions such as forwarding decisions. The cen-
tralized aspect of the structure of the SDN provides a better network view and
flexibility to the network manager. However, denial of service (DoS) attacks can
exploit this centralization, which makes the network more vulnerable to these
attacks compared to the traditional networks. Since the controller is responsible
for all control functions, it is easy for DoS attacks to overwhelm the controller,
especially using source IP and MAC spoofing-based attacks, which make it dif-
ficult to trace the origin of the attack and enforce appropriate thresholds to
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only block malicious traffic, while allowing for legitimate traffic to pass through.
If a packet does not match with any flow rule in the flow tables, the switch
sends a packet in message to the controller. The controller determines the action
and sends a packet out message to the corresponding switches. Communications
between switches and the controller will increase significantly during a DoS
attack, which affects the performance of the whole network. Considering the
stated severe impacts of DoS attacks on SDN, early detection and prevention of
DoS attacks as close to their origin as possible is a significant task.

P4, which stands for “Programming Protocol Independent Packet Proces-
sors” [1], is a recently introduced domain-specific programming language that
allows forwarding and processing packets in the data plane without requiring
intervention from the control plane. Although there are some limitations of the
capabilities of P4, bringing computations to the data plane results in a significant
performance gain. In this work, we propose DroPPPP, an approach for detect-
ing and mitigating DoS attacks in the data plane using P4 switches, which are
switches with limited computation capability that support the domain-specific
P4 language. We utilize the flexibility of P4 switches and decrease the communi-
cation overhead between switches while maintaining the controller’s CPU usage
at 0% and below 50% during spoofing and volumetric attacks. Experiments with
an SDN simulated in the Mininet environment demonstrate the efficacy of the
approach with reduced round trip times and packet loss rates for the legitimate
traffic under DoS attacks. To the best of our knowledge, this is the first work
utilizing P4 to detect and prevent spoofing-based DoS attacks in SDN.

2 Related Work

As a variety of SDN architectures arose in the past few years, various approaches
for mitigation or/and detection of DoS attacks on SDN’s were developed. Detec-
tion of DDoS attacks against SDN controllers is done via the usage of the entropy
of destination IP addresses in the study of Mousavi et al. [9]. Yet, attacks cannot
be detected when destination addresses are spoofed as entropy will rise higher.
DoS detection is done via Self Organizing Maps, a machine learning algorithm,
in the work of Braga et al. [2]. Flow table entries in the switches are collected
and from these flow entries, some features are extracted. At each predetermined
time interval, flow entries in the switches are pulled and high attack rates may
cause flooding of the channel between the controller and the switch. For the
detection of TCP SYN flooding attacks in SDN, uncompleted TCP handshake
processes are tracked in SLICOTS [8]. Host MAC addresses are used in blocking
when uncompleted connection requests directed to a host are above a previously
defined threshold. Host legitimacy is not considered, hence blockage applies to
all hosts. In FlowSec [6], the bandwidth between the controller and the switches
is observed. The controller receives a lower rate of packets when the bandwidth
exceeds a previously defined threshold. Legitimate traffic is also affected in this
approach. A DoS attack is not the only reason for a high traffic rate. The con-
troller queue is maintained by a threshold value in the work of Raj et al. [12].
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Packets that are from the same source and have the same destination IP are
counted and the hosts that exceed a previously defined threshold are blocked
based on their IP addresses when the number of packets in the controller queue
exceeds the threshold. This method cannot detect spoofed IP addresses. Closest
to our approach is that of DosDefender, which tracks hosts attached to each
switch [4]. The controller stores the MAC and IP addresses, the number of
ports each host uses and the switch ports that the hosts are connected to. At
each arrival of a packer in message, IP and MAC addresses are checked by the
controller to their correspondence of the stored addresses. In case of spoofing,
detection is provided via mismatching of the addresses and packets are blocked
based on the switch port connected. Although DoS attacks may be detected
by this approach, every connection results in additional delay, also it requires
the controller to track all hosts in the network. In PacketChecker [3], legitimate
packet in requests are separated from malicious requests by storing and using
switch ports and host MAC bindings. When the port MAC binding table does
not contain the source MAC address of the packet, the packet is dropped. Yet,
as dropping the packets is done at the controller; the bandwidth between the
controller and the switches and the switch resources are still devoured by the
spoofed packets.

3 Proposed Approach

3.1 Spoof Detection

Our proposed approach for mitigating DoS attacks in SDN is based on the obser-
vation that the attacks targeting the controller in SDN will mostly utilize source
IP and MAC spoofing techniques in order to fill up the forwarding tables and
cause increased communication between the switches and the controller to install
forwarding rules for previously unseen traffic [4]. If we are able to detect that a
specific host is using spoofing, blocking traffic from that host as appropriate will
provide a first line of defense against the malicious traffic to be created in the
network. In these networks, each switch or forwarding element in the data plane
will be connected to hosts and other switches through its various ports. When
a packet arrives at a specific port of a switch, the switch will be able to identify
which host/switch the packet is sourced from. By dropping malicious traffic close
to its origin, directly at the data plane through identification of spoofing at the
switches, we protect the controller resources from being exhausted.

Algorithm 1 summarizes our main processing logic for spoofing detection.
For every switch, we define an attack flag for every port that connects a host at
the other end. When a switch receives a packet, it first checks whether it came
from a port connected to a switch or a host. If it came from a switch, we apply
the forwarding logic to it. Otherwise, it came from a host, and we further process
the packet to check for an attack. In the processing procedure, the switch first
reads the timestamp of the last attack packet received and the attack flag for
that port. If the attack flag is set (i.e., there is currently an attack on that port)
and the difference between the timestamps of last attack and the current packet
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is less than 1 s, the packet is dropped without further processing. Otherwise
the switch calculates a hash value from the packet’s source MAC address and
source IP address, in order to identify the host connected to that port. Then,
the calculated hash value is compared with the previously stored hash value for
that port. If they match, all is OK, so the switch performs forwarding on the
packet. If the stored hash value is zero, this is the first time we have received
any packets from that port, or the value has been cleared after an attack is
finished. Therefore, we bind/match the calculated hash with the port that the
packet came from. Moreover, we clear the attack flag of the port and update
the last attack time of the port (in case it is the end of an attack). If the stored
value is not 0 and the hashes do not match, we say we detected an attack.
When hashes do not match, we first read the last attack time for the port. If
the time difference between the current packet and the last attack time is less
than 5 s, then we set the attack flag, update the last attack time of the port
and drop the packet. If the time difference is greater than 5 s, we assume that
the attack has ended and bind/match the new hash value with the port and
clear the attack flag. Then we perform forwarding. Processing logic handles the
attack detection and port blocking and forwarding logic as explained above. The
switch uses three registers (array-like structures) to perform attack detection
logic. The first register is called r known hosts, and it is used to store hashed
values of source IP (srcIP) and source MAC (srcMAC) of each host connected to
a port. The second register is r attack time. It stores the timestamp of the last
detected attack packet. The third register is r port attack flag and it stores a
flag for each port of the switch, indicating an ongoing attack on that port. Two
match-action tables are used to perform forwarding. The first table is called
ip forward table. It performs the longest prefix matching on the destination IP
address of the packet. Matched values are used to call ip forward action. The
table is filled by the controller at the startup. The second table is neighbor table
and it is used to determine if a port is connected to another switch or a host.
host action is performed if the port is connected to a host and switch action if
the port is connected to a switch. The table is filled by the controller at the
startup. After all, processing is done by deparser, which puts the headers back
together and then outputs the packet from the port specified as the result of the
forwarding logic in the previous step.

3.2 Volumetric Attack Detection

We perform volumetric attack detection based on the packet rates of the hosts
connected to the switches. In many DoS attacks, the number of packets sent
per second is abnormally high compared to normal network traffic. Similar to
the spoofing approach, if we can detect an unusual amount of packets being
sent from a host, we can block the traffic from that host to stop the attack.
We employ a Two Rate Three Color Marker (RFC 2698) to identify the hosts
exceeding specific packet rates and block their traffic. Two Rate Three Color
Marker uses two rates to color (i.e. mark) packets. One of the used rates is Peak
Information Rate (PIR), and the other is Committed Information Rate (CIR). It
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Algorithm 1. Packet Processing Algorithm
Input: hdr(header), attack time array(last attack times), port attack flag array,

global time(current time), known hosts array(hashes of sourceIP and
sourceMAC of each host), ingress port, ip forward table, neighbor table

1: action ← Action applied in neighbor table
2: if action = ”host action” then
3: if hdr is valid then
4: port attack flag ← port attack flag array[ingress port]
5: attack time ← attack time array[ingress port]
6: if port attack flag = 1 and global time − attack time < 1000000 then
7: Drop the packet
8: else
9: known hosts ← known hosts array[ingress port]

10: HP ← Calculate the hash of the packet
11: bound hash ← Read hash from known hosts corresponds to the port
12: if HP �= bound hash and bound hash �= 0 then
13: if global time − attack time < 5000000 then
14: port attack flag ← 1
15: port attack flag array[ingress port] ← port attack flag
16: attack time array[ingress port] ← global time
17: Drop the packet
18: else
19: bound hash ← 0
20: port attack flag ← 0
21: port attack flag array[ingress port] ← port attack flag
22: end if
23: end if
24: end if
25: if bound hash = 0 then
26: known hosts array[ingress port] ← HP
27: attack time array[ingress port] ← global time
28: port attack flag array[ingress port] ← 0
29: end if
30: if attack flag = 0 then
31: Apply ip forward table
32: end if
33: end if
34: else if action = ”switch action” then
35: Apply ip forward table
36: end if

compares the rate of the incoming packets to PIR and CIR to color each packet.
A packet is marked GREEN if it does not exceed both PIR and CIR, YELLOW
if it only exceeds CIR and RED if it exceeds the PIR.

In P4 we use a meter providing the implementation of the Two Rate Three
Color Marker, and marked packets from each port according to their rates. If
a packet is marked GREEN, it is forwarded without further processing. If a
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packet is marked YELLOW, it is still forwarded normally but an information
message is sent to the controller in case it wants to take further action. If a
packet is marked RED, it is dropped immediately and a message is sent to the
controller. The two rates of the meter are set by the controller using the Thrift
API of the switch implementation. Rates are given as a list of size two. The
first element corresponds to the CIR and its burst size and the second element
corresponds to the PIR and its burst size. The CIR and PIR are represented
as packets/microseconds and burst sizes are represented as packet counts. For
example 0.000001:1 denotes a rate of 1 packet/s with a burst size of 1 packet.

4 Evaluation

4.1 Experiment Setups

We simulate our experiment setups using the Mininet environment [7]. Switches
use the “simple switch” implementation of the P4’s behavioral model v2 (BMv2)
[11].

Spoof Detection Setup. In this setup, we use a linear topology with five
linearly connected switches, all connected to a single controller. Each switch
also has five hosts connected to it. A forwarding table consists of the IP ranges
of hosts in the topology and the corresponding port numbers of the switch to
perform forwarding. We perform our experiments on two different scenarios. In
the first scenario, a host connected to the first switch sends pings to a host
connected to the last switch, while an attacker who is connected to the second
switch performs a spoofing-based denial of service (DoS) attack targeting the
same host at the last switch. In the second scenario, a host connected to the
first switch sends pings to a host connected to the last switch, but this time the
attacker is also connected to the first switch.

Volumetric Attack Detection Setup. In this experimentation setup, we use
a topology named France–D-B-L-N-C-A-N-N that is provided by [10]. There are
25 nodes in this topology, and we use nodes as switches. For every switch, we
assign a random number of hosts in the interval of 1–3. In order to simulate a
volumetric DDoS attack, we select 50% of hosts as attackers, 40% of them as
casuals, and 10% of them as idle. We run a ping command on both attackers and
casuals. Attackers target the same victim host in every experiment. Meanwhile,
casual hosts randomly talk with each other and the victim host. As the name
implies, idle hosts sleep during the experimentation and do not consume any
resources.

4.2 Results

We have performed our experiments on a computer with an Intel Core i5-6500
CPU running at 3.60 GHz× 4. Each experiment has been repeated 50 times.
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(a) Average RTT in Scenario-1. (b) Average packet loss in Scenario-1

Fig. 1. Average RTT and packet loss statistics in the Scenario-1.

(a) CPU load for protected system. (b) CPU load for unprotected system.

Fig. 2. The CPU load distribution of the switches and the controller in the Scenario-1.

Spoof Detection Results. In spoof detection experiments, the attacker per-
forms random source IP spoofing and flooding with a different rate of packets per
second. The ping command sends 1000 packets, and we repeat the experimenta-
tion when the command is finished. In each experiment, we consider two different
P4 application setups. The first P4 application does not have data-plane spoof
detection. In the latter application, we have our proposal that performs spoof
detection on the data-plane. In Fig. 1(a), we measure the average RTTs on the
Scenario-1, with and without spoof detection on the data-plane. When the spoof
detection is disabled, there is an increase in the RTTs after 3000 packets/second.
We also observe that after 5000 packets/second, RTTs of both setups increase.

The reason for the increase in the RTTs in both setups can be seen in Fig. 2.
As the attack rate gets faster, the CPU loads of switches also increase. In this
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(a) Average RTT in Scenario-2. (b) Average packet loss in Scenario-2

Fig. 3. Average RTT and packet loss statistics in Scenario-2.

context, high CPU load means that the switch is rather busy with the DoS attack
than processing the regular packets, which therefore increases the average RTTs.
In Fig. 2(b), we notice that not only the switch that encounters the attack first
has a high of a CPU load, but all of the switches do. On the contrary, In Fig. 2(a),
there is only a high CPU load on the first switch that detects the DoS attack,
which is the second switch in the topology. The reason of this phenomenon is
the cost of packet processing to detect an attack. As a result, when the spoof
detection on the data-plane is enabled, the RTTs remain considerably low and
stable since the overall CPU load of the system is noticeably smaller than the
case where the spoof detection is not provided. Furthermore, it is essential to
provide a low packet loss ratio during the DoS attack. In Fig. 1(b), we explore
the packet loss ratios of both of the setups. We see that even under a heavy
load, the packet loss remains zero when the spoof detection on the data-plane
is enabled. On the other hand, when the spoof detection is not employed, we
observe that the system suffers moderate packet loss as the overall load of the
system is considerably high.

In Fig. 3(a), we evaluate the average RTTs on Scenario-2. If we compare
Fig. 1(a) and Fig. 3(a), we can see that the system is more vulnerable to the
place of the attacker when there is no spoof detection on the data-plane, as the
average RTT is almost three times Scenario-1’s results. On the contrary, when
the spoof detection is enabled, we observe that the RTTs are approximately the
same. Furthermore, in Fig. 3(b), the packet loss is greater compared to Fig. 1(b)
when the spoof detection on the data-plane is not provided. In Fig. 4, we explore
the reason why the RTT, and loss increased almost four times, and two times
respectively when there is no spoof detection. In this experiment, we see the
effect of having one more hop on the path between the victim and the attacker.
Allowing a DoS attack even one more hop decreases the performance signifi-
cantly, and the quality of service of hosts on and before the first switch which
embraces the attack on the path to the target. In both of the scenarios, our
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(a) CPU load for protected system. (b) CPU load for unprotected system.

Fig. 4. CPU load distribution of the switches and the controller in Scenario-2.

spoof detection implementation does not make use of the controller. Therefore,
we have the CPU load of the controller near zero. However, we observe that the
CPU load of the switch embracing the attack is very high due to the packet
processing cost to determine an attack.

Volumetric Attack Results. In volumetric attack detection experiments, we
have 25 switches and 50 hosts in total. We randomly assign 25 of the hosts as
attackers, 20 of the hosts as casuals and set five of the hosts as idle. The attacker
hosts send 5000 packets to the same victim. The casual hosts randomly select
another casual and send 100 packets. We perform two different experiments on
this setup. The first experiment is measuring the impact of different CIR-PIR
thresholds. In order to simulate their effectiveness, we set the attacker’s rate as
240 packets per second since it is average considering the CIR-PIR thresholds.
In the second experiment, we explore the effect of different attack rates. We set
the CIR and PIR thresholds as 240 and 340 packets per second respectively. In
both of the experiments, we set the packet rate of the casual hosts as 25 packets
per second. Moreover, we repeat every experiment 30 times.

In Fig. 5(a) we measure average RTTs with and without volumetric attack
protection in data-plane. When there is no protection, the RTTs of casual hosts
are high while the attackers experience a relatively low RTT. The reason why the
causal hosts experience high RTTs is without data-plane protection attackers are
able to consume resources easily. We present the packet losses of casual hosts
and attackers in Fig. 5(b). We observe that without attack protection, casual
hosts and attackers experience similar packet losses. When the protection is
enabled, attackers’ packet loss increase dramatically while causal hosts packet
loss decreases. Furthermore, there is a sharp drop after 200–300 CIR - PIR
interval. From this phenomenon, we can conclude that the attackers’ packet rate
on the victim’s switch is around 300 packets/s.
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(a) The average RTTs measurements. (b) The average packet loss statistics.

Fig. 5. The average RTT and packet loss statistics in CIR-PIR threshold experiments.

(a) The average CPU load statistics in the
CIR-PIR threshold experiments.

(b) The average CPU load statistics with
different attack rates.

Fig. 6. The CPU load distribution of the switches and the controller in the Scenario-2.

In Fig. 6(a), we show the CPU usages of switches and the controllers with
different CIR-PIR thresholds. CPU consumptions of switches are quite close to
each other in both cases, with and without data-plane protection. To be pre-
cise, when the attack rate is greater than the CIR of the switch, the DroPPP-V
switches consume slightly less CPU and when attack rate is smaller than the
CIR of the switch, they consume more CPU. Moreover, when the attack rate is
greater than the CIR, CPU consumption of the DroPPP-V controller is quite
high. This is because the switches inform the controller when they detect an
attack. To reduce high CPU consumption, more intelligent data plane algorithm
should be employed. For instance, instead of warning the controller every time
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(a) The average RTTs measurements. (b) The average packet loss statistics.

Fig. 7. The average RTT and packet loss statistics with different attack rates.

traffic exceeds CIR, switches can collect traffic information and inform the con-
troller periodically. When we examine the CPU consumption of the system as we
increase attack rate we can see that the CPU consumptions of the simple switch
and the DroPPP-V switch are really close. Results are shown in Fig. 6(b).

In Fig. 7(a), we inspect the RTTs of casual hosts and attackers as we increase
the attack rate. When the attack rate is between the CIR and PIR, the load on
the switch is essentially doubled since it both forwards the packet and sends
an information packet to the controller. Consequently, we observe a peak on
both RTT and packet loss. Packet loss with increasing attack rates is presented
in Fig. 7(b). Volumetric attack protection lowers the packet loss of casual hosts
while increasing the packet loss of attackers.

5 Conclusion

In this paper, we proposed DroPPPP, a novel approach for mitigating spoofing-
based DoS attacks in SDN, which reduces the overall workload of the switches
by processing the packets in the data plane using P4 as we maintain the CPU
load of the controller below 50% all the time. Our experiments showed that our
approach increases the network’s performance under a DoS attack, especially
by decreasing packet loss significantly in both scenarios that we experimented
with, while creating tolerable overhead when there is no attack. In the volumet-
ric experiments, our controller only collects the warning statistics but do not
perform any actions. Furthermore, switches always warn the controller when
the CIR threshold is exceeded. This kind of behavior dramatically increases the
CPU load of both the switches and the controller. Therefore, we plan to extend
and design a more intelligent switch, and controller structure as future work.
Moreover, we intend to implement In-band Network Telemetry (INT) with P4
to gather more extensive information about the network and use this information
to block detected DoS attacks at the border switches.
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Abstract. E-voting has been studied for many years. Recently,
researchers find that blockchain can provide an alternative secure plat-
form for e-voting systems, because of its properties of tamper resistance
and transparency. However, existing schemes either require centralized
authorities to tally ballots or can only handle a limited number of voters.
This paper tries to propose a self-tallying e-voting system, i.e., the public
can verify the validity of all ballots and tally the ballots. To achieve this
goal, technically, we design a new method on blockchain that can gener-
ate and distribute random numbers for ballot security and these random
numbers will be cancelled out when multiplying all ballots to allow count-
ing the ballots. Secondly, we adopt non-interactive zero knowledge proof
to make sure these ballots are valid. Our scheme is proved to be secure.

Keywords: E-voting · Blockchain · Self-tallying · Zero-knowledge
proof

1 Introduction

Voting plays an important role in a society. Paper-based voting systems waste a
lot of papers and require a lot of manpower to finish tallying. Thus, electronic
voting (e-voting) system was proposed. There are many e-voting systems, such as
homomorphic encryption based voting [5], mix-net based voting [2], zero knowl-
edge proof based voting [4] and signature based voting [6]. These systems have
their advantages but many e-voting systems require a trusted bulletin board
to record ballots, which is required to be append-only and tamper resistant.
Recently, blockchain attracts a lot of attention as an e-voting platform since
it satisfies the requirements of being a secure bulletin board. Also, the smart
contract built on blockchain can help to do some important computation in a
transparent way since the binary code is accessible in the chain. It is reported
that the e-voting scheme in [7] that is based on blockchain, costs about only
$0.7 per voter using Ethereum [13] (a blockchain platform) while it costs $2.77
using paper or DRE (direct-recording electronic machine) with paper in Califor-
nia, USA [1]. It is believed that blockchain based e-voting systems can be more
secure and economic. Some business companies also try to consider e-voting using
blockchain. For example, Voatz, a blockchain-based app, is offered to be a voting
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2019, LNCS 11897, pp. 67–76, 2020.
https://doi.org/10.1007/978-3-030-39303-8_6
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option for West Virginia (U.S.) voters who are serving in the military overseas1.
In academia, blockchain-based e-voting also attracted a lot of attention.

Table 1. Overview of some schemes

Requirements Bin Yu [14] OVN [7] Our

Ballot result unknown for administrator ✗ � �
for others � � �

Voter anonymity � ✗ �
Interim result unavailable for administrator ✗ � �

for others � � �
Double-voting resistance � � �
Public verifiability � � �
Self tallying ✗ � �
Platform independent � � �

Recently, Yu et al. [14] proposed a platform independent e-voting scheme
based on blockchain, which implies that changes in the underlying blockchain
protocols would not affect the voting system. However, in their scheme, there is
a powerful “voting administrator”, who generates the public and secret keys for
ballot encryption and decryption so that he can know the interim result easily.
Thus, if the administrator colludes with one of the candidates, the candidates
can adjust his/her strategy in time according to the interim result.

In 2017, McCorry et al. [7] proposed a decentralized and self-tallying e-voting
protocol using blockchain without a tallying authority, called open vote network.
It achieves a good security and anonymity. However, the computation overhead
is large. It requires O(n) multiplication operations for a voter to compute a
public parameter (the reconstructed key), where n is the total number of voters.
If leveraging the computation to the chain, e.g. using smart contract, it would
cost too much blockchain computation resource and only supports at most 50
voters’ reconstructed keys in one Ethereum transaction, because of the gas limit
of Ethereum, which limits the number of voters.

This paper tries to improve the work of [7] and propose a better self-tallying
e-voting system with no powerful central authorities nor trusted third parties. We
also assume that some independent parties own high performance computational
devices, for example the voting administrator, who could help tallying and verify
all ballots but whom we do not trust. Thus, we focus on the weak devices of the
common voters. An overview of comparison of existing schemes is shown in
Table 1. It shows that our scheme satisfies all important security requirements.
To achieve these goals, we propose a method based on blockchain to cancel

1 https://www.wvnews.com/news/wvnews/history-making-mobile-voting-app-for-
overseas-military-now-in/article 0402b7dd-af11-56ed-a42d-5981a214f9c0.html.

https://www.wvnews.com/news/wvnews/history-making-mobile-voting-app-for-overseas-military-now-in/article_0402b7dd-af11-56ed-a42d-5981a214f9c0.html
https://www.wvnews.com/news/wvnews/history-making-mobile-voting-app-for-overseas-military-now-in/article_0402b7dd-af11-56ed-a42d-5981a214f9c0.html
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out random numbers in the ballots when multiplying them and design a zero
knowledge proof to prove that the ballots are generated as stipulated.

2 Preliminary

2.1 Zero Knowledge Proof

We use PoK{λ : Γ = γλ} to denote a non-interactive proof of knowledge of a
(secret) λ. Thus, PoK{∃x : t1 = gx

1 ∧ t2 = gx
2} denotes the proof of equality and

knowledge of two discrete logarithms and PoK{∃x : (t1 = gx
1 ∧ t2 = gx

2 )∨ (t3 =
gx
3 ∧ t4 = gx

4 )} denotes the proof of the knowledge of x for disjunctive of equality.
For more details, you can refer to [11].

2.2 Decision Diffie-Hellman Assumption

In 1996, researchers [12] proposed the 3DDH assumption based on DDH assump-
tion. Our ballot security is also based on 3DDH assumption, so we introduce it
here.

Definition 1. (3DDH) Given q is the order of group G and g is the
generator, it is difficult to distinguish (gx, gy, gz, gxy, gxz, gyz, gxyz) from
(gx, gy, gz, gxy, gxz, gyz, R), where x, y, z ∈ Z∗

q and R ∈ G.

2.3 Blockchain and Bitcoin Puzzle

Blockchain is a public ledger to record all transactions, which are contained in
sequenced blocks, using proof of work (PoW) [9] or other methods to achieve a
consensus to maintain the chain. PoW requires block creators (or called miners)
to solve a puzzle, so that H(puz ‖ m ‖ r) ≤ 2λ−d (i.e., the hash value must
contain a certain number of leading zeros), where H is a secure hash function,
puz is the hash value of the last block, m contains the miner’s public key and
a new set of transactions to be committed to the blockchain, λ is the security
parameter, d is the difficulty parameter and r is a nonce that all miners are
searching for.

3 Our Proposed Scheme

3.1 Main Steps

In our scheme, there are n voters and a voting administrator. Here we only con-
sider two candidates: candidate “0” and candidate “1” for ease of understanding,
but it can be easily extended to multiple candidates.

Initialization. The voting administrator initializes a voting. He initializes the
public parameters (G, g, h) where g and h are generators of Group G and logg h
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is unknown for anybody. Also he initializes a hash function, f : G → {0, 1}∗. He
is going to launch a smart contract to define voting time and collect the ballots.

Registration. The voting administrator would collect the necessary information
about the voters to check their eligibility. If the voter is eligible, he would get
four coins (three for voting parameters and one for ballots). All voters would use
them in an anonymous way, like zerocoin [8] or zerocash [10].

Chain 1
(x chain)

Chain 2
(y chain)

Chain 3

smart contract

block block block

gx1gx1

gy1gy1

transaction

gx2gx2

gy2gy2

transaction

gγ1gγ1

transaction

block

main chain

Fig. 1. Conceptual chains

Generating Voting Parameters. As shown in Fig. 1, in our scheme, there
would be three conceptual chains besides the main chain to collect the ballots
(Chain 1 and Chain 2 are denoted as x chain and y chain respectively). For
every voter, he needs to solve puzzles in Chain 1 and Chain 2 first. Similar to
the Bitcoin puzzle, here every voter needs to find a number r = gξ so that:

Hash(puz||r||tx) ≤ 2λ (1)

where puz would be the hash of previous transaction, tx would be a transaction
to send one coin anonymously to the voter administrator and ξ would be x value
or y value. Thus, if the voter finds a ξ to some puzzle, he sends a transaction to
the chain and gξ would be public in the block. For transactions with the same
order number in Chain 1 and Chain 2 (e.g. they are both ith transactions), the
random numbers are denoted as gxi and gyi respectively. For the voter who has
xi, he is responsible for sending gγi to Chain 3, where γi = f(gxiyi). It also need
an anonymous coin.

Casting Ballots. Suppose that the voterm knows xi and yj , he computes his
ballot in this way: Bm = (gyi)xi/(gxj )yj ·gvm = gxiyi−xjyj+vm where vm ∈ {0, 1}.
And then, he generates a non-interactive zero knowledge proof. The details are
introduced in Sect. 3.2. Then the voterm packs all of them together and sends it
to the voting smart contract with the last one coin anonymously.

Tallying. When all voters finish voting, it begins to tally. Not only the voting
administrator but also anybody else can do it. It only needs to multiply all
ballots. We can get

∏n
m=1 Bm = g

∑n
i=1 xiyi−

∑n
j=1 xjyj+

∑n
m=1 vm = g

∑n
m=1 vm .

Then, we can use exhaustive search to work out how many ballots are voted for
candidate “1”. After that, the publics can check if all ballots are valid and check
if the result is right.
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3.2 Generating Non-interactive Zero Knowledge Proof

In this section, we are going to introduce the details of generating a non-
interactive zero knowledge proof to prove that the ballots are valid and are
generated as stipulated.

Now, for a voterm, he uses two groups of parameters: (gxi , gyi , gγi) and
(gxj , gyj , gγj ), and he knows (xi, yj , γi, γj). To avoid others to know what param-
eters the voter uses to encrypt the ballot, we allow the voter to choose other
(k − 2) groups of (gx, gy, gγ). Thus, there are k groups in total. We denote them
as (tl1, tl2, tl3) for simplicity where l ∈ {1, . . . , k}.

Step One. We have committed the value γi and γj on the blockchain. We have
also committed the value R = γi ·γj on the blockchain. The next problem is how
to compute a variable securely, of which the discrete logarithm is R.

First, we consider gγi . The voter computes α1 = hz1 and α2 = gγiz1 , where
z1 is a random number, chosen by voterm. Consider this boolean expression
eγ
1l = ((α2 = (tl3)s1) ∧ (α1 = hs1)). If the expression is true, it implies that the

voter knows s1. We can hide which tl3 we use by using the disjunctive proofs in
[11]: PoK{∃s1 : eγ

11 ∨ · · · eγ
1k}. It means that among the given k groups, there

is a tl3, with which base the logarithm of α2 is the same to the logarithm of
α1 with base h. Assume that the voterm knows the γi value of the dth group
(td1, td2, td3) and let s1 = z1. Proof is generated as follows.

For l �= d:

(cl, rl)
$← {0, 1}∗, kl1 = (tl3)

rl(α2)
cl , kl2 = hrl1(α1)

cl ,
For l = d:

w
$← {0, 1}∗, kl1 = (tl3)

w, kl2 = hw, c ← Hash(α1, α2, {tl3, kl1, kl2}l∈{1,...,k}),
cd = c − ∑

l�=d cl, rd = w − s1 · cd,
proofγ

1 = (α1, α2, {cl, rl}l∈{1,...,k})

We do something similar for gγj . The voter computes α3 = hz2 and α4 = gγjz2

where z2 is a random number chosen by voterm. We have boolean expression
eγ
2l = ((α4 = (tl3)s1) ∧ (α3 = hs1)) and PoK{∃s1 : eγ

21 ∨ · · · eγ
2k} → proofγ

2 =
(α3, α4, {cl, rl}l∈{1,...,k}).

Finally, voterm computes α5 = gγiγjz1z2 , α6 = hz1z2 and α7 = gz1z2 , we have
the following proofs:

PoK{∃(s2, s3, s4) : (α5 = (α2)s2) ∧ (α4 = gs2)
∧ (α6 = (α1)s3) ∧ (α3 = hs3)
∧ (α6 = hs4) ∧ (α7 = gs4)}

(2)

The voter knows s2 = γjz2, s3 = z2 and s4 = z1z2, so he generates the proof
in the following way:

(w1, w2, w3)
$← {0, 1}∗,

k1 = (α2)
w1 , k2 = gw1 , k3 = (α1)

w2 , k4 = hw2 , k5 = hw3 , k6 = gw3 ,
c ← Hash(α1, . . . , α7, k1, . . . , k6), r1 = w1 − s2 ∗ c, r2 = w2 − s3 · c, r3 = w3 − s4 · c,
proof∗ = {α5, α6, α7, c, r1, r2, r3}
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Thus, we get proof∗. Now, we have generated a variable α5, of which log-
arithm with base α7 is R. Although we do not reveal R directly, the following
things are convincing: (i) the discrete logarithm of α2 is the multiplication result
of the logarithms of gγi and α1; (ii) the discrete logarithm of α4 is the multi-
plication result of the logarithms of gγj and α3; (iii) the discrete logarithm of
α5 is the multiplication result of the logarithms of gα2 and α4; (iv) the discrete
logarithm of α7 with base g is the multiplication result of the logarithms of α1

and α3 with base g. It implies that the discrete logarithm of α5 with base α7 is
R = γi · γj . The next step is to generate a intermediate variable β.

Step Two. We discuss the proof for x part first. The voterm computes α8 = gRyi

and α9 = gRxiyi and we have the following boolean expression: ex
l = (((α9 =

(α8)s5)∧(tl1 = gs5)∧(α12 = hs5)∧(α8 = (tl2)s6)∧(α5 = (α7)s6)). The expression
means that α9 = (tl2)s5s6 and the discrete logarithm of α12 is also s5, where s5 is
the logarithm of tl1 with base g and s6 is R. We also adopt the disjunctive proofs
here: PoK{∃(s5, s6) : ex

1 ∨ . . .∨ex
k}. Thus, it is convincing that α9 is derived from

some gy and its discrete logarithm of gy is Rx, where x is the discrete logarithm
of some gx in the blockchain. Assume that the voterm knows the x value of the
dth group (td1, td2, td3). Let s5 = xi and s6 = R.

For l �= d:

(cl, rl1, rl2)
$← {0, 1}∗, kl1 = (α8)

rl1(α9)
cl , kl2 = (g)rl1(tl1)

cl , kl3 = hrl1(α12)
cl ,

kl4 = (tl2)
rl2(α8)

cl , kl5 = (α7)
rl2(α5)

cl ,
For l = d:

(w1, w2)
$← {0, 1}∗

kl1 = (α8)
w1 , kl2 = gw1 , kl3 = hw1 kl4 = (tl2)

w2 , kl5 = (α7)
w2 ,

c ← Hash(α5, α7, α8, α9, α12, {tl1, tl2, kl1, . . . , kl5}l∈{1,...,k})
cd = c − ∑

l�=d cl, rd1 = w1 − s5 · cd, rd2 = w2 − s6 · cd

proofx = (α8, α9, α12, {cl, rl1, rl2}x
l∈{1,...,k})

Thus, we get proofx. Similarly, we can generate proof for y value. The
voter computes α10 = gRxj and α11 = gRxjyj and we have following expres-
sion: ey

l = (((α11 = (α10)s7) ∧ (tl2 = gs7) ∧ (α13 = hs7) ∧ (α10 =
(tl1)s8) ∧ (α5 = (α7)s8)). Then PoK{∃(s7, s8) : ey

1 ∨ . . . ∨ ey
k} → proofy =

(α10, α11, α13, {cl, rl1, rl2}y
l∈{1,...,k}) We have the intermediate variable β =

α9/α11 = gR(xiyi−xjyj), of which the logarithm with base g is R(xiyi − xjyj).
We can know the logarithm of β with base Bm or Bm/g is R, so we can prove
that the Bm is computed as stipulated.

Step Three. We want to get PoK{∃s9 : ((β = (Bm)s9)∧(α5 = (α7)s9))∨((β =
(Bm/g)s9) ∧ (α5 = (α7)s9))}. Then for the voterm, he knows s9 = R. Assume
that he chooses vm = 0, then he generates proofs as follows:
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(w, c2, r2)
$← {0, 1}∗

k1 = (Bm)w, k2 = (α7)w, k3 = (Bm/g)r2βc2 , k4 = (α7)r2(α5)c2

c ← Hash(α5, α7, Bm, β, k1, . . . , k4)
c1 = c − c2, r1 = w − s9 · c1
proof# = {c1, r1, c2, r2}

Then, we get proof#. Then, the final proof is proof = (proofγ
1 , proofγ

2 ,
proof∗, proofx, proofy, proof#).

4 Analysis

4.1 Analysis of Generating Voting Parameters

Due to the randomness of the puzzle solution, the result of gxiyi−xjyj would
also be a random number if i 
= j from the view of other people except the
exact voter. But if i = j, the ballot would be gxiyi−xjyj+v = gv, which is very
easy to know which candidate the voter votes for. We call it a collision. As we
know, the problem of no collisions is the same as the problem of giving two
permutations of n different numbers such that the same number appears in the
different places. The probability is approximately 1/e. If someone claims that his
blocks in x chain and y chain have the same order number, we need to restart
the parameters generation. The expected number of occurrences is e ≈ 2.7, so
it is estimated that we need to generate the random numbers about 3 times on
average to satisfy the requirements. It also implies that adding some more chains
would decrease the chance of collisions.

4.2 Security Features of Our Voting System

Voter Anonymity. In our scheme, we send anonymous coins to the voting
administrator when generating the voting parameters or casting ballots, like
zerocoin or zerocash, which provides a strong privacy of the coin owner. Except
the voter, nobody else can know who generates these parameters and casts the
ballot. In the casting ballot phase, we use k groups to generate the proof. The
idea is similar to ring signature so that it is difficult to guess who is the voter.
Thus our scheme provides a strong anonymity.

Interim Result Unavailable. It is tricky to know vote result of each ballot and
the random numbers would only be cancelled out after all ballots are multiplied
together. Thus it is different to know interim results during the voting.

Double-Voting Resistance. It is required to send a coin in anonymous way
to the voting administrator and every voter has only one voting coin (the other
three coin are for generating voting parameters, so it is easy to make them
different technically). Since the blockchain is designed to be resistant to double
spending attack, so our scheme is double-voting resistance.
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Public Verifiability. Everyone can check whether the zero knowledge proofs in
each ballot are valid or not and everyone can also check whether the final tally
results are right or not. Thus, our scheme is publicly verifiable.

Ballot Security. If a common attacker can know which candidate the ballot
is voted for, then given (gxi , gyi , gxj , gyj ), he can distinguish gxiyi−xjyj from
gxiyi−xjyj+1, which implies that the 3DDH problem is solvable. It is believed
that 3DDH problem is difficult, so there is no such an attacker. For more details,
you can refer to the following lemma. For the two voters who share the same
groups with Ballot generator, they can collude to decrypt the exact vote of this
ballot. However, the analysis in voter anonymity implies that this kind of attack
is risky and ineffective. Therefore, the ballots on the public ledger are secure.

In the following, we are going to analyze the security of ballot formally. In
our scheme, gR = gγiγj is not given directly because we want to preserve the
anonymity of the scheme. And it is a secret number from the view of a common
attacker or other voters. In the following lemma, we are going to consider the
ballot security only. Thus, for simplicity, we will give this information to the
distinguisher.

Lemma 1. For a group G with order q, given (ga, gb, gc, gd, gr, grab, grcd, Ω),
where a, b, c, d, r are chosen randomly from Z∗

q , it is difficult to decide whether
Ω = gab−cd or Ω = gab−cd+1.

Proof. First, we define a game with respect to the above lemma.

Definition 2. (Game1) For a group G with order q, the challenger C1 chooses
a value ζ ∈ {0, 1} and computes (ga, gb, gc, gd, gr, grab, grcd, Ω), where a, b, c, d, r
are chosen randomly Z∗

q . If ζ = 0, Ω = gab−cd and if ζ = 1, Ω = gab−cd+1. He
sends the tuple to the distinguisher D1. The distinguisher D1 is to guess the value
ζ ′. If ζ = ζ ′, D1 wins and the game output 1, otherwise, D1 loses and the game
output 0. The probability that D1 wins is defined as Pr[output(Game1) == 1].

Thus, the advantage that D1 wins is: Adv(GameC1,D1
1 ) = |Pr[output(Game1)

== 1] − 1/2|. We say that if a distinguisher can have non-negligible advantage
in Game1, then he can also have non-negligible advantage in Game2 defined in
Definition 3. To be exact, we have Adv(GameC1,D1

1 ) ≤ Adv(GameC2,D2
2 ).

Definition 3. (Game2) For a group G with order q, the challenger C2 chooses
a value ζ ∈ {0, 1} and computes (ga, gb, gr, grab, Ω), where a, b, r are chosen
randomly from Z∗

q . If ζ = 0, Ω = gab and if ζ = 1, Ω = gab+1. Then he sends
the tuple to the distinguisher D2. The distinguisher D2 is to guess the value ζ ′.
If ζ = ζ ′, D2 wins and the game output 1, otherwise, D2 loses and the game
output 0. The probability that D2 wins is defined as Pr[output(Game1) == 1].

The advantage that D2 wins is Adv(GameC2,D2
2 ) = |Pr[output(Game2) ==

1] − 1/2|. Next, we prove Adv(GameC1,D1
1 ) ≤ Adv(GameC2,D2

2 ). For a distin-
guisher D2 in Game2, when he receives (ga, gb, gr, grab, Ω) from challenger. He
chooses c, d randomly and computes (gc, gd, (gr)cd, Ω′ = Ω · gcd). He sends
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(ga, gb, gc, gd, gr, grab, grcd, Ω′) to the distinguisher D1. Then, D1 outputs ζ ′ and
D2 also outputs ζ ′. It is easy to know that D2 wins if D1 wins. So, we have
Adv(GameC1,D∞

1 ) ≤ Adv(GameC2,D2
2 ).

We now explain Adv(GameC2,D2
2 ) is negligible. First, we have two tuples:

tuple1 = (g, ga, gb, gr, gar, gbr, gabr, gab)

tuple2 = (g, ga, gb, gr, gar, gbr, gabr, R)

where a, b, r ∈ Z∗
q and R ∈ G are chosen randomly. If we set h = gr, s = r−1, we

have
tuple′

1 = (hs, hsa, hsb, h, ha, hb, hab, habs)

tuple′
2 = (hs, hsa, hsb, h, ha, hb, hab, R)

Thus, it is difficult to distinguish tuple′
1 and tuple′

2 by 3DDH assumption,
which implies it is difficult to distinguish tuple1 and tuple2. Also, we have

tuple3 = (g, ga, gb, gr, gar, gbr, gabr, gabg)

tuple4 = (g, ga, gb, gr, gar, gbr, gabr, R′g)

where R′ is chosen randomly from G. Similarly, it is also difficult to distinguish
tuple3 and tuple4. We know that tuple2 and tuple4 are indistinguishable, so it is
difficult to distinguish tuple1 and tuple3. Therefore, we have Adv(GameC2,D2

2 ) ≤
ε where ε is a negligible function. Hence, the lemma is true, which implies that
in our scheme, it is difficult to know which candidate the ballots are voted for.

4.3 Multiple Candidates

In reality, there are more than two candidates. To solve this problem, we can
prepare multiple bits. For example, there are three candidates, we have two bits
v1 and v2 ∈ {0, 1}. Then, “00”, “10” and “01” represent candidate 0, 1 and 2.
Thus, the ballot have two parts, B1 for v1 and B2 for v2. We just need to change
the boolean expressions of the zero knowledge. Thus, when tallying, multiply
B1’s and B2’s together respectively. Therefore, the logarithm of production of
B1’s is the votes for candidate 1 and the logarithm of production of B2’s is the
votes for candidate 2. And the left are for candidate 0.

5 Conclusions and Future Work

In this work, we consider a self-tallying e-voting system without the requirement
of having a powerful centralized authorities nor trusted third parties. To achieve
this goal, we use a new kind of construction to cancel all random numbers in
the ballots, which is used to encrypt the vote result. As a result, our scheme can
reduce the time of generating a ballot with proofs. It still remains some problems
for further research. Similar to [7], our scheme also requires all voters to cast
their ballots. If one of them does not do it, then our scheme would not work. We
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notice that an accumulator is often used in zero knowledge proof to reduce the
size and more advanced zero knowledge proof techniques are adopted in practical
use or proposed, e.g. zk-SNARK used in [10] and bulletproofs [3]. It is another
research interest to consider to improve the overhead of zero knowledge proofs
using these techniques.
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Abstract. At CRYPTO 2000, Desai proposed a simple and faster
AONT based on the CTR mode of encryption (called, CTRT) and proved
its security in the ideal cipher model. Though AES-128 whose key length
k = 128 and block length l = 128 can be used in CTRT as a block cipher,
AES-256 cannot be used in CTRT due to its intrinsic restriction of k ≤ l.
According to a recent ECRYPT-CSA report, AES-256 is strongly rec-
ommended rather than AES-128 for long term protection (security for
thirty to fifty years) and post-quantum security. In this paper, we propose
an extended CTRT (named as XCTRT) suitable for AES-256. By thor-
oughly evaluating all the tricky cases, we prove that XCTRT is secure
in the ideal cipher model under the same AONT security definition of
Desai. Also, we discuss the security result of XCTRT in concrete param-
eter settings. After showing performance measurements of XCTRT, we
can say that our XCTRT has high speed encoding/decoding performance
and is quite practical to be deployed in the real-world applications (e.g.,
cloud storage service).

Keywords: AONT · CTRT · AES · Security proof · Implementation ·
Performance evaluation

1 Introduction

In 1979, Shamir [13] and Blakley [3] independently proposed a (t, n)-threshold
secret sharing scheme that distributes a message m into a set of n shares such
that at least t (≤ n) shares can reconstruct the message m, but less than t shares
do not reveal any information on m in the information-theoretical sense.

In this regard, AONT (All-or-Nothing Transform) can be understood as a
(n, n)-threshold secret sharing scheme. The concept of AONT was proposed by
Revist [12] as a pre-processing step to an ordinary encryption mode for block
ciphers in order to slow down brute-force key searching attacks. Specifically,
AONT is an unkeyed, invertible and randomized transformation with the prop-
erty that it is impossible to invert unless all output blocks are known. In [12],
Rivest proposed the first AONT (Package Transform (PT)) based on a block

c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2019, LNCS 11897, pp. 79–91, 2020.
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cipher where each share is an output block of the underlying block cipher. Later,
Boyko [4] formalized several security definitions for AONTs in a strong sense
that each output bit is treated as one share, and then proved that OAEP [2]
satisfies these definitions in the random oracle model. At CRYPTO 2000, Desai
[6] suggested a new security definition for AONTs regarding key privacy and a
new characterization of AONTs so that the resulting all-or-nothing encryption
paradigm yields secure (block cipher) encryption modes. Also, Desai proposed
a simple (and faster than PT) AONT based on the CTR mode of encryption
(called, CTRT) and proved its security in the ideal cipher model. In [11], Resch
and Plank proposed a file dispersal scheme (AONT-RS) by combining a variant
of Rivest’s AONT with Reed-Solomon coding [10] to achieve high security and
low computation/storage costs. This AONT-RS was applied to a commercial
service of IBM Cloud Object Storage [1]. Recently, Chen et al. [5] proposed a
generalized AONT-RS to deal with small ciphertexts.

In this paper, we focus on AONTs based on a block cipher (particular, CTRT
[6]). As a default block cipher, AES [8] has been widely used in almost all security
protocols/applications (e.g., TLS, SSH, IPsec, Kerberos, WEP/WPA, ZigBee
and EMV).

1.1 Motivation and Our Contributions

When instantiating the block cipher with AES [8], CTRT [6] can use AES-128
whose key length k = 128 and block length l = 128. If AES-256 is directly used
in CTRT, the first 128-bit of the last block reveals an information on the secret
key K. From this reason, Desai proved the security of CTRT with a restriction of
k ≤ l. According to a recent ECRYPT-CSA report [7], AES-128 is recommended
for near term protection (security for at least ten years), but on the other hand
AES-256 is recommended for long term protection (security for thirty to fifty
years) and post-quantum security.

In this paper, we propose an extended CTRT (for short, XCTRT) which can
use a block cipher with a longer secret key than a block size (k = 2l).1 The
main idea of XCTRT is that our XCTRT encoding algorithm generates each one
block of the pseudo-ciphertext from two consecutive blocks of the input message.
This construction, in fact, complicates a security proof of XCTRT much more
than that of CTRT. By thoroughly evaluating all the tricky cases, we prove that
XCTRT is secure in the ideal cipher model under the same AONT security defi-
nition of [6]. Also, we discuss the security result of XCTRT in concrete parameter
settings. After showing implementation details and performance measurements
of XCTRT, we can say that our XCTRT has high speed encoding/decoding
performance and is quite practical to be deployed in the real-world applications.

1 This indicates that XCTRT complements CTRT with respect to the usage of AES.
That is, AES-128 can be used in CTRT and AES-256 can be used in XCTRT.
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2 Preliminaries

2.1 Block Cipher

A block cipher with key length k and block length l is a map F : {0, 1}k ×
{0, 1}l → {0, 1}l such that FK(·) def= F (K, ·) : {0, 1}l → {0, 1}l is a bijective map
for any K ∈ {0, 1}k. Since FK is a permutation, we can define F−1

K : {0, 1}l →
{0, 1}l. We also define F−1 as F−1(K, y) def= F−1

K (y).
In the ideal cipher model, we assume that we have an oracle access to

(F, F−1), where F is a randomly sampled permutation on {0, 1}l → {0, 1}l.
In this paper, we analyze the security of our AONT scheme in the ideal cipher
model. We then replace it with AES when we implement our scheme and evaluate
its performance.

2.2 Syntax of AONT

The syntax of (un-keyed) AONT is defined by a pair of algorithms Π = (E ,D),
which we call “transformation algorithms” here.

Definition 1 (Transformation Algorithms). The pair of algorithms Π =
(E ,D) is called transformation algorithms with block length l if it satisfies the
following conditions for some natural numbers n and m.

– E, the encoding algorithm, is a probabilistic algorithm that takes a message
x ∈ {0, 1}nl as input and outputs a pseudo-ciphertext y ∈ {0, 1}ml.

– D, the decoding algorithm, is a deterministic algorithm that takes a pseudo-
ciphertext y ∈ {0, 1}ml as input and outputs either a message x ∈ {0, 1}nl or
a special symbol ⊥ to indicate that the pseudociphertext is invalid.

As for the correctness, we require that x = D(E(x)) holds with probability 1.
Furthermore, both algorithms in Π are allowed to access the ideal block cipher
(F, F−1).

As one can see from the syntax, both algorithms in Π do not take any
secret/encryption key as an input. However, since we allow them to access the
oracles (F, F−1), they may use the ideal block cipher internally.

2.3 Security Definition for AONT

Here, we define the security of AONT following Desai [6], who gave the security
proof for CTRT under the same security definition. Our extension of CTRT to
be given in Sect. 3 satisfies the same security notion (see Sect. 4).

Definition 2 (Security for AONT). Let Π = (E ,D) be transformation algo-
rithms with block length l. We then define a random variable Expaon

Π (A) for an
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adversary A through the following security game:

(x, s) ← AF,F −1
(find); //(s is the state information)

y0 ← E(x);

y1
$← {0, 1}|y0|; // (yb = yb[1] ‖ · · · ‖ yb[m] where yb[i] ∈ {0, 1}k)

b
$← {0, 1};

b′ ← AY,F,F −1
(guess, s); // Y takes an index j ∈ [m] and returns yb[j]

return (b′ ?= b),

In the above experiment, the adversary can access Y at most m − 1 times. Let
us define the advantage of A as follows:

Advaon
Π (A) def= 2 · Pr [Expaon

Π (A) = 1] − 1,

Advaon
Π (t,m, p) def= max

A
{Advaon

Π (A)} (1)

where max in Eq. (1) is taken over all adversaries with computational time at
most t and the number of oracle queries (to either F or F−1) being at most p.

We set the key length k of block cipher to be the security parameter. We say
that AONT is secure if Advaon

Π (A) is negligible in the security parameter for any
PPT adversary A.

We remark that the queries made by A are with respect to block indices of Y
as in [6]. For example, we do not consider adversaries who can see substrings of
yi with length less than k for all i. As in [6], security against such an adversary is
outside the scope of this paper. We refer to [4] for a stronger security definition
and [6] for further discussions.

3 An Extended CTRT (XCTRT)

In this section, we propose an extended version of Desai’s CTRT [6] (for short,
XCTRT) which can use a block cipher with a longer secret key than a block size.
Concretely, we will set k = 2l where k is the key length of the block cipher and
l is the block length to be encrypted.

XCTRT. Our XCTRT consists of an encoding algorithm E−XCTRT and a
decoding algorithm D−XCTRT, both of which are defined as follows.
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Algorithm 1. E−XCTRT
Input: x[1] ‖ · · · ‖ x[n]

K ← {0, 1}k

for i = 1, · · · , n do
x′[i] = x[i] ⊕ FK(i)

end for
for j = 1, · · · ,m − 1 do

y[j] = x′[2j − 1] ‖ x′[2j]
end for
y[m] = K ⊕ y[1] ⊕ · · · ⊕ y[m − 1]

Output: y[1] ‖ · · · ‖ y[m]

Algorithm 2. D−XCTRT
Input: y[1] ‖ · · · ‖ y[m]

K = y[1] ⊕ · · · ⊕ y[m]
for j = 1, · · · ,m − 1 do

x′[2j − 1] = (The left l-bit of y[j])
x′[2j] = (The right l-bit of y[j])

end for
for i = 1, · · · , n do

x[i] = x′[i] ⊕ FK(i)
end for

Output: x[1] ‖ · · · ‖ x[n]

Here, we set k = 2l (where k, l ∈ N), |x| = nl (n ∈ 2N), |y| = mk, and
m = n

2 + 1. We note that K is used as a secret key for a block cipher F and
the key length is k = |K|. The block length of the input message is l = |x[i]|
(i ∈ N, i ≤ n) and the block length of the output is k = 2l = |y[j]| (j ∈ N, j ≤ m).

In CTRT [6], each one block of the pseudo-ciphertext is generated from each
one block of the input except for the last block, whereas it is generated from two
blocks of the input in our encoding algorithm above. This difference stems from
the fact that the key length k of the block cipher equals to the block length l of
messages to be encrypted in CTRT, whereas k = 2l in our XCTRT. In the next
section, we show that our construction is secure even with this modification.

4 Security Proof for XCTRT

The following theorem asserts that our XCTRT is secure as per Definition 2.

Theorem 1 (Security of XCTRT). If X + p ≤ 2k−1 and X = 2l(4m − 7) −
(2m − 4)(2m − 3), then our XCTRT construction satisfies

Advaon
Π (t,m, p) ≤ 4m2

2l
+

5p
2k+1

under the ideal cipher model where m is the number of output blocks and p is the
number of queries that the adversary makes to the ideal cipher oracles (F, F−1).

Here, we consider the conditions X + p ≤ 2k−1 and X = 2l(4m− 7) − (2m−
4)(2m − 3) that are necessary for the theorem to hold. Asymptotically, since m
and p are polynomials in the security parameter, these conditions always hold.
Furthermore, the term 4m2

2l + 5p
2k+1 in the right hand side of the equation in the

theorem is negligible since m and p are polynomials in the security parameter.
When setting concrete parameters, one should be careful so as to satisfy the
conditions m2 � 2l and p � 2k.

Proof. We show an upper bound on the advantage of an adversary A against the
security of XCTRT. Recall that we defined the advantage of the adversary as
Advaon

Π (A) def= 2 · Pr [Expaon
Π (A) = 1] − 1 in Definition 2. Let us denote the event

that Expaon
Π (A) = 1 occurring by AC (Adversary is Correct) in the following.
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Let K� be the key chosen in the security game when b = 0. We define Bad
as the event such that A makes a query for FK�(·) or F−1

K� (·) when b = 0. We
also define FBad (resp., GBad) as the event such that Bad occurs in find (resp.,
guess) stage. We denote the number of queries to the oracles in the find (resp.,
guess) stage to be pF (resp., pG). By definition, we have p = pF + pG.

The upper bound on Pr[AC] can be given as follows:

Pr[AC] = Pr[AC ∧ Bad] + Pr[AC ∧ Bad]

≤ Pr[AC ∧ Bad] + Pr[Bad] ≤ Pr[AC ∧ Bad] + Pr[FBad] + Pr[GBad]

= Pr[AC ∧ Bad] + Pr[FBad] + Pr[GBad ∧ FBad] + Pr[GBad ∧ FBad]

≤ Pr[AC ∧ Bad] + 2Pr[FBad] + Pr[GBad|FBad]
where the second inequality follows from Bad = FBad ∪ GBad and the union
bound, the third inequality follows from Pr[E ∧ F] ≤ Pr[F] for any events E and
F. We therefore have

Pr[AC] ≤ Pr[AC ∧ Bad] + 2Pr[FBad] + Pr[GBad|FBad]. (2)

To finish the proof, we give bounds on each term in the right hand side of the
equation above. To do so, we will prove Lemmas 1, 2, and 3 in the following.

Lemma 1.

Pr[AC ∧ Bad] ≤ 1
2

+
m2

2l
+

p

2k+1
.

Proof. Let us define the left l-bit (resp., right l-bit) of (x[2i− 1]‖x[2i]) ⊕ yb[i] to
be z[2i− 1] (resp., z[2i]) for 1 ≤ i ≤ m− 1. We define CI1 as the event such that
z[i] = z[j] holds for some i, j ∈ [2(m−1)] with i �= j. Note that by the definition
of XCTRT, CI1 never occurs when b = 0 since we have z[i] = FK�(i) and FK� is
a permutation in this case. We show an upper bound on Pr[CI1].

Pr[CI1] = (1/2) · Pr[CI1|b = 0] + (1/2) · Pr[CI1|b = 1]

= (1/2) · Pr
[ ∃i, j ∈ [2(m − 1)]

s.t. i �= j ∧ z[i] = z[j]

∣∣∣∣ b = 1
]

≤ (1/2) ·
∑

i,j∈[2(m−1)],i �=j

Pr[z[i] = z[j]|b = 1]

= (1/2) ·
(

2(m − 1)
2

)
· 2−l ≤ m2

2l
.

In the above, the first equality follows from the security definition, the second
equality from the definition of CI1, the first inequality follows from the union
bound, and the third equality follows from the fact that each z[i] is distributed
uniformly at random over {0, 1}l since so is y[i] in the case of b = 1.

We also define CI2 as the event such that b = 1 and A makes a query to
either FK′ or F−1

K′ , where we define K ′ def= yb[1] ⊕ yb[2] ⊕ · · · yb[m]. Since K ′ is
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distributed uniformly at random over {0, 1}k when b = 1 and A makes at most
p queries to its oracles, we can bound the probability of CI2 occurring by p ·2−k.
From the above discussion, we have

Pr[CI2 ∧ Bad] = (1/2) · Pr[CI2 ∧ b = 0] + (1/2) · Pr[CI2 ∧ b = 1] = p · 2−k−1.

We then evaluate Pr[AC ∧ Bad] as

Pr[AC ∧ Bad] = Pr[AC ∧ Bad ∧ b = 0] + Pr[AC ∧ Bad ∧ b = 1]

= Pr[AC ∧ Bad ∧ b = 0] + Pr[AC ∧ b = 1]

= Pr[AC ∧ Bad ∧ b = 0] + Pr[AC ∧ (CI1 ∧ CI2) ∧ b = 1]
+ Pr[AC ∧ (CI1 ∨ CI2) ∧ b = 1]

≤ Pr[AC ∧ Bad ∧ b = 0] + Pr[AC ∧ (CI1 ∧ CI2) ∧ b = 1] + Pr[CI1 ∨ CI2]

≤ Pr[AC|Bad ∧ b = 0] · Pr[Bad ∧ b = 0]

+ Pr[AC|(CI1 ∧ CI2) ∧ b = 1] · Pr[(CI1 ∧ CI2) ∧ b = 1] + Pr[CI1] + Pr[CI2]

≤ Pr[AC|Bad ∧ b = 0] · Pr[b = 0] + Pr[AC|(CI1 ∧ CI2) ∧ b = 1] · Pr[b = 1]
+ Pr[CI1] + Pr[CI2]

≤ 1
2

(
Pr[AC|Bad ∧ b = 0] + Pr[AC|(CI1 ∧ CI2) ∧ b = 1]

)
+

m2

2l
+

p

2k+1
,

where the second equality follows since Bad does not occur when b = 1, and the
second inequality follows from Bayes’ theorem and the union bound.

In order to finish the proof of the lemma, it suffices to prove

Pr[AC|Bad ∧ b = 0] + Pr[AC|(CI1 ∧ CI2) ∧ b = 1] = 1.

By the definition of AC, the first term in the left hand side above is the probability
that A outputs 0 under the condition (Bad∧ b = 0), whereas the second term is
the probability that A outputs 1 under the condition (CI1∧CI2∧b = 1). It suffices
to show that the view of the adversary conditioned on (Bad∧b = 0) is completely
the same as that conditioned on (CI1 ∧ CI2 ∧ b = 1). We first observe that when
b = 0, {y0[j]}j∈[2(m−1)] is distributed uniformly at random under the condition
that z[i] �= z[j] for i �= j, since y0 is generated by the encoding algorithm
honestly and F is a permutation. By definition, {y1[j]}j∈[2(m−1)] follows the same
distribution when CI1. We then fix the values of yb[1], . . . , yb[m− 1]. We observe
that y0[m] is distributed uniformly at random so that A has not queried to FK′

nor F−1
K′ because we assumed Bad. We can also observe that y1[m] follows the

same distribution since we assumed CI2. This completes the proof of the lemma.

Lemma 2.
Pr[FBad] ≤ pF

2k+1
.
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Proof. Recall that FBad is the event such that b = 0 holds and A makes a query
to either FK� or F−1

K� . We observe that the number of keys K for which A makes
a query of the form F (K, ·) or F−1(K, ·) is bounded by pF . Furthermore, the
information of K� is not revealed to A in find stage, since A is not given pseudo-
ciphertext at this point. The above observation along with the fact that K� is
chosen uniformly at random from {0, 1}k implise Pr[FBad] ≤ Pr[b = 0] · pF

2k =
pF

2k+1 . This completes the proof of the lemma.

Lemma 3. We have
Pr[GBad|FBad] ≤ pG

2k−1
,

where X + p ≤ 2k−1 and X = 2l(4m − 7) − (2m − 4)(2m − 3).

Proof. We first evaluate the probability such that the first query in guess stage
made by A is either to FK� or F−1

K� . In order to do so, we analyze the distribution
of K� from the view of A that is given yb and under the condition FBad.

In the following, let ỹ (|ỹ| = nl) be the substring of the challenge pseudo-
ciphertext y given to A by the game. A can obtain partial information of K�

from ỹ. Without loss of generality, we assume y = y0. We first observe that if
ỹ is obtained by removing y[m] from y (namely, if A does not query m to Y),
A cannot obtain any information about K�. Therefore, we can assume that ỹ is
obtaind from y by removing y[j] (1 ≤ j ≤ m − 1) from it. First, since

FK�(2i − 1) ‖ FK�(2i) = (x[2i − 1] ‖ x[2i]) ⊕ y[i], (3)

the adversary knows the values of S = {FK�(2a − 1), FK�(2a) | (1 ≤ a ≤
m − 1) ∧ (a �= j)}. Furthermore, since A knows y[j′] for j �= j, it can obtain K�

once it obtains y[j]2. Namely, from the view of A, knowing y[j] is equivalent to
knowing K�. By the construction of E−XCTRT, we have

y[j] = (x[2j − 1] ⊕ FK(2j − 1)) ‖ (x[2j] ⊕ FK(2j)) . (4)

Here, x[2j − 1] and x[2j] are known to A since they are chosen by A itself.
Therefore, in Eq. (4), only FK(2j − 1) and FK(2j) are unknown to A. Since
F is modeled as an ideal cipher and thus FK�(·) is a permutation, we have
FK�(2j − 1) �∈ S, FK�(2j) �∈ S, and FK�(2j − 1) �= FK�(2j). Therefore, the
number of possible y[j] (or equivalently, the number of possible K�) is

(2l − 2(m − 2))(2l − 2(m − 2) − 1) = 2k − X.

Namely, even though K� is chosen uniformly at random from the set {0, 1}k,
whose size is 2k, A can reduce the number of possible K� by using the information
from ỹ down to 2k − X. Furthermore, A can remove the keys that are used in
the find stage from the candidates. As a result, the number of possible K� is

2 The only unknown term in K = y[1] ⊕ · · · ⊕ y[j] ⊕ · · · ⊕ y[m] is y[j].
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further reduced to 2k − X − pF . Let GBadi be the event that GBad happens in
the i-th query in the guess stage. We then have

Pr[GBad|FBad] ≤ Pr[GBad1|FBad] +
pG∑
i=2

Pr[GBadi|GBadi−1 ∧ FBad].

From the discussion above, we have Pr[GBad1|FBad] ≤ 1
2k−X−pF

. After the
first query, the number of possible K� will further decrease and we have
Pr[GBadi|GBadi−1 ∧ FBad] ≤ 1

2k−X−pF −(i−1)
. Therefore, it holds

Pr[GBad|FBad] ≤
pG∑
i=1

1
2k − X − pF − (i − 1)

≤ pG

2k − X − p
≤ 2pG

2k
.

In the above, the second inequality follows from pF + i − 1 < p for i ≤ pG and
the third inequality follows from X + p ≤ 2k−1. This completes the proof of the
lemma.

By combining Eq. (2) and Lemmas 1, 2, and 3, Theorem 1 follows.

5 Discussion

5.1 An Upper Bound on Input Message Length

From Theorem 1, we can see that the advantage of an adversary becomes larger
as the number of output blocks m increases. In other words, the security of
XCTRT decreases as the length of the input/output becomes longer. Here, we
discuss how long input messages we can take in our XCTRT without affecting
the security in practical parameter settings.

Let us recall that the advantage of an adversary is 4m2

2l + 5p
2k+1 in the theo-

rem. Here, p is the number of queries made by A and can be considered as the
computational power of the adversary A. k and l are the key length and the
block length of the block cipher, respectively. Let us set m = 2b and p = 2c and
evaluate both terms. We have

4m2

2l
+

5p
2k+1

≈
{

4m2

2l , if 4m2

2l ≥ 5p
2k+1

5p
2k+1 , otherwise

,

where we ignore smaller term in each case. We then take logarithm of both sides
in the above equation to obtain

log2

(
4m2

2l
+

5p
2k+1

)
≈

{
2b − l + 2, if b ≥ c−k+l

2 − 3−log2 5
2 ,

c − k − 1 + log2 5, otherwise.
(5)

Now, we discuss the security by setting concrete parameters. Since we will
instantiate the block cipher with AES-256, we set k = 256 and l = 128 that
satisfy k = 2l. We also set the number of oracle queries made by A to be p = 2100
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(c = 100), which seems to be sufficiently large to capture the computational
power of current real-world adversaries. In this parameter setting, we have b ≥
c−k+l

2 − 3−log2 5
2 and thus we have log2

(
4m2

2l + 5p
2k+1

)
≈ 2b − 126 from Eq. (5).

We then set the upper bound on the advantage for an adversary to be 2−30. To
retain this security level, it suffices to satisfy 2b − 126 ≤ −30 ⇔ b ≤ 48. Since
the input message length is |x| = nl = 2l(m − 1) = 2b+8 − 28, we conclude that
our XCTRT remains secure as long as the message length is up to 255. This is
about 4 petabytes, which is significantly large data size to be processed at once.
This implies that the XCTRT construction is secure, as long as it is not required
to deal with exceptionally huge data (larger than 4 petabytes message size) at
once.

5.2 A Comparison of CTRT and XCTRT

In this subsection, we compare CTRT and XCTRT with respect to a relation
between the number of output blocks m and the advantage of an adversary A
in practical parameter settings.

Let us remind that the advantage of A is upper bounded by 4m2

2l + 5p
2k+1 in

XCTRT, and by m2+8p
2k in CTRT (Theorem 2 of [6]). We set k = l = 128 for

CTRT because AES-128 can be used as the block cipher, and set k = 2l = 256
for XCTRT because the block cipher can be instantiated with AES-256. As
discussed in Sect. 1.1, AES-256 cannot be used in CTRT due to its intrinsic
restriction k ≤ l. We also set the number of oracle queries made by A to be
p = 2100, as in Sect. 5.1.

Fig. 1. A comparison of CTRT and XCTRT where p = 2100, and AES-128 (resp.,
AES-256) is used in CTRT (resp., XCTRT)

With this parameter setting, we show a graphical comparison of CTRT and
XCTRT with respect to a relation between m and the advantage of A in Fig. 1.
When the number of output blocks m ≥ 251, the advantage of A is almost same
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Table 1. Measurement results of XCTRT encoding/decoding (in average)

Input message size Processing time [ms] Speed [MB/s]
Encoding Decoding Encoding Decoding

4 KB 0.14 0.09 27 43
8 KB 0.13 0.10 59 82

16 KB 0.11 0.10 137 159
32 KB 0.14 0.11 230 288
64 KB 0.17 0.14 362 453

128 KB 0.19 0.15 664 847
256 KB 0.27 0.27 921 937
512 KB 0.82 0.39 611 1,293

1 MB 0.74 0.73 1,359 1,365
2 MB 1.39 1.33 1,436 1,501
4 MB 2.90 2.84 1,379 1,410
8 MB 5.87 5.59 1,362 1,431

16 MB 12.72 12.89 1,258 1,242
32 MB 22.36 21.86 1,431 1,464
64 MB 42.37 42.07 1,510 1,521

128 MB 84.46 85.11 1,516 1,504
256 MB 168.08 166.91 1,523 1,534
512 MB 335.80 336.43 1,525 1,522

1 GB 673.13 679.81 1,521 1,506

in both CTRT and XCTRT. When m < 251, the advantage of A in CTRT is
fixed to be ≈ 2−25 whereas the advantage of A in XCTRT decreases linearly
along with the decrease of m. From this, it is clear that our XCTRT guarantees
a higher level of security, compared to CTRT, as the number of output blocks
m decreases (m < 251).

6 Implementation and Performance Evaluation

Implementation Details. By instantiating the block cipher with AES-256,
we implemented XCTRT on a PC whose OS is Microsoft Windows 10 Pro, OS
version is 10.0.16299 N/A build 16299, processor and memory are Intel64 Family
6 Model 94 Stepping 3 GenuineIntel 3408 Mhz (Intel R© CoreTM i7-6700 CPU
@ 3.40GHz) and 16 GB RAM, respectively. The implementation environment
is as follows. We used C++ language and Visual Studio 2017 Version 15.4.1
as an integrated development environment where ‘VC++ Version 19.11.25547
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for x64’ compiler and optimization options /GL /Ox /Ot /Oi are utilized. In
our implementation, we used Cryptography API: Next Generation (CNG) [9]
of Windows API which automatically enables AES-NI (Advanced Encryption
Standard New Instructions) for AES hardware acceleration.3

Performance Measurement. We measure performance of XCTRT encod-
ing/decoding in order to confirm that our software implementation of XCTRT
is practical enough to be deployed in the real-world applications.

For each input message size, we run XCTRT encoding/decoding 10 times
from which an average processing time (excluding a maximum value and a
minimum value) is obtained. We show measurement results of XCTRT encod-
ing/decoding in Table 1.4 For example, both the XCTRT encoding and decoding
algorithms only take less than 680 ms to process an input message of 1 GB size.
Thus, we can say that our XCTRT has high speed encoding/decoding perfor-
mance and is quite practical.
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Abstract. A blind ring signature scheme is a combination of a ring
signature and a blind signature, which allows not only any member of
a group of signers to sign on a message on behalf of the group without
revealing its identity but also the user who possesses the message to blind
it before sending to the group to be signed. Blind ring signature schemes
are essential components in e-commercial, e-voting etc. In this paper,
we propose the first blind ring signature scheme based on lattices. More
precisely, our proposed scheme is proven to be secure in random oracle
model under the hardness of the short integer solution (SIS) problem.

1 Introduction

Ring signatures were first introduced by Rivest et al. [19] in 2001. In such a
scheme, a signer within a group can form a ring consisting of members in the
group to sign a message on behalf of this ring, without using the secret keys of
those members. A verifier can easily verify that the signature belongs to the ring
using the ring public keys, but cannot reveal the identity of the signer, hence
ensures the anonymity of the signer. Ring signatures can be used for whistle
blowing [19] or anonymous membership authentication for ad hoc groups [5].
They can be used to derive other primitives such as deniable ring authentica-
tion [23] or perfect concurrent signatures [24]. Due to flexibility (forming a ring
and signing messages without a group leader) and anonymity property of ring
signatures, there have been recently found interesting applications of ring signa-
tures in cryptocurrencies [21]. Another important kind of protocol that provides
anonymity is blind signatures, first proposed by Chaum [6] for untraceable pay-
ments in 1983. Blind signatures allow a person to get a message signed by a
signer without revealing any information about the message to the signer, and
hence which provide the anonymity of the signed message. It therefore makes
blind signatures useful in electronic auctions and electronic voting systems.

In some real-life applications, such as banking, we must make a single e-
bank system more scalable by supporting many banks and adding some other
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properties like strong anonymity of the signing banks and unlinkability of two
different signatures. It’s therefore necessary to combine blind and ring signa-
tures into one, called blind ring signatures. Clearly, blind ring signatures find
applications in various real-life scenarios that are required a combination of ring
signatures and blind signatures; for examples, multi authority e-voting and dis-
tributed e-cash systems. Some examples of such contexts can be found such as
in [9,12,26].

With the threat of Shor’s quantum algorithms [22], the research commu-
nity has been moving towards to post-quantum cryptography [4] in which
lattice-based cryptography is one of the most promising candidates due to its
high asymptotic efficiency and parallelism, as well as security under worst-
case intractability assumptions. At ASIACRYPT 2009, Lyubashevksy [14] con-
structed a lattice-based identification scheme based on ideal lattices, and
obtained a signature scheme via Fiat-Shamir’s transformation [7]. Lyubashevsky
later improved to a new signature scheme [15] whose security is based on the
SIS problem. At AfricaCrypt 2013 [1], Aguilar-Melchor et al. proposed the first
lattice-based ring signature scheme. Their construction is based on the scheme
of Lyubashevsky [14] over ideal lattices. In 2018, Wang et al. [25] proposed a
construction of ring signature from an improved scheme of Lyubashevsky [15].
Regarding blind signatures, the first scheme based on ideal lattices was intro-
duced by Rückert [20] at Asiacrypt 2010. Recently, in 2018, Zhang et al. [27]
also gave a new post-quantum construction for blind signature.

In this paper, inspired from the work of Rückert [20] and two aforementioned
works on ring signature [25] and blind signature [27], we construct, for the first
time, a blind ring signature scheme based on lattices. The scheme is provably
secure (i.e., anonymous, blind and one-more unforgeable) in the random oracle
model under the hardness of the SIS problem. Our work exploits the rejection
sampling technique [15] and the trapdoor technique [8], which are fundamental
tools used in lattice-based cryptography.

2 Preliminaries

Notations. For a positive integer l, we write [l] for the set {1, 2, · · · , l}. A column
vector is denoted by small bold letter, e.g., vector v. A matrix is denoted by
bold capital letter, e.g., A. Sometimes we write ai, the i-th component of a
vector a = (a1, · · · , an), by a[i]. The notation A[i] is also used to stand for the
i-th column of a matrix A. The Gram-Schmidt orthogonal matrix of a matrix
A will be written as Ã. By notation “x := a” we mean that the variable x is
assigned the value a or x is defined as a. We write a ←$ A to say that a is
sampled uniformly at random from the discrete set A; while if D is a probability
distribution, then a ← D means that a is sampled according to D. In case A is
an algorithm, we write a ← A to say that a is an output of A.

A lattice is a set of all integral combinations of given linearly independent
vectors. Formally, given a matrix A = [a1, · · · ,am] ∈ R

n×m such that ai’s are
linearly independent, a lattice of basis A is the set L(A) := {∑i∈[m] aizi : zi ∈
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Z}. For such a lattice, we call n the dimension of L(A). Take for example, for a
random matrix A ←$ Z

n×m, the following are also lattices, called q-ary lattices:

Λ = {v ∈ Z
m : v = Az (mod q) for some z ∈ Z

n},

Λ⊥
q (A) = {z ∈ Z

m : Az = 0 (mod q), where A ←$ Z
n×m}. (1)

The first minimum of a lattice L is defined as λ1(L) := minv∈L\{0} ‖v‖. The
i-th minimum of a lattice L of dimension n is denoted by and defined as λi(L) :=
min{r : dim(span(L ∩ Bn(0, r))) ≥ i}, where Bn(0, r) = {x ∈ R

n : ‖x‖ ≤ r}.
The γ-SIVP problem is, given a basis A of a lattice L(A), to search for a set of
n linearly independent lattice vectors S ⊂ L(A) such that ‖S‖ ≤ γλn(A).

The security of our blind ring signature scheme will be based on the average-
case assumption of the short integer solution (SIS) problem.

Definition 1 (SIS Problem). Given a random matrix A ←$ Z
n×m
q , a vector

u ←$ Z
n
q and a positive real number β, the inhomogeneous small integer problem

ISISq,n,m,β is to find a vector z ∈ Z
m \ {0} such that Az = u (mod q) and

‖z‖ ≤ β. In the case u = 0, we have the homogeneous small integer problem,
named SISq,n,m,β.

One can prove that the hardness of SIS and ISIS are essentially equivalent
for typical parameters [18, Chapter 4]. The SISq,n,m,β problem can be seen as
an average-case short vector problem on the q-ary lattice Λ⊥

q (A) defined as
in Eq. (1) which requires to find a sufficiently short nonzero vector in Λ⊥

q (A).
The SIS problem was first introduced in by Ajtai in his seminal work [2]. He
proved that solving the SIS problem can be reduced to solving certain worst-
case problems in lattices. Then Miciancio and Regev [17] gave a more tighten
reduction saying that for large enough q, solving SIS as hard as solving Õ(β

√
n)-

SIVP problem in all lattices in dimension n.

Definition 2 (Discrete Gaussian Distribution, Definition 4.2 of [15]).
The discrete Gaussian distribution over Zm centered at some v ∈ Z

m with stan-
dard deviation σ is defined as Dm

v,σ(x) := ρm
v,σ(x)/ρm

v,σ(Zm), where ρm
v,σ(x) :=

(
1√

2πσ2

)m

e
−‖x−v‖2

2σ2 and ρm
v,σ(Zm) :=

∑
x∈Zm ρm

v,σ(x).

Some basic facts relating to the discrete Gaussian distribution are summarized
in the following lemmas:

Lemma 1 (Lemma 4.3 in [15]).

(i) For any k > 0, Pr[|z| > kσ, z ← D1
σ] ≤ 2e

−k2
2 ,

(ii) For any v ∈ Z
m, and any σ, r > 0, Pr [|〈x,v〉| > r : x ← Dm

σ ] ≤ 2e
− r2

2‖v‖2σ2 .

Remark 1. In Lemma 1(i), if k = 12 then |z| > 12σ with probability at most
2−100. Similarly, in Lemma 1(ii), if we choose r = 12‖v‖σ then |〈x,v〉| ≥ 12‖v‖σ
with probability at most 2−100.
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Lemma 2 (Lemma 4.4 in [15]). For any η > 0, we have Pr[‖z‖ > ησ
√

m, z ←
Dm

σ ] ≤ ηme
m
2 (1−η2).

Remark 2. In Lemma 2, the function ηme
m
2 (1−η2) is decreasing either in m (if

η fixed) or in η (if m fixed). See Table 1 for example. Clearly we need η > 1
as small as possible. Hence, with typical large enough m, one usually chooses
η ∈ [1.1, 1.3].

Table 1. Some specific values for ηme
m
2 (1−η2)

m = 50 m = 100 m = 200

η = 1.1 0.61601 0.37947 0.14399

η = 1.3 0.01605 0.00026 0.00000007

η = 3 9.7 × 10−64 9.9 × 10−127 9.7 × 10−253

Lemma 3 (Lemma 4.5 in [15]). For any v ∈ Z
m, if σ = α‖v‖ where α > 0,

we have Pr
[
Dm

σ (x)/Dm
v,σ(x) ≤ e12/α+1/(2α2) : x ← Dm

σ

]
≥ 1 − 2−100.

Remark 3. In Lemma 3, if we choose, α = 12, i.e., σ = 12‖v‖ then
Dm

σ (x)/Dm
v,σ(x) ≤ e1+1/288 with probability at least 1 − 2−100.

Definition 3 (Statistical Distance, Definition 8.5 in [16]). Let X and X ′

be two random variables over a countable set S. We define the statistical distance
between X and X ′ by Δ(X,X ′) := 1

2

∑
x∈S |Pr[X = x] − Pr[X ′ = x]|.

Lemma 4 (Triangular Inequality). Let X1, X2 and X3 be three random
variables over a countable set S. We have Δ(X1,X3) ≤ Δ(X1,X2)+Δ(X2,X3).

Lemma 5 (Rejection Sampling, Theorem 4.6 in [15]). Given a subset
V = {v ∈ Z

m : ‖v‖ ≤ T} and a real number σ = ω(T log
√

m). Define on V
a probability distribution h : V → R. Then there exists a universal upper bound
M = O(1) such that the outputs of the following two algorithms A and B have
a negligible statistical distance of Δ(A,B) := 2−ω(log m)/M :

1. (A): v ← h, z ← Dm
v,σ, output (z,v) with probability min( Dm

σ (z,)
MDm

v,σ(z)
, 1).

2. (B): v ← h, z ← Dm
σ , output (z,v) with probability 1/M .

Moreover, the probability that A outputs something is at least (1−2−ω(log m))/M .
Particularly, if σ = αT for any α > 0 then M = e12/α+1/(2α2), Δ(A,B) =
2−100/M , and the probability that A outputs something is at least (1−2−100)/M .

In order to construct the blind ring signature, we exploit the trapdoor
technique proposed in [8, Subsection 5.3] to generate necessary keys.
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TrapGen(1n). The algorithm on input the security parameter n, chooses a prime
q = poly(n) and an integer m > 5n log q to output a matrix A ∈ Z

n×m
q and

BA ∈ Z
m×m
q with ‖B̃A‖ ≤ K := m1+ε for any ε > 0, where the distribution of

A is statistically close to the uniform over Z
n×m
q and the matrix BA is a good

basis of the lattice Λ⊥
q (A) = {v ∈ Z

m : Av = 0 (mod q)}.
We generalize the trapdoor inversion algorithm SampleISIS in [8, Subsec-

tion 5.3] to have the following algorithm:

SampleKey(A,BA, σ,T). The algorithm takes as input A ∈ Z
n×m
q , BA ∈ Z

m×m
q

outputted by TrapGen(1n), a real number σ ≥ K · ω(
√

log n) and matrix T ∈
Z

n×k
q , and returns a random (column) matrix S ∈ Z

m×k such that the j-th
column S[j] ∈ D = {s ∈ Z

m : ‖s‖ ≤ σ
√

m} for all j ∈ [k] and that AS =
T (mod q) with overwhelming probability. The distribution of S[j] for all j ∈ [k]
is Dm

Z,σ statistically close to the uniform distribution over D.
In this work, we also exploit the commitment function com maps a pair of

two strings (μ, t) ∈ {0, 1}∗ × {0, 1}n (called committed string) to a commitment
string C := com(μ, t) ∈ {0, 1}n to hide the value of the message μ. For security
goal, we need com to have two properties: statistically hiding and computation-
ally binding. The first property ensures that any computationally unbounded
algorithm is not able to statistically distinguish two commitment strings C and
C ′ obtained from two distinct committed pairs (μ, t) = (μ′, t′). The second prop-
erty says that given a commitment string C obtained from the committed pair
of strings (μ, t) (i.e., C := com(μ, t)), no polynomia-time algorithm can find
another pair (μ′, t′) with μ′ = μ such that C = com(μ′, t′). See [11,13,20] for
more details.

3 Blind Ring Signature Schemes

A blind ring signature consists of four algorithms called Setup, KeyGen, Sign and
Verify.

– Setup(1λ) is a probabilistic polynomial-time algorithm which takes as input
the security parameter λ and outputs a set of public parameters P.

– KeyGen(P) is a probabilistic polynomial-time algorithm which takes as input
the set of public parameters P to output a pair of public key (verification
key) and secret key (signing key) (pk, sk) corresponding to a signer of the
ring R = {S1, · · · ,Sl}. We denote the set of public keys of the ring R by PK.

– Sign(P, skj , μ, PK) is an interactive polynomial-time protocol of two parties:
one is a user and another is a ring of signers R = {S1, · · · ,Sl}. The user,
say U(P, PK, μ), chooses a message μ that is blinded as μ∗ before sending
μ∗ to the ring R to be signed. The ring R, in turn, will choose a member,
say Sj , who possess the secret key skj , written Sj(P, skj), as the real signer
interacting with the user. Finally, the signer obtains the blinded signature Σ∗
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on μ∗ and outputs his view, denoted V, (it may that V = Σ∗), while the
user will output the real (or final) signature Σ on the original message μ by
un-blinding Σ∗. The user may get an invalid signature denoted by a failure
symbol ⊥.

– Verify(P, μ,Σ, PK) is a deterministic polynomial-time algorithm which takes
as input the set of common parameters P, the set of public keys PK, the
message μ and the signature Σ on μ, then outputs 1 if the signature is valid
and 0 otherwise.

A blind ring signature scheme must have the following properties: Correct-
ness, Anonymity, Blindness and One-more Unforgeability. We will make these
properties clearer below.

Correctness. Correctness requires that the verifier always outputs 1 if it
receives a valid signature. Formally, it must hold that

Pr[Verify(P, μ,Σ, PK) = 1 : Σ ← Sign(P, skj , μ, PK), Σ = ⊥] = 1.

A relaxation for the correctness is that if Σ ← Sign(P, skj , μ, PK), Σ = ⊥
then Verify(P, μ,Σ, PK) = 1 with overwhelming probability. (In our case the
probability will be at least 1 − 2−100.)

Anonymity. The anonymity property ensures that a user is impossible to know
which member of the ring was the true signer engaging in the blind ring signature
protocol. The definition of the anonymity property is given in the game below.
In this game, the attacker acts as a malicious user.

1. Setup. The adversary A outputs the set of common parameters P, the ring of
signers R = {S1, · · · ,Sl}, its public keys PK, two distinct indexes i0, i1 ∈ [l],
two secret keys ski0 , ski1 and a message μ. They are sent to the challenger C.

2. Challenge. The challenger C chooses a random bit b ∈ {0, 1}, then runs Sign
on the input (P, skib

, μ, PK) to get a blinded signature Σ∗
ib

on μ. The blinded
signature Σ∗

ib
will be given to the adversary A.

3. Output. The adversary outputs a bit b′ as a guess of b. He wins the game if
b′ = b.

We say that the blind ring signature achieves anonymity if any adversary A
succeeds in guessing b with probability negligibly close to 1/2. In other words,
the advantage of A in distinguishing Σi0 and Σi1 is negligible.

Blindness. Blindness is a fundamental property of a blind ring signature saying
that all members in the ring do not learn any information about the message
received from the user that they are having to sign. The property can be modelled
as a game between an adversary A and a challenger C. In this game, the adversary
A plays the role of a dishonest ring of signers R who tries to differentiate two
given messages to know which one is being signed.

1. Setup. The adversary A chooses a security parameter λ and chooses a uni-
versal set of signers to generate the ring R∗ = {S1, · · · ,SL}. Then it calls
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Algorithm 1. BRS.Setup(1n)

Input: Security parameter n.
Output: The set of public parameters P=(n, m, q, k, κ, σ, H, σ1, σ2, σ3, M1, M2,

M3, T, η)
1: Generate parameters as in Table 2
2: An one-way and collision-resistant hash function H : {0, 1}∗ → {c ∈ {−1, 0, 1}k :

‖c‖1 ≤ κ}
3: A commonly-used matrix T ←$ Zq

m×k

4: Output all as the set P

Algorithm 2. BRS.KeyGen (P)

Input: P=(n, m, q, k, κ, σ, H, σ1, σ2, σ3, M1, M2, M3, T, η)
Output: A key pair (A,S)
1: Run TrapGen(1n) to get A ∈ Z

n×m
q and BA ∈ Z

n×m
q is a trapdoor of A; /* the

distribution of A is statistically close to the uniform over Z
n×m
q */

2: S ← SampleKey(A,BA, σ,T), i.e., AS = T (mod q) where S ∈ Dd :=
{−d, · · · , 0, · · · , d}m×k, d = σ

√
m; /* the distribution of S is Dm×k

Z,σ statistically
close to the uniform over Dd */

3: return Public key A and secret key S

Setup(1λ) to get the set of public parameters P according to the security
parameter λ and KeyGen(P) to output the key pairs (pki, ski)i∈[L] for each
signer Si, i ∈ [L]. The adversary A knows P and (pki, ski)i∈[L].

2. Challenge. The adversary A chooses a subring R ⊂ R∗, and its correspond-
ing public keys PK, and two messages μ0 = μ1, then he sends them to the
challenger C. The challenger C will flip a coin b ∈ {0, 1} and sets up a blind
ring signature protocol taking μb and the ring R as input. The adversary
A chooses a signer Sj in the ring R to sign the hidden form of μb and acts
as the signer in the protocol. Eventually, A gets the view Vb and also the
“unblinded” signature Σb = ⊥. If Σb = ⊥, the game is restarted.

3. Guess. The adversary A outputs one value b′ ∈ {0, 1}. The adversary wins
the game if b′ = b.

We say that a ring signature scheme is blind if for any adversary A the success
probability in the game is only negligibly larger than 1/2.

One-More Unforgeability. The one-more unforgeability property guarantees
that from at most qS real interactions of the blind ring signature protocol, the
user has no capacity of producing qS + 1 valid and different ring signatures.
The property is defined by the game below. In this game, the forger will act the
behaviour of a malicious user.

1. Setup. The forger F chooses a security parameter λ and chooses a universal
set of signers to generate the ring R∗ = {S1, · · · ,SL}. The challenger C calls
Setup(1λ) to get the set of public parameters P and KeyGen(P) to output the
key pairs (pki, ski)i∈[L] for each signer Si, i ∈ [L]. Then C sends to the forger
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F the set P and the set of public keys {pki}i∈[L]. The set {ski}i∈[L] is kept
secret.

2. Queries. The forger F adaptively makes queries to the challenger:
– qH hash queries to the random oracle which models the hash function H in

the real protocol. For each hash query from the adversary, the challenger
has to reply with a consistently random value.

– qS blind signing queries, each is of the form (μi, Ri) where Ri ⊂ R∗. For
each signing query, the challenger must answer with a valid blind ring
signature.

3. Output. The forger F outputs qS + 1 tuples {(μi, Ri, Σi)}i∈[qS+1], Ri ⊂ R∗.
He wins the game if {Σi}i∈[qS+1] are all valid and (μi, Ri) = (μj , Rj) for all
i, j ∈ [qS + 1] and i = j.

We say that a blind ring signature scheme is one-more unforgeable if in the game,
Pr[F wins] is negligible.

Remark 4. For simplicity, in the proof for the one-more unforgeability property
of our proposed scheme, we assume that Ri = R∗ for all i ∈ [qS +1], that is, the
forger does not want to change the ring of signers at all.

4 Our Blind Ring Signature Scheme

We will present our blind ring signature (named BRS) scheme. The security
of BRS bases on the average-case assumption of the SIS problem. The scheme
follows the 4-move framework for blind ring signature as reviewed in Sect. 3. It
consists of four algorithms (see Algorithms 1–3 and Fig. 1) described as follows:

– We suppose that n is the security parameter. BRS.Setup(1n) is called to out-
put a common set of parameters P (see Algorithm 1). We will mention the
role of these parameters and how to set them in Subsect. 6.

– Given a matrix T ←$ Zq
n×k, to generate public key Ai ←$ Zq

n×m and secret
key Si ∈ Zq

m×k for each signer Si in a ring R = {S1, · · · ,Sl} of l members
such that T = AiSi, we run l times BRS.KeyGen (see Algorithm 2) which
exploits the preimage sample functions (trapdoor functions) mentioned in
Subsect. 2. The secret key Si follows a discrete Gaussian distribution Dm×k

σ

and its security is guaranteed by the hardness assumption of the ISIS problem.
– The signing algorithm (BRS.Sign) (see Fig. 1) is an interactive protocol

between a user U and a ring R = {S1, · · · ,Sl}. The user U knows the set
of public keys PK and he wants the ring R to sign the message μ. Here we
describe the protocol in the case that the ring secretly delegates some signer
Sj ∈ R to interact with the user. We relatively split the signing interaction
into five main phases:
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Fig. 1. The signing protocol BRS.Sign(P,Sj , μ, PK), j ∈ [l], PK = {Ai}i∈[l]

• Phase 1: The signer samples randomly a list {si}i∈[l] according to the
distribution Dm

σ2
to compute and then sends the commitment x =∑

i∈[l] Aisi to the user.
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• Phase 2: The user chooses blind factors ai ← Dm
σ3

for all i ∈ [l] and
b ← Dk

σ1
. He also chooses a random binary vector t ←$ {0, 1}n then uses

the commitment function com to compute the commitment string C :=
com(μ, t) ∈ {0, 1}n. Afterward, he computes u = x +

∑
i∈[l] Aiai + Tb

then hash it with C using the hash function H where H : {0, 1}∗ → Dc :=
{c ∈ {−1, 0, 1}k : ‖c‖1 ≤ κ} to get the challenge c. To blind the message,
the user uses the rejection sampling technique to get the blinded challenge
e. Finally, the user sends e to the ring.

• Phase 3: This is the signing phase in which the signer Sj considers si’s
sampled in Phase 1 as the partial signatures of other members in the
ring on the message μ, while he uses his secret key Sj to compute his
himself partial signature yj = sj + Sje on μ. In order to make sure that
no information of his secret key Sj is leaked, the signer also exploits the
rejection sampling such that yj follows the same distribution Dm

σ2
as sj .

Finally, he sends the blinded signature {yi}i∈[l] to the user.
• Phase 4: In this phase, the user computes zi = yi + ai for all i ∈ [l].

The rejection sampling is used here to ensure that zi is independent of
yi for blindness. If ‖zi‖ ≤ η

√
mσ3 for all i ∈ [l] then the user outputs

(μ,Σ = ((zi)i∈[l], c, t)) as the final signature; otherwise, he returns “⊥”.
Note that, it is a must for the user to send result to the signer as a
confirmation of the validity of the final signature (if result := accept) or
as a requirement to restart the protocol (if result := ((ai)i∈[l],b, c, C)).

• Phase 5: In this phase, if the signer gets result = accept, he will check
up some conditions before he restarts the protocol from the beginning.
This helps to detect the case that an adversarial user tries to restart the
signing protocol despite having obtained a valid signature. If the signer
gets the validity confirmation from the user, he finally outputs the view
V = (x, e, (si,yi)i∈[l]).

– BRS.Verify(P, μ,Σ, PK) = 1 iff ‖zi‖ ≤ η
√

mσ3 for all i ∈ [l] and c =
H(

∑
i∈[l] Aizi −Tc (mod q), com(μ, t), PK); and BRS.Verify(P, μ,Σ, PK) =

0 otherwise. (See Algorithm 3.)

5 Correctness and Security Analysis of BRS

5.1 Correctness

Theorem 1 (Correctness). Our BRS scheme is correct after at most e2 rep-
etitions with probability at least 1 − 2−100.

Proof (of Theorem 1). Given the pair (μ,Σ = ((zi)i∈[l], c, t)) is the output of
the user in BRS.Sign(P,Sj , μ, PK) as in Fig. 1, the set of public keys PK =
{Ai}i∈[l], and parameters P, we will prove that H(

∑
i∈[l] Aizi − Tc (mod q),

com(μ, t), PK) = c.
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Algorithm 3. BRS.Verify(P, μ,Σ, PK)
Input: P, μ, Σ = ((zi)i∈[l], c, t), PK = {Ai}i∈[l]

Output: 1 or 0
1: u =

∑
i∈[l] Aizi − Tc (mod q)

2: c′ = H(u, com(μ, t), PK)
3: if c′ = c and ‖zi‖ ≤ η

√
mσ3 for all i ∈ [l] then

4: return 1
5: else
6: return 0
7: end if

Without caring the restarts appear in rejection samplings, we have
∑

i∈[l]

Aizi − Tc (mod q) =
∑

i∈[l]

Ai(yi + ai) − T(e − b) (mod q)

=
∑

i∈[l]\{j}
Aisi + Aj(sj + Sje)

+
∑

i∈[l]

Aiai − T(e − b) (mod q)

=
∑

i∈[l]

Aisi +
∑

i∈[l]

Aiai + Tb (mod q)

= x + w + Tb (mod q).

Hence H(
∑

i∈[l] Aizi − Tc (mod q), com(μ, t), PK) = c. Note that, with
overwhelming probability, ‖zi| ≤ η

√
mσ3 for all i ∈ [l] by Lemma 2.

Now we analyze the rejection sampling technique to bound the number of
restarts of our BRS protocol. Recall that, by Remark 3, we have

Dm
σ (x)

M · Dm
v,σ(x)

≤ e1+1/288

M
,

with probability at least 1 − 2−100 if σ = 12‖v‖. Being used in the rejection
sampling, we need Dm

σ (x)/(M · Dm
v,σ(x)) ≤ 1. Since M should be as small as

possible, it is sufficient to choose M = exp
(
(24‖v‖σ + ‖v‖2)/(2σ2)

) ≈ e1+1/288,
with σ = 12‖v‖. Now we apply above analyses to the rejection samplings in
our BRS scheme. Remark that in Phase 2 of our scheme, as the user utilizes the
rejection sampling locally to output e, the restarts of this phase does not impact
to the correctness of the scheme. We just care about the restarts happening in
Phase 3 and Phase 5. Hence, after at most M2 ·M3 ≈ e2 restarts, the BRS scheme
can successfully output a valid blind ring signature. ��

Remark 5. In the proof of Theorem 1, we use e = c + b obtained in Phase 2 of
BRS.Sign. Assume that e = c′ + b′ for some b = b′, c = c′, then also
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∑

i∈[l]

Aizi − Tc′ (mod q) =
∑

i∈[l]

Ai(yi + ai) − T(e − b′) (mod q)

= x + w + Tb′ (mod q).

Thus, if e − b′ = c′ = H(x + w + Tb′ (mod q), com(μ, t), PK), then
H(

∑
i∈[l] Aizi −Tc′ (mod q), com(μ, t), PK) = c′. This remark will be used

in the proof of Theorem 4.

5.2 Anonymity

Recall that, in the anonymity game (see Subsect. 3), the adversary A receives a
set of public keys PK = {pki}i∈[l] and he adaptively make queries to the blind
ring signature with a message μ and the indexes i0, i1 ∈ [l] to get a signature
Σ which depends on the random bit b ∈ {0, 1} chosen by the challenger. The
adversary wins the game if he guesses exactly the bit b. The following theorem
says that the advantage of the attacker in guessing b is actually negligible.

Theorem 2 (Anonymity). Given the ring of signers R = {S1, · · · ,Sl}, and
the set of key pairs {(Ai,Si)}i∈[l], a message μ, two distinct indexes i0, i1 ∈ [l]
and a random bit b ∈ {0, 1}. Consider the anonymity game as in Subsect. 3. Let
X0 and X1 two random variables representing the blinded signatures obtained
by the blind ring signature protocol BRS.Sign with respect to b = 0 and b = 1,
respectively. Then there exist a universal constant M2 > 0 such that

Δ(X0,X1) ≤ 21−ω(log m)

M2
.

Proof (of Theorem 2). In the game, the challenger chooses randomly b ∈ {0, 1}
and runs BRS.Sign using the signer Sib

corresponding to the private key Sib
,

then we will get the blinded signature (y1, · · · ,yib
· · · ,yl), where yib

:= Sib
e +

sib
outputted with probability min{Dm

σ2
(yib

)/(M2 · Dm
Sib

e,σ2
(yib

)), 1} and yi :=
si ← Dm

σ2
for all i ∈ [l] \ {ib}.

Assume that the adversary gets the signature (y1, · · · ,yib
· · · ,yl) by choos-

ing each element yi from Dm
σ2

with probability 1/M2. We denote by Y the random
variable according to the signature obtained by this way. Then using Lemma 5
we have

Δ(X0, Y ) ≤ 2−ω(log m)

M2
and Δ(X1, Y ) ≤ 2−ω(log m)

M2
.

Hence Δ(X0,X1) ≤ Δ(X0, Y ) + Δ(X1, Y ) ≤ 21−ω(log m)

M2
still negligible. ��

5.3 Blindness

Theorem 3 (Blindness). Our BRS scheme is blind provided that com is hiding
and the hash function H is one-way.

Proof (of Theorem 3). It is easy to see that the blindness of our BRS scheme is
guaranteed by the rejection sampling technique and the hiding property of the
commitment com.
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As per the game of blindness in Subsect. 3, when the dishonest signer gives
two messages μ0 and μ1 to the challenger, the challenger will chooses randomly
a bit b ∈ {0, 1}. Then the signer and the challenger initiates the blind ring
signature protocol having interaction with only one of two users U(P, PK, μ0)
and U(P, PK, μ1). We show that the signer actually does not know which user
he is interacting with, that is, the view V = (x, e, (si,yi)i∈[l]) that the signer has
is independent of the message being signed. More precisely, e and (yi)i∈[l]) is
independent of the message being signed. Indeed, let V0 = (x0, e0, (s0,i,y0,i)i∈[l])
and V1 = (x1, e1, (s1,i,y1,i)i∈[l]) be views respectively corresponding to users
U(P, PK, μ0) and U(P, PK, μ1). Then, the rejection sampling in Phase 2 ensures
that both e0 and e1 are distributed according to the same distribution Dk

σ1
.

Similarly, by the rejection sampling in Phase 3, both y0,i and y1,j for all i, j ∈ [l]
follow the same distribution Dm

σ2
. The distributions of e and y0,i are independent

of choosing the message to be signed.
Regarding two unblinded signatures Σ0 = ((zb,i)i∈[l], cb, tb) corresponding

to the users U(P, PK, μb), b = 0, 1. Again, by the rejection sampling used in
Phase 4, the malicious signer is impossible to distinguish (z0,i)i∈[l] from (z1,i)i∈[l].
Certainly, the signer does not learn anything about the original message μ being
signed from the challenges c0, c1 due to the property of the hash function H.
Also, the distribution of tb is independent of μ.

Finally, we concern the restart might happen in Phase 5. Again, by the hiding
property of the commitment com and since the user samples fresh values t, a
and b after every such a restart, we have that each rerun of the protocol is
independent of the previous runs. (See similar arguments to a blind signature
scheme in [20].) ��

5.4 One-More Unforgeability

Before stating the main theorem of this subsection, we adopt the following
lemma:

Lemma 6 (Lemma 5.2 in [15]). Given a matrix A ∈ Z
n×m
q where m >

64+n log q/ log(2d+1), randomly chosen s ←$ {−d, · · · , 0, · · · , d}m. Then with
probability at least 1 − 2−100, there exists another s′ ←$ {−d, · · · , 0, · · · , d}m

such that As = As′(mod q).

For notational convenience, we call the ( qH , qS , δ)-forger F a polynomial-
time algorithm F that successfully breaks the one-more unforgeablity of our BRS
protocol with non negligible probability δ, making at most qH hash queries and
at most qS sign queries to the scheme. The following theorem says that if there
exists such a forger then one can construct an algorithm being able to solve an
SIS problem.

Theorem 4 (One-more Unforgeability). Consider the BRS scheme
described in Sect. 4. Suppose that the commitment function com used in the
BRS scheme is binding. If there is a (qH , qS, δ)-forger F who breaks the
one-more unforgeablity of our BRS protocol then there is a polynomial-time
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algorithm G which can solve an SISq,n,ml,β problem with β = max{(2lησ3 +
2σ

√
κ)

√
m, (2lησ3 + lησ2)

√
m} with probability at least

δoverall ≥ min

{
1
4s

(1 − ζ)
(

1 − 1
|Dc|

)(
δ − 1

|Dc|
qH

− 1
|Dc|

)

, δ

(

1 − 1
|Dc|

)}

,

where ζ is the probability of a restart in the scheme, s := qS + 1.

Proof (of Theorem 4).
In the following, we will describe an algorithm G using F as a black-box

routine to solve an SISq,n,ml,β problem as G desires:

1. Setup. First of all, G chooses a security parameter n and a set of signers to
generate the ring R = {S1, · · · ,Sl}. Then G calls BRS.Setup(1n) to get the
set of public parameters P and then calls BRS.KeyGen(P) to output the key
pairs (Ai,Si)i∈[l] for each signer Si, i ∈ [l]. After that, G sends to the forger
F the set P and the set of public keys PK := {Ai}i∈[l]. The set of secret
keys {Si}i∈[l] is kept secret. The goal of G is to solve the following SISq,n,ml,β

problem:

Find ‖ẑ‖ ≤ β such that Aẑ = 0 (mod q), where A := [A1‖ · · · ‖Al]. (2)

2. Queries. The forger F adaptively makes qH hash queries to the random
oracle which models the hash function H in the real protocol and qS blind
signing queries. The algorithm G creates and maintains a list LH consisting
of random oracle queries (u, C) ←$ Z

n
q ×{0, 1}∗ and their corresponding hash

value c ∈ Dc, where Dc := {c : c ∈ {−1, 0, 1}k, ‖c‖1 ≤ κ}. Furthermore, G
randomly preselects R := {r1, · · · , rqH

} ←$ Dc as a set of replies of H and
also chooses a random tape ρ. The solver G runs F(P, PK, ρ) as a black-box
routine as follows:

– Random Oracle Queries. Whenever G receives a query (u, C), it will
check whether the query is in the list LH or not. If yes, G sends the
corresponding hash value c to the forger F . Otherwise, G opts the first
unused ri, i ∈ [qH ] from R, assigns c := ri, stores the query-hash value
pair ((u, C), c) in LH and sends c to the forger.

– Signing Queries. The forger F plays the role of the user, processing
qS times the interactive blind ring signature protocol, while the solver
G acts as the signer of the ring. If F wants to have the signature of a
message μ, the solver G chooses some signer Si from the ring R and runs
the BRS.Sign algorithm in Fig. 1 to produce the required signature.

3. Output. After at most qS signing queries, with non-negligible probability δ,
the forger F eventually outputs s := qS + 1 blind ring signatures

(μ1, (z1,i)i∈[l], c1, t1), · · · , (μs, (zs,i)i∈[l], cs, ts),

where μ1, · · · , μs are s distinct messages. At the moment, the algorithm G
predicts randomly an index k ∈ [s] satisfying that ck = ri for some i ∈ [qH ].
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Afterward, G samples new fresh random oracle answers {r′
i, · · · , r′

qH
} ←$ Dc

and then invokes F(P, PK, ρ) again with R′ := {r1, · · · , ri−1, r′
i, · · · , r′

qH
}.

Among other values, the forger F outputs (μ′
k, (z′

k,i)i∈[l], c′
k, t′

k). If ck = c′
k

then G returns

((zk,i)i∈[l] − Sjck, (z′
k,i)i∈[l] − Sjc′

k) for all j ∈ [l],

in order to solve the SIS problem. If ck = c′
k, the solver G retries F(P, PK, ρ′)

at most qs
H times with a different random tape ρ′.

Analysis. The environment of F is perfectly simlulated by G and restarts hap-
pen with the same probability ζ as in the real scheme. Obviously, there is at
least one signature not coming from a real interaction. The algorithm G guesses
correctly the index of this signature with probability at least 1/s. And ck is a
random oracle answer with probability 1/|Dc|. Note that, with probability 1/2,
there is at least one of the reruns of F gives the same index pair (i, k) such that
ri = ck. Therefore, we can assume that the index pairs in two runs are the same.

Applying the forking lemma [3, Lemma 3.1] with noting that restarts happen
with probability ζ, we have that F is again successful in breaking the one-more
unforgeability and outputs one more new signature (μ′

k, (z′
k,i)i∈[l], c′

k, t′
k) with

probability δfrk ≥ (1 − ζ)(δ − 1/|Dc|)((δ − 1/|Dc|)/qH − 1/|Dc|) using the same
random oracle query as in the first run. Thus we have

(
∑

i∈[l]

Aizk,i − Tck (mod q), com(μk, tk)) = (
∑

i∈[l]

Aiz
′
k,i − Tc′

k (mod q), com(μ′
k, t′

k)).

Since then, we have that
∑

i∈[l]

Aizk,i − Tck (mod q) =
∑

i∈[l]

Aiz′
k,i − Tc′

k (mod q).

Equivalently,
∑

i∈[l]

Ai(zk,i − z′
k,i) + T(c′

k − ck) = 0 (mod q). (3)

Plugging T = Ai0Si0 (mod q) for some i0 ∈ [l] into Eq. (3), we have
∑

i∈[l]\i0

Ai(zk,i − z′
k,i) + Ai0(zk,i0 − z′

k,i0 + Si0(c
′
k − ck)) = 0 (mod q). (4)

Set the matrix

A := [A1‖ · · · ‖Ai0−1‖Ai0‖Ai0+1‖ · · · ‖Al],

and

ẑ :=[zk,1 − z′
k,1, · · · , zk,i0−1 − z′

k,i0−1, zk,i0 − z′
k,i0 + Si0(c

′
k − ck),

zk,i0+1 − z′
k,i0+1, · · · , zk,l − z′

k,l],

from Eq. (4) we have Aẑ = 0 (mod q).
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The next step is to prove that ẑ = 0 with probability non- negligible. In fact,
by Lemma 6, there is another secret key S′

i0 such that ASi0 = AS′
i0

(mod q)
in which Si0 and Si0 have all the same columns but the i-th column with i
is the position that ck[i] = c′

k[i]. Clearly, if zk,i0 − z′
k,i0

+ Si0(c
′
k − ck) = 0

then zk,i0 − z′
k,i0

+ S′
i0

(c′
k − ck) = 0. Thus with probability at least 1/2 we get

ẑ = 0. Note that ‖zk,i‖ ≤ ησ3
√

m, ‖Si‖ ≤ σ
√

m and ‖ck‖ ≤ √
κ for all i ∈ [l].

Hence, ‖zk,i − z′
k,i‖ ≤ 2ησ3

√
m for all i ∈ [l],. Thus, ‖ẑ‖ ≤ (2lησ3 + 2σ

√
κ)

√
m.

Therefore, we have the success probability of G in solving the SIS problem (2)
in this case is at least

δsolve ≥ 1
4s

δfrk ≥ 1
4s

(1 − ζ)(δ − 1/|Dc|)((δ − 1/|Dc|)/qH − 1/|Dc|).

Now, taking restarts happen in Phase 5 into account, we will show that if the
adversarial user can forge a valid signature through a Phase 5 restart help, then
G can solve the SIS problem stated in Eq. (2). To trigger a restart in Phase 5,
the forger sends to the signer result := ((ai)i∈[l],b, c, C) which, together with the
view of the signer V = (x, e, (si,yi)i∈[l]), satisfies all the following conditions:

e − b = c = H(x + w + Tb (mod q), C, PK), (5)
c = H(w + v − Tc (mod q), C, PK), (6)

‖yi0 + ai0‖ > ησ3

√
m for some i0 ∈ [l], (7)

where x =
∑

i∈[l] Aisi, w =
∑

i∈[l] Aiai, v =
∑

i∈[l] Aiyi. Assume that the
adversary can obtain a valid signature Σ∗ = ((z′

i)i∈[l], c′, t′) (with probability
at least δ) from this restart. That is, for some b′ ∈ Dk

σ1
such that e = c′ +b′ we

have,

e − b′ = c′ = H(x + w + Tb′ (mod q), C, PK), (8)

c′ = H(
∑

i∈[l]

Aiz′
i − Tc′ (mod q), com(μ, t′), PK), (9)

‖z′
i‖ ≤ ησ3

√
m for all i ∈ [l]. (10)

With probability 1 − 1/|Dc| (how to compute this probability, see [10, Subsec-
tion 4.6.1 in Chapter 4])), we have c′ = c. Then by Eqs. (6) and (9), we have

w + v (mod q) =
∑

i∈[l]

Aiz′
i (mod q).

That is,
∑

i∈[l]

Ai(ai + yi) (mod q) =
∑

i∈[l]

Aiz′
i (mod q).

Define

ẑ :=[a1 + y1 − z′
1, · · · ,al + yl − z′

l].
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Table 2. Parameter setting for our BRS scheme

Parameters Requirement Description

n – security parameter

l – number of ring members

q poly(n), prime modulo

m max(64 + n log q/ log(2d + 1), 5n log q) in Lemma 6, TrapGen

K m1+ε, for any ε > 0 in SampleKey

σ ≥ K · ω(
√

log n) in SampleKey

d σ · √
m in BRS.KeyGen

k and κ such that 2κ · (
k
κ

) ≥ 2100 in the hash function H

η [1.1, 1.3] in Lemma 2

M1 = M2 = M3 exp(1 + 1/288) in the rejection sampling

σ1 12
√

κ

σ2 12σησ1

√
mk

σ3 12ησ2
√

m

signature size lm log(12σ3) + n + κ bits

secret key size lmk log(2d + 1) bits

public key size (lnm + nk) log q bits

We have Aẑ = 0 (mod q). If ẑ = 0, i.e., ai + yi = z′
i for all i ∈ [l], then we

have ‖yi + ai‖ ≤ ησ3
√

m for all i ∈ [l] (due to Eq. (10)) which contradicts
with Eq. (7). Hence, ẑ = 0 and we have ‖ẑ‖ ≤ (2lησ3 + lησ2)

√
m. The success

probability of G in case the forger can get a valid signature through a restart is
δrestart ≥ δ(1 − 1/|Dc|).

To sum up, we have proven that with overall success probability of δoverall ≥
min(δsolve, δrestart), the solver G can solve the SISq,n,ml,β problem where

β = max((2lησ3 + 2σ
√

κ)
√

m, (2lησ3 + lησ2)
√

m).

6 Parameter Setting

Basically, parameters in this work are set in a similar way to [27]. We need
parameters n, q, k to make sure that the SIS problem is computationally infea-
sible to keep secret keys Si’s not to be recovered. To generate the key pairs, we
invoke the trapdoor functions using the discrete Gaussian distribution Dσ with
σ ≥ L · ω(

√
log n) and L = m1+ε for any ε > 0.

For security proofs, we need m ≥ 64 + n log q/ log(2d + 1) via Lemma 6. We
also need m ≥ 5n log q for TrapGen works. So we can choose m ≥ max{64 +
n · log q/ log(2d + 1), 5n log q}. The parameter κ appearing in the hash func-
tion H should be chosen to satisfy 2κ · (

k
κ

) ≥ 2100 in order to guarantee that
the min-entropy of H is at least 100. As analyzed in Subsect. 5.1, we can set
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Mi := e1+1/288 for all i ∈ [3]. Accordingly, we then set σ1 = 12‖c‖ = 12
√

κ,
σ2 = 12‖Sje‖ = 12σησ1

√
mk = 144ση

√
mkκ and σ3 = 12‖yi‖ = 12ησ2

√
m =

1728mη2σ
√

kκ.
The real signature is Σ = ((zi)i∈[l], c, t)). Each component of zi is of length

at most 12σ3 with probability at least 1 − 2−100 by Lemma 1, so the signature
bit-size is lm log(12σ3) + n + κ bits. The secret key bit-size is lmk log(2d + 1).
The public key bit-size is (lnm + nk) log q.

The parameter setting is summarized in Table 2.

7 Conclusions and Future Works

In this paper, we proposed, for the first time, a lattice-based blind ring signature
scheme. Our scheme is proven to fulfill the anonymity and the blindness proper-
ties due to being constructed with the reject sampling technique. Moreover, the
scheme is one-more unforgeable in the random oracle model under the hardness
of SIS problem.

There have been several recent results in improving lattice-based (ring) sig-
natures both on signature sizes and the hardness assumption (e.g. from module
lattices), which can be utilized to improve our scheme. We will leave to apply
these improvements as future works. One more interesting approach should be
our next work is to design a blind ring signature without using trapdoor func-
tions but, for example, basing on the idea of [1]. Also, it is still open to construct
a blind ring signature that is secure in the standard model.

Acknowledgment. The first author would like to thank Prof. Masaya Yasuda for
his financial support. The authors would like to thank anonymous reviewers for their
helpful comments.
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Abstract. Undeniable signature is a special featured digital signature
which can only be verified with the help of the signer. Undeniable sig-
nature should satisfy invisibility which implies the inability of a user to
determine the validity of a message and signature pair as introduced by
Chaum et al. Galbraith and Mao later proposed the notion of anonymity
which implies the infeasibility to determine which user has issued the sig-
nature. They also proved that the notions of invisibility and anonymity
are equivalent when the signers possess the same signature space, such
that if an undeniable signature possesses invisibility, then it also pos-
sesses anonymity, and vice versa. In this paper, we show that in con-
tradiction to the equivalency result established by Galbraith and Mao,
there exist some undeniable signature schemes that possess invisibility
but not anonymity. This motivates us to find out whether there is a
limitation on Galbraith and Mao’s equivalency result or the schemes are
actually flawed. Our analysis shows that the anonymity property requires
all signers to possess the same signature space but the invisibility prop-
erty does not. This conforms to the equivalency result and implies that
an undeniable signature scheme can be invisible but not anonymous if
the signers possess the different signature spaces. Our result invalidates
two past cryptanalysis on undeniable signature schemes.

Keywords: Anonymity · Invisibility · Undeniable signature

1 Introduction

The notion of undeniable signature was introduced by Chaum and van Antwer-
pen [7]. Unlike ordinary digital signature, undeniable signature has a distinctive
feature, i.e., without the help of the signer, the verifier will not be able to ver-
ify the validity of the undeniable signature. Since it was introduced, there are
various applications using it such as licensing software [7], electronic cash [25],
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I. You (Ed.): WISA 2019, LNCS 11897, pp. 112–125, 2020.
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electronic voting and auctions [26,27]. There are also some variants of undeni-
able signature proposed such as convertible undeniable signature [3], designated
verifier signature [17], and designated confirmer signature [5,23].

Convertible undeniable signature was proposed by Boyar et al. [3]. It is an
extension of undeniable signature that allows the signer to transform an undeni-
able signature into a universally verifiable ordinary digital signature. There are
two types of convertible undeniable signature, namely, selectively convertible
and universally convertible. Selectively convertible undeniable signature allows
the signer to convert only a specific undeniable signature into a universally ver-
ifiable one by releasing a token. In universally convertible undeniable signature,
the signer releases part of his secret to convert the undeniable signature into
the ordinary digital signature. Designated confirmer signature was introduced
by Chaum [5], where it allows an undeniable signature to be verified with the
help of the signer or the designated confirmer. On the other hand, the desig-
nated verifier signature was introduced by Jakobsson et al. [17], where it allows
an undeniable signature to be verified by the designated verifier or the signer
only.

As previous works were all built in the paradigm of conventional public key
cryptography, Libert et al. [22] introduced the paradigm of identity-based unde-
niable signature, where it addressed the certificate generation and management
issues by deriving the signer’s public key from the signer’s publicly verifiable
information, and computing the signer’s private key through a trusted third
party. Identity-based undeniable signature was further enhanced by Duan [8]
with the paradigm of certificateless undeniable signature in 2008 which addressed
the issue of private key escrow problem in identity-based cryptography.

The notion of invisibility was introduced as the main security property for
undeniable signature and designated confirmer signature by Chaum et al. [6].
Invisibility implies the inability of a user to determine whether a given message
and signature pair is valid. It was later formalised by Camenisch and Michels [4]
and generalised by Galbraith and Mao [9]. These two definitions of invisibility
were also proven to be equivalent by Galbraith and Mao [9]. Galbraith and
Mao [9] also introduced the notion of anonymity as the most relevant security
property for undeniable signature and designated confirmer signature in multi-
user settings. Anonymity implies that given an undeniable signature and public
keys of two or more possible signers, it is infeasible to determine which user
has issued the signature. They also claimed that the notions of invisibility and
anonymity are equivalent if all signers are sharing the same signature space by
providing a formal security proof. Huang et al. [16] later formalised invisibility
and anonymity in convertible setting where the adversary has some additional
accessible oracles and restrictions. They then provided the proof of equivalency
between invisibility and anonymity using the same approach as Galbraith and
Mao [9]. Since then, the notions of invisibility and anonymity have been regarded
by researchers as equivalent, where one proves either of the security properties
and the other security property follows [10,18,20–22].
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The first provably secure convertible undeniable signature scheme based on
RSA was proposed by Kurosawa and Takagi [19]. It was later revisited by Phong
et al. [24] who showed that Kurosawa and Takagi’s convertible undeniable signa-
ture scheme [19] did not satisfy anonymity, and thus invisibility is not satisfied
too. Meanwhile, an identity-based convertible undeniable signature scheme based
on pairings was proposed by Wu et al. [30]. It was later revisited by Behnia et al.
[1] who showed that there exists an adversary who can break the anonymity and
thus the invisibility of the scheme. A convertible undeniable signature scheme
without random oracle was later proposed by Huang and Wong [12]. However,
it was pointed out by Schuldt and Matsuura [28] that their schemes did not
satisfy anonymity. The full version [13] of Huang and Wong’s convertible unde-
niable signature scheme [12] was later published and they remarked that their
scheme possesses invisibility only. Besides, Huang et al. [14] proposed a desig-
nated confirmer signature scheme, and they later highlighted that it did not
satisfy anonymity in the full version [11] as well.

1.1 Our Contributions

We revisit three cryptanalysis [1,24,28] on undeniable signature schemes and
show that two [1,24] of them did not make a correct conclusion for the crypt-
analysed schemes [13,14,29] on the equivalency of anonymity and invisibility.
We also revisit a designated confirmer signature scheme [11] and show that it
faces the same issue as in the cryptanalysed schemes. More precisely, these four
schemes do not possess anonymity but they are invisible as the validity of the
message and signature pair is not revealed. These observations contradict to the
well accepted fact that invisibility is equivalent to anonymity. It is thus interest-
ing to find out whether this phenomenon is caused by a limitation on Galbraith
and Mao’s security model or the schemes are actually flawed. We first show that
the equivalency result of invisibility and anonymity is not applicable in the four
schemes due to the signature space for each signer is different as opposed to the
requirement placed in Galbraith and Mao’s equivalency result [9]. Next, we show
that invisibility does not require signers to have a common signature space but
anonymity does. Therefore, the four schemes [11,13,14,29] are invisible but not
anonymous and the two cryptanalysis [1,24] inadequately applied Galbraith and
Mao’s equivalency theorem on them.

1.2 Organisation of the Paper

The organisation of the paper is as follows. In Sect. 2, we review some prelimi-
naries and recall the definitions of undeniable signature, convertible undeniable
signature, and designated confirmer signature. We also review the security model
of invisibility and anonymity, and the equivalency between them. In Sect. 3, we
review the past attacks on some existing undeniable signature schemes. In Sect. 4,
we show that the past attacks are not entirely correct by providing a detailed
discussion. Finally, we conclude this paper in Sect. 5.
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2 Preliminaries

2.1 Bilinear Pairings [2]

A brief review on the properties of bilinear pairings is discussed here. Let G

and GT be cyclic groups of prime order p and a generator g ∈ G. The map
ê : G × G → GT is a bilinear map which satisfies the following properties:

– Bilinearity: for all (x, y) ∈ G and (a, b) ∈ Zp, we have ê(xa, yb) = ê(x, y)ab.
– Non-degeneracy: if g is a generator of G, then ê(g, g) is a generator of GT

which also implies ê(g, g) �= 1.
– Computability: there exists an efficient algorithm to compute ê(x, y) for all

x, y ∈ G.

2.2 Undeniable Signature Scheme

An undeniable signature is a special featured digital signature which is only
verifiable with the help of the signer. An undeniable signature scheme consists
of the following algorithms and protocols [9]:

– KeyGen: On input a security parameter 1k, it outputs a signer’s public and
private key pair (pk, sk).

– Sign: On input a message and a signer private key (m, sk), it outputs an
undeniable signature σ.

– Confirmation/Disavowal Protocol: An interactive protocol that runs
between the signer and the verifier on common input (pk,m, σ). The signer
uses sk to check the validity of σ, then the signer proves to the verifier that
σ is valid on m under pk, and the verifier outputs “1” if σ is a valid signature
of m and outputs “0” otherwise.

Correctness. Every valid (invalid) undeniable signature can always be proven
valid (invalid) with Confirmation/Disavowal Protocol.

2.3 Convertible Undeniable Signature Scheme

A convertible undeniable signature scheme consists of the same algorithms and
protocols as in undeniable signature scheme with the following additional algo-
rithms which allow selectively conversion and universally conversion [16]:

– Selective-Convert: On input (sk,m, σ), it computes a selective token πS

which can be used to publicly verify (m,σ) on pk.
– Selective-V erify: On input (pk,m, σ, πS), it outputs ⊥ if πS is an invalid

token on pk. Else, it outputs “1” if (m,σ, pk) is valid and outputs “0” other-
wise.

– Universal-Convert: On input sk, it computes a universal token πU which
can be used to publicly verify every σ generated by sk.
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– Universal-V erify: On input (pk,m, σ, πU ), it outputs ⊥ if πU is an invalid
token on pk. Else, it outputs “1” if (m,σ, pk) is valid and outputs “0” other-
wise.

Completeness and Soundness. Completeness is defined as that a valid
(invalid) undeniable signature can always be proven valid (invalid) and Sound-
ness is defined as that a valid (invalid) undeniable signature cannot be proven
as invalid (valid).

2.4 Designated Confirmer Signature Scheme

A designated confirmer signature scheme consists of the same algorithms and
protocols as in undeniable signature scheme with the additional algorithm,
DCKeyGen, and an additional input, the confirmer’s public key pkc, into Sign
and Confirmation/Disavowal Protocol [5]:

– DCKeyGen: On input a security parameter 1k, it outputs a confirmer’s public
and private key pair (pkc, skc).

– Sign: On input (m, sk, pkc), it outputs a designated confirmer signature σ.
– Confirmation/Disavowal Protocol: An interactive protocol that runs

between the signer/confirmer and the verifier on common input
(pk, pkc,m, σ). The signer/confirmer uses sk/skc to check the validity of σ,
the output is a non-transferable proof (“1”/“0”) that shows σ is valid/invalid
on (m, pk, pkc).

Correctness. Same as in Sect. 2.2.

2.5 The Notions of Invisibility and Anonymity

The notion of invisibility was first introduced by Chaum et al. [6]. It was later
formalised by Camenisch and Michels [4] to distinguish whether a signature
is corresponding to either message m0 or m1. Galbraith and Mao then gener-
alised the notion of invisibility to distinguish a signature from a random element.
Besides, Galbraith and Mao also proposed the notion of anonymity [9] to distin-
guish a signature which is either valid on public key pk0 or pk1, and they claimed
that anonymity rather than invisibility should be considered as the main secu-
rity property for undeniable signature in the multi-user setting. The notions of
invisibility and anonymity were further studied by Huang et al. [16] in order to
cover the convertible undeniable signature scheme.

Invisibility. This security property requires that given (m,σ) and a signer’s
public key pk, there is no computational way to decide whether (m,σ) is valid
on pk or not without the help of the signer. Its security model is defined as the
following game between an adversary AI and a challenger C [9,16].
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– Setup: C first runs KeyGen(1k) → (pk, sk) and sends pk to AI .
– Queries I: AI is able to make queries to sign oracle and confirmation/disav-

owal oracle. AI can also make query to selective convert oracle if the scheme
is convertible.

– Output I: At some point, AI outputs a challenge message m̂ to request a
challenge signature σ̂. If the scheme is deterministic, m̂ is restricted where it
must not have been submitted to sign oracle during Queries I. AI submits
a challenge message m̂. C responds by randomly choosing b ∈ {0, 1} and
generates σ̂ = Signsk(m̂) if b = 0. Otherwise, C returns a random element
that is chosen from the same signature space as in σ̂ = Signsk(m̂).

– Queries II: Once AI obtains σ̂, AI can still make queries to the accessible
oracles as in Queries I. The restrictions defined in Output I still hold with
an additional restriction that any (m̂, ·) in the equivalence class of (m̂, σ̂) is
not allowed to be submitted to confirmation/disavowal oracle and selective
convert oracle.

– Output II: AI outputs a guess b′ and wins the game if b′ = b.

The advantage of AI has in the above game is defined as Adv(AI) = |Pr[b =
b′] − 1

2 |.
Definition 1. An undeniable signature, convertible undeniable signature, or
designated confirmer signature scheme is (t, q, ε)-invisible if there is no prob-
abilistic polynomial time (PPT) adversary AI can have success probability more
than ε in its game with at most q queries to its accessible oracles in time t.

Anonymity. This security property requires that given a valid (m,σ) and two
possible signers’ public keys (pk0, pk1), there is no computational way to decide
who the real signer is. Its security model is defined as the following game between
an adversary AA and a challenger C [9,16].

– Setup: C first runs KeyGen(1k) → (pk0, sk0) and KeyGen(1k) → (pk1, sk1)
and sends (pk0, pk1) to AA.

– Queries I: AA is able to make queries to all the accessible oracles as in
Sect. 2.5.

– Output I: AA outputs a challenge message m̂ to request for a challenge
signature σ̂ with the same restriction as in Sect. 2.5. C responds by randomly
choosing a challenge bit b ∈ {0, 1} and generates a challenge signature σ̂ =
Signskb

(m̂) that is valid on either pk0 or pk1. In either case, σ̂ is returned to
AA.

– Queries II: Same as in Sect. 2.5.
– Output II: AA outputs a guess b′ and wins the game if b′ = b.

The advantage of A has in the above game is defined as Adv(AA) = |Pr[b =
b′] − 1

2 |.
Definition 2. An undeniable signature, convertible undeniable signature, or
designated confirmer signature scheme is (t, q, ε)-anonymous if there is no PPT
adversary AA can have success probability more than ε in its game with at most
q queries to its accessible oracles in time t.
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The Equivalence of Invisibility and Anonymity. The equivalence of invisi-
bility and anonymity in undeniable signature and designated confirmer signature
schemes was introduced by Galbraith and Mao [9], and further studied by Huang
et al. [16] for the convertible variant. The equivalency shows that if an unde-
niable signature scheme possesses invisibility, then it also possesses anonymity,
and vice versa. This is highlighted by Galbraith and Mao [9] and Phong et al.
[24] that invisibility implies anonymity if and only if all signers are sharing the
same signature space, especially in RSA based undeniable signature in order to
ensure the signature length does not reveal the identity of the signer. We only
include Theorem 1 which states that, if a scheme possesses invisibility then it
also possesses anonymity, as given by Galbraith and Mao [9]. We omit Theo-
rem 2 which states that, if a scheme possesses anonymity then it also possesses
invisibility, as it is not referred in our subsequent discussion.

Theorem 1 [9,16]. If an undeniable signature, convertible undeniable signa-
ture, or designated confirmer signature scheme possesses invisibility, then it also
possesses anonymity.

Proof. Suppose there exists an adversary DA who can reveal the signer’s public
key of the signature in the game of anonymity, then there is an adversary DI

who can use DA to have the advantage in the game of invisibility and thus the
scheme is not invisible.

– Setup: The input to DI is pk0, and we run KeyGen(1k) → (pk1, sk1) to
produce another public and private key pair (pk1, sk1). DI keeps sk1 and
flips a coin b′ ∈ {0, 1}. If b′ = 0, the input to DA is (pk0, pk1), otherwise the
input is (pk1, pk0).

– Queries I: Queries made by DA with respect to pk0 are all passed on as
DI queries, and queries with respect to pk1 are handled by DI using the
knowledge of sk1.

– Output I: At some point, DA outputs a challenge message m̂, DI passes m̂
as his own challenge as well. If the challenge bit b = 0, DI receives a challenge
signature σ̂ = Signsk0(m̂), or σ̂ which with negligible probability, is valid on
an arbitrary message if b = 1.

– Queries II: DA can continue to make his queries to DI as in Queries I with
the restrictions covered in the adversaries’ own challenges, such as m̂ is not
allowed to query for confirmation/disavowal oracle.

– Output II: At the end, DA outputs a guess b′′. If b′′ = b′, DI outputs 0 as
his guess and 1 otherwise.

Note that in the case b = 0, where σ̂ = Signsk0(m̂). Since DA can reveal the
signer, DA outputs b′′ = b′ to DI then DI can always output 0. At this point,
DI wins the game with the help of DA which denotes as:

Pr[b′′ = b′|b = 0] =
1
2

+ Adv(DA)

However, in the case b = 1, σ̂ is a random element which indicates an invalid
signature (with the negligible chance that it is valid on m̂). It follows by b′ is
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independent of σ̂, hence Pr[b′′ �= b′|b = 1] ≈ 1
2 . Therefore, the advantage of DI

is defined as follows:

Adv(DI) = Pr[b′′ = b′|b = 0]
1
2

+ Pr[b′′ �= b′|b = 1]
1
2

− 1
2

= (
1
2

+ Adv(DA))
1
2

+
1
2

1
2

− 1
2

=
1
2
Adv(DA)

��
Theorem 2 [9,16]. If an undeniable signature, convertible undeniable signature,
or designated confirmer signature scheme possesses anonymity, then it also pos-
sesses invisibility.

3 Revisiting the Cryptanalysis on Some Undeniable
Signature Schemes

In this section, we first briefly describe the attack mounted by Behnia et al.
[1] on Wu et al.’s identity-based convertible undeniable signature scheme [30],
followed by the attack by Phong et al. [24] on Kurosawa and Takagi’s convertible
undeniable signature scheme [19], and the attack by Schuldt and Matsuura [28]
on Huang and Wong’s convertible undeniable signature scheme [12]. Besides,
we also briefly describe Huang et al.’s designated confirmer signature scheme
[11] which possesses invisibility but not anonymity. We show that these schemes
satisfy invisibility, but not anonymity.

3.1 Identity-Based Convertible Undeniable Signature Scheme
of Wu et al.

In the identity-based convertible undeniable signature scheme of Wu et al. [30],
the public parameter PM = (ê, g, Ppub = gs,H1,H2,H3) and the signer’s private
key sk = (SKID = H1(ID)s, V KID = H1(ID||“Undeniable”)s). The undeni-
able signature σ = (U, V,W ) is given by

U = ê(V KID,H2(m))
V = gv

W = SKID · H3(U, V )v

where v is the random salt.
Behnia et al. showed that this scheme did not satisfy anonymity [1]. Indeed,

given σ = (U, V,W ), one can identify the signer by checking the validity of σ
using Eq. (1) with the signer identity ID:

ê(W, g) = ê(H1(ID), Ppub) · ê(H3(U, V ), V ) (1)

They therefore concluded that invisibility in Wu et al.’s scheme is broken too
following the equivalency result of Galbraith and Mao [9].
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3.2 Undeniable Signature Scheme of Kurosawa and Takagi

In the undeniable signature scheme of Kurosawa and Takagi [19], the signer’s
public key pk = (x, h1, h2,H,N1, N2) and the private key sk = d. The undeniable
signature σ = (e, y, x′, ω) is given by

ye = x · h
H(x′)
2 mod N2 (2)

where e is a random exponent and (x′, ω) are commitment values of a message
m. Note that y must satisfy Eq. (2) with respect to the signer’s public key pk =
(x, h1, h2,H,N1, N2). The signer randomly chooses y′ ∈ Z∗

N1
, and x′ ∈ ZN1 is

computed such that

(y′)N1 = x′hH(m)
1 mod N1 (3)

and N1 · d = 1 mod lcm(p1 − 1, q1 − 1) with the signer private key sk = d and
N1 = p1 · q1.

Phong et al. showed that this scheme did not satisfy anonymity [24]. Indeed,
given σ = (e, y, x′, ω), one can identify the signer by checking the validity of
(e, y) on x′ using Eq. (2) and pk. Phong et al. [24] then claimed that Kurosawa
and Takagi’s scheme did not possess invisibility too following the equivalency
result of Galbraith and Mao [9], even if the signers share a common signature
space.

3.3 Convertible Undeniable Signature Scheme of Huang and Wong

In the undeniable signature scheme of Huang and Wong [12], the signer’s public
key pk = (Y, u) and the private key sk = x. The undeniable signature σ =
(δ, γ, θ) is given by

δ = H(m)
1

(x+s) (4)
γ = Y s (5)
θ = us (6)

where s is the random salt and H is a programmable hash function.
Schuldt and Matsuura showed that this scheme did not satisfy anonymity

[28]. Indeed, given σ = (δ, γ, θ), one can identify the signer by checking the
validity of (γ, θ) using Eq. (7) with pk = (Y, u):

ê(γ, u) = ê(Y, θ) (7)

This issue was also highlighted in the full version [13] of the convertible undeni-
able signature scheme by Huang and Wong [12] but no solution is given.
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3.4 Designated Confirmer Signature Scheme of Huang et al.

In the designated confirmer signature scheme of Huang et al. [15], the same
signature structure as in Sect. 3.3 was adopted. A slight difference is in the
signer’s public key pk = u and there is confirmer’s public key pkc = Y . The
elements of undeniable signature σ = (δ, γ, θ) are as in Eqs. (4), (5) and (6)
respectively.

Huang et al. highlighted in the full version of their paper that this scheme
did not satisfy anonymity [11]. Indeed, given a designated confirmer signature
σ = (δ, γ, θ), one can identify the signer and the confirmer using the same Eq. (7)
with (pk, pkc). Huang et al. claimed that their scheme is not anonymous but it
is invisible.

3.5 Invisibility of the Above Schemes

On the other hand, we can show that all the above schemes satisfy invisibility.
Let us recall the invisibility game in Sect. 2.5 where the adversary AI is required
to guess whether a given σ̂ is valid on m̂ or a random element (invalid on m̂).
Note that during Output I, AI submits a challenge message m̂ to request a
challenge signature σ̂, where σ̂ is valid on m̂ if the challenge bit b = 0 or a
random element if b = 1. However, Wu et al.’s scheme [30] shows that when the
challenge bit b = 1, only the signature element Û is random while (V̂ , Ŵ ) are
not, such that V̂ = gv and Ŵ = SKID · H3(Û , V̂ )v where v ∈ Zq.

If b = 0, σ̂ = (Û , V̂ , Ŵ )

If b = 1, σ̂ = (random, V̂ , Ŵ )

Therefore, when b = 1, σ̂ = (Û , V̂ , Ŵ ) can be partially verified with Eq. (1)
using the signer’s identity ID and (V̂ , Ŵ ). This observation agrees with the
claim of Behnia et al. [1] that the scheme did not possess anonymity, but the
claim on invisibility is wrong as Eq. (1) cannot verify the validity of the challenge
signature. In precise, AI receives σ̂ from the challenger which is valid on m̂ if
b = 0 or a random element (invalid on m̂) if b = 1. In either case, AI always
output 0 as Eq. (1) always holds.

The same issue lies in Kurosawa and Takagi’s scheme. Even if the signature
element x′ ∈ ZN1 is a random element, a valid y can be generated such that
ye = x · h

H(x′)
2 mod N2 where e is a randomly selected value. At the end, a

challenge signature σ̂ = (ê, ŷ, x̂′, ω̂) can still be partially verified with Eq. (2)
using the signer’s public key pk = x and (ê, ŷ, x̂′) in either case of b = 0 or b = 1.
Apparently, the validity of (m̂, σ̂) cannot be decided as m̂ is perfectly bonded in
x̂′ which is only verifiable with the knowledge of random value y′. This shows
that Eq. (2) only reveals the identity of the signer but then invisibility still holds.

Likewise, the same issue happens in the security proofs of Huang and Wong’s
scheme [13] and Huang et al.’s scheme [11]. Even though the signature element
δ̂ is a random value, γ̂ = Y s and θ̂ = us are still correctly generated. At the end,
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a challenge signature σ̂ = (δ̂, γ̂, θ̂) can always be partially verified with Eq. (7)
using the signer’s public key (Y, u) (and confirmer’s public key pkc = Y in Huang
et al.’s scheme). Therefore, the invisibility is still intact as Eq. (7) reveals only
the identity of the signer (and the confirmer in Huang et al.’s scheme).

4 Discussion

4.1 What Is Lacking in the Above Schemes?

We observe that each signer in the above schemes has their own respective signa-
ture spaces because of the condition that a valid signature must satisfy Eqs. (1),
(2) and (7) respectively, depending on their respective public keys (signer iden-
tity).

More precisely, in the scheme of Wu et al. in Sect. 3.1, σ = (U, V,W ) must
satisfy Eq. (1) which depends on ID. Therefore, the valid σ depends on ID. Hence
the signature space is different if ID is different.

In the scheme of Kurosawa and Takagi in Sect. 3.2, σ = (e, y, x′, ω) must
satisfy Eq. (2) which depends on pk = (x, h1, h2,H,N1, N2). Therefore, obviously
the valid σ depends on pk = (x, h1, h2,H,N1, N2). Hence the signature space is
different if pk = (x, h1, h2,H,N1, N2) is different.

Similarly, in the schemes of Huang and Wong, and Huang et al. in Sects. 3.3
and 3.4 respectively, σ = (δ, γ, θ) must satisfy Eq. (7) which depends on pk =
(Y, u) and (pk = u, pkc = Y ) respectively. Therefore, the valid σ depends on
pk = (Y, u) or (pk = u, pkc = Y ). Hence the signature space is different if
pk = (Y, u) or (pk = u, pkc = Y ) is different.

Let us now consider the proof of Theorem 1 which is given in Sect. 2.5. The
following scenario may happen in the above schemes due to that the signers are
having different signature spaces. We look at this in general without referring to
a specific scheme. Suppose that b = 1. Then in Output I, DI receives σ̂ from his
challenger, and sends it to DA, where σ̂ is randomly chosen from the signature
space Σ0 of pk0. Now if the signature space Σ1 of pk1 is different from Σ0, then
DA would be able to see that σ̂ ∈ Σ0 but σ̂ �∈ Σ1. This means that

Pr[b′′ = b′ | b = 1] �= 1/2.

This is the part where the one-way equivalency from invisibility to anonymity
cannot be achieved in the above schemes, i.e. invisibility does not imply
anonymity if the signature space of the signers is different.

Thus, we may conclude that invisibility is preserved in the above schemes
even though anonymity is broken mainly due to the signature space issue, i.e.,
each signer in the above schemes has their own respective signature spaces which
is different. We note that this observation does not contradict to Galbraith and
Mao’s equivalency result [9] which stated that invisibility implies anonymity and
vice versa, if and only if all signers are sharing the same signature space.
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4.2 How to Improve These Schemes?

The above problem does not occur if the signature space of each signer is the
same. Therefore, in the design of a provably secure undeniable signature scheme
which fulfils both invisibility and anonymity, the designer must take into serious
consideration on the signature space of each signer such that the scheme design
must ensure that all signers are sharing the same signature space.

5 Conclusion

In this paper, we discovered that the past attacks on some existing undeniable
signature schemes are not entirely correct as the invisibility of these schemes is
still intact although the anonymity is broken. Thus, we managed to partially
falsify the previous cryptanalysis mounted on Wu et al.’s Scheme by Behnia
et al. and Kurosawa and Takagi’s Scheme by Phong et al. We further pointed
out that Galbraith and Mao’s equivalency theorem is not applicable on these
schemes due to the different signature spaces owned by each signer. We also
showed that Huang and Wong, and Huang et al.’s schemes faced the similar
issue. Our finding can be served as a reminder to researchers to exercise extreme
caution in the design of a provably secure undeniable signature scheme which
fulfils both invisibility and anonymity.
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Abstract. Signature schemes with Verifier-Local Revocation (VLR) fail
to achieve stronger anonymity notion, full-anonymity. In full-anonymity,
it is free to corrupt the secret signing keys. Secret signing keys of VLR
schemes consist of tokens which can be used to identify the users. Thus
VLR schemes restrict corrupting secret signing keys. VLR schemes can
achieve full-anonymity by separating tokens from secret signing keys.
However, separation of tokens gives space to signers to replace tokens
with fake values. Generating signatures with fake tokens can be prevented
with a suitable proof system. This paper proposes a new zero-knowledge
protocol to support provers to convince verifiers, that attributes used for
creating the signature are valid and have naive tokens. Moreover, this
paper offers a new Attribute-Based Group Signature (ABGS) scheme,
that uses the proposed protocol and achieves full anonymity.

Keywords: Attribute-Based Group Signatures · Verifier-Local
Revocation · Zero-knowledge proof · Full anonymity · Lattice-based
cryptography

1 Introduction

Attribute-Based Group Signatures (ABGS) allow a verifier to request a signature
from a group who possesses specific attributes [14]. Thus, only a group member
possessing required attributes can sign anonymously on behalf of the group.
ABGS schemes belong to the family of Digital Signature (DS) schemes such as
Group Signature (GS) schemes and Ring Signature (RS) schemes. ABGS scheme
is a combination of Group Signature Schemes and Attribute-Based Signatures.

Group Signatures were first introduced by Chaum and Van Heyst [2], and
since then, different lines of works were presented to achieve security and effi-
ciency. However, due to the two characteristics; Anonymity and Traceability of
naive group signature schemes, most of the researchers interested in applying
Group signatures in real-life systems. The anonymity allows any group member
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to output a signature while hiding his identity among the group members. The
traceability grants an authorized person to cancel the anonymity of a valid sig-
nature. Thus, group signature schemes produce signatures which are anonymous
to the verifiers (outsiders) and known to the authorities.

Attribute-Based Signatures (ABS), which is a generalization of the digital
signatures, allows a user to generate a signature over some specified attributes
while being anonymous. In an ABS scheme, a user can generate a signature
only if he possesses the attributes required in a given policy. Thus, the signer
should possess the necessary attributes to create a signature, and the verifier may
check whether the signature is generated by satisfying the policy requirements.
The security of ABS ensures the privacy of the signer. Thus, the signer should
not reveal any information related to the attributes. ABS schemes were first
introduced by Maji et al. [21] in a preliminary version. Later, other ABS schemes
[4,5,7,9,10,17,18,25] presented improvements like pairing efficiency, constant-
size signatures, user-control linkability, and decentralized-traceability.

Khader proposed the first Attribute-Based Group Signature (ABGS) scheme
[14]. In their scheme, the verifier can determine the role of the signer. Again,
Khader presented another ABGS scheme with a revocation method [13]. How-
ever, both schemes are not secure under quantum attacks as they both were
constructed using bilinear mappings. Recently, Kuchta et al. [15] and Zhang et
al. [27] presented ABGS schemes from lattices. While Kuchta’s work focuses on
member registration, Zhang’s work produces an ABGS scheme with revocation.
In Zhang’s scheme [27], a member revocation method called Verifier-local Revo-
cation (VLR) is used to manage member revocation and attribute revocation.

VLR, which requires only to update the verifiers with revocation messages
when a member is revoked, seems to be the most efficient revocation method
at present. In group signature schemes, every member of a group has a token,
and when he is revoked, this token is added to a list called revocation list (RL).
The verifiers can check the validity of the signer using RL. In the same way, in
ABGS schemes, every attribute of a member is assigned a token. Thus, when
an attribute of a member is revoked, the related token is added to RL. Thus,
any member with revoked attributes which are required in the policy cannot
generate a valid signature.

The tokens of members are usually generated as a part of the secret sign-
ing keys in almost all the group signature schemes with VLR [16]. Thus, the
adversary can attack the system if he knows the secret signing keys of the mem-
bers. He can execute the verification algorithm with the tokens which he can
obtain from the secret signing keys, and identify the signer. Thus, the scheme
in [27] achieves weaker security notion called selfless-anonymity as most of the
VLR group signature schemes. In selfless-anonymity, we assume that the adver-
sary cannot get any secret signing keys. Thus, the schemes with VLR achieve the
selfless-anonymity. On the other hand, VLR group signature schemes like [11,23]
provided solutions to achieve stronger security than the selfless-anonymity
for VLR group signature schemes. However, still, there is no Attribute-Based
VLR Group Signature scheme that achieves full-anonymity. The full-anonymity
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proposed in [1] is believed to be the stronger version of anonymity. It requires to
ensure the anonymity of a group signature scheme even all the member secret
signing keys are exposed to an outsider.

To achieve full anonymity for ABGS with VLR, we require tokens to be
independent of secret signing keys. Moreover, to prevent forging tokens, the
signers should convince the verifiers that the tokens of the possessing attributes
are valid, without disclosing them. As a result, we require a new zero-knowledge
protocol to support such schemes.

Contribution

First, we propose a new zero-knowledge protocol which is built on the proto-
cols given in [3,20,27]. Then we construct our new ABGS scheme based on the
threshold-ABS scheme given in [3]. The construction of the protocol relies on
the hardness of SIS and LWE lattice problems. We use decomposition, extension,
masking, and permutation techniques to hide the secret data and convince the
verifier that the signer has valid information. Using the Fiat-Shamir heuristic
[6], we can make our new interactive protocol to non-interactive protocol.

In our scheme construction, we separate the token generation from the secret
signing keys of the attributes. Since the tokens are independent of the secret
signing keys, even though the secret signing keys are revealed to the adversary,
he cannot attack the anonymity of the scheme. On the other hand, because of
the independence of the tokens, members can fake the tokens of the attributes.
To prevent such kind of forge, we require the signers to prove the nativity of
the tokens while hiding them. Thus, the signers should convince the verifiers
that he has relevant attributes, his attribute tokens are not being revoked, and
those tokens are valid in zero-knowledge. We ensure that our new zero-knowledge
protocol can satisfy those requirements.

2 Preliminary

2.1 Notation

We denote matrices by upper-case bold letters such as A and vectors by lower-
case bold letters such as v. Concatenation of matrices are denoted by [A|B]
and vectors by [v‖y]. For any integer k ≥ 1, a set of integers {1, 2, . . . , k} is
denoted by [k ]. If S is a finite set, we present its size by |S|. S(k) indicates
its permutations of k elements and b ←↩ D denotes that b is sampled from a
uniformly random distribution D. The standard notations of O and ω are used
to classify the growth of functions. All algorithms are of base 2.

2.2 Discrete Gaussian Distribution

We consider a discrete Gaussian distribution for a lattice as in [3,23].
The Gaussian function centered in a vector c with parameter s > 0 is defined

as ρs,c(x) = exp−π‖(x−c)/s‖2
. With respect to a lattice Λ the discrete Gaussian
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distribution is defined as DΛ,s,c(x) = Ds,c(x)/Ds,c(Λ) = ρs,c(x)/ρs,c(Λ) for all
x ∈ Λ.

2.3 Lattices, Hardness of Lattices, and Lattice Related Algorithms

For n,m, and prime q ≤ 2, let B = [b1| · · · |bm] ∈ Z
n×m
q be linearly independent

vectors in Z
n
q . The n-dimensional lattice Λ(B) for B is defined as

Λ⊥
q (B) = {x ∈ Z

m | Bx = 0 mod q},

Λu
q (B) = {x ∈ Z

m | Bx = u mod q},

where u ∈ Z
n
q .

Definition 1 (Learning With Errors (LWE)). For integers n,m ≥ 1, and
q ≥ 2, a vector s ∈ Z

n
q , and the Gaussian error distribution χ, the distribution

As,χ is obtained by sampling a ∈ Z
n
q uniformly at random and choosing e ← χ,

and outputting the pair (a,aT · s + e). LWE problem (decision-LWE problem)
requires to distinguish LWE samples from truly random samples ← Z

n
q × Zq.

For a prime power q, b ≥ √
nω(log n), and distribution χ, solving LWEn,q,χ

problem is at least as hard as solving SIV Pγ (Shortest Independent Vector Prob-
lem), where γ = Õ(nq/b) [8,24].

Definition 2 (Small Integer Solution (SIS)). For uniformly random matrix
A ∈ Z

n×m
q , SIS requires to find non-zero vector x ∈ Z

m, such that A · x = 0
mod q and ‖x‖∞ ≤ β.

Lattice Related Algorithms:

– GenTrap(n, m, q) takes integers n ≥ 1, q ≥ 2, and sufficiently large m =
O(n log q), and outputs a matrix A ∈ Z

n×m
q and a trapdoor matrix R. The

distribution of the output A is negl(n)-far from the uniform distribution.
– SampleD(R, A, u, σ) takes as inputs a vector u in the image of A, a trap-

door R, and σ = ω(
√

n log q log n), and outputs x ∈ Z
m sampled from the

distribution DZm,σ, such that A · x = u mod q.

2.4 Attribute Based Group Signature Schemes

According to the Dalia Khader’s proposal [14], an ABGS scheme consists of five
algorithms, namely, Setup, KeyGen, Sign, Verify, and Open. The ABGS scheme
with VLR given in [27] has only former four algorithms as it employs the implicit
tracing algorithm to track the attributes, which are used to generate a signature.
The implicit tracing algorithm, which is embedded in VLR schemes, requires to
execute Verify for all the user attributes until all the attributes are traced. The
algorithms of a VLR-ABGS scheme are as follows.
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– Setup: On input the security parameter, this algorithm sets other public
parameters and defines the universal set of attributes. Then it assigns vectors
for each attribute and returns all the setup parameters and set of attributes
as a public parameter.

– KeyGen: On input the public parameter and the maximum number of group
members, this algorithm generates a group public key and group manager’s
secret key. Moreover, it generates secret keys and tokens for all the attributes
of all the group members. Finally, it returns the group public key, group
manager’s key, all the user secret signing keys, and user tokens.

– Sign: For a given policy and a message, any member who can satisfy the
conditions of the policy generates a signature with his secret signing key.

– Verify: For a given message, a policy and a signature, the verifier validates
the signature on the message and policy and outputs 1 or 0.

2.5 Full-Anonymity

We say that an ABGS scheme is fully anonymous if no polynomial bounded
adversary has a non-negligible advantage against the challenger in the bellow
game.

– Init: The challenger runs Setup and KeyGen to obtain a group public key, a
group manager secret key, and keys and tokens of all the attributes of all the
users. Then challenger gives the group public key and all the secret signing
keys of all the users to the adversary.

– Query Phase 1: The adversary requests indices of the signer and the attributes
for a particular signature. He sends the signature, a message, and a policy to
the challenger.

– Challenge: The challenger outputs a message, a policy, and two indices with
two sets of attributes. The challenger selects one index with the related
attribute set and generates a challenging signature. Then he sends the chal-
lenging signature to the adversary.

– Query Phase 2: The adversary can query the opening of any signature as in
Query Phase 1 except for the challenging signature.

– Guessing: The adversary guesses the index, which is used to generate the
challenging signature. If he can guess correctly, then he wins the game.

3 Zero-Knowledge Argument of Knowledge Proof System

In this section, we propose an efficient proof of knowledge protocol which enables
a prover P to convince the verifier V that he indeed a group member with a set
of attributes that satisfies the given predicate Γ , and his attribute tokens are
valid and are not in the revocation list RL.

We concern on statistical zero-knowledge argument systems (interactive pro-
tocols). Interactive protocols have two properties called soundness property and
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zero-knowledge property. While the soundness property only holds for compu-
tationally bounded cheating provers, the zero-knowledge property holds against
any cheating verifiers [20].

We are engaging with string commitment scheme, which uses a string as
the committed value and which satisfies the above requirements. Kawachi et al.
[12] presented a more straightforward construction from lattices for string com-
mitment scheme COM. Later, using the Kawachi’s string commitment scheme,
Ling et al. [19] proposed a Stern type zero-knowledge proof of knowledge for lat-
tices. The security of their protocol is based on the hardness of the underlying
ISIS (Inhomogeneous SIS) problem. In other words, to break their protocol, an
attacker needs to solve the underlying ISIS problem. Ling et al. [19] achieved
security by using a technique called Decomposition-Extension.

3.1 Techniques

We define some techniques that were used in the existing protocols [16,20,27],
and which we use in the construction of our protocol.

• Decomposition-Extension Technique
Let k = �log β	 and the sequence of integers β1, . . . , βk be as follows.
β1 = 
β/2�;β2 = 
(β − β1)/2�;β3 = 
(β − β1 − β2)/2�; . . . ;βk = 1.
Ling et al. [19] observed that an integer z ∈ [0, β], if and only if there exists
z1, . . . , zk ∈ {0, 1} such that z =

∑k
j=1 βjzj .

The above observation allows the prover to efficiently decompose z ∈ [−β;β]m

into z̃1, . . . , z̃k ∈ {−1, 0, 1}m such that
∑k

j=1 βj z̃j = z. To extend a vector z̃
to z ∈ B3m, where B3m is a set of vectors in {−1, 0, 1}3m having exactly m
coordinates equal to −1, m coordinates equal to 0, and m coordinates equal
to 1, we select a random vector ẑ ∈ {−1, 0, 1}2m, and output z = (z̃‖ẑ). Here
ẑ ∈ {−1, 0, 1}2m has (m−λ−1) coordinates equal to −1, (m−λ0) coordinates
equal to 0, and (m − λ1) coordinates equal to 1.

• Matrix-Extension Technique
For a given matrix Ā the extended matrix Ā∗ is obtained by appending
2m zero − columns to the matrix Ā. For instance, if the given matrix Ā =
[A|A0|A1| . . . |A�] ∈ Z

n×(2+�)m
q , then the extended matrix Ā∗ ∈ Z

n×(2+2�)3m
q

is obtained as

Ā∗ = [A|0n×2m|A0|0n×2m| . . . |A�|0n×2m|0n×3m�].

Using the above techniques, in Stern protocol, the prover P can convince
the verifier V that z ∈ [−β, β]m and Az = A∗ ∑k

j=1 βjzj = u mod q by
demonstrating below two statements.
1. For each j, a random permutation of zj belongs to B3m. Thus, zj ∈ B3m

and z̃j ∈ {−1, 0, 1}m. This will convince that z ∈ [−β, β]m.

2. A∗ ∑k
j=1 βj(zj + rj) − u = A∗ ∑k

j=1 βjrj mod q, where A∗ is the
extended matrix of A and r1, . . . , rk ∈ Z

3m
q are uniformly “masking”

vectors for zj . This convinces that Az = A∗ ∑k
j=1 βjzj = u mod q.
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• For permutations π, ψ ∈ S3m; τ ∈ S2�, ξ ∈ Sp, and for a vector z =
(z−1‖z0‖z1‖ . . . ‖z2�) ∈ Z

(2+2�)3m
q we define,

Fπ,ψ,τ,ξ(z) = (π(zξ(−1))‖ψ(zξ(0))‖ψ(zξ,τ(1))‖ . . . ‖ψ(zξ,τ(2�))).

Fπ,ψ,τ,ξ(z) rearranges the order of 2+2� blocks z−1, z0, . . . , z2� according
to ξ and the order of 2� blocks z1, z2, . . . , z2� according to τ . Then it
permutes block z−1 according to π and the other (1+2�) blocks according
to ψ.

• For a given z̄ = (x‖y‖d1y‖ . . . ‖d�y) ∈ Z
(2+�)m, we say, d ∈ {0, 1}�, if

d∗ = (d1, . . . , d�, d�+1, . . . , d2�) ∈ B2� and the random permutation of d∗

is in the set of B2�, where d∗ is the extension of d and B2� is the set of
vectors in {0, 1}2� having Hamming weight �.

• We say, z ∈ VALID(d∗) if z ∈ {−1, 0, 1}(2+2�)3m and there exits x,y ∈
B3m, such that z = (x‖y‖d1y‖d2y‖ . . . ‖d2�y).

Based on the above discussion, we build our ZK-proof system.

3.2 Underlying Interactive Protocol

For an attribute i that a user has, we assign a vector zi sampled from DZ2m,σ,
which satisfies ‖zi‖∞ ≤ β. For an attribute i that the user does not have, we
assign a vector zi sampled from DZ2m,σ, which does not satisfy ‖zi‖∞ ≤ β.

Suppose a user with index d possesses valid credentials for a set of attributes
Sd = {u1,u2, . . . ,ua} and the given predicate is Γ = {t, S ⊆ Att, t ∈ N ∧ (S =
u1, . . . ,up)}, where Att is the universal set of attributes {u1,u2, . . . ,uu} and Γ
requires the signer to satisfy at least t attributes out of S. Let Sm = S ∩ Sd and
Sr = S\Sm, where |Sm| = t and |S| = p − t.

– The public parameters are: a matrix (A,A0,A1, . . . ,A�) ∈ Z
n×(2+�)m
q , a

set of vectors {ui}p
i=1, a threshold predicate Γ = (t, S), matrices {Bi ∈

Z
m×n
q }p

i=1, and vectors {bi ∈ Z
m
q }p

i=1, where t ≤ |S| = p.
– The prover’s witnesses are: the index d ∈ {0, 1}�, t vectors zi =

(x‖y‖d1y‖. . . ‖d�y)ui ∈ Sm, where ‖zi‖∞ ≤ β, p − t vectors zi =
(x‖y‖d1y‖. . . ‖d�y) for ui ∈ Sr, p vectors ti ∈ Z

m, and p vectors ei ∈ Z
m.

– The prover’s goal is to convince the verifier in zero knowledge that:
• For i ∈ [t], Adzi = ui mod q and ‖zi‖∞ ≤ β, where Ad = [A|A0 +

∑�
i=1 diAi].

• For i ∈ [p − t], Adzi = ui mod q and ‖zi‖∞ � β.
• For i ∈ [p], ‖ei‖ ≤ β and Bi · (A · ti) + ei = bi mod q.
• For i ∈ [p], (A · ti) + (A′

d · zi) = ui mod q, where A′
d = [0 ∈ Z

n×m
q | 0 ∈

Z
n×m
q +

∑�
i=1 di · Ai].

Both the prover P and the verifier V compute the following matrices.

– Ā∗ = [A|0 ∈ Z
n×2m|A0|0 ∈ Z

n×2m| . . . |A�|0 ∈ Z
n×2m|0 ∈ Z

2×3m�] ∈
Z

n×(2+2�)3m
q .



ZK Proof System for Fully Anonymous ABGS from Lattices with VLR 133

– {(B∗
i = Bi · A) ∈ Z

m×m
q }p

i=1.
– {I∗

i ∈ {0, 1}m×3m}p
i=1. Each matrix is obtained by appending 2m zero −

columns to the identity matrix of order m.
– Ā′∗ = [0 ∈ Z

n×3m|0 ∈ Z
n×3m|A1|0 ∈ Z

n×2m| . . . |A�|0 ∈ Z
n×2m|0 ∈

Z
2×3m�] ∈ Z

n×(2+2�)3m
q .

Then,

– For Sm, the prover P applies the Decomposition-Extension technique on zi,
and generates masking terms {rj

z(i)}, where i ∈ [t] and j ∈ [k], such that the
verifier can check
Ā∗ · (

∑k
j=1 βj · (zj

i + rj
z(i))) − ui = Ā∗ · (

∑k
j=1 βj · rj

z(i)) mod q, where zj
i ∈

VALID(d∗).
– For Sr, P decomposes, extends zi, and generates masking terms {rj

z(i)}, where
i ∈ [p − t] and j ∈ [k], such that
Ā∗ · (

∑k
j=1 βj · (zj

i + rj
z(i))) − ui = Ā∗ · (

∑k
j=1 βj · rj

z(i)) mod q.
– For S, P decomposes, extends both ti and ei, and generates masking terms

{rj
t(i)}, where i ∈ [p] and j ∈ [k], and {rj

e(i)}, where i ∈ [p] and j ∈ [k]
respectively, such that
(B∗

i · (∑k
j=1 βj · (tj

i +rj
t(i)))+I∗

i · (∑k
j=1 βj · (ej

i +rj
e(i))))−bi = B∗

i · (∑k
j=1 βj ·

rj
t(i)) + I∗

i · (
∑k

j=1 βj · rj
e(i)) mod q.

– Similarly, (A · (
∑k

j=1 βj · (tj
i + rj

t(i))) + Ā′∗ · (
∑k

j=1 βj · (zj
i + rj

z(i)))) − ui =

A · (
∑k

j=1 βj · rj
t(i)) + Ā′∗ · (

∑k
j=1 βj · rj

z(i)) mod q.

Description of the Protocol

Commitments:

– Randomly sample masking terms {rj
z(i) ←↩ Z

(2+2�)3m
q , rj

t(i) ←↩ Z
m
q , rj

e(i) ←↩

Z
3m
q }p·k for i ∈ [p], j ∈ [k] and rd∗ ←↩ Z

2�
q .

– Sample permutations {πj , ψj ←↩ S3m, φj ,←↩ Sm, ϕj ,←↩ S3m}p·k
j=1, τ ←↩ S2�,

and ξ ←↩ Sp.

The prover P generates commitments CMT = (c1, c2, c3), and sends to the
verifier V.

– c1 = COM(τ, ξ, {πj , ψj , φj , ϕj}p·k
j=1, {Ā∗ · (

∑k
j=1 βjr

j
z(i))}i∈[p],

{B∗
i · (

∑k
j=1 βj · rj

t(i)) + I∗
i (

∑k
j=1 βj · rj

e(i))}i∈[p],

{A · (
∑k

j=1 βj · rj
t(i)) + Ā′∗(

∑k
j=1 r

j
z)}i∈[p]).

– c2 = COM(τ(rd∗), {{Fπj
i ,ψj

i ,τ,ξ(r
j
z(i))}k

j=1}i∈[p], {{φj
i (r

j
t(i))}k

j=1}i∈[p],

{{ϕj
i (r

j
e(i))}k

j=1}i∈[p]).

– c3 = COM(τ(d∗ + rd∗), {{Fπj
i ,ψj

i ,τ,ξ(z
j
i + rj

z(i))}k
j=1}i∈[p],

{{φj
i (t

j
i + rj

t(i))}k
j=1}i∈[p], {{ϕj

i (e
j
i + rj

e(i))}k
j=1}i∈[p]).
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Challenge: The verifier V randomly chooses a challenge CH ←↩ {1, 2, 3}, and
sends it to P.

Response: Depending on the challenge CH, the prover P responses as below.

– CH = 1: Let vd∗ = τ(d∗) and wd∗ = τ(rd∗).
For i ∈ [p] let
{vj

z(i) = Fπj
i ,ψj

i ,τ,ξ(z
j
i )}k

j=1, {wj
z(i) = Fπj

i ,ψj
i ,τ,ξ(r

j
z(i))}k

j=1,

{vj
t(i) = φj

i (t
j
i )}k

j=1, {wj
t(i) = φj

i (r
j
t(i))}k

j=1,

{vj
e(i) = ϕj

i (e
j
i )}k

j=1, {wj
e(i) = ϕj

i (r
j
e(i))}k

j=1.

Output RSP1 = (vd∗ ,wd∗ , {{vj
z(i),w

j
z(i),v

j
t(i),w

j
t(i),v

j
e(i),w

j
e(i)}k

j=1}i∈[p]).
– CH = 2: Let yd∗ = d∗ + rd∗ .

For i ∈ [p] let {{yj
z(i) = zj

i + rj
z(i)}k

j=1, {yj
t(i) = tj

i + rj
t(i)}k

j=1,

{yj
e(i) = ej

i + rj
e(i)}k

j=1}.

Output RSP2 = (τ, ξ, {πj , ψj , φj , ϕj}p·k
j=1,yd∗ , {{yj

z(i),y
j
t(i),y

j
e(i)}k

j=1}i∈[p]).
– CH = 3:

Output RSP3 : (τ, ξ, {πj , ψj , φj , ϕj}p·k
j=1, rd∗ , {{rj

z(i), r
j
t(i), r

j
e(i)}k

j=1}i∈[p]).

Verification: The verifier V checks the received response RSP as follows.

– CH = 1: Check that vd∗ ∈ B2�, v
j
z(i) is valid with respect to vd∗ (that is

vj
z(i) ∈ VALID(vd∗)) for at least t set of vectors and all j ∈ [k], vj

t(i) ∈ Bm,

and vj
e(i) ∈ B3m. Then check that,

• c2 = COM(wd∗ , {{wj
z(i),w

j
t(i),w

j
e(i)}k

j=1}i∈[p]),

• c3 = COM((vd∗ + wd∗), {{(vj
z(i) + wj

z(i)), (v
j
t(i) + wj

t(i)),

(vj
e(i) + wj

e(i))}k
j=1}i∈[p]).

– CH = 2: Check that
• c1 = COM(τ, ξ, {πj , ψj , φj , ϕj}p·k

j=1, {Ā∗ · (
∑k

j=1 βjy
j
z(i)) − ui}i∈[p],

{B∗
i (

∑k
j=1 βj · yj

t(i)) + I∗
i (

∑k
j=1 βj · yj

e(i)) − bi}i∈[p]

{A · (
∑k

j=1 βj · yj
t(i)) + Ā′∗(

∑k
j=1 y

j
z(i)) − ui}i∈[p]),

• c3 = COM(τ(yd∗), {{Fπj
i ,ψj

i ,τ,ξ(y
j
z(i))}k

j=1}i∈[p],

{{φj
i (y

j
t(i)}k

j=1}i∈[p], {{ϕj
i (y

j
e(i)}k

j=1}i∈[p]).
– CH = 3: Check that

• c1 = COM(τ, ξ, {πj , ψj , φj , ϕj}p·k
j=1, {Ā∗ · (

∑k
j=1 βjr

j
z(i))}i∈[p],

{B∗
i (

∑k
j=1 βj · rj

t(i)) + I∗
i (

∑k
j=1 βj · rj

e(i))}i∈[p],

{A · (
∑k

j=1 βj · rj
t(i)) + Ā′∗(

∑k
j=1 r

j
z(i))}i∈[p]),

• c2 = COM(τ(rd∗), {{Fπj
i ,ψj

i ,τ,ξ(r
j
z(i))}k

j=1}i∈[p], {{φj
i (r

j
t(i))}k

j=1}i∈[p],

{{ϕj
i (r

j
e(i))}k

j=1}i∈[p].

V outputs 1 if and only if all the conditions hold, otherwise he outputs 0.
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3.3 Analysis of the Protocol

Theorem 1. Let COM be a statistically hiding and computationally binding
string commitment scheme. Then our protocol in Sect. 3.2 is a zero-knowledge
argument of knowledge for the relation R = (n, �,m, t, p, k, β) with perfect com-
pleteness, soundness error 2/3, and communication cost (O(p�m log β) log q.

Completeness and Communication Cost. If the prover P is honest and
follows the protocol, then the verifier V always outputs 1. Based on the previous
discussion, the proposed protocol has perfect completeness. Moreover, according
to [12], the commitment CMT has 3n log q bits. The verifier V sends two-bit
challenge CH ∈ {1, 2, 3}. The response RSP of P is a subset of the set of masking
terms and permutations which sums overall communication cost of upper bound
O(p�m log β) log q.

We employ standard simulation and extraction techniques for Stern-like pro-
tocol [12,19,26] to prove that the proposed protocol is a ZKAoK. The detailed
proof is given in the full version of this paper.

4 Proposed Attribute-Based VLR Group Signature
Scheme

Let λ be the security parameter, and N = 2� = poly(λ) be the maximum number
of members in a group. Let integer n = poly(λ), the modulus q = O(�n2), and
the dimension m = 
2n log q�. Gaussian parameter σ = ω(log m). The infinity
norm bound for signature is β = Õ(

√
�n).

– Setup(1λ): On input the security parameter λ, set the parameters para as
above, and proceed as below.
1. Define the universal set of attributes Att = {u1,u2, . . . ,uu}, where ui ∈

Z
n
q is uniform random and |Att| = u. Each attribute atti is associated to

a uniform random vector ui via a list attLst = {(atti,ui)}i∈{1,2,...,u}.
2. Select a hash function H : {0, 1}∗ → {1, 2, 3}t, to be modeled as a random

oracle, where t = ω(log n).
3. Output the public parameters PP = (para,Att, attLst,H).

– KeyGen(PP,N): The randomized algorithm KeyGen takes the public param-
eters PP and N = 2� as the inputs and works as follows.
1. Generate the verification key A,A0,A1, . . . ,A� ∈ Z

n×m
q and a trapdoor

TA ∈ Z
m×m
q for the modified Boyen’s signature scheme as in [22].

2. For a member with an index d ∈ {0, 1, . . . , N − 1} and a set of attributes
Sd = {ua1 ,ua2 , . . . ,uas

} ⊆ Att (|Sd| = s), execute the following steps to
generate keys and tokens for him.
(a) Let d[1] . . . d[�] ∈ {0, 1}� be the binary representation of d.
(b) Compute Ad = [A | A0 +

∑�
i=1 d[i] · Ai] ∈ Z

n×2m.
(c) For all j ∈ {1, 2, . . . , s} sample zd,aj

←↩ DZ2m,σ as the secret key for
an attribute uaj

such that Ad · zd,aj
= uaj

and ‖zd,aj
‖ ≤ β.
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(d) For the other attributes u − s again sample fake credentials fd,fj
←↩

DZ2m,σ, such that Ad · fd,fj
= uj and ‖fd,fj

‖ � β.
(e) Hereafter we represent all the secret keys (fake or real) for attributes

by zd,aj
.

(f) Get A′
d = [0 ∈ Z

n×m
q | 0 ∈ Z

n×m
q +

∑�
i=1 d[i] ·Ai] by replacing A and

A0 with zero matrices in the step (b).
(g) Compute vdj

= A′
d · zdj

∈ Z
n for all the attributes.

(h) Run SampleD(TA,A,uj −vdj
, σ) to obtain tdj

for all the attributes.
(i) Let the secret signing key of d be gsk[d] = {zdj

,uj}j∈[u] and the
revocation token be grt[d] = {ut

dj
= A · tdj

}j∈[u].
3. Output the group public key gpk = (A,A0,A1, . . . ,A�,u1,u2, . . . ,uu),

the group manager’s secret key gmsk=TA, the members’ secret sign-
ing keys gsk= (gsk[0], gsk[1], . . . , gsk[N − 1]), and members’ revocation
tokens grt= (grt[0], grt[1], . . . , grt[N − 1]).

– Sign(PP, Γ,gpk,gsk[d],grt[d], Sd,M): On input the group public key gpk,
and a message M, the user d in a possession of a secret signing key gsk[d ],
a revocation token grt[d ], and a set of attributes Sd ⊆ Att, generates a
signature for a given threshold predicate Γ = (t, S = {u1,u2, . . . ,up} ⊆ Att),
where 1 ≤ t ≤ |S| = p, as below. Here, Γ = (t, S) implies that the condition
(policy) Γ requires the signer to posses at least t attributes out of the given
set of attributes S, where the size of S is p.
1. Let Sm ⊆ (S ∩ Sd) ⊆ Att be the matching attributes that the user d

possesses, where |Sm| = t.
2. For the attributes S\Sm the user d has fake credentials.
3. For all the attributes i ∈ p,

(a) Sample ρi
$← {0, 1}n, let Bi =G(Ā,ui,M, ρi) ∈ Z

n×m
q (G :

{1, 2, 3}∗ → Z
n×m
q ), where Ā = [A|A0| . . . |A�].

(b) Compute bi = Bi·(A·tdi
)+ei mod q (‖ei‖∞ ≤ β with overwhelming

probability).
4. Generate a non-interactive zero-knowledge argument of knowledge Π

to prove that the prover d is indeed a valid group member possess-
ing at least t non-revoked attributes among S ⊆ Att. This is done by
repeating the protocol given in Sect. 3, t̄ = ω(log n) times with pub-
lic inputs (A,A0,A1, . . . ,A�, {ui}i∈[p], {Bi}i∈[p], {bi}i∈[p]) and witness
(d, {zi}i∈[p], {ti}i∈[p], {ei}i∈[p]).
Then make it non-interactive via the Fiat-Shamir heuristic as a triple
Π = ({CMT(k̄)}t̄

k̄=1
,CH, {RSP(k̄)}t̄

k̄=1
), where CH = ({Ch(k̄)}t̄

k̄=1
) =

H(M,A, {Ai}�
i=0, {ui}p

i=1, {Bi}p
i=1, {bi}p

i=1, {CMT(k̄)}t̄
k̄=1

).
5. Output a signature Σ = (M, {ρi}p

i=1, {bi}p
i=1,Π).

– Verify(PP, Γ,gpk,RL,M, Σ): This deterministic algorithm takes as inputs the
group public key gpk= (A,A0,A1, . . . ,A�,u1,u2, . . . ,uu), a threshold pred-
icate Γ = (t, S = {u1,u2, . . . ,up} ⊆ Att), a signature Σ on a message M, and
a list of revocation tokens RL = {ut

i = (ut
i1

,ut
i2

, . . . ,ut
ia

)}i≤N ⊆ grt, where
a ≤ u, and verifies the signature as below.
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1. Pares the signature Σ as (M, {ρi}p
i=1, {bi}p

i=1,Π).
2. Get {Bi = G(Ā,ui,M, ρi) ∈ Z

n×m
q }i∈[p].

3. Pares Π as ({CMT(k̄)}t̄
k̄=1

, {Ch(k̄)}t̄
k̄=1

, {RSP(k̄)}t̄
k̄=1

).
4. Return 0, if (Ch1, . . . Cht̄) �= H(M,A, {Ai}�

i=0, {ui}p
i=1, {Bi}p

i=1, {bi}p
i=1,

{CMT(k̄)}t̄
k̄=1

).
5. For i = 0 to t̄, run the verification steps of the protocol given in Sect. 3

with the public inputs (A,A0,A1, . . . ,A�, {ui}i∈[p], {Bi}i∈[p], {bi}i∈[p])
to check the validity of RSP(k̄) with respect to CMT(k̄) and Ch(k̄). If any
of the conditions does not hold, then return 0.

6. For each ut
ix

in the given revocation list RL, where x ≤ u and i ≤ N

compute e
′
i = bi −Bi ·ut

ix
mod q to check whether there exists an index

i such that ‖e′
i‖∞ ≤ β. If so return 0.

7. Return 1.
– Revoke(PP,gpk,gmsk,RL, d, Sr): On input gpk, the revocation list RL, the

id d of the effecting member, and his revoking attribute set Sr = {ut
d1

=
A · td1 ,u

t
d2

= A · td2 , . . . ,u
t
dr

= A · tdr
}, where r ≤ u, the group manager

with gmsk, do the following steps.
1. Add all ut

di
to RL.

2. Return RL.

5 Security Analysis of the Proposed Scheme

This paper provides a new ABGS scheme with VLR from lattices to achieve
full-anonymity. The security of the scheme is proven in the random-oracle model
under the hardness assumption of SIVP problem.

Theorem 2. The proposed ABGS-VLR is correct with overwhelming probabil-
ity. If the underlying non-interactive zero-knowledge (NIZK) protocol is sim-
ulation sound and zero-knowledge, then the proposed scheme is fully anony-
mous. Moreover, under the hardness of the SIVPO(λ) problem our scheme is
fully-traceable.

In this paper we only prove the anonymity of the scheme. Proof of traceability
of the scheme is provided in the full version of this paper.

Anonymity

In the anonymity game between a challenger and an adversary, first, the chal-
lenger generates keys and gives the public keys and all the users’ secret signing
keys to the adversary. The adversary can query signer’s index of any signature.
Later, he sends two challenging indices to the challenger. The challenger selects a
bit randomly from the two indices, then generates and sends back a challenging
signature. The adversary wins if he can guess the index which is used to generate
the challenging signature without querying.
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We prove that the proposed scheme is fully anonymous using the following
two games between an adversary A and a challenger C.

Game 1. In this game, the challenger C sets everything honestly. The adversary
is given the group public key and the secret signing keys of all the users. The
challenger answers all the opening queries that the adversary makes. Finally, the
challenger produces a signature Σ∗ with the true identities (i0, i1,S0,S1, Γ

∗,M∗)
that the adversary sent, and forwards Σ∗ to the adversary.

Game 2. In this game, instead of generating an honest non-interactive zero
knowledge argument Π, the challenger simulates the argument for the challenge
signature Σ∗. Thus, Game 2 is the same as Game 1 except the simulated Π∗.
Since the underlying argument system is statistically zero-knowledge, the distri-
bution of simulated Π∗ is statistically close to that of the legitimate Π. Thus
Game 1 and Game 2 are indistinguishable.

Indistinguishability of above two games proves that our proposed scheme is
fully anonymous.

6 Conclusion

In this paper, we considered a situation where the tokens of the attributes are
generated independently to the secret signing keys of the attributes to achieve
full anonymity. We presented a zero-knowledge protocol that enables provers to
convince the validity of them, their attributes, and the tokens in such scenarios.
Moreover, we presented a new ABGS scheme with VLR from lattices to achieve
full anonymity.
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7. Gagné, M., Narayan, S., Safavi-Naini, R.: Short pairing-efficient threshold-
attribute-based signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 295–313. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36334-4 19

8. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: ACM 2008, pp. 197–206. ACM (2008)

9. Ghadafi, E.: Stronger security notions for decentralized traceable attribute-based
signatures and more efficient constructions. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 391–409. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16715-2 21

10. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signa-
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Abstract. Recently, reversible data hiding in encrypted images (RDH-
EI) has been developed to transmit additional data. Besides extracting
the hidden data, the original or processed image should be obtained
when needed. In this paper, a new RDH-EI method for homomorphic
encrypted images is proposed by utilizing the additive homomorphism
and self-blinding property in Paillier cryptosystem. Specifically, part of
the hidden data may be extracted before image decryption while the rest
can be extracted after image decryption. In addition, no preprocessing
is required so that homomorphic processing can be performed before
data embedding. The experimental results on test images validate that
the proposed method is compatible with homomorphic image processing
before data embedding. Compared with the state-of-the-art methods,
higher embedding capacity can be obtained with the proposed method
while the original or processed image can be correctly generated.
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1 Introduction

Recently, reversible data hiding (RDH) has been proposed for the distortion
sensitive applications (e.g., [1–11]), such as hiding data into medical images with
the capability of recovering the original images [12]. Recently, RDH in encrypted
images (RDH-EI) has been developed to transmit additional data along with
encrypted images, such as in [13–28].
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Depending on whether a preprocessing is performed to vacate room before
encryption (VRBE), the RDH-EI methods can be classified into two categories.
The first type creates embedding room in the plain-text domain (e.g., [15–21]),
while the other type of RDH-EI methods directly modifies encrypted images
for data embedding (e.g., [14,19]). By vacating room after encryption (VRAE),
data hiding may be performed after other processing performed in the encryption
domain (e.g., [29]) so that the processed image can be obtained after decryption.
Depending on the embedding algorithms, data extraction may be performed
in the encryption domain (e.g., [14]), or can be conducted jointly with image
decryption (e.g., [13]), or even in both of the encryption and plain-text domains
(e.g., [22,24]). In addition, it is preferred that data extraction is separable from
image decryption (e.g., [14]) on the receiver side.

According to the encryption algorithms, the proposed RDH-EI methods can
be classified into two categories. The first category is to encrypt digital images
with a stream cipher, which has the advantage of fast implementation and no
data expansion. However, the images encrypted with a stream cipher in [13–18]
can hardly be processed in encryption domain. In the second category, “privacy
homomorphism” is achieved so that an encrypted image can be processed in the
encrypted domain. The disadvantages of this category include high complexity
and data expansion compared with the size of plain-text data. The RDH-EI
methods proposed in [22,24,25] fall into the second category.

In the past decades, significant progresses have been made in homomorphic
encryption (e.g., [30–32]) to directly process data in encryption domain. Since
there is no need to decrypt the cipher-texts for processing, user privacy and data
integrity are protected. This property is very useful in modern communication
systems, such as in cloud computing (e.g., [33,34]) and secure voting systems.
Although it is still a challenge to implement complex computations in the fully
homomorphic domain (e.g., [31]), quite a few signal processing techniques have
been developed in additive homomorphic cryptosystems (e.g., [29]). Since data
transmission is needed in these applications, conducting RDH in the homomor-
phic encryption domain can provide more functionalities, such as in [22–28].
However, preprocessing is required in most of the methods (e.g., [22,24,28]) so
that the applicability is limited.

To improve the applicability of RDH-EI, a new RDH-EI method for homo-
morphic encrypted images is proposed in this paper by utilizing the additive
homomorphism and self-blinding property in Paillier cryptosystem [30]. The pro-
posed method can be regarded as an extension of the work in [28]. By combining
the two data embedding algorithms proposed in [28], part of the hidden data
may be extracted before image decryption while the rest can be extracted after
image decryption. It is worthy to note that no preprocessing is required in the
proposed method so that data embedding can be performed after homomor-
phic processing. The experimental results on a set of test images validate that
the proposed method is compatible with homomorphic image processing before
data embedding. Compared with the state-of-the-art methods, higher embedding
capacity can be obtained with the proposed one while the original or processed
images could be exactly recovered.
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Fig. 1. A flowchart of the proposed method without preprocessing.

The rest of this paper is organized as follows. In the next section, the proposed
method is presented by introducing two data embedding algorithms in Paillier
cryptosystem. The experimental results on test images are given to demonstrate
efficacy of the proposed method in Sect. 3. Finally, we summarize the paper and
draw a conclusion in Sect. 4.

2 A Reversible Data Hiding Method Compatible
with Homomorphic Processing

In this section, a new RDH-EI method is proposed, which is compatible with
homomorphic image processing in encrypted domain. As shown in Fig. 1, no
preprocessing is required so that an encrypted image can be directly processed
in homomorphic encryption domain. Then two phases of data embedding are
conducted for data extraction before and after decryption, respectively. Besides
correctly extracting the hidden data, the processed plain-text image should be
obtained after decryption. In the following, the two algorithms developed in
[25] will be introduced, which are adopted in the proposed method for data
embedding.

2.1 Value Expansion Algorithm

The value expansion algorithm is adopted in the first phase of the proposed
method. After applying it, the plain-text of a cipher value is modified for data
embedding while the hidden data can only be extracted after image decryption.

Additive Homomorphism in Paillier Cryptosystem. The Paillier cryp-
tosystem [30] is based on the decisional composite residuosity problem. After
encrypting a plain-text value m, a big integer ek[m] is generated as the cipher
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value. Here ek[·] represents the encryption operation by using the encryption
key k, which can be publicly known after a Paillier cryptosystem is set up. For
instance, a string of big integers will be generated after encrypting an image by
converting each pixel in it into one big integer.

To add a plain-text value m1 to another plain-text value m2 within Paillier
cryptosystem, a new cipher value ek(m′) can be generated from ek(m1) and
ek(m2) by

ek(m′) = (ek(m1) · ek(m2)) mod N2, (1)

where N is a big integer generated in Paillier cryptosystem and included in k.
By decrypting the cipher value ek(m′), the plain-text value (m1 + m2) mod N
can be obtained, i.e.,

(m1 + m2) mod N = dk̂[ek(m′)] (2)

where dk̂[·] represents the decryption operation by using the private decryption
key k̂.

Data Embedding by Value Expansion. A bit value b ∈ {0, 1} can be embed-
ded into the cipher value of a pixel value i by expanding its plain-text value.
Suppose that ek(i) is the cipher value of i. The following operation is conducted
to embed a bit value b by modifying it to ek(i′) by

ek(i′) =
{

(ek(i) · ek(i) · g) mod N2, if b = 1
(ek(i) · ek(i)) mod N2, if b = 0 (3)

where g is the other value included in the public encryption key k of a Paillier
cryptosystem and it can be used to replace the cipher value of integer 1 (i.e.,
ek(1)) in calculation. Consequently, a bit value 1 or 0 is embedded into the cipher
value ek(i′) by applying Eq. (3). To extract the hidden bit value and recover i
as well, ek(i′) needs to be decrypted. From additive homomorphism, we know
that dk̂[ek(i′)] = (2i + b) mod N . For a grey-level pixel value, i ∈ [0, 255] so
that 2i+ b ∈ [0, 511]. When N is a big integer represented with hundreds of bits,
(2i + b) mod N = 2i + b so that the values of i and b can be obtained by

i = �dk̂[ek(i′)]
2

�, (4)

where �·� the represents the floor function, and

b = dk̂[ek(i′)] − 2i. (5)

It can be seen that the redundancy of value representation in Paillier cryp-
tosystem is exploited to achieve the reversibility of data embedding. For an
integer within [0, 255] and another integer in [0, 511], their encrypted values are
represented with the same bits. So the bit value embedded by applying Eq. (3)
can be correctly extracted. To further exploit the redundancy to increase the
data hiding rate, Eq. (3) can be iteratively applied. That is, for the resulting
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ek(i′) after embedding a bit value b (i.e., dk̂[ek(i′)] = 2i + b), another binary
value b′ can be further embedded by applying Eq. (3) to generate another cipher
value ek(i′′) so that dk̂[ek(i′′)] = 2 × (2i + b) + b′. Given that

[2 × (2i + b) + b′] mod N = 2 × (2i + b) + b′, (6)

both b and b′ can be correctly extracted from ek(i′′). Meanwhile, the range
of the corresponding plain-text value is changed from [0, 255] to [0, 511], then
[0, 1023], and so on. Since the big integer N included in the public key k is
often represented in hundreds of bits, the operations of value expansion can be
iterated for multiple times given that the expanded plain-text value does not
exceed N . Therefore, up to 1015 bits can be reversibly hidden into a cipher pixel
value when N is represented with 1024 bits.

2.2 Self-blinding Algorithm

The value expansion algorithm is suitable for data extraction after image decryp-
tion. In some cases, data extraction needs to be performed without image decryp-
tion. For instance, the image owner may want to send some extra information
with encrypted images to the web server, but obviously the web server does not
have the private decryption key k̂. For data extraction without image decryption,
the self-blinding property of Paillier cryptosystem is utilized in [22,25] so that a
cipher value is modified without changing its plain-text value. To keep the data
embedded in the first phase unchanged, the self-blinding algorithm proposed in
[25] is adopted in the second phase of the proposed method.

Property of Self-blinding in Paillier Cryptosystem. Due to the random-
ness in data encryption, a plain-text value may be encrypted into a lot of possible
cipher-texts in Paillier cryptosystem. That is, the cipher value of a plain-text
value m is not unique because multiple cipher values can be decrypted to the
same plain-text value. More precisely, the self-blinding property in Paillier cryp-
tosystem indicates that

dk̂[ek(m)rN mod N2] = m mod N (7)

where r is is a random element in Z
∗
N that consists of all integers relatively

prime with N . The self-blinding property indicates that every cipher value can
be modified without changing its plain-text value.

Data Hiding with the Self-blinding Property. To embed a bit value b into
a cipher value ek(i), the following condition should be met:

ek(i) mod 2 = b. (8)

If the condition in Eq. (8) does not hold (i.e., ek(i) mod 2 �= b), ek(i) should be
changed to another cipher value. In that case, an integer r relatively prime with
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N is chosen, and ek(i) is multiplied by rN to obtain ek(i)rN . So another cipher
value e′

k(i) can be generated by

e′
k(i) = [ek(i) × rN ] mod N2. (9)

From Eq. (7), we know dk̂[ek(i)rN ] = i mod N so that dk̂[e′
k(i)] = i mod N .

The operation in Eq. (9) is iterated until e′
k(i) mod 2 = b. If the condition cannot

be met with r, another integer r′ that is relatively prime with N can be used
instead in Eq. (9) to generate new cipher values. The rationale of iteratively
applying Eq. (9) to find a suitable cipher value is based on the randomness
in Paillier encryption. For instance, one bit information can be embedded by
switching between the odd and even cipher values of the same plain-text value
by applying Eq. (9). Thanks to the self-blinding property, the corresponding
plain-text value is unchanged while the only operation to extract the hidden bit
value is conducted by

b′ = e′
k(i) mod 2, (10)

where b′ denotes the extracted bit value.
To increase the data embedding rate, multiple bits can be embedded into

one cipher value. For instance, to embed a s-bit value b1b2 . . . bs into one cipher
value ek(i), another cipher value esk(i) is generated so that

esk(i) mod 2s = b1b2 . . . bs. (11)

In this case, a data hiding rate of s bpp is reached by iteratively applying Eq. (9)
until the condition in Eq. (11) is met. In the experiments, a hiding rate up to
14 bpp was realized in a Paillier cryptosystem with a 1024-bit N . Note that the
complexity of data embedding (i.e., searching for the appropriate cipher value
corresponding to a given plain-text value) is exponentially increased with the
hiding rate. Given the value of s is known, the hidden value can be extracted by

b′
1b

′
2 . . . b

′
s = esk(i) mod 2s, (12)

where b′
1b

′
2 . . . b

′
s are the string of extracted bit values.

2.3 Adopting the Two Algorithms

After image processing in homomorphic encryption domain, the data to be
extracted after decryption can be hidden by applying the value expansion algo-
rithm in the first phase. Suppose that a t-bit binary value a1a2 . . . at is to be
embedded into ek(m). Firstly, a cipher value ek(m1) is obtained after embed-
ding a1 into ek(m) by applying Eq. (3). Then another cipher value ek(m2) is
calculated after embedding a2 into ek(m1) with Eq. (3), and so on, until the last
cipher value ek(mt) is generated after embedding at into ek(mt−1) with Eq. (3).
As a result, the embedded bits can be sequentially extracted after decryption.
For instance, the last embedded bit value at is extracted by

{
it = �dk̂[ek(mt)]

2 �
at = dk̂[ek(mt)] − 2 · it . (13)
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For an integer l decreasing from t − 1 to 1, an embedded bit value al can be
iteratively extracted by {

il = � il+1
2 �

al = il+1 − 2 · il . (14)

It can be deduced that the original pixel value m = i1.
To embed data that can be extracted in encryption domain, the self-blinding

algorithm is applied in the second phase so that the encrypted value ek(mt)
is modified to another encrypted value e∗

k(mt) without changing its plain-text
value. For instance, a s-bit binary value b1b2 . . . bs were embedded in the exper-
iments so that

e∗
k(mt) mod 2s = b1b2 . . . bs. (15)

By replacing esk(i) in Eq. (12) with e∗
k(mt), the embedded bits can be directly

extracted without decrypting the cipher values. Therefore, the self-blinding algo-
rithm can also be adopted before homomorphic processing, as shown in Fig. 1.
In that case, the embedded data (e.g., by the image owner) can be extracted
before homomorphic processing (e.g., by the web server). Even if the hidden
message has not been extracted, the following homomorphic processing is not
affected because the plain-text pixel values are unchanged after applying the
self-blinding algorithm.

2.4 Procedure of the Proposed Method

The procedure of the proposed method can be divided into three stages (i.e.,
image encryption, image processing and image recovery). Compared with the
flowchart as illustrated in Fig. 1, the steps of data embedding and extraction
before homomorphic processing in encrypted domain has been appended.

Image Encryption Stage. Given a plain-text cover image I, public encryption
key k (including the big integer N and g) of a Paillier cryptosystem, a piece of
message DB1 to be sent to the web server, the following steps are carried out by
the image owner:

(1) Encrypt I with k to produce an encrypted image ek(I);
(2) Apply Eq. (9) to each cipher pixel value in ek(I) except the last 4 cipher

values to meet the condition in Eq. (11) so that s bits are embedded into
one cipher pixel value;

(3) Represent s in four bits and embed them to the last 4 cipher pixel values
by iteratively applying Eq. (9) to met the condition in Eq. (8), respectively.
Thus the encrypted image with hidden data is generated and denoted as
e’k(I).

Image Processing Stage. Given a message DA to be extracted after image
decryption and a message DB2 to be extracted without decryption, the following
steps are carried out by the web server:
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(1) Perform data extraction on the last 4 cipher pixel values in e’k(I) by applying
Eq. (10) so that the value of s is known;

(2) With the extracted value of s, extract DB1 from the rest cipher pixel values
in e’k(I) by using Eq. (12);

(3) Process e’k(I) in encryption domain if needed so that a new encrypted image
ek(Ic) is generated;

(4) Embed DA into ek(Ic) by iteratively applying Eq. (3) to embed t bits into
each cipher value so that another encrypted image ek(I′

c) is generated;
(5) Embed DB2 into ek(I′

c) by using Eq. (9) to embed s bits into one cipher
value as shown in Eq. (15);

(6) Hide the value of s (represented in 4 bits) and the value of t (represented in
12 bits) into the last 16 cipher pixel values in ek(I′

c) by iteratively applying
Eq. (9) until the condition in Eq. (8) is met. Note that the last 16 cipher
pixel values were excluded from being used in Step (5). Then the processed
image with hidden data is generated and denoted as e∗

k(I′
c).

Image Recovery Stage. When the processed image with hidden data e∗
k(I′

c)
is received, data extraction and image recovery are carried out as follows:

(1) Perform data extraction on the last 16 cipher pixel values in e∗
k(I′

c) with
Eq. (10) to extract the values of s and t;

(2) With the extracted s, directly extract DB2 from the rest cipher pixel values
in e∗

k(I′
c) in a way as shown in Eq. (12);

(3) Given the private decryption key k̂, a plain-text image Idc can be generated
after decrypting e∗

k(I′
c);

(4) With the extracted t, extract the hidden bits (i.e., DA) from Idc by using
Eq. (13) and iteratively applying Eq. (14) ;

(5) Obtain the processed plain-text image Ic with every pixel value i1 obtained
by iteratively applying Eq. (14).

Note that the original plain-text image I is exactly recovered if no process-
ing is performed in homomorphic encryption domain (i.e., e’k(I) has not been
changed to ek(Ic) in Step (3) of Image Processing Stage).

3 Experimental Results

In the experiments, 8 gray-level images downloaded from USC-SIPI1 with the
size of 512 × 512 were used for performance evaluation, which are shown in
Fig. 2. In implementing the Paillier cryptosystem, the bit length of N was set to
1024. Hereinafter, the algorithm presented in Sect. 2.1 is denoted by the value
expansion (VE) algorithm, while the algorithm introduced in Sect. 2.2 is denoted
by the self-blinding (SB) algorithm. The programs were developed with Java
Eclipse SDK and run on a 64-bit PC with Intel Core CPU @3.2 GHz and 8G
RAM.
1 http://sipi.usc.edu/database/database.php?volume=misc

http://sipi.usc.edu/database/database.php?volume=misc
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(a) Baboon (b) Boat (c) Camera (d) Crowd (e) F-16

(f) Lena (g) Man (h) Pens (i) Peppers (j) Sailboat

Fig. 2. 10 gray-level images used in the experiments with the size of 512×512.

3.1 Data Extraction in Different Scenarios

One feature of the proposed method is that the hidden data can be extracted
in different scenarios (i.e., before homomorphic processing, after processing and
before image decryption, after image decryption). For instance, a message can
be transmitted to the web server by embedding it into the encrypted image with
the self-blinding algorithm. While keeping the plain-text image unchanged, the
hidden data can be extracted by applying modulo operation on the cipher pixel
values. After conducting homomorphic processing on the cipher image, a secret
message can be hidden into the processed image by using the value expansion
algorithm, which is to be extracted by a receiver with the decryption key. In
addition, another message can be further embedded by using the self-blinding
algorithm, which is to be extracted without image decryption.

As the data embedded with the self-blinding algorithm can be directly
extracted by applying the modulo operation, the to-be-hidden message can be
previously encrypted with a secret key or a public key provided by the receiver.
Thus the corresponding key (the same secret key or the corresponding private
key of the receiver) is required to decrypt the extracted data. In this way, the
content of the hidden message is protected to enhance security.

3.2 Embedding Capacity

According to the procedure in Sect. 2.4, the embedding capacity of the proposed
method includes three parts, respectively for data extraction before processing,
data extraction after processing and before decryption, and data extraction after
image decryption. The embedding capacity before processing is equal to that of
the self-blinding algorithm proposed in [25]. The highest hiding rate reported in
[25] was 12 bpp, which was increased to 14 bpp in the experiments.
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Table 1. Performance comparisons on embedding capacity with [22,24,25,28]

Scheme/Algorithm Preprocessing Data extraction (for a 1024-bit N)

in encrypted domain in plain-text domain

Combined scheme [22] Yes close to 1 bpp 0.5 bpp

MCG scheme [24] Yes about 12
35

bpp (given 1 bpp in preprocessing)

Self-blinding [25] No 14 bpp 0

Value expansion [25] No 0 1015 bpp

Hierarchical [28] Yes 14 bpp more than 1 bpp

Proposed Method No 14 bpp (before processing)
14 bpp (after processing)

1014 bpp

Given that the range of the plain-text pixel values was not changed by homo-
morphic processing in encrypted domain, the embedding capacity after image
decryption is equal to that of the value expansion algorithm proposed in [25].
For a 8-bit pixel value, a hiding rate up to 1015 bpp was achieved with the value
expansion algorithm when the bit length of N was 1024. For correct decryption,
a plain-text value should be less than N included in the public encryption key.
When the expanded plain-text value was no more than 1023 bits, the embedded
data were correctly extracted. Otherwise, the original pixel value could not be
recovered and the hidden bit values were not be correctly extracted.

As the range of an expanded plain-text value is enlarged by applying the value
expansion algorithm, a high hiding rate can still be achieved by applying the self-
blinding algorithm on its cipher value. Since a cipher pixel value is generated
by performing modulo N2, the range of searching appropriate cipher values is
unchanged. In the experiments, a hiding rate up to 14 bpp was obtained with
the self-blinding algorithm after 1014 bits had been embedded into a cipher
pixel value with the value expansion algorithm. Performance comparisons on
embedding capacity between the proposed method with [22,24,25,28] are shown
in Table 1.

3.3 Compatibility with Homomorphic Processing

With the proposed method, the encrypted image can be used as normal because
no preprocessing needs to be conducted. Meanwhile, applying the self-blinding
algorithm does not affect the plain-text of an encrypted image so that the pro-
cessed image can be obtained after decryption. For instance, two plain-text
images “Man” and “Bird” as shown in Fig. 3(a) and (b) were encrypted within
Paillier cryptosystem. Then the two cipher images are added by utilizing the
additive homomorphism so that a sum cipher image was generated. By per-
forming the arithmetic modulo 256 on the newly generated cipher image, an
image as shown in Fig. 3(c) was obtained for exhibition. By applying the value
expansion algorithm, totally 1014 bits were embedded into one cipher pixel value
so that a sum cipher image with hidden data was generated. By applying the
self-blinding algorithm, extra 14 bits were further hidden into each cipher pixel
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(a) “Man” (size: 512×512) (b) “Bird” (size: 512×512) (c) After adding two ci-
pher images

(d) After data embedding
with the VE algorithm
(1014 bpp)

(e) After data embedding
with the SB algorithm (14
bpp)

(f) After image decryption
and then being divided by
2

Fig. 3. A new image can be obtained by processing two images in Paillier cryptosystem,
while different parts of the hidden data can be extracted from the sum cipher image.

value. The data hidden with the self-blinding algorithm were correctly extracted
without image decryption, while those embedded with the value expansion algo-
rithm were correctly extracted after image decryption. By dividing the recovered
image (i.e., the one generated after data extraction in plain-text domain) by 2,
an average image was obtained as shown in Fig. 3(f), which was identical to the
one generated by adding the two plain-text images and then dividing the sum
by 2. From this example, it can be seen that the proposed method is compatible
with homomorphic image processing before data embedding.

3.4 Security Analysis

Since both of the value expansion and self-blinding algorithms are performed in
homomorphic encryption domain, the security of the proposed method depends
on that of the adopted Paillier cryptosystem. Normally, the parameter N in
Paillier cryptosystem consists of hundreds of bits, making it hard to directly
decrypt the encrypted data without the private decryption key. Moreover, apply-
ing the proposed method for reversible data hiding in encrypted images does not



152 H.-T. Wu et al.

compromise the security of cryptosystem. Since only homomorphic addition
operations are conducted with the value expansion algorithm, no information
of the hidden message can be leaked before image decryption. To protect the
data to be embedded with the self-blinding algorithm, the message can be previ-
ously encrypted (e.g., with the RC4 or RSA algorithm) before being embedded.
After data extraction, the message can be obtained from the extracted data with
the corresponding decryption key.

4 Conclusion

In this paper, we have presented a new reversible data hiding method in homo-
morphic encryption domain based on Paillier cryptosystem. As no preprocessing
is required before image encryption, a cipher image can be used or processed
as normal while extra data can be hidden within it afterwards. By applying
the proposed method, the hidden data can be extracted before or after image
decryption for different usages. The image owner, web server and administrator
can transmit messages to each other by hiding them in encrypted images at
acceptable computational cost. One limitation of the proposed method is that
the encrypted image cannot be further processed after reversible data hiding,
which will be studied in our future work.
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Abstract. In the big data era, data scientists explore machine learning
methods for observed data to predict or classify. For machine learining
to be effective, it requires access to raw data which is often privacy sen-
sitive. In addition, whatever data and fitting procedures are employed,
a crucial step is to select the most appropriate model from the given
dataset. Model selection is a key ingredient in data analysis for reliable
and reproducible statistical inference or prediction. To address this issue,
we develop new techniques to provide solutions for running model selec-
tion over encrypted data. Our approach provides the best approxima-
tion of the relationship between the dependent and independent variable
through cross validation. After performing 4-fold cross validation, 4 dif-
ferent estimates of our model’s errors are calculated. And then we use
bias and variance extracted from these errors to find the best model. We
perform an experiment on a dataset extracted from Kaggle and show
that our approach can homomorphically regress a given encrypted data
without decrypting it.

Keywords: Fully Homomorphic Encryption · TFHE · Model selection

1 Introduction

Vast quantities of data have recently been generated from the Internet, social
network sites, health-care applications, and many other companies. This big
data is a valuable asset in industry and academics because information obtained
from various sources and channels can help for us to understand the underly-
ing phenomena of human behaviors, society and even nature itself. In order to
effectively analyze obtained big data, it is essential to build more specialized and
advanced data storage management for handling such big data because tradi-
tional databases are developed for relatively small data. The cloud technology
to store very large data is a solution to overcome the problems and limitations
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of traditional databases in managing very large data both in terms of storage
methods or access speeds. Many enterprises are trying to outsource their data
solution to third party service providers (i.e. cloud computing) for saving the
cost and increasing performance efficiency but this outsourced initiative in turn
introduces a number of security and privacy concerns.

In order to remove the concerns in security and privacy for the outsourced
data, there have been several methodologies to protect the privacy of the data.
One of the solutions is the homomorphic encryption (HE) which protects confi-
dential data, while allowing third parties to perform arithmetic computation on
encrypted data without decryption. Recently, several libraries have been intro-
duced and they are now used to apply for advanced data mining and machine
learning algorithms. In this paper, as the other contemporary researches are
done, we also use a well-known HE library which is called Fast Fully Homomor-
phic Encryption over the Torus(TFHE) library [1,2] to apply privacy preserving
data analysis in encrypted domain.

However, we realized that current researches in HE based machine learning
have focused only on the development of the known algorithms without the deep
insightfulness in data and machine learning algorithm. In data analysis society,
it is known that there exists no model that is universally suitable for any data
and goal. Worse, an unsuitable choice of model or method can unfortunately lead
to severely misleading conclusions, or disappointing predictive performances due
to over-fitting or under-fitting. Therefore, a crucial step in data analysis is to
find the optimal model which provides better performance in given dataset using
the model selection. Since the machine learning or data analysis in a HE scheme
is inheriting the one in un-encrypted domain, the model selection is still one
of the key steps to obtain the better performance and to decrease the problem
of the over-fitting or under-fitting in the HE scheme. However, despite of the
importance of finding the optimal model, there are few researches which con-
sider the model selection when data analysis is performed through Homomorphic
Encryption scheme.

In this paper, the contributions are two-folds.

– We introduce the model selection for the linear regression which is one of the
simplest but useful data mining methods.

– We introduce practical matrix inversion for the linear regression with the
model selection since the model selection for the linear regression requires lots
of matrix operations including matrix inversion and it is not straightforward
to directly implement the matrix inversion.

2 Background

In this section, we give brief description of three key technologies: Homomor-
phic Encryption (HE), TFHE library and the model selection. After we first
describe the basic concept of Homomorphic Encryption (HE), we explain the
TFHE library which is one of the well-known HE libraries. Then we will explain
basic description about the model selection which is one of critical issues in data
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analysis and applied statistics. In addition, Gauss-Jordan elimination will be
described in the end of this section for explaining homomorphical operation in
matrix inversion.

2.1 Homomorphic Encryption

Homomorphic encryption is an encryption scheme that allows some kind of com-
putations on encrypted data. With HE, the sever can process user’s data without
decrypting it. It can be expressed as the following equation:

Enc(m1) � Enc(m2) = Enc(m1 � m2),

where Enc is the encryption algorithm, m1,m2 is the plaintext and � is the
homomorphic operation.

The concept of privacy homomorphism was originally proposed as an a mod-
ification of the RSA cryptosystem, which explains the concept of preserving the
computation between ciphertexts. However, this technique was not actually used
because of the fatal safety problem that the secret key is exposed by the opera-
tion between two ciphertexts. Although various HE schemes and libraries have
been introduced since then but when using randomized noise to encrypt a plain-
text, the noise is amplified whenever the operation is performed which prevents
the ciphertext from being normally decrypted if it exceeds a certain level.

The first working HE scheme was introduced in 2009 by Gentry [4] which
reduced noise amplification problem that once allows an unlimited number of
evaluation operations on the encrypted data and resulting output is within the
ciphertext space so called Fully Homomorphic Encryption (FHE) scheme. Gen-
try uses a bootstrapping algorithm to eliminate the accumulated noise but it
requires a lot of time because of the complexity of bootstrapping algorithm and
the disadvantage that the capacity of the ciphertext increases because the plain-
text has to be bit-by-bit encrypted. Thus, the bootstrapping part, which is the
intermediate refreshing procedure of a processed ciphertext, is too costly in terms
of computation.

2.2 TFHE Library

Chillotti et.al released TFHE(Fast Fully Homomorphic Encryption over the
Torus) library which is designed from FHEW. The TFHE is basically a GSW-
based library [5] with fast bootstrapped operations. It significantly improves the
performance of the bootstrapping operation, which has the greatest effect on the
performance of the fully homomorphic encryption algorithm, in 0.1 s by using a
gate-by-gate bootstrapping procedure.

The library supports the homomorphic evaluation of the binary gates (AND,
OR, XOR, NAND, NOR, etc. . . ), as well as the negation and the MUX gate and
these can be used for various operations. The gate-bootstrapping mode of TFHE
has no restriction on the number of gates or on their composition therefore this
allows to perform any computation over encrypted data. TFHE library provides
3 steps:
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– Generate a secret key and a cloud key for encrypting data and exporting
ciphertexts, respectively.

– Cloud key owner imports the cloud key and encrypted input data and then
exports the results using homomorphic circuit.

– Secret key owner decrypts and prints the final answer.

2.3 Model Selection

When we consider a set of candidate models,
In machine learning, the model selection is a process to choose one of the

most appropriate model among given multiple models. In addition, the model
selection represents two different meanings because there are two meanings for
the ‘model’ in machine learning society.

– Model is considered as an algorithm: the model selection chooses the
most appropriate one between different machine learning approaches - e.g.
SVM, KNN, logistic regression, etc.

– Model is considered as an complexity: the model selection chooses one
between different hyper-parameters or sets of features for the same machine
learning approach - e.g. deciding between the polynomial degrees or complex-
ities for linear regression.

In this paper, we focus on model selection with varying complexity by adapting
numerical solution for regression.

To fit regression models, we need to make a choice of degrees/orders. Polyno-
mial regression is a form of linear regression in which the relationship between
the independent variable x and dependent variable y is modeled as an m-th
degree polynomial. It is represented by an equation of the general form:

y(x, β) = β0 + β1x + β2x
2 + · · · + βmxm =

m∑

i=0

βix
i (1)

where β is a set of polynomial coefficient. β is determined by fitting the polyno-
mial to the training data by minimizing the errors to optimize between training
dataset and the function y(x, β). That is, obtaining optimal solution for the best
model is to find optimal model order m∗.

Model fit according to m can be assessed by estimation errors. Errors are
influenced by bias and variance, both bias and variance are affected by model
complexity. If a model is too simple to explain the data, it is likely to have high
bias and low variance called under-fitting. By contrast, over-fitting overly occurs
when complex models have low bias and high variance. In machine learning, over-
fitted model may fit perfectly on training data but is likely to fit very poorly
with new data.

To avoid under-fitting and over-fitting, it is important to choose an appropri-
ate model with optimal complexity. Therefore, we need to find a way to determine
a suitable value among models with different complexities. A simple but useful



Model Selection for Data Analysis in Encrypted Domain 159

way is splitting dataset into training set to determine β and validation set to
evaluate and optimize model complexity.

However, the dataset for training and testing in practice is limited. In order to
build appropriate model with finite volume of dataset, one solution is to use cross
validation. Cross validation like the K-fold cross validation splits the training
set into K smaller sets and doing multiple iterations of training and evaluation.

2.4 Inverse of a Matrix by Gauss-Jordan Elimination

Given set of data, the least square in general uses the normal equation which
requires matrix inverse. We propose Gauss-Jordan elimination method [6], which
solves linear systems to find inverse of a matrix.

Suppose A is a square matrix and we look for its inverse matrix A−1 of the
same size, such that A−1A = AA−1 = I for an identity matrix I. Given vectors
x and b, multiplying Ax = b by A−1 gives A−1Ax = A−1b. It is solved by
x = A−1b. But it is not necessary to compute A−1 and multiply with b because
elimination goes directly to x. The Gauss-Jordan is to solve A−1A = I, finding
each column of A−1.

3 Methods

In TFHE library, HE scheme performs on a bit-by-bit arithmetic operation with
binary (i.e. modulo 2) so all input data must be converted to binary numbers.
We perform all operations with this library- e.g. addition, subtraction, multipli-
cation, division and so on. Before we design matrix inverse and model selection
algorithm, we introduce several operations notation consisting of boolean logic
gates and its applications. Table 1 presents our notation of HE operations used
in this study.

Table 1. The notation of HE operations

Operation HE function Notation

Addition HomAdd ⊕
Substraction HomSubt �
Multiplication HomMulti ⊗
Division HomDiv �
Mux bootsMUX �
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3.1 Matrix Inverse with TFHE

For matrix inverse we can adapt Gauss-Jordan elimination algorithm to
encrypted approximate inverse circuit. We start with an arbitrary square matrix
and a same size identity matrix - i.e. all the elements along its diagonal are 1.
And then we perform operations on the rows of the input matrix in order to
transform it and obtain an identity matrix, and perform exactly the same oper-
ations on the accompanying identity matrix in order to obtain the inverse one.
For a matrix A of size n × n, an identity matrix of size n × n is appended to the
matrix. After that the following two operations based on reduced row-echelon
form are iterated on all rows to obtain the inverse:

– (Phase 1) Normalize pivotal row: A pivotal row p is selected and from
the rows whose diagonal elements have not yet been used as a pivot and the
value of the pivotal element is saved as Pp. Then the pivotal row is normalized
by dividing the entire pivotal row by Pp. This transforms the pivotal element
to unity 1 and the pivotal row of identity matrix element to 1/Pp.

– (Phase 2) Reduce non-pivotal rows: Each non-pivotal row is reduced by
saving the value of its pivotal column element and then recomputing all its
row elements. This transforms its pivotal column element to zero and after it
is performed on all non-pivotal rows, their pivotal column elements become
0.

After performing these phases on every row, treating each row once as a
pivotal row, the original matrix becomes a unit matrix while the unit matrix
becomes the inverse. Algorithm 1 shows how to construct matrix inverse with
HE operations, as described above. We assumed A (i, j) is non-zero and deter-
minant of matrix A is also non-zero. BootsMUX(S, a, b) means mux gate that
homomorphically outputs either the message of a or b depending on the boolean
value in S, without decrypting any of the cipertxts. If S = 1, it represents a
otherwise it represents b.

The classical Gauss-Jordan elimination method for matrix inverse involves
augmenting the matrix with a unit matrix and requires a workspace twice as
large as the original matrix as well as computational operations to be performed
on both the original and the unit matrix therefore, it costs much time to execute
results of matrix.

3.2 Model Selection with TFHE

To construct model selection algorithm, the proposed method using Eq. 1 is
polynomial regression. This method uses the least-square procedure to fit the
data to a higher order polynomial. The residuals between the model and the
given dataset (xk, yk)n−1

k=0 for all k are given by:

R(β0, · · · , βm) =
n∑

k=0

( m∑

i=0

βix
i
k − yk

)2

. (2)
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Algorithm 1. HE Algorithm for Gauss-Jordan elimination
– Input: n by n matrix A
– Output: inverse of n by n matrix A

1: assign the size of rows and columns of A ← [r, c]
2: assign the size r of new identity matrix ← F
3: for j = 1 to r do
4: for i = j to r do
5: initialize s ← 0
6: for k = 1 to r do
7: s ← �(A(i, j), A(j, k),s)
8: A(j, k) ← �(A(i, j),A(i, k), A(j, k))
9: A(i, k) ← �(A(i, j),s,A(i, k))

10: s ← �(A(i, j), F(j, k), s)
11: F(j, k) ← �(A(i, j),F(i, k), F(j, k))
12: F(i, k) ← �(A(i, j),s,F(i, k))
13: end for
14: t = 1 � A(j, j)
15: for k = 1 to r do
16: A(j, k) ← t ⊗ A(j, k)
17: F(j, k) ← t ⊗ F(j, k)
18: end for
19: for L = 1 to r do
20: if L = j then
21: t = -A(L, j)
22: for k = 1 to r do
23: c ← t ⊗ A(j, k)
24: d ← t ⊗ F(j, k)
25: A(L, k) ← A(L, k) ⊕ c
26: F(L, k) ← F(L, k) ⊕ d
27: end for
28: end if
29: end for
30: end for
31: end for

The coefficients obtains its global minimum when the gradient of R is zero, that
is, the partial derivatives of R must be zero for 0 ≤ j ≤ m:

∂R

∂βj
= 2

n−1∑

k=0

( m∑

i=0

βix
i
k − yk

)
xj
k = 0. (3)

It simplifies to
m∑

i=0

( n−1∑

k=0

xj+i
k

)
βi =

n−1∑

k=0

xj
kyk. (4)
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This is a linear system of (m+1) equations in (m+1) unknown coefficients and
denote the form of

ATAβ = AT y (5)
where A is a matrix and the coefficient matrix of the normal equation is

ATA =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n−1
k=0 1

∑n−1
k=0 xk · · · ∑n−1

k=0 xm
k

∑n−1
k=0 xk

∑n−1
k=0 x2

k · · · ∑n−1
k=0 xm+1

k

...
...

. . .
...

∑n−1
k=0 xm

k

∑n−1
k=0 xm+1

k · · · ∑n−1
k=0 x2m

k

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, AT y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n−1
k=0 yi

∑n−1
k=0 xkyk

...

∑n−1
k=0 xm

k yk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

The supposition that xk are increasing guarantees that ATA is invertile so the
coefficients of the polynomial are

β = (ATA)−1AT y = A
−1 × D (7)

then solving for β by Gauss-Jordan elimination method. The model selection
algorithm for HE is presented in the following.

Algorithm 2. HE Algorithm for Model selection
– Input: dataset x = (x1,x2, · · · ,xn), y = (y1,y2, · · · ,yn)
– Output: coefficients β = (β0, β1, · · · , βn)

1: Initialize all elements of matrix A, D to 0
2: for i = 0 to number of n − 1 do
3: for j = 0 to number of n − 1 do
4: Ai,j ← Ai,j ⊕ x(i) ⊗ assigned xth

(i) power

5: Di,j ← Di,j ⊕ x(i) ⊗ assigned xth
(i) power ⊗ y(i)

6: end for
7: Calculate inverse matrix of A
8: β = Gauss − Jordan(A) ⊗ D

9: end for
10: return β

First, we initialized A, D matrix elements to 0 and updated our elements
using polynomial regression function that we’ve implemented. Then we compute
the value of elements through homomorphic operations and multiply the solution
of matrix inverse A with matrix D.

4 Implementation

In this section, we present results of adopted version of model selection over
encrypted data. The experimental environment setup is as follows- all compu-
tations were run on a computer with 16 GB RAM, Intel Core i7-8700 CPU 3.2
GHz, Ubuntu 18.04 and we used TFHE library version 1.0.1.
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Table 2. Coefficients of the 1st to 4th degree polynomial representations

Value of coefficient Degree of polynomial

1 2 3 4

β0 1.4000 −1.6000 1.2000 −4.2000

β1 0.6000 3.1714 −0.7619 80.6667

β2 −0.4286 1.0714 −48.5000

β3 −1.0667 11.8333

β4 −1.0000

We implemented model selection algorithm with two datasets. For one thing,
it is to figure out our HE Gauss-Elimination algorithm works correctly with
various HE functions incorporated inside. For another thing, we expanded our
scope to the real world dataset from the Kaggle [5].

4.1 Toy Dataset

First we use artificially created vectors x and y data to check performance and
evaluation of our algorithm: x = [1, 2, 3, 4, 5] , y = [1, 4, 2, 6, 3].

Figure 1 shows the fitting curve of each degree and the value of root mean
square error according to the degree of polynomial. Table 2 also shows the coef-
ficients for polynomials of various degree.

Fig. 1. Polynomial regression of toy dataset with HE model select algorithm and its
RMS error

The values of the coefficients β is determined by fitting the polynomial to
the data. It can be done by minimizing the error function, sum of squares of the
error, that measures the gap between function y(x, β) and given data points,

E(β) =
1
2

N∑

n=1

(
y(xn, β) − tn

)2

(8)

where tn is the corresponding target values. We use the root mean square error
defined by
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ERMS =

√
2E(β+)

N
(9)

E(β+) is derivatives with respect to the coefficients. As we can see figures above,
for each choice of order we can evaluate the residual value of E(β+) for the given
data. Toy dataset is too small to split training test set so we use all data into
training set to measure best fit order. For 4th polynomial, RMS error goes to zero
because the regression is tuned exactly to all data points. In that case, values of
2nd and 3rd give small error and we might suppose that the best predictor of
new data would be when order is 3.

4.2 Real World Dataset

Kaggle’s dataset is then used by users to find and publish datasets to create
machine learning models for application extension. The dataset is limited to
height and weight and consists of 1000 × 2 data. We sampled 100 data respec-
tively and evaluated the polynomial regression coefficients for each degree.

We use K-fold cross validation, the purpose of using our dataset with this
method is to predict weight changes by height and avoid underfitting and overfit-
ting. If we randomly selected the values of the height and weight of the training
and test set, we assumed each set represents the entire dataset. We performed
4-fold cross validation technique to estimate RMS errors.

Our approach to find the best fit of given dataset, when fitting the data in 1st
to 4th order, it works well without any problem and its RMS error is equivalent
in plaintext situation. But we found that the RMS error deviations in more than
5th dimension are very large. Figure 2 shows the RMS error of training and test
dataset respectively.

Fig. 2. RMS error value of polynomial regression with each order of height-weight
dataset
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We figured out the cause of this problem that our dataset contain features
highly varying in magnitudes, units and ranges and to avoid this, we have to
standardization our dataset before experiment. Standardization (or Z-score nor-
malization) is the process of rescaling the features so that they’ll have the prop-
erties of a Gaussian distribution with μ = 0 and σ = 1 where μ is the mean and
σ is the standard deviation from the mean. Figure 3 shows 5th and 10th order
of polynomial regression.

Fig. 3. 5th and 10th polynomial regression with standardized data

After 4-fold cross validation with training and test dataset, finding a model
with the appropriate complexity for a dataset requires finding a balance between
bias and variance. Complexity is varied by using model selection algorithm that
range in model order from 1(least complex) to 12(most complex). We then cal-
culate and display the squared bias, variance, and test set error for each of the
estimators.

As the model complexity increases, the estimator variance (magenta curve)
gradually increases. Additionally, as model complexity increases, the squared
bias (red curve) decreases. Thus there is a tradeoff between bias and variance
that comes with model complexity. The best model will have both low bias
and low variance. In this Fig. 4, we notice the best estimator in terms of the
intersection. The best estimator corresponds to a polynomial model of order
of 4.
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Fig. 4. Bias, variance and test MSE with HE Model selection (Color figure online)

5 Conclusion

In this paper, we introduced methods for constructing HE of Model selection
and evaluated our algorithm with its application. Model selection methods are an
essential tool for data analysis, especially for big datasets involving many predic-
tors. Although we use only one feature as independent variable and we’ll expand
number of features to find optimized model complexity in further research. There
still remains a variety of tasks that involve secure data outsourcing of cloud com-
puting services. On the basis of our fundamental operations and the models, we
will develop furthermore various machine learning methods under FHE in the
future to solve the tasks.
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Abstract. Timed-release encryption allows senders to send a message
to a receiver which cannot decrypt until a server releases a time bound
key at the release time. The release time usually supposed to be known to
the receiver, the ciphertext therefore cannot be decrypted if the release
time is lost. We solve this problem in this paper by having a master time
bound key which can replace the time bound key of any release time. We
first present security models of the timed-release encryption with master
time bound key. We present a provably secure construction based on the
Weil pairing.

Keywords: Timed-release encryption · Weil pairing · Bilinear
Diffie-Hellman problem

1 Introduction

The concept of timed-release encryption was first proposed by May [16]. The idea
is to introduce the concept of time into an encryption scheme, especially into
the decryption algorithm. There are two distinct approaches. One is to focus on
the amount of time it takes to decrypt and the other is to have a trusted server
to unlock encryption in due time. As time is one of the important aspects in the
real world, timed-release encryption can be used for several purposes [20] such
as bidding in an auction, as a personal time capsule, key escrow, etc. It can also
be used to store sensitive data which should not be accessible before some time.

The first category of timed-release encryptions uses time-lock puzzles [20],
which involves heavy computation for the decryption. The second one involves a
trusted server [3,6–8,10,13]. It requires a time bound key which is periodically
released by the trusted server for the decryption.

The timed-release encryption with a time-lock puzzle was first introduced
by Rivest et al. [20]. They showed that the approach which makes available
only some part of the decryption key and makes a receiver to brute force the
remaining part of the decryption key is not sufficient for the timed-release encryp-
tion because it is parallelizable, so it offers no guarantee of the amount of time
required to decrypt. They proposed a construction based on a time-lock puz-
zle which requires some non-parallelizable sequential computations on a single
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2019, LNCS 11897, pp. 167–179, 2020.
https://doi.org/10.1007/978-3-030-39303-8_13
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processor. Therefore, it has some guarantee that the receiver will spend at least
some time doing sequential computations.

Timed-release encryption with a trusted server was first proposed by May
[16] while introducing this concept. The first approach is to send a message and a
release time to a trusted server who then transfers the message after the release
time is passed. Then, Rivest et al. [20] proposed a construction in which the
trusted server does not store any message but this scheme suffers from problems
of anonymity and confidentiality. Di Crescenzo et al. [10] proposed a construc-
tion based on a conditional oblivious transfer which allows a sender to be anony-
mous. But the receiver cannot be anonymous and the trusted server is a subject
to denial-of-service attack. Later, Blake and Chan [3] proposed a construction
based on the identity-based encryption scheme by Boneh and Franklin [5] in
which the trusted server interacts with neither the sender nor the receiver. As
Blake and Chan did not provide any security notion, Cathalo et al. [6] proposed
its security notions and improved its construction. Based on the construction
of Blake and Chan, Hwang et al. [13] proposed a construction with pre-open
capability which allows a receiver to decrypt before the release time by using
the pre-open key. As security analysis of this construction was not sufficient,
Dent and Tang [11] introduced additional security models for the construction
of Hwang et al. On the other hand, Cheon et al. [8] proposed a construction of
authenticated timed-release encryption. Later, Chalkias et al. proposed a more
efficient timed-release encryption scheme [7]. In 2009, Nakai et al. [18] proposed
a generic construction of the timed-release encryption with pre-open capability
by using an identity-based encryption and a public key encryption. Their generic
construction was improved by Matsuda et al. [15] in terms of efficiency. In 2010,
Paterson et al. [19] proposed the time-specific encryption paradigm. In time-
specific encryption, a ciphertext can only be decrypted during a chosen time
interval rather than after a chosen time. Therefore, the time-specific encryp-
tion can be seen as the generalization of the timed-release encryption. Later,
Kasamatsu et al. [14] showed how the time-specific encryption can be derived
from forward-secure encryption.

The first approach does not require any trusted server, but the sender does
not have the full control on the release time of the encrypted message since it
depends on the computational power of the receiver and the time it started to
decrypt. With the second approach, the release time can be fully controlled by
the sender since it requires a time bound key which will be released by the trusted
server at the release time. However, for the protocol to work, it is necessary to
include a trusted server and thus it may lead to security vulnerabilities due to
the addition of another participant in the protocol.

In this paper, we focus on the second approach and we will study another
potential problem which did not consider in previous works. In the previous
works, the release time was usually somehow known to the receiver and the
receiver could execute the decryption algorithm with the time bound key of the
corresponding release time. Then, what happens if the receiver loses the release
time? The receiver obviously cannot deduce which time bound key should be used
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for the decryption. The receiver therefore cannot correctly decrypt the ciphertext
since the time bound key of the release time is required for the decryption.

There already exist some easy ways to solve this problem. The sender for
example can store the release time after the encryption, and sends it again to
the receiver when the receiver asks the release time. This approach however
cannot be an actual solution of the problem since an intuitive goal of timed-
release encryption is to send a message for the time period when the sender
and the receiver do not communicate. Another approach which does not require
any communication between the sender and the receiver is to make the receiver
to decrypt with all time bound keys. This solution however requires too much
computation, compare to the normal decryption, and the receiver requires a way
to check the correctness of the decrypted message.

The constructions with pre-open capability [13] might be a solution for the
problem of losing the release time by giving the pre-open key which allows the
decryption without the time bound key. The sender however needs to know the
release time of the ciphertext to generate the corresponding pre-open key, it is
equivalent to store the release time on the sender side. If the sender is storing
the release time of the ciphertext, the sender can simply resend the release time
to the receiver. The problem therefore becomes trivial. We hence consider the
case neither the sender nor the receiver knows the release time.

Our Contributions and Structure

In this paper, we propose a better solution on this problem. We introduce a mas-
ter time bound key which can be used as a valid time bound key for any release
time. The receiver therefore can ask to the trusted server to decrypt a ciphertext
of an unknown release time. This however can raise another problem with con-
fidentiality of the message if the receiver needs to send the entire ciphertext to
the trusted server for the decryption with master time bound time bound key.
Our solution also solves this problem. A ciphertext of our construction consists
of three elements. The receiver needs to send a single element to the trusted
server to do the computation with master time bound key. Since this element is
independent from the message, the trusted server cannot learn anything about
the message.

The master time bound key moreover can be used when the trusted server
terminates its service. Since a time bound key of the release time is needed for
the decryption, the ciphertext whose release time is after the termination of the
trusted server can never be decrypted. If it is more important not to lose the
message than being decrypted before its release time, the trusted server needs
to reveal its secret key or all future time bound keys to make the users able to
decrypt their ciphertexts. If the trusted server reveals its secret key, receivers
must implement another decryption algorithm which decrypts with the trusted
server secret key instead of a time bound key. If the trusted server generates
all future time bound keys (and possibly encrypt them with a timed-release
encryption of another server), there might have a problem with the storage
complexity if the amount of remaining time periods is huge. All of these solutions
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therefore require some additional works. However, if the trusted server has the
master time bound key, it is enough if the trusted server releases the master time
bound key at the end of its service. Moreover, the storage overhead is minimized
since the size of master time bound key is equal to the size of time bound key.

Finally, our master time bound key can play the role of a backup solution to
decrypt messages in emergency situations (e.g. sudden disappear of the trusted
server).

In this paper, we propose a timed-release encryption scheme which has the
master time bound key that can be used to decrypt a ciphertext of any time
period. In Sect. 2, we show the notions that we will use in this paper. In Sect. 3,
we define primitives of timed-release encryption. In Sect. 4, we propose a con-
struction of timed-release encryption scheme with master time bound key.

2 Preliminaries

We denote a concatenation of two bit strings a and b as a||b and an empty input

or output by ⊥. We write x
$← G if x is uniformly chosen from a set G. We

denote an empty string or algorithm by ε. For any probabilistic algorithm f(x),
we denote an instance of the algorithm f(x) with a sequence of random coins γ as
f(x; γ). For any g in some group G, a subgroup generated by g is written as 〈g〉.
Let X : Ω → S and Y : Ω → S be two random variables. Then, the statistical
distance between two random variables X and Y is d(X,Y ) = 1

2

∑
s∈S |Pr[X =

s] − Pr[Y = s]|. We denote the uniform distribution over a set G by UG.

Definition 1 (Weil pairing [21, III.8.1]). Let K be a finite field and E be an
elliptic curve over K. The Weil pairing e : E[m] × E[m] −→ μm, where E[m] is
m-torsion subgroup of E and μm is m-th roots of unity in the algebraic closure
K̄, satisfies the following properties.

1. Bilinear: ∀P1, P2, Q1, Q2 ∈ E[m], e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1) and
e(P1, Q1 + Q2) = e(P1, Q1)e(P1, Q2).

2. Non-degenerate: ∀P ∈ E[m],∃Q ∈ E[m] such that e(P,Q) 
= 1.
3. Alternating: ∀P ∈ E[m], e(P, P ) = 1.
4. Galois invariant: ∀σ ∈ GK̄/K , e(P σ, Qσ) = e(P,Q)σ.

We note that the Weil pairing can be efficiently computed by the Miller’s algo-
rithm [17].

Definition 2 (Decisional bilinear Diffie-Hellman problem [5]). Let
Gen(1λ) = π = (λ,K,E,m, e) be an algorithm which generates appropri-
ate instance of the decisional bilinear Diffie-Hellman problem, given the secu-
rity parameter λ, where K is a field, E is an elliptic curve over K, and
e : E[m] × E[m] −→ μm is a bilinear map.

We say that the decisional bilinear Diffie-Hellman problem is hard for Gen if

AdvDBDH
A (λ) =

∣
∣
∣Pr

[
DBDH-0A

Gen(λ) = 1
]

− Pr
[
DBDH-1A

Gen(λ) = 1
]∣
∣
∣
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is a negligible function in λ for all probabilistic and polynomial time algorithm
A where DBDH-d is defined as follows for d ∈ {0, 1}.

Game: DBDH-dA
Gen(λ)

1 π ← Gen(1λ)

2 (a0, b0, c0)
$← Z

3
m

3 (a1, b1, c1)
$← Z

3
m

4 (P,Q) $← E[m] × E[m]
5 d′ ← A(π, P,Q, a0P, b0P, c0P, a0Q, b0Q, c0Q, e(P,Q)adbdcd)
6 return d′

3 Primitives of Timed-Release Encryption with Master
Time Bound Key

In this section, we formally define the primitives of timed-release encryption
with master time bound key. Our primitives are similar to the primitives in
literatures [3,6,8,11,13]. The difference however is the key generation algorithm
of the trusted server outputs the master time bound key along with the secret
key and the public key.

Let S be a sender, R be a receiver and TS be a trusted server. We define a
timed-release encryption scheme with master time bound key as follows:

Definition 3 (Timed-release encryption scheme with master time
bound key). A timed-release encryption scheme consists of the following algo-
rithms:

– Setup(1λ) = π is a probabilistic polynomial time algorithm which generates a
system parameter π given a security parameter λ.

– KeyGenTS(π) = (skTS, pkTS,mkTS) is a probabilistic polynomial time algo-
rithm of the trusted server TS which takes a system parameter π, and gener-
ates a secret key skTS, a public key of the trusted server pkTS and a master
time bound key mkTS.

– KeyGenR(π) = (skR, pkR) is a probabilistic polynomial time algorithm of the
receiver R which takes a system parameter π, and generates a secret key skR
and a public key of the receiver pkR.

– Broadcast(skTS, t, π) = τt is a probabilistic polynomial time algorithm of the
trusted server TS which takes a secret key of the trusted server pkTS, sched-
uled broadcast time t and a system parameter π, and broadcasts time bound
key τt.

– Enc(pkTS, pkR,m, t, π) = c is a probabilistic polynomial time algorithm of the
sender S which takes a trusted server public key pkTS, a receiver public key
pkR, a message m, release time t, and a system parameter π, and outputs a
ciphertext c.

– Dec(skR, τt, c, π) = m is a deterministic polynomial time algorithm of the
receiver R which takes a receiver secret key skR, a time bound key at the
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release time t τt, a ciphertext c, and a system parameter π, and outputs a
message m or ⊥.

Then, we expect a timed-release encryption scheme to satisfy the following
condition:

– For any security parameter λ, for any system parameter π = Setup(1λ),
for any trusted server key pair (skTS, pkTS,mkTS) = KeyGenTS(π), for any
receiver key pair (skR, pkR) = KeyGenR(π), for any message m and for any
time period t,

Pr
γ1,γ2

[Dec(skR,Broadcast(skTS, t, π; γ1),Enc(pkTS, pkR, m, t, π; γ2), π) = m] = 1

and
Pr
γ

[Dec(skR,mkTS,Enc(pkTS, pkR,m, t, π; γ), π) = m] = 1

The key generation algorithm of the receiver KeyGenR sometimes takes the
trusted server public key pkTS as input. We however define our KeyGenR to be
independent from pkTS as it was done in some constructions [15,18]. If KeyGenR
is dependent to pkTS, the receiver needs to get the trusted server public key
before the generation of its key pair. If they are independent, the receiver does
not need any communication with the trusted server before the release time, it
will be therefore more efficient.

The timed-release encryption has two security objectives. One is the confi-
dentiality of the message until its release time against the receiver. The other is
the anonymity of the sender and the receiver against the trusted server.

4 Construction with Master Time Bound Key

In this section, we propose a timed-release encryption scheme TRE which has the
master time bound key. In addition, our construction does not require KeyGenR
to be dependent to pkTS and a hash function which maps to a point on the elliptic
curve. Let hκ be a collision-resistant hash function from K∗ ×E[q] to a set F , E
be an asymmetric encryption scheme which consists of (KeyGen,Enc,Dec) with
plaintext space K × F , and fπ be a pseudorandom generator from μq to K,
i.e. for ω ∈ μq uniformly distributed, fπ(ω) is computationally indistinguishable
from the uniform distribution over K. Then, our construction with plaintext
space K∗ is as follows. We note that our Broadcast is similar to KeyGen of the
identity-based encryption scheme of Boneh and Boyen [4], which generates the
secret key of a user which can be used to compute the inverse of the random
value which is multiplied to the message, and TS-release of the timed-release
encryption scheme of Cathalo et al. [6], which computes g−(s+H(t)) where s is
the secret key, H(t) is the hash of a time period t and g is a generator of a group.

– TRE.Setup(1λ): Pick two prime numbers p and q such that q|(p±1). Pick the
finite field K = Fp2 and a supersingular elliptic curve E(K) of cardinality
(p ± 1)2. Then, compute q-torsion subgroup E[q] and the Weil pairing e :
E[q] × E[q] −→ μq where μq is the group of q-th roots of unity in K. Pick κ
from the key space of h and output π = (λ,K,E, q, e, κ).
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– TRE.KeyGenTS(π): Pick P and Q from E[q] such that |〈P 〉| = |〈Q〉| = q and
P /∈ 〈Q〉, and pick a, b, c, d uniformly from Z

∗
q until 〈(1, a)〉, 〈(b, 1)〉 and 〈(c, d)〉

are distinct subgroups of Zq × Zq. Then, compute

mkTS = (1 − ab)(bd − c)−1(bP + Q),
skTS = (a, b, c, d, P,Q)

and
pkTS = (pk

(0)
TS , pk

(1)
TS , pk

(2)
TS) = (P + aQ, bP + Q, cP + dQ),

and output skTS, pkTS and mkTS.

Property 1. e(P, P ) = e(Q,Q) = 1, e(P,Q)e(Q,P ) = 1 and e(P,Q) 
= 1. (See
the proof below.)

Property 2. e(pk
(0)
TS , pk

(1)
TS) = e(P,Q)1−ab 
= 1 because 〈(1, a)〉 and 〈(b, 1)〉 are

distinct subgroups of Zq × Zq.

– TRE.KeyGenR(1λ): Generate a pair of secret and public keys (sk, pk) by calling
E .KeyGen(1λ). Then, output skR = sk and pkR = pk.

– TRE.Broadcast(skTS, t, π): Pick s uniformly from Z
∗
q . Compute

τt =

⎧
⎪⎨

⎪⎩

sP + (ab − 1)(c + bt)−1Q, if t = −d

(1 − ab)(d + t)−1P + sQ, if t = −cb−1

s(d + t)−1P + (s + ab − 1)(c + bt)−1Q, otherwise.

Property 3. e(τt, t · pk
(1)
TS + pk

(2)
TS) = e(mkTS, t · pk

(1)
TS + pk

(2)
TS) = e(P,Q)1−ab (See

the proof below.)

– TRE.Enc(pkTS, pkR,m, t, π): Output ⊥ if m /∈ K∗. Pick r1 uniformly from Z
∗
q

and pick r2 uniformly from K∗. Then, compute

ct0 = m · r2,

ct1 = r1t · pk
(1)
TS + r1 · pk

(2)
TS ,

ct2 = E .Enc(pkR, (r2 + fπ(e(pk
(0)
TS , pk

(1)
TS)r1), hκ(ct0, ct1)))

and output ct = (ct0, ct1, ct2).

Property 4. e(τt, ct1) = e(pk
(0)
TS , pk

(1)
TS)r1

– TRE.Dec(skR, τt, ct, π): Compute

(r′
2, σ) = E .Dec(skR, ct2).

Output
m = ct0 · (r′

2 − fπ(e(τt, ct1)))
−1

if σ = hκ(ct0, ct1), and output ⊥ otherwise.
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Proof of Property 1. e(P, P ) = e(Q,Q) = e(P + Q,P + Q) = 1 comes from
the alternating property of the Weil pairing. Hence, 1 = e(P + Q,P + Q) =
e(P,Q)e(Q,P ) due to bilinearity. Now, assume that there exists P,Q ∈ E[q]\{O}
such that P /∈ 〈Q〉 and e(P,Q) = 1. Then, we have e(P, αP +βQ) = e(P,Q)β = 1
for any α, β ∈ Zq. Since q is prime, {αP + βQ : α, β ∈ Zq} = E[q]. Hence,
it contradicts non-degeneracy, and such P and Q do not exist. Consequently,
e(P,Q) 
= 1 and e(P,Q)−1 = e(Q,P ). ��
Proof of Property 3. When t 
= −d and t 
= −cb−1, we have

e(τt, t · pk
(1)
TS + pk

(2)
TS)

= e(s(d + t)−1P + (s + ab − 1)(c + bt)−1Q, (c + bt)P + (d + t)Q)

= e(s(d + t)−1P, (d + t)Q)e((s + ab − 1)(c + bt)−1Q, (c + bt)P )

= e(P,Q)se(Q,P )s+ab−1

= e(P,Q)1−ab.

When t = −d, we have

e(τt, t · pk
(1)
TS + pk

(2)
TS) = e(sP + (ab − 1)(c + bt)−1Q, (c + bt)P )

= e(P,Q)1−ab.

Similarly, when t = −cb−1, we have

e(τt, t · pk
(1)
TS + pk

(2)
TS) = e((1 − ab)(d + t)−1P + sQ, (d + t)Q)

= e(P,Q)1−ab.

With mkTS, we can also obtain same result regardless of t.

e(mkTS, t · pk
(1)
TS + pk

(2)
TS)

= e((1 − ab)(bd − c)−1(bP + Q), (c + bt)P + (d + t)Q)

= e((1 − ab)(bd − c)−1bP, (d + t)Q)e((1 − ab)(bd − c)−1Q, (c + bt)P )

= e(P,Q)(1−ab)(bd−c)−1(b(d+t)−c−bt))

= e(P,Q)1−ab.

��
By the choice of parameters, the q-th torsion subgroup E[q] is a proper subset

of E over K. Since E[q] ∼= Zq × Zq [21], there exist q + 1 distinct subgroups of
order q in E[q] and every element in E[q] \ {O} generates a subgroup of order
q. Therefore, we can deduce that e(P,Q) = 1 ⇐⇒ P ∈ 〈Q〉 for all P,Q ∈ E[q].
Hence, in TRE.KeyGenTS, |〈P 〉| = |〈Q〉| = q always holds and P /∈ 〈Q〉 holds with
probability of q

q+1 for any P and Q randomly chosen from E[q], and P /∈ 〈Q〉
can be easily verified by checking if e(P,Q) is not equal to 1.

Assume that E .Dec(sk, E .Enc(pk,m)) = m always holds for any message m
and key pair (sk, pk) generated by using E .KeyGen with some random coin. Then,
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TRE.Dec is correct if e(pk
(0)
TS , pk

(1)
TS)r1 = e(τt, ct1). From the choice of keys, we

have

e(pk
(0)
TS , pk

(1)
TS)r1 = e(P + aQ, bP + Q)r1

= e(P, bP + Q)r1e(aQ, bP + Q)r1

= e(P, bP )r1e(P,Q)r1e(aQ, bP )r1e(aQ,Q)r1

= e(P,Q)r1(1−ab).

Since ct1 = r1(t · pk
(1)
TS + pk

(2)
TS), the decryption is always correct.

4.1 Security Analysis

In this section, we will show the following results:

– Indistinguishability under chosen plaintext attacks (IND-CPA security) of E
implies indsitinguishability under chosen plaintext attacks of trusted server1

(IND-TS-CPA security) of TRE. This security does not depend on hκ which
could be set to a constant function;

– Indistinguishability under chosen ciphertext attacks (IND-CCA security) of
E and the collision-resistance of hκ imply indistinguishability under chosen
ciphertext attacks of trusted server1 (IND-TS-CCA security) of TRE;

– Hardness of the decisional bilinear Diffie-Hellman problem and the PRG prop-
erty of fπ imply indistinguishability under chosen plaintext attacks of receiver
for a selected release time2 (IND-R-ST-CPA security) of TRE.

The detailed security definitions and the proofs of following theorems can be
found from the full version of the paper [9].

Theorem 1 (IND-TS-CPA security). Let A be an IND-TS-CPA adversary
against TRE which runs in time η with advantage δ. Then, there exists an
IND-CPA adversary B against E. The advantage of B is at least δ and its time
complexity is η + ηe + ηfπ

where ηe is the time to evaluate the pairing e(·, ·), ηe

is the time to evaluate the pairing e(·, ·) and ηfπ
is the evaluation time of fπ.

Theorem 2 (IND-TS-CCA security). Let A be an IND-TS-CCA adversary
against TRE which runs in time η with advantage δ. Then, there exist an
IND-CCA adversary B against E and a collision adversary C against hκ. The
advantage of adversary B is at least δ − δhκ

and its time complexity is η + ηe +
ηfπ

+ ηhκ
where ηe is the time to evaluate the pairing e(·, ·), ηe is the time to

evaluate the pairing e(·, ·), ηfπ
is the evaluation time of fπ, ηhκ

is the evaluation
time of hκ and δhκ

is the advantage of C.

1 An adversary can select pkTS.
2 An adversary needs to declare a release time that it wants to attack before getting

any public key and can selects pkR.



176 G. Choi and S. Vaudenay

Theorem 3 (IND-R-ST-CPA security). Let A be an IND-R-ST-CPA adver-
sary against TRE which runs in time η with advantage δ. Then, there exist
an algorithm B which solves the decisional bilinear Diffie-Hellman problem and
a distinguisher D between fπ(Uμq

) and UK . The advantage of B is at least
δ−3/q−δfπ

and its time complexity is η+3ηe+ηE.Enc where δfπ
is the advantage

of D, ηe is the time to evaluate the pairing e(·, ·), and ηE.Enc is the execution time
of E .Enc.

4.2 Decryption with Master Time Bound Key

The biggest difference between our construction and other constructions is the
existence of the master time bound key. By using the master time bound key,
a ciphertext of unknown release time can be decrypted. By our construction,
a ciphertext consists of (ct0, ct1, ct2). In order to decrypt a ciphertext, we need
to compute e(τt, ct1) should be computed. Due to Property 3, the master time
bound key mkTS can replace any time bound key. Indeed, the receiver only needs
to ask the trusted server to compute e(mkTS, ct1) to decrypt the ciphertext. Since
ct1 is independent from the message, the trusted server cannot learn anything
about the message while computing e(mkTS, ct1).

Similarly, the trusted server can terminate its service without any computa-
tional and storage overhead while preventing losing the encrypted data of users
by revealing the master time bound key. Since the master time bound key can
replace any time bound key, we do not need any extra algorithm for the decryp-
tion with mkTS. This is an advantage for the trusted server as it does not need
to provide any additional algorithm for the decryption with master time bound
key.

On the other hand, the time bound key τt which is generated by
TRE.Broadcast can be equal to the master time bound key mkTS depending on
the random value s. Therefore, the master time bound key can be broadcasted
by the trusted server as a time bound key of a certain time period. However, it
can happen with probability of at most 1/(q − 1) where q is exponential in the
security parameter λ, so it happens in negligible cases. The trusted server could
also easily prevent this problem by comparing the time bound key with master
time bound key before the broadcast.

4.3 Discussion

Since our construction uses an elliptic curve over an extension field Fp2 , we first
need to know what is the computational overhead compared to other construc-
tions which work on Fp. However, it is not easy to compare the exact overhead
because some constructions [3,6–8,13] are based on the generic bilinear pairing,
and some constructions [15,18] are based on the generic identity-based encryp-
tion. Therefore, their computational cost is dependent on the underlying bilinear
pairing and the underlying identity-based encryption scheme. An identity-based
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encryption scheme is usually based on the bilinear pairing3, and it always requires
at least one evaluation of the bilinear pairing. One of most common instantiation
of the bilinear pairing is to use the Weil pairing or the Tate pairing after apply-
ing a distortion map to one of two input points. Since the distortion map maps
a point defined on the elliptic curve over a field Fp to Fp2 , the computation of
the Weil pairing or the Tate pairing is actually the computations on Fp2 . There-
fore, the asymptotic complexities of our construction and other constructions
are similar as long as the bilinear pairing is the most complex computation.

Our construction can also be built on the top of generic bilinear pairings.
Let G be an additive cyclic group, GT be a multiplicative cyclic group, and
ê : G × G −→ GT be a bilinear pairing. If we define P = (g, 0), Q = (0, g)
and e(aP + bQ, cP + dQ) = e((ag, bg), (cg, dg)) = ê(ag, dg)ê(cg, bg)−1, we can
obtain the same construction on the top of generic pairing. The computation of e
however requires two evaluations of a generic bilinear pairing ê. As we mentioned
in the previous paragraph, a generic bilinear pairing is usually instantiated with
the Weil pairing or the Tate pairing. We therefore use the Weil pairing over Fp2

for the efficiency. We note that the construction with a generic pairing can be
more efficient than our construction with the Weil pairing if one can instantiate
a more efficient bilinear pairing.

In our construction, the encryption requires a single evaluation of the Weil
pairing e. Since the encryption always requires to compute e(pk

(0)
TS , pk

(1)
TS), it

can be precomputed by the trusted server and integrated into the trusted server
public key. Therefore, we can make the encryption faster by replacing the trusted
server public key pkTS to (e(pk

(0)
TS , pk

(1)
TS), pk

(1)
TS , pk

(2)
TS).

5 Conclusion

In this paper, we proposed a timed-release encryption scheme which has the mas-
ter time bound key. With master time bound key, a ciphertext can be decrypted
even if the release time of the ciphertext is unknown. We also showed that our
construction is IND-TS-CCA-secure and IND-R-ST-CPA-secure.
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Foundation (SNSF) Proejct funding no. 169110.
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Abstract. Secret sharing is a process that allows storing secret informa-
tion in a distributed manner among several participants. In the original
setting of secret sharing schemes, it was assumed that the total number
of participants is fixed from the very beginning. However, to meet the
state of the art needs, it is required to consider the scenario where any
time a new participant can join and the total number of participants is
(possibly) unbounded. Evolving secret sharing solves the problem. Secret
sharing for evolving threshold access structure has been considered in the
last few years. Here, we consider the Multi-level access structures. More
specifically, we consider evolving compartmental and hierarchical access
structures. We provide constructions with the estimation of share sizes.

Keywords: Evolving access structure · Compartmental access
structure · Hierarchical access structure · Information theoretic security

1 Introduction

1.1 Background and Motivation

Secret sharing is a method to distribute a secret piece of information among
n many parties so that any predefined “qualified” sets of parties can recover
the secret information, whereas every predefined “unqualified” sets of parties do
not get any information about the secret. Secret sharing schemes were proposed
independently by Shamir [16] and Blakley [3] in 1979. The monotone collection of
qualified sets of parties is called an access structure. Secret sharing was initiated
on threshold access structure. More works on secret sharing can be found in [4,9,
10,18]. To address more practical needs, compartmental and hierarchical access
structures are found to be very well fitted. Due to the potential applicability,
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hierarchical access structure has been studied extensively with the appearance
of improved schemes or ones with additional functionality [2,6–8,14,15,18–21].
Recently, Shima and Doi [17] gave a scheme based on information dispersal
technique. However, all the classical secret sharing schemes assume that the
number of participants is fixed, as well as the access structure is well-defined
beforehand. An access structure is called an evolving access structure if anyone
(or both) of the above two presumptions fail to hold. So needless to say that the
number of parties can be potentially infinite and existing classical methodology
fails to provide a secret sharing scheme when the access structure is evolving.

1.2 Related Works

The classical secret sharing schemes assume that the number of participants
and the access structure is known in advance. Komargodski, Naor and Yogev
[11] introduced evolving secret sharing schemes where the dealer does not know
in advance the number of participants that will participate, and moreover, there
is no upper bound on their number. Thus, the number of participants could be
potentially infinite and the access structure may change with time. Komargodski,
Naor and Yogev [11] considered the scenario when participants come one by one
and receive their share from the dealer; the dealer, however, cannot update the
shares which have already been distributed. They showed that for every evolving
access structure there exists a secret sharing scheme where the share size of the
tth participant is 2t−1. They also constructed (k,∞)-threshold evolving secret
sharing scheme for constant k in which the share size of the tth participant
is (k − 1) log t + O(log log t). Furthermore, they have provided an evolving 2-
threshold scheme which is nearly optimal in the share size of the tth participant
viz. log t + O(log log t).

The main technique that [11] used to significantly reduce the share size is
introducing the concept of generations. Each generation consists of participants
and the size of every generation grows exponentially with time. The sizes of
generations are however prefixed depending on the threshold value k. Usage of
Shamir secret sharing scheme helped to reduce share sizes exponentially.

Later, Komargodski and Paskin-Cherniavsky [12] applied the idea of evolv-
ing k-threshold schemes to evolving dynamic threshold schemes and provided a
secret sharing scheme in which the share size of the tth participant is O(t4 log t)
bits. Furthermore, they showed how to transform evolving threshold secret shar-
ing schemes into robust schemes with the help of algebraic manipulation detec-
tion (AMD) codes [5]. Lastly, Beimel and Othman [1] considers the problem of
ramp secret sharing for evolving threshold schemes and drastically reduced the
share size to O(1). Beimel and Othman [1], defined evolving (a, b) ramp scheme
as follows: Let 0 < b < a < 1. Any set of participants whose maximum partici-
pant is the i-th participant and contains at least ai participants can reconstruct
the secret; however, we also require that any set such that all its prefixes are not
a b-fraction of the participants should not get any information on the secret.
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Table 1. Comparative studies of share sizes

Scheme Share size of tth participant

Compartmental access structure

[11] 2t−1

Proposed kt ·max{l, log(kt)}
Hierarchical access structure

[11] 2t−1

Construction-I (k1 + k2 + · · ·+ km)t ·max{l, log(kmt)}
Construction-II ((k1 + k2 + · · ·+ km)t− (m− 1)) ·max{l, log(kmt)}
ki denotes the threshold of i-th compartment/level of compartmen-
tal/hierarchical access structure, respectively. k = max{k1, k2, . . . , km}
& l is the length of secret.

1.3 Our Contribution

In this paper, we present the construction of secret sharing schemes for evolving
compartmental and hierarchical access structures. In the case of hierarchical
access structure, we present two schemes. The second one outperforms the first
one in respect of share size. Moreover, we show that it is possible to have an
ideal secret sharing scheme even with infinitely many parties.

Main challenge behind the constructions is to make compatible the concept
of generation in case of multi-level access structures. We treat multi-level access
structures as a combination of multiple threshold access structure to adopt the
concept of generation.

1.4 Comparison with Existing Results

It is possible to realize evolving compartmental and hierarchical access struc-
tures by evolving general access structure of [11]. In Table 1, we have provided a
comparative study between the proposed constructions and the construction of
[11]. It is evident from the Table 1 that the proposed constructions reduce the
share size exponentially in respect of [11].

2 Preliminaries

For a positive integer n the set {1, 2, . . . , n} is denoted by [n]. Let Pn = [n] be a
set of n participants. Let 2Pn denote the power set of Pn. A collection A ⊂ 2Pn

is said to be monotone if A ∈ A and A ⊂ B imply B ∈ A.

Definition 1 (Access structure). A ⊂ 2Pn is called a monotone access structure
if the collection A is monotone. Any subset A of Pn which are in A are called
qualified sets and F /∈ A are called unqualified or forbidden.
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Definition 2 (Threshold Access structure). Let n ∈ N and 0 < k ≤ n. A (k, n)-
threshold access structure A on a participant set [n] is defined by A = {X ⊂ [n] :
|X| ≥ k}.

We say that Pn is partitioned into m compartments L1, L2, . . . , Lm with
|Li| = ni for i = 1, 2, . . . ,m if the following conditions hold:

– Pn = L1 ∪ . . . ∪ Lm

– Li ∩ Lj = ∅ for all i 
= j.

Definition 3 (Compartmental Access Structure [4]). The compartmental
access structure A on Pn with disjoint compartments L1, L2, . . . Lm is defined as
follows:

A = {A ⊆ P : |A ∩ Li| ≥ ki for i = 1, 2, . . . ,m ∧ |A| = k ≥ (
m∑

i=1

ki)}

Let us denote such an access structure explicitly as A(n, l, {ni}, k, {ki}), or
A in short.

We now give the definition of disjunctive hierarchical access structure [19] on
a set Pn of n participants.

Definition 4 (Hierarchical Access Structure [19]). Let a set of participants
Pn = [n] be composed of m disjoint levels L1,L2, . . . ,Lm such that P = ∪m

i=1Li,
where Li ∩ Lj = ∅ for all 1 ≤ i 
= j ≤ l. With each level Li a positive integer
(threshold) ki is associated such that k1 < k2 < · · · < km and |Li| = ni ≥ ki. A
disjunctive hierarchical access structure, denoted by

⊔l
i=1(ki, ni)P is completely

defined by the collection of minimal qualified sets Qmin ⊂ 2P where U ∈ Qmin

means either

– U contains exactly kj members from Lj for some 1 ≤ j ≤ m or
– if j = max{i : U ∩ Li 
= ∅} then U contains precisely kj many members from

∪j
i=1Li such that for every c, 1 ≤ c ≤ j − 1, |U ∩ (∪c

i=1Li)| ≤ kc.

Any subset of participants that contains at least one minimal qualified set is
a qualified set. Collection of qualified sets will be denoted with Γ .

We now define restriction of an access structure to its first m < n parties
which in essence describes the qualified sets formed by the parties in [m] in A.

Definition 5 (Restriction of Access structure). Let An be an access structure
on a set of n participants Pn = [n] and let 1 ≤ m ≤ n− 1. The restriction of the
given access structure to the first m participants, denoted by An|m, is defined to
be the collection An|m = {X ∈ An : {m + 1,m + 2, . . . , n} ∩ X = ∅}.

If it is clear from the context that An is an access structure on the participant
set [n] then we drop the suffix n and simply write A.

Definition 6 (Evolving Access structure). An infinite sequence of access struc-
tures {Ai}i∈N is called an evolving access structure if:

1. for every i ∈ N, Ai is an access structure over [i].
2. for every i ≥ 2, Ai|i−1 = Ai−1.
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2.1 Secret Sharing Scheme

In a secret sharing scheme there is a dealer who has a secret s, a set of parties
[n] and an access structure A. The dealer shares the secret among the parties
in such a way that any qualified set of parties can recover the secret but any
unqualified set of parties has no information about the secret.

Definition 7 (Secret Sharing Scheme). A secret sharing scheme S for an access
structure A consists of a pair of algorithms (ShareGen,Reconst). ShareGen is a
probabilistic algorithm that gets as input a secret s (from a domain of secrets
S) and a number n, and generates n shares Π

(s)
1 ,Π

(s)
2 , . . . , Π

(s)
n . Reconst is a

deterministic algorithm that gets as input the shares of a subset B of parties and
outputs a string. The requirements for defining a secret sharing scheme are as
follow:

1. (Correctness) For every secret s ∈ S and every qualified set B ∈ A, it must
hold that Pr[Reconst({Π

(s)
i }i∈B , B) = s] = 1.

2. (Security) For every unqualified set B /∈ A and for any two distinct secrets
s1 
= s2 in S, it must hold that the two distributions {Π

(s1)
i }i∈B and

{Π
(s2)
i }i∈B are identical.

The share size of a secret sharing scheme S is the maximum number of bits
each party has to hold in the worst case over all parties and all secrets.

Definition 8. A secret sharing scheme is said to be ideal if its share size is
equal to the secret size.

Definition 9 (Evolving Secret Sharing Scheme). Let A = {At}t∈N be an evolv-
ing access structure. A secret sharing scheme S for A consists of a pair of algo-
rithms (ShareGen,Reconst). ShareGen is a probabilistic algorithm and Reconst is
a deterministic algorithm which satisfy the following:

1. ShareGen(s,Π(s)
1 ,Π

(s)
2 , . . . , Π

(s)
t−1) gets as input a secret s from the domain of

secrets S and the secret shares of parties 1, 2, . . . , t − 1 and outputs the share
of the tth party viz. Π

(s)
t .

2. (Correctness) For every secret s ∈ S, every t ∈ N and every qualified set
B ∈ At, it must hold that Pr[Reconst({Π

(s)
i }i∈B , B) = s] = 1.

3. (Security) For every t ∈ N and every unqualified set B /∈ At and for any
two distinct secrets s1 
= s2 in S, it must hold that the two distributions
{Π

(s1)
i }i∈B and {Π

(s2)
i }i∈B are identical.

2.2 Evolving Secret Sharing [11]

General Construction. The authors in [11] gave a construction of secret shar-
ing scheme for evolving general access structure. Let {At}t∈N denote an evolving
access structure and {ft}t∈N be the sequence of monotone characteristic func-
tions for the evolving sequence of access structures. Each ft : {0, 1}t −→ {0, 1}.
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Suppose s ∈ {0, 1} be the secret bit that needs to be shared. At time t, just
before the tth party arrives, the dealer maintains a list of bits w(b1,...,bi) for all
i ∈ [t − 1] where each bi is either 0 or 1.

1. If f1(1) = 1, set w1 = s
otherwise, set w1 a random bit.

2. for every i ≥ 1; set w(b1,...,bi−1,0) = 0.
3. If ft(b1, . . . , bt−1, 1) = 1 and ft−1(b1, . . . , bt−1) = 0:

set w(b1,...,bt−1,1) = w(b1,...,bt−1) ⊕ · · · ⊕ w(b1) ⊕ s.
4. If ft(b1, . . . , bt−1, 1) = 1 and ft−1(b1, . . . , bt−1) = 0:

set w(b1,...,bt−1,1) = 0.
5. If ft(b1, . . . , bt−1, 1) = 0:

set w(b1,...,bt−1,1) a uniform random bit.

Theorem 1 (Theorem 3.1 of [11]). For every general evolving access struc-
ture the above algorithm gives a secret sharing scheme where the share size of
tth party is bounded above by 2t−1.

(k,∞)-Threshold Secret Sharing. Each party, when it arrives, is assigned to
a generation. Party t ∈ N is assigned to generation g = logk t. The generations
are growing in size: For g = 0, 1, 2, · · · the g-th generation begins when the kg-th
party arrives. Therefore, the size of the g-th generation (i.e. the number of parties
that are members of this generation), is size(g) = kg+1−kg = (k−1).kg. Let s ∈
{0, 1}l be the secret. When a generation g begins the dealer remembers kg l-bit
strings sA for all A = (c0, · · · , cg−1) ∈ {0, · · · , k}g (where if g = 0 it remembers
only the secret). Intuitively, each such sA is an l-bit string that we share to the
parties in generation g assuming that in generation i ∈ {0, · · · , g − 1} ci parties
arrived. We explain how the dealer sets the value of sA for A = (c0, · · · , cg).
Notation: let sprev(A) = s if g = 0 and sprev(A) = s(c0,··· ,cg−1) otherwise.

1. If cg = 0, set sA = sprev(A) and HALT.
2. If c0 + · · · + cg < k, then the dealer:

a. samples rA ←− {0, 1}l uniformly at random.
b. sets sA = sprev(A)

⊕
rA.

c. shares the l-bits rA among the parties in the g-th generation using
Shamir’s (cg, size(g))-threshold secret sharing scheme.

3. If c0 + · · · + cg = k, then the dealer shares the l-bit string sprev(A) among
the parties in the g-th generation using Shamir’s (cg, size(g))-threshold secret
sharing scheme.

Theorem 2 (Lemma 5.2 of [11]). For every k, l ∈ N the above algorithm
gives a secret sharing scheme for the evolving (k,∞) access structure and an
l-bit secret in which for every t ∈ N the share size of the tth party is bounded by
kt · max{l, log kt}.

The authors [11] further improved upon the share-size by a recursive argu-
ment and the summary of their findings is as follows.
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Theorem 3 (Theorem 5.1 of [11]). For every k, l ∈ N the above algorithm
gives a secret sharing scheme for the evolving (k,∞) access structure and an
l-bit secret in which for every t ∈ N the share size of the tth party is bounded by
(k − 1) log t + 6k4l log log t · log log log t + 7k4l log k.

3 Evolving Compartmental Access Structure

A scheme presented in Section 3.1 of [11] for general access structures can be
applied to construct secret sharing scheme for evolving compartmental access
structures. However, the share size of the tth participant is 2t−1. We present
an efficient construction based a scheme of [4]. Moreover, most interestingly, we
show that it is possible to have ideal secret sharing scheme even with infinitely
many parties for a certain type of compartmental access structure. Classification
of all such evolving access structures is an interesting issue but we do not pursue
the question here.

Suppose, there are m compartments, namely, L1, L2, . . . , Lm. We maintain
the same notations as in Definition 3. Let s be a l-bit secret to be shared. The
access structure is evolving in the sense that arbitrary number of parties can
join one by one. Every party will be assigned exactly one level out of these m
many levels. We note that m (number of levels) and ki (threshold values) remain
constant. In the following Fig. 1 we describe the scheme.

– Initial Set-up: Suppose, there are m compartments, viz.
L1, L2, . . . , Lm. Let s be a l−bit secret to be shared.

– Sharing Phase:
1. The Dealer D shares s using (m,m) secret sharing scheme,

where the shares are s1, s2, . . . , sm s.t. s = s1 ⊕ · · · ⊕ sm.
2. Each party t ∈ N, when it arrives, is assigned to a compart-

ment, say, Li.
3. The dealer D distributes the share to t according to the

Evolving ki− threshold access structure.
– Reconstruction Phase:

1. A qualified set A =
⋃m

i=1 Ai, where |Ai| ≥ ki, will broadcast
their shares.

2. Ai will reconstruct si according to the Evolving ki− threshold
scheme.

3. Reconstruct s = s1 ⊕ · · · ⊕ sm.

Fig. 1. Secret sharing scheme for evolving compartmental access structure.

The correctness of reconstruction follows from the two facts: (1) correctness
of individual (ki,∞)-secret sharing schemes for i = 1, 2, . . . ,m whence the si’s
are reconstructed and (2) from the correctness of (m,m)-secret sharing scheme.
Moreover, the security of the scheme also follows from the securities of underlying
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individual (ki,∞)-schemes and the security of (m,m)-secret sharing scheme. We
also note that the share size of tth party is solely determined by the compartment
he is assigned. It is easy to see that the share size of tth participant is bounded
above by kt·max{l, log(kt)} where k = max{k1, k2, . . . , km}. From the discussion
we now have the following theorem.

Theorem 4. There exists a secret sharing scheme for evolving compartmental
access structure parameterized by m and threshold values k1, . . . , km such that
the share size of tth party is bounded above by kt · max{l, log(kt)} where k =
max{k1, k2, . . . , km} and l denotes the bit-length of the secret.

Remark 1. We note that the share size of the above construction can be reduced
exponentially by applying Theorem3.

Ideal Secret Sharing on Evolving Access Structure. We note that it is
possible to have ideal secret sharing scheme for a particular type of evolving com-
partmental access structure namely, the star-graph access structure (see Fig. 2).
The vertex v0 itself constitutes one compartment (essential compartment) and
rest of the vertices belong to another fixed compartment (ordinary compart-
ment). New parties join the ordinary compartment and the minimal qualified
sets are of the form {v0, vi} for any i ≥ 1, which are shown as the edges of the
graph. The shares of the scheme are generated by one-time running an ideal
secret sharing scheme for (2, 2)-threshold access structure. One share is assigned
to v0 and the other share is copied and assigned to every new vi for i ≥ 1.

Fig. 2. Evolving star-graph access structure

4 Evolving Hierarchical Access Structure

Hierarchical access structure is defined in Definition 4. We consider evolving-ness
of hierarchical access structure by allowing (possibly) infinitely many parties
to join. But we keep the number of levels and corresponding threshold values
fixed over time. Using a scheme of [11] for evolving general access structure we
can have a secret sharing scheme for evolving hierarchical access structure with
exponential share size. We give two constructions to reduce share sizes. The first
construction is a direct construction and we improve our results in the second
one.
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Construction-I

The main idea of Construction-I is to view a participant belonging to ith level
Li in (m − i + 1) different ways - as a member of L1 ∪ . . . ∪ Li (with threshold
value ki) and as a member of L1 ∪ . . . ∪ Lj (with threshold value kj) for all
j = i + 1, . . . , m. Therefore, parties who belong to higher level has more shares
to carry (Fig. 3).

– Initial Setup: Suppose, there are m levels, namely,
L1, L2, . . . , Lm, with threshold k1, k2, . . . , km s.t. k1 < k2 < . . . <
km. s is a l-bit secret to be shared.

– Sharing Phase:
1. Each party t ∈ N, when it arrives, is assigned to a level, say,

Li.
2. The dealer D distributes the share to t according to the

Evolving ki, ki+1, . . . , km threshold access structure, where
1 ≤ i ≤ m.

– Reconstruction Phase:
1. A minimal qualified set A will broadcast their shares in fol-

lowing manner:
Case-I All the participants of A are from same level Li.

∗ Broadcast the share of Evolving ki threshold access
structure and reconstruct according to Evolving ki
threshold secret sharing scheme.

Case-II Participants of A are from various level and the lowest
level is Lj .

∗ Broadcast the share of ShareGen(kj ,∞) algorithm
and reconstruct according to Reconst(kj ,∞) algo-
rithm.

Fig. 3. Construction-I: secret sharing scheme for evolving hierarchical access
structure.

The correctness of reconstruction follows from the correctness of individual
(ki,∞)-secret sharing schemes for i = 1, 2, . . . ,m. The security of the scheme
also follows from the securities of underlying individual (ki,∞)-schemes. We
also note that the share size of tth party is solely determined by the level he is
assigned. It is easy to see that the share size of tth participant is bounded above
by (k1 +k2 + · · ·+km)t ·max{l, log(kmt)}. From the discussion we now have the
following theorem:

Theorem 5. There exists secret sharing scheme for an evolving hierarchical
access structure parameterized by number of levels m and the threshold val-
ues k1, . . . , km with share size of tth party bounded by (k1 + · · · + km)t ·
max{l, log(kmt)}, where l denotes the length of secret.



Secret Sharing on Evolving Multi-level Access Structure 189

Construction-II

Suppose, there are m levels, namely, L1, L2, . . . , Lm, with threshold k1, k2,
. . . , km s.t. k1 < k2 < . . . < km. s is a l-bit secret to be shared. Each party,
when it arrives, is assigned to a generation and a level. Party t ∈ N is assigned
to generation g = logkm

t and in a level Li. Here, we build upon the algo-
rithm of Sect. 2.2 by using an IDEAL-HSS(k1, . . . , km; (k−1)kg), where IDEAL-
HSS(k1, . . . , km; (k − 1)kg) denotes an ideal Hierarchical Secret Sharing Scheme
(e.g. [4,6,13]) with m levels among (k − 1)kg participants where k = km. The
details is given in the Construction-II (see, Fig. 4).

– Initial Setup: Suppose, there are m levels, namely,
L1, L2, . . . , Lm, with threshold k1, k2, . . . , km s.t. k1 < k2 < . . . <
km. s is a l-bit secret to be shared.

– Sharing Phase:
1. If cg = 0, set sA = sprev(A) and HALT.
2. If c0 + · · · + cg < ki,then the dealer:

a. samples rA ←− {0, 1}l uniformly at random.
b. sets sA = sprev(A)

⊕
rA.

c. shares the l-bits rA among the parties in the gth genera-
tion using Shamir’s (cg, size(g))-threshold secret sharing
scheme.

3. a. If c0 + · · · + cg = ki, where at least two ci are non-zero,
then the dealer shares the l-bit string sprev(A) among the
parties in the gth generation using Shamir’s (cg, size(g))-
threshold secret sharing scheme.

b. If c0 + · · · + cg = ki, where only one ci is non-zero,
then the dealer shares the l-bit string sprev(A) among the
parties in the gth generation using ShareGen of IDEAL-
HSS(k1, . . . , km; (k − 1)kg).

– Reconstruction Phase:
1. A qualified set A will broadcast their shares in following man-

ner:
Case-I All the participants of A are from same generation g.

∗ Broadcast the share corresponding to IDEAL-
HSS(k1, . . . , km; (k−1)kg) and reconstruct by calling
Reconst of IDEAL-HSS(k1, . . . , km; (k − 1)kg).

Case-II Participants of A are from various generations and the
lowest level is Lj .

∗ Broadcast the share of (kj ,∞) threshold access
structure and reconstruct according to Reconst of
(kj ,∞) algorithm.

Fig. 4. Construction-II: secret sharing scheme for evolving hierarchical access
structure.

The correctness of reconstruction follows from the two facts: (1) correctness of
IDEAL-HSS, when all the participants come from same generation, and (2) from
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the correctness of individual (ki,∞)-secret sharing schemes for i = 1, 2, . . . ,m,
when participants come from various generation. The security of the scheme fol-
lows from the securities of underlying Shamir secret sharing scheme and IDEAL-
HSS. We also note that the share size of tth party is solely determined by the
level he is assigned. It is easy to see that the share size of tth participant is
bounded above by ((k1 +k2 + · · ·+km)t− (m− 1)) ·max{l, log(kmt)}. From the
discussion, we now have the following theorem:

Theorem 6. There exists secret sharing scheme for an evolving hierarchical
access structure parameterized by number of levels m and the threshold values
k1, . . . , km with share size of tth party bounded by ((k1 + k2 + · · · + km)t − (m −
1)) · max{l, log(kmt)}.

5 Conclusion

In this paper, we have studied evolving secret sharing schemes for compartmental
and hierarchical access structure for the first time. We, also, show that it is
possible to have an ideal secret sharing scheme even with infinitely many parties.
Classification of all such evolving access structures on which ideal secret sharing
can be achieved remains an interesting open issue. The evolving schemes have
a conceptual disadvantage: The dealer needs to remember all of the previously
generated shares. This is a problem with the existing technique(s). How to make
schemes more efficient from the dealer’s perspective remain an interesting open
question.

Acknowledgement. The authors are grateful to the anonymous reviewers for their
kind comments and suggestions to improve the article.

References

1. Beimel, A., Othman, H.: Evolving ramp secret-sharing schemes. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 313–332. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 17

2. Belenkiy, M.: Disjunctive multi-level secret sharing. IACR Cryptology ePrint
Archive 2008, 18 (2008)

3. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979, pp. 313–317
(1997)

4. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle,
J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-46885-4 45
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Abstract. At WISA 2015, Choi et al. [9] proposed an identity-
based password-authenticated key exchange (iPAKE) protocol using the
Boneh-Franklin IBE scheme. In this paper, we revisit the iPAKE proto-
col [9] (and its generic construction) that has been standardized in the
international standard committee ISO/IEC JTC 1/SC 27. First, we show
that the iPAKE protocol is insecure against passive/active attacks by a
malicious PKG (Private Key Generator) where the malicious PKG can
find out all clients’ passwords by just eavesdropping the communications,
and the PKG can share a session key with any client by impersonating
the server. Then, we propose two strengthened PAKE (SPI and SPI-
S) protocols that prevents such malicious PKG’s passive/active attacks.
Also, we discuss security of the SPI and SPI-S protocols, and compare
relevant protocols in terms of efficiency and security.

Keywords: PAKE · IBE · Online/offline dictionary attacks

1 Introduction

The password-based authenticated key exchange protocols provide password
authentication and establishment of session keys to be used for protecting sub-
sequent communications. Since the appearance of EKE [4,5] (known as PAKE),
such protocols have been extensively studied (see [1,13] and references therein)
in order to be secure against passive/active attacks as well as offline dictio-
nary attacks on human-memorable passwords, and have received much atten-
tion because password authentication is commonly used (and standardized in
IEEE, ISO/IEC, IETF, ITU-T) and widely deployed in many real-world appli-
cations (e.g. TLS, SSH, IPsec, WEP/WPA, HTTP). At the same time, there
are several attempts to strengthen security of the password-based authenticated
key exchange protocols by combining other cryptographic primitives. In [16],
Yi et al. proposed an identity-based PAKE protocol using IBE (Identity-Based
Encryption). Recently, Choi et al. [9] proposed another identity-based PAKE
(called, iPAKE) protocol using the Boneh-Franklin IBE scheme [6,7] and its
generic construction. Concurrently, Hwang et al. [11] proposed identity-based
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PAKE protocols constructed from IBS (Identity-Based Signature) [10]. In addi-
tion to the security of password authentication, these protocols [9,11,16] provide
another layer of security meaning that it is not possible for an attacker who gets
the password to impersonate the server.

1.1 Motivation and Our Contributions

Currently, the identity-based PAKE protocols [9,11] have been standardized in
ISO/IEC JTC 1/SC 27 [12].1 So, it is of significant importance to thoroughly
analyze security of these protocols [9,11]. In this paper, we focus on the iPAKE
protocol [9] using the Boneh-Franklin IBE scheme [6,7]. After describing the
iPAKE protocol [9], we show that it is insecure against passive/active attacks
by a malicious PKG (Private Key Generator) where the malicious PKG can find
out all clients’ passwords by just eavesdropping the communications, and the
PKG can share a session key with any client by impersonating the server. Then,
we propose two strengthened PAKE (SPI and SPI-S) protocols both of which
provide security against passive/active attacks by a malicious PKG. Also, we
discuss security of the SPI and SPI-S protocols, and compare the PAKE protocols
using the BF-IBE scheme [6,7] (PAKE-CS [16], iPAKE [9], SPI, SPI-S) in terms
of efficiency, number of passes and security against a malicious PKG.

2 Preliminaries

2.1 Notations

Let k ∈ N and λ ∈ N be the security parameters. Let {0, 1}∗ be the set of finite
binary strings and {0, 1}k be the set of binary strings of length k. Let A‖B be

the concatenation of A and B. If U is a set, then u
$← U indicates the process

of selecting u at random and uniformly over U . If U is a function (whatever it
is), then u = U indicates the process of assigning the result to u. Let Dpw be a
dictionary size of passwords. Let C and S be the identities of client and server,
respectively, with each ID ∈ {0, 1}∗.

Also, let G1 and G2 be two groups of order q for some large prime q. A
bilinear map e : G1 × G1 → G2 has the following properties: (1) Bilinear: For
all g1, g2 ∈ G1 and all α, β ∈ Z

�
q , e(gα

1 , gβ
2 ) = e(g1, g2)αβ ; (2) Non-degenerate:

For all pairs g1, g2 ∈ G1, e(g1, g2) �= 1. If g is a generator of G1, then e(g, g) is a
generator of G2; and (3) Computable: There is an efficient algorithm to compute
e(g1, g2) for any g1, g2 ∈ G1.

1 According to the ISO/IEC JTC 1/SC 27 meeting, these protocols [9,11] already
became Korean key management standard in 2015, and have been applied to various
applications (e.g. retails, smart home, payment).
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2.2 Computational Assumptions

First, we define the Computational Diffie-Hellman (CDH) problem. Let G1 be
the group generation algorithm that takes as input 1λ and outputs a group
description (G1, q, g) where G1 is a finite cyclic group of prime order q with g as
a generator.

Definition 1 (CDH Problem). Let G1 be the group generation algorithm
described above. A (t1, ε1)-CDHG1 adversary is a probabilistic polynomial time
(PPT) machine B, running in time t1, such that its success probability
Succcdh

G1
(B), given random elements gα and gβ to output gαβ, is greater than

ε1. We denote by Succcdh
G1

(t1) the maximal success probability over every adver-
saries, running within time t1. The CDH problem states that Succcdh

G1
(t1) ≤ ε1

for any t1/ε1 not too large.

Next, we define the Bilinear Diffie-Hellman (BDH) problem. Let G2 be the
BDH group generation algorithm that takes as input 1λ and outputs a group
description (G1,G2, e, q, g) where G1 and G2 are two groups of prime order q,
e : G1 × G1 → G2 is an admissible bilinear map and g is a generator of G1.

Definition 2 (BDH Problem). Let G2 be the BDH group generation algorithm
described above. A (t2, ε2)-BDHG1,G2,e adversary is a probabilistic polynomial
time (PPT) machine B, running in time t2, such that its success probability
Succbdh

G1,G2,e(B), given random elements gα, gβ and gγ to output e(g, g)αβγ , is
greater than ε2. We denote by Succbdh

G1,G2,e(t2) the maximal success probability
over every adversaries, running within time t2. The BDH problem states that
Succbdh

G1,G2,e(t2) ≤ ε2 for any t2/ε2 not too large.

2.3 An Identity-Based Encryption Scheme

In this subsection, we define the syntax of identity-based encryption (IBE) and
describe the Boneh-Franklin IBE (BF-IBE) scheme [6,7] that is the most efficient
construction among IBE schemes (see [8]).

Definition 3 (Identity-Based Encryption). An identity-based encryption
(IBE) scheme is a quadruple of probabilistic polynomial time algorithms
(SetupIBE,Extract,Encrypt, Decrypt) such that:

– The setup algorithm SetupIBE takes as input 1λ and outputs public parameters
ppIBE and a master secret key msk where (mpk, msk) is a pair of master
public/secret keys and mpk is included in ppIBE. Also, the public parameters
include descriptions of a finite message space M and a finite ciphertext space
C. The ppIBE will be publicly known, while the msk will be known only to the
Private Key Generator (PKG).

– The key extraction algorithm Extract takes as input ppIBE, msk and an identity
ID ∈ {0, 1}∗, and outputs a private key dID corresponding to the user with this
identity.
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– The encryption algorithm Encrypt takes as input ppIBE, an identity ID and a
message M ∈ M, and outputs a ciphertext C ∈ C.

– The decryption algorithm Decrypt takes as input ppIBE, C and a private key
dID, and outputs M ∈ M.

It is required that M = Decrypt(ppIBE, C, dID) for all ID ∈ {0, 1}∗ and M ∈ M
where C = Encrypt(ppIBE, ID,M).

2.4 Boneh-Franklin IBE (BF-IBE)

Here, we describe the Boneh-Franklin IBE (BF-IBE) scheme [6,7] that is proven
to be IND-ID-CPA secure (i.e. semantic security against adaptively chosen iden-
tity and message attacks) in the random oracle model [3] under the BDH problem
in Definition 2.

– The setup algorithm SetupIBE on input 1λ outputs public parameters ppIBE
and a master secret key msk where (G1,G2, e, q, g) is generated by calling
the BDH group generation algorithm G2 on input 1λ, and G : {0, 1}∗ → G1

and H : G2 → {0, 1}k are descriptions of cryptographic hash functions. The
message space M = {0, 1}k and the ciphertext space C = G1 × {0, 1}k. Let
z be a random element from Z

�
q and set (mpk,msk) = (gz, z). It outputs

(ppIBE,msk) = ((G1,G2, e, q, g, gz, G,H), z).
– The key extraction algorithm Extract, on input ppIBE, msk(= z) and an iden-

tity ID, computes QID = G(ID) and outputs a private key dID ≡ Qz
ID.

– The encryption algorithm Encrypt, on input ppIBE, an identity ID and a mes-
sage M , chooses a random element r

$← Z
�
q and computes gID = e (G(ID), gz),

U1 ≡ gr and U2 = M ⊕ H(gr
ID). Then, it outputs a ciphertext C = (U1, U2).

– The decryption algorithm Decrypt, on input ppIBE, C = (U1, U2) and a private
key dID(≡ Qz

ID), computes δ = e(dID, U1) and outputs M = U2 ⊕ H(δ).

The consistency of the BF-IBE scheme can be easily checked by

δ = e(dID, U1) = e(Qz
ID, gr) = e(QID, g)zr = e(QID, gz)r = gr

ID. (1)

3 The iPAKE Protocol

In this section, we describe the iPAKE protocol [9] which consists of Initializa-
tion and Key Establishment phases.

3.1 Initialization

In this phase, it executes the following three processes Setup, Extract and
Registration.
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3.1.1 Setup

The Setup on input 1λ outputs public parameters pp and a master secret key msk
by running the setup algorithm SetupIBE of Sect. 2.4 where H ′,H3 : {0, 1}∗ →
{0, 1}k are descriptions of additional cryptographic hash functions. It outputs
(pp,msk) = ((ppIBE,H

′,H3), z).

3.1.2 Extract

The Extract (run by PKG), on input the public parameters pp, the master secret
key msk(= z) and an identity S, computes QS = G(S) and outputs a private key
dS ≡ Qz

S that is securely transmitted to the corresponding server S.

3.1.3 Registration

First, client C randomly chooses his/her password pw from a dictionary Dpw and
sends (C,H ′(pw)) to server S. Then, the server stores (C,H ′(pw)) to a password
file. This registration process should be done securely between client C and server
S.

3.2 Key Establishment

In this phase, client C and server S execute the iPAKE protocol over insecure
networks in order to share a session key. This phase of iPAKE has three steps
as below.

Step 1. The client C runs the encryption algorithm Encrypt of Sect. 2.4 on
input pp, an identity S and a message H ′(pw). Then, client C sends (C, U1, U2)
to server S.
Step 2. After receiving a message (C, U1, U2) from client C, server S runs the
decryption algorithm Decrypt of Sect. 2.4 on input pp, (U1, U2) and a private
key dS. If (U2 ⊕ H(δ)) �= H ′(pw), the server aborts the protocol. Otherwise,

server S chooses a random element y
$← Z

�
q , and computes Y ≡ gy and

Z ≡ Uy
1 . Also, the server computes a session key SKS = H3(C||S||sid||δ||Z),

where sid = U1||U2||Y , and then sends (S, Y ) to the client.
Step 3. After receiving a message (S, Y ) from server S, client C computes
Z ≡ Y x and a session key SKC = H3(C||S||sid||gr

S||Z) where sid = U1||U2||Y .

4 Passive/Active Attacks on iPAKE

This section shows passive and active attacks by a malicious PKG (Private Key
Generator) on the iPAKE protocol [9]. Also, these attacks can be applied to the
generic construction of iPAKE (in Section 4 of [9]).



Strengthened PAKE Protocols Secure Against Malicious PKG 197

4.1 A Passive Attack on iPAKE

Here, we show that a malicious PKG can find out all clients’ passwords by just
eavesdropping the communications of the iPAKE protocol. After eavesdropping
the first message (C, U1, U2) in the Key Establishment phase, the malicious
PKG who has the master secret key z can decrypt the ciphertext (U1, U2) since
dS ≡ (G(S))z. With all possible password candidates, the PKG can find out
the client’s password pw by performing offline dictionary attacks on H ′(pw) =
U2 ⊕ H(e(dS, U1)). Of course, these offline dictionary attacks can be used for all
clients who registered to server S.

4.2 An Active Attack on iPAKE

Here, we show that a malicious PKG can share a session key with any client by
impersonating the server in the iPAKE protocol. After receiving the first message
(C, U1, U2) in the Key Establishment phase, the malicious PKG who has the
master secret key z just executes Step 2 except the check of W �= H ′(pw)
and then can share the same session key SKC = H3(C||S||sid||δ||Z) with client
C. Note that in this active attack the PKG does not need to perform offline
dictionary attacks at all.

5 A Strengthened PAKE (SPI) Protocol

In this section, we propose a strengthened PAKE (for short, SPI) protocol that
provides security against passive/active attacks by a malicious PKG (Private
Key Generator). The main idea of SPI is to double mask the password verification
data on client C where the first mask is performed with a Diffie-Hellman public
key and the second one is with an encryption algorithm Encrypt of BF-IBE [6,7].
The SPI protocol consists of Initialization and Key Establishment phases.

5.1 Initialization

In this phase, it executes the following three processes Setup, Extract and
Registration.

5.1.1 Setup

The Setup on input 1λ outputs public parameters pp and a master secret
key msk where (G1,G2, e, q, g) is generated by calling the BDH group gener-
ation algorithm G2 on input 1λ, h is another random generator of G1, and
G : {0, 1}∗ → G1, H : G2 → {0, 1}k, H1 : {0, 1}∗ → Z

�
q and H2,H3 :

{0, 1}∗ → {0, 1}k are descriptions of cryptographic hash functions. Also, it

chooses a random element z
$← Z

�
q and sets (mpk,msk) = (gz, z). It outputs

(pp,msk) = ((G1,G2, e, q, g, h, gz, G,H,H1,H2,H3), z).
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5.1.2 Extract

The Extract (run by PKG), on input the public parameters pp, the master secret
key msk(= z) and an identity S, computes QS = G(S) and outputs a private key
dS ≡ Qz

S that is securely transmitted to the corresponding server S.

5.1.3 Registration

First, client C randomly chooses his/her password pw from a dictionary Dpw

and sends (C, h−H1(pw)) to server S. Then, the server stores (C, h−H1(pw)) to
a password file. Note that password pw is kept by client C secretly, and
(dS, (C, h−H1(pw))) are held by server S secretly. This registration process should
be done securely between client C and server S.

5.2 Key Establishment

In this phase, client C and server S execute the SPI protocol over insecure net-
works (e.g. the Internet) in order to share a session key to be used for protecting
subsequent communications. This phase of SPI has three steps as below (see also
Fig. 1).

Step 1. The client C chooses two random elements x, r
$← Z

�
q , and computes

a Diffie-Hellman public value X ≡ gx and its masked value W ≡ X · hH1(pw)

using the password pw. For the second mask, the client encrypts the value W
by computing gS = e (G(S), gz), U1 ≡ gr and U2 = W ⊕ H(gr

S). Then, client
C sends (C, U1, U2) to server S.

Step 2. The server S chooses a random element y
$← Z

�
q and computes a

Diffie-Hellman public value Y ≡ gy. After receiving a message (C, U1, U2)
from client C, server S decrypts the latter mask using its private key dS ≡ Qz

S

by computing δ = e(dS, U1) and W = U2 ⊕ H(δ). Also, the server computes
X ′ ≡ W · h−H1(pw) and a Diffie-Hellman key K ′ ≡ (X ′)y. Then, server S
computes its authenticator VS = H2(sid||X ′||K ′) and a session key SKS =
H3(sid||X ′||K ′) where a session identifier sid = C||S||U1||U2||Y . Finally, the
server sends (S, Y, VS) to the client.
Step 3. After receiving a message (S, Y, VS) from server S, client C first
computes a Diffie-Hellman key K ≡ Y x and checks the validity of VS. If VS �=
H2(sid||X||K) where sid = C||S||U1||U2||Y , the client aborts the protocol.
Otherwise, client C computes a session key SKC = H3(sid||X||K).
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Fig. 1. A strengthened PAKE (for short, SPI) protocol secure against malicious PKG

From the above construction, one might think of using only one random ele-
ment (x or r) instead of two random elements in Step 1 for efficiency improve-
ments. However, such constructions can result in offline dictionary attacks by
a malicious PKG who has the master secret key z. For example, if the random
element r is reused for K (i.e. X ≡ gr) the malicious PKG can find out the
password pw by performing offline dictionary attacks. This is the reason why we
use two random elements x, r where x is used for the first mask and r is for the
second mask in the SPI protocol.

6 A Strengthened PAKE (SPI-S) Protocol for
Simultaneous Message Exchanges

In this section, we propose a strengthened PAKE (for short, SPI-S) protocol that
not only provides security against passive/active attacks by a malicious PKG,
but also allows simultaneous message exchanges between client C and server
S. The latter feature is particularly important in a situation where network
latency matters. Differently from SPI, we exploit the masking technique [2] of
Diffie-Hellman public values for the first mask of password verification data.
Actually, this masking technique makes it possible to remove the computation
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of VS (in Step 2 of the Key Establishment phase). The SPI-S protocol consists
of Initialization and Key Establishment phases.

6.1 Initialization

In this phase, it executes the following three processes Setup, Extract and
Registration.

6.1.1 Setup

This process is almost same as Setup of Sect. 5.1.1 except that h1 and h2 are
two random generators of G1. It outputs (pp,msk) = ((G1,G2, e, q, g, h1, h2, g

z,
G,H,H1,H2), z).

6.1.2 Extract

This process is the same as Extract of Sect. 5.1.2.

6.1.3 Registration

First, client C randomly chooses his/her password pw from a dictionary Dpw and
sends (C, h

−H1(pw)
1 , h

H1(pw)
2 ) to server S. Then, the server stores (C, h

−H1(pw)
1 ,

h
H1(pw)
2 ) to a password file. Note that password pw is kept by client C secretly,

and (dS, (C, h
−H1(pw)
1 , h

H1(pw)
2 )) are held by server S secretly. This registration

process should be done securely between client C and server S.

6.2 Key Establishment

In this phase, client C and server S execute the SPI-S protocol over insecure net-
works (e.g. the Internet) in order to share a session key to be used for protecting
subsequent communications. This phase of SPI-S has three steps as below (see
also Fig. 2).

Step 1. This step is the same as Step 1 of Sect. 5.2 except the computation
of masked value W ≡ X ·hH1(pw)

1 . Then, client C sends (C, U1, U2) to server S.
Step 2. The server S chooses a random element y

$← Z
�
q , and computes a

Diffie-Hellman public value Y ≡ gy and its masked value Z ≡ Y · h
H1(pw)
2 .

Then, the server sends (S, Z) to the client without waiting for his/her message.
After receiving a message (C, U1, U2) from client C, server S decrypts the
latter mask using its private key dS ≡ Qz

S by computing δ = e(dS, U1) and
W = U2 ⊕ H(δ). Also, the server computes X ′ ≡ W · h

−H1(pw)
1 , a Diffie-

Hellman key K ′ ≡ (X ′)y and a session key SKS = H2(sid||X ′||Y ||K ′) where
a session identifier sid = C||S||U1||U2||Z.
Step 3. After receiving a message (S, Z) from server S, client C computes
Y ′ ≡ Z · h−H1(pw)

2 , a Diffie-Hellman key K ≡ (Y ′)x and a session key SKC =
H2(sid||X||Y ′||K) where sid = C||S||U1||U2||Z.
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Fig. 2. A strengthened PAKE (for short, SPI-S) protocol for simultaneous message
exchanges

7 Security of SPI and SPI-S

In this section, we discuss security of the SPI and SPI-S protocols against pas-
sive/active attacks by a malicious PKG (Private Key Generator), and server
impersonation attacks after password compromise. Note that security against
passive/active attacks by a malicious PKG is a stronger security guarantee than
security against passive/active attacks by an outside attacker.

Let us consider passive/active attacks by a malicious PKG who not only has
the master secret key msk in the SPI and SPI-S protocols, but also eavesdrops
and completely controls the exchanged messages between client C and server S. If
the PKG cannot compute an authenticated session key SK with the probability
better than that of online dictionary attacks, we can say that the SPI and SPI-S
protocols are secure against the malicious PKG’s passive/active attacks.

7.1 Security of SPI

We start with the PKG’s passive attacks in the SPI protocol where the PKG can
get the messages (C, U1, U2), (S, Y, VS), and then wants to compute the session
key SK. That is, the PKG’s goal is to derive the correct K from W and Y ,
because the only secret in the computation of SK is K ≡ Y x. Though X ′ can
be determined with all possible password candidates pw′ ∈ Dpw, the only way
for the PKG to extract K from W and Y is to compute Y x. However, the
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probability for the PKG to compute Y x is negligible in the security parameter
for the underlying group since both x and y are random elements chosen from
Z

�
q . Therefore, the SPI protocol is secure against the PKG’s passive attacks.

In the PKG’s active attacks on the SPI protocol, there are two cases to be
considered. When the PKG impersonates server S (as in the attack of Sect. 4.2),
it can compute the same SK (to be shared with client C) if and only if the
authenticator VS is valid. For a valid authenticator VS, the PKG has to compute
the correct K ′ from W and Y after guessing a password pw′ ∈ Dpw so that its
probability is bounded by the probability of pw′ = pw. Of course, the PKG can
know whether pw′ is equal to pw or not by seeing a subsequent message from
client C. However, when pw′ �= pw, the probability for the PKG to compute the
correct K ′ is negligible in the security parameter for the underlying group since
the PKG has to guess the discrete logarithm x (chosen by client C) as well. That
is, this server impersonation attack is restricted by the online dictionary attacks
where the PKG can try a guessed password by communicating with the honest
client C. When the PKG impersonates client C, it can compute the same SK (to
be shared with server S) if and only if the received authenticator VS is valid. For
that, the PKG should have used the same password pw′ = pw in the computation
of W . If VS is not valid, the PKG can notice that the guessed password pw′ is not
equal to pw. However, when pw′ �= pw, the probability for the PKG to compute
the correct K is negligible in the security parameter for the underlying group
since the PKG has to guess an entangled discrete logarithm y′ as well2. That
is, this client impersonation attack is restricted by the online dictionary attacks
where the PKG can try a guessed password by communicating with the honest
server S. Therefore, the SPI protocol is secure against the PKG’s active attacks.

We can prove a formal security of the SPI protocol by showing a reduction to
the CDH problem in Definition 1. As a core proof technique, we embed a Diffie-
Hellman instance (gα, gβ) into the simulation of the SPI protocol. Specifically,
we set h = gα and introduce the other part gβ in the simulation of server S by
computing a Diffie-Hellman public value Y ≡ (gβ)y. After excluding all negligible
success probabilities and online dictionary attacks, we can show that the CDH
problem is solved by using an adversary who is attacking on the SPI protocol.
Due to the lack of space, the details are omitted.

7.2 Security of SPI-S

Here, we start with the PKG’s passive attacks in the SPI-S protocol where the
PKG can get the messages (C, U1, U2), (S, Z), and then wants to compute the
session key SK. That is, the PKG’s goal is to derive the correct K from W and
Z, because the only secret in the computation of SK is K ≡ Y x. Though both X ′

and Y ′ can be determined with all possible password candidates pw′ ∈ Dpw, the
only way for the PKG to extract K from W and Z is to compute Y x. However,
the probability for the PKG to compute Y x is negligible in the security parameter

2 In other words, the PKG should solve the discrete logarithm between two random
generators g and h.
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for the underlying group since both x and y are random elements chosen from
Z

�
q . Therefore, the SPI-S protocol is secure against the PKG’s passive attacks.

In the PKG’s active attacks on the SPI-S protocol, there are two cases to be
considered. When the PKG impersonates server S (as in the attack of Sect. 4.2),
it can compute the same SK (to be shared with client C) if and only if the
Diffie-Hellman key K ′ is equal to K. For that, the PKG has to compute the
correct K ′ from W and Y after guessing a password pw′ ∈ Dpw so that its
probability is bounded by the probability of pw′ = pw. Of course, the PKG can
know whether pw′ is equal to pw or not by seeing a subsequent message from
client C. However, when pw′ �= pw, the probability for the PKG to compute the
correct K ′ is negligible in the security parameter for the underlying group since
the PKG has to guess the discrete logarithm x (chosen by client C) as well. That
is, this server impersonation attack is restricted by the online dictionary attacks
where the PKG can try a guessed password by communicating with the honest
client C. When the PKG impersonates client C, it can compute the same SK (to
be shared with server S) if and only if the Diffie-Hellman key K is equal to K ′.
For that, the PKG has to compute the correct K from X and Z after guessing
a password pw′ ∈ Dpw so that its probability is bounded by the probability of
pw′ = pw. Of course, the PKG can know whether pw′ is equal to pw or not
by seeing a subsequent message from server S. However, when pw′ �= pw, the
probability for the PKG to compute the correct K is negligible in the security
parameter for the underlying group since the PKG has to guess the discrete
logarithm y (chosen by server S) as well. That is, this client impersonation
attack is also restricted by the online dictionary attacks where the PKG can try
a guessed password by communicating with the honest server S. Therefore, the
SPI-S protocol is secure against the PKG’s active attacks.

The security of the SPI-S protocol against the PKG’s passive/active attacks
can be formally proved by following the proof technique of [2] under the set
password-based chosen-basis CDH problem since we applied the same masking
technique of Diffie-Hellman public values as in [2].

Also, it is clear that the security of the SPI and SPI-S protocols against server
impersonation attacks after password compromise is inherent to the security of
the BF-IBE scheme in Sect. 2.4.

Table 1. Comparison of PAKE protocols using the BF-IBE scheme [6,7]

Protocols Computation costs Communication

costs

# of

passes

Security against a

malicious PKGClient C Server S

PAKE-CS [16] 1e + 5Exp
G1

+

1Exp
G2

1e + 4Exp
G1

|C| + |S| +
4|G1| + |H|

2 No

iPAKE [9] 1e + 2Exp
G1

+

1Exp
G2

1e + 2Exp
G1

|C| + |S| +
2|G1| + |H|

2∗ No

SPI (Sect. 5) 1e + 3.17Exp
G1

+

1Exp
G2

1e + 2Exp
G1

|C| + |S| +
2|G1| + 2|H|

2 Yes

SPI-S (Sect. 6) 1e + 3.34Exp
G1

+

1Exp
G2

1e + 2Exp
G1

|C| + |S| +
2|G1| + |H|

2 Yes

∗As stated in [9], the iPAKE protocol can be constructed with a single pass.
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8 Comparison

In this section, we compare the PAKE protocols using the BF-IBE scheme [6,7]
(PAKE-CS [16], iPAKE [9], SPI of Sect. 5, SPI-S of Sect. 6) in terms of efficiency,
number of passes and security against a malicious PKG.

We summarize the comparative result in Table 1 where Exp
G1

(resp., Exp
G2

)
indicates a modular exponentiation in G1 (resp., G2), and |c| indicates a bit-
length of c. The number of modular exponentiations for one simultaneous calcu-
lation of two bases (i.e. gx1

1 ·gx2
2 ) is counted to 1.17 due to the Strauss’s algorithm

[14,15] (also known as Shamir’s trick). If pre-computation is allowed, the compu-
tation cost of client C is reduced to 2Exp

G1
(resp., 2.17Exp

G1
) in the SPI (resp.,

SPI-S) protocol. One can see that there is a trade-off between the SPI and SPI-
S protocols with respect to computation costs of client C and communications
costs. Though the iPAKE protocol [9] is more efficient than the SPI and SPI-S
protocols with respect to both computation costs of client C and communica-
tions cost, it is not secure against passive/active attacks by a malicious PKG (as
in Sect. 4).
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Abstract. In this paper, we propose a new commitment key generation
method for the mixnet shuffle proof developed by Bayer-Groth in Euro-
crypt’ 12. The problem of the shuffle proof algorithm is that it gives too
much power to a single authority: It has been shown that the authority,
who creates commitment keys and generates proofs for verifying elec-
tronic voting (e-voting) results, also can produce malicious verification
proofs by logging the exponents of commitment keys. We suggest a new
way to decentralize the commitment key generation process by allowing
multiple parties to jointly participate in the commitment key generation.
Therefore, any of the parties, even who operating e-voting system, cannot
know the exponents of commitment keys fully. Therefore, our suggestion
distributes the power that is concentrated on the single authority and
makes the verification process of the proof more sound and prudent.

Keywords: Multi-party computation · E-voting · Commitment

1 Introduction

1.1 Motivation

The e-voting becomes a popular voting method for modern governance. The
growing mobility of citizens makes e-voting to an unavoidable trend for successful
democratic decision. Advanced cryptographic primitives improve the anonymity
and privacy of e-voting and enable people to make sure that their votes are
secured and counted.

Recently, Lewis et al. [13] raised several concerns on e-voting processes based
on Bayer-Groth proofs [14]. They claim that logging the random exponents of
commitment keys in Bayer-Groth proofs can be used to manipulate e-voting
results, which can pass verification. The problem that they pointed out may be
debatable since it assumes that an authority, who governs and operates e-voting
such as electoral commission, is untrusted. Moreover, their claim is not surprising
since the shuffle and verification processes of mixnet depend on hardness of the
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discrete logarithm problem. Knowing the exponents of commitment keys leads
the security failures.

However, fair voting is critically important for the successful execution of
democracy. In a critical national election such as the presidential election, a risk
that compromising the voting result is huge. Distributing the concentration of
power from a single authority to multiple parties makes people more convince
on the process and outputs of the election. Enabling such distribution of power
remains an important task to build a more trusted e-voting system.

1.2 Our Contribution

In this paper, as a solution to the Lewis et al.’s problem mentioned above,
we propose a technique that generates the commitment keys in a decentralized
way. Our technique enables that the multiple parties participate in generating
the commitment keys of Bayer-Groth’s suffle algorithm [14]. Particularly, our
technique can be applied to efficiently distribute the power of the authority
running e-voting. In our scheme, the random exponents of the commitment keys
cannot be leaked unless all parties collude. Moreover, it allows anyone who is
participated in commitment key generation to verify that the generated keys are
valid even if the commitment variables are randomized.

Our technique relies on the discrete logarithm problem. Its main idea can
be explained clearly in the most simple cases where there are only two parties
“Alice” and “Bob” (although it can be easily extended to the multi-party case).
We suppose that two parties, Alice and Bob, generate a commitment variable
together. First, a given generator g for a cyclic group G of order q, Alice randomly
selects a from Z∗

q and computes ga. Bob, then, picks b at random and computes
(ga)b, which is random due to randomness of the two variables a and b. But,
the exponents ab will be hidden unless both Alice and Bob collude. This means
that no one will know ab including Alice and Bob. However, this simple multi-
party computation needs an additional verification process. Suppose that Alice
has performed her computation first and has sent ga to Bob. If Bob wants to
cheat Alice, instead of computing (ga)b, Bob can compute gb and set this as an
output. But, in this case, Alice will not know whether the output was generated
actually from gab or just from gb. Moreover, Bob knows the exact power of the
output, which is b.

Our solution avoids this fraud by allowing Alice to verify that the Bob’s out-
put is computed under Alice’s random value, a. Therefore, instead of providing a
sole output value, Bob needs to provide a proof. In particular, when Bob submits
gab, he has to submit gb too. Then, Alice who owns a will verify that the values
are created correctly based on her submission by computing (gb)a.

2 Preliminaries

2.1 Commitment

For a cyclic group G of large prime order q, the general Pedersen commitment
scheme [12] works as follows:
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The key generation algorithm K chooses random generators G1, . . . , Gn and
H of the group G and sets the commitment key ck = (G1, . . . , Gn,H). To commit
to n elements (a1, . . . , an) ∈ Zn

q , we pick randomness r ∈ Zq and compute
comck(a1, . . . , an; r) = Hr

∏n
i=1 Gai

i . We can also commit to less than n elements;
this is done by setting the remaining entries to 0. We will always assume that
interested parties have verified that commitments belong to the group G.

The commitment is computationally binding under the discrete logarithm
assumption. The commitment scheme is perfectly hiding since the commitment
is uniformly distributed in G no matter what the messages are.

2.2 Known Exponents Attacks on Commitment Keys [13]

The mixnet ZKP of Bayer and Groth [14] highly relied on the discrete logarithm
(DL) assumption. Particularly, in their commitment scheme, logging exponents
of commitment parameters result in the failure of the security. In other words, if
a malicious authority generates commitment parameters ck = {H,G1, . . . , Gn}
where Gi = Hei by using H and logging ei, the malicious authority can gen-
erate a fake commitment result using those known exponents. For example, A
commitment comck(a; r) can be computed using comck(b; r0) by setting

r0 = r +
n∑

i=1

ei(ai − bi)

because

comck(a; r) = Hr
n∏

i=1

Gai
i

= Hr
n∏

i=1

Haiei

= Hr+
∑n

i=1(ai−bi)ei

n∏

i=1

Hbiei

= Hr0

n∏

i=1

Gbi
i

= comck(b; r0)

3 Proposed Technique

3.1 Overview

In the original generation of commitment keys, the single authority creates ran-
domized values from Z∗

q . Given the group generator g, the authority can generate
the random exponent ri and compute gri to compute commitment keys. Because
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this authority is also the one who generates proofs to verify the results, ri can
be used as a trapdoor to make cheat proofs when it is logged [13].

To prevent this flaw in the scheme, we suggest two steps to generate com-
mitment keys between multiple parties. The first step is randomizing generators
from g to g′ and h′, which are respectively for Gi and H, by participating mul-
tiple parties in the system. The second step is creating random commitment
keys using the randomized generators. We accept that any party can record its
random exponent, but do not allow the whole values of powers of randomized
generators (accordingly, commitment keys) to be known to any of the involved
parties unless all parties collude.

Moreover, our technique enables efficient and flexible generation of commit-
ment parameters. The trivial approach is making all parties participate in the
generation of each commitment key. In a real e-voting system, the number of
commitment keys required to verfy the voting results is very large because the
number of commitment keys is close to the square of total number of votes. Since
the increasing number of e-votes, generating and managing a large number of
commitment keys and its proofs in each party is not easy. Moreover, if the num-
ber of e-voters are larger than its anticipation, the system may require whole
generation process, again to increase the acceptable voting numbers depending
on the implementation design of voting system. Our stepwise approach enables
the system not to be limited by this restriction.

3.2 Randomizing a Generator

The first step is randomizing a generator g to g′ = g
∏n

i=1 ai and h′ = g
∏n

i=1 bi

where n is the total number of parties and ai and bi are their contribution to the
randomization. Therefore, unless all parties collude, the discrete logarithms to
the base g of g′ and h′ are not be computable. Moreover, each party can verify
that their contribution on g′ and h′ using the proofs that each participating party
provides along with their computation on g′ and h′. We use h′ to generate H
and g′ to generate G1, . . . , Gn. We also can use different randomized generators
to break correlation between commitment keys in Gi (particularly, the first few
commitment keys of Gi), instead of using g′ for all Gi. In this section, we describe
how to derive g′, but the same technique can be used to generate h′.

Multi-party commitment key generation can be realized by the following four
algorithms. We use [k] to denote the set {1, . . . , k}:

• Setup(λ) → pk: The algorithm generates a cyclic group G of order q with
the generator g. It sets pk = (G, q). It also sets P0 := {g}.

• KeyGen(pk, i) → ski: The algorithm takes as inputs pk and randomly selects
ai from Z∗

q . It outputs ski = ai.
• ParamGen1(pk, sk1, P0) → P1: Only for the first party, the algorithm takes

as inputs a generator g from P0 and a1 from sk1. It then computes the
randomized generator P1 := ga1 and outputs P1.

• ParamGen2(pk, skk, Pk−2, Pk−1) → Pk for k ≥ 2: The algorithm takes as
inputs the outputs from the previous parties. Particularly, it takes g

∏k−2
i=1 ai
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from Pk−2 and {g
∏k−1

i=1 ai , g(
∏k−1

i=1 ai)/aj ; j = [k − 2]} from Pk−1.
The kth party, who has skk = ak, then computes (1) the randomized gener-
ator (g

∏k−1
i=1 ai)ak and (2) the proofs (g

∏k−2
i=1 ai)ak and (g(

∏k−1
i=1 ai)/aj )ak for all

j ∈ [k − 2]. Therefore, it outputs

Pk = {g
∏k

i=1 ai , g(
∏k

i=1 ai)/aj ; j = [k − 1]}.

• Verification(skk, PN ) → {0, 1}: The kth party takes as inputs from PN

where
PN = {g

∏N
i=1 ai , g(

∏N
i=1 ai)/aj ; j = [N − 1]}.

To verify the result, the algorithm takes g
∏N

i=1 ai and the kth proof bk, which
is supposed to be g

∏N
i=1 ai/ak . If g

∏N
i=1 ai is identical to (bk)ak , it outputs 1.

Otherwise, it outputs 0 and aborts.

The verification over the final results can be performed by each party for the
final outcome of commitment keys, which are generated by the Nth party in the
generation. Table 1 shows the summary of randomization process of the gener-
ator g. The columns of the table show that the outputs of ParamGen. The
row “Randomized generator” shows the randomized outcome of the generator
contributed by each of N parties. It should be noted that the value is the last
column in this row is the commitment key (i.e, Gi). The values in the following
rows show the proofs.

Table 1. Randomizing g and the proofs associated to N parties

Generator P1 P2 P3 . . . PN

Randomized generator g ga1 ga1a2 ga1a2a3 . . . g
∏N

i=1 ai

Proofs for the 1st party ga2 ga2a3 . . . g(
∏N

i=1 ai)/a1

Proofs for the 2nd party ga1a3 . . . g(
∏N

i=1 ai)/a2

...
. . .

...

Proofs for the (N − 1)th party g(
∏N

i=1 ai)/aN−1

3.3 Random Generation over Commitment Keys

After the successful generation of a randomized generator g′ = g
∏N

i=1 ai and
h′ = g

∏N
i=1 bi , election board can randomly generate commitment keys such as

H,G1, . . . , Gn over the randomized generators. However, this randomization also
needs to provide the proofs where the variables are generated over the g′ and h′.

Let ri be a random variable that be selected to randomize commitment keys.
The participated party cannot distinguish Gi = (g′)ri from gri because ri is not
given. One of the trivial approach is providing the proofs for each commitment
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keys. However, in this case, the number of elements, which have to be given for
the proofs, is significantly large.

For example, 10 candidates of the election are participated in to gener-
ating g′, and there exists 100,000 voters for the e-voting. In the worst case
scenario, the number of total commitment keys required is 100,001 variables,
H,G1, . . . , G100,000. However, the size of the proofs is 10 times larger, which is
one million variables since 100,001 proofs are required for each of 10 candidates.
This results in a slow verification process since it means that each candidate
requires to compute one 100,001 exponentiations over a group element to verify
that the commitment keys are properly computed.

We subsequently reduce the number of proofs by multiplying commitment
keys. For example, in our technique, each party only needs 99,999 multiplication
between group elements and two exponentiation instead of 100,001 exponenti-
ations. Moreover, the number of proofs is only four elements, two for H and
the other two for G1 . . . Gn for each party. Therefore, it significantly reduces
the computation and storage requirements for the party. We also describe the
ParamGen for G1, ..., Gn below.

The commitment keys ck and its proofs ckpr can be generated by the following
two algorithms:

• ParamGen(pk, PN−1, PN , g′, n) → (ck, ckpr): The algorithm takes as inputs
a generator g′ and information of the group G from pk, PN−1 and PN . It
randomly selects random values r1, ..., rn from Z∗

q and outputs commitment
keys

ck := {g′r1 , . . . , g′rn}.

To prove that the algorithm generates ck in a correct manner, it computes
r =

∑n
i=1 ri. Then, it outputs

ckpr := {g′r, g(
∏N

i=1 ai)r/aj ; j = [N ]}.

It should be noted that the algorithm can obtain g(
∏N

i=1 ai)/aj for j = [N − 1]
from PN . It also can get g

∏N−1
i=1 ai(= g(

∏N
i=1 ai)/aN ) from PN−1.

• Verification(skk, ck, ckpr) → {0, 1}: The kth party takes as inputs commit-
ment keys ck = {g′r1 , . . . , g′rn} and its proofs {g′r, g(

∏N
i=1 ai)r/aj ; j = [N ]}.

To verify the result, the algorithm compares the following:

n∏

i=1

g′ri = g′r and (g(
∏N

i=1 ai)r/ak)ak = g′r.

If both equalities hold, it outputs 1. Otherwise, it outputs 0 and aborts.

4 Implementation

We implement our commitment key generation algorithm to measure the com-
putation overheads. We set q to 2048 bits prime and use the initial generator
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g = 2. We use a big number (BN) library from OpenSSL [16]. C language is used
to implement the algorithm. The algorithm implemented and tested in Virtual
Machine having Ubuntu OS. Four processors and 8 GB are allocated to the VM.
The machine hosting the VM is operated by Windows 10 Enterprise. The host
machine has Intel i5-7440HQ CPU @ 2.80 GHz with 16 GB memory.

The computational overheads to randomize the generator are different for
each participants. Because one who randomize the generator provide proofs for
all previously participated parties, the computation overhead increases as shown
in Table 2.

Table 2. Computation overheads to randomize a generator (by Time (ms))

Computing order 1st 10th 20th 30th 40th 50th

Time (ms) 5.00 35.41 68.35 101.07 134.83 165.90

After successfully randomizing the generator, the authority who operates e-
voting system can generate commitment keys. Although generating commitment
keys are not necessary to be a realtime operation, the reasonable generation
times are important because the number of voters is usually large. We measure
the execution times by the number of commitment keys in Table 3. Generating
10,000 commitment keys are taken around 30 s in a single core, which can be
assumed reasonably fast.

Table 3. Commitment key generation time (ms) with the randomized generator

# of com. keys 1 party 20 parties 40 parties 60 parties 80 parties 100 parties

10 4.6 10.55 16.92 23.27 29.83 35.91

100 33.94 39.38 45.83 52.01 58.86 64.75

1000 323.51 329.35 335.23 338.88 347.22 352.74

10000 3218.8 3211.72 3208.8 3209.5 3211.98 3217.76

The verification time taking to check whether the commitment keys are gen-
erated properly or not is fast since we replace the unnecessary exponentiation
over group element to multiplication between group elements. It can be verified
within 100 ms for each party even the number of commitment keys are large
(10,000). Table 4 shows the verification time by milliseconds.

5 Related Work

5.1 E-voting Requirements

The e-voting that guarantees untraceability dates back to 1981 when Chaum
considered the basic ideas [3]. There have been numerous e-voting protocols
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Table 4. Commitment key verification time (ms) (for each party)

# of com. keys 10 100 1000 10000

Time (ms) 14.69 15.47 20.67 96.91

and systems that realize them. Though many, no single system has successfully
realized the ideal e-voting protocol. According to Wang et al. [11], there are
three reasons why the realization of e-voting is a vexing problem. First, it is
hard to agree on the requirements of the e-voting. Second, the e-voting system
is huge and complex. Lastly, despite its complexity, the e-voting system should
be usable for voters.

Although it is difficult to fully agree on what requirements should be satisfied
for a particular e-voting system, a consensus view is that the most (or the major-
ity) of the security requirements summarized in Table 5 should be addressed.

Table 5. Security requirements of the e-voting

Requirements Meaning

Correctness The votes should be counted correctly

Privacy None of any voter’s ballots should be known to anyone

Unreusability No one can cast a vote twice

Eligibility Only authorized voters can vote

Robustness A system should function properly with certain amount of
misbehaved voters

Verifiability A voter can verify if his vote is being counted

Fairness No partial results will be computed before the end of
election

Receipt-freeness A voter can neither obtain nor construct a receipt to prove
his/her vote

Universal verifiability Anyone can verify the final voting result is intact

5.2 Cryptographic Primitives for E-voting

To realize a secure e-voting system, many cryptographic primitives should be
employed. We briefly summarize them as follows.

– Mixnet: The main idea of mixnet [3] is to break the link between the source
and the destination by using a chain of mixes, each of which only knows the
node that it immediately received the message from, and the immediate des-
tination to send the message to. Each message is encrypted using public keys
of several mixes and the order of encrypted message (ciphertext) is shuffled.
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Upon receiving the ciphertext, each mix strips off its own layer of encryption
to reveals where to send the message next. By passing through several mixes
and being cascaded through several shuffle agents, the origin and the order
of the ciphertext would not be revealed, and the authority will not be able to
trace the ciphertext.
In the e-voting system utilizing the mixnet, ballots are encrypted and sent to
mixes so that the authority is unable to link a ballot to a particular voter. It
should be noted that in the mixnet, at least one mix is assume to be trustwor-
thy in the sense that it would not collude in revealing the relationship between
voters and their ballots. A “robust” mixnet should provide evidence that a
voter’s ballot is encrypted through the layers of mixes and is not discarded
or replaced.

– Blind signature: In some e-voting system, the voter sends a ballot containing a
token and their vote to the authority (through the anonymous channel). The
authority needs to ensure that any eligible voters can vote and vote once only,
on the basis that the token can be used only once. However, there is privacy
concern that the voter’s identity could be revealed when he/she obtains the
token. In this case, one can use “blind signature” [4], whereby the voter as a
requester can get a signature on the blinded token from the authority. The
voter can should be able to cast a vote with un-blinded token.

– Homomorphic encryption: Homomorphic encryption [6,7] makes it possible
to aggregate ciphertexts without decrypting them. When it is applied to the
e-voting system, each encrypted ballot can be aggregated by an agent before
being tallied at the authority [8].

– Zero-Knowledge Proof: Zero-Knowledge Proof (ZKP) allows a party to prove
to another party that a given statement is true without revealing any secret
associated with the statement. ZKP is an essential tool for the e-voting system
since there are many occasions that need verification without revealing confi-
dential information. One example is that voters need to verify their encrypted
votes really encrypt the right form of votes without revealing the contents.
Another example is that the mixes need to verify that re-encryption and
shuffling is performed correctly without revealing anything [9,14].

5.3 Examples of e-voting System in Practice

As mentioned in the beginning of this section, e-voting system is huge and
complex. However, various institutions across regions have made meaningful
attempts to develop and test e-voting. In this paper, we briefly survey some
notable systems reported in the literature.

Direct Recording Electronic Systems (DRE) [2] is a touch screen voting sys-
tem, in which votes are recorded in a computer memory. Sensus [5] is a security-
aware e-voting system, which employs the blind signature. It suffers from the
vulnerability that some voters can cast their votes instead of those who did not
vote. VoteBox [10] is a system that utilizes a distributed broadcast network and
replicated log to provide robustness and audit when failure, misconfiguration, or
tampering occurs. Its core technology includes homomorphic encryption. Helios
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[1] is a web-based e-voting system in which ballots are encrypted and anony-
mously sent to the server using mixnet. It provides universal verifiability. sVoting
[15] is the e-voting system operated by Swiss-post. It uses Bayer-Groth’s shuffle
algorithm to provide privacy and anonymity of voting with the verification.

6 Conculsion

In this paper, we proposed a new decentralized method to generate commitment
keys for Bayer-Groth suffle proof. Previously, Bayer-Groth suffle proof allows an
authority to cheat the proof by logging the exponents of commitment keys. If
both proofs and commitment keys are generated by a single authority, this may
arise the question on the correct verification of the voting results. We suggest
a way to restrict the roles of a single authority and decentralize the process to
create commitment keys. Moreover, all the participants can verify and check that
their contributions to create commitment keys are valid. Therefore, our result
leads more secure and prudent e-voting system.
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Abstract. The emergence of online services in our daily lives has been
accompanied by a range of malicious attempts to trick individuals into
performing undesired actions, often to the benefit of the adversary. The
most popular medium of these attempts is phishing attacks, mainly
through emails and websites. In order to defend against such attacks,
there is an urgent need for automated mechanisms to identify this mali-
cious content before it reaches users. Machine learning techniques have
gradually become the standard for such classification problems. How-
ever, identifying common measurable features of phishing content (e.g.,
in emails) is notoriously difficult. To address this problem, we engage in
a novel study into a phishing content classifier based on a recurrent neu-
ral network (RNN), which identifies such features without human input.
At this stage, we scope our research to emails, but our approach can
be extended to apply to websites. Our results show that the proposed
system outperforms state-of-the-art tools. Furthermore, our classifier is
efficient and takes into account only the text and, in particular, the tex-
tual structure of the email. Since these features are rarely considered in
email classification, we argue that our classifier can complement existing
classifiers with high information gain.

Keywords: Phishing · Machine learning · Recurrent neural networks ·
Natural language processing · Web security

1 Introduction

Advances in computer security have raised confidence in internet safety leading
to e-commerce, internet banking and other means of sending, managing and
receiving money online. Unfortunately, the advent of online services has been
accompanied by illicit attempts to sham such transactions to the benefit of
malicious entities. Perhaps the most popular and easy to execute attack, which
poses a threat to organisations, institutions and simple users, is phishing.
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Phishing is a type of cyber-attack that communicates socially engineered mes-
sages to humans using digital channels in order to persuade them to perform cer-
tain activities to the attacker’s benefit [12,16]. Email is the most common avenue
for a phishing attack, with almost 91% of successful cyber-attacks/security
breaches initiated by sending out spoofed emails [18]. The entire phishing opera-
tion can even be outsourced and automated [20], enabling the phishing threat to
be, as it is, ubiquitous and continuous. Research has also found that it is increas-
ingly difficult for humans to detect phishing attacks [10]. Therefore, there is a
strong argument for automated mitigation methods to keep the user’s exposure
to the attacks at a minimum.

The dynamic nature of phishing, with new trends and challenges constantly
emerging, motivates a more adaptive filtering approach. Machine learning (ML)
has been utilised, as the de-facto standard for classification purposes over many
fields, email classification included. Developing a ML-based classifier to underline
the phishing filtering is the approach we investigate in this paper. Our classifier
analyses the text of the email and, in particular, the email’s language structure. It
follows that our work is largely orthogonal to contemporary email classification
systems which, to the best of the authors’ knowledge, do not employ natural
language processing. We propose a novel detection system for phishing emails
based on recurrent neural networks (RNNs). Our evaluation indicates that the
RNN system outperforms state-of-the-art tools.

In what follows, Sect. 2 presents alternative approaches to automated detec-
tion of phishing emails and literature on current machine learning approaches.
Section 3 details our methodology and feature selection for the RNN, while Sect. 4
describes the system implementation. Section 5 discusses the evaluation of the
system, and Sect. 6 concludes the paper.

2 Current Landscape on Mitigation Techniques
to Phishing

Techniques to mitigate the phishing problem include human training, laboriously
curated blacklists and two-factor authentication for affected resources. However,
to combat the problem of large numbers and the dynamic nature of phishing,
automated techniques to detect new threats is required. Our work focuses on
automated detection of phishing emails. We note that diverse techniques to
combat phishing at various levels of the attack can be found in the literature.
We reduce our treatment to the algorithmic classification of emails as phish or
ham.

Specialised algorithms to classify email as phishing, spam (unsolicited email)
or ham (i.e., not spam) have been the focus of research since the beginning
of unsolicited email. Classification of phishing email is subsumed in the more
general problem of spam filtering. As such, most email classifiers, hence filters,
treat relatively harmless spam equivalently to dangerous phishing emails. We
challenge the conventional parity in Subsect. 3.3.
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Phishing email and bulk spam email are distinct in intent and characteris-
tics. While bulk spam uses sensationalistic language for advertising in personal
inboxes, phishing emails mimic ham emails to raise confidence in its allegedly
legitimate origin. Thus, Chandrasekaran et al. argue that filtering phishing
emails needs to be treated separately from the bulk spam filtering [5]. Their
classifier uses 23 style marker features including the number of words W , the
number of characters C and the number of words per character W/C aliased as
vocabulary richness, together with two structural attributes extracted from the
email subject and body. The authors report results of up to perfect classification,
with the accuracy dropping by 20% with the removal of the two structural fea-
tures. Although the experiment used only a small corpus of 400 emails, the results
demonstrate the importance of language and layout, or structure, of emails in
phishing classification.

In practice, machine learning-based classifiers using a small set of charac-
teristic features outperform those based on a broad set of general features. In
the domain of phishing classification, for example, Fette et al. identified a sub-
set of only ten features (of the hundreds of features commonly used to classify
spam email), that best distinguish phishing emails from ham [6]. The resulting
method outperformed the trained version of Apache’s SpamAssassin [22] clas-
sifier at identifying phishing emails, with the false negative rate reduced by a
factor of ten. This result demonstrates that having specialised features for the
task, in prominence to general email classification features, improves phishing
classification.

Bergholz et al. build on top of this work by introducing advanced features for
phishing classification [3]. The authors note that improvement in classification
through variation of the classifying algorithm itself is statistically insignificant.
In conclusion, statistically significant improvement is possible by inventing better
features. Bergholz et al. hence develop two sets of advanced features based on
unsupervised learning algorithms to complement 27 basic features commonly
used in spam detection. One set of the advanced features are based on a dynamic
Markov chain (DMC) language model, and additional word-clusters, or email
topics, are based on a latent Dirichlet allocation (LDA) model. The best results
occur when the advanced features are used in conjunction with the basic features,
achieving the state-of-the-art [3].

Toolan et al. analysed 40 basic features popularly used in email classification
and ranked them based on their information gain to the classification task at
hand [24]. The most informative features were vocabulary richness of the email
body and the subject. Other popular features performed very poorly, indicating
that our intuitive understanding of what constitutes a phishing email may be
very wrong. This is illustrated by the failure to gain information from counting
<form> elements or finding the word ‘debit’ in the subject. We may attribute the
results to a shift in phishing trends, or to the failure of human experts to identify
useful features. The authors also conclude that language modelling approaches
to phishing classification are the most promising.
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In line with the results and conclusions of previous work, we algorithmically
design an advanced feature based on little human intuition. In particular, we
train a recurrent neural network (RNN) as a language model to distinguish
phishing from ham based on the text of the email only. We describe our advanced
feature in detail in Sect. 4.

3 Methodology

The classification task is to identify which of a finite number k of categories,
or classes C = {c1, . . . , ck}, a sample x belongs to, i.e., deduce a classifier or
mapping, x �→ c. In our application to phishing, the classification is a mapping
of email representations to the label set {phish, ham}.

The machine learning (ML) approach to classification is to automatically
establish a function f that determines the desired class

ŷ = f(x) ∈ {ham, phish}

on the input of a representation x of an email. The function f is parameterised
by values θ. During the training phase, the parameter values θ are determined
to reproduce a relation between the input x and class label y in agreement with
a training set {(x0, y0), . . . , (xn, yn)} of pre-classified samples and a suitable
optimisation criterion. In this sense, the ML approach is to extrapolate the
relationship between the observed sample points and class labels to unlabelled
input x and its predicted class ŷ = f(x).

3.1 Feature Identification

An input xraw representing an email as a (very long) series of binary digits,
comprising the raw source code of an email in binary format, is unwieldy for
an algorithm to detect patterns. We hence use a more compact representation
of the input as a feature vector x =

(

f1(xraw), . . . , fm(xraw)
)

. Features should
characterise an email with respect to the current classification problem. The
relative inaccuracy of ML-based spam classifiers on the seemingly similar task of
phishing classification illustrates the need for specialised features for this task [6].

Features are most often identified by experts, in line with their intuitive
understanding of “phishiness” or “hamness”. Toolan et al. [24] demonstrated
that such intuitively sound features often fail to be relevant in phishing classifi-
cation. On the other hand, structural features have empirically been indicative
of emails being ham or phish [6]. Language modelling approaches to improving
the state-of-the-art in phishing classification are considered the most worthwhile
to research [24]. Naturally, we follow the language modelling approach to design
a strong feature based on the structure and content of the email’s body.

Natural language processing (NLP) is the field of Computer Science study-
ing human-machine interactions and, in particular, establishing and exploiting
language models. The rich structure and ambiguity of natural languages make
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it difficult to identify and extract complex language features, such as the tone
of urgency in the email body. Previously, Verma et al. used pre-trained Word-
Net hypernymy trees of sets of words conveying urgency or action, among other
characteristics, to identify sentences and hence emails as actionable or informa-
tive [25].

In the unsupervised learning approach, the ML algorithm detects data pat-
terns in the dataset without supervision or specific expert advice. That is, the
training of the model determines, or learns, the features itself. Fortunately, the
unsupervised learning algorithms form the state-of-the-art techniques in lan-
guage modelling. It follows that our approach of training a language model as a
feature is not susceptible to mistakes in expert feature identification.

3.2 Deep Learning

Neural networks (NNs) are a computational model, in the quintessential exam-
ple of a multilayer perceptron resembling a hierarchical network of units, or neu-
rones. The hierarchical structure intuitively gives NNs the capacity to extract
high-level features from simple data, i.e., to disentangle and winnow the factor of
variation in the NN’s input. This intuition of NN structure makes NNs suitable
for the task of representation learning, or automatic feature identification.

Recurrent neural networks (RNNs), the deepest of all learners, are a family of
NNs specialised for processing sequential data. Like Markov chain models, RNNs
have the advantage of processing data in sequence, thus accounting for the order
of data. The input text is usually abstracted to a sequence of characters, words
or phrases. Undoubtedly, the order of words is valuable in language modelling.
RNNs form the backbone of the current state-of-the-art language models, so an
RNN language model should form an accurate content-based classifier of emails.

The literature presents several applications of NNs to the related problem of
classifying malicious URLs and websites [1,14,26,28]. Bahnsen et al. have used
RNNs to classify web addresses as linking to phishing or legitimate websites [1].
The input was a sequence of the URL’s characters only. Similarly, we use RNNs
to classify emails as phishing or ham, with the input being a sequence of words
only.

We alleviate the learning problem from language modelling to the binary clas-
sification of email to phish or ham. This classification can be trivially abstracted
to predicting y, where y = 1 if phish and y = 0 if ham. We thus get a supervised
learning problem with representation learning. This simpler task overcomes the
often-prohibitive computational cost of training a full-blown language model.
Inherently, the RNN classifier models a y ∼ Bernoulli(px) distribution using a
sigmoid output unit

px = σ(zx) :=
1

1 + exp(−zx)
=

exp(zx)
∑1

y′=0 exp(y′ zx)
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where zx is the output of the last linear layer, dependent on the RNN input x.
Intuitively, this is the normalisation of the unnormalised probability distribution

p̃x(c) = exp(c zx)
log p̃x(c) = c zx

for c ∈ {0, 1}. Then px = p(y = 1 | sequence of words of email x) ∈ [0, 1] gives the
email label prediction ŷ = arg maxc∈{0,1}p(y = c | x) = 1{zx ≥ 0}.

3.3 Precision/Accuracy Trade-Off

Commonly, misclassification of phishing and ham emails are considered to have
different weights of error [4,6]. A false positive, or incorrectly labelling a legiti-
mate email as phishing is considered to be a more severe error than a false neg-
ative, or misclassifying a phishing email as ham. This convention is an artefact
of bulk spam filtering, where being exposed to harmless unsolicited advertising
is smaller harm than having a legitimate email undelivered. Note that phishing
filtering is a subproblem of spam filtering, with techniques as well as related
conventions adapted from the more general problem.

It follows that many phishing classifiers emphasise the precision of the classi-
fier together with its accuracy as criteria of classifier merit. However, a phishing
email generally poses more harm than a bulk spam email. Despite the common
practice in related work, we do not introduce different penalties to the various
misclassification.

Nevertheless, our technique, as most ML-based techniques, is flexible to the
trade-off of between accuracy and precision. The RNN classifier, described above,
gives a probability value p(y = 1 | x) ∈ [0, 1] of the email x being phish. This
output value can be viewed as the confidence of the email being phish, where
a value close to 0.5 means low confidence in the classification. Thus, a simple
method to increase precision, at the cost of lowering accuracy, is to increase the
threshold value for labelling an email phish.

4 Design and Implementation

Our RNN classifier labels an input email as either a legitimate email or a phishing
attempt. In this section, we describe the procedure of transforming the raw email
source into a variable size vector of integers that is input to the RNN itself.
The preprocessing of the emails is illustrated in Fig. 1. Use of the trained RNN
classifier, also illustrated in the figure, is described in Sect. 5.

4.1 Preprocessing for the RNN Classifier

Our binary classification RNN model takes sequences of integer values as input
and outputs a value between 0 and 1. We abstract the computer-native copy of
an email as a sequence of bytes into the high-level representation as a sequence of
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Fig. 1. Training and testing pipeline. We establish a dictionary of the most common
words and train our recurrent neural network (RNN) classifier during the training
phase. Preprocessing of the emails input into the RNN consists of extracting plaintext,
which is then pruned and transformed into a sequence of tokens of manageable size.

symbol and word tokens, represented as unique integers. It is customary to ‘feed’
RNNs with an n-gram representation of the abstracted text. Due to the small
size of our dataset, our dictionary of n-grams would contain very few repetitive
phrases of n words for values n ≥ 2. For the balance of token expressiveness,
and vocabulary size, we choose to represent emails as sequences of 1-grams, or
single-word tokens.

Note that our classifier only considers the text of emails in making its classifi-
cation decision. Thus, useful features, such as those based on linked web address
analysis, are entirely orthogonal to our classifier and thus are largely comple-
mentary. As an initial step in preprocessing of the classified email, we extract
its text in plaintext format.

4.2 Tokenising the Text

We seek flexibility in tokenising the text through fine-tuning the parameters of
the tokeniser, such as rules of what word or character sequences to represent
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by the same token. The näıve approach of splitting on whitespace characters
does not generalise well to email tokenising. Incautious or malicious salting, e.g.,
inconsistent whitespace or the ubiquity of special characters, form words unique
to an email. Considering such tokens would inherently lead to overfitting, based
on the presence of unique traits.

Our approach to tokenising is that of adjusted word-splitting. First, we lower-
case all characters in the email and remove all characters the RFC 3986 standard
does not allow to be present in a URL, i.e., we only keep the unreserved a-z, 0-9,
- . ~ and reserved : / ? # [ ] @ ! $ & ’ ( ) * + , ; = characters and the percentage
sign %. Although this step is motivated by the ease of later identifying URLs for
the <url> token determination, we get the benefit of restricting our character
base cardinality to 61. The 60th character, which RFC 3986 does not allow in
URL, but we do not immediately replace with whitespace, is the quote charac-
ter ", which is often used in emails. Note, the 61st character is the whitespace
character.

We introduce four special tokens summed up in Table 1, and, nine tokens
for the special characters left, replacing dots, quotes and seven other special
characters with their respective tokens. Finally, we split the clean text into words,
serving as their individual tokens, and prepend and append the start <s> and
end <e> tokens, respectively, to the tidy sequence of tokens.

Table 1. As a preprocessing step, we abstract out web addresses and email addresses,
as well as longer sequences of non-alphanumeric characters. We replace them with
special tokens, summarised in the Table.

<url> Replaces a URL beginning with http:// or https://

<www> Replaces a URL beginning with the informal www.

<email> Stands for an email address

<threespecial> Groups together and replaces three or more
consecutive non-alphanumeric characters,
possibly separated by whitepace

<s> Beginning, or start, of email

<e> End of email

The final representation of the email includes only lowercase alphanumeric
words and tokens. Using a list of allowed characters, we aggressively parse the
text, mitigating the threat of the text exhibiting unexpected behaviour.

4.3 Recurrent Neural Network Classifier

Our model is a simple RNN, consisting of an encoding layer, two recurrent
layers, and a linear output layer with a Softplus activation, as shown in Fig. 2.
Challenges of training deep networks, of which RNNs are the deepest, motivate
most of the design decisions presented in this section.
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Fig. 2. Our recurrent neural network (RNN) classifier: The input is a sequence of
tokens, each mapped to a learned vector representation. The output is a value between
0 and 1, with a value over 0.5 being classified as phish.

We implement our recurrent layers with the long short-term memory (LSTM)
architecture [9]. LSTM is a gated recurrent neural layer architecture that,
through its carefully designed self-loops, can learn long-range dependencies. We
use a variation of the original concept with weights on the self-loop conditioned
on the context [7]. Due to its carefully crafted architecture, LSTMs are resis-
tant to the vanishing gradient problem [2]. As is the standard, we use the tanh
nonlinear activation on the cells’ output. We describe the choice of the size of
the hidden layer in Subsect. 5.1, but we will choose the hidden state to be 200
variables large.

The output h2 of the last LSTM cell of the second layer is input further up
the model. So that our model outputs a single variable pŷ ∈ (0, 1) as required.
Since we are modelling a Bernoulli probability, we use the simplest linear layer

h2 �→ wᵀh2 + b = z,

consisting of a weight vector w and bias scalar b. The final output is obtained
by mapping the linear layer output scalar through the logistic sigmoid function

pŷ = σ(z) :=
1

1 + exp(−x)
∈ (0, 1)

to obtain the estimated probability of an email being phish.

4.4 Input Sequence Preprocessing

If we let every token in the dataset to have its unique embedding vector, not
only would the encoding layer be huge, but our model predictions would not
generalise well to any emails containing unknown words. We hence reduce the
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size of the dictionary considered by our model, in order to acquire round values,
to the 4 989 most common words in the training and validation sets of emails as
token sets. In other words, we do not consider repetitions of a word in a single
email in determining the occurrence count.

Every token in the dictionary is assigned a unique index value. So that
our vocabulary reduction is not too harsh, we unite tokens of similar mean-
ing. We stem the words using the Snowball Stemmer, a more aggressive version
of the popular Porter Stemmer [19]. We then add five more tokens, <unkalpha>,
<unknnum>, <unk>, <cuts> and <cute>, to the dictionary. We summarise the
new tokens in Table 2. The first three abstract out unknown words to the dictio-
nary, such as those that consist of only alphabetical or numerical values, or fit
none of the first two, respectively. We describe the final two tokens in Sect. 4.5
below. Note that the eleven special tokens described in Tables 1 and 2, together
with the 4 989 most common word tokens form the complete dictionary of 5 000
tokens. The number is arbitrary.

Table 2. To make the set of tokens manageably small, we only keep the most common
words and replace the rest with special tokens indicating that they are unknown to our
dictionary. To make the size of the email representation manageable, we limit the size
of emails to 1 000 tokens and replace the parts cut out with special tokens.

<unkalpha> Words of alphabetical characters not in dictionary

<unknum> Numbers not in dictionary

<unk> Other unknown words

<cuts> Beginning, or start, of a pruning cut

<cute> End of a pruning cut

4.5 Cutout Pruning

Anomalous emails of very long sequence representations cause training ineffi-
ciency, amongst other problems, in evaluating very long-range dependencies. The
problem is that such long emails cause unnecessary ‘padding’ of other, shorter
sequences, when employing gradient-based learning in batches, reducing stabil-
ity and the speed of learning. Most notably, modern GPU architectures take
time proportional to the maximum length of a sample in the batch to evaluate
batched samples, as we do.

We hence compromise our email representation for excessively long emails via
a simple pruning procedure. The idea is to cut out a sequence of size a third of
our threshold of 1 000 tokens, and ‘glue’ the beginning and end of the email to the
cutout sequence. The concept is to keep the beginning, most middle and ending
parts of the email, skipping the uninformative bits of ham or phish emails. To
allow our model to grasp the idea of the anomaly introduced in close-neighbour
word dependencies, we add two tokens, <cuts> and <cute>, to the dictionary to
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represent a start or an end of a sequence caused by the pruning cut. Intuitively,
we think of these tokens as ‘glue’.

Emails represented as sequences of indices of their respective tokens, in the
range of the dictionary size V = 5000, are input or ‘fed’ to the RNN. The first,
encoding layer, encodes each index in sequence with its corresponding token
embedding. The embedding vectors elements are initialised as random Gaussian
N (0, 0.12) values and learned as parameters of the model.

5 Evaluation

Before presenting the results of our RNN classifier, we first introduce the email
datasets used in the evaluation. Table 3 presents a summary of the datasets
used. The first dataset, SA-JN, is a combination of all 6 951 ham emails from
the SpamAssassin public corpus [22] and 4 572 phishing emails from the Nazario
phishing corpus [15] collected before August 2007. SA-JN is a accessible dataset
used in related work to evaluate comparable phishing detection solutions [3,6,25].

Our second dataset, En-JN, is a combination of the Enron email dataset
combined with phishing emails from the Nazario phishing corpus. The Enron
email dataset is generated by 158 employees of the Enron Corporation, and, to
the best of the authors’ knowledge, is the only large public dataset of real-world
emails. We combine a randomly selected subset of 10 000 emails from the Enron
dataset together with all 9 962 phishing emails from the Nazario phishing corpus.

Table 3. Decomposition of datasets used in evaluation.

Corpus Size Ham Phishing Source

SA-JN 11 523 6 951 (60%) 4 572 (40%) SpamAssassin and Nazario

En-JN 19 962 10 000 (50%) 9 962 (50%) Enron and Nazario

As is common practice in statistical learning, we split the data samples for
training and evaluation. Separately, we sort the ham and phishing emails by
the datetime stamp extracted from the email Received or Received-Date field
(defined to be the maximum, or latest, timestamp where multiple Received or
Received-Date fields are present). Consequently, we get two sorted lists, that
we separately split into training and validation, and testing sets, with a 9-1
ratio twice. The respective 81% – 9% – 10% splits respect the received datetime
stamps with the most recent 10% of the emails forming the testing set. The
underlying reasoning is to approximate the real scenario of training the classifier
on present data to predict future data. We then combine the ham and phishing
sets, respecting the splits.

We evaluate our classifier against the most popular metrics in email classi-
fications, which we introduce shortly. We then compare our language model to
other content-based classifiers.
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5.1 Training

The encoding itself accounts for 5000×200 = 1mil parameters of the model. The
challenge of training so many parameters of a network requires more advanced
optimisation algorithms. We employ the following techniques for optimisation
and regularisation of our model.

We initialise the weights of the LSTM cells to random orthogonal matrices
with the gain set to 5/3 for the weights of the cell gate with tanh activations,
and set the other weights, with sigmoid activations, to orthogonal matrices with
gain 1 [21]. It is the perfect orthogonality of the weight matrices that motivated
our choice for the embedding and LSTM to share the same unit size of 200.

As suggested by Jozefowicz et al. [11], we initialise the bias of the LSTM
forget gate to 1, and initialise all other biases to 0 throughout the RNN. We ini-
tialise the weights outside of the recurrent layers by sampling from the Gaussian
N (0, 0.12) distribution. The model contains dropout [23] of 0.2 on the embed-
ding layer, a dropout of 0.5 between all recurrent states on top of each other,
with no dropout in-between successive states of a recurrent layer, as proposed
by Sutskever et al. [27]. We also add dropout of 0.5 at the final output of the
recurrent layer.

The model is optimised using the Adam optimiser [13] against the binary
cross-entropy loss function. We train the model with batches of size 200 samples.
We shuffle the training dataset at the beginning of every epoch. To tackle the
exploding gradient problem, we clip the gradient norm ‖g‖ [17] with threshold
1. Finally, we stop training early with continuation of learning [8] by training
over the validation set once.

5.2 Evaluation Metrics

Given that the datasets used for email classification vary significantly in how
even their distributions are, the apparent accuracy measure is of limited value
for comparison to other classifiers. We hence report the standard measures of
precision, recall, the F -measure, false positive and false negative rates in addition
to accuracy.

We note that email classification errors vary in importance. As an artefact of
the problem of spam email classification, it is common practice to consider a false
positive error to be more costly than a false negative misclassification. However,
this is under the assumption of aggressive filtering of positives and harmless false
negatives. In the domain of phishing emails, however, false negatives present
significant danger and less aggressive filtering methods such as alerts and link-
disabling are common.

We train the classifier over four epochs on the training dataset and one more
epoch over the validation dataset. Because the model is expensive to train, in
time and computational power, the results provided are of the single trained
instance. We evaluate the model on the test set, which had been unseen during
training, and is chronologically separated from training a validation set. This
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is because we split each dataset into training, validation and testing sets in
chronological order.

Our classifier is most directly comparable to other text-based features, or
sub-classifiers that analyse the text of the classified email only. We compare our
work with the textAnalysis sub-classifier of the PhishNet-NLP email classifier by
Verma et al. [25], and the state-of-the-art dynamic Markov chain (DMC) model
proposed by Bergholz et al. [3]. We summarise the results in Table 4.

Table 4. Summary of our results in comparison to related work in popular metrics.

corpus accuracy fp-rate fn-rate precision recall F -measure

textAnalysis ?-JN 78.54% 14.90% 22.90% 95.93% 77.10% 85.49%

DMCtext SA-JN 99.56% 0.00% 4.02% 100.00% 95.98% 97.95%

Our RNN SA-JN 98.91% 1.26% 1.47% 98.74% 98.53% 98.63%

Our RNN En-JN 96.74% 2.50% 4.02% 97.45% 95.98% 96.71%

Our test dataset is well-separated from the training set. We could argue that
the classification problem we evaluated our classifier against is unrealistically
hard. Intuitively, messages arriving in a specific inbox would exhibit more pro-
nounced patterns, and would thus be easier to classify correctly.

Verma et al. [25] propose that textAnalysis offers a classification value very
independent from the other features, as only the text of the email is considered.
For the same reason, our classifier should not copy the labels of other features
present in classification, but rather provide an independent view on the classifi-
cation at hand.

The RNN classifier outperforms the textAnalysis classifier and has compara-
ble results to the state-of-the-art DMCtext feature. We note that perfect classifi-
cation is not possible in our setting, as two emails with the same token sequence
will necessarily be labelled equally. Since both, ham and phishing email corpora
contain empty emails with attachments, which have been removed, the emails
are identical to our classifier. This proves inseparability of the emails with the
word-sequence representation.

6 Conclusion

In this paper, we propose a novel automated system aiming to mitigate the threat
of phishing emails with the use of RNNs. Our results suggest that the flexibility
of RNNs gives our system an edge over the expert feature selection procedure,
which is vastly employed in ML-based attempts at phishing mitigation.

We focused on the overlooked content source of email information and demon-
strated its utility when considered in phishing threat mitigation. The nature of
RNN and its training procedure make it suitable for the case of online learn-
ing deployment. Our classifier could theoretically change over time to capture
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new trends continuously and keep up accurate and precise classification through-
out. Our results have demonstrated a wealth of potential in non-trivial feature
identification for classifying emails since our system’s performance surpasses the
state-of-the-art systems which are based on features designed by human intu-
ition.

Finally, it is worth noting that the general criticism of supervised learning
extends to our case. Little information is provided by the RNN classifier on the
nature of emails at successful classification. The proposed solution generalises
easily to the case of inclusion of basic spam email, and is a prospect for further
automated success.
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Abstract. CAPTCHA is widely used as a security solution to prevent
automated attack tools on websites. However, CAPTCHA is difficult to
recognize human perception when it gives a lot of distortion to have
resistance against the automated attack. In this paper, we propose a
method to deceive the machine while maintaining the human perception
rate by applying the style transfer method. This method creates a style-
plugged-CAPTCHA image by combining the styles of different images
while maintaining the content of the original CAPTCHA sample. We
used 6 datasets in the actual site and used Tensorflow as the machine
learning library. Experimental results show that the proposed method
reduces the recognition rate of the DeCAPTCHA system to 3.5% while
maintaining human perception.

Keywords: Completely automated public turing test to tell
computers and humans apart (CAPTCHA) · Deep neural network
(DNN) · Convolutional neural network (CNN) · Image style transfer

1 Introduction

Recently, automated attacks are being made using machines with excellent com-
puting performance. Because these automated attacks [16] become available for
bulletin boards [15], unlimited subscriptions [4], spam messages [3], and DDoS
attacks [7] on Web sites, security solutions [18,26] are becoming more impor-
tant to prevent automated attacks. Among security solutions, Completely Auto-
mated Public Turing test to tell Computers and Humans Apart (CAPTCHA)
[26] is a typical solution to defend against such automated attacks. CAPTCHA
is widely used to determine whether a user is a human or a machine through
challenge response tests. This method consists of asking a question that the
machine can not understand but the person understands the question. If the
requester’s response is determined to be correct, the service is provided. If the
answer is incorrect, the service is rejected.
c© Springer Nature Switzerland AG 2020
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In order to make CAPTCHA images based on text [5] which are misrecog-
nized by the machine, it is necessary to add some distortion such as rotation, size,
and arc to text images. This distorted image can be understood by humans, but
makes the machine hard to recognize. In addition, there is CAPTCHA based on
audio and images. CAPTCHA based on audio [25] generates sounds with noise in
numbers and letters so people can understand but machines do not understand.
However, the audio method may have the disadvantage that the user system
has to support the voice and the external sound. In this paper, we have studied
CAPTCHA images based on text.

However, attack methods to break CAPTCHAs such as optical character
recognition (ORC) [6] are being studied. Therefore, in order to avoid such attack
methods, it is necessary to adjust the rotation, size, and position of letters,
but when it is too much, there is a disadvantage that the usability is greatly
reduced due to a distorted text image which is difficult to be recognized by
human perception. Therefore, there is a need for a method that the machine
recognizes incorrectly within the range of maintaining the human recognition
rate.

Recently, deep neural network (DNN) [23] has provided good performance
for image recognition [14], image generation [12], and image synthesis [21].
Especially, convolutional neural network (CNN) [20] shows good performance
in image recognition field. It is possible to extract features from each feacture
and synthesize different images. Among them, the style transfer method [11] can
extract the representation of the content of the original sample and extract the
representation of the style of another image. For example, it can create a new
image that combines Obama’s photo content with Rousseau’s image style.

In this paper, we propose a style-plugged-CAPTCHA method to deceive the
machine while maintaining the perception rate of human by applying style trans-
fer learning to the CAPTCHA image dataset. The propose scheme generates a
style-plugged-CAPTCHA image by extracting the content feature of the original
sample and the style feature of the other image. The contribution of this paper
is as follows.

– This paper propose the style-plugged-CAPTCHA method. We systematically
organize the frameworks of the proposed scheme.

– We analyzed the degree of image distortion of the proposed method using
CAPTCHA image datasets which is operated on actual site.

– We measured the recognition of the style-plugged-CAPTCHA images by com-
paring the original images with the DeCAPTCHA system in order to verify
the performance of the proposed method.

The rest of this paper is structured as follows: In Sect. 2, we review the
related work. The proposed scheme is presented in Sect. 3. In Sect. 4, we present
and explain the experiment and evaluation. The proposed scheme is discussed
in Sect. 5. Finally, Sect. 6 concludes the paper.
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2 Related Works

The CAPTCHA system [13] was first introduced in 1997 as an Internet
search site, AltaVista. Section 2.1 presents an overview of related research on
CAPTCHA based on text. Section 2.2 provides an overview of CNN and Sect. 2.3
explains the image style transfer method.

2.1 A Review of CAPTCHA Based on Text

CAPTCHA based on text is a method using distorted text images that are
correctly recognized by humans but misrecognized by machines. In order to
prevent the machine from recognizing the CAPTCHA by the automated attack,
the CAPTCHA system gives the rotation of the text image, resizes the letters,
adds an arc, or overlaps the letters. Typically, there are three methods that
CAPTCHA based on text. First, the connecting characters together (CCT) [9]
method is giving overlap and noise of characters, and arc to text images in
order to resistant to character segmentation and recognition by the automatic
machine. Second, the hollow method [10] is designed to connect all texts together
in a format that only displays the outline of the text. This method is resistant
to the segmentation and recognition of the machine while enhancing human
perception. Third, the character isolated method [8] is a method of displaying
each character independently of each other, unlike the above-mentioned method.
Therefore, the distortion of each character is severe compared to other methods.

This CAPTCHA based on text is disadvantageous in that it is degraded
to human perception rate if it is too much distortion. Unlike the conventional
method, the proposed method applies different image styles while maintaining
human perception rate.

2.2 A Review of CNN Model

CNN [20] is a deeply neural network that is commonly used for visual imagery
as a regularized version of a fully connected network. In particular, CNN has the
advantage of reflecting information on spatial characteristics without loss. Since
the input and output data are processed as three-dimensional data using the
CNN, spatial information can be maintained. However, in the fully connected
network, since only one-dimensional data is received, spatial information of the
three-dimensional data is lost.

The structure of CNN consists of fully connected layer, convolution layer,
and pooling. A fully connected layer means a layer of the form combined with
all the neurons of the previous layer.

The convolution layer extracts the characteristics of the image using a filter
in the input image. In the convolution layer, the value is obtained by multiplying
the adjacent pixel by the convolution filter for the output data at each layer.
The input and output data in the convolution layer are called a feature map.

The purpose of the pooling layer is to be used when performing subsampling
or extracting data samples once again through the convolution process. Similar
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to the convolution layer, pooling uses only adjacent pixel values, but there is no
computation. There are two types of pooling: max pooling and average pooling.
The max pooling sets the largest pixel value in adjacent pixels to a new pixel
value. On the other hand, the average pooling sets the average value of adjacent
pixels to a new pixel value.

The parameters of CNN can be set by parameter of convolution filter num-
ber, filter window size, padding, and stride. In convolution filter number, it is
important to keep the number of convolution filter relatively constant at each
layer. In the filter window size, it can be used to emphasize the desired features
by utilizing the non-ineariness in the intermediate stage when several small fil-
ters are overlapped. The padding means to increase the input data around a
specific pixel value before performing the convolution to adjust the output data
size and prevent loss of information. The stride is the parameter that controls
the window’s moving distance.

2.3 A Review of Image Style Transfer Method

Image style transfer [11] proposed a method of creating a new image by com-
bining the content of the original image with the style of another image. This
method uses a feature that allows CNN to extract information from the seman-
tic image at high-level. This method reduces the two loss functions to create a
new image. The first loss function represents a content representation of original
image, meaning it maintains a specific content by increasing object information
that represents the content of the image. The second loss function proposes a
method of obtaining the information about the feature space of the texture of an
other image. The proposed method is a method of applying image style transfer
method to CAPTCHA image domain.

3 Proposed Method

To generate a style-plugged-CAPTCHA images, the proposed method accepts
the original image and the other image as input values, and generates a new
image that combines the content of the original image and the style of the other
image, as shown in Fig. 1.

For this study, we used the style transfer architecture given in [11]. In the
CNN model, this method extracts the content feature from the original image
and extracts the style feature from the other image separately. First, in the case
of a content feature, a feature map can be extracted through the convolution
layer of the original image. As the layer becomes deeper, pixel level information
disappears, but the semantic information of the input image remains. Therefore,
we extract the content feature of the original image from the deep layer. Sec-
ond, in case of style feature, it is based on gram matrix [17]. The gram matrix
represents the correlation between the feature maps of each layer. By using cor-
relation of feature maps of several layers, it is possible to obtain information
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Fig. 1. Proposed architecture.

considering multiple scales of stationary information rather than layout infor-
mation of image. The more deep layers are included, the more the image gets
static information rather than layout information.

To generate the proposed CAPTCHA image, the method updates the noise
image −→x through back propagation of the loss function lossT . The loss function
lossT is the sum of content loss losscontent and style loss lossstyle:

lossT = lossstyle(−→a ,−→x ) + α · losscontent(−→p ,−→x ), (1)

where −→a means other image, −→x means noise image, which is a composite image,
and −→p means original image. α is a weighted value over 1. The initial value is 1.
First, the content loss losscontent is calculated based on the content feature for
the noise image −→x , which is the image to be synthesized with the original image−→p . The procedure is as follows. First, the original image −→p and noise image −→x
are feed-forward through the network, respectively. Second, we obtain feature
maps P and F in layer l as input values to original image −→p and noise image−→x , respectively. Third, through the obtained feature maps P and F , the content
loss is defined as follows.

losscontent(−→p ,−→x , l) =
1
2

∑

i,j

(F l
ij − P l

ij)
2, (2)

where P l
ij is the activation ith filter at position j in layer l and F l

ij is the activation
ith filter at position j in layer l.

Second, style loss losscontent is calculated based on the style feature for other
image (style) −→a and noise image −→x . The procedure is as follows. First, the other
image −→a and noise image −→x are feed-forward through the network, respectively.
Second, we obtain gram matric A and G in layer l as input values to other image−→a and noise image −→x , respectively. Third, through the obtained gram matric A
and G, the style loss is defined as follows.



CIG Using Style Transfer Learning in Deep Neural Network 239

El =
1

4N2
l M2

l

∑

i,j

(Gl
ij − Al

ij)
2, (3)

where Al
ij and Gl

ij are the inner product between the vectorised feature maps i
and j in layer l, Nl is the number of feature maps at layer l, and Ml is height ×
width of feature maps at layer l. In the case of the style feature, the total style
loss lossstyle is as follows because it uses several layers simultaneously.

lossstyle(−→a ,−→x ) =
L∑

l=0

wlEl, (4)

where wl is weighting factors of the layer to the total loss. The details of the
procedure for generating a proposed CAPTCHA image are given in Algorithm1.

Algorithm 1. Style-plugged-CAPTCHA Image generation.
Input: original image −→p , other image (style) −→a , noise image −→x , P l

ij is the activation
ith filter at position j in layer l and F l

ij is the activation ith filter at position j in
layer l, Al

ij and Gl
ij are the inner product between the vectorised feature maps i

and j in layer l, Nl is the number of feature maps at layer l, and Ml is height ×
width of feature maps at layer l, iterations r.

Style-plugged-CAPTCHA Image generation:−→a ← 0
for r step do

losscontent(
−→p , −→x , l) ← 1

2

∑
i,j(F

l
ij − P l

ij)
2

El ← 1
4N2

l
M2

l

∑
i,j(G

l
ij − Al

ij)
2

lossstyle(
−→a , −→x ) ← ∑L

l=0 wlEl

lossT ← losscontent + lossstyle

Update −→x by minimizing lossT through back propagation such as −→a −λ δlossT

δ
−→−→a

end for
return −→a

4 Experiment and Evaluation

Through experiments, we show that the proposed scheme can generate a style
transfer CAPTCHA image that is resist to the DeCAPTCHA and can main-
tain the human perception. We used the Tensorflow [2] library, a widely used
open source library for machine learning, on a Intel(R) Core(TM) i5-8400 CPU
2.80 GHz server.

4.1 Experimental Method

In terms of experimental datasets, we used 6 different CAPTCHA datasets
running on the web site and 100 data per dataset. The six Web sites are
as follows: smart-mail.de, ArticlesFactory.com, nationalinterest.org, cesdb.com,
mail.aol.com, and tiki.org.

http://smart-mail.de/
http://articlesfactory.com/
http://nationalinterest.org/
https://www.cesdb.com/
http://mail.aol.com/
https://tiki.org/
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(a) Dataset#1: original image (b) Dataset#1: style-plugged-CAPTCHA

(c) Dataset#2: original image (d) Dataset#2: style-plugged-CAPTCHA

(e) Dataset#3: original image (f) Dataset#3: style-plugged-CAPTCHA

(g) Dataset#4: original image (h) Dataset#4: style-plugged-CAPTCHA

(i) Dataset#5: original image (j) Dataset#5: style-plugged-CAPTCHA

(k) Dataset#6: other image (style feature)

Fig. 2. The sampling example of style-plugged-CAPTCHA for the original image of
each dataset when selecting dataset #6 as the style image.

In terms of pretrained model and DeCAPTCHA, we used the VGG-19 model
[24] as a pretrained model. Tables 1 and 2 show the structure and parameters for
the VGG-19 model. As DeCAPTCHA, we used the gsc captcha breaker program
[1]. The gsc captcha breaker is the software used in the website by segmenting
and recognizing CAPTCHA images.

To generate the style transfer CAPTCHA, L-BFGS optimization [22] is used
as box constrained optimization. The L-BFGS optimization is an efficient algo-
rithm for solving a large scale problem. It is used to design and refine quadratic
models for optimization functions. The iteration is 100 and weight of loss α is 1.
For a given number of iterations, the proposed method updates the output −→x
from the feedback of content loss and style loss. At the end of the iterations, the
new image, −→x , was evaluated in terms of human perception and the recognition
rate of DeCAPTCHA. The recognition rate of DeCAPTCHA means the rate at
which CAPTCHA is correctly recognized by gsc captcha breaker.
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4.2 Experimental Results

Figure 2 shows an example of creating a style-plugged-CAPTCHA image for the
original image of each dataset when selecting dataset 6 as the style image. In the
figure, a style-plugged-CAPTCHA image is created that takes the style property
of the other image while retaining the content of the original image. Especially,
the style image is the same, but the degree of deformation of the style is slightly
different according to the characteristics of the original image. However, it is
seen that the recognition rate of a person is maintained because a lot of letters
are not transformed by the human perception.

Figure 3 shows that a style-plugged-CAPTCHA image is generated for each
dataset when the original sample and the other image are given a difference
of 1 in the dataset order. In the figure, a style-plugged-CAPTCHA image is
generated by extracting the style of the other image while maintaining the con-
tent of the original sample. For example, in datasets #3, #4, #5, and #6, the
figure shows that the point-point portion of the style image is added to the
style-plugged-CAPTCHA image. In addition, the newly created style-plugged-
CAPTCHA image can be seen to remain in the human perception.

(a) #1: original (content) (b) #1: other (style) (c) #1: style-plugged

(d) #2: original (content) (e) #2: other (style) (f) #2: style-plugged

(g) #3: original (content) (h) #3: other (style) (i) #3: style-plugged

(j) #4: original (content) (k) #4: other (style) (l) #4: style-plugged

(m) #5: original (content) (n) #5: other (style) (o) #5: style-plugged

(p) #6: original (content) (q) #6: other (style) (r) #6: style-plugged

Fig. 3. The sampling example of style-plugged-CAPTCHA for the each dataset: Orig-
inal is a original image, other is a other image, and style-plugged is a style-plugged-
CAPTCHA.

Figure 4 shows the recognition rate for the original image and style-plugged-
CAPTCHA by the DeCAPTCHA program for 100 samples per dataset. In
the figure, the recognition rate of DeCAPTCHA is different for each dataset.
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Fig. 4. DeCAPTCHA recognition rates.

Especially, when the style-plugged-CAPTCHA method is applied, the recog-
nition rate of the DeCAPTCHA is significantly lowered for the style-plugged-
CAPTCHA image due to the modulation on the style. Therefore, the style-
plugged-CAPTCHA image has some resistance to the DeCAPTCHA system
than the original image.

5 Discussion

Attack Method Consideration. The assumption of the proposed method is
a white box attack that knows the model. The proposed method is a method of
extracting the content feature of the original sample and the style feature of the
other image from the pretrained model using L-BFGS optimization The proposed
method gives more weight to the content representation than the existing style
transfer method. Because the recognition rate of a person is reduced when there
are many changes in a content representation, the weight is set higher in the
content representation than in the style representation. Unlike the conventional
CAPTCHA method, the proposed method proposes a method of changing the
style by using the feature which can extract the feature in CNN. It is possible to
generate CAPTCHA images more variously by changing the image style rather
than changing characters.

Application. The proposed method is useful for generating CAPTCHA images
in large quantities. If the amount of CAPTCHA images is limited, it is necessary
to generate various CAPTCHA images through various combinations. In such a
case, the proposed method can be used to generate CAPTCHA images of differ-
ent styles. On the contrary, if the DeCAPTCHA system requires learning about
various data, it can be used to improve the performance of the DeCAPTCHA
system by generating various images generated through the proposed method
and learning in advance.
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Limitation. In the proposed method, if the weight of the style representation is
increased, the image distortion may be increased. Also, if the other image of the
style image is severely distorted, the content image may be affected. Therefore,
it is necessary to consider when selecting a style image.

Also, since the proposed method does not attack the DeCAPTCHA system
with a white box, it is not directly attacked. Therefore, it is necessary to com-
pare the input and output values of the DeCAPTCHA system and extend it
to the CAPTCHA method with optimal distortion while maintaining human
recognition rate.

6 Conclusion

In this paper, we proposed a style-plugged-CAPTCHA image that change the
style for the original image. The propose scheme generates a style-plugged-
CAPTCHA image by extracting the content feature of the original sample and
the style feature of the other image. These style-plugged-CAPTCHA image has
some resistance to the DeCAPTCHA system. Experimental results show that
the proposed method maintains the human recognition rate while decreasing
the recognition rate to about 3.5% for the DeCAPTCHA system. The proposed
scheme can also show the possibility of being applied to applications such as
the data expansion. Future studies can be extended to more diverse datasets.
It can also be applied to generate CAPTCHAs using the generative adversarial
net method [19] instead of the L-BFGS algorithm.
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tion and Communications Technology Promotion (2018-0-00420, 2019-0-00426) and
supported by the National Research Foundation of Korea (2017R1C1B2003957,
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Appendix

Table 1. Model of VGG-19 [24]

Layer type Model shape

Convolution+ReLU [3, 3, 64]

Convolution+ReLU [3, 3, 64]

Max pooling [2, 2]

Convolution+ReLU [3, 3, 128]

Convolution+ReLU [3, 3, 128]

Max pooling [2, 2]

Convolution+ReLU [3, 3, 256]

(contniued)
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Table 1. (continued)

Layer type Model shape

Convolution+ReLU [3, 3, 256]

Convolution+ReLU [3, 3, 256]

Convolution+ReLU [3, 3, 256]

Max pooling [2, 2]

Convolution+ReLU [3, 3, 512]

Convolution+ReLU [3, 3, 512]

Convolution+ReLU [3, 3, 512]

Convolution+ReLU [3, 3, 512]

Max pooling [2, 2]

Convolution+ReLU [3, 3, 512]

Convolution+ReLU [3, 3, 512]

Convolution+ReLU [3, 3, 512]

Convolution+ReLU [3, 3, 512]

Max pooling [2, 2]

Fully connected+ReLU [4096]

Fully connected+ReLU [4096]

Fully connected+ReLU [1000]

Softmax [1000]

Table 2. VGG-19 [24] model parameters.

Parameter Values

Learning rate 0.01

Momentum/Dropout 0.9/0.5

Decay/Batch size 0.0005/256

Iteration/Epochs 370,000/74
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Abstract. Owing to the generality and importance of the password as a
means of authentication, many studies have addressed password-strength
evaluation methods and password cracking methods. Recently, the gener-
ative adversarial networks approach to enhance password guessing (Pass-
GAN) has been proposed as a password cracking method in research that
is based on generative adversarial networks (GAN). The results of this
study have received substantial attention. In this paper, we propose the
use of a recurrent neural networks-based (RNN) GAN, which comprises
the use of the improved Wasserstein GAN (IWGAN) cost function. These
models that combine the RNN with IWGAN perform better than Pass-
GAN. We have conducted experiments to compare the performance of
our proposed model with that of PassGAN and analyzed the results.
Using these analyses, we confirmed that our proposed models exhibited
a password cracking performance improvement of 5–10% more than that
of PassGAN.

Keywords: Password cracking · GAN · IWGAN · RNN · PassGAN ·
Hashcat

1 Introduction

Whenever we encounter problems related to authentication, we immediately con-
sider passwords. Although many authentication methods can be applied to var-
ious devices, passwords are the simplest and most prevalent method. Due to the
versatility of passwords, people usually have many passwords for their services
or documents. Sometimes people forget some of their passwords and need to
recover them with password cracking tools. Law enforcement agencies, such as
police and prosecutors are often required to crack passwords while conducting
investigations. For example, a password may be established for an MS Word
file created by a criminal or a disk drive (HDD/SSD) may be encrypted with
an encryption SW, such as VeraCrypt [15]. Research on technology for crack-
ing passwords is important and necessary for solving the previous mentioned
problems.

Three methods can be utilized to crack a password. The first method is a
brute-force attack; the second method is a dictionary-based attack; and the last
method is a hybrid attack [19].
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2019, LNCS 11897, pp. 247–258, 2020.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39303-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-39303-8_19


248 S. Nam et al.

The brute-force attack involves generating a password by combining a certain
number of letters and numbers to satisfy password length and attacking until the
same hash value is reached. The brute-force attack method, which is the easiest
method among the password-cracking methods, has been rapidly improved by
the recent development of graphics processing unit (GPU) technology. As the
length of the password increases, however, the time required for a brute-force
password attack considerably increases.

The second method is the dictionary-based attack [19], which is a method
for cracking passwords using attack dictionaries. Leaked passwords are primar-
ily used to create an attack dictionary, which can be produced by combinations
of words from the Oxford dictionary and numbers that people may use as real
passwords. The advantage of this method is that we can attempt to crack the
password within a constant time using hash algorithms regardless of the pass-
word length. However, the attack range is limited by the number of password
candidates that the attack dictionary holds, and the success of the password
cracking depends on the quality of the attack dictionary.

The last method is the hybrid attack [19], which is an attack that increases
the cracking performance of dictionary-based attacks by supporting the trans-
formation of password candidates in attack dictionaries. The transformation of
password candidates is conducted by adding masking information as a prefix (or
postfix) of elements, such as the brute-force attack or applying various changing
rules (for example, capitalization and changing character position) to characters.

The most commonly employed free tools for password cracking are John the
Ripper (JTR) [1] and Hashcat [2], which support the three of previous mentioned
attack methods. When cracking a password hash with using Hashcat or JTR, we
usually apply built-in rules such as best64 to a leak password dictionary, such
as RockYou [3,7], which demonstrated a reasonable performance in terms of the
cracking success rate [18]. Rules such as best64 are a collection of patterns that
are often used to create password candidates, which are employed to increase the
number of cracked passwords. The use of rules to extend the scope of password
cracking has two drawbacks. First, creating a rule file that reflects all password
variants by analyzing the leaked passwords used by tens of millions of people
is difficult. Second, because password cracking rules reflect an expert’s personal
experiences, the cracking performance of rules is not consistent.

Therefore, the password guessing study for identifying a suitable method
using leaked passwords has been conducted. In the password guessing study,
leaked password dictionaries are automatically analyzed, and we can generate an
attack dictionary that contains password candidates that people may use. Two
approaches exist for reducing the time required to analyze the leaked password
patterns and quickly create a password candidate dictionary that can perform
better in password attacks. The first approach is based on a probabilistic analysis
and the second approach involves the use of deep learning models. We briefly
review these approaches in the next chapter.

In this paper, we propose an improved deep learning based password guess-
ing method that exhibits a better password cracking performance than that of
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the previous deep learning approach (PassGAN). Further, we explore various
training parameter values to generate an effective password-guessing dictionary.

This paper is organized as follows: In Sect. 2, we provide a summary of the
probabilistic approaches and the deep learning study as a password guessing
method. In Sect. 3, we explain our approaches for improving the performance
of PassGAN. In Sect. 4, we describe the experimental environment and deep
learning training parameters. In Sect. 5, we explain the password-cracking per-
formance test results. We conclude this study in Sect. 6.

2 Related Studies

In this section, we present a short review of password guessing methods. In the
deep learning section, we will explain GAN with more detail than other deep
learning methods.

Markov and Context-Free Grammar Approaches

In the probabilistic approach, a method that comprises the use of the Markov
model was proposed. Narayanan et al. proposed a method for generating a pseudo
password using the Markov model [17]. The key idea of this method is that the
password space that people use most in the entire password search space is lim-
ited to passwords that are easy to remember when creating a password, and the
passwords in this area adhere to a certain probability distribution of alphanu-
meric combinations. A password generation rule that expresses a combination
of various alphabets and numbers as regular expressions and defines the proba-
bility of each combination was created. This early work has been subsequently
extended by Ma et al. [16] and Dürmuth et al. [8].

The most important aspect of these studies is the application of the proba-
bilistic context-free grammar (PCFG) concept to the password guessing method.
This approach was first proposed by Weir et al. [21]. Until recently, research
based on PCFG has been continuously extended and improved [14,22]. Consid-
ering the complexity of the current password, the grammatical structure includes
not only simple alphabets and numerical combinations, but also complex com-
binations that use special characters and keyword-walk. The leaked password
is then automatically analyzed to calculate the probability distribution for each
grammar structure, and the probability information of the word used for each
grammar element is also stored. Using the stored data, the PCFG generates a
password in the order of the grammatical structure with high probability, such
that the PCFG improves the crack efficiency over time. In the experiment, the
password guessing method that comprises the use of PCFG exhibited a higher
cracking success rate than the dictionary-based attack using Hashcat built-in
rules. This method was effective in expanding the cracking range in the pass-
word space.
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Deep Learning Approaches

A password guessing method that employ deep learning was proposed by
Melicher et al. [6], who applied an RNN [13]. The RNN [13] is a deep learn-
ing method that exhibits excellent performance in the field of natural language
processing and is utilized in various tasks, such as chat bots application, transla-
tion, and auto-completion. In the Melicher et al.’s method [6], leaked passwords
are used as training data. After the training is completed, a guessing password is
generated in character units. In the RNN model, a character that constitutes the
password is based on the previously selected characters. This operation method
is similar to the Markov process. In addition to Melicher et al. [6], there is Hitaj
et al.’s PassGAN [12] as a deep learning–based password guessing method. Pass-
GAN was developed using the Improved Wasserstein GAN (IWGAN), which is
a relatively new model among the various GAN models. GAN, which is a deep
learning model used in PassGAN, has recently become an important generation
model. The goal of the first GAN model presented by Goodfellow et al. [10] was
to generate samples that were likely to be included in the population through-
out the training to obtain a distribution that is identical to the population in
the high dimension. In contrast to the existing neural network model, GAN has
unique structure. Two deep neural networks (DNNs) are employed, and each
DNN is referred to as a generative DNN (denoted as G) and a discriminative
DNN (denoted as D). The roles of G and D are defined as follows: D distin-
guishes between real data and the fake data generated by G, and G is trained
to perform the role of generating fake data. In the case of G, the objective is
to create perfect fake samples such that the D cannot distinguish between the
actual sample and the sample generated by G. This problem is a minimax prob-
lem. Goodfellow et al. [10] have mathematically proven that this problem has a
global optimum when the distribution of fake samples generated by G is identi-
cal to the distribution of the real data. The minimax problem can be expressed
as follows:

min
G

max
D

V (D,G) = E
x∼Pdata(x)

[logD(x)] + E
z∼Pz(z)

[log(1 − D(G(z)))] (1)

After Goodfellow et al. proposed the first GAN, various GAN models
with better performance have been suggested. Among these GAN models, the
Wasserstein GAN (WGAN) [4] and improved training of Wasserstein GAN
(IWGAN) [11] presented a more stable method that enable the GAN model
to find the global optimum. IWGAN was proposed by Gulrajani et al. [11],
who introduced the concept of a gradient penalty instead of gradient clipping in
WGAN and showed stable training of the GAN model without divergence. The
IWGAN showed that the CNN based IWGAN model can be applied to a text
generation area. PassGAN was derived from these experimental results.

PassGAN also uses leaked passwords (RockYou) as training data, and the
role of D is to distinguish between the real password and fake password generated
by G. G is trained to create passwords that are similar to the leaked passwords to
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deceive D. G can sample the fake passwords, which can deceive the D finally. The
experiments showed that PassGAN can create passwords that Hashcat cannot
generate.

3 Proposed Model

To improve the performance of password cracking, we approached it from two
perspectives. The first perspective is to change the deep learning model in the
discriminator and generator, while the second is the structural change in the
PassGAN model.

Single Discriminator Model

PassGAN was developed based on the IWGAN, and the generator G and dis-
criminator D use CNNs. The CNN model can be used for texture generation.
However the CNN is not the best solution for text generation. Passwords have a
certain order and rules for the characters that constitute passwords. For exam-
ple, we consider the password “p@ssw0rd”. If we know that @ and s appear after
p, then we can guess that the next character will be s. This conjecture is pos-
sible because the characters used by people have a certain order, and preceding
characters have a probabilistic effect on the selection of the following characters.
In this field, RNN [13] is a suitable deep-learning model that exhibits good per-
formance in processing such sequential data, and the LSTM [9] and GRU [5] are
good cell types of RNN. As shown in Fig. 1b, it is expected that the password
cracking performance will be improved by changing the deep learning model of
the D and G from CNN to RNN without changing the PassGAN’s structure. In
addition, we denote this model as r-PassGAN.

Dual Discriminators Model

We propose a model that simultaneously changes the model of D and G from
CNN to RNN and the structure of the GAN. The basic idea of changing the GAN
structure is to use dual discriminators that use the IWGAN’s cost function. The
discriminators D1 and D2 perform the same functions as those in D2GAN, which
was proposed by Nguyen et al. [20]. D1 attempts to detect the real passwords
among the real and fake passwords, and D2 attempts to detect the fake passwords
among the real and fake passwords. In the dual discriminators GAN model, the
goal of generator G is to deceive both D1 and D2, such that the distribution of the
real password and that of the fake passwords generated by G must be identical.
D1 and D2 fall into an indistinguishable state where they cannot distinguish
between a real password and a fake password. In the first dual discriminator
model, the sum of each discriminator’s costs is defined, and D1 and D2 are
trained to minimize the sum of the costs. Generator G is trained to maximize
the cost sum in contrast to the discriminators’ costs (Algorithm 1). We denote
this model as a dual discriminators combination PassGAN and abbreviate its
name to r-PassD2CGAN (Fig. 1c).
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(a) PassGAN (b) r-PassGAN (c) r-PassD2CGAN

Fig. 1. PassGAN, r-PassGAN, r-PassD2CGAN block diagram

Algorithm 1. r-PassD2CGAN calculates each discriminator’s gradient penalty.
We use the default values of λ = 10, ncritic = 10, ngen = 40, α = 0.0001, β1 = 0.5
and β2 = 0.9.
Require: Gradient penalty coefficient λ, number of critic iterations per generator

ncritic, number of generator iterations per discriminator ngen, batch size m, and
Adam hyperparameters α, β1, and β2.

Require: Initial D1 and D2 critic parameters w0 and u0, and initial generator param-
eter θ0.
while θ has not converged do

for t = 1, ..., ncritic do
for i = 1, ..., m do

Sample real data x ∼ Pr, latent variable z ∼ p(z), and a random number
ε ∼ U [0, 1].
x̃ ← Gθ(z)
x̂ ← εx + (1 − ε)x̃
x̄ ← εx̃ + (1 − ε)x

L
(i)
D1

← Dw(x̃) − Dw(x) + λ(‖∇x̂Dw(x̂)‖2 − 1)2

L
(i)
D2

← Du(x) − Du(x̃) + λ(‖∇x̄Dw(x̄)‖2 − 1)2

L
(i)
D2comb

= L
(i)
D1

+ L
(i)
D2

end for
(w, u) ← Adam(∇(w,u)

1
m

∑m
i=1 L

(i)
D2comb

, w, u, α, β1, β2)
end for
for t = 1, ..., ngen do

Sample a batch of latent variable {z(i)}m
i=1 ∼ p(z)

θ ← Adam(∇θ
1
m

∑m
i=1(−Dw(Gθ(z)) + Du(Gθ(z)), θ, α, β1, β2)

end for
end while

4 Experiments

Experiments for the performance comparison are designed to check whether
the proposed models provides a better performance than that of PassGAN. In
addition, the performance was evaluated with not only the simple crack-success-
rate measurement but also the extensibility of the cracked password. The detailed
experimental setup is described as follows:
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Training Configuration

Training Parameters. The basic training parameters that were utilized in
each model are identical to those of PassGAN (training values are defined in
Algorithms 1). Only one G/D training ratio was set differently from that of
PassGAN. We conducted experiments for obtaining the proper G/D training
ratio of our models. The configuration of the optimized G/D ratio experiment
is described as follows: The subjects of this experiment are two models that
comprise RNN, with exception of PassGAN. The G/D training ratio is changed
from 10:10 to 100:10. The data employed in the training is RockYou, and the
training epoch is 20,000 (20k). To evaluate the experimental results, we applied
the N-gram (N = 3, 4) Jensen–Shannon divergence (JSD) values of the RockYou
versus the dictionary generated by each RNN–based model. As shown in Fig. 2,
all models (r-PassGAN, r-PassD2CGAN) show similar patterns. The JSD is
lowest at 40:10 and increases from 50:10.

(a) 3-gram JSD (b) 4-gram JSD

Fig. 2. N-gram JSD (N = 3, 4) by G/D ratio (X-axis: G/D training ratio; Y-axis: JSD
value). The data employed in the training is a RockYou password dictionary of length
1–8. The lower is the JSD value, the closer is the value to the password distribution
generated by human.

Training Data. The data applied in the training of the three deep-learning
models, including PassGAN, are plain-text passwords from RockYou. Before
training the models, the RockYou dictionary was refined. In this experiment,
first, we excluded the unicode characters from the RockYou. Second, we ana-
lyzed the length of the passwords in the RockYou dictionary. We then used whole
length of RockYou (about 14 million and password length: 1–32). For the per-
formance evaluation of each model based on the password length, the passwords
were divided into three sections based on length (1–8, 9–15, and 16–32), and
the training dictionaries were created using RockYou for each password-length
section. The purpose of experimenting by dividing the password into three sec-
tions by length is to identify which model has the best performance per password
length section.



254 S. Nam et al.

Password Cracking

The target of the password cracking was set to leaked passwords from the
LinkedIn site. In the crack performance test of the RockYou dictionary trained
models, 20% of LinkedIn leaked passwords with 1–32 character length were used
as the cracking target. Unicode password also excepted like RockYou. When test-
ing the cracking performance with Hashcat, we applied the best64 rule for two
reasons. The first reason is to measure the cracking performance of the guessing
password in conditions that are similar to the practical field, where the rules,
such as best64 are applied to the password dictionary. The second reason is that
considerable amount time is required to generate billions of passwords using the
deep learning model. Thus, even if we generate a small number of passwords,
we could successfully crack many passwords that are associated with a simple
transformation by applying the best64 rule.

5 Evaluation

Dictionary Quality Perspective

The quality of the password-guessing dictionary was compared from two view-
points. The first viewpoint considered the similarity between the dictionary gen-
erated by the model and the training dictionary created by people. The second
viewpoint consider the number of unique guessing passwords in the dictionary
generated by the model. If the model generates a large number of duplicated
guessing passwords, the password cracking performance within a limited time
is degraded. To measure the similarity, the JSD is applied as the evaluation
criteria. The JSD value for each N-gram was compared with that of a human-
made password dictionary (RockYou leaked-password dictionary). As shown in
Fig. 3, RNN–based models have lower JSD values than the PassGAN in the case
of all N-grams. RNN–based models are more similar to the human–generated
password distribution in terms of an N-gram than the PassGAN.

In terms of the performance of the redundancy rate of the generated guess
passwords, the RNN–based models exhibit a better performance than that of
PassGAN. As the length of the generated password increases, the space for
generating the password is exponentially widened, and thus, the difference in the
redundancy rate of each model disappears in the case of the 16–32 password-
length section. RNN–based models show a low password-generation redundancy
even in a narrow password space, which facilitates efficient password cracking
(Table 1).

Cracking Performance Perspective

The most interesting aspect of creating a password-guessing dictionary using our
models that have been trained using a leaked-password dictionary is the number
of target password have been successfully cracked and the contribution of our
password–guessing dictionary to cracking the hashes that were not previously
cracked. We discuss the cumulative password cracking performance and cracking
area expansion capability of r-PassGAN and r-PassD2CGAN against PassGAN.
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(a) 3-gram JSD; epoch 200k (b) 4-gram JSD; epoch 200k

Fig. 3. N-gram JSD of generated password dictionary (X-axis: password length; Y-axis:
JSD value)

Table 1. Redundancy rate of guessing password dictionary

Models 1–8 9–15 16–32 1–32

PassGAN 7.52% 0.55% 0.1% 4.08%

r-PassGAN 4.42% 0.15% 0.10% 2.02%

r-PassD2CGAN 4.34% 0.15% 0.09% 2.05%

Total Password Cracking. First, we demonstrate the cracking performance
per training epoch. The result of RockYou’s password length section shows only
slight difference in the password cracking performance after all models have
learned 100,000 (we denote 100k) times. RNN–based models show acceptable
cracking password performance for all password lengths and training epochs.

(a) length: 1–8, best64 (b) length: 9–15, best64 (c) length: 16–32, best64

Fig. 4. Total cumulative cracked password by training epoch.

Figure 5 shows the relationship between the number of password guessing and
the number of cumulative password cracks. The number of cumulative password
cracks tends to differ between the early training (10k epoch) model and the
ending (200k epoch) model. When the training epoch is 10k, r-PassD2CGAN
shows the highest cumulative cracks from the beginning, this tendency continues
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until the latter half of the crack. In the case of epoch 200k, only the difference
between the PassGAN and two RNN models can be confirmed, with only a slight
difference between the RNN models. The results of the password–length sections
are slightly different. In the case of the password-length sections 9–15 and 16–32,
r-PassD2CGAN exhibits a better performance than that of r-PassGAN.

(a) 1–8, 10k, best64 (b) 9–15, 10k, best64 (c) 16–32, 10k, best64

Fig. 5. Total cumulative cracked password by the number of guessed passwords.

Cracking Extensibility. We show the experimental results of the password
cracking space extension of each model’s password-guessing dictionary. The
experimental results of the password cracking space extensibility were analyzed
from two perspectives. First, we analyzed the extension of the password dictio-
nary generated by each model for the cracking space of the real password that
was applied in each model training. We analyzed the ratio of the number of
passwords that can be cracked by only the model against the password that the
model did not crack for all proposed models.

The difference in the cracking results of the password dictionary generated by
each model is shown in Table 2. This table shows that all proposed models have
unique password cracking regions whereas the other models failed to crack. This
finding is important because the use of all dictionaries created in each model
can maximize the password cracking space. The model with the largest number
of unique cracks is r-PassGAN, followed by r-PassD2CGAN and PassGAN. The
difference between the RNN models is very small.

Table 2. Difference in each model’s cracking result set.

Models PassGAN r-PassGAN r-PassD2CGAN

PassGAN 0 107103 107406

r-PassGAN 235937 0 143182

r-PassD2CGAN 235127 142069 0
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6 Conclusions

In this paper, we proposed two models that show better cracking performance
than that of PassGAN, which was the first GAN–based password–guessing
model. In our models, we employed the RNN as a basic DNN. Although the
performance of the PassGAN was improved only by the change from CNN to
RNN, we adopted a dual discriminator structure to obtain a substantially better
performance. The G/D training ratio for the optimized training in the RNN–
based IWGAN is experimentally derived. We show that the RNN–based models
have an improved performance compared with PassGAN because cracking per-
formance tests are conducted. Using the deep learning model to train the existing
password dictionary and generate a guessing-password dictionary requires con-
siderable amount time. However, time investment has the benefits of cracking
using a guessing-password dictionary that is secured via these tasks.

Using the experimental results of this study, the selection of a password
generation model for password cracking extension can be guided. If ample time is
available but the available computing environment is undesirable, we recommend
the use of only one RNN–based model to crack the password. In this case, the
type of the RNN–based models is not important. If insufficient time is available
and sufficient GPU power is available, we recommend the use of r-PassD2CGAN,
which showed acceptable cracking performance with a small epoch, such as 10k.
To maximize the number of cracked passwords, all models should be employed
because each model has a unique cracked password.
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Abstract. The use of cryptographic functions has become vital for var-
ious devices, such as PCs, smart phones, drones, and smart appliances;
however, the secure storage of cryptographic keys (or passwords) is a
major issue. One way to securely store such a key is to register the key
using secret data such as biometric data and then regenerate the key
whenever it is needed. In this paper, we present a novel methodology
for hiding cryptographic keys inside a deep neural network (DNN), and
is termed as the DNN-based key hiding scheme. In this method, DNNs
are constructed and trained with noisy data to hide the key within the
network. To prove that our methodology works in practice, we propose
an example of the DNN-based key hiding scheme and prove its correct-
ness. For its robustness, we propose two basic security analysis tools to
be able to check the example’s security. To the best of our knowledge,
this is the first attempt of its kind.

Keywords: Key hiding · Key generation · Deep neural network ·
Noisy data · Physical unclonable function

1 Introduction

In modern cryptography, Kerckhoffs’s principle is one of the most important
principles, which states that a cryptographic system should be secure, even if
everything about the system, except the key, is public knowledge. In this state-
ment, it is clear that one of the most important factors in determining the
security of a cryptographic system is the cryptographic key. There are many
methods for keeping and using keys safely. One traditional way to hide a key
is to memorize the key and use it whenever necessary; however, this method
involves several problems. Simply, it is possible to forget the key. Moreover, it
is hard to memorize several keys; therefore, assuming that the same key is used
repeatedly in multiple places, all keys are at risk if only one is leaked.
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Two methods for securely storing cryptographic keys are often used to
address the problems mentioned above. One stores the cryptographic key in
secure storage inside the device, for example, in hardware security modules
(HSM) or trusted platform modules (TPM). The drawback of this hardware
method is that it is more expensive than methods based on software. Addition-
ally, if one loses an embedded secure storage device, the key is also lost. Another
method registers the key using secret data with noise such as biometric data,
then regenerates the key whenever it is needed. Representative methods include
fuzzy extractor [1,2] and fuzzy commitment schemes [3], which employ error
correction codes (ECC) as the main function.

Most key generation mechanisms use methods similar to the fuzzy extrac-
tor concept and use ECC as a key element. However, some authors have shown
that key generation is possible without the use of ECC. For example, [4] pre-
sented a key binding mechanism without ECC that registers and regenerates
keys using the fingerprint feature. Because ECC is not used, there is no security-
performance tradeoff issue between the binding key size and key recovery rate.
The authors bind a key bit by enrolling a transformed genuine fingerprint tem-
plate (using the cancelable biometric trick) if the key bit was 1; otherwise, the
key bit is bound by enrolling a transformed fake fingerprint feature template.
Their key release mechanism subsequently extracts the key bit 1 if a transformed
template (cancelable template) of the query fingerprint is well matched with the
enrolled template.

On the continuation of the above idea without using ECC, you can raise the
following question:

– Is it possible to apply a machine learning technique such as deep
neural networks to hide a key using noisy data?

This paper confirms that the answer to this question is yes by introducing a novel
concept for hiding cryptographic keys within deep neural networks. The feasi-
bility of this method is demonstrated through implementation of an instance.
Furthermore, we propose two basic security analysis methods to validate the
robustness of our example implementation.

1.1 Our Contributions

The proposed approach for hiding a key within a deep neural network with noisy
data is termed the deep neural network based (DNN-based) key hiding scheme.
In this approach, it is first necessary to prepare appropriate noisy data for use as
the secret input for extracting the key from the deep neural network. In Sect. 3.2,
image data and physically unclonable function (PUF) data are used. The DNN-
based key hiding scheme consists of a key hiding network & training and key
reproduction, as follows:

– Key Hiding Network & Training
• Deep neural network for extracting features from noisy data
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• Learning network for hiding the key after binding extracted features and
the key

• Training the above network to hide the key using the prepared noisy data
for positive learning and other data for negative learning

– Key Reproduction
• Extracting the hidden key from the learned network using the prepared

noisy data

To determine the practical correctness of this novel key hiding concept, we
conduct experiments using an example DNN-based key hiding scheme.

In the proposed scheme, the secret information is the prepared noisy data
used for extracting the key and training the key hiding network, and the public
information is the trained DNN network that has optimal weights and biases.
It is vital to prove that there is no potential for key leakage from this public
information; therefore, we provide two basic tools to analyze the security of the
DNN-based key hiding scheme and demonstrate that partial key information is
revealed if the key hiding network is trained with weak data.

1.2 Organization of the Paper

The paper is organized as follows. In Sect. 2, we address related research. In
Sect. 3, we define the novel key hiding scheme and present an instance to show
the feasibility of this approach. In Sect. 4, we prove the correctness of our example
through experimental results, and present two security analysis mechanisms to
verify the robustness of the example. We describe several outstanding issues
related to this new key hiding method in Sect. 5 and present our conclusions in
Sect. 6.

2 Related Research

Juels et al. [3] proposed a fuzzy commitment scheme that enables dynamic key
generation without storing the key in the device. Based on this scheme, the
generalized fuzzy extractor method was proposed [1,2], which generates a key
using noisy biometric data. Subsequently, the fuzzy vault scheme was proposed
[5], which generates a key using fingerprints. Many other fuzzy extractor-based
methods have since emerged, applying the schemes to several biometrics includ-
ing fingerprints [6], irises [7,8], faces [9], and palmprints [10]. A more recent study
has proposed fuzzy commitment using two noisy sources instead of biometrics
[11].

Moreover, Jin et al. [4] proposed a new key binding scheme without using
ECC. They employed cancelable biometrics to bind and release the cryptographic
key, making the scheme robust to several attacks and eliminating the key size
dependence on ECC. During key binding, the key bit is bound to features and
a cancelable transform is applied to true fingerprint features with key bit 1 and
synthetic features with key bit 0. Then, key bound cancelable templates are
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generated. During key release, more cancelable templates are generated from
queried biometric data using cancelable transform. If both sets of cancelable
templates are similar, the released key bit is 1; otherwise, it is 0.

2.1 Preliminary Concepts

Convolutional Neural Network. An artificial neural network (ANN) is
employed in several fields including biometrics [12], finance [13], and language
[14]. Various kinds of ANNs have been emerged and specialized to serve the
purpose well. Convolutional neural networks (CNNs) [15] which constructed to
process multiple layered images are one of them. CNNs are composed of two
parts: feature extraction and classification. In feature extraction, unique fea-
tures of the input data are found through a convolution layer and a pooling
layer. The convolution layer performs a convolution operation using input data
and a convolution filter set. This operation creates features that are activated
by only highlighting the filter. The results of the operation pass through a rec-
tified linear unit (ReLU) [16] and enter the pooling layer, which reduces the
size of features from the convolutional layer. There are several types of pool-
ing, with max pooling being the most common, which takes the greatest value
from each chunk of features. The features generated from feature extraction are
used for the classification, which consists of a fully connected layer and a loss
layer. All neurons included in the fully connected layer are fully connected to
the features. Thus, the activations of the fully connected layer are computed by
matrix multiplication. Finally, the activations are transmitted to the loss layer
and a softmax function is typically used for classification. In the loss layer, the
deviation between the input label and predicted value is computed. To minimize
the deviation, the weights are modified.

Logistic Regression with Neural Network. Logistic regression [17] is a
machine learning algorithm most commonly used for binary classification. It
results in a linear equation between the independent and dependent variables,
which is a binary outcome employing the sigmoid function. Each independent
variable xi is multiplied by a corresponding weight value wi and summed.

z = x1 · w1 + x2 · w2 + · · · + xi · wi

The result, z, is entered into the sigmoid function and the function outputs a
value between 0 and 1. The weight values are modified to minimize the deviation
between the output of the sigmoid function and the binary input label using cross
entropy.

Physical Unclonable Function. A PUF provides a unique identity for a
device. PUF generates unpredictable random bit strings using differences in the
manufacturing process such as physical variations. There are two types of PUF:
weak PUF and strong PUF [18].
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3 DNN-Based Key Hiding Scheme

The goal of this section is to define the new key hiding concept, termed the
DNN-based key hiding scheme, and verify the applicability of the scheme using
a detailed example.

3.1 Proposed Methodology

We assume that noisy data such as biometric data, PUF data, or image data
will be used to train the hiding network and extract the key from the network.
Here, k is a randomly chosen cryptographic key. The DNN-based key hiding
scheme consists of key hiding network & training and key reproduction. Detailed
descriptions are given below.

Key Hiding Network and Training. In Fig. 1, di is noisy data where i =
1, . . . , n and n is the amount of noisy data. n can be 1 if we use only one type
of noisy data. n is two in this paper because two types of noisy data are used
(image data and PUF value). The feature generation layers in Fig. 1 represent
a deep learning network for inducing features of the noisy data d1, . . . , dn. The
key hiding layers in Fig. 1 represent the learning network for binding the key
k to the features extracted from the feature generation layers and hiding k in
the network by training the key hiding network. The output in Fig. 1 represents
an appropriate label for learning the network. The key hiding network is then
trained using noisy data di and the output to hide k. After the training process,
the network and its parameters are saved to use during key extraction.

Fig. 1. Conceptual diagram of the key hiding network & training process

Key Extraction. Key extraction produces k hidden in the trained key hiding
network (Fig. 2). The input for key extraction is noisy data and the output is k
if the input is correct noisy data di where i = 1, . . . , n. The feature generation
layers in Fig. 2 are identical to those of the trained key hiding network. The key
extraction layers are the same trained network as the key hiding layers of the
trained key hiding network, excluding the process of binding k.

In Sect. 3.2, we present a practical example of our DNN-based key hiding
scheme to verify the feasibility of this newly defined concept.
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Fig. 2. Conceptual diagram of key extraction

3.2 Instantiation

Here, we introduce a practical example for the DNN-based key hiding scheme
defined in Sect. 3.1, which is graphically described in Fig. 3. First, we prepare
an image with a size of 16 × 16 pixels and a PUF value of 64 bits as noisy data
d1 and d2. Notice that d1 and d2 are secret data, but deep neural networks and
related parameters are public data in this example.

Key Hiding Network and Training. The feature generation layers consist of
one convolutional layer, one max pooling layer, and a PUF binding layer, whereas
the key hiding layers consist of a key binding layer and sk logistic regressions
where sk is the bit size of the key k = k1k2 · · · ksk. Let img and puf denote the
image and PUF value used as input data in the layers.

A concrete description of the feature generation layers is as follows:

1. Convolutional layer. Employ filters wCNN with a size of 7 × 7 × sk and a
stride of 2 and apply the ReLU function.

2. Max pooling layer. Employ a window with a size of 2 × 2 and a stride of
2. Then, we obtain features {Fi}ski=1 where the size of Fi is 8 × 8.

3. PUF binding. Let Fi = [f1, . . . , f64], puf = [p1, . . . , p64], and pFi =
[pf1, . . . , pf64] be an output of the PUF binding for i = 1, . . . , sk. Compute
pfi = (−1)(1−pi) ·fi, in which the sign of fi is flipped if an i-th bit of the PUF
is 0. Then, features {pFi}ski=1 are generated. Of the many different ways to
bind a PUF value puf , we employ simple sign flipping, which produces good
results in the experiments.

The key hiding layers are as follows:

1. Key binding. The inputs of key binding are {pFi}ski=1 and the outputs are
{kFi}ski=1. Compute kFi = [(−1)(1−ki) · pf1, . . . , (−1)(1−ki) · pf64] for each
i = 1, . . . , sk. This means that the sign of each element pfj in pFi is flipped
if the i-th bit of the key k is 0 for j = 1, . . . , 64 and i = 1, . . . , sk.

2. Logistic regression. Generate logistic regressions {LRi}ski=1. In each logistic
regression, there is a weight value wi

LR, where i = 1, . . . , sk, a sigmoid func-
tion, and cross entropy. The logistic regression LRi takes a feature kFi as an
input. Let hi denote an output of kFi × wi

LR and let yi denote an output of
sigmoid(hi).

Now, we describe the two types of training used to hide k in the DNN architec-
ture.
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Fig. 3. Graphical description of our instantiation. (a) Key hiding and (b) Key extrac-
tion

– Positive learning is the learning process trained with label 1. The weight
values {wi

LR}ski=0 in the logistic regression are optimized to minimize the devi-
ation between yi and the input label. The data used for positive learning are
as follows:

• Original images: Image d1
• Original outputs: PUF value d2
• Original key: Key k

– Negative learning is the learning process trained with label 0 in each logistic
regression, and is very important in terms of the security of our instantiation.
If the data used in negative learning are not appropriate, serious problems
can arise (see Sect. 4). The data used for negative learning are as follows:

• Color inverted images: Images created by flipping each bit of the binary
representation of pixels in the original image
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• Bit-flipped PUF value: value modified by flipping each bit of the original
PUF d2

• Bit-flipped Key: value modified by flipping the bit of the original key

Key Extraction. The key extraction function consists of the trained feature
generation layers and sk trained logistic regressions from the trained key hiding
network in Sect. 3.2. In the sk logistic regression part of Fig. 3(b), it predicts a
key using features {pFi}ski=1, which are extracted from feature extraction layers
and optimized weight values wi

LR. Let yi be the output of sigmoid(pFi × wi
LR)

for i = 1, . . . , sk. Then, yi has a value between 0 and 1. We adopt a key decision
criteria whereby if yi > 0.5, an i-th bit of a key k′ is 1; otherwise, it is 0. Finally,
we obtain a key, k′, which is the hidden key, k, if a valid image and a PUF value
is entered.

Here, we explain why the right key, k, is produced for a valid image and PUF
value. It should be remembered that we flip the sign of all elements of the feature
pFi when an i-th bit of the key k is 0 and train each feature in {kFi}ski=1 with
the label 1. Assuming that we have the optimized wCNN and wi

LR, i = 1, . . . , sk,
let pFh

i and pF e
i denote an i-th feature, which is generated in the trained key

hiding network and the key extraction, respectively, and ki be i-the key bit of
the key k for i = 1, . . . , sk.

– ki = 0: The sign of all elements of pFh
i is flipped so that kFi = −pFh

i

and sigmoid(kFi × wi
LR) ≈ 1. In key extraction, however, as there is no

process that flips the sign of the feature pF e
i , the absolute values of pF e

i ×
wi

LR and kFi × wi
LR are almost equal, but the signs are opposite. Therefore,

sigmoid(pF e
i × wi

LR) is close to 0. Following the key decision criteria, the
extracted key bit is 0.

– ki = 1: Contrary to 0, the sign of each element of pFh
i does not change;

therefore, kFi = pFh
i and sigmoid(kFi × wi

LR) ≈ 1. In key extraction, the
absolute values of pF e

i ×wi
LR and kFi ×wi

LR are almost equal and their signs
are the same. Therefore, sigmoid(pF e

i ×wi
LR) is close to 1. Following the key

decision criteria, the extracted key bit is 1.

4 Analysis

4.1 Correctness

In this section, we show that our scheme can reliably extract a key regardless
of key size and does not generate a valid key for incorrect input data. The data
used in our experiments are as follows:

– Correct images: Same as the trained images used for hiding the key k
– False images: Different images from the trained image
– Correct PUF: Original PUF value used for hiding the key k
– False PUF: In our experiment, this is a collection of random bit strings that

are different from the original PUF value
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Each dataset consists of 1,000 images and/or PUF values. We implement the key
hiding network using a TensorFlow [19]. Table 1 shows the experimental results.
In case 1 of Table 1, the false reject ratio (FRR) is extremely low, indicating that
our instantiation extracts the correct key when valid input data are entered.
Moreover, the FRR shows a similar result for each key size 64, 128, and 256,
indicating that our example reliably extracts the valid key regardless of key size.
In case 2 and case 4, the false acceptance rate (FAR) is 0%. In case 3, FAR is
approximately 0.8% when the key size is 256.

Table 1. Correctness

Input data Key size

Image PUF 64 128 256

Case1 Correct images Correct PUF FRR 0.1 0.6 0.2

Case2 Correct images False PUF FAR 0.0 0.0 0.0

Case3 False images Correct PUF 4.1 2 0.8

Case4 False images False PUF 0.0 0.0 0.0

FRR(%): False Reject Ratio
FAR(%): False Acceptance Ratio

4.2 Robustness

In the previous section, we prove that our example can correctly hide a key then
reliably extract it. Here, we introduce two security analysis tools to verify the
robustness of our scheme and our experimental results. As explained previously,
the public and secret information of our scheme is as follows:

– Public information: Key extraction functionality including deep neural net-
work architecture and its weight values

– Secret information: Correct noisy data used to produce the hidden key during
key extraction. Image data and PUF values are secret information in the
example of Sect. 3.2

Two possible attack methods are suggested for determining the hidden key from
the public information.

1. The attacker can investigate the potential for key leakage from the weight
values in the key extraction

2. The attacker can collect many outputs of our key extraction functionality
using random inputs, then attempt to find information about the hidden key
from the statistical results of the output values

The two security analysis tools are based on these two attack methods.
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Weight Sum Analysis. In the first attack method, an adversary analyzes the
weight parameters in the key extraction functionality and attempts to find infor-
mation related to the valid key. In our example of Sect. 3.2, the public parameters
are wCNN and wLR. wCNN is not related to the key; however, wLR, which is the
weight value of the key hiding layers, is closely related to the hidden key. There-
fore, the attacker can exploit the weight values. Let wi

LR = (wi
1, w

i
2, . . . , w

i
64)

be the weight value related to the i-th key bit extraction in (b) of Fig. 3 for
i = 1, . . . , sk. Now, we simply add all elements (wi

1, w
i
2, . . . , w

i
64) in each weight

value in {wi
LR}ski=1, and {weightSumi}ski=1 is the result.

weightSum1 = (w1
1 + w1

2 + . . . + w1
64)

weightSum2 = (w2
1 + w2

2 + . . . + w2
64)

. . .

weightSumsk = (wsk
1 + wsk

2 + . . . + wsk
64)

Finally, the attacker estimates each key bit as follows (also see Algorithm 1):

– the i-th key bit is guessed as 1, if weightSumi > 0
– the i-th key bit is guessed as 0, otherwise

Algorithm 1. Weight value sum analysis
input : {wi

LR}ski=1

output: An inferred key k′

for i = 0 to sk do
weightSum = 0
for j = 0 to 64 do

weightSum = weightSum + wi
j

end
if weightSum > 0 then

k′
i = 1

else
k′
i = 0

end

end
return k′

We analyze our example from Sect. 3.2 with the experimental data used to
verify its correctness. For a hidden key size of 64, the Pearson correlation is 0.09
between the guessed key string from Algorithm 1, which implies that the result
of Algorithm 1 is similar to the randomly guessed key.

Here, we show an example whereby someone trains with data that is not the
negative training data defined in Sect. 3.2, so partial information of the hidden
key may be revealed from analysis of the Algorithm 1. We carelessly generate
negative learning data as follows:
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– Ingredients of weak negative learning
• Original images: Same as the original images used in positive learning.
• Bit-flipped PUF value: Value modified by flipping each bit of the original

PUF used in positive learning.
• Original key: Identical to the key trained in positive learning.

When applying the Algorithm 1 after this negative training, a Pearson correla-
tion with the hidden key string is 0.84.

Statistical Analysis. The second analysis tool involves exploiting the key
extraction functionality. An attacker can choose input data randomly and per-
form key extraction, resulting in outputs of 0 or 1 for each key bit. Assuming
that they have multiple arbitrary input data and try the same attempt sev-
eral times, they can create a collection of keys. The attacker then counts the
number of 0 and 1 values at the i-th bit of all keys in the collection, with
zeroCounti and oneCounti as the results. Then, they adopt a criteria whereby
if zeroCounti > oneCounti, the i-th bit of the key is guessed as 0; otherwise, it
is guessed as 1. Algorithm 2 describes this statistical analysis.

Again, the example from Sect. 3.2 is analyzed using the experimental data
used to verify its correctness. A Pearson correlation between the key guessed and
hidden is 0.1. It means there is no relation which could be latent risk of being
attacked. Here, we show an example whereby if someone trains with data other
than the negative training data defined in Sect. 3.2, a statistical attack using
Algorithm 2 is possible. The following negative learning data is generated:

– Ingredients of weak negative learning
• Original images: Same as the original images used in positive learning.
• Random PUF value: Randomly generated value.
• Original key: Same as the key used in positive learning.

The experimental results for this example show a Pearson correlation of 0.59
with the right key string. This implies that there is potential to reveal the hidden
key.

5 Open Issues

To the best of our knowledge, this is the first attempt to hide a cryptographic
key within a deep neural network. As such, there are many unsolved questions
requiring further research. For example:

1. Learning network issues
– Different learning network structures from that proposed in this paper
– Application of our methodology to auto encoding
– Other key binding mechanisms
– Learning networks for hiding and generating a group key
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Algorithm 2. Statistical analysis
input : Arbitrary images and PUF outputs
output: An inferred key k′

{zeroCounti}ski=1 = 0
{oneCounti}ski=1 = 0
while i < iteration do

candKey = keyExtraction(imgi, pufi)
for i = 0 to sk do

if candKeyi = 0 then
zeroCounti = zeroCounti + 1

else
oneCounti = oneCounti + 1

end

end

end
for i = 0 to sk do

if zeroCounti ¿ oneCounti then
k′
i = 0

else
k′
i = 1

end

end
return k′

2. Noisy data issues
– Development of other noisy data
– Application of our methodology to biometric information such as faces

and irises.
– Use of more than two factors

3. Application issues
– Finding an adequate application scenario
– Application potential to the low-cost IoT environment or smart phone

application
– Application to authorization of commercial machine learning engine

4. Security issues
– Advanced security analysis for the proposed scheme
– Formal security proof tool for the proposed scheme

6 Conclusion

In this paper, we present a novel approach for hiding cryptographic keys within
the deep neural network, which we term the DNN-based key hiding scheme.
To verify the feasibility of our new concept, we present a practical example of
the DNN-based key hiding scheme and demonstrate its correctness. Lastly, we
newly present two basic security analysis methods for checking its robustness
and address several open issues for further study. To the best of our knowledge,
this is the first attempt at such an approach.
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Abstract. A physically unclonable function (PUF) is a security primitive that
can generate device-specific cryptographic information by extracting the fea-
tures of hardware uncertainty. Despite the advantages of PUFs introduced over
the past decade, the majority of them have to be implemented on a separate chip
or embedded as a part of a chip, making it difficult to use them in low-cost IoT
devices. To increase the usability of PUFs in IoT devices, we propose a novel
resistor-capacitor (RC) PUF that can be configured at low cost. The main feature
of this RC-based PUF is that it extracts the small difference caused by charging
and discharging of RC circuits and uses it as a response. Experimental results
show that the proposed RC PUF has more than 49% uniqueness while main-
taining over 98% reliability. It also reveals less than 1% stability at 10% voltage
changes from 3.3 V to 3.0 V, representing very robust characteristics against
voltage variations. For temperature changes from −30 °C to 70°, the stability is
maintained below 4%.

Keywords: Physically unclonable function � Hardware security � Key �
Resistor-capacitor � IoT

1 Introduction

Physically unclonable functions (PUFs) have emerged as a new alternative to meet the
increasing demand for protection of embedded systems against security attacks such as
replication of semiconductors, or stealing default ID/password or security keys stored
in nonvolatile memory. A PUF generates device-specific information unique to a
semiconductor or hardware by using the innate hardware uncertainty derived from the
manufacturing process [1].

Based on these characteristics, a PUF can be used to generate and maintain secret
credentials that are even unknown to semiconductor architectures or device program-
mers. Exploiting the PUF as a source of “secret” information, it can be used in
applications such as secret key management, data privacy, device authentication, and
intellectual property (IP) protection of FPGAs or chips [2].

Various types of PUF have been studied such as RO-based PUF [2–5], delay-based
PUF [6], and SRAM PUF [7, 8] over the past decade. Please refer to [2] for a com-
prehensive overview on PUFs. The majority of such PUFs, however, must be fabri-
cated as separate ASICs or FPGAs, or embedded in the chip at the design time.
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In recent years, there have been attempts to implement a PUF using the components of
the device itself such as dynamic RAM (DRAM) PUF [9, 10] and radio frequency
(RF) PUF [11]. DRAM PUFs identified unexpected setup behavior in commercial off-
the-shelf DRAMs that could be used as a PUF. RF PUFs identified the effect of
variations in analog, RF, and mixed signal properties in wireless radios, where inherent
RF properties were used to make a PUF without any additional hardware. Some studies
have shown that it is possible to construct SRAM PUFs using existing off-the-shelf
components [12]. The advantage of these PUFs is that they can be implemented
without any extra hardware.

Another interesting approach to make a PUF is to use analog circuits as a PUF
primitive [13]. This study demonstrated an analog PUF structure based on analog and
mixed signal circuits. An input challenge was converted to an analog signal by digital-
to-analog converters (DACs) and passed through low pass filters and amplifiers. The
resulting signal was sampled by an analog-to-digital converter (ADC), and a response
was generated from sampled bits.

The motivation for this work is similar with [11] in that we have to provide
affordable PUF functionality for resource-constrained IoT devices without using pre-
viously mentioned on-chip/off-chip PUF-dedicated hardware. Focusing on the fact that
resistors and capacitors have inherent tolerances that arise in the manufacturing pro-
cess, we achieve PUF-like properties by combining those components with ADCs
embedded in many commercial microcontrollers (MCUs). The proposed approach
adopts analog circuits and an ADC as PUF primitives, which is similar to [13].
However, instead of exploiting amplifiers, only passive components are simply
employed for analog circuits and DACs are not used.

In this paper, we propose a novel resistor-capacitor (RC) PUF that can be imple-
mented using only one MCU equipped with on-board RC components. We first ana-
lyze the RC PUF operation and explain the RC PUF architecture, describing how to
choose resistor and capacitor components and other parameters. Finally, we present
experimental results to characterize the RC PUF with two types of RC circuits.

2 RC PUF Design

2.1 RC PUF Architecture

The basic structure of the RC PUF is shown in Fig. 1, where the RC PUF generates 1-
bit response for a challenge consisting of multiple bits. The input challenge is shifted
by 1 bit and the corresponding bit is applied sequentially to the digital output pin such
as a general purpose I/O (GPIO). If the I/O voltage of the MCU is 3.3 V, the voltage
applied to the input of the RC circuit becomes 3.3 V or ground (GND or 0 V)
depending on the value of the output bit. The GPIO output or the input of the RC
circuit (RCin) remains constant for a period of time for one bit, which is defined as “bit
delay time.” After the bit delay time has expired, the output changes by the next bit.
Accordingly, the output of the RC circuit gradually increases (charge) or decreases
(discharge).
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After a challenge bit stream is passed to the GPIO, the last output voltage of the RC
circuit (RCout) is sampled by the ADC and 1-bit response is extracted from the ADC
value.

The key consideration in RC PUF design is that the input voltage of the RC circuit
must be changed in a “transient-state” before the output of the RC circuit by a previous
bit enters a “steady-state”, i.e., fully charged (3.3 V) or discharged (GND). The bit
delay time in Fig. 1 determines the change time of the input of the RC circuit. If the bit
delay time is too long to make the RC circuit a “steady-state”, the output of the RC
circuit will be stuck at 3.3 V or GND for all input challenges. Hence, the effect of
component tolerance almost disappears and it is not easy to differentiate response
values between different challenges or devices. In the RC PUF, it is important to keep
the bit delay time as small as possible because the longer the bit delay time is, the
longer the response generation time in the RC PUF will be, which negatively affects
applications that use the PUF. We note that the software delay function on MCUs can
adjust this bit delay time from 1 microsecond to tens of microseconds.

Keeping in mind that the appropriate bit delay time determines the total perfor-
mance of our RC PUF, we show how to select the parameters of the RC components.
Physically, the bit delay time is related to the product of the resistance and the
capacitance, i.e., s = RC [18], where R is the resistance of the resistor and C is the
capacitance of the capacitor. Therefore, the resistance and capacitance must be selected
considering the limit of the bit delay time.

When selecting the capacitance, it is important to consider both probing analysis
and reliability. Generally, the input capacitance of an oscilloscope probe ranges up to
100 pF [20]. If the capacitance of the RC circuit is too large (e.g., 1 uF), the input
capacitance of the probe is too small compared to the capacitance of the RC circuit, and
thus probing does not affect the rise and fall times of the RC circuit. This can allow the
correct ADC input voltage to be read by probing and therefore make the RC PUF
vulnerable to probing analysis. On the contrary, if the capacitance is too small (e.g.,
below tens of pF), probing increases the total capacitance of the RC circuit, making it
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GPIO (digital output)
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Samping final ADC value

Initial bit delay 
time
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Fig. 1. Hardware and software block diagram of RC PUF.
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difficult to estimate the original ADC value. However, experiments have shown that
reliability is more severely affected if the capacitance is less than a few tens of pF. As a
result, we choose the capacitance between 100 pF and 200 pF to ensure reliability
while preventing probing analysis to some extent. Since the capacitance is determined,
the resistance is set to 100 kΩ so that the bit delay time can be up to tens of
microseconds.

Once the resistance and capacitance are fixed, we must choose the appropriate
resistor and capacitor type for the RC PUF. The main concern when selecting RC
components is that resistors and capacitors for the RC circuit have to be chosen such
that the tolerance must be as large as possible to differentiate the response correlation
between different PUFs, while providing robust properties against temperature and
voltage variations and aging.

The RC PUF exploits commonly used thin film resistors and multilayer ceramic
capacitors (MLCCs) for the RC circuit. For the capacitor of the RC circuit, we use a
class 1 (C0G) capacitor with a 20% tolerance that is more robust to temperature
variation and aging than class 2 or class 3 capacitors [15–17]. We then choose a resistor
with a tolerance of 1% and a good temperature coefficient of 25 ppm for the RC circuit
[14]. The selected resistor and capacitor can be purchased for less than 10 cents. Thus,
the RC PUF can be implemented at a lower cost than other PUFs implemented as
separate chips or built into SoCs, which usually cost several dollars. In addition, the RC
circuit is separated from the microcontroller, eliminating the need to use a specific chip
with a built-in PUF, which provides design flexibility.

Finally, we consider two approaches to generate the bit delay time for our RC PUF.
One is to use the initial fixed bit delay time for all RC PUF instances. The other is to
use its own bit delay time for each RC PUF, where temperature sensor calibration
values are added to the initial fixed bit delay time to generate its own unique bit delay,
as shown in Fig. 1. We note that the temperature sensor calibration value is stored in
the MCU at the manufacturing process.

2.2 RC PUF Simulation

We perform a simulation to view the “transient-state” characteristics at the RC circuit
output. We first analyze the behavior of the first-order RC circuit, as shown in Fig. 1.
The basic representation of a first-order RC circuit is divided into two modes – rising
(or charging) and falling (or discharging). The voltage change at the time of charging
and discharging the RC circuit can be expressed as [18]

Vt ¼ Vmax 1� e�
t

RC

� �
; when charging; ð1Þ

Vt ¼ V0e
� t

RC; when discharging; ð2Þ

where R is the resistance of the resistor, C is the capacitance of the capacitor, Vmax is the
maximum voltage applied to the input of the RC circuit and V0 is the initial input
voltage of the RC circuit at the start of discharging.
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As we mentioned earlier, the “transient-state” of the voltage change should be
calculated for the proposed RC PUF behavior. To do this, we modify (1) and (2) to
indicate charging and discharging behavior starting at the last voltage value of the
previous “transient-state” when a new input value is applied to the RC circuit. Thus, the
modified voltage can be derived as

Vtþ 1 ¼ Vt þVrise 1� e�
Tbd
RC

� �
; when charging; ð3Þ

Vtþ 1 ¼ Vte
�Tbd

RC ; when discharging; ð4Þ

where the difference between Vmax and the voltage Vt at the start time of charging is
Vrise ¼ Vmax � Vt, and Tbd is the bit delay time. As shown in (3) and (4), the voltage
change up to the next time is affected by the previous voltage Vt. Figure 2 shows an
example where bit values of ‘101’ are sequentially applied to the input of the RC
circuit, where the initial RC input voltage is V0 ¼ 0 V, and Vmax ¼ 3:3 V. The voltage
change for the first bit ‘1’ after Tbd is then calculated as follows according to (3).

V1 ¼ Vmax 1� e�
Tbd
RC

� �
: ð5Þ

When the RC input is changed by the second bit ‘0’, the voltage change according
to (4) is then given by

V2 ¼ V1e
�Tbd

RC : ð6Þ

Next, for the third bit ‘1’, the voltage change is calculated by using (3) and (6),
which can be written as

V3 ¼V2 þ Vmax � V2ð Þ 1� e�
Tbd
RC

� �

¼ V1e
�Tbd

RC þ Vmax � V1e
�Tbd

RC

� �
1� e�

Tbd
RC

� �
;

ð7Þ

where V1 is calculated in (5). It is observed from (6) and (7) that the voltage change due
to the sequence of bit patterns accumulates the influence of the previous values.

In Fig. 2, the red line represents the simulated waveform of the RC PUF using the
first-order RC circuit, where we used an arbitrary 32-bit challenge shown at the top of
the figure. The resistance and capacitance in the RC circuit are determined as
R = 100 kΩ and C = 200 pF, respectively. The maximum input voltage to the RC
circuit is Vmax = 3.3 V and the bit delay time is Tbd = 4.3 us for the simulation.

As expected, the output of the RC circuit changes according to the challenge bit
pattern during the “transient-state”. In the ideal case, the output value of the RC circuit
according to the same bit pattern should be the same for different RC PUFs. However,
the component tolerance, i.e., R and C, causes a difference in the sampled ADC value
between different RC PUFs, leading to the responses being uncorrelated with each
other.
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2.3 RC PUF Implementation

We implemented a RC PUF board equipped with the RC circuit and one MCU with
ADC functionality, as shown in Fig. 3. The resistance and capacitance of the RC circuit
are the same as those used in the simulation. The supply voltage of the MCU is 3.3 V
converted from USB 5 V voltage through a low-dropout regulator (LDO). Hence, the
output voltage of the GPIO used as the input of the RC circuit is also 3.3 V. We also
constructed a testbed using 100 RC PUF boards to measure the performance of the
RC PUF.

In order to compare the simulation results with the experimental results, we run the
RC PUF using the same challenge used in the simulation. We note from Fig. 2 that the
waveform of the RC PUF is similar to the simulation waveform, and the implemented
RC PUF works as expected when compared to the simulation. The difference between
the simulation and the experimental waveform is considered to be caused by the
component tolerance of RC and other on-board components.

RCMCULDOUSB

Fig. 3. Implemented RC PUF (below) and testbed (upper).
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3 Experimental Results

As described in Sect. 2, the sampled ADC value at the RC circuit output is used to
generate a response bit. Since the ADCs embedded in the commonly used MCU
normally support multiple bit resolution, e.g., 12-bit, we face the problem of deter-
mining which bit is used for a response bit among multiple bits. For example, the valid
bit must be selected from bit 11 to bit 0, where bit 0 represents the least significant bit.
The response bits between different PUFs for the same challenge are more likely to be
the same as the selected bit position is closer to bit 11. Conversely, the error probability
for the response value increases as the selected bit position approaches bit 0. Through
several experiments, although bit 4 to bit 6 can be used as a response bit, we found that
bit 5 is the most appropriate bit position considering the uniqueness and reliability of
the implemented RC PUF board.

Once the ADC bit position is fixed, it is possible to evaluate the performance of the
RC PUF. In order to characterize the RC PUF, we use three commonly employed
performance metrics: uniqueness, reliability (also known as steadiness), and uniformity
[4, 21].

Uniqueness represents the variations in the responses of multiple devices to the
same challenge and can be referenced as extra-chip variation (EC), which is calculated
as [4]

EC ¼ 1
M M � 1ð ÞN

XM

i¼1

XM

k¼1;k 6¼i

XN

j¼1

HD ri;j; rk
� �
n

� 100%; ð8Þ

where M is the number of devices, n is the length of response, ri;j is the j-th response
sample from the i-th board, rk is the mean value of the N responses from the k-th board,
and HD represents the hamming distance. We note that the optimal value for
uniqueness is 50%.

Reliability or steadiness represents the ability of a particular device to generate the
same response and can be referenced as intra-chip variation (IC), which is given by [4]

ICi T ;Vð Þ ¼ 1
N

XN
j¼1

HDðri;j; ri;ref Þ
n

� 100%; ð9Þ

where ri;ref is the mean value of responses of the i-th board. We note that this metric
depends on the environmental parameters, such as temperature (T) and voltage (V). The
percentage figure for reliability can be defined as

Reliability ¼ 100� ICi T;Vð Þ: ð10Þ

Obviously, the optimal value for reliability is 100%.
Uniformity is used to describe the distribution of 0 s and 1 s in a PUF response. The

ideal uniformity is achieved when 0 s and 1 s occurs with equal probability in a PUF
response. It can be expressed as follow [21]
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Ui ¼ 1
n

Xn

l¼1
ri;l � 100%; ð11Þ

where Ui is the uniformity of i-th board and ri;l is the l-th bit of total n-bit response
from the i-th board. The optimal value for uniformity is 50%.

3.1 Uniqueness, Reliability and Uniformity

For the uniqueness and reliability test, the RC PUF was evaluated with 32,768 random
challenges, where each 32-bit challenge was repeated 100 times, and then majority
voting was applied to determine the response bit.

First we tested the RC PUF by fixing the bit delay time (FD) to 2 us and 32 us to
evaluate the performance change by the bit delay time. Next, we added 4-bit and 5-bit
MCU-specific helper data to the initial bit delay time so that the newly generated bit
delay times were between 8–24 us (VD4) and 1–32 us (VD5), respectively. For
example, if we run RC PUF in FD mode, then the same bit delay time (Tbd) is used for
all challenges in all RC PUF boards. However, for VD4 or VD5 modes, Tbd is unique
among different RC PUF boards, but the same for all challenges in one RC PUF board.

As shown in Table 1, when the fixed bit delay time (FD) increases from 2 us to 32
us, the uniqueness and reliability are improved in the RC PUF. This is because the
longer the operating time is, the more differences are accumulated due to the tolerance
of the RC circuit. When using the MCU-specific bit delay time (VD4 and VD5), the
RC PUF has more than 48% uniqueness as shown in Fig. 4, which is close to the ideal
value of 50%, while achieving more than 98% reliability. Finally, uniformity over all
delay mode is 50.1–50.3%, which is close to the optimal value of 50%.

We can see that the difference in ADC values between different PUFs is in the
range of several tens to hundreds using different bit delay times, i.e., VD4 and VD5,
resulting in a better uniqueness than using the same fixed delay time for all PUFs.

3.2 Stability Against Voltage and Temperature Variations

For the stability of the RC PUF, we consider the environmental variations, e.g., tem-
perature and voltage. We first extracted a 1024-bit reference response from 10 ran-
domly selected RC PUF boards, where FD and VD4 bit delay cases under normal
conditions (room temperature of 25 °C and supply voltage of 3.3 V) are considered.
The stability was then calculated based on how many bit flips occurred compared with
the reference response.

Table 1. Uniqueness and reliability of RC PUF.

Metric Delay mode (bit delay time)
FD (2 us) FD (32 us) VD4 (8–24 us) VD5 (1–32 us)

Uniqueness (%) 27.3 30.9 48.5 48.8
Reliability (%) 96.2 98.5 98.2 98.3
Uniformity (%) 50.3 50.3 50.2 50.1
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To evaluate the stability under different temperatures, we used a temperature
chamber, varying the temperature from −30 °C to 70 °C with 10 °C increments.
Figure 5 shows that the stability is maintained within 2% at temperatures below 50 °C,
but increases above 50 °C. This is because temperature has a more dominant effect on
ADC accuracy than the effects of resistors and capacitors with a good temperature
coefficient. Nevertheless, the worst case stability of 4% (FD) is an acceptable error rate
that can be recovered using commonly used error correction codes [2].

The stability for voltage variations was measured in 0.05 V steps over a voltage
range of 3.3 V–3.0 V. Figure 6 reveals less than 1% stability over the entire range,
which corresponds to a bit flip of less than 10 bits of 1024 bits. The main reason of
robust stability over voltage is that the power supply voltage of the MCU is equal to
both the output voltage of the GPIO used as the input voltage of the RC circuit and the
operating voltage of the ADC. Therefore, the ADC value is determined by the voltage
change ratio, not the absolute voltage.

Fig. 4. Uniqueness for VD5.

Fig. 5. Stability over temperature variation.
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4 Conclusion

In this paper, we proposed a novel RC PUF that can be easily implemented using one
MCU with ADC function and several low-cost resistors and capacitors. By appropri-
ately selecting those components and using MCU-specific helper data, the proposed
RC PUF achieved 48.8% uniqueness and 98.3% reliability. Due to the structural
characteristics, our RC PUF shows less than 1% stability over 10% voltage variation.
With regard to performance, price, and ease of implementation, the proposed RC PUF
can be used as a security primitive for IoT devices.

Future works will include probing analysis and modeling attacks against the pro-
posed RC PUF with various types of RC circuits. A generalized randomness test will
also be included in our future works.
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Abstract. Due to the high increase of IoT technologies and devices,
analyzing their security is crucial for their acceptance. Towards this end,
an automated security testing approach should be considered as a corner-
stone to cope with the business interests and the high fragmentation of
new approaches. In particular, this work analyses the use of the Model-
Based Testing (MBT) approach and specific technologies and tools to
automate the generation of security tests. Then, we provide a detailed
description of its application to the Elliptic Curve Diffie-Hellman over
COSE (EDHOC) protocol, which is being defined within the scope of
the Internet Engineering Task Force (IETF).

Keywords: IoT · Security testing · Security risk assessment ·
Model-Based Testing (MBT)

1 Introduction

Advances in Information and Communication Technologies, especially in the
Internet of Things (IoT), have the potential to improve many facets of our life.
However, despite the potential benefits, several obstacles limit a wide deployment
[10]. One of the main barriers is related to the perceived threats to data security
and privacy, and a widely held belief that these cannot be adequately addressed
with current approaches. This situation gets worse with new protocols and tech-
niques recently developed and non standardized, which are not widely adopted
due to the lack of information related with the real security provided. In this
scenario, being able to test and analyze the security vulnerabilities related with
a specific device and protocol would provide a more harmonized IoT security
view to be leveraged by end consumers [11].

Dealing with this problem, security testing attempts to verify that an imple-
mentation protects data and maintains functionality as intended, revealing flaws
of the system under test (SUT). However, the existing dynamism inherent to
IoT devices makes the testing process a long and tedious process, which requires
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defining, modeling and implementing each test. This collides with new discov-
ered vulnerabilities, updates or patches, that makes necessary repeating all the
process, order to main the security level updated. In addition, the constraints
inherent to some IoT devices in terms of memory or computation power, makes
the process of programming the tests more difficult to be performed. Finally,
as testing approaches are usually time-consuming and expensive, analyzing the
security of recently developed approaches is totally discarded, and therefore they
are not applied to critical environments that need a particular and well known
security level. In this sense, an automated and cost-effective testing approach
would also help to test the security level of non standardized protocols [2].

Following this line, the Model-Based Testing approach (MBT) [5] has shown
its benefits and usefulness for systematic compliance testing of systems [3]. In
this approach, the structure of the system is modelled by Unified Modelling Lan-
guage (UML) class diagrams, while the system behavior is expressed in Object
Constraint Language (OCL)1. In particular, this approach was explored in the
context of the H2020 ARMOUR project, where we have proposed an integrated
methodology for security risk assessment and testing as the main building blocks
for cybersecurity certification [15,16]. The use of MBT is intended to automate
the testing process to cope with the challenges described before. In this work,
we analyze the benefits and limitations of the MBT approach when it is applied
to analyze the security level of a SUT. Towards this end, we consider an IoT
scenario based on the Elliptic Curve Diffie-Hellman over COSE (EDHOC) [22]
protocol, which is employed as key agreement protocol. It should be noted that
this proposal is based on the Concise Binary Object Representation (CBOR) [4]
that is employed to encode the EDHOC messages, and the CBOR Object Sign-
ing and Encryption (COSE) [20] to protect them. This use of these standards
aims to provide a lightweight key agreement approaches to be considered in IoT
constrained scenarios.

The remainder of the paper is as follows: Sect. 2 reviews the main approaches
related with IoT security testing, whereas Sect. 3 reviews the main security pro-
tocols at transport layer for IoT. Then, Sect. 4 describes the insights of the
EDHOC protocol and Sect. 5 discusses and applies the MBT methodology to
the EDHOC protocol described before. Finally, Sect. 6 concludes the paper with
an outlook about our future work in this area.

2 Security Testing

The ISO 29119 standard defines security testing as a type of testing that tries to
evaluate the protection level of the system under test against unauthorized access,
unwanted use and denial of service. Testing security properties such as confiden-
tiality, integrity, authentication, authorization, availability, and non-repudiation
is crucial to ensure the development of trusted systems. In this sense, security
testing identifies if a specific security property is correctly implemented. This
can be achieved through a high number of security testing approaches. One of
1 http://www.omg.org/spec/OCL/2.4.
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the most basic testing approach is the penetration testing [1]. This type of test-
ing is similar to an attack from a malicious third party, with limited information
about the SUT and only able to interact with the system’s public interfaces.
However, this technique is generally manual and in some cases, combined with
the usage of black-box vulnerability scanners. Also manually, code-based test-
ing [8] detects vulnerabilities by looking at the code. Moreover, the regression
testing [24] ensures that changes or updates do not cause unintended effects. In
addition, fuzzing testing [9] is usually employed for injection attacks, since it
consists on passing into a target system valid and invalid message sequences to
check if the system breaks, and the associated reasons.

Compared to previous testing methods, Model-Based Testing (MBT) [5] is
able to manage and accomplish testing tasks in a more cost effective and efficient
way [3], due to the high abstraction level used for defining the tests. In addition,
a large number of MBT tools have been developed to support the practice and
utilization of MBT technologies in real cases [14]. A MBT model represents the
system under test (SUT), its environment, or the test itself, which directly sup-
ports test analysis, planning, control, implementation, execution and reporting
activities.

As already mentioned, following our proposed methodology in [16], the SUT
is modeled by Unified Modeling Language (UML) class diagrams, while the
system behavior is expressed in Object Constraint Language (OCL)2, using the
CertifyIt tool [5] to export the tests. The use of MBT and the mentioned toolare
intended to automate the security testing to deal with the dynamic nature of IoT
scenarios. In particular, if there is a security change, the tests can be redefined
by changing the model, without the need to modify the real implementation.

3 Transport and Application Layer Security in IoT

Nowadays, the Constrained Application Protocol (CoAP) [23] is considered the
main protocol for the application layer in IoT. From the security point of view,
it specifies a binding to the Datagram Transport Layer Security (DTLS) [19] for
protecting communications. DTLS is based on the TLS protocol [7], thus being
a two-layer protocol. The lower layer consists of the Record protocol, which aims
to encapsulate the corresponding messages of a protocol of the upper layer pro-
viding different functionality, such as the Handshake protocol or the Application
Data protocol. In this sense, the Handshake protocol allows to establish certain
security parameters (e.g., cryptographic algorithms or authentication schemes)
between two entities. This way, they are able to calculate shared symmetric keys
in order to protect mutual communications. Furthermore, the Application Data
protocol enables the exchange of encrypted data between those two entities once
the handshake process has been successfully completed.

A common feature of IoT scenarios is the presence of proxies to reduce the
use of network bandwidth and the response time. In addition, communications

2 http://www.omg.org/spec/OCL/2.4.
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are usually performed through brokers, which follow the publish/subscribe pat-
tern, with the purpose of keeping involved devices uncoupled. Accordingly, the
protection of CoAP communications needs to be based on the establishment of
different DTLS security associations, as shown in Fig. 1. In particular, DTLS
security associations are established between IoT device - proxy, proxy - proxy
and proxy - publish/subscribe broker, thus providing “hop-by-hop security” in
contrast to “end-to-end security”. This fact implies that both the proxies and
the brokers have access to all exchanged information, so that such intermedi-
ate entities are able to perform certain security attacks, such as eavesdropping,
message manipulation or message injection [21].

Fig. 1. DTLS security associations between an IoT device and a broker

In order to face this situation, security at the application layer emerges as a
solution to mitigate such threats and guarantee “end-to-end security” in these
networks. Additionally, this approach enables to protect communications inde-
pendently of the underlying technology or protocol being used. In this sense, new
proposals, such as EDHOC [22] and OSCORE [18], emerge as object-based secu-
rity alternatives to the transport layer security (in particular, to the DTLS pro-
tocol) in order to protect data exchange in IoT networks. In this work, EDHOC
has been used as an example to apply the testing approach, and it is described
in the next section.

4 EDHOC

EDHOC [22] is a lightweight key exchange protocol that allows the establish-
ment of symmetric keys between two entities, usually a client and a server. This
protocol implements the Elliptic Curve Diffie-Hellman algorithm (ECDH) [17]
with ephemeral keys in order to provide Perfect Forward Secrecy (PFS) [12]. In
addition, EDHOC establishes two authentication modes with the purpose of con-
firming the identity of the involved entities, in particular, authentication based
on public keys (i.e., raw public keys and certificates) and authentication based
on a pre-shared key. This way, the authentication process and the shared key
generation process remain independent of each other. Moreover, EDHOC defines
a three-message exchange, which can be embedded as payload in an application
protocol like CoAP. In this sense, note that other application protocols can be
adopted to carry out this exchange. Furthermore, EDHOC messages are encoded
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Fig. 2. EDHOC three-message exchange to compute a shared symmetric key

following the CBOR representation [4] and protected by the COSE standard [20],
so that they can be efficiently processed and verified by IoT devices acting as
clients, which usually present constrained resources (e.g., sensors). Accordingly,
Fig. 2 shows the EDHOC three-message exchange carried out between the Entity
A acting as a client and the Entity B acting as a server. In addition, it should
be pointed out that authentication mode employed is based on a pre-shared key
(PSK).

By using this authentication mode, the EDHOC exchange starts with the
Message 1, which is sent by the Entity A and includes the message type
(MSG TY PE), a unique session identifier for this entity (S A), a nonce
(N A), its ephemeral public key (E PK A), the supported cryptographic algo-
rithms (i.e., the curves (ECDH − Curves A), KDF (HKDFs A) and AEAD
(AEADs A) algorithms) and an identifier associated to the PSK (PSK ID)
used to perform the authentication process.

When the Entity B receives the Message 1, it validates the S A and uses
the PSK ID to get the key pre-shared with the Entity A. Now, both parts can
compute the shared secret using the Diffie-Hellman algorithm and the ephemeral
keys. The Entity A runs the Diffie-Hellman algorithm with its ephemeral secret
key (E SK A) and the E PK B. Similarly, Entity B runs such algorithm with
its ephemeral secret key (E SK B) and the E PK A. After computing the
secret, the Entity B sends the Message 2, which includes the corresponding
MSG TY PE, the S A, a unique session identifier for this entity (S B), a nonce
(N B), the ephemeral public key of this entity (E PK B), the selected cryp-
tographic algorithms (i.e., the KDF (HKDF B) and AEAD (AEAD B) algo-
rithms) and a COSE object (COSE ENC 2) encrypted by using the PSK, the
secret and the AEAD algorithm. The COSE object contains the Message 1 and
all data included in Message 2. Therefore, this COSE object enables to authen-
ticates the Entity B, as well as to protect the integrity of messages 1 and 2.



On the Automation of Security Testing for IoT Constrained Scenarios 291

When the Entity A receives the Message 2, it validates the S B and decrypts
the (COSE ENC 2). If this process finishes successfully, this entity sends the
Message 3 including the corresponding MSG TY PE, the S B and a new COSE
object encrypted by using the PSK (COSE ENC 3) that contains the Message
1, the Message 2 and all data included in Message 3. Thus, the COSE ENC 3 is
used for the Entity A authentication and for ensuring the integrity of all EDHOC
messages. Once the Entity B obtains this third message, it validates the S B
and decrypts the COSE ENC 3 in order to finish the EDHOC three-message
exchange.

Once this message exchange has successfully completed, the shared symmet-
ric key is computed by applying a key derivation function over the shared secret.
In particular, the HMAC-based Extract-and-Expand Key Derivation Function
(HKDF) [13] is used to carried out this derivation operation, due to it is pro-
posed by the EDHOC specification. Specifically, symmetric key computation is
performed as follows:

SymmetricKey = hkdf − sha256(PSK,Secret,
COSE KDF Context(′′AES CCM 64 64 128′′), 16)

where the COSE KDF Context(AlgorithmID) structure is defined by following
the [20] and [22]:

COSE KDF Context(AlgorithmID) =
(AlgorithmID, (null, null, null),

16,′′′′ , sha256(sha256(Message1|Message2)|Message3))

As it is shown, the HKDF makes use of the SHA-256 as hash function
including the following parameters: the PSK, the Secret, a COSE KDF
Context(AlgorithmID) structure and the shared symmetric key length (16-byte
length).

Finally, it should be noted that such COSE KDF Context(AlgorithmID)
structure includes a parameter called AlgorithmID, which indicates the algo-
rithm that will be employed to protect application data. In this case, we establish
this parameter to “AES CCM 64 64 128”.

5 Testing EDHOC Security

In this section we apply MBT to a particular scenario with EDHOC to get
some insights about its security level. It should be noted that our approach is
complementary to the use of formal verification techniques, as proposed in [6].
The exchange is performed between an IoT device (entity A) and a server (entity
B), as shown in Fig. 2. It should be noted that for the implementation of EDHOC,
we have developed our own library, while we have used the erbium library3

for CoAP. Due to the limit of space, we have selected two security properties
(authentication and confidentiality) to show with details how to generate the
tests following the MBT approach.
3 http://people.inf.ethz.ch/mkovatsc/erbium.php.
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5.1 Identifying the Tests

The first step is to define the tests to be performed. Table 1 shows the details for
the confidentiality and authentication tests. In the confidentiality, we perform
the complete execution of the scenario (successful EDHOC exchange), in which a
sniffer is added. After executing these tests we have the sniffer trace and the test
status (PASS or FAIL). This output can be used to obtain valuable information,
such as the PSK length used for the authentication, the shared secret length,
PSK ID length, ciphersuite or the percentage of non encrypted data. These data
are used to measure the security level provided by the protocol, so it can be
compared with other mechanisms.

Table 1. Confidentiality and authentication tests

ID:C1 – Confidentiality

1. Device sends message 1 of EDHOC with a valid PSK ID
2. Server answers with the message 2 of EDHOC
3. Device receives message 2 and answers with message 3 of EDHOC
4. Sniffer agent is listening the whole exchange

ID:A1 – Authentication

1. Attacker device sends message 1 of EDHOC with a non valid PSK ID
2. Server is not able to find the associated PSK and sends an EDHOC error

ID:A2 – Authentication

1. Attacker device sends EDHOC message 1 with a valid PSK ID (stolen)
2. Server answers with EDHOC message 2
3. Attacker receives message 2 and answers with EDHOC message 3 encrypted
with non valid PSK
4. Server sends an EDHOC error

ID:A3 – Authentication

1. Device sends message 1 of EDHOC with a valid PSK ID
2. Attacker server answers with EDHOC message 2; COSE object is encrypted
with non valid key
3. Device is not able no decrypt the COSE, so it answer with an EDHOC
error

According to Table 1, A1 and A2 tests are focused on the device. The former
(A1) checks that an attacker device with a non valid PSK ID is unable to perform
the complete EDHOC exchange, since the server will not find the associated
PSK, answering with an error message. The latter (A2) checks that an attacker
device with a stolen valid PSK ID is unable to perform EDHOC since it does not
have the PSK associated to that PSK ID. In this way, when the attacker sends
the third message encrypting the COSE object with a non valid PSK, the server
detects it and stops the connection, sending an error message. Finally, the third
test (A3) is focused on the server. This test checks that a server with a non valid
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PSK is unable to perform EDHOC, in an analogous way to the previous test.
When the server sends the second message, it has to encrypt the COSE object
with the non valid PSK, so the device should detect it, stopping the connection
and sending an error message.

5.2 Designing the Model and Operations

Once we have described the tests, the next step is to design the MBT model.
We have defined 6 main entities as shown in Fig. 3: the server, the IoT device,
the three messages that are part of the EDHOC exchange and a sniffer to use
in the confidentiality tests.

Fig. 3. MBT model for EDHOC

We also include the required fields to emulate the tests we have designed
before. In this case, we need the PSK and PSK ID to test the authentication.
An extra field STATE is used to emulate the behavior of the protocol and to
control the different steps. We define the enumerated type for these fields as:

– ID TYPE: VALID ID, NON VALID ID
– PSK TYPE: VALID PSK, NON VALID PSK
– STATE TYPE: START, SENT1, SENT2, SENT3, RECEIVED1,

RECEIVED2, RECEIVED3, ERROR

We model the operations required by EDHOC and test associated by using
the OCL language. For each operation, we need to specify the parameters, the
preconditions and the postconditions. The preconditions allow to control when
this operation can be executed in the step sequence of the protocol, whereas the
postconditions are used to emulate the protocol behavior.

EDHOC must start with the sendMsg1() operation (Table 2), and in turn,
this operation can be only called at the start of the protocol. This is controlled
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using the STATE variable in the preconditions. This operation includes a param-
eter to allow to change the PSK ID sent to the server in the message1 (p Id type).
This operation changes the state of the IoT device to SENT1 and modifies the
PSK ID field of message1 accordingly to the parameter it has received.

Table 2. Operation sendMsg1()

Parameters p Id type
Preconditions self.state=STATE TYPE::START
Postconditions

/∗∗@REQ: IOT SENT MSG1∗/
i f ( s e l f . s t a t e=STATE TYPE : :START)

then
s e l f . s t a t e=STATE TYPE : : SENT1

and
s e l f . msg1 . PSK ID=p Id type

−−−@AIM: SENT MSG1
else f a l s e
end i f and s e l f . checkState ( s e l f . s t a t e )

The operation receiveMsg1() can only be called if the IoT device has sent
the first message, so we specify this in the preconditions (Table 3). It includes
a parameter to show what is the value of the PSK ID received (p Id type). In
the postconditions, we control this value, acting accordingly; if the PSK ID is
invalid, we change the state to ERROR, whereas if it is valid, we change the
state to RECEIVED1.

The rest of the operations (sendMsg2(), receiveMsg2(), sendMsg3(),
receiveMsg3() and receiveError()), follow a similar procedure, modeling the
strictly necessary behavior of EDHOC for defining the tests.

Finally, we have a special function checkState() that is an observer func-
tion. This type of functions do not have preconditions nor postconditions (only
true). They are meant to be executed after every other operation to allow us
to check everything is performed correctly through the observation of a vari-
able, which is its only parameter. In this case, we use the STATE variable. It
is worth noting that we use tags to label certain parts of the code. For exam-
ple, in Table 3, we have a general tag at the beginning of the code (@REQ:
SERVER RECEIVED MSG1 ) to specify that this part of the code is related
with the reception of the first message by the server. Inside this operation, we
have more specific tags such as—@AIM: ERROR PSK ID that indiccates that
this part of the code is achieved when there is an error due to a non valid PSK ID
or—@AIM: RECEIVED MSG1 OK that indicates that it is a correct reception
of the first message of the protocol. These tags allow us to define the tests easily
through the test purposes.
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Table 3. Operation receiveMsg1()

Parameters p Id type

Preconditions self.state=STATE TYPE::START and
self.iotDevice.state=STATE TYPE::SENT1

Postconditions

/∗∗@REQ: SERVER RECEIVED MSG1∗/
i f ( s e l f . s t a t e=STATE TYPE : :START) then

−−−@AIM: RECEIVED MSG1
i f ( s e l f . msg1 . PSK ID=ID TYPE : :

NON VALID ID and p Id type=
ID TYPE : : NON VALID ID) then

s e l f . s t a t e=STATE TYPE : :ERROR
−−−@AIM: ERROR PSK ID

else i f ( s e l f . msg1 . PSK ID=ID TYPE : :
VALID ID and p Id type=ID TYPE : :
VALID ID) then

s e l f . s t a t e=STATE TYPE
: : RECEIVED1

−−−@AIM:
RECEIVED MSG1 OK

else f a l s e
end i f

end i f
else f a l s e
end i f and s e l f . checkState ( s e l f . s t a t e )

5.3 Describing the Test Purposes

Once we have a functional model, we create a test suite and define several
test purposes following the test description we have done at the beginning of
the process. More concretely, the test purpose language is based on regular
expressions to conceive the testing scenarios in terms of states to be reached
and operations to be called. The language relies on combining keywords, to
produce expressions that are both powerful and easy to read by a test engi-
neer. Instead of specifying all the protocol steps to reach a certain situa-
tion, we use different tags in the code. For example, in A2 (Listing 1.1), we
use the tag IOT RECEIVED MESSAGE2 to reach that section of the code
instead of writing sendMsg1(), receiveMsg1(), etc. Once we reach the code in
which the device receives the second message, we use the sendMsg3() with
the NON VALID PSK parameter to emulate a message3 with an invalid PSK.
Finally, we finalize the test specifying that the expected result is to reach the
error tag IOT RECEIVED ERROR that is in the receiveError() function.

Listing 1.1. “Test purpose for A2”

use any operat ion any number of t imes t o a c t i v a t e behav i o r w i th tag s {
AIM: IOT RECEIVED MSG2/RECEIVED MSG2}

then use EDHOC1. sendMsg3 (NON VALID PSK)
then use any operat ion any number of t imes t o a c t i v a t e

behav i o r w i th tag s {REQ:IOT RECEIVED ERROR}
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5.4 Generating and Executing the Tests

For the test generation and execution, we use the CertifyIt tool to complete the
middle steps of the tests. CertifyIt allows to check if the tests are performed
correctly following the model description we have done. After this, the JUnit
language is used to export the corresponding tests. The main goal of the use
of JUnit is the systematic and automatic testing of security properties in IoT
devices for improving efficiency and scalability. After the exportation, CertifyIt
generates a JUnit test suite and an interface (called adapter) containing all the
functions defined in the model, which must be implemented in order to link the
real device and server with the test suite. The code in Listing 1.2 shows the
JUnit test for the A2 test previously defined.

Listing 1.2. “JUnit test of A2”

public void t e s tAuthN io t 2 4 4d e f bd ( ) throws Exception {
adapter . EDHOC1iotDevicesendMsg1 ( i o tDev i c e .EDHOC1, ID TYPE .

VALID ID) ;
adapter . EDHOC1iotDevicecheckState ( i o tDev i c e .EDHOC1, STATE TYPE.

SENT1) ;
adapter . EDHOC1serverreceiveMsg1 ( s e r v e r . s e rver , ID TYPE .

VALID ID) ;
adapter . EDHOC1servercheckState ( s e r v e r . s e rver , STATE TYPE.

RECEIVED1) ;
adapter . EDHOC1serversendMsg2 ( s e r v e r . s e rver , PSK TYPE.

VALID PSK) ;
. . .

The last step is to upload the EDHOC code into the devices and to execute
the JUnit test suite in order to check if the real device passes the tests. This
way, we obtain the related security information to analyze the security of the
SUT.

As already mentioned, in case there is an update of the device (e.g., due to
a security patching/update process), previous tests can be re-executed to get
the security level of the update device. Furthermore, if a new vulnerability is
discovered, only the MBT model and test purposes must be updated. Unless
we add a new operation or variable, the implementation of the tests will be
automatic, since we already have the adapter interface that copes with it. This
is where the power of this testing approach lies. However, MBT and CertifyIt
still have some weak points that makes the modeling quite difficult for some
vulnerabilities, for example integrity. In this case, a different test for each field
of the messages is required, and this can not be automated in the test purposes.
Indeed, it should be noted that traditional MBT approaches are not focused on
security testing; therefore, there is a real need to complement such technique
with complementary testing methods to build a more comprehensive security
testing solution to be used in the IoT context. This aspect represents part of our
future work in this area.

6 Conclusions

The application of suitable mechanisms for testing security in IoT scenarios
is crucial to ensure the development of new protocols and techniques. This
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work has presented some insights on the applicability of MBT approaches to
EDHOC, which represents an emerging security proposal within the IETF.
Indeed, EDHOC has been recently proposed as a lightweight and authenticated
key exchange to be leveraged in constrained environments. According to our
work, MBT has shown powerful benefits in terms of test automation and updat-
ing in case there is a security change. However, the lack of some features such as
the automation of the test purposes generation and the inheritance, limits the
power of the approach. Finally, the existence of an adapter interface helps to
maintain the testing environment and the real device separated, so if there is a
change in the tests, the code inside the device does not have to be re-uploaded.
Based on this initial proposal, our future work is intended to integrate the secu-
rity testing with the generation of security policies based on the results obtained,
with the aim to enforce the security of the IoT devices.

Acknowledgments. This work was supported in part by the Spanish Ministry of
Economy and Competitiveness and the ERDF funds cofinantiation through the PER-
SEIDES project under GrantTIN2017-86885-R and the USEIT project under Grant
PCIN-2016-010, in part by the H2020-780139 SerIoT project, and in part by the FPU-
16/03305 Research Contract of the Ministry of Education and Professional Training of
Spain.

References

1. Arkin, B., Stender, S., McGraw, G.: Software penetration testing. IEEE Secur.
Priv. 3(1), 84–87 (2005). https://doi.org/10.1109/MSP.2005.23

2. Atapour, C., Agrafiotis, I., Creese, S.: Modeling advanced persistent threats to
enhance anomaly detection techniques. J. Wirel. Mob. Netw. Ubiquit. Com-
put. Dependable Appl. (JoWUA) 9(4), 71–102 (2018). https://doi.org/10.22667/
JOWUA.2018.12.31.071

3. Bernabeu, G., Jaffuel, E., Legeard, B., Peureux, F.: MBT for global platform com-
pliance testing: experience report and lessons learned. In: 25th IEEE International
Symposium on Software Reliability Engineering Workshops, Naples, Italy (2014).
https://doi.org/10.1109/ISSREW.2014.91

4. Bormann, C., Hoffman, P.: Concise Binary Object Representation (CBOR)
(RFC7049) (2013). https://tools.ietf.org/html/rfc7049

5. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N., Utting, M.:
A subset of precise UML for model-based testing. In: Proceedings of the 3rd
International Workshop on Advances in Model-Based Testing - A-MOST 2007,
pp. 95–104. ACM Press, London (2007). https://doi.org/10.1145/1291535.1291545.
http://portal.acm.org/citation.cfm?doid=1291535.1291545

6. Bruni, A., Sahl Jørgensen, T., Grønbech Petersen, T., Schürmann, C.: Formal
verification of ephemeral Diffie-Hellman over COSE (EDHOC). In: Cremers, C.,
Lehmann, A. (eds.) SSR 2018. LNCS, vol. 11322, pp. 21–36. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-04762-7 2

7. Eric Rescorla: The Transport Layer Security (TLS) Protocol Version 1.3 (2018).
https://tools.ietf.org/html/draft-ietf-tls-tls13-28
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Abstract. The Internet of Battlefield Things (IoBT) is an emerging
application to improve operational effectiveness for military applications.
The security of IoBT is one of the more challenging aspects, where adver-
saries can exploit vulnerabilities in IoBT software and deployment con-
ditions to gain insight into their state. In this work, we look into the
security of IoBT from the lens of cyber deception. First, we formulate
the IoBT domain as a graph learning problem from an adversarial point
of view and introduce various tools through which an adversary can
learn the graph starting with partial prior knowledge. Second, we use
this model to show that an adversary can learn high-level information
from low-level graph structures, including the number of soldiers and
their proximity. For that, we use a powerful n-gram based algorithm to
obtain features from random walks on the underlying graph representa-
tion of IoBT. Third, we provide microscopic and macroscopic approaches
that manipulate the underlying IoBT graph structure to introduce uncer-
tainty in the adversary’s learning. Finally, we show our approach’s effec-
tiveness through analyses and evaluations.

Keywords: IoBT · Cyber deception · n-gram · Graph learning

1 Introduction

The Internet of Things (IoT) is one of the most rapidly growing technologies in
recent years. IoT is expected to greatly change our lives, with many applications
that allow billions of devices to interconnect, enabling them to share information
through the networking medium. An area where the IoT technology promises
significant change to the modus operandi is the battlefield, where soldiers and
equipment are deployed in wartime. By adopting the IoT technology, various
sensors attached to soldiers or equipment are able to share information, which
maximizes strategic insight and awareness. The environment where the multiple
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devices work in cooperation is called the Internet of Battlefield Things (IoBT) [4].
IoBT is expected to enhance combat power by utilizing various sensors that can
complement the human’s senses and provide further awareness.

However, the security in the emerging IoBT is still an open concern. Although
the exclusion of human’s interaction brings lots of convenience to individual
soldiers using IoBT, intrusions by adversaries are one of the fundamental con-
cerns in IoT in general, and IoBT in particular. Among many risks possible
in the battlefield, an adversary might be able to get a deeper understanding
of deployments, tactics, etc. by monitoring the IoBT and high-level features of
its networks. In particular, even if the enemy does not fully gain control over
the whole system of an IoBT, it is still possible for the attacker to obtain a
“sketch” of information that can be meaningful in estimating various pieces of
knowledge that guide his decisions. The state-of-the-art studies provide various
techniques [8,15,19] which can be used to learn features of “networks” from the
partial knowledge of the entire network, making such learning process possible.

In order to realize the full potential of IoBT in the field, it is important to
understand the new types of threats associated with them. First and foremost,
such an understanding is essential step towards building the appropriate mech-
anisms for countering such a threat with effective defenses. To this end, in this
paper we have a first look at the security of IoBT. We abstract the objectives of
an adversary into multiple tasks, and demonstrate how successful the adversary
could be in realizing those tasks using partial knowledge of the IoBT network. In
doing so, we utilize an advanced approach using n-gram features obtained from
random walks on the underlying IoBT graph, and demonstrate that an adversary
can learn essential information, such as the number of deployed soldiers and the
proximity of soldiers and nodes, using this approach.

To counter those attacks, we further develop cyber deception mechanisms
(and their associated justification) that look into manipulating the underlying
IoBT network in microscopic or macroscopic fashion, and show such deception
affects the learning ability of the adversary. Cyber deception in IoBT, to this end,
is similar to its application in other arenas (e.g., honeypot), where we try to trick
the adversary into misunderstanding the defender’s capacity and the underlying
system on the ground. To the best of our knowledge, our work presents the first
such work that looks into formalizing threats in IoBT and designs quantifiable
countermeasures through deception.

Contributions. (1) We formalize IoBT as a graph of graphs, whereby an adver-
sary is interested in learning the number of assets (soldiers or equipment), their
proximity, and their relationships. (2) We explore learning approaches, in which
the adversary tries to achieve his objective with limited knowledge (by stitch-
ing pieces of information together in a machine learning model). (3) To defend
against those attacks, our deception strategies involve the addition or removal
of subgraphs, nodes, or edges. We provide a system-level justification of these
deception techniques and analyze their effect on the IoBT mission, as well as the
confidence of the adversary in achieving his goal.
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2 Preliminaries and Settings

In this section, we review the preliminaries required for understanding the rest
of this work. We start by introducing an abstract model of IoT in the battlefield,
formally identify various objectives and associated threats.

2.1 IoT in the Battlefield

IoT has found applications in many fields, ranging from civilian to military. In
the latter field of applications, the use of IoT for military applications is termed
the Internet of Battlefield Things (IoBT). In IoBT, various “assets” or “things”
are deployed in the field to achieve a certain mission. Those assets may include
sensors, actuators, devices (computers, vehicles, robots, wearables, etc.), infras-
tructure, information sources, and (perhaps most importantly) humans. Those
things are interconnected to form a network and thereby improve strategical
efficiency of deployed soldiers and other assets. As shown in Fig. 1a, in modern
warfare, various types of devices are deployed to collect and share information
between various actors in the battlefield in collaborative way.

(a) The IoBT. [10]
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(b) A graph representation of the IoBT.

Fig. 1. An example of Internet of Battlefield Things (IoBT) and associated graph.
Copyright note: (a) is an illustration by Evan Jensen, US ARL, used with permission.

In general, graphs are a popular tool for analyzing network topology. Graph-
based approaches visualize the network by representing each interface (device)
as a node and the connection between devices as an edge in the network. Graph
theory is often used to analyze attacks or defenses on the network [13]. In this
regard, an IoBT network also can be viewed as a graph, corresponding to the
various things (devices) in the network and their interconnections. As such, an
IoBT is characterized as G = (V,E), as shown in Fig. 1b (left). In this graph,
each node vi ∈ V corresponds to an atomic level of a thing, including sensors,
actuators, or devices in the IoBT, while each edge in the graph corresponds to
a connection between two different things.

The physical IoBT network has multiple soldiers, the most valuable asset
in the field. We express the network associated with each soldier (particularly
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the wearable, sensors, etc.) as G1, G2, . . . Gg ⊂ G, where Gi = (Vi, Ei), Vi ⊂ V
and Ei ⊂ E. Those various soldiers in the physical network and their associated
on-body network correspond to a subgraph in G. Figure 1b (right) shows an
example of a subgraph; for Gk corresponding to a soldier k, we use (Vk, Ek)
where vk,i ∈ Vk ⊂ V can be a wearable device, such as a biochemical sensor,
camera, or smart glass, worn by an individual soldier. That is, Fig. 1b (left)
can be summarized as a whole graph which has each subgraph GS

k as a node
vk. We make the distinction between edges in E as follows: edges that connect
between devices are called links if they only connect within the same subgraph
and bridges otherwise.

2.2 Threat Towards IoBT

While providing a strategic advantage, the IoBT can expose a vulnerability in
the domain of military application. In the following, we give an example of the
threat model that the adversary can deduce through the graph analysis.

Counting the Number of Soldiers (Equipment). Recently, it has been
shown possible of exploring a whole graph—by identifying communities, nodes,
and landmarks—from a given vertex using a random walk approach [8,14]. The
random walk method allows a feature learning algorithm to interpolate between
pure Breadth-First Search (BFS) and Depth-First Search (DFS). As such, an
adversary can learn features of the whole graph, which makes an adversary suc-
cessfully perform multi-label classification of the vertices and bridges between the
vertices in a computationally efficient manner. Furthermore, these same studies
show that even fragmentary information can allow attackers to infer significant
information about the graph. By attacking a small portion of V and learning the
features using a random walk strategy, we can deduce important information,
such as the number of soldiers on the battlefield, which is equal to the number
of subgraphs in G.

Estimating Proximity of Soldiers. In IoBT, devices carried by a soldier are
used for data communication with nearby soldiers as well as the C&C. Each
device may support short-range or long-range communication depending on its
purpose. This intuitively shows that an individual (Gi) with many nearby sol-
diers has more bridges. As such, the adversary can use this information to esti-
mate the proximity of each soldier and rank subgraphs based on the number of
bridges they have.

2.3 n-gram Overview

A key building block in our analysis of our graph learning techniques and their
effectiveness is the n-gram model. The n-gram is a method of analyzing the
sequence of words (or events) in the text form in which each character represents
a preassigned word. Let C = {c1, c2, . . . , c�} be a set of � unique characters
corresponding to the associated words set W = {w1, w2, . . . , w�}. A string S =
c1c2c3 . . . cs can symbolize the sequence of words/events w1w2w3 . . . ws, where
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ci ∈ C and wi ∈ W for 1 ≤ i ≤ s. With this approach, the original document D
can be translated into the n-gram document D′.

The translated document D′ is used for feature extraction and learning. Once
D′ is divided into multiple tokens with a length of n, the set of tokens T can have
the unique feature of the original document D. Without losing generality, we can
express our document as the sequence of states (nodes) observed in a random
walk, and the n-grams as the sub-walks observed in this walk. The ultimate goal
is to use the n-gram representation as features, and using those features to make
a decision concerning the various learning activities above.

2.4 Cyber Deception: Key Idea and Objectives

Cyber deception is an emerging technology for defending and detecting the cyber
attack, which deploys the traps within the existing network. The honeypot [18]
is a representative example of cyber deception. It deploys a device that pretends
to be a normal user on the network, which can then lead an adversary to attack
it. During the attack, the honeypot extracts meaningful information about the
attacker and the attack itself using security software.

Cyber deception can be applied to mitigate the threats to IoBT listed above.
The common feature of the proposed malicious activities in Sect. 2.2 is that
the adversary only with incomplete information extends his knowledge through
random based exploration. If we are able to change the underlying state of the
whole graph or subgraph of a system by adding/removing vertices or edges,
the attacker will be unable to learn accurately those features of the system.
For example, and without losing generality, if n vertices are added to the whole
graph with i vertices, G = (V,E), where V = {v1, v2, . . . , vi}, the resulting whole
graph G′ will have the set of vertices V ′ = {v1, . . . , vi, . . . , vi+n}, which means
the order of the graph changes from i to i + n.

Fig. 2. The adversary’s strategy using random walk and n-gram.

3 Methodology

3.1 Efficient Learning with n-gram

To obtain meaningful information from IoBT, it is important for an adversary
to understand the features of the whole graph, representing the network among
soldiers and equipment. However, due to the dynamics of the network, learning
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the graph is a nontrivial task for the attacker. Similar to Ad-hoc networks,
for instance, when a soldier moves, the devices attached to the soldier can be
connected to devices of other soldiers within close proximity at each point in
time. This means that the shape of the graph can change according to the current
distribution or movement on the field. Therefore, in a dynamic environment, an
efficient analysis method is required for the attacker to understand the overall
shape of the graph.

n-gram as a Feature Learning Technique. Here, we propose a n-gram
based approach as a strategy of an adversary who knows only partially about
the network to learn further features. Let G be the graph representation of the
whole IoBT network, and G′ be the partial graph that the adversary knows,
where G′ ⊂ G. The primary goal of the adversary is to extract meaningful
features from G′ that also can be applied to the analysis of G.

Figure 2 depicts the n-gram approach taken by the adversary. As a first step,
with fragmentary information, the adversary can generate a training dataset to
build a classifier for learning. By applying the random walk strategy in IoBT, and
hoping from a node to another, the adversary can explore the graph from node to
node that are directly connected. The history of the visited nodes is recorded by
logging the type and label of each node. After this exploration, the list of recorded
“device” is translated into a string by referring to a dictionary which maps each
device type to the preassigned character; for example, biochemical sensor to ‘b’.
The resulting string is then transformed to the n-gram structure by extracting
multiple tokens of length n (n = 3 in Fig. 2). At this point, the patterns of
occurrences of n-grams are considered the features of the graph. Similar to other
learning approaches from graphs, it is assumed that the part of the graph known
to the adversary through exploration shares common characteristics with the
whole graph. The tokens (n-grams) and the number of occurrences are then fed
into the ML-based classifier for training.

Adversary Model. In this work, we assume that the adversary is capable of
knowing the other devices connected to a device. In other words, it is a chain
process that identifies devices connected to one device, selects one device among
them, and then identifies the devices connected thereto. This assumption on the
adversary’s capability can be justifiable as it can be achieved in various ways.
Considering that many sensors or equipment rely on the wireless network, for
example, the adversary can eavesdrop the packet in the air and figure out the
address information (source and destination). By doing so, even if the content of
the packet is protected by the encryption, the adversary still can draw the graph
of connections. In this work, we do not consider insider threat who can have
enough knowledge of the whole network. We deal with an external adversary
that has to infer about the whole with partial knowledge.

Graph Explorer with Random Walk Strategy. In this work, we imple-
mented a graph explorer based on node2vec [8]. In node2vec, the 2nd order
random walk strategy with two parameters is mixed with BFS and DFS. One,
return parameter p, controls the likelihood of revisiting, while another, in-out
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parameter q, affects the direction of exploration, inward or outward from the
starting node. This state-of-the-art strategy makes it possible to explore and
learn the graph in a computationally efficient way while preserving the network
neighborhoods of nodes. In our implementation, the graph explorer records the
sequence of the visits by random walk and the index of the associated subgraph
(e.g., vk,4, k), which results in the ground-truth data for the adversary.

3.2 Cyber Deception in IoBT: Instantiations

Our cyber deception relies on changes in the shape of a graph, making it difficult
for an attacker to extract accurate information from the graph for achieving his
end goal. In our study, we consider cyber deception in two ways: microscopic
(on each subgraph) and macroscopic (on the whole graph) approaches, which
we elaborate in the following by explaining the changes in the graph and the
concrete instantiations.

Microscopic Approach. Applying deception in subgraphs affects the num-
ber of devices and connections between those devices. By such a change in a
subgraph, one can prevent an attacker from grouping devices and recognizing
them as a community (soldier) using the proposed n-gram approach. In order to
conduct this microscopic approach, we consider both adding/removing vertices
(devices) and edges (links).

(1) Adding/Removing Vertices (Devices). In this approach, the change of vertices
implies a change of the devices connected in a soldier’s subgraph. The increase
of vertices is achieved by providing soldiers with some duplicated or additional
devices (e.g., sensors) for deception. Clearly, this approach would increase the
cost of building the IoBT network with deception. On the other hand, removing
vertices from the subgraph at the microscopic level can be easily done by turning
some devices off periodically. Because it may affect the capability of the soldier
(by, for example, reducing the cognitive ability of the soldier empowered by IoBT
devices and sensors), the use of this deception approach should be considered
carefully.

(2) Adding/Removing Edges (Links). The edges in the subgraph are connec-
tion between devices. Which device is connected to which device determines the
topology of the subgraph (or soldier-level network). In other words, the change of
links will increase the diversity of the topology. By adding an additional inter-
face (physical or virtual) to the device, it is possible to provide devices with
more connections (links) with the other devices. Conversely, it is also feasible to
remove the links in a way that stops some interfaces, which results in the loss
of some connections, corresponding to the removal of those links (at the risk of
impeding the mission).

Macroscopic Approach. While making a change in each subgraph Gk is a
microscopic approach, the macroscopic approach is to change the whole graph
G itself. That is, macroscopic cyber deception means the change in the number
of soldiers on the battlefield or the connection between soldiers.
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(1) Adding/Removing Vertices (Soldiers). Adding a vertex in the whole graph
will “generate” a virtual soldier on the battlefield, leading to adding Gk in G.
To deceive the adversary, the added subgraph should have similar structure to
those of real soldiers (e.g., nodes, edges, type of devices, topology distribution,
etc.). This deception method can be realized by making each soldier carry two
identical sets of devices where each set forms a different subgraph. Another
way is to virtualize a device that a soldier wears in order to make it act as
two independent devices. Although the latter one is more efficient in terms of
reducing the number of devices that a soldier has to bring to the field (and their
associated weight), such approach makes the assumption that those devices in
general have the capabilities to support virtualization, which is a nontrivial task.

(2) Adding/Removing Edges (Bridges). This approach can be realized in a similar
way to change the number of links above. A single device worn by an individual
soldier can be made to communicate directly with a device outside its network.
At the graph level, this method can make the device no longer included in the
subgraph but as a single node. It is also possible to connect only duplicated
instances to the outside in the virtualized device. Conversely, reducing the num-
ber of bridges can be accomplished by connecting externally connected device
within soldier network.

Objective. The primary goal of our cyber deception approach is to increase the
effort of an adversary. From this perspective, the transformation of the graph
presented above makes it difficult for an attacker to gain an understanding of
the overall graph.

4 Evaluation

To measure the effectiveness of n-gram and cyber deception, we implemented
the simulator with python. As earlier mentioned, we adopted the random walk
module from node2vec [2] and used networkx for the graph management.

4.1 Dataset

For the evaluation, we used two kinds of dataset: (1) the peer-to-peer (p2p)
topology in real world (2) a random graph generated by stochastic model.

P2P Topology in Real World. First, we tried to find a topology dataset
related to IoBT (or IoT) in various repositories, but failed to find one open to
the public. Therefore, we carefully selected a distributed p2p topology that seems
to have a structure similar to IoT. The selected dataset relates to the topology of
the p2p network, Gnutella, which is available to everyone at Stanford Network
Analysis Project (SNAP) [11].

Randomly Generated Graph. To demonstrate the generality of the proposed
approach, we also performed an evaluation with a randomly generated graph.
We employed the Erdös-Rényi stochastic model to generate random graphs.
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To generate the random graph G, the model takes as an input n (the number
of nodes) and p (the probability that there is an edge between any two nodes).
Given that G has n nodes, the probability that G has m edges is [6]:

Pn(m) = P (G(n,m)) =

((
n
2

)
m

)
pm(1 − p)(

n
2)−m,En(m) =

(n2)∑
m=0

mPn(m) =

(
n

2

)
p.

We tried to generate a graph of another structure with the statistics (nodes
and edges) similar to those in the Gnutella dataset, so we set p ≈ 0.00067628
to make En(m) = 39, 994, where n = 10, 876. Using the parameters, n = 10, 876
and p = 0.00067628, we generated a random graph with 10, 876 vertices and
40, 035 edges.

Preprocessing. To reflect a realistic environment, we conducted several pre-
processing steps to use the two datasets listed above in the evaluation: (1) com-
munity partitioning, (2) refining, and (3) labeling.

(1) Community Partitioning. In IoBT, dozens of devices attached to soldiers con-
stitute a small network. To construct this environment, we proceeded with com-
munity partitioning on the dataset. Using community detection [1], we obtained
531 and 504 communities for both dataset, respectively.

(2) Refining. The partitioned communities from the previous step contained 1
to 55 member nodes. The focus of this work is only on soldiers on the battlefield
where standardized equipment is worn, and this large variation in the number
of member nodes is unrealistic. Thus, we filtered the communities with less than
20 nodes or more than 35 nodes out from the graph. We obtained 7,576 nodes,
21,284 edges, and 285 communities in Gnutella, and 7,443 nodes, 21,027 edges,
and 291 communities in the random graph, as a result of preprocessing.

(3) Labeling. The final step in preprocessing is to label each node that makes up
the community. Assuming that each node in the community is a unique device,
we assigned labels such as biochemical sensors, glasses, etc. We also assume
that the network structures of soldiers networks are similar to one another. This
assumption is reasonable, given that soldiers wear standardized devices which
operate in an certain embedded way. With respect to the devices interconnec-
tions, we also created a consistent degree-based labeling: nodes in the subgraph
were sorted according to their degree, and then labels are given sequentially.

4.2 n-gram with Random Walk Strategy

In Sect. 3.1, we discussed the use of n-gram by an attacker to learn features of
the whole graph efficiently and accurately. In this section, we demonstrate the
advantages of the n-gram based approach by showing the accuracy in various
experimental settings.

n-gram with Prior Knowledge. The goal of using n-gram is to extract and
learn features using partial prior knowledge. As such, how much prior knowledge
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an n-gram based system needs in order to learn the whole graph correctly can be
considered as an important measure. To evaluate the performance, we selected
i communities randomly, where 1 ≤ i ≤ 60, and performed the random walk
exploration over the selected subgraphs to generate training data. The features
were extracted as in Fig. 2 and fed to the binary classifier which determines
whether the nodes in the given sequence are in the same community or not. The
testing data is generated through a similar steps. Unlike training data, which
is obtained only from vertices included in the prior knowledge, testing data is
obtained from all vertices of the whole graph as a starting point. The sequential
order recorded during the random walk exploration with a length of 10 starting
from each point is used as a criterion for whether the process is done within a
community or across different communities.
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Fig. 3. The accuracy of the classifier with
various amount of prior knowledge.

Figure 3 shows the result of the
measurement. The used classifier is
based on k-nearest neighbor (k-NN)
algorithm with k = 2. In this figure,
we note two interesting points. First,
the prior knowledge is important, but
not necessarily large amounts of it.
For a small i (i.e., i ≤ 6), the accuracy
increased rapidly with increasing i.
However, as i increases beyond 6, the
accuracy is not affected by i, in both
datasets. Second, we also found that
the classifier on the random graph
outperformed the Gnutella data. It
means that the communities in the random graph are highly likely to share com-
mon features with each other. Considering that a soldier wears the standardized
set of the clothes and devices, the adversarial classifier based on n-gram can
achieve a high performance per the random graph.

4.3 The Application of the n-gram Approach

In Sect. 2.2, we discussed two threats in IoBT. Now, we show examples of the
threats, the estimation of the number and proximity of soldiers, performed by
an adversary.

Counting Soldiers. We conducted the experiments for counting the soldiers
using n-grams. With the experiment in Fig. 3 previously showed the result for the
exploration with a length of 10 at each node, this time we verify the community
detection performance in a single exploration with a length, l ≥ 200. The value
of l was increased from 250 to 2,000 in increments of 250, and the average was
calculated after 10 repeated experiments for each case. In the experiment, the
prior knowledge (i) was fixed at 20, and the logistic regression with C = 1 was
used for the classifier model.

Figure 4a shows the result when the classifier counts the number of commu-
nities while performing random walk exploration. In this experiment, we can
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(a) The accuracy of the classifier counting the
number of soldiers.
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Fig. 4. The performance of the n-gram based classifier.

see the classifier shows very high accuracy over than 95% for the short lengths
(l ≤ 750). Although, the accuracy steadily decreases as l increases, we can see
that the accuracy is above 90% in all cases. Considering that the counted num-
bers of soldiers in the experiments are below than 250, we can infer that the
actual error in the number of soldiers is below than 25 which is 10% of 250.

Proximity of the Soldier. To measure the proximity of an individual soldier,
we assumed that the connectivity of a soldier is affected by the geographical
distribution of the troop. It means a soldiers’ BAN which has a limited range of
communication is able to connect to more other soldiers’ devices when they exist
in close distance. In other words, the estimation the proximity can be considered
as an investigation on how a subgraph has a connectivity with other subgraphs.

In this experiment, we measured the number of connected subgraphs from
one subgraph. If there is an edge between two nodes in different subgraphs, those
subgraphs are considered as connected. By performing the multiple random walk
based exploration, the adversary can figure out the connectivity between two
different subgraphs.

Figure 4b shows the CDF of the number of connected subgraphs. In the
figure, the dash line means the measured number, and the solid line means the
actual number. In this figure, we can see that the classifier deduces that about
8.5% of communities have less than 60 neighbors, while actually there are about
11.6% communities with those number of neighbors. The difference between the
estimated value and the actual value is then increasingly larger.

4.4 Cyber Deception

To evaluate the effectiveness of cyber deception, as described earlier, we
conducted additional experiments for microscopic and macroscopic methods
described in Sect. 3.2. In the measurement, we used l-regression based classi-
fier with C = 1 and 20 communities as prior knowledge. Moreover, we only use
the random graph as a dataset for the evaluation.
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Microscopic Approach. The first option the defender can choose is to
add/remove nodes or edges in subgraph. By changing the structure of the sub-
graph, such modification may poison the learning algorithm, and it may make
the adversary recognize a community as two different communities. Based on
the labeling method, which assigns the label according to the node’s degree, the
deception that can make the change in the order of the degrees can perhaps be
more effective.

To evaluate this approach, we conducted experiments to measure the
attacker’s accuracy while changing nodes’ degrees. We conducted the measure-
ments with four scenarios: no cyber deception, 10%, 25%, and 50% of changed
degrees; ’10%’ means that the degree of 10% of the devices have altered. Such
a change in degree causes a change in the order, therefore nodes are labeled
differently from the standardized method.

As a result, we could see that the accuracy of 95.73% without cyber decep-
tion decreased to 93.57% (10% of degrees changed), to 91.36% (25% of degrees
changed), and to 87.27% (50% of degrees changed). That means the more the
cyber deception produces more distortion, the less the accuracy of the classifier.
Simply changing topology within a subgraph can make the attacker’s feature
learning measurably difficult.

Macroscopic Approach. The macroscopic approach for cyber deception is the
addition/removal of the subgraph or bridges. Using this approach, we cannot
only forge the number of soldiers, but also the proximity. As an example of
macroscopic cyber deception, we applied the addition of subgraphs and compared
the result.
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Fig. 5. The accuracy of the classifier count-
ing the number of soldiers when deceptive
subgraphs are added to the whole graph.

Figure 5 shows that cyber decep-
tion significantly degrade the adver-
sary’s understanding over the whole
graph. When the number of sub-
graphs increases by 5% or 10%, the
accuracy of the adversary’s under-
standing is significantly degraded. In
this example, the added subgraph is
simply copied from the existing one
in the whole graph, which allows us
to assume that cyber deception can be
more effective when the modification
of subgraph is combined. Macroscopic
approach can also affect the estima-
tion of the proximity of soldiers. By
adding the forged subgraphs, the attacker recognizes the fake subgraph as an
individual community, which makes the errors in Fig. 4b larger.
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5 Related Work

Feature Learning Algorithm. The conventional approaches for feature learn-
ing over graphs depends on manually crafted features [7,9]. There have been vari-
ous studies on unsupervised learning through matrix representation of graphs. In
general, these kinds of works extracted and learned features using linear or non-
linear dimensionality reduction approaches [3,17]. However, due to the computa-
tional cost of eigen-decomposition, the dimensionality reduction based approach
is difficult to use in case of large-scale graph. Recently, a significant improve-
ment has been made in natural language processing. The word2vec combined
with Continuous Bag-of-Words (CBOW) and Skip-gram learns the features by
optimizing the likelihood objective [12]. The significant advancement in natu-
ral language processing has also affected other areas. Combined with random
walk exploration, recent studies [8,15,19] represent the network or graph as a
document and learn the features through the approach similar to word2vec.

Cyber Deception. Cheswick [5] introduced documented his detecting an attack
on the gateway, luring the attacker by feeding the forged data, and tracing him.
Inspired by this story, the concept of cyber deception has become increasingly
systematized. There have been lots of efforts to create and exploit a trap on
the network called Honeypot or Honeynet, which attracts attackers and collects
information about them [16,18].

6 Conclusion

In this work, we modeled threats on IoBT, by formulating the problem as a
learning of a graph to extract high-level IoBT context information. We proposed
the n-gram based approach combined with a random walk strategy, and explored
the effectiveness of cyber deception as a countermeasure against an adversary’s
activity. From our simulation, we show that fragmentary information can allow
an adversary to extract meaningful information over the whole network. In the
future, we will explore the effectiveness of the learning approach as well as the
cyber deception over various types of graph structures to validate in a more
realistic scenario. Moreover, we will demonstrate a cyber deception-based defense
against different graph learning approaches.
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Abstract. Fast implementation of Ring-LWE is a challenge for the low-
end embedded processors. One of the most expensive operation for Ring-
LWE is Number Theoretic Transform (NTT). Many works have inves-
tigated the optimized implementation for the NTT operation. In this
paper, we further optimized the NTT operation on the low-end 8-bit
AVR microcontrollers. We focused on the optimized and secure poly-
nomial multiplication to ensure countermeasures against timing attacks
and high performance. In particular, we propose the combined Look-Up
Table (LUT) based fast reduction techniques in regular fashion. With the
optimization techniques, the proposed NTT implementation enhances
the performance by 14.6% than previous best results. Finally, proposed
NTT implementations are applied to the Ring-LWE key scheduling and
encryption operations, which require the only 1,325,171 and 1,430,601
clock cycles for 256-bit security levels.

Keywords: Ring learning with errors · Software implementation ·
Public key encryption · 8-bit AVR · Number Theoretic Transform ·
Timing attack

1 Introduction

The hard problem of traditional public key cryptography algorithms, such as
RSA and Elliptic Curve Cryptography (ECC), are based on integer factorization
and discrete logarithm problems, which are believed to be secure against clas-
sical attacks on traditional computers. For this reason, previous works focused
on efficient implementations of RSA and ECC cryptography systems [6,7,9–
11,13,14,18,22–24,26]. However, such hard problems can be solved by using
Shor’s algorithm in polynomial time when a sufficient large quantum computer
is ready [27]. In order to avoid the potential quantum attacks, the lattice-based
cryptography is considered as one of the most promising candidates for post-
quantum cryptography. The lattice-based cryptography is built based on worst-
case computational assumptions in lattices that would remain hard even for
quantum algorithms.
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2019, LNCS 11897, pp. 315–327, 2020.
https://doi.org/10.1007/978-3-030-39303-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39303-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-39303-8_24


316 H. Seo et al.

Furthermore, the future computing platforms, such as Internet of Things
(IoT), are widely deployed and used. The low-end IoT devices with many sensors
handle important sensor data. For this reason, secure cryptographic algorithms
should be implemented on the low-end IoT devices. However, the low-end IoT
devices are very resource-constrained, in terms of computing power, energy, and
storage. This hard condition introduces a challenge to implement the cryptog-
raphy algorithm on low-end devices. In this paper, we present the most optimal
implementation of NTT computation for lattice based cryptography. The imple-
mentation also ensures the constant timing, which is secure against the timing
attacks.

The introduction of Learning with Errors (LWE) problem and its ring variant
(Ring-LWE) [15,19] provide efficient ways to build lattice-based public key cryp-
tosystems. The following software implementations of Ring-LWE based public-
key encryption or digital signature schemes improved performance and memory
requirements. Oder et al. presented an efficient implementation of Bimodal Lat-
tice Signature Scheme (BLISS) on a 32-bit ARM Cortex-M4F microcontroller
[16]. De Clercq et al. implemented Ring-LWE encryption scheme on the identical
ARM processors [5]. They utilized 32-bit registers to retain two 13–14 coefficients
at once. Boorghany et al. implemented a lattice-based cryptographic scheme on
an 8-bit processor for the first time in [1,3]. The authors evaluated four lattice-
based authentication protocols on both 8-bit AVR and 32-bit ARM processors.
In particular, Fast Fourier Transform (FFT) transform and Gaussian sampler
function are implemented in optimal way. In LATINCRYPT’15, Pöppelmann et
al. studied and compared implementations of Ring-LWE encryption and BLISS
on an 8-bit Atmel ATxmega128 microcontroller [17]. In CHES’15, Liu et al. opti-
mized implementations of Ring-LWE encryption by presenting efficient modu-
lar multiplication, NTT computation and refined memory access schemes to
achieve high performance and low memory consumption [12]. They presented
two implementations of Ring-LWE encryption scheme for both medium-term
and long-term security levels on an 8-bit AVR processor. Liu et al. presented the
first secure Ring-LWE encryption and BLISS signature implementations against
timing attack [8]. NTT and sampling computations are implemented in constant
time to prevent timing attack. Particularly, modular reduction is performed in
Montgomery reduction to reduce computation complexity. In ICISC’17, Seo et al.
proposed secure and efficient Ring-LWE implementations by using LUT based
modular reduction technique and random shuffling [25].

Contributions. This paper continues the line of research on the secure and
compact implementations of the Ring-LWE encryption scheme on the low-end 8-
bit AVR processor. The contributions are the techniques to prevent information
leakage and the efficient implementation to improve real-world performance of
Ring-LWE encryption scheme on 8-bit AVR processors.

In particular, we focused on the optimization of Number Theoretic Trans-
form (NTT) based polynomial multiplication. In NTT computation, a number
of modular arithmetic operations are required and the optimization of modular



Ring-LWE on 8-Bit AVR Embedded Processor 317

arithmetic is highly related with performance. In order to improve the perfor-
mance of modular reduction, we used the combined Look Up Table (LUT) tech-
niques for modular multiplication. This efficiently performs all reduction with
memory accesses.

Based on the above NTT optimization techniques, we present secure and
compact implementations of Ring-LWE encryption scheme on an low-end 8-bit
AVR processor. All operations are designed to prevent the timing attack. The
key scheduling and encryption implementations require 1,325 K and 1,430 K
clock cycles for 256-bit security level, respectively.

The rest of this paper is organized as follows. In Sect. 2, we introduce back-
ground of Ring-LWE encryption scheme, NTT algorithm, and previous imple-
mentation techniques for NTT algorithm. In Sect. 3, we present optimization
techniques for NTT on low-end 8-bit AVR processors. In particular, the pro-
posed method ensures the constant timing and reduces the execution time of
NTT algorithm. In Sect. 4, we report performance of our implementation and
compare with the state-of-the-art implementations of NTT, key scheduling, and
encryption on the low-end 8-bit AVR platforms. Finally, we conclude the paper
in Sect. 5.

2 Background

2.1 Ring-LWE Encryption Scheme

In 2010, Lyubashevshy et al. proposed an encryption scheme based on a more
practical algebraic variant of LWE problem defined over polynomial rings Rq =
Zq[x]/〈f〉 with an irreducible polynomial f(x) and a modulus q. In Ring-LWE
problem, elements a, s and t are polynomials in the ring Rq. Ring-LWE encryp-
tion scheme proposed by Lyubashevshy et al. was later optimized in [21]. Roy et
al.’s variant aims at reducing the cost of polynomial arithmetic. In particular, the
polynomial arithmetic during a decryption operation requires only one Number
Theoretic Transform (NTT) operation. Beside this computational optimization,
the scheme performs sampling from the discrete Gaussian distribution using a
Knuth-Yao sampler. In next subsection, we will first present mathematical con-
cepts of NTT and Knuth-Yao sampling operations, then we will describe the
steps used in the Roy et al.’s version of the encryption scheme.

Now, we describe steps applied in the encryption scheme proposed by Roy
et al. [21]. We denote the NTT of a polynomial a by ã.

– Key generation stage Gen(ã): Two error polynomials r1, r2 ∈ Rq are sam-
pled from the discrete Gaussian distribution Xσ by applying the Knuth-Yao
sampler twice.

r̃1 = NTT (r1), r̃2 = NTT (r2)

and then an operation p̃ = r̃1 − ã · r̃2 ∈ Rq is performed. Public key is
polynomial pair (ã, p̃) and private key is polynomial r̃2.
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– Encryption stage Enc(ã, p̃, M): The input message M ∈ {0, 1}n is a binary
vector of n bits. This message is first encoded into a polynomial in the
ring Rq by multiplying the bits of message by q/2. Three error polynomi-
als e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext is computed as a set
of two polynomials (C̃1, C̃2):

(C̃1, C̃2) = (ã · ẽ1 + ẽ2, p̃ · ẽ1 + NTT (e3 + M ′))

– Decryption stage Dec(C̃1, C̃2, r̃2): One inverse NTT is performed to recover
M ′:

M ′ = INTT (r̃2 · C̃1 + C̃2)

and then a decoder is used to recover the original message M from M ′.

Algorithm 1. Iterative Number Theoretic Transform
Require: A polynomial a(x) ∈ Zq[x] of degree n − 1 and n-th primitive ω ∈ Zq of

unity
Ensure: Polynomial a(x) = NTT (a) ∈ Zq[x]
1: a = BitReverse(a)
2: for i from 2 by i = 2i to n do
3: ωi = ω

n/i
n , ω = 1

4: for j from 0 by 1 to i/2 − 1 do
5: for k from 0 by i to n − 1 do
6: U = a[k + j]
7: V = ω · a[k + j + i/2]
8: a[k + j] = U + V
9: a[k + j + i/2] = U − V

10: ω = ω · ωi

11: return a

2.2 Number Theoretic Transform

We use the Number Theoretic Transform (NTT) to perform polynomial mul-
tiplication. NTT can be seen as a discrete variant of Fast Fourier Transform
(FFT) but performs in a finite ring Zq. Instead of using the complex roots of

unity, NTT evaluates a polynomial multiplication a(x) =
n−1∑

i=0

aix
i ∈ Zq in the

n-th roots of unity ωi
n for i = 0, . . . , n − 1, where ωn denotes a primitive n-th

root of unity. Algorithm 1 shows the iterative version of NTT algorithm.
The iterative NTT algorithm consists of three nested loops. The outermost

loop (i-loop) starts from i = 2 and increases by doubling i, and the loop stops
when i = n, thus it has only log2n iterations. In each iteration, the value of
twiddle factor ωi are computed by executing a power operation ωi = ω

n/i
n ,

and the value of ω is initialized by 1. Compared to i-loop, the j-loop executes
more iterations, the number of iteration can be seen as a sum of a geometric
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progression for 2i where i starts from 0 and has a maximum value of log2(n−1),
thus, the j-loop has n−1 iterations. In each iteration of j-loop, the twiddle factor
ω is updated by performing a coefficient modular multiplication. Apparently,
the innermost loop (k-loop) occupies most part of the execution time of NTT
algorithm since it is executed roughly n

2 log2n times. In each iteration of the
innermost loop, two coefficients a[i+j] and a[i+j+i/2] are loaded from memory
into registers, and then a[i+j + i/2] are multiplied by the twiddle factor ω, after
that, the value of a[k + j] and a[k + j + i/2] are updated and stored in the
memory.

2.3 Previous Implementations of NTT

In LATINCRYPT’15, Pöppelmann et al. optimized the NTT operation by merg-
ing inverse NTT and multiplication by powers of ψ−1. Furthermore, bit-reversal
step is removed by the manipulation of the standard iterative algorithms. In
CHES’15, Liu et al. suggested the high-speed NTT operations with efficient
coefficient modular multiplication [12]. They presented the Move-and-Add (MA)
method to perform the 16-bit wise coefficient multiplication and the Shift-Add-
Multiply-Subtract-Subtract (SAMS2) techniques to replace the expensive reduc-
tion operations with the MUL instructions by cheaper shift and addition instruc-
tions. In TECS’17, Liu et al. improved the modular reduction by using Mont-
gomery reduction [8]. This improves the previous SAMS2 techniques when the
case requires a number of shift and addition operations on low-end devices. The
new technique ensures the constant time computation together with high perfor-
mance. In ICISC’17, the optimized Look-Up Table (LUT) based fast reduction
technique is proposed [25]. The main idea is to first reduce the result by using
the 8-bit wise pre-computed reduced results, and then perform the tiny fast
reduction steps on short coefficients. The results are kept in the incomplete rep-
resentation in order to optimize the number of subtraction in the reduction step.

3 Proposed Methods

NTT computation uses the majority of the execution time on modular multipli-
cation operation since it is performed in the innermost k-loop of NTT computa-
tion. The target 16-bit wise multiplication can be efficiently performed by using
previous works [12]. In this paper, we focused on the optimization of fast reduc-
tion operations for NTT computation. We chose the prime modulus q = 12289
(i.e. 0x3001 in hexadecimal representation) for the target parameters, which are
used in previous works [8,12,25].

The modular reduction can be implemented using the bit-shift and add tech-
nique (i.e. SAMS2) covered in previous works [8,12], This approach can be accel-
erated by using the optimized Look-Up Table (LUT) based fast reduction tech-
nique for performing the mod 12289 operations [25]. The main idea is to first
reduce the result by using the 8-bit wise pre-computed reduced results, and then
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perform the tiny fast reduction steps on short coefficients. The results are kept
in the incomplete representation in order to optimize the number of subtraction
in the reduction step.

((k2,k1)&0x1C0)|r3

1
2

(r1,r0)

(s1,s0)

r0r1r2r3

LUT#1

(k2,k1,k0)←
(r1,r0)+(s1,s0)(k2,k1,k0) mod 214 3
(t1,t0)

4

5LUT#2 (s1,s0)

6

(k1,k0)←
(t1,t0)+(s1,s0)

Fig. 1. Look-Up Table based Fast Reduction for q = 12289, 1©: LUT access; 2©: addi-
tion; 3©: modulo; 4©: concatenation; 5©: LUT access; 6©: addition.

In this paper, we further optimized the LUT based approach by using com-
bined LUT techniques. For the case of prime modulus q = 12289, the variables
are always kept in range of (0, 215 − 1) in incomplete representations and the
intermediate results (IR) of multiplication are kept in (0, 230 − 1). We set two
pre-computed LUTs with (mod 12289) operation. One input variable are rang-
ing from 17-th bit to 24-th bit, which are the values located in x × 216 where
x is ranging from 0 to 28. Afterward, the variable is reduced to 14-bit wise
results through (mod 12289) operation (≈ ((IR div 216) mod 28) mod 12289).
The reduced results are added to the intermediate results (i.e. r1, r0). The addi-
tion of 14-bit results and 16-bit results generates 17-bit intermediate results.
With this intermediate results, the other LUT received the combined two input
variables (one from 15-th bit to 17th bit and the other one from 25-th bit to
30-th bit)1. The LUT ensures that the variable is reduced to the 14-bit results
(≈ (IR div 214) mod 12289).

After the second LUT based reduction operations, the 14-bit wise results
are added to the remaining 14-bit wise intermediate results (1-st bit–14-th bits),
which output 15-bit intermediate results. In previous works, they utilize the tiny
fast reduction in the last step. The proposed approach only requires LUT based
reduction without tiny fast reduction. This ensures the optimized performance
than previous works.
1 Two LUTs only require 1.5 KB (28 × 2 + 29 × 2) and the LUTs are stored in the

FLASH memory. Considering that 8-bit AVR platforms support to write data into
the FLASH memory and its size is ranging from 128–384KB. The storage for LUTs
is negligible on the target processors.
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Algorithm 2. LUT based modular reduction in source code (mod 12289)

Input: operands R22, R23, R24, R25

Output: results {R24, R25}
1: CLR R26 {MOV-and-ADD}
2: MUL R24, R22

3: MOVW R18, R0

4: MUL R25, R23

5: MOVW R20, R0

6: MUL R24, R23

7: ADD R19, R0

8: ADC R20, R1

9: ADC R21, R26

10: MUL R25, R22

11: ADD R19, R0

12: ADC R20, R1

13: ADC R21, R26

14: MOV R30, R20

15: LDI R31, hi8(LUT1 L) {LUT access}
16: LPM R22, Z

17: LDI R31, hi8(LUT1 H)

18: LPM R23, Z

19: ADD R18, R22

20: ADC R19, R23

21: ADC R20, R20 {Register re-use}

22: MOV R30, R19

23: ANDI R19, 0X3F

24: ANDI R20, 0X01

25: ANDI R30, 0XC0

26: ADD R30, R21

27: LDI R31, hi8(LUT2 L) {LUT access}
28: ADD R31, R20

29: LPM R24, Z

30: LDI R31, hi8(LUT2 H)

31: ADD R31, R20

32: LPM R25, Z

33: ADD R24, R18

34: ADC R25, R19

35: CLR R1

The detailed method is described in Fig. 1. We keep the product in four reg-
isters (r3, r2, r1, r0), which has been marked by different colors. Each of register
(r3, r2, r1, r0) is 8-bit long. The colorful parts mean that this bit has been occu-
pied while the white part means the current bit is empty. The reduction with
12289 using LUT approach can be performed as follows:

1. LUT access. We first perform the LUT access with variable (r2) to get the
14-bit wise reduced results (s1 and s0).

2. Addition. The reduced results (s1, s0) is added to the intermediate results
(r1, r0). This addition generates 17-bit intermediate results.

3. Modulo. The intermediate results (k2, k1, k0) below 14-bit are extracted and
we obtain the (t1, t0).

4. Concatenation. The intermediate result (r3) and the other 3-bit intermediate
result (i.e. (k2, k1)&0x1C0) are concatenated and generate 9-bit wise value.

5. LUT access. We perform the LUT access with the concatenated value to get
the 14-bit wise reduced results (s1 and s0).

6. Addition. Finally, we perform the addition operation of (t1, t0) + (s1, s0) to
get final 15-bit wise results.

In Algorithm 2, the LUT based modular reduction in source code level is
described. In Step 1–13, MOV-and-ADD multiplication is used to perform the
16-bit wise multiplication. The 32-bit intermediate results are stored in 4 8-bit
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registers (R18, R19, R20, R21). Afterward, we perform the LUT based reduc-
tion operation. The LUT input and output are 8-bit and 16-bit, respectively.
In order to accelerate the memory access, we used two different optimized tech-
nique. First method is aligned memory access. We set the higher 8-bit address
with one operand and only update the lower byte with different values. The
detailed descriptions are as follows:

– 8-bit aligned (init): MOV R30, R24 → LDI R31, hi8(LUT) → LPM R22, Z
– 8-bit aligned (second): MOV R30, R24 → LPM R22, Z

where Z, R24, R25, R1, R30, R31, and R26 are Z pointer, first input value, second
input value, zero value, lower part of memory address, higher part of memory
address and result, respectively.

...0x01 0x02 0x03 0xFF(a)

(b)
0x01 0x02 0x03 ... 0xFF

0x01 0x02 0x03 0xFF

0x01 0x02 0x03 0xFF

...

Fig. 2. Comparison of LUT construction, (a) previous method, (b) proposed separated
memory access. Yellow and green blocks represent higher and lower parts for LUT,
respectively. (Color figure online)

Second method is separated memory access. The LUT outputs 16-bit wise
results, which requires doubled offsets. In this setting, the aligned memory access
is not feasible. We separated the LUT into two parts. First one is for lower 8-
bit and second one is for higher 8-bit. The detailed method is described in
Fig. 2. Unlike previous LUT construction, the separated LUTs are constructed.
Under this LUT setting, the aligned memory access is efficiently performed. The
technique is also applied to the following LUT accesses.

In Step 14–15, the 17–24-th bits (R20) is loaded to the lower 8-bit address
(R30). Then, the higher 8-bit address of LUT1 L is loaded to the register (R31).
In Step 16, FLASH memory access is performed with LPM instruction. From Step
17 and 18, higher part of LUT1 is accessed. Since we used the aligned memory
access, only higher address is modified.

In Step 19–21, the reduced results and intermediate results are added. In
particular, we re-used the register (R20). The addition with carry can store the
carry bit generated from Step 20.

Thereafter, in Step 22–25, two intermediate results are concatenated. In Step
26–32, LUT2 access is performed in aligned memory access method. Finally, the
reduced results and intermediate results are added together. This ensures the
15-bit wise intermediate results.

The proposed modular reduction method is generic approach for any primes
for Ring-LWE. For this reason, we can easily extend the proposed method to
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other primes without difficulty. Definitely, the proposed method is working for
lattice based PQC candidates, such as NewHope and CRYPSTALS-KYBER
[2,4]

Discrete Gaussian Sampling. Discrete Gaussian sampling is an integral part
of Ring-LWE algorithm. For fast computation, we adopted the Knuth-Yao sam-
pler with byte-scanning [12,20]. However, original sampling is not secure against
timing attack and simple power analysis. In order to ensure the secure implemen-
tation, we adopted the random shuffling after random sampling [20]. The random
shuffling removes the relation between random samples and timing information.

4 Performance Evaluation

This section presents performance results of our implementation. We first give
the experimental platform in Sect. 4.1. Afterwards, we show a comparison with
the previous modular multiplication and NTT implementations in Sect. 4.2.
Finally, we show a comparison with the previous Ring-LWE implementation
in Sect. 4.3.

4.1 Experimental Platform

Our implementation uses ATxmega128A1 processor on an Xplain board as target
platform. This processor has a maximum frequency of 32 MHz, 128 KB flash
program memory, and 8 KB SRAM. It supports an AES crypto-accelerator and
can be used in a wide range of applications, such as industrial, hand-held battery
applications as well as some medical devices. The main structure and interface
are written in C language while the core operations such as modular arithmetic is
implemented in Assembly language. For the LUT based approach, the constant
LUT variables are stored in flash program memory, which requires 1.5KB for
saving the parameters and 3 clock cycles for each byte access. We complied our
implementation with speed optimization option ‘-O3’ on Atmel Studio 6.2. In
order to obtain accurate timing, we execute each operation for at least 1000
times and report average cycle count for each operation.

4.2 Comparison of Modular Multiplication and NTT

Table 1 summarizes execution time of modular multiplication and NTT for long-
term security levels. First, various works including [1,3,12,17] are not constant-
time solutions, which means the attackers can perform timing attack to extract
the secret information. Previous work by Liu et al. introduced the secure app-
roach with tiny Montgomery reduction [8]. They perform the Montgomery reduc-
tion to reduce the 28/30-bit variables to 14/15-bit results. However, the com-
plexity of n-word Montgomery reduction is generally n2 + n, which is still high
overheads on the low-end devices. In ICISC’17, Seo et al. suggested LUT based
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Table 1. Execution time of modular multiplication and NTT (in clock cycles),
where 256-bit security represents (n : 512, q : 12289) on 8-bit AVR processors, e.g.,
ATxmega64, ATxmega128.

Implementation Mod MUL NTT Const

Boorghany et al. [3] N/A 2,207,787 –

Boorghany et al. [1] N/A N/A –

Pöppelmann et al. [17] N/A 855,595 –

Liu et al. [12] N/A 441,572 –

Liu et al. [8] 70 516,971
√

Seo et al. [25] 66 403,224
√

This work 47 344,288
√

approach to achieve high performance and constant timing [25]. However, we
find that there is still room to improve the performance.

As shown in the Table 1, the proposed modular multiplication with 12289
only requires 47 clock cycles, which are 19 clock cycles smaller than previous
approaches [25]. Definitely, the proposed NTT operation also shows higher per-
formance than previous works. NTT operation only requires 344, 288 cycles for
256-bit security implementation. Results of NTT for long-term security is 14.6%
faster than previous works.

4.3 Comparison of Ring-LWE

With optimized NTT implementation, we evaluated the Ring-LWE encryption
scheme with parameter sets (n, q, σ) with (512,12289, 12.18/

√
2π) for security

levels of 256-bit. The tailcut of discrete Gaussian sampler is limited to 12σ to
achieve a high precision statistical difference from the theoretical distribution,
which is less than 2−90. These parameter sets were also used in most of the
previous software implementations, e.g., [1,3,5,8,12,25].

Table 2. Performance comparison of software implementation of 256-bit security level
lattice-based cryptosystems on 8-bit AVR processors, e.g., ATxmega64, ATxmega128.

Implementation NTT/FFT Key-Gen Enc Secure

Boorghany et al. [1] 2,207,787 N/A N/A –

Pöppelmann et al. [17] 855,595 N/A 3,279,142 –

Liu et al. [12] 441,572 2,165,239 2,617,459 –

Liu et al. [8] 516,971 N/A 1,975,806
√

Seo et al. [25] 403,224 N/A 1,754,064
√

This work 344,288 1,325,171 1,430,601
√
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Table 2 compares software implementations of 256-bit security lattice-based
cryptosystems on the 8-bit AVR processors. We compare the previous work
[1,3,8,12,17,25] with ours. Proposed 256-bit security implementation requires
344K, 1, 325K, and 1, 430K cycles for NTT, key generation, and encryption,
respectively. Compared to the recent work [25], the NTT operation is signifi-
cantly improved because we used compact modular multiplication routine. The
performance improvements of NTT accelerate the key generation and encryption
for Ring-LWE implementations. The proposed encryption implementation out-
performs previous works by 18.4%. Furthermore, the proposed implementations
are constant timing, which ensures a secure computation against simple power
analysis and timing attacks.

5 Conclusion

This paper presents optimization techniques for efficient and secure implemen-
tation of NTT and its application Ring-LWE key generation and encryption on
the low-end 8-bit AVR platform. The proposed NTT implementation achieved
new speed records for secure 256-bit Ring-LWE encryption implementation on
low-end 8-bit AVR platforms.

Our future works are applying the proposed techniques to the other low-
end IoT devices, such as 8-bit PIC and 16-bit MSP processors. Similarly, these
platforms also support very limited Arithmetic Logic Unit (ALU) and storage.
Second, we will further investigate the side channel attacks for Ring-LWE scheme
on the low-end embedded processors.
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Abstract. Many cache side-channel attacks have been proposed, and
they threaten sensitive programs in real-world. The success of the attacks
depends on how accurately to decide whether a set of cache lines are in
cache or not. However, external factors insert noise into cache attacks,
and the noise disturbs the attacks’ decision process. Attacks in last-level
cache (LLC) have more noise compared with core-dedicated caches.

In this paper, we propose an attack method using Perf—a performance
analyzing tool in Linux, attackPerf , to achieve low-noise in cache side-
channel attacks to LLC. The proposed method utilizes Perf to decide
cache hits/misses when accessing memory. Since Perf gets the number
of cache hits and misses from hardware performance counters, it can
identify the cache hits/misses of memory accesses with the less noise.
For evaluation, we compare the performance of attackstimer (existing
attack method) and attacksPerf by implementing Flush+Reload and
Prime+Probe. For the accuracy of Perf, we compare the clock cycles
of the timer and the counts of Perf according to the victim’s access.

Keywords: Side-channel · Cache attack · Perf · Hardware
performance counter · Multi-core attack

1 Introduction

Cache side-channel is well-known and threaten security applications in broad
fields. Many researches have recently reported cache as a critical attack space.
Since processes share the cache, attackers can extract victim’s sensitive informa-
tion by monitoring victim’s memory accesses in the cache. To decide whether a
victim has accessed a target memory region, attackers access the memory region
that maps to a set of cache lines congruently hosting the victim’s target memory
region. If the victim has accessed the target memory in the cache, it brings a
change in the set of cache lines and attacker’s accesses are going to be cache
hits or misses. Most attacks exploit a timer to know the cache hit/miss resulting
from the victim’s access to the target memory in the cache [9,16]. The cache
attacks have been studied widely, for example, Zhang et al. [17] conducted the
cache attack in a cloud environment, and Chen et al. [5] performed the attack on
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a web browser. Furthermore, many methods have been proposed to exploit last-
level cache (LLC) side-channel [8,11,16] to attack across cores and incapacitate
defense mechanisms.

However, existing cache side-channel attacks have suffered from many kinds
of noise. Especially, extracting accurate cache hit/miss information is not simple
because of the noise from external factors and defenses. Several external factors,
such as exceptions, context switches, and unexpected timing latency, contribute
to the noise that results in inaccurate cache attacks. The noise from external
factors causes wrong decisions and false-positives. Note that adding the noise to
a timer is an effective countermeasure against cache side-channel attacks, given
that the attacks require a sophisticated timer to decide cache hits/misses. The
noise to the timer is one of the main difficulties in the success of cache side-
channel attacks, which frustrates the performance of cache side-channel attacks.
There are relatively few studies devoted to reducing noise for the better decision
of cache hits and misses, although it is important to improve the performance
and accuracy of the decision.

In this paper, we propose a cache side-channel attack to solve the noise
problem by using a performance counter. We call the cache side-channel attacks
utilizing Perf as attackPerf and cache side-channel attacks using the timer as
attacktimer when determining cache hits/misses. Performance counter provides
the number of cache hits/misses; hence, the attack process is able to monitor
real cache hits/misses with low false-positives. To use hardware performance
counters in the program, we use Perf interface to interact with the counters
which is provided by Linux by default. Since Perf can monitor hardware events of
specified code parts in user mode, it is possible to obtain the cache hits/misses of
memory instructions of the code parts. The attackPerf can be used widely, since
most Linux kernel includes Perf and most commodity CPUs support hardware
performance counters.

We evaluate the attackPerf on two environments: normal environment
and the timer defense deployed environment. We implement the attacktimer

and the attackPerf for two representative cache attacks: Flush+Reload and
Prime+Probe on AES T-Table attacks. We demonstrate that attackPerf achieves
high accuracy with a small number of AES encryption attempts. Also, we show
that attacksPerf can identify victim’s memory accesses better than attackstimer

using Kuiper’s test1 values [10]. Furthermore, we show that attackPerf accom-
plishes attacks even on the timer defense deployed environment. We show an
analysis of why attackPerf has lower noise than attacktimer. As a result of the
analysis, measured clock cycles of cache hits and misses are heavily overlapped on
attacktimer, while the number of cache hits and misses on performance counters
are separable on attackPerf .

Our key contributions are:

– We show through the implementation that it is possible to run practical cache
side-channel attacks using Perf with low noise in a multi-core environment.

1 Kuiper’s test is used in statistics to test whether a given distribution or family of
distributions, is similar to another distribution.
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– We show that the proposed method improves attack accuracy and perfor-
mance in measuring cache hits/misses compared with attacktimer

– We show that the attackPerf can bypass the defense adding noise to the
timer.

– We analyze the reason why Perf enables more precise attacks.

The remainder of this paper is organized as follows. In Sect. 2, we pro-
vide background about cache architecture, cache side-channel attacks, cause of
noise of cache side-channel attacks, and performance counters in Linux system.
Section 3 describes attackPerf . Further on, in Sect. 4, we evaluate our method
by executing a real attack on AES T-table and figure out the reason why Perf
achieves high precision. We discuss several pieces of research related to our work
in Sect. 5 and conclude in Sect. 6.

2 Background

2.1 Cache Architecture

Caches are hardware components in CPU and store frequently and recently
used data and instructions, in order to reduce access time and make memory
access faster. A cache consists of multiple cache sets, each of which stores a fixed
number of cache lines. A typical cache line is 64 bytes in modern CPU. The
caches are hierarchically structured in modern processors—multiple hierarchical
levels of caches. Higher level caches are closer to a CPU and faster than lower
level caches, but higher level caches have a smaller capacity than lower level
caches. Each core has dedicated caches2, and all cores share one last level cache
(LLC). Many commodity processors have an inclusive cache structure; lower level
caches include the content in higher level caches. Therefore, the LLC contains
all content in higher level caches. If the cache line in the LLC is evicted or
flushed, then the cache line in higher level cache should be flushed together.
To attack across cores, the inclusive LLC is an essential property, given that a
victim might load content from core-dedicated cache without loading content
into the non-inclusive LLC.

2.2 Cache Side-Channel Attacks

Most side-channel attacks occur on shared resources between processes, and the
cache is a well-known shared resource. Given that processes share the cache, a
spy program can observe the memory access of the victim program. The cache
side-channel attack consists of three phases: (1) reset, (2) wait, and (3) confirm
the victim’s access. In the reset phase, the spy program resets a part of cache to
make the victim’s content out of that part of the cache. Then the spy program
waits for the execution of the victim program. As the final phase, the spy program

2 Most processors usually have two caches, L1 and L2 caches. Modern x86 processors
typically support a L2 cache for each core.
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checks the cache lines by usually cache hits or misses to see if the victim has
accessed the memory. Through repeating three phases above, the spy program
extracts important information from the victim’s memory access pattern. Cache
side-channel attacks are launched on the same core target dedicated caches in
each core. Furthermore, the attacks can be launched across cores in the multi-
core system through the LLC. Although the attack on the multi-core system
has bigger noise than attacks on dedicated caches, the LLC attack can target
wide areas [5,17] practically. We provide further details about two representative
cache attacks.

Flush+Reload: Flush+Reload [16] is one of the well-known methods among
cache attacks. This method is mostly used for the Intel ISA because cache
flush instruction (clflush) is provided and can be executed in user-mode.
Flush+Reload targets a specific address, so it requires to share the target address
with a victim process. As the reset phase, the method flushes the spy’s address
from the cache and waits a certain time. After the waiting time, it reloads the
address. If it takes a short time to load the content (cache hit), it means that
the victim has accessed the address during the waiting time. Flush+Reload can
figure out the victim’s access accurately, but it requires shared memory and
clflush instruction.

Prime+Probe: Prime+Probe [12] is the most general method for side-channel
and also mostly used in cache attacks. Unlike Flush+Reload, Prime+Probe does
not require to share memory between spy and victim processes, so that it can
attack any processes. In the reset phase, it fills a certain cache set with spy’s
content using eviction sets to evicts victim’s cache lines. After waiting time for
the execution of the victim process, the spy accesses the spy’s content again and
measures the time to access its content that was filled before in the cache set. If
the access time is over a threshold (cache miss), one of spy’s content from the
cache set is evicted. It means that the victim has accessed its content and loaded
it to the cache set. Prime+Probe has the high noise because it does not check
one cache line, but several cache lines in the same cache set.

2.3 Cause of Noise on Existing Cache Side-Channel Attacks

Noise is mostly introduced for two reasons. One is a corruption of a target cache
set by unexpected events or unrelated processes and the other is timing delay
in accessing a target cache set due to unexpected latency. When a timer is
used to determine cache hit or miss in the third phase, the noise due to timing
delay affects the accuracy and performance of cache side-channel attacks. Many
external factors affect the timer delay, for example, context switches, and latency
from read/write buffers, which results in long cycles even if cache hits. Therefore,
the noise on the timer makes the decision of cache hits or misses confused.
To make stable cache side-channel attacks, we need a precise measurement to
determine cache hits/misses.
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2.4 Perf in Linux for Performance Counters

Hardware performance counters count many hardware events such as the num-
ber of instructions executed, cache hits, cache misses, etc. dynamically and save
them into counter registers. All current x86 CPUs are equipped with hardware
performance counters. Perf is a software tool in Linux that interfaces with hard-
ware performance counters, reads the value, and analyzes the performance. Perf
can be performed not only from the command line but also inside the code
to monitor certain parts of instructions by using ioctl system call. Given that
Perf can monitor hardware events that occur in specific code parts, it is possi-
ble to observe cache hits/misses precisely. Most Linux kernels support Perf by
default in user mode and kernel mode. For our attack, using Perf in user-mode
is enough, since we need to count cache hits/misses generated by a process (spe-
cially attacker’s process) in user mode.

3 Cache Side-Channel Attack with Perf

Most cache attacks exploit a timer to decide cache hits and misses resulting
from the victim’s access. However, the external factors such as context switches
or the full of read/write buffer result in more delay on a timer and make cache
hits serve as cache misses even though they are not real cache misses. Existing
attacks (attackstimer) have been influenced by external factors, therefore, they
generate several false-positives in counting cache hits/misses.

In contrast to attackstimer, our method is not much affected by external
factors while relying on hardware performance counters. The proposed attack
method utilizes Perf in Linux to determine cache hits and misses. We use Perf
inside the program code using ioctl system call that can monitor hardware events
in the target code part, in our case, the target code part is accessing spy’s mem-
ory. For this reason, attacksPerf can determine cache hits/misses only when the
spy accessing memory. We expect that the attackPerf can increase attack per-
formance and reduce the noise by reading hardware performance counter, since
hardware performance counters count real cache hits/misses occurred while exe-
cuting a process. Note that hardware performance counters may have the noise
due to context switches, event occurrence, etc. during measurement. However,
we consider the noise in performance counters is smaller than the noise in timer.
Our attack has been conducted in the LLC to run in the multi-core environment
if the spy can exploit Perf. We use the same sequence and hardware properties
of Prime+Probe and Flush+Reload except determining cache hits/misses.

Listing 1. Prime+Probe attack with timer

1 start = rdtsc ();

2 access all cache lines in an eviction set

3 end = rdtsc () - start;

4
5 if (end > threshold)

6 victim access
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Listing 2. Prime+Probe attack with Perf

1 ioctl(fd, PERF_EVENT_IOC_RESET , 0);

2 ioctl(fd, PERF_EVENT_IOC_ENABLE , 0);

3 access all cache lines in an eviction set

4 ioctl(fd, PERF_EVENT_IOC_DISABLE , 0);

5 read(fd , &count , sizeof(long long));

6
7 miss_num = count.value;

8 if (miss_num > threshold)

9 victim access

We implement attackstimer and attacksPerf in the case of two cache attack
methods: Flush+Reload and Prime+Probe. To describe the main difference
between attackstimer and attacksPerf , we show the simple code snippet in the
scenario of Prime+Probe. Listing 1 shows the existing Prime+Probe attacktimer.
It uses rdtsc instruction that provides a subnanosecond resolution timestamp to
measure clock cycles taken to access cache lines in eviction sets. The measured
time is employed to decide whether the spy’s content is evicted or not. There-
fore, the Prime+Probe attacktimer monitors the victim’s memory access through
the timer. In the measuring part, it is possible that the decision about victim’s
access can be failed because of delay on the timer. The Flush+Reload code is
also similar to the Prime+Probe attack, but it measures the time of reloading
one cache line.

Listing 2 shows the code snippet of the cache side-channel attackPerf in
Prime+Probe. The difference from Listing 1 is the way to measure cache misses.
The attackPerf calls ioctl system call to check cache misses using Perf. To elim-
inate unrelated cache misses, ioctl system call first resets the hardware register
to zero and then enables to save the number of cache misses. After accessing
cache lines in eviction sets, the attack stops counting cache misses. The counter
value on Perf is used in our attack instead of the clock cycle on the timer to
identify whether the memory accesses have caused cache misses or not. Given
that the attack is able to check the cache misses of the desired part, it increases
the accuracy of cache misses. In case of Flush+Reload, the attackPerf measures
cache hits when reloading a cache line.

4 Evaluation

We perform a comparison between attackstimer and attacksPerf by implement-
ing Flush+Reload and Prim+Probe attacks with/without the timer defense.
Besides, we figure out why Perf indicates low noise compared with the timer. To
demonstrate the power of the attackPerf , we run the cache attacks on the AES
implementation of OpenSSL [2,12]. The AES algorithm with T-tables is known
to be vulnerable to cache side-channel attacks [1,6,9]. The AES cryptographic
algorithm accesses T-tables using the secret key k and the plaintext p. During
the first round of encryption, the algorithm accesses the entries T j [pi ⊕ ki] with
i ≡ j mod 4 and 0 ≤ i < 16. As these T-tables typically map to 16 different
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cache lines, we can use a cache attack to determine which cache line is accessed
during this round. If the attack knows which cache line is accessed by a victim,
the cache attack can derive the secret key from [pi ⊕ k i] in case pi is known.

Fig. 1. Flush+Reload attacks on AES (Color figure online)

4.1 Experiment Setup

All of our evaluations were performed on a system with an Intel(R) Skylake i7-
6700k CPU @ 3.40 GHz, 8 MB and 16-way set-associative of L3 cache, and 8 GB
of RAM. We ran Ubuntu 16.04 with Linux 4.4.0-130. We attacked the OpenSSL
1.0.1e version which is vulnerable to the cache side-channel attack.

4.2 Attack Scenario

We target the AES secret key to extract the four upper bits of each byte. For
Prime+Probe, the spy fills a group of target cache sets using the eviction set
in the reset phase. Subsequently, the attacker triggers an AES encryption with
chosen pi. The attacker checks whether a group of target cache sets has been
accessed or not. The attacker repeats the encryption to gather the number of
cache hits or misses for inspection of victim’s access. The attacker can learn that
a certain target cache set has high counts of cache misses. Based on the target
set having high counts, the attacker infers the table index used by the victim.
Sine the table index is [pi⊕ k i], we can derive upper 4 bits of the secret key ki
using the address of cache line as we know pi. In the case of Flush+Reload, the
attacker resets and confirms a victim’s access by an address granularity, not a
cache set. Thus, it is possible for the spy to derive 64 bits of the secret key k.

4.3 Effectiveness Comparison of Attacks on AES T-Table

Figures 1 and 2 show the results of Flush+Reload and Prime+Probe attacks on
AES T-table with two different ways of measuring cache hits/misses: the timer
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and Perf. The left side shows the attacktimer and the right side represents the
attackPerf . Each attack does AES encryption 100 times for each cache line to
extract the secret key. The y-axis indicates the offset of T-table and the x-axis
represents the value of the first byte of plaintext. Each box means the rate of
cache hits in the Flush+Reload and the rate of cache misses in Prime+Probe.
The dark green box indicates a higher rate of cache hits and misses than white
box relatively. Thus, the boxes with high rate imply that the victim has accessed
the offset(address) with high probability. To show the visible pattern, we target
a cache line used to extract the four upper bits of the first byte of the secret key,
and repeat the test by changing the first byte of plaintext p[0] from 0 to 256.
Thus, we can observe the pattern according to the index of T-table to which
the victim accesses. From the figure, the dark green diagonal boxes show the
matching table index offset according to a given plaintext and other non-white
boxes indicate that it has the noise. By reading the figure vertically for the given
plaintext (x-axis), we can know the offset. In addition, we can extract the secret
key by extending all cache lines of the T-table.

Fig. 2. Prime+Probe attacks on AES (Color figure online)

The performance difference between the timer and Perf in Flush+Reload is
small, since Flush+Reload attack targets a specific cache line so that it has the
low noise originally. To demonstrate the result statistically, we compare the rate
distribution of cache hits for victim’s accessing addresses to that of cache hits
for victim’s non-accessing addresses using the Kuiper’s test [10]. The Kuiper’s
test is used in statistics to determine whether two distributions stem from the
same base distribution or not. In other words, if the null hypothesis is rejected
due to small p-value, usually smaller than 0.05, it means that the attack can
distinguish the victim’s accessing clearly. Both attacktimer and the attackPerf

show almost 0.000 on the p-value in Flush+Reload. From this, it can be said
that there is strong evidence against the null-hypothesis so that two distributions
show a clear difference in both attacks.

In the case of Prime+Probe, we can see through Fig. 2 that both
Prime+Probe attacks show different cache miss rates. The Prime+Probe
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attacktimer is hard to figure out the secret key, whereas the Prime+Probe
attackPerf is able to distinguish the pattern and derives the secret key success-
fully. With the Kuiper’s test, we compare the rate distribution of cache misses
for victim’s accessing addresses to that of victim’s non-accessing addresses. The
p-test value in the attacktimer indicates 0.213 It means that the two distri-
butions are similar. Therefore, it is hard to distinguish between the victim’s
accessing addresses and non-accessing addresses. In contrast to the attacktimer,
the attackPerf shows 0.000004 on the p-value. It indicates that there is very
strong evidence against the null-hypothesis and the cache miss rate distribution
of victim’s accessing addresses is not similar to that of victim’s non-accessing
addresses. Therefore, the attackPerf can succeed in the attack with better accu-
racy and detect the secret key with fewer encryption attempts practically due
to the low noise in Prime+Probe.

4.4 Bypass Timer Defence

One of the cache side-channel defense techniques is to put a timer noise to
prevent cache side-channels [14]. To evaluate the ability of attacksPerf to bypass
the defense, we implement a system with a timer protection [14] by adding the
noise on the rdtsc instruction, and test attackstimer and attacksPerf .

Figure 3 shows the results of a Flush+Reload attacktimer and a Prime+Probe
attacktimer on the system with timer protection [14]. The results of attacksPerf

are the same as in Figs. 1 and 2. In contrast with the result of attackPerf , the
timer protection has a significant effect on attackstimer. Given that the mea-
surement of cache hits and misses in attackstimer does not decide cache hits
and misses correctly, it is impossible to obtain sensitive information such as the
secret key. However, the attackPerf can bypass the timer protection in a real-
world setting; as a result, the attackPerf can still threaten security applications.

Fig. 3. Noise on timer to existing cache side-channel attacks: Flush+Reload,
Prime+Probe
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4.5 Accuracy of Classifying Cache Hit/Miss

To analyze the reason of the high accuracy of Perf, we compare how accurately
the timer and Perf decide the victim’s accessing. We collect clock cycles on the
timer, as well as the count value on Perf in the case of the Prime+Probe attack.
Figure 4 represents the groups of data. One group is the result that the victim
has accessed and the other group is the result that the victim hasn’t accessed.
The left side shows the distribution of clock cycle on the timer, whereas the
right side shows the distribution of count values on Perf. In the figures, the box
means from the first quartile to the third quartile (the data distribution of the
50% between the first and third quartile); the top and bottom values represent
a maximum value and a minimum value respectively.

In Fig. 4, the measured clock cycles of two groups are heavily overlapped,
while the count value on Perf is separable. When using the timer to decide the
victim’s accessing, the clock cycles are overlapped 97% in the box area (50%
distribution). In view of all of the data points, 78% data points are overlapped
with two groups. Thus, the high overlapping rate increases the noise and results
in an opaque measurement of the victim’s accessing during cache side-channel
attacks. On the other hand, when using Perf, the two groups are separable at
count value two visually in the box area. Furthermore, when considering all data
points, the two groups are 50% overlapped. The results indicate that Perf can
distinguish the victim’s accessing more accurately compared with the timer.

Fig. 4. Cache hit and miss cycles in timer and cache hit and miss count value in Perf

5 Related Work

5.1 Use Performance Counter in Defences and Attacks

Hardware performance counters monitor hardware events and save the mon-
itoring results into registers. They are used for performance monitoring by
researchers in many areas. In security, researches have applied performance coun-
ters to defensive cases that allow detection of malware [7] and a control flow
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integrity check [15]. Hardware performance counters have also been used for
cache side-channel attacks [3,4,13]. Sarani and Mukhopadhyay [3] used Perf to
side-channel attack a branch target buffer(BTB) against RSA. Targeting differ-
ent hardware components except the cache to infer sensitive information is out
of the scope of our work. Hence, we have not compared our proposed work with
Sarani and Mukhopadhyay [3].

Brasser et al. [4] used Performance Monitor Counter (PMC) for the cache
side-channel attack in SGX enclaves. Although it has succeeded in the attack
on RSA and Genomic attack by targeting processes in SGX the paper did not
analyze the difference between PMC and timer. However, we analyzed the dif-
ference attacksPerf from attackstimer through distribution of cache hits and
misses. In addition, we compared performance of attacksPerf and attackstimer

using Kuiper’s test in two representative attacks. We have better analysis in
comparison between Perf and the timer.

Leif et al. [13] did similar work with our attack. However, the main difference
is that we have attacked AES encryption practically and extracted specific secret
key in the attack. Furthermore, while Leif et al. [13] ran cache side-channel attack
in a single core, which is impractical in a real world, our work attacks the LLC
across cores in the multi-core system. Unlike Leif et al. [13], we implemented two
representative cache side-channel attacks with the timer and Perf, and compared
the accuracy and performance. Therefore, we consider that we have extended the
attack surface of Leif et al. [13] to the multi-core system and implemented a real
attack to extract secret key practically.

5.2 Reduce Noise in Cache Side-Channel Attacks

Some papers have proposed improved cache attacks by eliminating the noise of
attacks. Flush+Flush [9] uses clflush instruction instead of Reload as a trans-
formed attack from a Flush+Reload attack. While checking victim’s behavior
through the existence of the cache line, utilizing clflush contributes to the low
noise and fast attacks due to non-memory instruction. To detect victim’s access
immediately, Prime+Abort [8] exploits Intel TSX extension that triggers abort
when transactional memory is evicted from the cache. This scheme eliminates
the noise of time gap between victim’s access and probing cache lines.

Flush+Flush [9] as a transformed attack of Flush+Reload is not able to
reduce the noise of other cache side-channel attacks such as Prime+Probe,
whereas our proposed work cuts down the noise on general cache side-channel
attacks, which typically use a timer, to increase the success of attacks. While
Prime+Abort [8] shows the very low noise, it is only possible in the hardware
supporting Intel TSX. Although the cache side-channel attack with Perf requires
the hardware performance counter, all CPU manufacturers put such capability
in their CPUs nowadays. So, it is safe to assume that that capability is commonly
available.
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6 Conclusion

This paper presents the cache side-channel attack with Perf, a low-noise
cache attack compared with cache attacks using the timer. We compared the
attacktimer with the attackPerf by implementing two representative existing
cache side-channel attacks: Flush+Reload and Prime+Probe. Also, we experi-
mented with two cache side-channel attacks on the timer defense deployed system
for comparison.

Given that Perf is able to measure cache hits/misses accurately, the pro-
posed method achieves high performance with fewer AES encryption attempts
compared with existing attacks using the timer. In an environment that a timer
defense is deployed, our attack succeeds to derive AES secret key, but attacks
using the timer do not. To conclude, the attackPerf achieves high performance
and accuracy in the AES attack and the precise measurement of cache hit-
s/misses in the multi-core system.
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LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1 14

10. Kuiper, N.H.: Tests concerning random points on a circle. Nederl. Akad. Wetensch.
Proc. Ser. A 63, 38–47 (1960)

11. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, pp. 605–
622. IEEE (2015)

12. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

13. Uhsadel, L., Georges, A., Verbauwhede, I.: Exploiting hardware performance coun-
ters. In: 2008 5th Workshop on Fault Diagnosis and Tolerance in Cryptography,
pp. 59–67. IEEE (2008)

14. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in xen. In:
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop,
pp. 41–46. ACM (2011)

15. Xia, Y., Liu, Y., Chen, H., Zang, B.: Cfimon: detecting violation of control flow
integrity using performance counters. In: IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012), pp. 1–12. IEEE (2012)

16. Yarom, Y., Falkner, K.: Flush+ reload: a high resolution, low noise, l3 cache side-
channel attack. In: 23rd USENIX Security Symposium (USENIX Security 14), pp.
719–732 (2014)

17. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 990–1003. ACM (2014)

https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/11605805_1


Optimized SIKE Round 2 on 64-bit ARM

Hwajeong Seo1(B), Amir Jalali2, and Reza Azarderakhsh2

1 IT Department, Hansung University, Seoul, South Korea
hwajeong84@gmail.com

2 Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, FL, USA

{ajalali2016,razarderakhsh}@fau.edu

Abstract. In this work, we present the first highly-optimized imple-
mentation of Supersingular Isogeny Key Encapsulation (SIKE) submit-
ted to NIST’s second round of post quantum standardization process,
on 64-bit ARMv8 processors. To the best of our knowledge, this work
is the first optimized implementation of SIKE round 2 on 64-bit ARM
over SIKEp434 and SIKEp610. The proposed library is explicitly opti-
mized for these two security levels and provides constant-time implemen-
tation of the SIKE mechanism on ARMv8-powered embedded devices.
We adapt different optimization techniques to reduce the total num-
ber of underlying arithmetic operations on the filed level. In particu-
lar, the benchmark results on embedded processors equipped with ARM
Cortex-A53@1.536 GHz show that the entire SIKE round 2 key encapsu-
lation mechanism takes only 84 ms at NIST’s security level 1. Consider-
ing SIKE’s extremely small key size in comparison to other candidates,
our result implies that SIKE is one of the promising candidates for key
encapsulation mechanism on embedded devices in the quantum era.

Keywords: Post-quantum cryptography · Isogeny-based
cryptography · 64-bit ARM processor · ARM assembly · Key
encapsulation mechanism

1 Introduction

Initiated by the National Institute of Standards and Technology (NIST), Post-
Quantum Cryptography (PQC) has been elevated to a standardization process
to solicit, evaluate, and standardize one or more quantum-resistant public-key
cryptographic algorithms [17]. To prepare for security concerns caused by quan-
tum computers, in 2016, NIST called for the cryptographic algorithms which
were assumed to be resistance against high-scale quantum computers. These
proposals provided key encapsulation mechanism (KEM) or digital signature
algorithms from different arithmetic structures, resulting in different character-
istics and parameters. Recently, NIST announced approved candidates for round
2 which are the most promising candidates in terms of security, performance,
and compatibility with current technology. For the key encapsulation mechanism,
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2019, LNCS 11897, pp. 341–353, 2020.
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only 17 candidates made it through to the second round for being evaluated and
analyzed from different perspectives.

Different PQC candidates are constructed on hard mathematical problems
which are assumed to be impossible to solve even for large-scale quantum
computers. These problems can be categorized into five main categories: code-
based cryptography, lattice-based cryptography, hash-based cryptography, mul-
tivariate cryptography, and supersingular isogeny-based cryptography, see, for
instance [7].

Supersingular Isogeny Key Encapsulation (SIKE) mechanism is one of the
PQC candidates which is constructed on the hardness of solving isogeny maps
between supersingular elliptic curves. In fact, SIKE is the only candidate that
offers the quantum-resistance cryptographic construction over elliptic curves,
resulting in well-known structures in implementation perspective. The proposed
key encapsulation mechanism is derived from the original Jao-De Feo’s Diffie-
Hellman key-exchange and public-key encryption algorithms [14]. However, con-
structing cryptographic structures from hardness of supersingular isogeny graphs
was introduced by Charels-Lauter-Goren [6].

The first round SIKE submission [4] offered three different security levels
known as SIKEp503, SIKEp751, and SIKEp964. According to the best known
quantum attacks on solving supersingular isogeny problem by that time, the
proposed security levels met NIST’s level 1, 3, and 5 requirements, respectively.

However, recent studies on the cost of solving isogeny problem on quantum
computers by Adj et al. [1] revealed that the security assumptions for SIKE
was too conservative. In fact, a set of realistic models of quantum computation
on solving Computational Supersingular Isogeny (CSSI) problem in [1] suggests
that the Oorschot-Wiener golden collision search is the most powerful attack on
the CSSI problem, resulting in significant improvement on the SIKE’s classical
and quantum security levels.

Accordingly, the second round SIKE [3] offers a new set of security levels
which are more realistic and provide significant improvement on the key encap-
sulation performance. In particular, decreasing the bit-length of SIKE’s primes
translates to notable performance improvement, making this scheme suitable for
many potential applications on low-end and embedded devices.

In this work, we provide a full report on the highly-optimized implementation
of SIKE on 64-bit ARM processors over all the proposed security levels. In
particular, the reference optimized implementation of SIKE [3] on 64-bit ARM
only targets two security levels, i.e., SIKEp503 and SIKEp751. Therefore, in this
work, we address this shortcoming by providing the KEM full benchmarks on
different security levels which provide a reference for the performance analysis
of this scheme for the second round.

Our proposed library takes advantage of state-of-the-art engineering tech-
niques as well as low level assembly optimizations. We studied different
approaches for finite field arithmetic implementation over SIKE’s new primes.
Our benchmark results offer significant improvement in performance compared
to portable implementation, suggesting the possible integration of this scheme
on mobile devices in the future.
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boBecilA
skA : mA, nA ∈R Z/�eAA Z skB : mB , nB ∈R Z/�eBB Z
φA := E/〈[mA]PA + [nA]QA〉 φB := E/〈[mB ]PB + [nB ]QB〉
pkA : φA(PB), φA(QB), EA pkB : φB(PA), φB(QA), EB

pkA−−→
pkB←−−

EAB := EBA :=
EB/〈[mA]φB(PA) + [nA]φB(QA)〉 EA/〈[mB ]φA(PB) + [nB ]φA(QB)〉
Shared secret: j(EAB) Shared secret: j(EBA)

Fig. 1. SIDH key exchange protocol.

2 Background

In this section, we briefly review the SIDH protocol and the required steps for
Alice and Bob to generate a shared secret. Furthermore, we describe the SIKE,
a post-quantum key encapsulation mechanism from isogenies of supersingular
elliptic curves which was submitted to NIST’s PQC standardization competition.
We refer the readers to [4,14] for further details.

2.1 SIDH Key Exchange

In 2011, Jao and De Feo [14] proposed the SIDH, a quantum resistant key
exchange protocol from isogenies of supersingular elliptic curves. Similar to clas-
sical Diffie-Hellman key exchange, SIDH protocol is constructed over some pub-
lic parameters which are agreed upon by communication parties prior to key
exchange.

Public Parameters. Fix a prime p of the form p = �eAA · �eBB · f ± 1 where
�A and �B are small primes, eA and eB are positive integers, and f is a very
small cofactor. We define a based supersingular elliptic curve E over Fp2 with
cardinality #E = (�eAA · �eBB · f ∓ 1)2, and base points {PA, QA} and {PB , QB}
from the torsion subgroups E[�eAA ] and E[�eBB ] respectively, such that 〈PA, QA〉 =
E[�eAA ] and 〈PB , QB〉 = E[�eBA ].

Key Exchange Protocol. Alice randomly chooses two integers mA, nA ∈
Z/�eAA Z, not both divisible by �A as her secret key and computes an isogeny
φA : E → EA using kernel RA := 〈[mA]PA + [nA]QA〉. Alice also computes
the image points {φA(PB), φA(QB)} ⊂ EA by applying her secret isogeny φA

to the public basis PB and QB . She sends φA(PB), φA(QB) and EA to Bob
as her public key. Bob also selects random elements mB , nB ∈ Z/�eBB Z, not
both divisible by �B and computes a secret isogeny φB : E → EB from kernel
RB := 〈[mB ]PB + [nB ]QB〉, along with image points {φB(PA), φB(QA)} ⊂ EB .
He sends his public key, i.e., φB(PA), φB(QA) and EB to Alice.
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In the second round of key exchange, Alice uses Bob’s public key
(φB(PA), φB(QA), EB) and computes an isogeny φ′

A : EB → EAB from ker-
nel equal to 〈[mA]φB(PA) + [nA]φB(QA)〉; Similarly, Bob computes an isogeny
φ′
B : EA → EBA having kernel 〈[mB ]φA(PB)+[nB ]φA(QB)〉 using Alice’s public

key. Since the common j-invariant of EAB and EBA are equal, they use this
value to form a secret shared key. The entire SIDH key exchange protocol is
illustrated in Fig. 1.

2.2 SIKE Mechanism

SIKE mechanism is constructed by applying a transformation of Hofheinz,
Hövelmanns, and Kiltz [11] to the supersingular isogeny Public Key Encryp-
tion (PKE) scheme described in [14]. It is an actively secure key encapsulation
mechanism (IND-CCA KEM) which addresses the static key vulnerability of
SIDH due to active attacks in [10].

boBecilA
Key generation:
pkA = [EA, φA(PB), φA(QB)]
s ∈R {0, 1}t

Encapsulation:
m ∈R {0, 1}t

r = H1(m ‖ pkA)
pkB(r) = [EB , φB(PA), φB(QA)]
j = j(EBA)
c = (c0, c1) = (pkB(r), H2(j) ⊕ m)
K = H3(m ‖ c)

(c0,c1)←−−−−
Decapsulation:
j = j(EAB)
m′ = c1 ⊕ H2(j)
r′ = H1(m′ ‖ pkA)
If (pkB(r

′) = c0) → K = H3(m′ ‖ c)
If (pkB(r

′) 	= c0) → K = H3(s ‖ c)

Fig. 2. SIKE mechanism.

Public Parameters. Similar to SIDH, SIKE can be defined over a prime of the
form p = �eAA ·�eBB ·f±1. However, for efficiency reasons, �A = 2, �B = 3, and f = 1
are fixed, thus the SIKE prime has the form of p = 2eA · 3eB − 1. The starting
supersingular elliptic curve E0/Fp2 : y2 = x3 + x with cardinality equal to
(2eA ·3eB )2, along with base points 〈PA, QA〉 = E0[2eA ] and 〈PB , QB〉 = E0[3eB ]
are defined as public parameters.
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Key Encapsulation Mechanism. The key encapsulation mechanism can be
divided into three main operations: Alice’s key generation, Bob’s key encapsula-
tion, and Alice’s key decapsulation. We describe each operation in the following.
Figure 2 presents the entire key encapsulation mechanism in a nutshell.

Key Generation. Alice randomly chooses an integer skA ∈ Z/2eAZ and by apply-
ing an isogeny φA : E0 → EA with kernel RA := 〈PA + [skA]QA〉 to the base
points {PB , QB}, computes her public key pkA = [EA, φA(PB), φA(QB)]. More-
over, she generates an t-bit1 random sequence s ∈R {0, 1}t.

Encapsulation. Bob generates an t-bit random message m ∈R {0, 1}t, concate-
nates it with Alice’s public key pkA and computes an eB-bit hash value r using
cSHAKE256 hash function H1, taking m ‖ pkA as the input. Using r, he applies
a secret isogeny φB : E0 → EB to the base points {PA, QA} and forms his
public key pkB(r) = [EB , φB(PA), φB(QA)]. Bob also computes the common
j-invariant of curve EBA by applying another isogeny φ′

B : EA → EBA using
Alice’s public key. Bob forms a ciphertext c = (c0, c1), such that:

c = (c0, c1) = (pkB(r),H2(j(EBA)) ⊕ m),

where H2 is a cSHAKE256 hash with a custom length output and a defined initial-
ization parameter. Finally, Bob computes the shared secret as K = H3(m ‖ c)
and sends c to Alice.

Decapsulation. Upon receipt of c, Alice computes the common j-invariant of EAB

by applying her secret isogeny to EB . She computes m′ = c1 ⊕ H2(j(EAB)) and
r′ = H1(m ‖ pkA). Finally, she validates Bob’s public key by computing pkB(r′)
and comparing it with c0. She generates the same shared secret K = H3(m′ ‖ c)
if the public key is valid, otherwise she outputs a random value K = H3(c ‖ s)
to be resistant against active attacks.

3 Target Architecture

ARMv8 Cortex-A, or simply ARMv8, is the latest generation of ARM architec-
tures targeted at the “application” profile. It includes the typical 32-bit archi-
tecture, called “AArch32”, and advanced 64-bit architecture named “AArch64”
with its associated instruction set “A64” [2]. AArch32 preserves backwards com-
patibility with ARMv7 and supports the so-called “A32” and “T2” instructions
sets, which correspond to the traditional 32-bit and Thumb instruction sets,
respectively. AArch64 comes equipped with 31 general purpose 64-bit registers
(i.e. X0∼X30) and one zero register (i.e. XZR), and an instruction set supporting
32-bit and 64-bit operations. The significant register expansion means that with
AArch64 the maximum register capacity is expanded to 1,984 bits (i.e. 31 × 64,
a 4x increase with respect to ARMv7.).

1 The value of t is defined by the implementation parameters.
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ARMv8 processors started to dominate the smartphone market soon after
their first release in 2011, and nowadays they are widely used in various high-end
smartphones (e.g. iPhone, Huawei Mate and Samsung Galaxy series). Since this
architecture is used primarily in embedded systems and smartphones, efficient
and compact implementations are of special interest.

ARMv8 processor supports powerful 64-bit wise unsigned integer mul-
tiplication instructions. Our implementation of modular multiplication uses
the AArch64 architecture and makes extensive use of the following multiply
instructions:

– MUL (unsigned multiplication, low part):
MUL X0, X1, X2 computes X0 ← (X1 × X2) mod 264.

– UMULH (unsigned multiplication, high part):
UMULH X0, X1, X2 computes X0 ← (X1 × X2)/264.

The two instructions above are required to compute a full 64-bit multiplica-
tion of the form 128-bit ← 64×64-bit, namely, the MUL instruction computes the
lower 64-bit half of the product while UMULH computes the higher 64-bit half.

For the addition and subtraction operations, ADDS and SUBS instructions
ensure 64-bit wise results, respectively. The detailed descriptions are as follows:

– ADDS (unsigned addition):
ADDS X0, X1, X2 computes {CARRY,X0} ← (X1 + X2).

– SUB (unsigned subtraction):
SUBS X0, X1, X2 computes {BORROW,X0} ← (X1 − X2).

4 Optimized Field Arithmetic Implementation

There is a number of works in the literature that study the ARMv8 instructions
to implement multi-precision multiplication or the full Montgomery multiplica-
tion for “SIDH friendly” modulus [12,13,16]. In [12], Jalali et al. implemented
751-bit and 964-bit finite field multiplication. They utilized the Comba method
(i.e. column-wise multiplication) for both cases [8]. In particular, they used 2-
level Karatsuba for 964-bit finite field multiplication, which shows 23.9% per-
formance enhancements than conventional Comba method. In [16], Seo et al.
optimized the 503-bit finite field multiplication for SIKEp503. They also used
the Comba method with 2-level Karatsuba method to enhance the performance
of multiplication. Furthermore, they optimized the MAC (Multiplication ACcu-
mulation) routines to avoid the pipeline stalls.

Recently, two novel SIKE protocols (i.e. SIKEp434 and SIKEp610) for NIST
Post Quantum Cryptography competition were suggested, which meet NIST
security level 1 and 3, respectively [3]. However, previous works do not show
the optimized results for both protocols. In this paper, we show the first practi-
cal implementations of SIKEp434 and SIKEp610 protocols on 64-bit ARMv8-A
processors. In order to achieve high performance, the arithmetic for SIKEp434
and SIKEp610 is optimized to utilize the ARMv8-A ability fully. To describe
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the multi-precision arithmetic, we used following notations. Let A and B be
operands of length m bits each. Each operand is written as A = (A[n−1], ..., A[1],
A[0]) and B = (B[n − 1], ..., B[1], B[0]), where n = �m/w is the number
of words to represent operands, m is operand length, and w is the computer
word size (i.e. 64-bit). The addition result (C = A + B) is represented as
C = (C[n − 1], ..., C[1], C[0]). For the multiplication (C = A × B), the result
is represented as C = (C[2n − 1], ..., C[1], C[0]).

4.1 Finite Field Addition and Subtraction

In the beginning, the finite field addition and subtraction operations need to
perform addition and subtraction operations, respectively. Afterward, the inter-
mediate results are reduced, when the carry or borrow bit is set. In order to
avoid the timing attack, both reduction routines are performed without condi-
tional statements (i.e. constant timing). Instead, we used the masked modular
reduction approach, which always perform regular routines, regardless of the
carry or borrow bit. When the carry or borrow bit is set, the mask value is set to
264−1. Otherwise, the mask value is set to 0. With the mask value, the modulus
is determined whether it is modulus or 0.

For 434-bit addition or subtraction operation, we utilized 14 general pur-
pose registers to store the operands (i.e. 2 × �434/64�) since each operand
requires 7 registers. In particular, two limbs of 434-bit modulus are 264 − 1
(i.e. 0xFFFFFFFFFFFFFFFF). We only set one limb to 264 − 1 and use it twice for
computations, which reduces one operand setting overheads.

For 610-bit addition or subtraction operation, we utilized 20 general purpose
registers to retain all operands (i.e. 2 × �610/64�) since each operand requires
10 registers. Similarly, three limbs of 610-bit modulus are set to 264 − 1 (i.e.
0xFFFFFFFFFFFFFFFF). This limb is used three times with only one memory
access, which reduces two operand setting overheads.

4.2 Multiplication

In previous works, they used the Comba method (i.e. column-wise method) to
improve the multi-precision multiplication. The Comba method performs the
partial products in column-wise, which ensures small number of registers for
maintaining the intermediate results. In Fig. 3, the part of Multiplication ACcu-
mulation (MAC) routine in column-wise method for 64-bit ARMv8 processors
is described. The example performs the three partial products (A[i] × B[j],
A[i + 1] × B[j − 1], and A[i + 2] × B[j − 2]) and accumulates them to the
intermediate results. In each MAC routine, two multiplication (MUL LOW and
MUL HIGH) and three addition operations (ACC0, ACC1, and ACC2) are required.
For one limb multiplication, we need three addition operations. For that reason,
n-limb multiplication requires 3 × n2 addition operations.
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Fig. 3. Part of column-wise multiplication for ARMv8

In this work, we target the relatively shorter modulus (i.e. 434-bit) than
previous works (i.e. 503-bit or 751-bit). We decide to use the row-wise multi-
plication, which requires 2n + 2 registers (n + 1 for operands and n + 1 for
intermediate results), where n, m, and w are �m/w�, operand length, and word
size, respectively. Under 64-bit processor setting, the n is set to 7 for 434-bit
(�434/64�). Considering that ARMv8 supports 31 64-bit registers, the required
number of registers for 434-bit can be retained in the registers. In Fig. 4, the part
of MAC routine in row-wise method for 64-bit ARMv8 processors is described.
The example performs the three partial products (A[i]×B[j], A[i]×B[j+1], and
A[i] × B[j + 2]) and accumulates them to the intermediate results. The number
of addition for three partial products in Fig. 4 are 8 (i.e. 2 × (n + 1) where n is
3.). For the n-limb multiplication, it requires 2×n× (n+1) addition operations.
The comparison of multiplication methods in terms of the number of addition
operations depending on the number of limb are given in Table 1. Compared
with the column-wise method (i.e. product-scanning), the row-wise method (i.e.
operand-scanning) requires less number of addition operations for accumula-
tion routines. For the 7-limb case (i.e. 434-bit), the row-wise method reduces
the number of addition operations by 35 times than the column-wise method.
The multiplication is performed in original row-wise multiplication rather than
row-wise multiplication with Karatsuba method. The Karatsuba method is also



Optimized SIKE Round 2 on 64-bit ARM 349

working for 7-limb case but it generates a number of sub-routines to perform and
store the intermediate results, which requires additional operations and memory
accesses [15].

Table 1. Comparison of multiplication methods, in terms of the number of addition
operations depending on the number of limb.

Method 3 4 5 6 7

Operand scanning 24 40 60 84 112

Product scanning 27 48 75 108 147

For the 610-bit multiplication, the operands A = (A[9], . . . , A[0]) and B =
(B[9], . . . , B[0]) need 20 64-bit registers. Except the operands, we also need reg-
isters for intermediate results and temporal storage. Due to the limited number
of registers, we only maintain the half number of operands in the registers and
load the remaining operands on demand.

We first compute the lower 320-bit multiplication RL ← A[4 ∼ 0] · B[4 ∼ 0])
using the row-wise method that requires 25 MUL, 25 UMULH and 52 addition
instructions for accumulating the partial products. Second, we compute the
higher 310-bit multiplication RH ← A[9 ∼ 5] · B[9 ∼ 5] similarly. Third,
we compute the subtractions and absolute values |A[4 ∼ 0] − A[9 ∼ 5]|
and |B[4 ∼ 0] − B[9 ∼ 5]| and proceed to the last 310-bit multiplication
RM ← |A[4 ∼ 0] − A[9 ∼ 5]| · |B[4 ∼ 0] − B[9 ∼ 5]|. Finally, we obtain the result
by performing the accumulation step RH · 2610 + (RL + RH − RM ) · 2310 + RL.
Since the multiplication uses all available registers, 12 callee-saved registers
(X19 ∼ X30) are stored into the stack. The multiplication is also designed
to reduce the pipeline stalls. The multiplication and addition/subtraction oper-
ations use different instruction group. They can hide each others costs. Based
on the above observation, we engineer a multi-precision multiplication to hide
the addition costs into the multiplication. At the lowest level, we implement
multi-precision multiplication using the row-wise method based on the following
multiplication/addition instruction sequence:

...
MUL X7, X6, X2
ADCS X18, X18, X13
MUL X8, X6, X3
ADCS X19, X19, X14
MUL X9, X6, X4
ADCS X20, X20, X15
MUL X10, X6, X5
ADCS X21, X21, X16

...
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We ensure that the destination of MUL instruction is not used for the source
of following ADCS instructions. This approach avoids the pipeline stalls. Second,
MUL and ADCS instructions are performed one by one to hide the each costs.
As will be shown in Sect. 5, the proposed implementation achieved the high
performance (see Table 2).

Fig. 4. Part of row-wise multiplication for ARMv8

4.3 Reduction

In this section, we adapt the techniques described in previous sections to imple-
ment modular multiplication for the supersingular isogeny-based protocols SIDH
and SIKE. Specifically, we target the parameter sets based on the primes p434
and p610 [3].

Multi-precision modular multiplication is the most expensive operation for
the implementation of SIKE [9,14]. In particular, Montgomery multiplication for
SIKE can be efficiently exploited and further simplified by taking advantage of
so-called “Montgomery-friendly” modulus. The advantage of using Montgomery
multiplication for “SIDH-friendly” primes was recently confirmed by Bos and
Friedberger [5], who studied and compared different approaches, including Bar-
rett reduction. Recent works by Seo et al. also utilized the Montgomery multi-
plication for SIKEp503 protocols [16].

Based on the observation above, we choose the Montgomery multiplication
to implement SIDH-friendly modular arithmetic for SIKEp434 and SIKEp610
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protocols. The approach reduces almost half of partial products since the lower
part is set to 0. In order to reduce the memory accesses, we keep as many results
as possible in the registers. Since the Montgomery multiplication performs the
partial products with modulus and quotient (Quotient is intermediate results
multiplied by constant m′), we maintained all quotients in the registers and
used them directly. The technique reduces the 2 × (n + 1) number of memory
accesses for n + 1 load and n + 1 store operations.

5 Performance Result

In this section, we evaluate the performance of the proposed algorithms for
64-bit ARMv8-A processors. All our implementations were written in assembly
language and complied with optimization level -O3.

We implemented the multi-precision multiplication algorithm described in
Sect. 4.2 and Montgomery reduction in Sect. 4.3. We integrated our implemen-
tation of the Montgomery multiplication for ARMv8-A into the SIKE round 2
library [3].

Table 2 summarizes the results of different software implementations of the
SIKEp434 and SIKEp610 arithmetic on ARMv8-A processor: a 1.536 GHz ARM
Cortex-A53 processor. Since this is first work for SIKEp434 and SIKEp610 on
ARMv8-A processors, we compare the results with the SIKE round 2 reference
code. The unoptimized reference implementation is written in C using the SIKE
round 2 library [3]. In this case, the proposed arithmetic implementations show
much higher performance than reference work. In particular, finite field multipli-
cation and inversion operations show performance enhancements by 4.96x and
4.98x, respectively.

Table 3 summarizes the results of different software implementations of the
SIKEp434 and SIKEp610 protocols on ARMv8-A processor. Compared with
reference work, the proposed implementation is between 3.83 and 3.42 times
faster for the computation of the SIKE full protocols. Considering that the target
processor is 1.536 GHZ, the SIKEp434 and SIKEp610 requires only 0.084 and
0.30 s, respectively.

Compared with the other security levels, the performance depends on the
length of modulus. The SIKEp434 shows the highest performance and the
SIKEp751 shows the lowest performance as we expected.

Table 2. Comparison of implementations of the SIKEp434 and SIKEp610 arithmetic
on ARMv8 Cortex-A53 based processors. Timings are reported in terms of clock cycles.

Implementation Language Protocol Timings [cc]

Fp add Fp sub Fp mul Fp inv

SIKE R2 [3] C SIKEp434 172 129 3,110 1,648,372

This work ASM 71 63 691 380,711

SIKE R2 [3] C SIKEp610 257 187 6,599 4,800,694

This work ASM 100 91 1,329 963,064
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Table 3. Comparison of implementations of the SIKE protocols on ARMv8 Cortex-
A53 based processors. Timings are reported in terms of clock cycles.

Implementation Language Protocol Timings [cc] Timings [cc× 106]

Fp mul KeyGen Encaps Decaps Total

SIKE R2 [3] C SIKEp434 3,110 114 186 199 499

This work ASM 691 30 49 52 130

Seo et al. [16] ASM SIKEp503 849 38 63 67 168

SIKE R2 [3] C SIKEp610 6,599 344 634 615 1,593

This work ASM 1,329 99 183 183 465

Seo et al. [16] ASM SIKEp751 2,450 164 265 284 713

6 Conclusion

This paper presented high-speed implementation of SIKE Round 2 on high-
end 64-bit ARMv8 Cortex-A53 processors. A combination of several optimiza-
tion methods yields very efficient modular multiplications for SIKEp434 and
SIKEp610 protocols that are shown, for example, to be approximately 4.96x
faster than the normal modular multiplication implementations for “SIDH-
friendly” modulus on a 64-bit ARMv8 Cortex-A53 processors. The optimized
implementation, which push further the performance of post-quantum supersin-
gular isogeny-based protocols, are 3.42x faster than the previously implemen-
tations of SIDHp610 on the same processors. Furthermore, we integrated our
fast modular arithmetic implementations, compact prime SIDHp434, and opti-
mal strategy for isogeny computations into Microsoft’s SIDH library. A 128-bit
full key-exchange execution over optimal prime SIDHp434 is performed in about
0.084 s on a 1.536 GHz ARMv8 Cortex-A53 processors, which shows the practi-
cality of isogeny based post-quantum cryptography over mobile devices.
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Abstract. The Dark Web sites are operated over anonymity-preserving
protocols like Tor, making users of the Dark Web services more resilient
to identification and monitoring. Although some previous works have
focused on understanding the size of the Dark Web services and investi-
gating their criminal activities, there is a lack of research on chronolog-
ical analysis and in-depth profiling of the Dark Web sites, particularly
in South Korea. Therefore, in this study, we implemented a Dark Web
crawling system, and collected seed and sub Dark Web URLs using it.
Then, the 3,000 Dark Web sites from the seed URLs were selected and
their web pages were captured for profiling. An in-depth analysis was
then conducted on the collected 3,000 Dark Web sites, and an intensive
categorization was performed on the basis of their major criminal activ-
ities. We then carried out an in-depth profiling for top 3 Korean Dark
Web sites to investigate cyber criminal activities in South Korea. In the
profiling, criminal activities were collected and analyzed in a chronologi-
cal point of view. Personal information leakage and Sybil IDs in the Dark
Web were also identified based on the PGP keys we collected.

Keywords: Dark Web · Deep Web · Profiling · Sybil identity
detection

1 Introduction

The Surface Web is comprised of web sites that are visible and readily accessible
by normal users using standard web search engines such as Google [3], Yahoo
[8], and Bing [1]. Whereas, the Deep Web is composed of special web sites that
are invisible to normal users, and only accessible by specific users who have the
authority. For example, it can include personal email, and online services requir-
ing authentication or payment. The particular part of the Deep Web featuring
anonymity through the use of special software is called the Dark Web [9]. The
Dark Web is developed for liberty of expression and free consumption of media
initially, but it is also widely used in illegal activities such as trading illegal
drug and personal information using cryptocurrencies such as Monero [24] and
c© Springer Nature Switzerland AG 2020
I. You (Ed.): WISA 2019, LNCS 11897, pp. 357–369, 2020.
https://doi.org/10.1007/978-3-030-39303-8_27
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Zcash [14], and maintaining forums and media exchange for pedophiles and ter-
rorists [22]. Thereby, several studies [12,18,19] focused on how to discover, access,
crawl Tor hidden services of the Dark Web. While the other studies focused on
how to analyze the illegal transactions of cryptocurrencies in it [13,15,20].

While the previous studies have helped to better understand the hidden
services and structure of the Dark Web, a comprehensive analysis of the current
Dark Web services and its chronological implications is still missing. To achieve
it, in this paper, we conduct an in-depth analysis of the Dark Web services by
gathering more than 90% web pages from approximately 3,000 Dark Web sites
we have found. Then, we focus on the top 3 Dark Web services in Korea, and
carry out detailed profiling of them.

Our study has the following contributions:

– We developed a Dark Web crawling system to find hidden Dark Web services.
We collected about 40,000 seed Deep Web URLs using our crawling system,
and identified and extracted 3,000 Dark Web services from them. Page collec-
tion accuracy was measured in comparison to a reference set and an existing
normal search engine.

– An in-depth analysis of the criminal activities occurring in the 3,000 Dark
Web sites was performed. Then, they are categorized based on the major
activities.

– Among the 8 Dark Web sites in South Korea we found, we carried out an in-
depth profiling of top 3 Dark Web sites, which constitute most of the cyber
criminal activities in South Korea. In the profiling, criminal activities are
collected and analyzed in a chronological point of view. Then, personal infor-
mation leakage was measured, and Sybil identities (IDs) were also identified
based on personal PGP keys we collected. To the best of our knowledge, this
is the first paper to detect Sybil IDs using PGP keys in the wild.

This paper is organized as follows. Section 2 summarizes the previous works
that are related to our research. Section 3 introduces our Dark Web crawling
system and its implementation issues. Section 4 shows the analysis results of
the Dark Web data we collected using our crawling system. Section 5 analyzes
South Korea’s top 3 Dark Web sites and performs profiling of them. Section 6
concludes.

2 Related Work

In order to understand the attack landscape and structure of hidden services
in anonymous networks, many studies have analyzed Tor traffic [17,21,23] and
activities [10,11,25,26].

Van Wegberg et al. [27] observed the increasing commoditization of cyber-
crime via online anonymous markets, which lows entry barriers for aspiring crim-
inals, and facilitating further growth of cybercrime. Ciancaglini et al. [10,11]
analyzed criminal activities in Tor hidden services. They classified features
such as language, items to study the criminal activities in Tor hidden services.
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Soska and Christin et al. [26] analyzed the types of products sold on 16 Tor sites
between 2013 and 2015. They also found that vendors are likely to use PGP keys
to hide criminal activities by encrypting communications.

For understanding the structure and illegal activities of the Dark Web, Iskan-
der et al. [25] collected Dark Web data from 7,257 sites and analyzed them. In
this study, keyword extraction and clustering were performed using a categoriza-
tion program. They found that the Surface Web was very commonly connected
in the onion domain. Xiangwen et al. [28] attempted to cluster multiple identi-
ties across three Dark Web sites. Using photographic information posted on the
Dark Web sites, similar angles and backgrounds were determined by machine
learning.

While the previous studies have analyzed the hidden services and structure
of the Dark Web, a comprehensive analysis of the current Dark Web services in
Korea and its chronological implications is still missing. Thus, in this paper, we
conduct an in-depth analysis of the Dark Web services by gathering 3,000 Dark
Web sites which are currently working, and carry out detailed profiling of the
top 3 Dark Web services in Korea.

3 Dark Web Data Crawling and Validation

3.1 Design of Dark Web Crawling System

We developed a Dark Web crawling system using Selenium [6], a web develop-
ment library that is also capable of collection. Especially, two kinds of crawlers
were developed to collect hidden data from the Dark Web. One crawler collects
only seed URLs, while the other collects only sub URLs of seed URLs. The seed
URL refers to the top-level URL of a site, and sub URLs refer to various pages
derived from the top-level URL. Our crawler was divided into two crawling sys-
tems because one crawler collecting both the seed URL and sub URLs together,
would become trapped in an infinite loop. Therefore, two independent crawlers
were implemented collect many Dark Web pages in a more reliable way. Our
Dark Web crawling system consists of the following two collectors.

– Seed URL collector: the seed URL collector stores only the seed URLs for the
Deep Web sites, not the specific web pages. It stores the seed URLs collected
by periodically visiting the public Dark Web services such as the Hidden Wiki
[4], Dark Web ad sites [7], and Dark Web directory services [2]. During the
periodic visits, if any new seed URLs are found, seed URL collector extracts
and stores them in the seed URL database.

– Sub URL collector: the sub URL collector stores all Dark Web subpages
related to each seed URL. The URL address, collection time, page title, and
page contents are saved for each page, and all of the web page screens are
captured as image files for situations in which the data is not directly accessi-
ble. Since many Dark Web sites are frequently changing their URLs to deter
traces to them, converting the Dark Web pages into the image files are useful
for the later forensic analysis.
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Table 1. URL exposure and security pattern

Type Pattern Ratio

URL exposure HTML code 85%

JavaScript functions 15%

Security None 99.3%

Login and membership certification 0.42%

CAPTCHA 0.28%

3.2 Dark Web Data Crawling

In order to analyze and understand the hidden activities in the current Dark
Web environment, we collected approximately 40,000 seed URLs using the seed
URL collector from Oct. 17, 2017 to Dec. 3, 2018. Then, we directly accessed
those 40,000 seed URLs, and extracted 3,000 Dark Web URLs from them. Fur-
thermore, applying the sub URL collector to those 3,000 URLs allowed 586,536
pages to be collected in total.

Table 1 shows the URL exposure and security pattern. In the table, ‘URL
exposure’ shows the ratio of the two exposure pattern through which URLs are
exposed. Approximately 85% of the URLs are simply exposed through HTML
code, which can be simply parsed and extracted by the crawler. The remaining
15% are extracted through execution of a JavaScript function.

In the table, ‘Security’ indicates the access control pattern of the Dark Web
sites. On the basis of our analysis, 99.3% of the Dark Web sites did not employ
any user authentication mechanism for access control. However, for 0.42% of
sites a deeper level of access is only achievable after membership certification.
For these pages, an automatic data gathering by the crawler is almost impos-
sible. Thus, we developed an autonomous login function and applied it to our
crawling system to reduce manual efforts. Specifically, the xPath of the login
button of the site is extracted and registered, and the login is carried out in
the prescribed order before starting data collection. This feature is helpful to
increase the Dark Web data collection ratio1. Finally, the remaining 0.28% of
sites demanded CAPTCHA authentication. Since CAPTCHA authentication is
hard to automate, it had to be solved manually.

Several remaining issues about the Dark Web data crawling are briefly dis-
cussed. First, although crawlers generally have to solve code obfuscation, the
crawlers used in this study did not consider it because they are represented in
the web browser itself. Second, Dark Web sites have URLs, such as shopping
carts, writing, and logouts which are not meaningful as Dark Web data. Thus,
we set patterns in advance to avoid crawling such web pages for the Dark Web
data. Third, Dark Web sites may be inaccessible at a specific time because many

1 For example, when we applied this approach to HiGH KOREA, which is the largest
Dark Web site in Korea, we could increase the number of the collected web pages
from 792 to 7,740.
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Table 2. Overall Dark Web page collection rate

Site name Category The number of pages

Actual Our crawler

Under videos Porno 49 41

DUMPS Market Finance 13 11

NLGrowers Drugs 5 4

Ninja’s LR Casino Gambling 377 311

Cocaine Citizens Drugs 74 62

... ... ... ...

Crime Violence 18 14

Clone CC Shop Finance 22 18

Average collection rate for 1500 sites : 90%

Table 3. Korean Dark Web page collection rates

Site name The number of pages Result

Actual Our crawler

HiGH KOREA 1675 1341 80%

666LETOM 514 334 65%

HiddenGOD 1 1 100%

Beetgames 58 47 81%

Agora 483 382 79%

Hidden Wiki Korea 2321 1841 79%

UNKNOWN CREW 43 36 84%

Freespg 74 67 91%

Average collection rate for the 8 Korean Dark Web sites: 82%

Table 4. Korean keyword search rate

Keyword Total
(Drug) (Cocaine) (Marijuana) (Heroin) (Bitcoin) (Murder) (Gambling) (Porno)

Collected pages
Our crawler 626 85 702 62 596 340 145 121 2,677
Not Evil 179 31 224 31 452 89 40 51 1,099

of them are temporary and the connection is unstable. Hence, we did not try to
reconnect to URLs found to be inaccessible. Finally, the maximum wait time is
set to 10 s per page.
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3.3 Performance of Dark Web Crawling System

The page collection rate of the crawler is measured to verify its crawling
performance and accuracy for both Dark Web pages in general and specific
Korean Dark Web sites. The keyword search rate is also compared with existing
search engines. To measure general Dark Web page collection rate, we made a
reference set for comparison. Specifically, we randomly selected 1,500 sites from
the 3,000 Dark Web sites we collected, and manually checked the exact number
of pages per site. We then compared the manually created reference set with the
number of pages collected by our Dark Web crawler. As shown in Table 2, our
crawler achieved an average page collection rate of 90%.

We also measured the page collection rate for the 8 Korean Dark Web sites
among the 3,000 Dark Web sites as shown in Table 3. As before, a reference
set was created by manually measuring the total number of pages by taking
advantage of the post numbers at each site. According to Table 3, our crawler’s
average page collection rate is 82%.

Next, we measured the crawling accuracy by comparing Korean keyword
search results of our crawling system with existing search engines. We chose
Not Evil [5] as a comparison since Not Evil can support Korean keyword search
and return only the Deep Web results. For comparison, we selected the top 8
crime keywords and compared search results between the pages collected by our
crawler and Not Evil. The comparison is shown in Table 4. In the experiment, Not
Evil collected 1,099 pages for the Korean keywords, while our crawling system
collected 2,677 pages.

4 Dark Web Data Analysis

4.1 Structure Analysis of Dark Web Sites

Figure 1 shows the size of each seed URL on a log scale. This analysis is conducted
on 7,257 onion sites in [25], which is compared with 3,000 Dark Web sites we
collected. While 46.07% of the existing Onion sites consist of a single page, only
27.19% of the Dark Web sites consist of a single page. 135 Dark Web sites have
more than 256 sub-pages, which accounts for 4.6% of the total. Among the 135
Dark Web sites, we selected the largest top 5 Dark Web sites, and analyzed their
sizes and major activities. The Dark Web site, with the highest number of pages,
is a porno site, mostly child porno. The second and fifth sites are dealing mainly
with counterfeit credit cards trade. The third and fourth sites are created for
the study of socially regulated technologies such as illegal hacking techniques.
The site information is shown in Table 5.
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Fig. 1. Size of Dark Web sites

Table 5. Top 5 Dark Web sites

URL Size Category

http://alicedbdh5xixwai.onion 14,997 Porno

http://26z56lc5zszmadnm.onion 11,899 Commodity

http://rvy6qmlqfstv6rlz.onion 11,183 Community

http://dob3bs7dgnzd7r7a.onion 9,250 Community

http://x7giprgefwfvkeep.onion 8,389 Commodity

Table 6. Number of sites by category

Category Example Size Category Example Size

Finance Counterfeit notes 655 Social Anarchism 89

Drugs Cocaine, Heroin 337 Violence Murder by contract 83

Hacking Hacking programs,
Malware

298 Gambling Casino 52

Private info. trading Trading stolen
ID/PW, SSN

274 Forgery Fake identification
card

49

Porno Adult, Child
pornography

246 Arms Illegal weapons 39

Community Illegal forum 238 Extremism Radicalism,
fanaticism

3

Cryptocurrency Mixing service 106 Portal Links to various
Dark web sites

441

Commodity Trading stolen goods 90

4.2 Classification of Dark Web Sites

We classified 3,000 Dark Web sites by their major activities. Even if many of
the sites handle multiple illegal subjects simultaneously, they were classified on

http://alicedbdh5xixwai.onion
http://26z56lc5zszmadnm.onion
http://rvy6qmlqfstv6rlz.onion
http://dob3bs7dgnzd7r7a.onion
http://x7giprgefwfvkeep.onion
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the basis of a couple of the top-interest subjects of the sites. Although a similar
analysis was carried out in the previous study [25], we tried to improve reliability
of classification by using more precise manual categorization. The classification
results are shown in Table 6. According to our analysis, illegal financial trading
such as counterfeit notes is in the majority of the Dark Web sites, which is
followed by drugs, hacking, forgery, and so on.

Table 7. Top 3 Korean Dark Web pages

Site name Total number of pages Number of pages
containing crime
keywords

HiGH KOREA 51,403 29,565

666LETOM 1,044 526

Agora 34,756 15,330

5 Profiling of Korean Dark Web Sites

In this section, an in-depth analysis of the criminal activities and profiling are
conducted on the Korean Dark Web. Especially, among the 8 Korean Dark Web
sites in Table 3, we select the three most popular ones, which are HiGH KOREA,
Agora, 666LETOM constituting most of the cyber criminal activities in South
Korea. In the profiling, criminal activities are collected from 2017 May to 2018
August, and analyzed in a chronological point of view. Then, personal informa-
tion leakage are also measured in comparison to the general Web environment.

5.1 Chronological Analysis of Criminal Activity

To analyze criminal activities, a list of keywords including criminal jargon was
prepared in advance. Specifically, 41 keywords were provided by the Korean
National Police Agency and 240 keywords were selected by the authors. In order
to carry out profiling of the three Dark Web sites in an autonomous way, we
developed parsing techniques to extract only the criminal keywords from all of
the postings in the sites periodically. As a result, crime keywords are found in a
total of 45,421 of the 87,203 pages from the sites. Detailed results are shown in
Table 7.

In order to conduct a chronological analysis of them, we classify the crime
keywords into four big categories: Drug including keywords such as cocaine and
heroin, Porno including keywords such as child pornography, and Org including
keywords such as radicalism, and the rest classified as Etc. Then, we analyze the
criminal activities over time as shown in Fig. 2. Chronological analysis results by
hour of day and by month are shown in Fig. 2(a) and (b), respectively. As shown
in Fig. 2(a), activities related to drugs are most active during the afternoon, while
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those related to Porno is more active at night than in the afternoon. In terms of
the monthly trend between May 2017 to August 2018, overall activities increased
between August and September, and declined in November or April as shown
in Fig. 2(b). Because the monthly activities are analyzed for a limited period of
time, that is approximately 16 months, we believe it is hard to interpret them
with great meaning in practice. Statistically more meaningful monthly trend
could be analyzed by collecting more data, e.g., for a couple of more years.

(a) Analysis by hour of day (b) Analysis by month

Fig. 2. Chronological analysis of criminal activity

5.2 Personal Information Leakage

In order to understand how much personal information are leaked and illegally
traded in the Korean Dark Web sites, we collected cell phone numbers, e-mail
addresses, Bitcoin addresses, and social security numbers of people. As a result,
893 cases of personal information leakage are detected. In the procedure, we only
counted unique cases and removed any redundant ones among multiple postings.
That is, if any personal information is found in multiple postings, it is counted
as one case of personal information leakage. The detailed results are shown in
Table 8. On the other hand, we have observed that if some personal information
exposed to the Dark Web are combined with any public information revealed in
the Surface Web, much more fine-grained private information could be identified,
such as name, social security number, home address, occupation, and so on. Thus,
in order to understand how much the personal information exposed to the Dark
Web have practical impact in the real world, we crawled the Surface Web sites
using Google search engine to see if the personal information exposed to the Dark
Web is also searchable on the Surface Web. As a result, 460 cases of personal
information were also retrieved from the Surface Web. The Surface Web search
results for each item are shown in parentheses in Table 8. As a result, 62 of the
261 email addresses were also retrieved from the Surface Web. Of these, 6 emails
are linked to a personal SNS page revealing daily private information and social
relationship, and 3 emails are able to uncover resident area information. For
Bitcoin addresses, 373 transaction records are found from the Surface Web out
of the total 404 addresses identified from the Dark Web. The Bitcoin addresses
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obtained from the Surface Web can be used as a means to identify the owner’s
identity in the real world for some specific Bitcoin transactions by applying
clustering [16], or anonymous network fingerprinting [17,21,23] technologies. In
the case of phone numbers, 19 out of 44 cases are also found on the Surface Web.
By combining partial information independently crawled from Dark and Suface
Webs, for example, we could identify some cases that disclose the other private
information such as specific person’s residential address, occupation, salary, age,
SNS, and so on, which may lead to phishing or financial fraud in the real world.

Table 8. Personal information detection results

Site name Phone
number

Email
address

Bitcoin
address

Social
security
number

Agora 44(19) 219(45) 33(6) 130(0)

HiGH KOREA 0 42(17) 371(367) 0

666LETOM 0 0 0 0

5.3 Finding Sybil Identities

In the Dark Web, identifying Sybil identities (IDs) among the multiple Dark Web
sites is one of the most challenging problems. Therefore, several heuristic and
machine learning-based techniques exploiting posted contents such as pictures
about drugs [28] have been proposed. However, since it is practically infeasible
to get the corresponding ground truth data in the real world, demonstrating the
efficacy or accuracy of the solutions remains unsolved.

With this regards, we observed one interesting trend during the analysis of
the Korean Dark Web sites. That is, most of the information needed for trad-
ing between vendors and buyers, such as the amount of drugs, prices, Bitcoin
addresses, are exchanged via encrypted email using PGP key to hide the con-
tents of them. When making illegal transactions, the email sender encrypts the
messages with the public key of the receiver so that the receiver can decrypt it
with his private key. Since a PGP key is unique information corresponding to
each ID, we develop a parsing technology to separate and store PGP keys for
individual IDs among the Dark Web sites. Then an attempt is made to cluster
the IDs using the collected PGP key information to identify Sybil IDs in the
Dark Web sites. If one person posts using multiple IDs in the multiple Dark
Web sites using the same PGP key, it is decisive evidence demonstrating the
IDs belong to the same person. It is important to note that, as far as we know,
our idea is the first to find Sybil IDs using the PGP keys in the Dark Web as
opposed to the previous heuristic approaches.

We examined the number of such cases and the duplicate PGP keys. Overall,
123 of the 1,468 PGP keys collected from HiGH KOREA were duplicated. Sur-
prisingly, the most widely used PGP key was used by 24 IDs, which means one
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Dark Web user are using 24 different Sybil IDs in the 3 Korean Dark Web sites.
Detailed results are shown in Table 9. On the basis of our analysis, we found
347 Sybil IDs among the top 3 Korean Dark Web sites, and on average 2.84
Sybil IDs are used by a single user. It is important to note that our idea is very
effective to provide decisive evidence for identifying Sybil IDs, especially in the
Dark Web environment where getting ground truth data is almost impossible.

Table 9. The number of Sybil IDs based on PGP key

# of Sybil ID 2 3 4 5 6 7 9 10 24

# of users 81 21 9 6 1 1 1 1 1

Total # of Sybil IDs : 347

Average # of Sybil IDs per user : 2.84

6 Conclusion

While the previous studies have helped to better understand the hidden services
and structure of the Dark Web, a comprehensive analysis of the current Dark
Web services and its chronological implications is still missing. To achieve it,
in this paper, we conduct an in-depth analysis of the Dark Web services by
gathering more than 90% web pages from approximately 3,000 Dark Web sites
in the wild using our Dark Web crawling system. Then, we focus on the top
3 Dark Web services in Korea, and carry out detailed profiling of it. In the
profiling, criminal activities are collected and analyzed in a chronological point
of view. Then, personal information leakage including personal PGP key are
also measured in comparison to the general Web environment. According to our
analysis result, we found non-negligible amount of illegal trading are carried on
in the Korean Dark Web, and personal information are exposed, which may
reveal much more fine-grained private information when combined with publicly
known information on the Surface Web. In order to find Sybil IDs in the Dark
Web, we also proposed a novel idea to exploit PGP keys in the Dark Web sites,
and demonstrated its efficacy by investigating every redundantly used PGP key
in the Korean Dark Web.
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Abstract. As the Internet has evolved from host-to-host communica-
tions to content distribution, data-centric networking platforms are gain-
ing a momentum. Especially, as the cloud computing becomes the norm,
there is a consensus that data is to be distributed over some poten-
tially untrusted servers to which its publishers/subscribers are connected.
While data-centric networking platforms have been an area of active
research, there have been few studies on how to distribute and man-
age keys for data protection in such platforms with untrusted servers.
We present a key management framework in which symmetric and
asymmetric keys are securely managed. A writer publishes not only his
(encrypted) data but also the symmetric key for the data. Likewise, a
reader retrieves the symmetric key as well as the data of interest. To
make the key distribution securely between a writer and a reader via an
untrusted server, we introduce a key server running on top of the Intel
SGX technology. In this way, we can manage and distribute keys for
data protection in an efficient and flexible manner. We demonstrate that
the prototype of the proposed framework is running with the negligible
overhead.

Keywords: Data-centric networking platform · Key management ·
Intel Software Guard Extension · Named Data Networking · Global
Data Plane

1 Introduction

As increasingly more traffic in the Internet is attributed to content-centric appli-
cation (rather than host-based ones), data-centric networking platforms are
gaining a momentum for scalable and efficient solutions. One of the clean-slate
approaches is Named Data Networking (NDN) [12] whose key components are
data names not host locations. To receive data in NDN, a data request is routed
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by its name, and then any entity in the path that has the data can send it
back. Recently, the Internet of Things (IoT) has accelerated the research and
development of data-centric networking platforms since a growing number of the
IoT devices will require efficient and scalable solutions for data dissemination.
For instance, Global Data Plane [7] is a log-based data-centric IoT platform
in which append-only logs are written on a potentially untrusted distributed
infrastructure.

While the current host-based applications can rely on credentials (like ID/
password) and certificates (with public keys) for security measures, the security
solutions for the data-centric networking platforms are still elusive. In the host-
based applications, a publisher (or a writer) can control where and how long his
data are stored, which means that he decides the container of data and secures
the access to the container for data protection. In the data-centric networking
platforms, however, the data may be disseminated through some entity outside
the control of the publisher1; thus, the publisher himself may have to encrypt the
data for access control and/or confidentiality. Henceforth, we refer to both access
control and confidentiality collectively as data protection, which is the focus of
this paper. In host-based security systems, the access control can be done by
simply checking the credential (e.g., ID/password) of a reader (or a subscriber)
at a given host under the control of the writer. This method should be changed
in data-centric networking platforms since there is no designated host holding
the data. Instead of checking the credential of the reader, the data protection
for the data-centric networking platforms can be achieved by distributing keys
for the encryption/decryption.

In this paper, we introduce a secure and efficient key management framework
for data protection in the data-centric networking platforms. The proposed key
management framework addresses both symmetric key and public key distribu-
tions. For the purposes of secure key distribution, we introduce a key server that
leverages Intel Software Guard Extension (SGX) to serve as a trust anchor. That
is, the Intel SGX-enabled server can play the role of a gatekeeper that thwarts
an adversary who tries to access with a revoked public key. Thus, a writer or a
reader with a valid public key can encrypt/decrypt the symmetric key (by its
private key) by interacting with the key server. Also, the writer and the reader
can trust the key server with Intel SGX by a remote attestation.

In addition to the above features, the proposed framework devises a sym-
metric key generation technique to support flexible data protection and efficient
key distribution. Suppose that the writer is generating his data in a sequence,
and hence updates his symmetric key (for data encryption) periodically. The
flexible data protection means that the writer can control when (and how long)
each reader can access (or decrypt) data. As to the efficient key distribution, the
writer does not need to distribute keys for each data generation. Our hash-based
symmetric key generation technique can significantly reduce the number of keys
to be distributed.

1 We interchangeably use a writer and a publisher to refer to an entity who generates
the data; likewise, a reader or a subscriber will consume the data.
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2 Intel SGX

Intel SGX (Software Guard Extensions) is a technology to protect code and
data from disclosure or modification by leveraging an isolated container, called
an enclave. The enclave protects a memory page that consists of code, data, stack
and heap areas by strict access control mechanisms supported by the hardware.

Remote Attestation. The enclave provides an attestable proof for the pro-
tected memory of the enclave. Any other party in a remote platform can request
the target enclave to demonstrate its status by publishing a report, which is
called a remote attestation. An enclave can generate a report that contains the
hash of the internal log, the hash of the authority certificate, and other security-
related status information. A dedicated enclave (called Quoting Enclave) signs
the report using a group key. The signed data structure is called a quote. Then,
the challenger can ask a validity of the quote by connecting to IAS (Intel Attes-
tation Service) that holds the key. The IAS responds with a verification report
that proves the quote is valid or not.

Sealing. There exists a hardware-protected encryption key system that can be
accessed and derived only by the enclaves. With an encryption key, the data
inside the corresponding enclave can be “sealed” (i.e., encrypted) and stored
securely even in an untrusted system.

TLS-SGX Integration. Knauth et al. [5] proposed to integrate the Intel SGX
remote attestation with the Transport Layer Security (TLS) protocol by bind-
ing the report and his certificate. The server includes the hash of the server
public key in the Intel SGX report and requests the IAS to issue a verification
report for its quote. The server can create a self-signed X.509 certificate with
the verification report as an X.509 extension. By verifying the certificate and
the verification report, the client (challenger) ensures that it is connected to the
genuine Intel SGX enclave. The client can verify the verification report inside
the X.509 certificate using the Intel’s public key. Then the self-signed certificate
can also be trusted based on the verified report.

3 Networking Models and Design Goals

3.1 Data-Centric Networking Platforms and Its Key Management

First, we illustrate a general model of the data-centric networking platforms. The
examples under consideration are Named Data Networking (NDN) [12], Global
Data Plane (GDP) [7], and blockchain [6,13].

In a data-centric networking platform, every data is labeled with its identifier,
and is normally assumed to be immutable. Hence, secure replication and efficient
validation of the data is implied. That is, any copy (of the data) is identical to
the original, and its integrity can be validated (e.g., with a digital signature).
Accordingly, each data can be distinguished by its identifier, which is of fixed or
variable length.
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We present a data structure, called a log, which consists of the data and its
identifier, at minimum. Depending on applications and operating environments,
a log may also contain the length of the data, a timestamp, and other attributes.
The identifier is globally unique and independent of its (storage) location and
its application. Once a log is generated (or written), it is impossible to rewrite
or modify the log.

In a general data-centric networking platform, there are three types of entities
participating in data distribution: a writer, a reader, and a storage server. We
may refer to a writer and a reader collectively as a client. The writer publishes a
log to the storage server(s) using a publishing mechanism of the platform. The
log can be distributed over multiple physical machines (i.e., storage servers) of
which the writer may not be aware. For data protection of the log, the writer
encrypts the log (i.e., its data part) to control accessibility.

A log’s identifier is publicly visible to any entity, but its data part is
encrypted. That is, its data is decrypted only by authorized readers, who can
read from any storage server. The reader can request a log of interest by using
its identifier. There may be an overlay network to route a request or its response
(e.g., [7]) or a network that directly supports name-based routing (e.g., [12]).
A storage server, a reader, or a writer may be co-located with another entity
depending on operating environments. For example, in the case of blockchain,
the three entities are co-located and there is no routing (in the overlay network)
since every machine has a copy of all the logs.

In addition to the three types of entities, we introduce a key server that
manages a binding of an identifier of an entity and its public key. The key server
also acts as a gatekeeper for the symmetric key distribution. The key server is
the only entity that needs to be equipped with the Intel SGX hardware. The
software of the key server runs in the enclave and its code is publicly available
so that its integrity can be verified by the remote attestation. Our proposal for
key management framework will be detailed in Sect. 4.

3.2 Design Goals

We rely on Intel SGX by assuming that the enclave behaves with integrity.
Therefore, any client can verify the integrity of the behaviors of the key server
through TLS-SGX including the remote attestation. We assume an adversary is
a malicious client to impersonate another client to access an unauthorized log.

Under the threat model, our key management framework aims to satisfy the
following criteria. In this subsection, the symmetric key means the key used for
encrypting the original data, and the public/private key pair is bound to each
client.

Periodic Key Updates. By periodically updating a key, the damage can be
mitigated even if the key is leaked.

Flexible Data Protection. The writer should be able to control when and
how long individual readers can access its data log depending on the reader’s
contract and so on. Also, the moment at which the data log is published should
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be irrelevant to the one at which the reader accesses the data, which is called
the flexible data protection.

Efficient Key Distribution. Updating the symmetric key for each period may
be burdensome as the period becomes shorter. Therefore, we should seek to
balance the enhanced security and the key updating overhead for the efficiency
in the key distribution.

Forward and Backward Secrecy. The keys of the unauthorized (data) logs
should not be available even if the reader knows the previous or the following
keys. This is called the backward secrecy and the forward secrecy, respectively.

Actions Against Key Compromises. Even though a compromised private
key is revoked, some symmetric keys encrypted by the compromised private key
can be decrypted by an attacker. This is important since the key logs cannot
be deleted in case of append-only data-centric networking platforms (e.g., GDP
and blockchain). Therefore, we should mitigate the damage if an attacker com-
promises the reader’s private key.

4 The Proposed Key Management Framework

We propose a key management framework considering the above criteria. We
first explain the public key management. Next, based on the public key man-
agement, we detail how the symmetric keys are managed and distributed. We
denote by Ek(m) a ciphertext of a message m using a key k. Also, the encryption
scheme depends on the key k, which means that if the key is symmetric or asym-
metric, then the encryption scheme is also symmetric (e.g., AES) or asymmetric
(e.g., RSA), respectively. Likewise, we denote by SignPrivX

(m) a message m’s
signature generated using the private key (of entity X) PrivX . We represent a
digest of a message m as H(m), and a result of hashing a message m x times
as Hx(m). That is, Hx(m) can be derived by H(Hx−1(m)). The hash function
H(·) is a cryptographic hash function such as SHA-256. Apart from a private
key used for TLS-SGX in Sect. 2, the enclave encl randomly generates a master
secret key msk, which is kept only inside the enclave encl.

4.1 Public Key Management

Every client C has a publicly verifiable identifier, IDC , and a newly generated
public/private key pair (PubC , PrivC). To register its public key, C sets up a
session using TLS-SGX (without client authentication) with an enclave encl
in the key server. C can verify whether encl is securely created and running
using the remote attestation and TLS-SGX. If TLS-SGX fails (say, the remote
attestation fails), the registration fails. Otherwise, by sending the identifier IDC
and PubC , C proves to encl the ownership of (1) the corresponding private key
(PrivC) using a signature SignPrivC (IDC ||timestamp) where timestamp is used
to prevent replay attacks and (2) his identifier. Then, encl stores ‘IDC and PubC ’
in its local storage, which is protected by the sealing.
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Fig. 1. A symmetric key for a sub-period is generated by using a hash function in two
opposite directions for the two long-term keys of the period.

The enclave manages not only the public key binding but also the public key
revocation. Like the PKI system, the enclave can revoke the relation between an
identifier and its public key. As soon as a public key is revoked, it is recorded
as ‘revoked’ and a new public key can be registered using the above process. In
this vein, the key server serves as a certificate authority (CA). It maintains all
valid and revoked public keys for registered identifiers.

4.2 Symmetric Key Generation

Before publishing a log, a writer W generates a symmetric key. Considering the
criteria in Sect. 3.2, we divide a period into sub-periods; its rationale will be
explained later. Figure 1 illustrates the case in which there are 4 sub-periods in
a period. We call a key for a period a long-term key, and one for a sub-period a
short-term key, both of which are generated based on the following rules.

– The writer decides the durations of a period and a sub-period.
– For every period, the writer independently and randomly generates two long-

term keys. We call them forward and backward keys, LF and LB .
– Let d be the number of the sub-periods for a period.
– The writer computes two chains of hashes: one is a forward chain using the

forward key {H(LF ), H2(LF ), ..., Hd(LF )}, and the other is a backward
chain using the backward key {H(LB), H2(LB), ..., Hd(LB)}.

– To generate a symmetric key, the derived hashes in the forward chain are
used in order, and the ones in the backward chain are used in reverse order.

– A symmetric key for x-th sub-period is generated using a pair of hashes
Hx(LF ) and Hd−x+1(LB), i.e., H(Hx(LF )||Hd−x+1(LB)). We may use an
exclusive-or operation instead of the concatenation depending on the required
key length.

– If any short-term or long-term key is compromised, the writer has to update
long-term keys for remaining sub-periods, then the derived short-term keys
will by automatically changed. The writer will encrypt the data logs in the
following sub-periods with the updated keys. The writer adds some metadata
(in plaintext) to the data log to notify that the long term keys are updated,
so that the readers can figure out they should fetch the updated keys.
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As the symmetric (short-term) key is changed in each sub-period, the reader
should know or derive all the keys for the sub-periods during which he can
access the logs. To give a reader the keys for some consecutive sub-periods in
a period, the writer only needs to distribute the hashes of the two long-term
keys. For example, the reader who has a hashed forward key Hx(LF ) and a
hashed backward key Hd−y+1(LB) can derive the symmetric keys from the x-
th sub-period to the y-th sub-period. In each period, the writer needs to give
a reader two long-term keys (or their hashes depending on the allowed sub-
periods). When the writer generates the long-term symmetric keys, he should
also specify the period and the sub-period to inform when a new symmetric key
is updated. Such information can be also deemed as the metadata (metadata).

Let ek = {Hi(LF ),Hd−j+1(LB)} be a pair of hashes of the long-term keys to
distribute the symmetric keys for the corresponding sub-periods. That is, using
ek, symmetric keys {eki, eki+1, ..., ekj} can be derived where eks is for s-th sub-
period and i ≤ s ≤ j. To publish the data D for s-th sub-period, the writer W
encrypts D using eks, and the ciphertext is denoted by Eeks

(D). W publishes
the encrypted log Eeks

(D) using the primitives in the underlying data-centric
networking platform. In this way, the writer W can allow the reader to access
the logs from the i-th sub-period to j-th sub-period by giving the symmetric key
ek. Note that this key encryption is for a particular reader. The key should be
delivered to the reader securely as follows.

4.3 Key Delivery to Key Server

Delivering ek to each reader is not simple due to the following reasons. As the
writer can be a resource-limited device (e.g., IoT) with the vulnerabilities, we
rely on the key server to securely distribute the keys to readers. However, we
seek to hide the keys from the key server as well. For this, W encrypts ek using
reader R’s public key PubR, i.e., EPubR(ek). To securely publish EPubR(ek),
W connects to the enclave encl in the key server using TLS-SGX with client
authentication. It authenticates the writer W as well as the enclave encl.

For the client authentication, the writer W constructs a self-signed certificate
cert that includes the registered public key PubW and the registered identifier
IDW . W uses the certificate in the TLS-SGX handshake. As the public key is
already “pinned” in the key server, encl can authenticate the client. If the public
key in the writer’s certificate is not valid or the certificate verification fails, the
TLS-SGX fails and the process stops. Otherwise, the legitimate writer W sends
IDR, EPubR(ek), SignPrivW (H(ek)) and metadata.

After receiving the above materials, encl encrypts them using its master
secret key msk (i.e., Emsk(IDR, EPubR(ek), SignPrivW

(H(ek)), metadata)),
which is returned back to the writer W. The writer publishes it in the same way
the writer publishes a data log. If there are multiple readers, R1, · · · , Rn, the
writer can send a request to encl for encrypting IDR1, EPubR1(ek), · · · , IDRn,
EPubRn

(ek), SignPrivW (H(ek)) and metadata.
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4.4 Key Delivery to Reader

Although any reader retrieves the encrypted data log Eeks
(D) and the corre-

sponding encrypted key log, only authorized readers can decrypt the log D.
In our framework, encl is the only entity that can generate the key log. That
is, encl uses its msk to decrypt ‘Emsk(IDR, EPubR(ek), SignPrivW

(H(ek)),
metadata)’. The reader R and the enclave encl mutually authenticate each other
using TLS-SGX in the same fashion as the key publishing process. As soon as
the TLS-SGX handshake is successfully completed, the reader sends a request
to encl for decrypting ‘Emsk(IDR, EPubR(ek), SignPrivW

(H(ek)), metadata)’.
After decrypting it, encl checks whether the plaintext (i.e., IDR, EPubR(ek),
metadata) contains the reader’s ID, which indicates that the reader is autho-
rized. If it contains, encl sends the corresponding encrypted key (EPubR(ek),
SignPrivW (H(ek)), metadata) to the reader. The reader decrypts the key ek by
its private key, and checks the validity of the metadata and the signature.

5 Analysis

Let us elaborate on how the framework can satisfy the design goals in Sect. 3.2.

Periodic Key Updates. In case of asymmetric keys, the key server can make
the clients update their public/private key pairs by enforcing the expiration dates
of the public keys. The key server does not accept expired public keys by making
the TLS-SGX handshakes fail. On the other hand, the update of a symmetric
key is managed by the writer. Thus systematic primitives for key updates should
be prepared by the platform to prevent update failures.

Flexible Data Protection. In data-centric networking platforms, the moments
of data publish and consumption are irrelevant. For this, the writer can distribute
the log of a symmetric key regardless of when the corresponding data is pub-
lished.

Efficient Key Distribution. Recall that the same symmetric key may have
to be reused for a series of data for a certain duration to lessen the key
update/distribution overhead. In addition to that, we devise the hash-based
symmetric key generation for efficient key distribution. That is, we adopt the
two-level hierarchy in key update periods: a period and a sub-period. Even though
a symmetric key is different in each sub-period, two long-term keys (to be pub-
lished) are randomly generated at each period. The reader need not fetch sym-
metric keys for every sub-period, which mitigates the overhead of key distribution
as well as key publication.

Forward and Backward Secrecy. Our framework solves the forward and
backward secrecy problems by the symmetric key generation using two hash
chains. Suppose that a writer generates two long-term keys, LF , and LB for a
period. Also, an adversary has ek = {Hi(LF ),Hd−j+1(LB)} that can be used
to decrypt the logs from the i-th sub-period to the j-th sub-period. To read logs
before the i-th sub-period, the adversary has to know Hi−1(LF ). Likewise, to
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read logs after j-th sub-period, he has to know Hd−j(LB). However, we assumed
that the hash is cryptographically secure, and it is impossible to find a pre-image
of any hash value. Therefore, even if a reader has the symmetric keys of a range
of sub-periods, it is impossible to guess other symmetric keys beyond the range.

Actions Against Key Compromise. Even if any public/private key pair of a
reader is leaked to an adversary and revoked, the adversary should not be able to
get the symmetric keys for the data logs. In the proposed framework, the SGX-
based key server is responsible for denying any access from an entity with the
revoked key. Suppose that an adversary obtains a client’s private key PrivR. The
adversary may fetch the encrypted data (i.e., Eeks

(D)) and the encrypted sym-
metric key (i.e., Emsk(IDR, EPubR(ek), SignPrivW (H(ek)), metadata)) from
the data-centric networking platform. To get the original data D, the adversary
has to acquire ek, which is encrypted twice: one by the reader’s public key and
another by the key server’s msk. Thus, to acquire ek, the adversary should first
request the key server to decrypt the symmetric key by msk. Recall the msk
is protected by the corresponding enclave. However, in the process of the TLS-
SGX handshake, the enclave filters out the adversary since it keeps track of the
revoked keys.

6 Experiments

In this section, we show the feasibility of the proposed framework by demon-
strating a proof-of-concept prototype. Since the SGX-enabled key server acts
as a gatekeeper, its performance may be of concern in deployment; we seek to
shed light on how many key servers (or enclaves) should be operating for a given
workload. Thus, we measure the performance overhead of TLS-SGX (running
on a key server), key publishing, and key retrieving.

Experiment Setup. We use a Linux machine with an Intel Core i7-6700K CPU
and 32 GB RAM for running server applications and Raspberry Pi 3 with a Quad
Core 1.2 GHz Broadcom BCM2837 ARMv8 64bit CPU and 1 GB RAM for the
client applications. All measurements are reported over an average of 5 runs.
The implementation code is modified based on the TLS-SGX implementation [5]
using the WolfSSL library [1].

TLS-SGX. When establishing a TLS-SGX session, the key server creates a cer-
tificate when the enclave is created since the client requires the server certificate
which is used in the remote attestation. Therefore, we measure two steps of
the certificate generation. The first step at which the server generates a quote
by communicating with the quoting enclave takes about 4.7 ms. The next step
where the server sends a quote to the IAS to obtain a quote verification report
that verifies the link between the server’s public key and the server’s SGX iden-
tity takes about 2.8 ms. The total generation time including all other sub-steps
is about 3.2 ms. However, this may have little effect on the overall system per-
formance because the server performs the certificate generation once per system
boot. We also measure the computation overheads for the TLS-SGX handshake
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Fig. 2. The computation time of each step of TLS handshake using TLS-SGX is plotted
at the server. The results are compared with those of the vanilla TLS handshake.

Table 1. The response time corresponding to the Key Publish/Key Retrieve request.

µs Computation overhead Communication overhead

Publish Retrieve Publish Retrieve

Server 92 26,548 635 13,962

Client 93 295,155 253 47,821

by comparing each handshake message in the TLS-SGX compared to the one in
the vanilla TLS. At the server, in Figs. 2, the TLS-SGX increases the computa-
tion time at each step, which adds up to about 70 ms overhead. At the client,
the TLS-SGX similarly adds about 70 ms total computation time. While there is
some small overhead, this result shows that the proposed framework is practical
considering that the total computation time is about 600 ms.

Key Publishing and Key Retrieval. The key server seals or unseals the
symmetric key in response to the corresponding request. Thus, we measure the
response time both at the server and at the client as Table 1. The response
time at the client-side is the time from the sending the key-publish/key-retrieve
request to the sealing/unsealing symmetric key. At the server-side, the response
time is the interval from receiving the key publish/key retrieve request to send-
ing the sealed/unsealed symmetric key. The computation overheads are sealing
and unsealing computation times for the key publish and key retrieve requests,
respectively. At the client, the computational overheads are mainly due to the
asymmetric encryption/decryption operations. However, the actual overhead
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added to the whole operation may not be critical since the key publishing and
the key retrieving operations are performed only once per period.

7 Related Work

Key Management when Membership Changes. Cloud storage systems
have similarities to data-centric networking platforms in the sense that they
need to manage continuously changing reader membership. Therefore we inves-
tigate the key management in cloud systems. In cloud storage systems, every
data stored in cloud storage is encrypted since the cloud is usually managed by
an untrusted third party. Thus managing a group key in such a way that satisfies
forward secrecy and backward secrecy is an important issue in cloud systems.
Sherman et al. [8] suggested an efficient group key management GKM scheme
called One-Way Function Tree (OFT) for groups whose membership changes
frequently. The OFT scheme obtains a new group key in a bottom-up fashion
from one-way hash trees. However, this approach still requires all members of the
group should be on-line when the protocol is implemented. Lam et al. [9] pro-
posed an invitation-oriented modification of Tree-based Group Diffie-Hellman
(TGDH) [4]. Unlike original TGDH where a new member has to wait for a
designated sponsor to come online, a new member can join the group without
waiting for the sponsor. Also the proposed scheme assumes that members use
asynchronous channels, so that the members may not be online simultaneously
all the time when updating the group key. When the offline members come into
online, then each member calculates the new group key. Xue et al. [11] suggested
an enhanced TGDH scheme which transferred most of the computational com-
plexity and communication overhead to cloud servers. Thus suggested scheme
can update group key even if not all the group members are online together,
with the help of the cloud server.

Trusted Hardware-based Key Management. Leveraging the TEEs serving
as the root-of-trust, various key management systems have been proposed to
solve the problem of building trustworthiness among multiple parties. Knox [3]
is a mobile security platform based on the ARM TrustZone, which is a TEE tech-
nology supported by the ARM processor. An Android application that requires
a key generation for sensitive data management or computation in the secured
environment can utilize the platform by using Knox APIs. The root-of-trust
chain is always a device root key (DRK) that is stored after being encrypted
with a device-unique hardware key (DUHK). Because the DUHK is only acces-
sible by the cryptography module running on TrustZone, the integrity of the
trust chain is guaranteed [2]. Also, all signing keys, encryption keys, or keys for
specific applications generated by the Knox platform are managed in a secure key
store with the help of the TrustZone. [10] is another example of the key manage-
ment system based on the hardware supporting TEE. [10] proposed a secured
SSL private key management system STYX for cloud-based content delivery
network (CCDN) applications. In CCDN environment, secured key protection
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and key distribution are challenges due to that the CDN nodes are running
on the cloud environment, an untrusted platform. In STYX, SGX powered key
management modules in Key Distribution Center (KDC) and Key Sub-Center
(KSC) securely authorize each other and build a trusted channel through the
SGX remote attestation process. The KDC can provision the SSL key to the
KSC’s enclave as key store, which guarantees the key protection.

8 Conclusions

Delivering data between a writer and a reader via untrusted servers will be pop-
ular. For efficient and scalable data distribution, data-centric networking plat-
forms are gaining a momentum. In this paper, we focus on how to manage keys
securely in data-centric networking platforms for data protection. The proposed
framework considers the management of both symmetric and asymmetric keys.
We introduce a key server that leverages Intel SGX to serve as a trust anchor
against adversaries. We also devise a novel symmetric key generation technique
based on hash chains for efficient and flexible key distribution. We implemented
and evaluated the proof-of-concept prototype to reveal that the overhead of the
proposed framework is negligible.
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