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Abstract  The focus of this chapter is on a selected class of statistical models: latent 
change models. They are especially eligible for typical applications in cognitive 
training research with two or three groups (e.g., training, active control, passive 
control) and two or three time points (pretest, posttest, follow-up). Latent variable 
models have a long tradition in cognitive science because they can separate task-, 
paradigm-, and ability-specific variance in performance tasks. Latent change mod-
eling allows to study latent means, latent intraindividual mean changes, and interin-
dividual differences in both. This chapter addresses how the effectiveness of training 
programs can be evaluated with latent change models and typical misunderstand-
ings in this context. Statistical power considerations and measurement invariance 
across experimental groups and time points are discussed. The benefits and risks of 
analyzing predictors and correlates of latent change variables are particularly rele-
vant for cognitive training research. They provide valuable correlative information 
about possible mechanisms moderating training outcomes (e.g., compensation or 
magnification effects) but are no causal test of these mechanisms. Taken together, 
latent change modeling does not only allow testing whether a cognitive training 
works on average, but also studying interindividual differences in training 
outcomes.
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�Latent Variable Models in Cognitive Science

Latent variable models have a long tradition in cognitive science (e.g., Hertzog and 
Schaie 1986; Sternberg 1978; see also Cochrane and Green, this volume) and offer 
characteristics which are particularly useful for studying cognitive performance. 
They allow not only to differentiate true score and error variance of a construct, but 
also to separate important sources of variance in cognitive tasks. For example, 
working memory updating tasks (Salthouse et al. 1991, see also Könen et al., this 
volume) require the continuous updating of the status of multiple stimuli (e.g., of 
spatial movements of multiple objects or of simple calculations with multiple num-
bers) before the final results must be recalled. Variance in this task performance can 
thus be attributed to task-specific (stimuli types), paradigm-specific (continuous 
updating), and ability-specific effects (simultaneous storage and processing). For 
almost all types of research questions, it is informative to know whether an effect of 
interest is valid on the ability level (e.g., working memory as system for simultane-
ous storage and processing, Baddeley and Hitch 1994), or is based on a specific 
mechanism which is captured by selected task paradigms (e.g., updating), or is task 
specific (e.g., updating of letters). Because a latent variable is equivalent to what-
ever is common among its indicators (and not a combination of its indicators; 
Rhemtulla et al. 2019), using different established task paradigms from more than 
one domain (spatial, numerical, verbal) and/or modality (e.g., visual, acoustic) as 
indicators for a latent variable allows for inferences on a cognitive ability level. For 
example, a latent variable with diverse working memory tasks (different paradigms 
and domains/modalities) as indicators captures simultaneous storage and process-
ing as it is their central common requirement (Fig. 1). In this case, paradigm- and 
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Fig. 1  Confirmatory factor model of a cognitive ability, for example, working memory. The circle 
represents a latent variable, squares represent observed variables, asterisks represent estimated 
parameters, and the triangle represents mean- and intercept-information (dashed lines are inter-
cepts). For model identification, the first factor loading is fixed to one. Factor loadings (L2, L3), 
intercepts (i2, i3), and error terms (e1, e2, e3) are estimated. Observed indicator variables (Y1–Y3) 
could be, for example, a spatial updating, numerical n-back, and verbal complex span task (see 
Wilhelm et al. 2013, for task descriptions)
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task-specific variances are considered an indicator-specific measurement error and 
are thus separated from the latent ability variance.

Using tasks of the same paradigm but from different domains and/or modalities 
as indicators of a latent variable supports inferences about the central mechanism 
assessed by this paradigm. For example, updating is the central common require-
ment of spatial, numerical, and verbal updating tasks. This demonstrates how latent 
variable modeling supports testing effects on the level of interest in cognitive psy-
chology. More general introductions highlight that many psychological constructs 
are inherently latent (i.e., not directly observable; Borsboom 2008, for details) and 
should be represented accordingly in statistical analyses.

The cognitive training literature could profit from an increased application of 
latent variable models. As Noack et al. (2014) argue, if training programs aim at 
improving a cognitive ability, then this ability should be theoretically defined and 
represented as latent. Its indicators should be multiple heterogeneous transfer tasks 
(i.e., non-trained tasks), which are sampled from the theoretically determined task 
space (Little et al. 1999). This strengthens claims of ability improvements as it rules 
out task-specific effects as alternative explanation for performance improvements, 
such as the development and automatization of task-specific strategies. Controversies 
in the cognitive training literature about the presence (Au et al. 2015, 2016; Karbach 
and Verhaeghen 2014) or absence (Melby-Lervåg and Hulme 2016; for details see 
Guye et  al., this volume; Könen et  al., this volume) of far transfer effects (i.e., 
improvements in cognitive functions other than the trained one/s) could also be 
addressed and possibly solved on the latent ability level.

In this chapter, we focus on a selected class of statistical models for analyzing 
latent change: latent change models. Latent change models are a particularly useful 
framework for cognitive training studies because they are especially eligible for 
typical applications with two or three groups (e.g., training, active control, passive 
control) and two or three time points (pretest, posttest, if applicable follow-up). 
Hence, they have been increasingly applied in the training literature over the last 
decade (e.g., McArdle and Prindle 2008; Schmiedek et  al. 2010, 2014; Zelinski 
et  al. 2014). Below, we present an introduction to latent change modeling and 
important concepts (e.g., measurement invariance) and further discuss possible 
practical challenges and limitations.

�Introduction to Latent Change Modeling

Latent change models (McArdle and Hamagami 2001; for an overview see McArdle 
2009) are also called latent change score models, latent difference (score) models, 
and latent true change models. They can be estimated as multiple-group latent 
change models and allow analyzing latent variables and latent changes in these vari-
ables across both time points and groups. Latent change models utilize a set of fixed 
coefficients (fixed to 1) to define a later measurement occasion (Fig. 2: f[2]) as the 
sum of an earlier occasion (f[1]) and the difference (Δf[2–1]) between both: f[2] = f[1] 
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Fig. 2  Latent change model with strict measurement invariance across pretest and posttest. Circles 
represent latent variables, squares represent observed variables, asterisks represent estimated 
parameters, and the triangle represents mean- and intercept-information (dashed lines are inter-
cepts). Parameters with the same name are constrained to be equal (are estimated on the same 
unstandardized value). For model identification, the first factor loading of each latent variable is 
fixed to one. Correlated error terms of the same indicator across time are allowed (exemplary 
shown for e3). Factor loadings (L2, L3), intercepts (i2, i3), and error terms (e1, e2, e3) are con-
strained to be equal across time. Observed indicator variables are named Y1–Y3

+ Δf[2–1] (McArdle 2009). The change between two time points (Δf[2–1] = f[2] – f[1]) 
is represented as a latent variable with a mean (i.e., average change), a variance (i.e., 
individual differences in change), a covariance with the initial factor f[1] and, if 
applicable, covariances with other variables in the model. Such a model allows esti-
mating latent means, latent intraindividual mean changes, and interindividual differ-
ences in both. If a latent variable is considered free of measurement error at two 
time points (e.g., pretest and posttest) then the latent change between both is also 
considered free of measurement error (cf. McArdle and Prindle 2008). Thus, ana-
lyzing latent change scores is preferable to analyzing observed difference scores 
(Trafimow 2015, for a review of the latter).

As needed, models can include multiple latent change variables, for example, to 
capture the changes between pretest and posttest (e.g., Δf[2–1]) and between posttest 
and follow-up (e.g., Δf[3–2]). The latent mean score could increase over one period 
and be stable or even decrease over the next because the direction of change between 
the measurement occasions is independent. This is especially suitable for cognitive 
training studies, in which stability, decrease, or increase of transfer effects at follow-
up is possible (the latter, for example, due to daily life training benefits). For exam-
ple, transfer effects of a broad cognitive training were significantly reduced at a 
2-year follow-up (in comparison to transfer at posttest) for episodic memory but not 
for reasoning (Schmiedek et  al. 2014), which was analyzed with latent change 
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models. Further, both latent change variables can have differential predictors, which 
is crucial, because the factors contributing to training-related gains may not be same 
as the factors contributing to maintenance after training.

As in all structural equation models with latent variables, one must evaluate how 
well the hypothesized model fits the observed data, usually with a χ2-test (chi square 
test) and multiple descriptive fit indices such as the Comparative Fit Index (CFI), 
the Root Mean Square Error of Approximation (RMSEA), and the Standardized 
Root Mean Square Residual (SRMR); see West et al. (2012) for details. An intro-
duction to the statistical assumptions of structural equation modeling and common 
estimation methods (e.g., maximum likelihood estimation) can be found in Kline 
(2012). Particularly relevant in the context of latent change modeling are the 
assumptions that indicators are mutually uncorrelated after controlling for their 
common latent factor (i.e., local independence) and that relations between the indi-
cators and other variables are attributed to relations between the common latent 
factor and those variables (e.g., Rhemtulla et al. 2019). However, an indicator usu-
ally correlates with itself over time over and above common latent factor correla-
tions (e.g., in cognitive tasks due to task-specific effects). Thus, failing to represent 
these covariances in the model, for example, with correlated error terms (in Fig. 2 
exemplary shown for parameter e3) or with method factors for the same indicator 
across time, can lead to biased estimations of structural relations and decreased 
model fit (e.g., Pitts et al. 1996). Generally, structural equation models are more 
flexible in testing and accounting for statistical assumptions than other statistical 
techniques (e.g., analysis of variance). For example, non-normality in the data dis-
tribution can be addressed by using robust estimation methods (Lei and Wu 2012, 
for details). Measurement invariance (across experimental groups and time points) 
and statistical power are discussed in later sections of this chapter. More detailed 
descriptions of latent change models with code examples are available in the litera-
ture (e.g., Ghisletta and McArdle 2012; Kievit et  al. 2018; Klopack and 
Wickrama 2019).

�Testing the Effectiveness of Training Programs

In randomized controlled trials, group mean differences between experimental and 
adequate control groups can serve as estimates of average causal treatment effects 
(Holland 1986; Schmiedek, this volume for details). When cognitive training stud-
ies are analyzed with multiple-group latent change models (Fig. 3), one can test for 
any training-related differences by comparing the fit of the model (with a Δχ2-test, 
i.e., chi square difference test) when a parameter is either constrained to be equal or 
free to vary across the training group and an adequate control group (McArdle and 
Prindle 2008).

One can test for average group effects by constraining the means of the latent 
change between the pre- and posttest (Δf[2–1]) of a training or transfer variable to be 
equal in the training group and control group (for an example see Stine-Morrow 
et  al. 2014). If such a constraint significantly decreases model fit, the groups 
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Fig. 3  Multiple-group latent change model with strict measurement invariance across group 
(training, control) and time (pretest, posttest, follow-up). Circles represent latent variables, squares 
represent observed variables, asterisks represent estimated parameters, and the triangle represents 
mean- and intercept-information (dashed lines are intercepts). Parameters with the same name are 
constrained to be equal (are estimated on the same unstandardized value). For model identification, 
the first factor loading of each latent variable is fixed to one. Correlated error terms of the same 
indicator across time are allowed (exemplary shown for e3). Factor loadings (L2, L3), intercepts 
(i2, i3), and error terms (e1, e2, e3) are constrained to be equal across groups and time. Observed 
indicator variables are named Y1–Y3

significantly differ in the latent change between the pretest and posttest. Latent 
effect sizes can be calculated equally as Cohen’s d by dividing the latent mean dif-
ferences by the latent pooled standard deviations at pretest (when analyzing pretest 
and posttest, for an example see Schmiedek et al. 2014) or posttest (when analyzing 
posttest and follow-up). Please note that latent standard deviations might not be 
included in the output of software packages but can be easily calculated based on 
the provided variances. Alternatively, standardized indicators simplify the interpre-
tation of latent means and latent mean changes (e.g., standardized to a T score dis-
tribution based on the pretest means and standard deviations as in Stine-Morrow 
et al. 2014).

It is possible that a training program has significant mean group effects on some 
indicators of a latent variable, but this effect is not valid on the latent level, which 
means that the common factor does not capture the effect (e.g., Estrada et al. 2015). 
Possible explanations can be substantive (e.g., task- or paradigm-specific training 
effects, such as the development and automatization of specific strategies) or more 
methodological (e.g., cognitive tasks differ in their reliability and sensitivity to 
change). At the same time, an effect can be significant on a latent level but not pres-
ent in all indicators (e.g., Schmiedek et al. 2010). A solution to this issue is to report 
the average group findings on both a latent and an observed level (e.g., Schmiedek 
et al. 2010).

After this introduction to testing the effectiveness of training programs with 
latent change modeling, we also discuss two approaches which are no causal tests 
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of cognitive training effects. First, the so-called responder analyses allow no causal 
inferences about cognitive training effects (Tidwell et  al. 2014, for details). 
Applications of responder analyses aim at testing the effectiveness of training 
regimes for subgroups with specific characteristics. Individuals are classified on 
posttest (e.g., in high vs. low values) or change scores (e.g., more vs. less improve-
ment, i.e., high and low responders) of an outcome variable and this classification is 
used as predictor of change in another outcome variable. Although latent change 
models are generally well-suited for predicting change, caution is necessary with 
responder analyses. Due to the post-hoc classification, they allow no clear distinc-
tion and attribution of cause and effect (see Tidwell et al. 2014 for more information).

Second, it can be informative to test for correlated gains on training and transfer 
scores because it is often reasonable to assume that individuals who benefit the most 
on the trained tasks are more likely to be the ones who demonstrate transfer to non-
trained tasks (e.g., Zelinski et al. 2014). Correlated gains can descriptively support 
interpretations of training effects established on the mean group level, but they are 
no test of training effects. Correlated gains can be significant regardless of the group 
means (i.e., regardless of training-related improvements) because the magnitude of 
a correlation is invariant to linear transformations of the variables. In line with this, 
simulation studies demonstrated that transfer can be valid without any correlation in 
gain scores and correlated gain scores do not necessarily guarantee transfer (Jacoby 
and Ahissar 2015; Moreau et al. 2016).

�Measurement Invariance

To be able to compare scores on a variable such as performance in a cognitive task 
across experimental groups and time (measurement occasions), the measurement 
needs to be equivalent (i.e., invariant) across groups and time (e.g., Widaman and 
Reise 1997). This applies for all types of variables, observed as well as latent vari-
ables. In most cases, it can only be assumed when using classical statistical proce-
dures (e.g., analysis of variance) but can be explicitly tested and represented in 
models with latent variables. In training studies, one would typically test measure-
ment invariance across groups first, separately for each measurement occasion, and 
then invariance across time (the latter in a multiple-group model were the invariance 
across groups is held constant). The advantage of this consecutive approach is that 
findings of non-invariance are directly attributable to either group or time. In a ran-
domized controlled trial, measurement invariance across experimental groups at 
pretest/baseline is inherently expected due to the random assignment to the groups 
(Pitts et al. 1996) and any descriptive differences are the result of chance rather than 
bias (Moher et al. 2010).

The classical procedure of establishing measurement invariance consists of four 
steps (suggested by Meredith 1993; Widaman and Reise 1997), which are hierarchi-
cally ordered and are tested by comparing increasingly constrained models. The 
procedure is the same regardless of whether invariance across groups or time is 
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investigated (which is why “groups or time” is used in the following). At first, con-
figural invariance (the equivalence of model form) is established if the factors 
across groups or time have the same pattern of fixed and free loadings. Second, 
metric invariance or weak factorial invariance (the equivalence of factor loadings) 
is established if constraining the unstandardized factor loadings (see Fig. 3: param-
eters L2 and L3) to be equal across groups or time does not result in a substantial 
drop of model fit compared to a model with only configural invariance. Third, sca-
lar invariance or strong factorial invariance (the equivalence of intercepts or 
thresholds) is established if additionally constraining the unstandardized intercepts 
(Fig. 3: parameters i2 and i3) or thresholds to be equal across groups or time does 
not result in a substantial drop of model fit compared to a model with only metric 
invariance (continuous indicators have intercepts, categorical indicators have 
thresholds). Scalar invariance implies that all substantial mean differences (across 
groups or time) in the indicators are captured by and attributable to the common 
latent construct, a necessary condition to compare latent means across groups or 
time (Widaman and Reise 1997). Fourth, strict invariance (the equivalence of resid-
uals) is established if additionally constraining the unstandardized residuals (Fig. 3: 
parameters e1, e2, and e3) to be equal across groups or time does not result in a 
substantial drop of model fit compared to a model with only scalar invariance. This 
implies that all substantial (co)variance differences (across groups or time) in the 
indicators are captured by and attributable to the common latent construct (Widaman 
and Reise 1997). Across these four steps, the drop of model fit can be evaluated with 
a Δχ2-test (chi square difference test) and with descriptive fit indices (e.g., Cheung 
and Rensvold 2002; Meade et al. 2008).

Taken together, scalar measurement invariance is the necessary condition to 
compare latent means across groups or time and thus for testing the effectiveness of 
training programs on a latent level. Strict measurement invariance is even preferable 
as it implies that all substantial mean and (co)variance differences in the indicators 
across groups and time are captured by and attributable to the common latent con-
struct, which supports their substantive interpretation. For example, comparing pre-
dictors of latent variables across groups or time is strengthened by strict measurement 
invariance. Finally, the model used for hypotheses testing should include invariance 
constraints across group and time (e.g., Fig.  3; for an empirical example see 
Schmiedek et al. 2010).

In case of violations of invariance (i.e., non-invariance), one should consider 
possible reasons for the violations in the given study, which can be practical (e.g., 
differential recruitment strategies for the training and control group) or theoretical 
(e.g., the relation of a task with the construct changed because the processes involved 
in task performance changed during skill acquisition, Ackerman 1988). There is no 
generally advisable strategy for all training studies, neither dropping the problem-
atic indicator/s or refraining from analyzing the construct nor releasing the invari-
ance constrains on the problematic indicator/s or continuing to impose all invariance 
constrains. The first two options are a threat to content validity (e.g., Pitts et  al. 
1996), and the latter two options can result in biased parameter estimates in the 
model, which are not necessarily indicated by the overall model fit (e.g., Clark et al. 
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2018). The strategy should depend on the specific research question and the specific 
measurement instruments used. Most importantly, one should compare and report 
whether the main findings and conclusions depend on this choice (i.e., are sensitive 
or not). Finally, the four steps described here are the current standard approach in 
psychology (Putnick and Bornstein 2016), but several alternatives for testing mea-
surement invariance exist (e.g., Tay et al. 2015 used item-response theory; Van de 
Schoot et al. 2013 used a Bayesian approach).

�Statistical Power Considerations

Simulations with the Monte Carlo method are the state of the art for estimating 
power in latent change modeling (Muthén and Muthén 2002, for a general introduc-
tion; Zhang and Liu 2019, for details on latent change modeling). Easy rule-of-
thumbs such as “at least 10 or 20 cases per variable” can be misleading and should 
not be applied (e.g., Wolf et al. 2013). However, user-friendly online tools have been 
recently developed for estimating power in latent change modeling (e.g., Brandmaier 
et al. 2015 [www.brandmaier.de/lifespan]; Zhang and Liu 2019 [https://webpower.
psychstat.org]). Still, collecting the basic information needed for power analyses 
(e.g., information on expected means and co/variances) could be difficult and might 
require a prestudy. Further, more research on the interplay of factors determining 
statistical power in latent change models is needed. Most studies investigated latent 
growth curve models (e.g., Hertzog et al. 2006, 2008; Rast and Hofer 2014), but one 
cannot generalize findings on statistical power to different classes of developmental 
models (cf. Hertzog et al. 2006) mostly because of differences in the underlying 
functions of change. Generally, low power represents not only a reduced chance to 
find a true effect, but also reduces the likelihood that a statistically significant find-
ing reflects a true effect (cf. Button et  al. 2013). Thus, estimating the statistical 
power of finding the main effects of a study is always worth the effort although this 
effort is admittedly likely higher for latent change modeling than for traditional 
approaches such as analysis of variance. Notably, regardless of power, when using 
frequentist statistics, a nonsignificant finding does not allow to infer the absence of 
an effect (e.g., Aczel et al. 2018; see De Simoni and Von Bastian 2018, for Bayesian 
evidence on the absence of effects).

�Predictors and Correlates of Change Variables

The effectiveness of training programs is usually the first research question 
addressed in cognitive training studies. However, as Willis and Schaie (2009) 
pointed out, “programmatic intervention research should be aimed at the broader 
goal of answering a series of theoretically important empirical questions” such as 
“What specific mechanisms, processes, or components of the intervention are 
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responsible for the desired change? What individual difference variables are associ-
ated with responsivity to change? How can the change be maintained?” (cf. Willis 
and Schaie 2009, p. 377). Latent change modeling offers some unique opportunities 
to address these and related questions because changes between two time points 
(e.g., pretest and posttest, posttest and follow-up) are represented as latent variables 
with means (i.e., average changes) and variances (i.e., individual differences in 
changes). If the variance of a latent change variable is significantly different from 
zero, it is reasonable to assume that this variance is not only random noise but 
includes reliable individual differences in change. Analyzing predictors or corre-
lates of latent change variables allows to identify if, for example, some features of 
an individual or the situation make training or transfer gains more or less likely. 
Whether predictors or correlates are analyzed should depend on the given research 
question, but it is important to keep in mind that the mean of a latent change vari-
able, which is predicted by other variables, should be interpreted conditional on the 
regression paths (i.e., does not represent “raw” mean changes; cf. Kievit et al. 2018).

A typical predictor of change is individual baseline cognitive performance, for 
example, when testing compensation or magnification effects (see Karbach and 
Kray, this volume; Katz et al., this volume). A compensation effect predicts that 
individuals with lower baseline performance tend to profit more from a training 
(i.e., higher gains over time) whereas a magnification effect predicts that individuals 
with higher baseline performance tend to profit more (Lövdén et  al. 2012, for 
details). For example, Karbach et al. (2017) found that individuals with lower cog-
nitive performance at baseline showed larger training and transfer benefits of an 
executive control training. They used multiple-group latent change models and 
compared models with a Δχ2-test (chi square difference test) in which the relation 
of baseline performance and change was either constrained to be equal or free to 
vary across the training and active control group. The relation of baseline and 
change was significantly higher in the training group compared to the active control 
group, which strengthens a substantive interpretation (e.g., because regression to the 
mean should occur in both groups, see Marsh and Hau 2002, for details on regres-
sion to the mean artifacts).

Other possible predictors are, for example, age, years of education, family 
income, need for cognition, or personality (e.g., Stine-Morrow et al. 2014; Zelinski 
et al. 2014). One might consider different predictors for different change variables 
(Fig. 3: Δf[2–1] and Δf[3–2]) because the factors contributing to training-related gains 
may not be the same as the factors contributing to maintenance after training. Of 
course, confirmatory and exploratory tests need to be explicitly distinguished, and a 
suitable correction of the statistical alpha level should be considered if multiple 
predictors or correlates are tested (e.g., Bonferroni-Holm method).

Further, it can be informative to test for correlated gains on training and transfer 
scores (e.g., McArdle and Prindle 2008; Zelinski et al. 2014) because it is often 
reasonable to assume that individuals who benefit the most on the trained tasks 
could also be the ones who demonstrate transfer to non-trained tasks. For example, 
Zelinski et al. (2014) analyzed correlations between gains in training and in transfer 
tasks in older adults with latent change models. Overall, correlations of training and 
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transfer gains were mostly found for tasks with overlapping task demands, which is 
in line with an overlapping task demand model of transfer (cf. Zelinski et al. 2014). 
Notably, the effects were valid with and without controlling for covariates (age and 
education) related to both training and transfer gains. Taken together, predictors and 
correlates of latent change variables can provide valuable correlative information 
about possible mechanisms moderating (e.g., compensation or magnification 
effects) or fostering training outcomes (e.g., overlapping task demands). A more 
general introduction to analyzing predictors and correlates of intervention-related 
change is currently under review (Könen & Karbach, 2020).

�Conclusion

On the one hand, latent change modeling of cognitive training data is arguably more 
time consuming than traditional analyses (e.g., analysis of variance), for example, 
because measurement invariance must be tested and the fit of the hypothesized 
model to the data must be evaluated. On the other hand, however, latent change 
modeling offers unique opportunities, which can enhance the practical and theoreti-
cal understanding of training and transfer effects. For example, it allows separating 
task-, paradigm-, and ability-specific effects and testing predictors and correlates of 
latent change variables. With this, one can not only evaluate whether a training pro-
gram works on average but also understand which individual and situational charac-
teristics make individual outcomes more likely.
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