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Abstract The annual world production of amino acids is currently estimated at
more than seven million tons and is expected to reach ten million tons by 2022. This
giant market has been underpinned largely by amino acid fermentation technologies
in which Corynebacterium glutamicum has played a leading role. Various genetic
engineering tools and global analysis techniques for this bacterium have been
developed and successfully applied with a great impact on the amino acid industry.
In particular, systems biology for this bacterium is almost fully capable of predicting
targets to be engineered and metabolic states that will yield maximum production,
thus allowing “systems metabolic engineering” and development of industrially
competitive production strains. Additionally, whole genomes of classically derived
industrial producers have been analyzed by “reverse engineering” to identify
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important genetic traits, enabling the establishment of new industrial processes and
the creation of genetically defined producers from scratch. This “genome breeding”
strategy was first developed using C. glutamicum as a model and currently yields
producers that are more efficient than classical ones. These advances in strain
development technology have almost achieved the optimization of entire cellular
systems as cell factories for amino acid production, as demonstrated by their ability
to produce glutamate and lysine at concentrations now exceeding 150 g/L with
estimated production yields towards sugar at almost 70%. This chapter describes
advances in the production of amino acids by C. glutamicum and presents the latest
details of the technology and strategies used for molecular strain improvement.

1 Introduction

Amino acids have a wide variety of characteristics in terms of nutritional value, taste,
medicinal action, and chemical properties, and thus have many potential uses as food
additives, feed supplements, pharmaceuticals, cosmetics, polymer materials, and
agricultural chemicals. As each new use is developed, demand for that type of
amino acid grows rapidly and is followed by the development of mass production
technology for that amino acid. The annual world production of amino acids has
increased year by year (Fig. 1), from 0.7 million tons in 1985 to 1.7 million tons in
1996, 3.7 million tons in 2006, and 7.0 million tons in 2016, and is expected to reach
ten million tons by 2022, growing at a CAGR (Compound Annual Growth Rate) of
5.6% from 2015 to 2022 (Ikeda 2003; Hermann 2003; Ajinomoto 2007, 2016;
Sanchez et al. 2018). According to a recent market research report (Research and
Markets 2018) and other relevant publications (Ajinomoto 2016; Sanchez et al.
2018), the global market for amino acids is estimated to be approximately US$13
billion in 2016 and is growing at an annual rate of 7%. Figure 2 shows the estimated
global markets for amino acids of different applications in 2016. The feed amino
acids, namely, lysine, methionine, threonine, and tryptophan, have the largest share
of the market, generating US$7.0 billion. The second largest share (US$5.3 billion)
belongs to food additives, which are comprised mainly of the flavor-enhancer
monosodium glutamate and the amino acids aspartate and phenylalanine, both
used as ingredients in the peptide sweetener aspartyl phenylalanyl methyl ester
(Aspartame).

Most L-amino acids are manufactured through microbial processes, mainly
through fermentation. Corynebacterium glutamicum, which plays a principal role
in amino acid fermentation, is therefore highly important, as demonstrated by the
increasing number of relevant research papers (Fig. 3). Figure 3 also shows the main
topics in amino acid fermentation and strain development technology during the
decades since such research began. Amino acid fermentation was developed pri-
marily in Japan and has extended across East Asia and into Europe, North America,
and South America. Today amino acid fermentation is a global industry. It should be
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noted that China has achieved a prominent presence in this field, as reflected by the
drastic increase in the number of research papers relevant to amino acid production
(Ma et al. 2017; Zhang et al. 2017b; Cheng et al. 2018).

In general, commercially potent producers have been developed by the stepwise
accumulation of beneficial genetic and phenotypic characteristics in one background
through classical mutagenesis and/or recombinant DNA technology. Such improve-
ments involve strains capable not only of producing amino acids at higher yields but
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also of producing lower quantities of by-products, as the removal of by-products
dominates the costs of downstream processing (Ikeda 2003; Marienhagen and
Eggeling 2008; Feng et al. 2018). The current production yields towards sugar
(w/w %) can be estimated as follows: lysine hydrochloride, 60–70; glutamate,
60–70; arginine, 40–50; isoleucine, 20–30; valine, 35–40; leucine, 25–30; trypto-
phan, 20–30; and phenylalanine, 30–35.

Since the year 2000, genomic and other “omics” data have accumulated for
C. glutamicum, profoundly affecting strain development methods and providing a
global understanding of the physiology, regulatory networks, and unknown func-
tions of this microbe as well as the mechanisms underlying hyperproduction
(Wittmann and Heinzle 2002; Ikeda and Nakagawa 2003; Kalinowski et al. 2003;
Strelkov et al. 2004; Yukawa et al. 2007; Ikeda 2017; Yokota and Ikeda 2017;
Becker et al. 2018). As a result, the targets of metabolic engineering have expanded
beyond the core biosynthetic pathways leading to amino acids of interest into entire
cellular systems including cofactor-regeneration systems, uptake and export sys-
tems, energy metabolism, global regulation, and stress responses. Such global and
systematic metabolic engineering has repeatedly led to successful yield improve-
ments for amino acid production by C. glutamicum (Eggeling and Bott 2005;
Wendisch 2007; Burkovski 2008; Mitsuhashi 2014; Yokota and Ikeda 2017; Becker
et al. 2018). In addition, the product spectrum of C. glutamicum has also been
expanded, and metabolic engineering has been applied to the production of amino
acids that formerly could not be produced effectively from glucose, such as serine,
methionine, and cysteine. The present chapter describes the technologies and strat-
egies that have been used in strain development in recent years, then reports the latest
findings on rational metabolic engineering of C. glutamicum to develop efficient
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amino acid producers. Representative work using other bacteria, such as Escherichia
coli and Pantoea ananatis, is also included for reference.

2 Recent Technologies for Strain Development

The focus in strain development technologies after the year 2000 has been directed to
the development of new methodologies and tools employing genomic information,
multi-omics data, bioinformatics, systems and synthetic biology, high-throughput
single cell screening, and so on. These efforts have led to the development of several
powerful new approaches, such as “systems metabolic engineering”, “genome
breeding”, and “biosensor-driven single cell screening”, which has rejuvenated
strain development for amino acid production. Such new approaches for strain
development in C. glutamicum are highlighted here.

2.1 From Genome to Producers

Advances in microbial genomics have dramatically transformed our approaches to
strain development. Their largest benefit to this field is obviously the availability of
high-throughput DNA sequencing, which has made it feasible to decode the
genomes of classical industrial producers and thereby to identify important genetic
traits that distinguish them from their wild-type ancestors. As a result, the conven-
tional style of selecting improved strains by their phenotypes, formerly the standard
practice in the industry, is rapidly being replaced by a new method called “genome
breeding” (Fig. 4), where desirable genotypes are systematically assembled in a
wild-type genome (Ohnishi et al. 2002; Ikeda et al. 2006; Lee et al. 2012; Kim et al.
2013; Wu et al. 2015; Ma et al. 2018). The strains reconstructed from scratch
through genome breeding can be more robust, give higher fermentation yields in
less time, and resist stressful conditions better than classical industrial producers
(Ohnishi et al. 2003). Meanwhile, microbial genomics allows in silico reconstruction
of the whole metabolic map of a relevant microorganism. In fact, the genome
information that is now available for a diverse variety of microorganisms has already
revealed the numerous metabolic pathways that sustain their lives. This is now
opening the way for the creation of a new methodology centered around redesigning
a particular metabolic pathway in a desired microorganism on the model of one of
the other metabolic pathways for which information is now publicly available. One
example of this practice is the recent re-engineering of ‘Glutamic acid bacteria’ on
the model of the unique redox metabolism seen in ‘Tooth decay bacteria’ (Takeno
et al. 2010, 2016). Here, the two approaches, genome breeding and metabolic
redesign, are described to show how we can take advantage of genome information
to enable more efficient amino acid production.

Recent Advances in Amino Acid Production 179



2.1.1 Genome Breeding

Because classical strain breeding is based on random mutation and selection, we
cannot eliminate the possibility that this method will introduce detrimental or
unnecessary mutations into a genome. Genome breeding methodology, however,
can overcome this limitation. In this program, biotechnologically useful mutations
identified through the genome analysis of classical mutants are systematically
introduced into the wild-type genome in a pinpointed manner (Ikeda et al. 2005),
thus allowing the creation of a defined mutant that carries only useful mutations
(Figs. 4 and 5). As an example, one industrial lysine producer that had undergone
years of mutagenesis and screening was found to have more than 1000 mutations
accumulated in its genome (Ikeda 2017). Among these, only six mutations were
identified as positive mutations for lysine production; two (hom59 and lysC311) that
are located in the terminal pathway to lysine (Ohnishi et al. 2002), three (pyc458,
gnd361, and mqo224) that are involved in central metabolism (Ohnishi et al. 2002,
2005; Mitsuhashi et al. 2006), and one (leuC456) that causes global induction of the
amino acid-biosynthetic genes and thereby further increases production (Hayashi
et al. 2006a). The assembly of these six useful mutations in a robust wild-type strain
of C. glutamicum (Fig. 5a) was shown to substantially improve producer perfor-
mance, resulting in a final titer of 100 g/L after 30 h of 5-L jar fermentor cultivation
at a suboptimal temperature of 40 �C (Ohnishi et al. 2003; Ikeda et al. 2006).

The usefulness of the genome breeding approach has been also demonstrated in
the production of arginine and citrulline (Ikeda et al. 2009, 2010a). In this case, the
assembly of three positive mutations (argB26, ΔargR, and argB31) derived from
three different lines of classical producers in a single wild-type background (Fig. 5b)
has led to the new strain RBid, characterized by dramatically increased productivity

Producer 
genome

Wild-type 
genome

Comparing
two sequences

Identifying
mutations

Assembling beneficial mutations
in the wild-type background

Industrial
producer

?
Unnecessary mutations Beneficial mutations

Reverse engineering step Reengineering step

Fig. 4 The “genome breeding” methodology for the creation of defined mutants that carry only
beneficial mutations. This methodology starts with decoding the genomes of classical industrial
producers to identify the important genetic traits that distinguish them from their wild-type
ancestors (the Reverse engineering step) and progresses to systematically assembling the beneficial
genetic properties in a single wild-type background (the Reengineering step)
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of arginine and citrulline compared with the best classical producer, A-27, even at
the suboptimal temperature of 38 �C (Fig. 6). In this approach, not only identification
of beneficial mutations but also screening for the specific host that will give the best
performance is an important consideration because the wild-type background can
have a significant impact on the ultimate outcome (Ohnishi and Ikeda 2006; Ikeda
et al. 2009). The host strain into which the three mutations were incorporated was
ATCC 13032, which was identified through screening from among several
C. glutamicum wild-type strains as the strain with the highest potential for industrial
arginine/citrulline production at elevated temperatures (Ikeda et al. 2009). If another
wild-type strain had been used as the host, the result would have been unsatisfactory.

2.1.2 Metabolic Redesign

Progress in genomics has made it possible to construct an organism’s entire metabolic
map in silico. Diverse metabolic pathways of approximately 3500 bacterial species
have already been constructed and are available at the Kyoto Encyclopedia of Genes
and Genomes (http://www.kegg.jp/kegg-bin/get_htext?htext¼br08601_map00010.
keg&hier¼5) (Kanehisa et al. 2014). Most well-known bacteria possess the complete
pentose phosphate pathway which enables them to generate NADPH as a reducing
power. In some unique microorganisms, however, the database has revealed a
defective pentose phosphate pathway. One such microorganism is Streptococcus
mutans, a tooth decay bacterium reportedly harboring an unusual glycolytic pathway
that can generate NADPH at the step of glyceraldehyde 3-phosphate dehydrogenase

Wild Classical producer

New producer

Beneficial mutations
a,  b,  c

Classical producer X

A. Reengineering of lysine producer 

Classical producer Z

Classical producer Y

B. Reengineering of arginine and citrulline producer 

Wild

Wild

Wild

Wild

Wild New producer

Fig. 5 Reengineering of a
lysine producer (a) and an
arginine and citrulline
producer (b). In the case of
the new lysine producer, six
beneficial mutations
identified from the genome
of a classical lysine producer
were assembled in a single
wild-type background
(Ikeda et al. 2006), while the
new arginine and citrulline
producer was created by
assembly of three positive
mutations derived from
three different lines of
classical producers (Ikeda
et al. 2009)
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(Fig. 7). Based on these findings, an attempt has been made to recreate the S. mutans-
type NADPH-generating glycolytic pathway in C. glutamicum (Takeno et al. 2010,
2016). In this study, endogenous NAD-dependent glyceraldehyde 3-phosphate dehy-
drogenase (GapA) of C. glutamicum was replaced with nonphosphorylating NADP-
dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) of S. mutans (Fig. 8).
Unfortunately, the resulting strain (RE2) exhibited severely retarded growth, proba-
bly because the engineering attempt had favored the generation of reducing power
while theoretically restricting ATP generation. The strategy for solving this problem
was to use GapA together with GapN in the early growth phase where more ATP is
required for growth, and thereafter to shift the combination-type glycolytic pathway
to one that depends only on GapN for production in the subsequent growth phase
(Fig. 8). To achieve this, the gene for GapA was expressed under the myo-inositol-
inducible promoter of iolT1 encoding a myo-inositol transporter. In strain RE2Aiol

which was thus engineered, a well-balanced use of GapA and GapN has led to both
improved growth and high-level lysine production. Moreover, it has been demon-
strated that blockade of the oxidative pentose phosphate pathway through a defect in
glucose 6-phosphate dehydrogenase did not significantly affect lysine production in
the engineered strain (Fig. 8), while a drastic decrease in lysine production was
observed for the reference strain (Takeno et al. 2016). This study was the first to
demonstrate efficient lysine production independent of the oxidative pentose phos-
phate pathway.
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2.2 Systems Metabolic Engineering

The cumulative body of knowledge on cellular metabolism and physiological
properties of amino acid-producing microorganisms was combined with “omics”
technologies and computational methods, including metabolic flux profiling and in
silico modeling, to facilitate metabolic engineering in a systematic and global
manner (Dai and Nielsen 2015; Hirasawa and Shimizu 2016; Ma et al. 2017; Lee
and Wendisch 2017; Zhang et al. 2017b; Becker et al. 2018). This “systems
metabolic engineering” approach is particularly useful for predicting a combination
of genetic modifications that would lead to the theoretically best flux scenario for
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amino acid production. Several applications of this have recently led to the success-
ful creation of efficient amino acid producers in both C. glutamicum and E. coli.

Becker et al. (2011) used flux model analysis with a genome-scale metabolic
model to predict the target steps to be modified for optimum lysine production by
C. glutamicum. Ultimately, this analysis identified twelve stages of modifications to
a wild-type genome resulting in the lysine hyper-producer LYH-12 (Fig. 9), which
can achieve a final titer of 120 g/L with a conversion yield of 55% on glucose after
30 h of 5-L jar fermentor cultivation at 30 �C. Among the twelve modifications were
six (introduction of the lysC311 and hom59 mutations, duplication of the ddh and
lysA genes, and overexpression of the lysC and dapB genes under a strong promoter)
that cause increased flux through the lysine biosynthetic pathway, three (introduction
of the pyc458mutation, overexpression of the pyc gene under a strong promoter, and
deletion of the pck gene) that cause increased flux towards oxaloacetate through
anaplerotic carboxylation, two (overexpression of the fbp gene and the zwf-opcA-tkt-
tal operon under strong promoters) that cause increased flux through the pentose
phosphate pathway for NADPH supply, and one (replacement of the start codon
ATG by the rare GTG in the icd gene) that causes reduced flux through the TCA
cycle and thereby increases the availability of oxaloacetate.

Lee et al. (2007) and Park et al. (2007a) reported the strategies for systems
metabolic engineering of E. coli for the production of threonine and valine, respec-
tively. For threonine production, the target genes to be engineered were identified
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through transcriptome profiling and in silico flux response analysis, ultimately
resulting in construction of a defined threonine hyper-producer that can achieve a
final titer of 82.4 g/L with a conversion yield of 39.3% on glucose after 50 h of
fed-batch culture (Lee et al. 2007). For valine production, likewise, in silico gene
knockout simulation identified three target genes to be disrupted, leading to the
design of an efficient valine producer (Park et al. 2007a).

2.3 Biosensor-Driven Single Cell Screening

Since rational strain improvement generally depends on known genetic information,
relying on this approach alone can cause researchers to miss unknowns, which are
often difficult to predict. For this reason, the classical approach consisting of
multiple rounds of random mutation and screening is still significant for strain
improvement. The classical approach also offers opportunities to find novel infor-
mation applicable to the rational approach. Yet screening almost always requires the
cultivation and subsequent productivity analysis of individual mutants, which
requires considerable time, labor, and cost. Biosensor-driven single cell screening
is a technique that allows researchers to overcome such disadvantages and thereby
accelerate strain improvement. The major technique that has been applied to
C. glutamicum is based on the principle that transcriptional regulators (TRs) activate
expression of their target gene fused to a reporter gene eyfp (encoding enhanced
yellow fluorescent protein, eYFP) in response to intracellular concentration of a
specific metabolite. This setup enables translation of the intracellular metabolite
concentration into a fluorescent output and the high-throughput screening of single
cells via fluorescence-activated cell sorting (FACS). The representative achieve-
ments have been performed using the homologous TRs: LysG and Lrp (Fig. 10).

In response to cytosolic concentrations of basic amino acids such as lysine,
arginine, or histidine, LysG activates expression of the lysE gene encoding an
exporter for lysine and arginine (Bellmann et al. 2001). A plasmid containing the
eyfp gene under the control of the promoter of the lysE gene enables the translation of
the intracellular lysine concentration into a fluorescent signal (Binder et al. 2012). A
mutant library consisting of 7 � 106 cells obtained from wild-type C. glutamicum
ATCC 13032 carrying this plasmid was subjected to FACS analysis, which resulted
in the isolation of 185 lysine-producing mutants. It should be noted that increased
intracellular concentration of lysine correlates with its increased concentration in the
culture supernatant. Whole-genome sequencing of the mutants revealed novel muta-
tions in the murE gene encoding UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-
diaminopimelate ligase that utilizes D, L-diaminopimelate as a substrate in the lysine
synthetic pathway. One of these mutations, mutation murEG81E, was introduced into
the genome of the defined lysine producer C. glutamicum DM1933 (Blombach et al.
2009b) where it increased lysine production by approximately 1.3-fold on glucose
(Binder et al. 2012). The LysG-based biosensor has also been utilized to isolate less-
feedback variants of key enzymes in lysine, arginine, and histidine biosynthesis
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(Schendzielorz et al. 2014). This technique was performed on a mutant library
consisting of approximately 2.2 � 106 cells of the C. glutamicum ΔargR strain
carrying a plasmid containing a randomly mutated argB gene encoding N-acetyl-L-
glutamate kinase. Analysis of 96 selected positive cells revealed the presence of
ArgB variants. The argB gene, which was modified based on information on these
variants, encoded a feedback-resistant enzyme to inhibition by arginine and allowed
the ΔargR strain to produce 35 mM arginine on glucose (Schendzielorz et al. 2014).
A similar approach has identified feedback-resistant variants of aspartate kinase
(LysC) and ATP phosphoribosyl transferase (HisG), which are key enzymes in
lysine and histidine biosynthesis, respectively, and revealed that these mutations
lead to the production of the respective amino acids by the wild-type strain
(Schendzielorz et al. 2014).

Another representative example of biosensor-driven single cell screening is based
on the transcriptional regulator Lrp. Lrp activates expression of the brnFE operon
encoding the export system for valine, leucine, isoleucine, and methionine in
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Fig. 10 Biosensors using transcriptional regulators LysG (a) and Lrp (b). The biosensors are based
on the principle that transcriptional regulators activate the target gene fused to a reporter gene eyfp
in response to intracellular concentration of each effector metabolite. Eventually, increased intra-
cellular concentration of the metabolite is reflected as increased fluorescence, which enables
screening of single cells by fluorescence-activated cell sorting (FACS). (a) LysG activates expres-
sion of the lysE gene in the presence of increased levels of the effectors lysine, arginine, or histidine.
(b) Lrp activates expression of the brnFE operon in the presence of increased levels of valine,
leucine, isoleucine, or methionine
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response to intracellular concentration of these amino acids (Lange et al. 2012). By a
principle similar to that of the LysG-based biosensor, the Lrp-based biosensor led to
the isolation of five mutants that produced different amounts of valine, leucine, and
isoleucine from a random mutant library of wild-type ATCC 13032 (Mustafi et al.
2012). The Lrp-based approach has also been utilized for adaptive laboratory evolu-
tion for valine production. An evolved consortium originating from the
C. glutamicum ΔaceE strain and having gone through five iterative evolution steps
exhibited a higher growth rate, up to 25% increased valine production, and three- to
four-fold decreased production of the by-product alanine. Genome sequencing of a
single isolate revealed a loss-of-function mutation in the ureD gene encoding the
urease accessory protein, and introduction of this mutation into the non-evolved
ΔaceE strain resulted in an increase in valine production up to two-fold (Mahr
et al. 2015).

Very recently, TR-based biosensors coupled with FACS for C. glutamicum have
been expanded to detection of shikimic acid, serine, and cAMP. The shikimic acid
biosensor is based on the transcriptional regulator ShiR (Kubota et al. 2015). This
was utilized in the screening of a ribosome binding site (RBS) library for the tktA
gene encoding transketolase, an enzyme that catalyzes the formation of erythrose-4-
phosphate, a precursor of shikimic acid, and in the identification of a useful RBS
sequence for improved shikimic acid production (Liu et al. 2018a). In contrast, the
serine biosensor employs the transcriptional regulator NCgl0581 (Binder et al.
2012). This system was used to screen the random mutant library of a serine-
producing C. glutamicum strain that was obtained through a combination of random
mutagenesis and rational engineering, which resulted in the isolation of a mutant
with 1.3-fold higher serine production than its parental strain (Zhang et al. 2018e).
The mutant produced 35 g/L of serine with a conversion yield of 35% on sucrose
after 120 h of batch culture (Zhang et al. 2018e). Although all of the TRs described
above bind with the corresponding effectors and thereafter can activate expression of
the reporter gene, the cAMP sensor is composed of the transcriptional regulator
GlxR and a promoter repressed by cAMP-bound GlxR. This biosensor has been used
successfully to separate cells with different cAMP levels (Schulte et al. 2017).

3 Current Status of Amino Acid Production

Recently, various genetic engineering tools and global analysis techniques for
C. glutamicum as well as high-throughput genomic analysis technologies have
been successfully applied and have contributed both to the understanding of the
molecular mechanisms underlying high-level production and to the development of
more advanced production strains of this microbe. At the same time, the new
approaches to strain development such as genome breeding and systems metabolic
engineering have allowed the creation of nearly optimal genetically defined and
industrially competitive producers from scratch. Here, the current status of produc-
tion of various amino acids by C. glutamicum is highlighted, with a special focus on
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the amino acids whose production methods have been significantly advanced in the
2000s. These include glutamate, lysine, arginine, citrulline, ornithine, the branched-
chain amino acids valine, leucine, and isoleucine, and the sulfur-containing amino
acids methionine, S-adenosyl-methionine, and cysteine. Tryptophan is also included
because the scale of its market has been growing rapidly. Production technology
aimed at other industrially important amino acids such as serine, alanine, and
threonine has been omitted because it was discussed in the first edition of this
book and/or other publications (Ikeda 2003, Willis et al. 2005; Sprenger 2007;
Rieping and Hermann 2007; Dong et al. 2011; Ikeda and Takeno 2013; Yokota
and Ikeda 2017).

3.1 Glutamate

Since the discovery of C. glutamicum as a producer of the food flavoring monosodium
glutamate, commercial production of glutamate has been conducted using this microbe
exclusively. The industrial glutamate titer is assumed to exceed 150 g/L (Sanchez et al.
2018) with an estimated production yield towards sugar of almost 70%. The global
demand for monosodium glutamate amounted to over three million tons in 2016
(Ajinomoto 2016; Sanchez et al. 2018) and is expected to surpass four million tons
by 2023 (Global market insights 2016). Glutamate production by C. glutamicum is
induced by biotin limitation or by treatment with certain fatty acid ester surfactants or
with β-lactam antibiotics such as penicillin. Although induction treatment is the core
technology involved in industrial glutamate production processes, the molecular basis
of the induction of glutamate secretion was long unknown. In recent years, however, a
valuable insight into the secretion mechanism has been gained with the identification
of the NCgl1221 gene product as a glutamate exporter (Nakamura et al. 2007). An
intriguing finding is that only a specific point mutation in the NCgl1221gene resulted
in glutamate secretion without any induction treatments. It has also been shown that
amplification of the wild-type NCgl1221gene increases glutamate secretion while its
disruption substantially abolishes secretion accompanied by an increase in the intra-
cellular glutamate pool under the induction conditions mentioned above. The gene in
question encodes the YggB protein, which was originally described as a putative
mechanosensitive channel (Nottebrock et al. 2003). Later electrophysiological studies
using an E. coli or Bacillus subtilis strain devoid of mechanosensitive channels
indicated that the NCgl1221 gene product actually possesses the activity of a
mechanosensitive channel (Börngen et al. 2010; Hashimoto et al. 2010). It has also
been shown that glutamate excretion through the channel was mediated by passive
diffusion (Hashimoto et al. 2012), while carrier-mediated glutamate secretion by
C. glutamicum was shown to be energy-dependent (Gutmann et al. 1992). Based on
this possible function as a mechanosensitive channel, the following mechanism has
been proposed: the induction conditions, such as biotin limitation and penicillin
treatment, alter membrane tension by inhibiting lipid or peptidoglycan synthesis.
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This triggers conformational changes in the NCgl1221 gene product, which in turn
enables the protein to export glutamate (Fig. 11).

Very recently, a different type of mechanosensitive channel was identified as a
second glutamate exporter in some limited strains of C. glutamicum (Wang et al.
2018b). Although the channel MscCG2 shares only 23% identity with the NCgl1221
gene product, both channels have an important common feature: they need to be
activated for glutamate production by the alteration of membrane tension, which is
triggered by biotin limitation or penicillin treatment. This observation raises the
question of how the new model may be congruent with the accepted notion that a
decrease in the activity of the 2-oxoglutarate dehydrogenase complex (ODHC) is
crucial for glutamate production (Shingu and Terui 1971; Kawahara et al. 1997;
Kimura 2003; Asakura et al. 2007; Kim et al. 2009a, b). Although the new model
seems to explain the basics of the mechanism underlying the induction of glutamate
secretion, it is probably not sufficient to explain the entire process of glutamate
production by C. glutamicum. Recently, a possible connection at a molecular level
has been uncovered between ODHC activity and glutamate production (Fig. 11). A
novel 15 kDa protein known as OdhI was identified as a regulator of ODHC
(Niebisch et al. 2006). The unphosphorylated form of OdhI binds to the OdhA
protein, one of the subunits of ODHC, and inhibits ODHC activity. This inhibition
can be prevented by the PknG-catalyzed phosphorylation of OdhI. A phospho-
serine/threonine protein phosphatase responsible for dephosphorylation of OdhI
has also been identified (Schultz et al. 2007). Interestingly, disruption of the odhI
gene was shown to abolish glutamate production even under the induction condi-
tions (Schultz et al. 2007), suggesting a close relationship between the regulator
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protein and the reduction of ODHC activity that occurs during glutamate production.
It is also worth noting that proteome analyses have revealed a significant increase in
the OdhI protein upon penicillin treatment, which has become a conventional
industrial method of triggering glutamate production (Kim et al. 2009a, b). These
findings have confirmed the existence of a connection between ODHC activity and
glutamate production, but it should be noted that an ODHC-activity-reducing met-
abolic change alone is not sufficient to induce glutamate production (Kim et al.
2009a, b).

Taken together, the evidence to date suggests a link between the induction
treatments, such as biotin limitation and penicillin treatment, and glutamate produc-
tion. In our proposed mechanism, the induction treatments enhance the synthesis of
the regulator protein OdhI in its unphosphorylated form and thereby inhibit ODHC
activity. This causes a metabolic shift at the branch point of 2-oxoglutarate, which
channels carbon toward glutamate. Intracellularly-accumulated glutamate is then
secreted into the medium via the NCgl1221 gene product YggB which has been
activated in response to altered membrane tension (Fig. 11). Questions for the future
include why and how the OdhI protein is overexpressed in response to the induction
treatment and what conditions are required for the phosphorylation and dephosphor-
ylation of OdhI.

Acetylome and succinylome analyses of glutamate-producing C. glutamicum
have suggested that protein acetylation and succinylation are involved in glutamate
production through the post-translational control of key enzymes such as phospho-
enolpyruvate carboxylase (PPC) and ODHC (Mizuno et al. 2016). It has been shown
that acetylation of PPC at lysine 653 caused decreased enzymatic activity, resulting
in reduced glutamate production (Nagano-Shoji et al. 2017). On the contrary,
deacetylation of the lysine residue has been suggested to improve glutamate pro-
duction through activation of PPC because the increase in PPC activity during
glutamate production was canceled by the defect of the deacetylases (Nagano-
Shoji et al. 2017).

Continuous efforts have been made not only to understand glutamate production
but also to improve the process. In addition to the general approaches, in which
metabolic fluxes are directed into glutamate (Kimura 2003; Sato et al. 2008; Sawada
et al. 2010), an innovative metabolic design allowing an increased maximum
theoretical yield has recently been reported (Chinen et al. 2007). Glutamate biosyn-
thesis from glucose in C. glutamicum is inevitably associated with the release of CO2

in the pyruvate dehydrogenase reaction, but the creation of a novel metabolic route
by installing the phosphoketolase pathway of Bifidobacterium animalis allowed the
CO2-releasing pyruvate dehydrogenase reaction to be bypassed via acetyl phos-
phate, and thereby led to increased glutamate production coupled with the suppres-
sion of CO2 emission. On the other hand, expression of the Vitreoscilla hemoglobin
gene vgb under a tac promoter in a wild-type C. glutamicum strain has been shown to
increase glutamate production in both shake-flask and fermentor cultivations (Liu
et al. 2008), probably due to the enhancement of respiration by the hemoglobin
(Webster 1987; Kallio et al. 1994; Zhang et al. 2007). Very recently, a Chinese
group has demonstrated efficient glutamate production in the biotin-excessive corn
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stover hydrolysate (lignocellulose biomass). To achieve this, an industrial strain of
C. glutamicum was improved by two genetic modifications, that is, (1) truncating
C-terminal amino acid residue of the mechanosensitive channel NCgl1221, leading
to activation of glutamate secretion without any induction treatments, and (2) engi-
neering odhA ribosome-binding site, leading to decreased ODHC activity. The
engineered strain XW6 achieved a final titer of 65.2 g/L with a yield of 63% after
48 h of 3-L jar fermentor cultivation using corn stover hydrolysate as the feedstock
(Wen and Bao 2019).

Aside from C. glutamicum, Ajinomoto isolated the gram-negative acid-tolerant
bacterium Pantoea ananatis AJ13355 to generate a glutamate producer (Hara et al.
2012). This producer was shown to allow glutamate fermentation to be conducted
under acidic conditions (pH 3–5) where the solubility of glutamate is low, leading to
a new process called “glutamate crystallization fermentation” (Izui et al. 2006,
Usuda et al. 2017). This new type of fermentation is considered to reduce the
amounts of alkali (e.g., ammonia) and acid (e.g., sulfuric acid or hydrochloric
acid) during the fermentation and subsequent purification steps, respectively, and
also the amounts of by-product salts such as ammonium sulfate. This means that the
new process is expected to decrease not only production costs but also the burden on
the environment, thus indicating its potential as a sustainable production process.

3.2 Lysine

Lysine, an essential amino acid for animals, has significant commercial value as a
feed additive to promote the growth of animals including swine and poultry, and thus
is the second-ranking amino acid after glutamate in terms of worldwide annual
production. Lysine is also used as a fish feed additive because it is generally the
first limiting essential amino acid in many protein sources used in fish feeds (Hua
2013). The scale of the lysine market has been estimated at approximately 2.3
million tons in 2016 (Ajinomoto 2016) and is still growing at annual rates of around
10% (Ikeda 2017). As the scale of production has increased, lysine prices per
kilogram have dropped to around US$1.4 (Ajinomoto 2016), fluctuating between
US$1.2 and 2.5 over the past decade (Ajinomoto 2016; Eggeling and Bott 2015;
Ikeda 2017), depending largely on competition from natural lysine sources such as
soybean meal and sardine. The main suppliers are CJ CheilJedang (South Korea),
Global Bio-Chem Technology Group (China), Ajinomoto (Japan), Archer Daniels
Midland (USA), and Evonik Industries (Germany), among others (Eggeling and Bott
2015). Major commercial plants are located in the respective corn belts in China,
North America, Brazil, Indonesia, and Russia. Because of the growing market for
lysine, exhaustive studies have been undertaken in an attempt to engineer the
metabolism of C. glutamicum for lysine production (Ikeda 2017). These studies
have resulted in several effective strategies for rational strain improvement, includ-
ing engineering of terminal pathways (Shiio and Miyajima 1969; Sano and Shiio
1971; Kase and Nakayama 1974), central metabolism (Petersen et al. 2001; Peters-
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Wendisch et al. 2001; Riedel et al. 2001; Shiio et al. 1984; Becker et al. 2009; Chen
et al. 2014; Blombach et al. 2007b; Radmacher and Eggeling 2007; van Ooyen et al.
2012; Mitsuhashi et al. 2006), NADPH-regeneration systems (Marx et al. 2003;
Becker et al. 2005, 2007; Ohnishi et al. 2005; Kiefer et al. 2004; Moon et al. 2005;
Takeno et al. 2010, 2016; Komati Reddy et al. 2015; Bommareddy et al. 2014;
Kabus et al. 2007a; Xu et al. 2014c, 2018b, c), export systems (Burkovski and
Krämer 2002; Vrljić et al. 1996), glucose uptake systems (Ikeda et al. 2010b, 2011,
2015; Lindner et al. 2011a, b; Ikeda 2012), energy metabolism (Bott and Niebisch
2003; Kabus et al. 2007b), and global regulation (Burkovski 2008; Brockmann-
Gretza and Kalinowski 2006; Krömer et al. 2004, 2008; Hayashi et al. 2006a, b). In
addition, recent genome-based and systems-level approaches such as genome breed-
ing (Ohnishi et al. 2002; Ikeda et al. 2006) and systems metabolic engineering
(Becker et al. 2011) have led to lysine producers with superior production perfor-
mance in terms of yield, titer, and productivity, as described earlier in this chapter.

A genome-scale model of the C. glutamicum metabolic network has been
constructed based on the annotated genome, available literature, and various
“omic” data (Kjeldsen and Nielsen 2009). The constructed metabolic model consists
of 446 reactions and 411 metabolites; the predicted metabolic fluxes during lysine
production and growth under various conditions are highly consistent with experi-
mental values. The ability to predict the metabolic state associated with maximum
production yield can be used to guide strain engineering. This strategy has been
proven through the rational design of high lysine-producing strains of C. glutamicum
(Krömer et al. 2004; Becker et al. 2005; Wendisch et al. 2006).

Recently, Chinese groups have dramatically improved lysine productive perfor-
mance of C. glutamicum by rational metabolic engineering (Xu et al. 2013,
2014a, b, c, 2018a, b, c). Seventeen stages of modification to a wild-type genome,
aimed at increasing the carbon flow into the lysine-biosynthetic pathway, have led to
the lysine hyper-producer Lys5-8, which achieved a final lysine titer of 130.82 g/L
(163.52 g/L as lysine hydrochloride) with a conversion yield of 47.06% on glucose
after 48 h of 7-L jar fermentor cultivation (Xu et al. 2014b). Very recently, different
lines of lysine hyper-producers have been rationally constructed from a classical
lysine producer. These include strains JL-6 ΔdapB::Ec-dapBC115G, G116C (Xu et al.
2018b) and JL-69Ptac-Mgdh (Xu et al. 2018a). The typical strategy, used to create the
former strain, was to lower dependency on NADPH during lysine biosynthesis. For
this purpose, the NADPH-dependent DapB gene was replaced with an E. coli gene
encoding a mutant type of NADH-dependent DapB to switch its nucleotide-cofactor
specificities from NADPH to NADH, leading to an increase in final lysine titer from
82.6 to 117.3 g/L, an increase in conversion yield on sugar from 35 to 44%, and an
increase in productivity from 2.07 to 2.93 g/L/h in 5-L jar fermentor cultivation. The
latter strain, in contrast, was created by optimizing the carbon flux through the TCA
cycle to balance cell growth and availability of oxaloacetate and glutamate for lysine
biosynthesis from the viewpoint of maximizing precursor supply. Rational engineer-
ing of the phosphoenolpyruvate-pyruvate-oxaloacetate node and the TCA cycle, as
well as the suitable feeding of biotin, has resulted in a final lysine titer of 181.5 g/L
with a conversion yield of 64.6% on sugar after 48 h (productivity of 3.78 g/L/h) in
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5-L jar fermentor cultivation. On the other hand, a classically derived lysine-
producing mutant of C. glutamicum was improved by engineering glucose uptake
systems. Adequate expression of the bypasses for glucose uptake (IolT1, IolT2, and
PpgK), in addition to the native phosphoenolpyruvate-dependent sugar
phosphotransferase system (PTSGlc), in the strain has resulted in the lysine hyper-
producer ZL-92, which achieved a final lysine titer of 201.6 g/L with a conversion
yield of 65% on glucose after 40 h (productivity of 5.04 g/L/h) in 5-L jar fermentor
cultivation (Xu et al. 2019). An outline of the metabolic engineering strategies by
which these lysine hyper-producers were generated is schematically shown in
Fig. 12.

The main feedstocks for lysine production by C. glutamicum are sugars from
agricultural crops, such as cane molasses, beet molasses, and starch hydrolysates
(glucose) from corn and cassava, but it is becoming necessary to engineer the use of
alternative raw materials, in particular, materials that do not compete with human
food or energy sources. To reduce the environmental impact of lysine production,
C. glutamicum strains have been constructed that can utilize whey, which contains
lactose and galactose (Barrett et al. 2004); glycerol, the main by-product of biodiesel
production (Rittmann et al. 2008); lignocellulose, which contains the pentoses
xylose and arabinose (Kawaguchi et al. 2006, 2008); and rice straw hydrolysate
(Meiswinkel et al. 2013), though there are still technical challenges related to
upstream raw material processing and carbon use efficiency. In addition to these
attempts to employ nonedible second-generation renewables, there is an increasing

Glucose

Pyruvate

pyc

pck PEP

G6P

F6P

G3P

*

* Deregulation or Modification

Interruption or Attenuation 

Overexpression 

Asp

AspP

ASAThr

Lysine

DL-DAP

PDC

Lysine

ddh

lysA

hom

lysC
*

dapA

asd

Glu
gdh

1, 3BPG

NAD

NADH
gapA gapCNADP

NADPH

Acetyl-CoA

Lactate

Alanine
avtA

alaT

ldhAaceE

Glu

αKG

NADPH

NADP
dapB EdapB

NADH

NAD
*

ppc

αKG

CitgltAOxaloacetate

Malate
mdh

iolT1/2

ppgk

Fig. 12 Outline of metabolic engineering disclosed by the Chinese groups for lysine production

194 M. Ikeda and S. Takeno



interest in the development of a lysine production process using mannitol, a major
constituent of marine microalgae (seaweed), as a third-generation renewable
resource that might be more efficiently and sustainably supplied from ocean farms
(Hoffmann et al. 2018). The sugar alcohol mannitol can be metabolized into lysine
by an engineered C. glutamicum strain that expressed the NADP-dependent glycer-
aldehyde 3-phosphate dehydrogenase (GapN) of S. mutans so as to couple the
glycolysis to NADPH formation, resulting in a lysine yield of 0.24 mol/mol and a
productivity of 1.3 mmol/g/h.

In addition to strain engineering, continuous improvement of the process and the
development of a comprehensive methodology for assessing the process (Anaya-
Reza and Lopez-Arenas 2017) have resulted not only in fermentation processes with
increased product yields and reduced loads on downstream processing, but also in
the commercialization of various product forms for novel intended uses (Hirao et al.
1989; Ikeda 2003, 2017; Kelle et al. 2005; Kobayashi et al. 2011). Meanwhile,
anaerobic production of lysine through a C. glutamicum process remains a great
challenge, though several attempts, including the operation of a nitrate respiration
system (Nishimura et al. 2007; Takeno et al. 2007) and the use of an anode such as
ferricyanide as the extracellular electron carrier (Xafenias et al. 2017; Vassilev et al.
2018), have indicated that it may be possible to turn an aerobic production process
into an anaerobic process.

3.3 Arginine, Citrulline, and Ornithine

Arginine, a semi-essential amino acid, has lately attracted considerable attention for
being a precursor to nitric oxide (NO), a key component of endothelial-derived
relaxing factor (Appleton 2002). Citrulline and ornithine, precursors of arginine
biosynthesis as well as intermediates in the urea cycle, are also important for
human health since they are sources of endogenous arginine in the body (Hayashi
et al. 2005, 2006c; Curis et al. 2007; Ochiai et al. 2012; Mori et al. 2015). As the
economic values of these amino acids have increased, considerable attention has
been given to improving our understanding of their metabolism in microbes
(Utagawa 2004; Glansdorff and Xu 2007; Lee et al. 2010; Petri et al. 2013; Huang
et al. 2015, 2016; Lubitz et al. 2016). In parallel, increasing efforts have been
directed to the development of more efficient production strains by using recent
technologies for strain development. For example, the genome breeding approach
has been successfully applied to develop an arginine and citrulline producer from a
C. glutamicum wild-type strain, as described earlier in this chapter (Ikeda et al.
2009). The reengineered strain was constructed by assembling just three mutations
(argB26, ΔargR, and argB31) derived from three different lines of classical pro-
ducers, resulting in a final titer of over 80 g/L (as a sum of arginine and citrulline) in
30 h of 5-L jar fermentor cultivation at a suboptimal temperature of 38 �C (Fig. 5b
and 6).
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Recently, a classically derived arginine-producing mutant of C. glutamicum was
improved through stepwise metabolic engineering, including deregulation of argi-
nine biosynthesis, increased NADPH availability, disruption of the glutamate
exporter, and adequate modifications of the terminal pathway (Fig. 13). This sys-
tematic approach has ultimately led to the arginine hyper-producer AR6, which
achieved a final titer of 92.5 g/L with a conversion yield of 40% on glucose plus
sucrose after 72 h of 5-L jar fermentor cultivation (Park et al. 2014). It is notable that
citrulline by-production was not observed in the fermentation.

Likewise, a Chinese group has employed a similar metabolic engineering strategy
for the development of the C. glutamicum arginine hyper-producer Cc6 (Fig. 13),
which achieved a final titer of 87.3 g/L with a yield of 43.1% on glucose after 72 h of
5-L jar fermentor cultivation (Man et al. 2016b). They have also shown that
modifications leading to decreased H2O2 synthesis and increased NADH and ATP
levels contribute to improved arginine production (Man et al. 2016a).

Meanwhile, a German group took a different approach to developing producers of
arginine, citrulline, and ornithine (Jensen et al. 2015). They first constructed the
C. glutamicum ornithine-producing strain ORN2 (ΔargF, ΔargR, ΔargG) as a
platform strain for subsequent development. Additional modifications, including
deregulation of ArgB, overexpression of gdh, attenuation of pgi, and duplication
of argCJB, resulted in the ornithine hyper-producer ORN6 with a yield of 52% on
glucose. This ornithine hyper-producer was then converted into strains capable of
producing citrulline (a yield of 41%) and arginine (a yield of 30%) by plasmid-
mediated overexpression of argFB and argGFB, respectively. It is worth noting that
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the two specific mutations (A49V, M54 V) used for deregulation of ArgB are the
same as those originally identified from the genomes of classical arginine producers
during the genome breeding process mentioned earlier (Ikeda et al. 2009, 2010a).

Metabolic engineering of C. glutamicum has also led to industrially potent
ornithine producers. For example, a Korean group has generated an ornithine
producer by removal of competing pathways (ΔargF, ΔproB), deregulation of
ornithine biosynthesis (ΔargR), overexpression of the terminal pathway with the
use of plasmid pSY223 carrying argCJBD, and increased NADPH availability
(pgiGTG, zwfATG, Ptkt::Psod). The resulting strain YW06 (pSY223) produced
51.5 g/L of ornithine with a yield of 24% on glucose after 40 h of 6.6-L jar fermentor
cultivation (Kim et al. 2015).

Chinese groups have also developed C. glutamicum ornithine producers through
systematic metabolic engineering (Jiang et al. 2013a, b; Zhang et al. 2017a,
2018a, b, c). One of their strategies was to convert an industrial glutamate producer
into an ornithine producer by adequately attenuating argF, followed by combining
the common strategies including deregulation of ornithine biosynthesis, increased
NADPH availability, disruption of the glutamate exporter, removal of competing
pathways, and adequate modifications of the terminal pathway. The resulting strain
SO16 produced 32.3 g/L of ornithine with a yield of 39.5% on glucose in shake flask
cultivation (Zhang et al. 2018b). It is notable that overexpression of lysE contributed
to increased ornithine production (Zhang et al. 2017a). Considering that the lysine
and arginine exporter LysE was shown not to accept ornithine and citrulline as
substrates (Bellmann et al. 2001), the positive effect of LysE on ornithine production
remains elusive.

3.4 Tryptophan

Tryptophan is one of the essential amino acids required in the diet of humans and
other mammals such as pigs and poultry. Since tryptophan is particularly scarce in
cereal grains, this amino acid is of considerable value for animal nutrition. Further-
more, tryptophan is known to improve the sleep state and mood as it is a precursor of
serotonin which acts as a neurotransmitter in the nervous system (Bender 1985). Due
to these nutritional and medicinal benefits, the amino acid has various application
fields including food additives, pharmaceuticals, and feed supplements. Accord-
ingly, the scale of the tryptophan market has expanded from about 500 tons in the
year 2000 to approximately 33,000 tons in 2016 (Ajinomoto 2016). As the scale of
production has increased, tryptophan prices per kilogram have dropped to around
US$8 (Ajinomoto 2016).

Biosynthesis of 1 mol of tryptophan from glucose requires 1 mol each of
erythrose 4-phosphate (E4P) and phosphoenolpyruvate (PEP) as starting precursors
and consumes an additional 1 mol each of PEP, glutamine, phosphoribosyl-5-
pyrophosphate, and serine on its biosynthetic pathways (Umbarger 1978). There-
fore, a balanced supply of the precursors is required for efficient production of the
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amino acid. Toward this goal, a sophisticated strategy has been applied to the
pathway engineering of a classically derived tryptophan-producing C. glutamicum
strain (Fig. 14) (Katsumata and Ikeda 1993; Ikeda et al. 1994). This strategy
consisted of amplification of the first enzyme 3-deoxy-D-arabino-heptulosonate
7-phosphate synthase in the common pathway diverging from central metabolism
to increase carbon flow down that pathway, followed by sequential removal of
bottlenecks discerned by the accumulation of intermediates, resulting in a 61%
increase in tryptophan production and a final yield of approximately 50 g/l. The
remarkable improvement involves not only systematic genetic modifications to
efficiently channel carbon towards tryptophan via plasmid-mediated amplification
of all together eight genes of the pathways leading to tryptophan and serine, that is,
aro II, trpEGDCBA, and serA (Fig. 14), but also construction of a plasmid stabili-
zation system based on the presence of the serA gene on the plasmid and the gene’s
absence from the chromosome. Further modifications in the central metabolism to
increase the availability of PEP and E4P through decreased PPC activity and
increased transketolase activity, respectively, have ultimately resulted in a final
titer of 58 g/l with a conversion yield of 23.2% on sucrose after 80 h of 2-L jar
fermentor cultivation with no need for antibiotics (Katsumata and Kino 1989; Ikeda
and Katsumata 1999). It is notable that more than half of the product crystallized in
the medium.

In addition to pathway engineering, the impact of transport engineering on
tryptophan production has been demonstrated in C. glutamicum (Ikeda and
Katsumata 1994, 1995). A modification leading to a decreased rate of tryptophan
uptake in a tryptophan-producing mutant resulted in increased production, while
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accelerated tryptophan uptake drastically decreased production. Considering this,
the increased capacity of tryptophan efflux can be also a promising strategy for
further increased production, although the excretion process of tryptophan in
C. glutamicum remains to be elucidated.

Looking beyond C. glutamicum, the tryptophan exporter YddG has been reported
in E. coli (Doroshenko et al. 2007; Airich et al. 2010). The YddG protein has been
shown to mediate export of not only tryptophan but also phenylalanine and tyrosine
and to enhance the production of the aromatic amino acids when overexpressed in
E. coli. Following this, a Chinese group has improved a classically derived E. coli
tryptophan producer by stepwise modifications including prevention of tryptophan
uptake (Δmtr), overexpression of yddG, and decreased acetate by-production
(Δpta), resulting in a final tryptophan titer of 48.68 g/l with a conversion yield of
21.87% on glucose after 38 h of 30-L fermentor cultivation (Wang et al. 2013).

Recently, starting from a wild-type background with respect to tryptophan bio-
synthesis, a genetically defined tryptophan-producing E. coli strain was developed
through a rational metabolic engineering process that included interruption of
tryptophan degradation (ΔtnaA), disruption of tryptophan importer (Δmtr, ΔtnaB),
and stepwise modifications of the terminal pathways leading to both tryptophan and
serine (Chen and Zeng 2017). The resulting strain S028 produced 40.3 g/L of
tryptophan with a yield of 15% on glucose after 61 h of fed-batch fermentation.
Intracellular metabolite analysis of this strain suggested that availability of glutamine
and export of tryptophan were likely to limit tryptophan production.

More recently, the same group has reported that tryptophan biosynthesis in some
microorganisms, including E. coli, Aspergillus niger, and Saccharomyces
cerevisiae, is regulated through anthranilate-associated feed-forward regulation at
the indole-3-glycerol phosphate synthase step (TrpC), in addition to already-known
regulations such as repression, attenuation, and feedback inhibition (Chen et al.
2018). Based on the findings, the anthranilate-activated TrpC enzyme from A. niger
was expressed in the tryptophan producer S028, leading to an increase in a conver-
sion yield on glucose from 15 to 18% in fed-batch cultivation.

3.5 Branched-Chain Amino Acids

The branched-chain amino acids valine, leucine, and isoleucine are all essential for
human and animal nutrition, and all have increasing uses in various fields including
pharmaceuticals, cosmetics, agricultural chemicals, dietary supplements, and feed
additives. Currently, their most popular use is as a supplement for athletes to
promote strength; this use is based on the nutraceutical effect of these amino acids
on skeletal muscles (Shimomura et al. 2006). The intermediates for these amino
acids can also be used for the production of biofuels (Atsumi et al. 2008). In
C. glutamicum, all three of these amino acids share common uptake and export
systems (Ebbighausen et al. 1989; Kennerknecht et al. 2002) as well as common
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substrates and enzymes for their biosynthesis, and thus are closely related in their
metabolic fate.

Since the year 2000, rational metabolic engineering has been applied to the
production of the branched-chain amino acids by C. glutamicum many times, with
a special emphasis on valine production (Pátek 2007; Park and Lee 2010; Wang et al.
2018a). The strategies used to improve production of valine include (1) eliminating
bottlenecks in the terminal pathway, either by conferring isoleucine auxotrophy
which allows the attenuation control of the ilvBNC operon to be circumvented
(Radmacher et al. 2002), by deregulating the key regulatory enzyme
acetohydroxyacid synthase (Elisáková et al. 2005), or by overexpressing the gene
set responsible for valine biosynthesis (Radmacher et al. 2002; Blombach et al.
2007a; Bartek et al. 2010); (2) increasing the availability of precursor pyruvate,
either by blocking pantothenate synthesis (Radmacher et al. 2002; Bartek et al.
2008), by inactivating pyruvate dehydrogenase, pyruvate carboxylase, and pyru-
vate:quinine oxidoreductase (Blombach et al. 2007a, 2008, 2009a), or by introduc-
ing an H+-ATPase defect which contributes to the enhanced glycolysis and thus to
the increased supply of pyruvate (Li et al. 2007;Wada et al. 2008); and (3) increasing
NADPH supply by inactivating phosphoglucose isomerase (Blombach et al. 2008;
Bartek et al. 2010). These modifications have mostly been achieved through
plasmid-mediated amplification and/or deletion of the targeted genes, possibly
leading to perturbations of the natural homeostatic mechanisms of the cell. To
alleviate such side-effects on cell physiology, the desired metabolic engineering
has been achieved through purposeful mutagenesis of promoters of the chromosomal
genes involved in the valine biosynthesis pathway and in competing pathways
(Holátko et al. 2009). The resulting plasmid-free valine producer was auxotrophic
to pantothenate and bradytrophic to isoleucine, carried a feedback-resistant
acetohydroxy acid synthase, and expressed the genes ilvD and ilvE from strong
mutant promoters. This new type strain with all mutations constructed within the
chromosome has been shown to produce 136 mM (15.9 g/L) valine from 4% glucose
after 48 h of flask cultivation.

In addition to such conventional aerobic processes, a different bioprocess has
been reported for valine production (Hasegawa et al. 2012, 2013). In this alternative
process, engineering of the redox balance in combination with the use of growth-
arrested packed cells has allowed C. glutamicum to produce valine at high yields
under anaerobic conditions. Theoretically, the biosynthesis of 1 mol of valine from
1 mol of glucose generates 2 mol of NADH during glycolysis but requires 2 mol of
NADPH at the IlvC and IlvE steps, thus causing a redox imbalance during anaerobic
valine production (Fig. 15). This problem was overcome by switching the cofactor
requirement of IlvC from NADPH to NADH and introducing NAD-specific exog-
enous leucine dehydrogenase instead of NADPH-specific IlvE (Fig. 15). Further
modifications intended to reconcile redox balance with high-yield valine production
and low by-product formation have ultimately resulted in a final titer of 1280 mM
(150 g/l) with a conversion yield of 88% (mol/mol) or 57.2% (w/w) on glucose after
24 h under growth-arrested anaerobic conditions.
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Recently, a Chinese group has developed valine producers starting from a
different C. glutamicum wild-type strain, ATCC 13869, through systematic meta-
bolic engineering involving deletion of the three genes aceE, alaT, and ilvA and
overexpression of the six genes ilvB, ilvN, ilvC, lrp1, brnF, and brnE, resulting in a
final titer of 51.2 g/l with a conversion yield of 30.8% on glucose after 96 h of 5-L
fermentor cultivation (Chen et al. 2015). The same group has also found, through
transcriptomic and proteomic analysis of a classically derived C. glutamicum valine-
producing mutant, that the up-regulation of the genes responsible for ribosome
elongation factors and ribosomal proteins is involved in valine production (Zhang
et al. 2018d).

On the other hand, evolutionary approaches such as biosensor-driven screening or
applications of genetic suppression have revealed non-intuitive beneficial mutations
for valine production. These include a knockout mutation in the ureD gene involved
in the degradation of urea to carbon dioxide and ammonium and an icd knockdown
mutation allowing a metabolic shift from the TCA cycle to the glyoxylate shunt
(Mahr et al. 2015; Schwentner et al. 2018). Recent developments in valine produc-
tion by metabolically engineered C. glutamicum strains have been summarized in a
previous review (Wang et al. 2018a).
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For leucine production, rationally designed C. glutamicum strains have also been
reported by a German group (Vogt et al. 2014). Leucine biosynthesis has
2-ketoisovalerate as a common substrate for valine and additionally requires a
supply of acetyl-CoA in the leucine-specific pathway. Therefore, researchers have
sought to expand the pathways leading to the common substrate 2-ketoisovalerate,
and the targets of engineering include citrate synthase for increased availability of
the precursor acetyl-CoA and the leucine-specific enzymes. Systematic metabolic
engineering starting from the wild-type strain ATCC 13032 has led to an industrially
potent, genetically defined, and plasmid-free leucine producer capable of a final titer
of 181 mM (23.7 g/L) with a yield of 21.8% (w/w) on glucose after 72 h of fed-batch
fermentation.

Metabolic engineering of C. glutamicum has also led to isoleucine producers.
Isoleucine is synthesized from threonine through five enzymatic steps. In the first
step, catalysed by the key enzyme threonine dehydratase (IlvA), threonine is
converted into 2-ketobutyrate, which is then converted into isoleucine by four
enzymes common to valine biosynthesis. Therefore, metabolic engineering involves
modifications that cause increased supply of threonine and deregulation and
overexpression of IlvA, as well as modifications affecting the enzymes common to
valine biosynthesis (Morbach et al. 1995, 1996; Yin et al. 2012; Vogt et al. 2015;
Dong et al. 2016). Modifications leading to overexpression of the global regulator
Lrp and the branched-chain amino acid exporter BrnFE (Xie et al. 2012; Yin et al.
2013) and increased availability of NADPH (Shi et al. 2013; Ma et al. 2016) are also
useful for efficient production of isoleucine.

Recently, a Chinese group has reported that ribosome elongation factor G and
recycling factor, both of which are relevant to protein synthesis, contribute to
increased isoleucine production when overexpressed (Zhao et al. 2015). Plasmid-
mediated amplification of the corresponding genes fusA and frr, together with the
isoleucine-biosynthetic genes ilvA, ilvB, and ilvN and the NAD kinase gene ppnk, in a
classical isoleucine producer of C. glutamicum has resulted in a final titer of 28.5 g/L
with a yield of 13.9% on glucose after 72 h of fed-batch fermentation.

The branched-chain amino acids are mainly used for pharmaceutical purposes
and are required to have the highest degree of purity. From this perspective, attempts
have been made to minimize the by-production of other amino acids to a level at
which supplementary purification of the desired amino acid is not necessary. For
example, the by-production of alanine occurs during valine production but can be
overcome by deletion of the alanine aminotransferase gene alaT in a C. glutamicum
valine producer, thereby facilitating cost-effective downstream processing
(Marienhagen and Eggeling 2008). On the other hand, production of leucine is
often accompanied by accumulation of valine since C. glutamicum predominantly
uses the single transaminase IlvE for the synthesis of the branched-chain amino acids
from the respective keto acids, thus causing co-production of the amino acids. This
problem has been overcome by using different types of aminotransferases (Feng
et al. 2018). Overexpression of endogenous AspB or heterologous E. coli TyrB
instead of native IlvE in an isoleucine-auxotrophic leucine producer of
C. glutamicum has led to leucine production with almost no by-production of valine.
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3.6 Methionine

Methionine, another essential amino acid for animals, has a great deal of commercial
value as a feed additive. Moreover, methionine is important as a precursor of S-
adenosylmethionine. For this purpose, methionine is produced exclusively by chem-
ical synthesis in D, L-forms, as this amino acid is considered to have a similar effect
on animal nutrition in both L- and D, L-forms. Nowadays, however, there is an
increasing interest in the development of environmentally friendly fermentation
methods using renewable feedstocks to produce methionine.

In the hope of discovering a method for the rational construction of a methionine
producer, methionine biosynthesis and its regulation are being studied in
C. glutamicum. This microbe possesses both transsulfuration and direct
sulfhydrylation pathways, in contrast to E. coli and most other microorganisms,
which utilize only one of these two pathways (Lee and Hwang 2003; Hwang et al.
2007). Two regulatory genes in C. glutamicum have been identified as relevant to
methionine biosynthesis: mcbR (cg3253) and NCgl2640. Inactivation of either in
wild-type C. glutamicum results in increased methionine production (Mampel et al.
2005; Rey et al. 2003, 2005). The common strategy underlying the metabolic
engineering is to redirect carbon from the lysine pathway into the methionine
pathway, and all the following achievements have in principle been performed
using C. glutamicum lysine producers as platforms. For example, the introduction
of feedback-resistant lysC and hom genes and deletion of the thrB gene resulted in
2.9 g/L of methionine together with 23.8 g/L of lysine (Park et al. 2007b).
Overexpression of the homologous metX and metY genes in another lysine-
producing C. glutamicum strain was reported in a patent by Möckel et al. (2002)
as resulting in a final titer of 16 g/L of methionine. Deletion of the mcbR gene and
overexpression of the brnFE genes encoding an exporter for methionine (Trötschel
et al. 2005) led to 6.3 g/L of methionine production after 64 h in fed-batch
fermentation (Qin et al. 2015).

Recently, Li et al. (2016) have developed a C. glutamicum methionine producer
through the combination of rational metabolic engineering and random mutagenesis.
The procedure and its effects on methionine production are summarized as follows
(Fig. 16). The first step was to abolish the reuptake of methionine, followed by
random mutagenesis. Deletion of the metD locus comprising genes metQNI for the
methionine uptake system (Trötschel et al. 2008) and subsequent random mutagen-
esis conferred methionine production of 2.54 g/L on wild-type C. glutamicumATCC
13032 after 72 h in fed-batch fermentation. Although the mutations obtained by the
random mutagenesis remain undefined, they are associated with increased expres-
sion of the genes mainly involved in methionine biosynthesis, including hom, metX,
metY, metB, aecD, metE, metH, and metK. The second step was to block or weaken
competitive branch pathways. Deletion of the thrB gene and replacement of the start
codon ATG by the rare GTG in the dapA gene (dapAA1G) resulted in methionine
production of 2.99 g/L. The third step was to enhance the precursor supply for
methionine biosynthesis. Introduction of the feedback-resistant lysC gene (lysCT311I)
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(Ohnishi et al. 2002) and a version of the pyc gene that had undergone a C-to-T
exchange at nucleotide position 1327 and a GTG-to-ATG exchange at the start
codon (pycP458SG1A) resulted in methionine production of 5.89 g/L. The pycP458S

gene is responsible for an increased supply of oxaloacetate (Ohnishi et al. 2002). The
fourth step was to improve the NADPH supply. Introduction of mutant alleles of
genes zwf (zwfA243T) and gnd (gndS361F), both of which are responsible for an
increased supply of NADPH (Ohnishi et al. 2005; Becker et al. 2007), achieved
methionine production of 6.85 g/L after 72 h in fed-batch fermentation, which
corresponds to a conversion yield of 8% (mol/mol) on glucose.

In E. coli, on the other hand, an attempt at systematic metabolic engineering
resulted in a strain that produces methionine at an industrially useful level (Figge
et al. 2009). The key to success here was achieving a balanced supply of three
important precursors for methionine biosynthesis: O-succinylhomoserine, cysteine,
and the C1 carbon methyl-tetrahydrofolate (CH3-THF). An imbalanced supply of
these precursors causes the formation of undesired by-products such as
homolanthionine and isoleucine through the involvement of certain methionine-
biosynthetic enzymes themselves. The engineered E. coli strain has achieved a
yield of 19.9% after 50 h in fed-batch fermentation without the formation of any
detectable undesirable by-products. Based on this yield, the methionine titer is
estimated at more than 35 g/L. The procedure and impact of this metabolic engi-
neering project can be found in the first edition of this book. Very recently, in an
engineered E. coli strain based on the similar concept of balancing the supply of the
three precursors, deletion of the metI gene involved in methionine uptake (Merlin
et al. 2002) and overexpression of the yjeH gene encoding an exporter of methionine
(Liu et al. 2015) resulted in methionine production of 17 g/L after 48 h in fed-batch
fermentation (Huang et al. 2018). The fact that the final titer in this report is lower
than that reported by Figge et al. (2009) appears to be attributable to insufficient
optimization of the expression of the manipulated genes or the culture conditions.

Though some progress has been made toward creating improved methionine
producers, methionine yields still remain low compared with those attained for
other amino acids. Metabolic pathway analysis has been used to evaluate the
theoretical maximum yields of methionine production on the substrates glucose,
sulfate, and ammonia in C. glutamicum and E. coli (Krömer et al. 2006). The
theoretical yield (mol-C methionine per mol-C glucose) of C. glutamicum was
0.49, while that of E. coli was somewhat higher at 0.52. This analysis also showed
that introduction of the E. coli glycine cleavage system into C. glutamicum as an
additional C1 source and the replacement of sulfate with thiosulfate or sulfide,
thereby avoiding the need for reduction of oxidized sulfur, would increase the
theoretical maximal methionine yields in C. glutamicum to 0.57 and 0.68, respec-
tively. Furthermore, when methanethiol (also known as methylmercaptan) is used as
a combined source for a C1 carbon and sulfur in C. glutamicum, the theoretical yield
is estimated to reach its highest potential value at 0.91 (Krömer et al. 2006).

Recently, the potential utilization of methanethiol and its dimeric form
dimethyldisulfide as both the C1 source and the sulfur source has been experimen-
tally verified in C. glutamicum (Bolten et al. 2010). Isotope experiments have
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revealed that the S-CH3 group is entirely added to O-acetylhomoserine, directly
yielding methionine (Fig. 17). This reaction has been shown to be catalyzed by
MetY, creating a shortcut for methionine biosynthesis. The problem in this case
would be the toxicity of these sulfur compounds to cells. A delivery system using a
beaded macroporous polystyrene resin has been suggested as a potential way of
alleviating the toxic effects (Bolten et al. 2010).

3.7 S-Adenosyl-Methionine

S-Adenosylmethionine (SAM) is a sulfonium compound recognized as a primary
methyl donor for reactions catalyzed by methyltransferases. SAM is also required for
a variety of reactions as a source of methylene groups, amino groups, ribosyl groups,
aminoalkyl groups, and 50-deoxyadenosyl radicals (Fontecave et al. 2004). In addi-
tion, SAM is also available worldwide as a drug and in the United States as a
nutritional supplement (Lu and Mato 2012).

Recently, metabolic engineering for SAM production has been conducted using
C. glutamicum. To achieve the following outcomes, SAM is accumulated in
engineered cells; each SAM titer (g/L or mg/L) is thus provided as an intracellular

SO42-

Adenylyl-sulfate

SO32-

H2S

NADPH

3 NADPH

CH3-THF

THF

Homocysteine

Methionine

Aspartate
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NADPH

NADPH

Cysteine

Acetate

SO42-

Serine
Glycine

Homoserine

Asp-P

Asp-SA Lysine

γ-Cystathionine

Dimethyldisulfide
(CH3-S-S-CH3)

Acetate

MetYMetY

MetYMetY Methanethiol
(CH3-SH)

Fig. 17 Proposed pathway for assimilation in C. glutamicum of methanethiol and
dimethyldisulfide into methionine in addition to two known pathways of transsulfuration and direct
sulfhydrylation
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concentration. The wild-type strain C. glutamicum ATCC 13032 has been reported
to accumulate 0.32 g/L of SAM by the overexpression of the homologousmetK gene
encoding a methionine adenosyltransferase after 24 h of 72 h fed-batch culture with
feeding methionine at a final concentration of 6 g/L (Han et al. 2016b). Since ATP as
well as methionine is required for the MetK reaction, metabolic engineering aiming
to enhance ATP supply by increasing oxygen availability for the respiratory chain
has been performed using Vitreoscilla hemoglobin encoded by the vgb gene (Han
et al. 2015). Overexpression of the metK and vgb genes in the isoleucine-producing
strain C. glutamicum IWJ001 resulted in co-production of 0.67 g/L of SAM and
13.9 g/L of isoleucine after 72 h of fed-batch culture with feeding methionine (6 g/
L), which quantities are 37-fold higher and 1.3-fold lower, respectively, than those
produced by the control strain IWJ001.

Direct fermentation of SAM from glucose has also been attempted using an
engineered C. glutamicum strain (Han et al. 2016a). This strategy is aimed at
enhancing methionine biosynthesis and blocking competing branch pathways. The
procedure and SAM production are summarized as follows (Fig. 18). First, the mcbR
and thrB genes were deleted in wild type C. glutamicum ATCC 13032. This resulted
in SAM accumulation of 33.2 mg/L (2.58 mg/g of dry cell weight) after 36 h on
glucose in 50-mL batch culture. Second, in order to prevent homolanthionine
accumulation and redirect the metabolic flux toward the direct sulfhydrylation
pathway by O-acetylhomoserine sulfhydrylase encoded by the metY gene, the
metB gene encoding cystathionine-γ-synthase was deleted. This resulted in SAM
accumulation of 74.3 mg/L (6.12 mg/g of dry cell weight) after 36 h. Third, to
improve assimilation of sulfur for methionine production using the sulfhydrylation
pathway, NCgl2640, another regulatory gene for the metY gene, was deleted, which
resulted in SAM accumulation of 95.4 mg/L (7.18 mg/g of dry cell weight) after
36 h. Finally, the metK and vgb genes were co-overexpressed, leading to SAM
accumulation of 196.7 mg/L (12.15 mg/g of dry cell weight) after 48 h.

3.8 Cysteine

Cysteine, the other sulfur-containing amino acid, is nonessential but has a crucial
function in metabolism as a precursor of sulfur-containing compounds such as
methionine, thiamine, biotin, lipoic acid, and coenzyme A. In addition to its biolog-
ical significance, cysteine is important commercially because of its various applica-
tions in the pharmaceutical, cosmetic, food, and livestock industries. As there is
currently no efficient method of producing cysteine through fermentation, its pro-
duction has depended on other methods including microbial conversion from DL-2-
amino-Δ2thiazoline 4-carboxylic acid (Sano et al. 1977) and extraction from natural
protein-rich resources such as hair and keratin.

As with methionine, it has been difficult to engineer strains that produce high
yields of cysteine, though this amino acid is synthesized in C. glutamicum from
serine via O-acetyl-serine in only two steps (Haitani et al. 2006). Typical strategies
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include deregulation of the key regulatory enzyme serine O-acetyltransferase, dele-
tion of the cysteine desulfhydrase gene that catalyzes cysteine degradation to
pyruvate, and overexpression of cysteine exporters; these methods have been
shown to increase cysteine production in both E. coli and C. glutamicum, though
the final titers were below 2 g/L (Wada et al. 2002; Wada and Takagi 2006). It has
been suggested that the combination of these strategies and the improvement of other
factors including an increased supply of the precursor serine and a decreased
reuptake of the product would lead to further improvement (Wada and Takagi 2006).

In C. glutamicum, the transcriptional regulator CysR, whose gene is repressed by
McbR, activates the expression of the genes involved in assimilatory sulfate reduc-
tion and of the other regulatory gene ssuR (Rückert et al. 2008). Subsequently, SsuR
activates the expression of the genes involved in sulfonate utilization (Koch et al.
2005). Therefore, overexpression of the cysR gene enables the simultaneous expres-
sion of many genes associated with the assimilatory reduction of sulfur source.
Overexpression of the cysE, cysK, and cysR genes leads to intracellular accumulation
of approximately 60 mg/L of cysteine on glucose after 15 h of 50-mL batch culture
(Joo et al. 2017). In a more advanced study using C. glutamicum, deletion of aecD
and sdaA, two genes that are involved in cysteine and serine degradation, respec-
tively, along with reduction in the expression level of the glyA gene and
overexpression of the feedback-insensitive cysE gene, the cysK gene, the E. coli
bcr gene involved in cysteine export, and the feedback-insensitive serA gene
together with the serCB genes, allowed the wild-type strain to produce 950 mg/L
of cysteine with a yield of 2.73% on glucose after 36 h batch cultivation in a medium
containing 6 g/L of thiosulfate (Wei et al. 2018).

Recently, in E. coli, a novel CysM (O-acetylserine sulfhydrylase B)-independent
thiosulfate assimilation pathway was identified. This novel route, specifically a
thiosulfate sulfurtransferase (GlpE)-mediated bypass from thiosulfate to sulfite,
was evaluated for cysteine production (Kawano et al. 2017). Whereas
overexpression of the feedback-insensitive serA and cysE genes together with the
native ydeD gene involved in efflux of cysteine allowed a wild-type E. coli strain to
produce approximately 1.0 g/L of cysteine on glycerol after 72 h in an experiment
where sulfate and thiosulfate were added as sulfur sources, the addition of glpE
overexpression achieved cysteine production of 1.5 g/L under the same conditions
(Kawano et al. 2017). Very recently, it has been reported in E. coli that
overexpression of the feedback-insensitive cysE gene, the ydeD gene, and the
feedback-insensitive serA gene along with the native serCB genes, as well as
deletion of the sdaA and tnaA genes, which are responsible for degradation of serine
and cysteine, respectively, resulted in cysteine production of 5.1 g/L after 32 h on
glucose in fed-batch culture (Liu et al. 2018b).

In recent years, Pantoea ananatis and closely related species have received
attention in the fermentation industry for their potential to overproduce a wide
variety of useful chemicals (Takumi et al. 2017). Metabolic engineering for cysteine
production has been performed using P. ananatis strain SC17 (Fig. 19). This was
initiated by the following manipulations (Takumi and Nonaka 2014). First, to
deregulate the cysteine biosynthetic pathway, a mutant allele of the E. coli cysE
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gene that encodes a feedback-resistant serine O-acetyltransferase was
overexpressed. Simultaneously, to enhance the efflux of cysteine, the E. coli leuE
encoding LeuE, which was originally identified as a leucine efflux pump (Kutukova
et al. 2005) but which also exhibits cysteine efflux activity (Takumi and Nonaka
2014), was overexpressed. Second, to enhance thiosulfate uptake, the intrinsic
cysPUWA genes encoding the thiosulfate transporter CysPUWA, a bottleneck in
the intracellular sulfur supply pathway (Sirko et al. 1990), were overexpressed.
Finally, to deregulate the biosynthetic pathway of serine that is the precursor of
cysteine, a mutant allele of the homologous serA gene that encodes a feedback-
resistant 3-phosphoglycerate dehydrogenase was overexpressed. Although the cys-
teine productivity of each intermediate strain derived during the above process has
not been disclosed, the assembly of all these modifications to strain SC17 resulted in
strain AG4854, which is capable of cysteine production of 1.3 g/L on glucose after
16 h cultivation with an estimated conversion yield of 3.1% on glucose (Takumi
et al. 2017). While engineering of the transcriptional regulator CysB, a master
regulator that induces most genes involved in sulfur assimilation and cysteine
metabolism, is assumed to be beneficial to cysteine production as it simultaneously
enhances the metabolism of sulfur and cysteine, it has a disadvantage in that it causes
the expression of the ydjN gene encoding the cystine uptake transporter, resulting in
reuptake of cysteine in the form of cystine, which is formed from cysteine in an
oxidative environment (Nonaka 2018).

Based on the finding that CysM is the bottleneck of cysteine production, contin-
ued research has demonstrated that conferring moderately and excessively enhanced
CysM activity on strain AG4854 (which created strains AG6181 and AG6184,
respectively) resulted in yields of 3.5% and 0.4%, respectively. The failure of strain
AG6184 to produce cysteine was accompanied by increased activity of cysteine-
inducible CcdA (cysteine desulfhydrase), the only major cysteine degradation
enzyme in P. ananatis (Takumi and Nonaka 2016), which is presumably induced
by the elevated intracellular cysteine levels resulting from the increased activity of
CysM. Disruption of the ccdA gene improved the yields of strains AG6181 and
AG6184 to 3.9% and 1.6%, respectively, but had negative effects on growth and
glucose consumption, which were especially severe in strain AG6184, presumably
due to the toxicity of intracellularly accumulated cysteine. An effort to elicit only
positive effects from CysM overexpression on cysteine production was made using
the cysteine efflux pumps CefA (Takumi and Nonaka 2016) and CefB (Takumi et al.
2017). Yet without the implementation of fine-tuned expression, overexpression of
the cefA gene in AG6184 led to cysteine production of approximately 0.4 g/L with an
estimated yield of approximately 1.0% after 28 h cultivation, whereas
overexpression of the cefB gene achieved cysteine production of approximately
2.2 g/L with an estimated yield of approximately 5.5% after 22 h cultivation (Takumi
et al. 2017). A combination of ccdA deletion and cefA and/or cefB overexpression
was not conducted in this report. Although not all details of this experiment were
given, metabolic engineering of P. ananatis has achieved cysteine production of
close to 5.0 g/L (Nonaka 2018).
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4 Conclusion and Future Prospects

As already mentioned, the global amino acid market per year has expanded to more
than seven million tons and over US$13 billion in response to increased demand for
amino acids. This market growth is expected to continue due to the ongoing
increases in the nutritional values of amino acids and the growth of the numerous
fields that use them. The giant market has been underpinned largely by recent
advances in amino acid fermentation technologies, especially strain development
technology.

In the history of amino acid fermentation, the determination of the complete
genome sequence of C. glutamicum was obviously an important milestone. The
subsequent rapid progress in genomics, various “omics” technologies, and systems
biology for this bacterium have dramatically transformed our approaches to strain
development. For example, in-silico modeling and simulation approaches are now
used routinely to help identify new targets for further engineering and strain
improvement. The power of such systems-level approaches will surely increase as
modeling is combined with the ever-accumulating “omics” data.

It should be noted, however, that not all purely rational approaches from scratch
have necessarily resulted in commercially potent production strains, probably due to
the existence of unknown mechanisms affecting industrially important properties,
such as hyperproduction and high adaptability to large-scale processes. This means
that there is a great deal more to learn from the genomes of classical strains. Since the
dawn of the genomic era, new possibilities have emerged, including analysis of
producer’s genomes, leading to the genome breeding approach, and systems meta-
bolic engineering, leading to tailor-made cell factories with designed properties
(Becker and Wittmann 2015; Ikeda 2017). The next-generation strains are expected
to be created through the synergy of these approaches and through integration of the
knowledge accumulated over decades of industrial strain development with emerg-
ing technologies such as biosensor-driven single cell screening, in-silico modeling,
and carbon flux simulation.

At the same time, the amino acid industry is beginning to consider sustainable and
environmentally-friendly manufacturing systems in response to the continuing crisis
of global warming. From this standpoint, the industry is expected to develop strains
enabling the use of feedstocks that are renewable and that do not compete with human
food or energy sources. The development of innovative technologies enabling reduc-
tion in effluents and wastes generated during fermentation and purification processes
is also expected. These remain important themes for future engineering.
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