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100 nm). Meanwhile, biotechnology deals with metabolic and other physiological 
developments of biological subjects including microorganisms. These microbial 
processes have opened up new opportunities to explore novel applications, for 
example, the biosynthesis of metal nanomaterials, with the implication that these 
two technologies (i.e., thus nanobiotechnology) can play a vital role in developing 
and executing many valuable tools in the study of life. Nanotechnology is very 
diverse, ranging from extensions of conventional device physics to completely new 
approaches based upon molecular self-assembly, from developing new materials 
with dimensions on the nanoscale, to investigating whether we can directly control 
matters on/in the atomic scale level. This idea entails its application to diverse fields 
of science such as plant biology, organic chemistry, agriculture, the food industry, 
and more. 

Nanobiotechnology offers a wide range of uses in medicine, agriculture, and the 
environment. Many diseases that do not have cures today may be cured by 
nanotechnology in the future. Use of nanotechnology in medical therapeutics needs 
adequate evaluation of its risk and safety factors. Scientists who are against the use 
of nanotechnology also agree that advancement in nanotechnology should continue 
because this field promises great benefits, but testing should be carried out to ensure 
its safety in people. It is possible that nanomedicine in the future will play a crucial 
role in the treatment of human and plant diseases, and also in the enhancement of 
normal human physiology and plant systems, respectively. If everything proceeds as 
expected, nanobiotechnology will, one day, become an inevitable part of our 
everyday life and will help save many lives.
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Preface

Advances in nanotechnology and engineering have revolutionized the materials 
used in our daily lives, and on which our societies and economies are based. While 
various nano-based products are increasingly used in different economic sectors, 
there is an increased awareness regarding the environmental and biological safety 
related to their preparation and uses. Green nanotechnology is certainly the most 
important division of nanotechnology, which uses 12 principles of green chemistry 
to promote sustainability and minimize health risks. This book, Green Nanoparticles: 
Synthesis and Biomedical Applications, outlines how green nanotechnology has 
been used to produce more efficient, reliable, and eco-friendly products and devices 
for biomedical, food, and agricultural applications. This volume certainly repre-
sents an important source of information for scientists who want to learn more about 
the current status and future perspectives of the use of green nanotechnology to 
create the next generation of products which could solve current and future chal-
lenges faced by the biomedical, food, and agricultural fields, as well society in gen-
eral. The book contains 20 chapters covering topics related to the application of 
nanotechnology in the development of topical delivery systems, stimuli-responsive 
nanocarriers, biosensors, and the treatment of neglected tropical diseases. It also 
describes the uses of plants to produce green nanoparticles and evaluates the poten-
tial toxicity of nanomaterials. In this way, we believe that this book can provide 
knowledge to different sectors such as academia, industry, stakeholders, and anyone 
who has an interest in the improvements of green nanotechnology.
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Chapter 1
Biomedical Applications  
of Stimuli- Responsive Hydrogels

Anderson Ferreira Sepulveda, Roger Borges, Juliana Marchi, 
and Daniele Ribeiro de Araujo
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1  Introduction

A copolymer is a macromolecule derived from more than one species of polymers, 
consisting of two or more blocks of different polymers chemically bonded to one 
another. Among the considerable number of copolymer types, one of the most used 
is polyethylene glycol (PEG)-based polymers, including their blocks (with two or 
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three and graft copolymers) (IUPAC 1997). PEG is a relatively hydrophilic and 
linear polymer, synthetized by polymerization of ethylene oxide units resulting in 
molecular weights ranging from 0.4 to 100 kDa and arrangements, such as micelles, 
according to the conjugation with hydrophobic polymers.

The presence of hydroxyl end groups allows the formation of covalent bindings 
with a variety of chemical groups (polylactic acid, poly(amino acid), polycaprolac-
tone, poly(lactic-co-glycolic) acid, acrylate, acetylene, etc.) (Fig. 1.1), resulting on 
particular physicochemical features and different self-assembly mechanisms and 
biological properties, such as interaction with proteins and peptides as well as the 
formation of biocompatible hydrogels matrices for drug delivery, tissue regenera-
tion, and diagnosis platforms (Zhu et al. 2010; Boonlai et al. 2018; Qureshi et al. 
2019). In fact, the association of hydrophobic and hydrophilic groups into the PEG- 
based chemical structure evokes the formation of self-assembled aggregates such as 
micelles and/or hydrogels, in response to concentration and environmental condi-
tions such as temperature, UV light, pH, and ionic strength.

Hydrogels are defined as polymeric networks capable to absorb a significant 
water content, forming highly permeable matrices with several biomedical applica-
tions including small molecules and proteins carriers and scaffolds for cells growing 
and tissue regeneration. In fact, the main property of those materials is their capabil-
ity for presenting as highly viscous materials with gradual dissolution after applica-
tion associated with their ability for responding upon certain environmental 
conditions (such as temperature and pH), according to the polymeric composition 

n- number of PEG units or blocks

BA

PEG

Chemical structure 
(R, R’)

Group

-OH Hydroxyl

-OCH3 Methyl ether

-COOH Acid

-NH2 Amine

-SH Thiol

-N3 Azide

-SO2=CH2 Vinyl sulphone

Acrylate

Polycaprolactone

Propylene glycol

Polylactic

Poly(lactic-co-

glycolid acid)

Fig. 1.1 Schematic representation of diblock, triblock, grafted copolymers, and their self- 
assembly in polymeric micelles (diblock and triblock) and their aggregates (grafted) (a). 
Polyethylene glycol (PEG) structure and some chemical groups used as its functional radicals on 
R and/or R’ positions (b)
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and concentration (Zhang et al. 2014; Moeinzadeh and Jabbari 2015; Kong et al. 
2017; Chen et al. 2019).

In this context, PEG-based hydrogels have been used for several biomedical pur-
poses considering their biocompatible, non-immunogenic, high purity, adequate 
physicochemical stability, and rheological properties. In special, this chapter focuses 
on PEG-based temperature and pH-sensitive hydrogels presenting their composi-
tion, mechanical properties, supramolecular structure, and self-assembled mecha-
nisms, as well as highlighting their progress as biocompatible matrices for 
biomedical applications.

2  PEG-Based Temperature-Sensitive Hydrogels: Structural 
and Physicochemical Properties

Among temperature-sensitive materials, PEG-based polymers are considered one of 
the most used materials, especially for biomedical applications, which allows the 
incorporation of cells, drugs, and other biocompatible polymers into their porous 
matrix. In fact, the ability to form hydrogels is observed when this material is deliv-
ered in solution and, in response to the physiological temperature, their viscosity is 
instantaneously changed, reaching the sol-gel transition temperature and adequate 
mechanical properties for in situ depot systems. The main vantage attributed to 
those systems is that there is no need of chemical agents for the hydrogels forma-
tion, which results in materials with low biological toxicity (Klouda 2015). For this 
reason, these hydrogels have been pointed as one of the main matrices for delivery 
of drugs and other bioactive molecules. Also, the conjugation of PLGA and PCL 
with PEG have gained attention because of their biodegradability and biocompati-
bility. On the other hand, other polymer types, such as PEG-poly-N- 
isopropylacrylamide (PNIPAAm), produce hydrogels by chemical cross-link, and 
the chemical initiator must be removed from the systems for reducing the formula-
tion toxicity. In this sense, physical methods are preferred for hydrogels formation, 
resulting on the formation of gels with adequate mechanical strength and capability 
to modulate the drug release rate for a long period of time (Alexander et al. 2014).

One of the most accepted mechanisms for explaining the thermogellification 
phenomenon concerns the interaction between the copolymer units. The monomers 
of these copolymers, at concentrations above the critical micellar concentration 
(CMC), are organized in micelles in aqueous medium in order to minimize free 
energy. As the temperature increases, the equilibrium between micelles and unimers 
is favored in the direction of micellization due to the dehydration of the hydropho-
bic units, conferring to the system new structural organization, observed by the 
formation of polymeric networks. As an example, copolymers composed of PEG- 
PPG- PEG are self-assembled in micelles, at the critical micellar concentration 
(CMC), and then organized as different supramolecular structures that assume 
lamellar, hexagonal, and cubic and the coexistence among them (Oshiro et al. 2014; 
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Nascimento et al. 2018; Mariano et al. 2019) (Fig. 1.2). This phenomenon is revers-
ible and below the sol-gel transition temperature (Tsol-gel), the hydrophobic chains 
are rehydrated, and the micelles restructured in solution (Jeong et  al. 2002; 
Ur-Rehman et al. 2010).

Several reports have studied the thermogelation mechanisms, using a sort of 
techniques for characterizing the hydrogels. In special, the main employed tech-
niques are rheology and small-angle X-ray scattering (SAXS) for determining the 
sol-gel transition temperature, mechanical properties, and the phase organization 
behavior, establishing relationships among composition, architecture, and hydro-
gels biological performances. Some of those studies are discussed throughout the 
next section.

2.1  Hydrogels Mechanical Properties and Phase Organization 
Studied by Rheological Analysis and Small-Angle X-Ray 
Scattering (SAXS): Implications on Drug-Controlled 
Release

Rheological studies and mechanical properties characterization are important tools 
to analyze hydrogel behavior, as elastic and viscous materials. It allows interpreting 
microscopic or internal structural changes under gradual heating or continuous 
shearing. The oscillatory (or dynamic) experiments are accomplished to study rheo-
logical behavior, where a sinusoidal shear is applied to the sample. Linear visco-

Fig. 1.2 Representation of triblock copolymers (e.g., PEG-PPG-PEG) thermoreversible self- 
assembly in micelles and hydrogels. In detail, the hydrogels supramolecular structures (lamellar, 
hexagonal, and cubic) are shown. Polyethylene glycol (PEG), propylene glycol (PPG)

A. F. Sepulveda et al.
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elastic properties can be determined by time-dependent response of soft matter in 
small-amplitude oscillatory shear experiments (Barbucci et al. 2002).

Elastic behavior is the material ability to restore its original shape when the 
external force is removed, normally referred to as elastic modulus, also known as 
storage modulus (G’). The viscous modulus (or shear loss modulus G”) is a property 
that shows how any deformation ceases when there is no more an external force. In 
general, thermosensitive hydrogels are viscoelastic materials, which display a tem-
perature- and concentration-dependent phase angle.

In general, hydrogels can be more elastic (non-Newtonian or Hookean material) 
or viscous liquid (Newtonian material), depending on value G”/G’ ratio. These 
properties are related by the systems molecular configuration. Under the micelliza-
tion temperature, unimers are dispersed in solution, which confers a sol phase. At 
micellization temperature, unimers begin to self-assemble in isolated micelle 
structures, but the system continues in sol-gel state with low G’ and G” values until 
they reach the sol-gel transition temperature (Tsol-gel). At Tsol-gel, it starts to 
agglutinate micelles in more complex structures, increasing G’ values, and the 
material is then converted in a gel state with a G’ > G”. Furthermore, the copoly-
mer structure is affected by the degree of entanglement, and, if this structure is 
symmetric, it ensues the maximum elasticity and viscosity (Lee et  al. 2009) by 
higher degree of solvation of micelle shell than unimers chains (Prud’homme 
et al. 1996).

For thermosensitive materials, the viscosity in sol phase declines slowly on 
warming. This is ascribed to an increase in micellization and lowered solvent vis-
cosity. However, it is observed a steep increase in viscosity when it is near to sol-gel 
point transition, what can be attributed to the reduction of intermicellar space and 
micelle entanglements (Yokaichiya et al. 2017). As it has been seen, the rheological 
properties of a thermosensitive hydrogel are controlled by the micellar phase orga-
nization that is studied by small-angle scattering techniques.

Small-angle scattering (SAS) techniques characterize macromolecular structures 
and dimensions by the incidence of X-ray or neutron beams on electronic cloud 
(SAXS) or atomic nucleus (SANS), respectively (Svergun, 2010; Jacques and 
Trewhella 2010). These beams generate coherent secondary waves after suffering 
interference. Resulting waves can be destructive or constructive, which allows the 
formation of diffraction patterns, usually described in the form of intensity I as a 
function of scattering vector amplitude q:

 
q =

4π θ
λ
sin

 
(1.1)

where λ is the wavelength of incident radiation and 2θ is the angle between incident 
and reflected beam. SAS techniques are known as low-resolution ones because it is 
not possible to determine atomic coordinates (like X-ray crystallography), just the 
shape and size of analyzed structure.

SAXS and SANS allow the observation of the supramolecular structure and the 
interactions between the different functional chemical groups, since wavelengths on 

1 Biomedical Applications of Stimuli-Responsive Hydrogels
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the nanometer scale of X-rays and neutron beams allow the observation of inter-
atomic interactions (Putnam et al. 2007; Imae et al. 2011). SAS techniques are ideal 
to study soft gel materials, since it does not require crystal form and elaborated 
preparations, like X-ray crystallography. Therefore, they are being used to clarify 
different hydrogel structures. It has been pointed out that the organization of micel-
lar aggregates in the cubic phase exhibits gel properties; however, depending on 
copolymers concentrations, hexagonal and lamellar phases may be formed, although 
they are characteristic of anisotropic molecular ordering (Chaibundit et al. 2007; 
Newby et al. 2009; Ulrich et al. 2012; Basak and Bandyopadhyay 2013; Nascimento 
et al. 2018; Mariano et al. 2019).

Rheological alterations are also related to micellar supramolecular organiza-
tion. A possible mechanism for the micellar rearrangement to occur is “hard 
sphere crystallization” under cubic, hexagonal, or lamellar phase, due to packing 
of spherical micelles, what can be evidenced by small-angle X-ray scattering 
(SAXS) or small- angle neutron scattering (SANS) experiments and identification 
of Bragg diffraction peaks (Prud’homme et al. 1996; Artzner et al. 2007; Oshiro 
et al. 2014). However, it is well known the concentration and temperature role on 
phase organization type for each copolymer type. SANS results point that micelle 
shells are overlapped as enhancing PL concentration. Using SANS technique is 
possible to follow structural transition of hydrogels, suggesting that micelles initi-
ate to agglutinate when PEG monomers (which are in micellar corona) become 
more hydrophobic and break hydrogen bonds with water following the tempera-
ture increased.

Hydrogels are thixotropic materials, showing a reversible transition on their 
structure because of viscosity alteration induced by temperature and/or pH changes. 
This property is important to define the therapeutic efficacy of the hydrogel formu-
lations to pharmaceutical purposes, due to their ability to extend retention time at 
the application site and to enhance the systemic bioavailability of some drugs (Ricci 
et al. 2005; Lee et al. 2009; Akkari et al. 2016). Sol-gel systems, which have non- 
Newtonian behavior, present yield values that are required to break down the semi-
solid structure and to initiate the plastic flow. Then, since these yield values are 
increased, it is possible to indicate a gradual strengthening of the three-dimensional 
network structure.

The body fluid elements, mainly water, are the major factors in controlling the 
yield value, altering the systems structure. These elements can be diffused into the 
hydrogel matrix, affecting the number of cross-links formed and the hydration level. 
It has been demonstrated that enhancing cross-links and reducing the hydration 
level is possible to change the release rate of the encapsulated drugs. As viscous 
matrices, hydrogels are barriers to the drug release, since high viscosity hydrogels 
with swelled micelles tend to retain incorporated molecules for a long period of 
time. Thus, the PEG-based copolymer type, its molecular weight, and the addition 
of high-viscosity polymers into PEG-based hydrogels, forming hybrid systems with 
high molecular weight natural polymers (such as cellulose derivatives, hyaluronic 
acid), for example, can be differential factors to change materials properties for a 
specific biomedical purpose.

A. F. Sepulveda et al.
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2.2  Biomedical Applications of Thermosensitive PEG-Based 
Hydrogels: From Structural Organization 
to Biopharmaceutical Use

Several in situ PEG-based hydrogels have been synthetized considering the inser-
tion of biodegradable polyesters, showing to be good matrices for drug delivery 
systems and tissue repair. A possible disadvantage of these systems is the incorpora-
tion of thermolabile drugs, since the hydrogels preparation must be performed at 
low temperatures. On the other hand, PEG conjugation with high crystallinity and 
hydrophobicity polymers, such as PLGA and PCL, increases the drug incorporation 
percentage and changes the hydrogels structural organization, their morphology, 
and degradation rate (Deng et al. 2019). Regarding the biocompatibility, other PEG- 
based copolymers, PEG-PPG-PEG-based copolymers (such as poloxamers and 
poloxamines), different safety studies in clinical practice have reported their 
approval by FDA and use as pharmaceutical excipients (Cho et al. 2012). In this 
section, it will be discussed the influence of structural and composition parameters 
on PEG-derivatives hydrogels biomedical applications and implications when asso-
ciated with other biodegradable polymers (hyaluronic acid, poly(N-(2- 
hydroxypropyl)) methacrylamide mono-/dilactate) and/or forming hybrid systems 
with laponite, gold nanoparticles, and liposomes among other nanocarriers. 
Although the formulation and physicochemical characterization of PEG-based 
hydrogels have been reported by several studies, the relationships between chemical 
modifications on PEG molecule and its biomedical application have been discussed 
on few studies.

The synthesis of PEG-PCL-PEG hydrogels as delivery systems for timolol male-
ate was reported by Mishra et  al. (2011). In this study, comparisons with PVA 
showed more pronounced sol-gel transition temperatures and low cytotoxic effects 
in rabbit corneal epithelial culture cells when compared to PVA. In fact, the gelation 
of PEG-PCL-PEG polymers is dependent on the length and molecular weight of the 
PCL units, since hydrophobic interactions are the main driving forces observed on 
reversible sol-gel transitions (Deng et al. 2019). In a similar study, PEG-PCL-PEG 
hydrogels were reported as insulin delivery system. The rheological characteriza-
tion was strictly related to the formulation injectability, since it was observed a 
Newtonian flow behavior with low viscosity (for 20% and 25% PEG-PCL-PEG) 
and a shear rate-dependent flow, as also observed for PEG-PPG-PEG hydrogels 
(such as poloxamer 407) (Payyappilly et al. 2014).

In attempt to observe the impact of structural parameters (molecular weight and 
the ratio of PEG-PCL blocks) on sol-gel transition, hydrogels formulations were 
also tested as scaffolds on highly porous surface for cell attachments obtaining 
promising results related to the maintenance of chondrocytes morphology, enhanc-
ing the cartilage regeneration, and providing a mechanically functional extracellular 
matrix (Deng et  al. 2019). For other copolymer types, Alexander et  al. (2014) 
described the preparation of PEG-PLGA-PEG-based hydrogels compared with 
PEG-PPG-PEG, regarding the dissolution rates, since PEG-PPG-PEG are promptly 
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removed from the site of injection, reducing their performance as in situ depot for-
mulations related to PEG-PLGA-PEG.  Other important advantage attributed to 
those polymers is the high PEG blocks biocompatibility, while PLGA blocks pro-
vide the molecule biodegradability due to the presence of ester links (Zentner 
et al. 2001).

The association between PEG and PLGA was also used as other triblock archi-
tectures, PLGA-PEG-PLGA. In special, a recent work showed the release of colla-
genase and trastuzumab controlled by those hydrogels looking forward antitumor 
efficacy in breast cancer (Pan et al. 2018). Also, the authors stated that the peritu-
moral administration is a potential strategy for the modulation collagen-rich extra-
cellular matrix in solid tumors, provided by the enhancement of the interstitial 
transport after collagenase administration and the antibody efficacy. Other interest-
ing result from this study was the comparison with clinical treatment regimens by 
the evaluation of the pre-formulation pharmacological effects in relation to hyal-
uronidase in combination to trastuzumab, since the hydrogel was able to trigger the 
intra-tumoral collagen degradation (Pan et al. 2018).

In this sense, the conjugation of cyclized succinyl ester groups into a PEG hydro-
gel matrix was proposed as bioadhesive medical sealant device for in vivo hemosta-
sis, with the advantage of easy removal without causing tissue damage by mechanical 
debridement or surgical excision, enhancing the hemorrhagic control after adminis-
tration in patients treated with anticoagulants (Bu et al. 2019). The use as implants 
was also investigated for infection prevention by Casadidio et  al. (2018), when 
reported the development of hydrogels composed of vinylsulfonated triblock-PEG 
copolymers cross-linked with thiolated hyaluronic acid. The system was proposed 
for daptomycin local delivery in the management of implant-associated infection 
with the additional capability to reduce the drug chemical degradation, controlling 
the release rate and enhancing the in vitro antibiofilm activity against S. aureus. The 
association between vinylsulfonated triblock-PEG copolymers and thiolated hyal-
uronic acid was investigated as hydrogels for intra-articular injection in the manage-
ment of osteoarthritis (Agas et al. 2019).

In other reports, hyaluronic acid was incorporated into poloxamer-based (PEG- 
PPG- PEG) hydrogels, organized as binary systems composed of poloxamer 407 and 
its more hydrophilic analog, poloxamer 338 aiming intra-articular therapy 
(Nascimento et al. 2018). The main observation from this study was the influence of 
hyaluronic acid on hydrogels phase organization, since SAXS patterns revealed 
transitions from lamellar to hexagonal phase and structural changes from cubic to 
gyroid and/or cubic to lamellar but maintaining the hydrogel-thermosensitive prop-
erties. Furthermore, the hybrid systems hyaluronic acid-PEG-PPG-PEG reduced 
in vitro cytotoxic effects, pointing their possible application as intra-articular drug 
delivery systems. In a similar report, the thermoreversible supramolecular assembly 
was observed for alpha-cyclodextrin incorporated to PEG-betulinic acid- 
hydroxycamptothecin, but the sol-gel transitions were determined by the length of 
PEG chains and the ratio between the drug-loaded micelles and alpha-cyclodextrin 
(Dai et al. 2017). This structural organization induced the sustained drug release, 
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enhanced the drug aqueous solubility, and showed appropriate micellar size for 
inducing a possible EPR effect.

Indeed, the development of PEG-based hybrid systems seems to be a tendency in 
the last years, since different reports discussed the formation of nanocomposites by 
associating laponite with PEG-PLGA diblock copolymers (Maeda et  al. 2019). 
However, the insertion of laponite reduced the sol-gel transition temperature and 
caused a thermoresponsive concentration-dependent effect due to the adsorption of 
PEG-PLGA micelles on the laponite surface, as observed by SANS analysis. On the 
other hand, the incorporation of poly(allylamine)-grafted gold nanoparticles into 
PEG-PPG-PEG hydrogels did not show remarkable structural changes but demon-
strated pronounced wound healing properties upon topical application for antibacte-
rial activity (Mahmoud et al. 2019). Similar results were also obtained for hybrid 
systems composed of liposomal doxorubicin and PLGA-PEG-PLGA hydrogels 
(Cao et al. 2019), implying that the adequate rheological properties and viscosity 
allowed the use of this system for peritumor injection, which will improve the drug 
therapeutic effect and reduce its systemic toxicity.

Despite the promising biomedical applications as drug delivery systems or 
injectable cell scaffolds, PEG-PLGA-based triblock copolymers (or their derivative 
PLGA-PEG) show water solubility dependent on PLGA content compared to PEG, 
indicating an ideal PEG/PLGA ratio of 0.56 for obtaining a thermoresponsive 
hydrogel with appropriate aqueous solubility for injectable administration (Maeda 
et al. 2019). Other important feature is that during the synthesis process, molecular 
weight among cross-links should be studied by rheology in order to produce poly-
mers with adequate elastic/viscous (G’/G”) moduli relationships for gel or fluid 
formulations, since low viscosity at high shear rate is critical for painless injection 
(Payyappilly et al. 2014; Bu et al. 2019). In this context, some essential characteris-
tics for adequate hydrogels biomedical performance and applications are summa-
rized in Fig. 1.3.

2.3  pH-Sensitive PEG-Based Hydrogels: Theoretical 
Principles in pH-Sensitive Delivery Systems

Among the different chemical issues that influence a drug delivery system, the 
organ’s pH arises as a critical property. For example, for a drug to come into the 
stomach, if it is taken orally, the drug should be able to withstand the alkaline sali-
vary pH and then reach the stomach that, on the contrary, has an acidic pH. Most of 
the drugs are sensitive to pH and may lose their folding and therapeutic effect when 
in an inappropriate chemical environment. In this case, drug delivery systems are 
designed to hold the alkaline salivary pH and to deliver the drug into the stomach as 
it reaches an acidic pH (Liu et al. 2017). These systems are so-called as pH-sensitive 
or pH-responsive.
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In order to overcome the challenge of producing materials capable of resisting 
changes in the chemical environment in the human body, different pH-sensitive 
systems have been proposed in the literature (Liu et al. 2014, 2017). Currently, pH- 
sensitive drug delivery systems are designed by using inorganic, organic, or hybrid 
materials (a mixture of inorganic and organic materials) (Fig. 1.4).

Regarding inorganic materials, bioceramics like calcium phosphate (amorphous 
or crystalline hydroxyapatite) and zirconium oxide (ZrO2) nanoparticles have been 
proposed as promising pH-sensitive carriers because of their high dissolution kinet-
ics in acidic pH. It means that these ceramics can withstand alkaline pH, and deliv-
ery drugs at acidic pH, when they are degraded (Banerjee et al. 2011).

The class of pH-sensitive organic materials includes mostly polymers, lipo-
somes, and micelles. If, on the one hand, inorganic materials become pH-sensitive 
because of their dissolution kinetic, organic materials, on the other hand, become 
pH-sensitive due to specific ionizable chemical groups found in their structure. Not 
all the organic molecules or polymers can become pH-sensitive, but as long as some 
ionizable chemical groups are grafted or functionalized into their structure, they can 
do so. Some of these ionizable chemical groups are carboxylic acids, amines, and 
phosphoric acids, among others. The fact that these chemical groups are ionizable 
means that they can be negatively or positively charged by donating or accepting 
protons, respectively (Shriver and Atkins 1999). Such property is related to their 
acid dissociation constant (Ka, which is more commonly referred to as pKa that, in 
turn, is its logarithmic representation), which consists of the equilibrium constant 
for a dissociation reaction in the context of an acid-base reaction (Shriver and Atkins 
1999). When these organic molecules are either protonated or deprotonated due to 

Fig. 1.3 Scheme of the main properties and results obtained for thermosensitive hydrogels synthe-
sis and physicochemical characterization before their biomedical performance evaluation
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their pKa and the pH of their environment, they can undergo three different confor-
mational changes: (1) dissociation, (2) destabilization (by collapsing or swelling), 
and (3) changes in the partition coefficient between the vehicle and drug (Liu et al. 
2014). Therefore, if these organic molecules are used to carry a drug into a specific 
site, they can deliver the drug when they suffer any of these conformational changes, 
releasing the drug into the desired environment.

Regarding polymeric materials, when such ionizable chemical groups are pres-
ent in their structure, these polymers can either become cationic or anionic poly-
mers. The names “cationic” or “anionic” polymers rely on the ability of the organic 
macromolecule to be ionizable at more acidic or basic pH, respectively. Also, there 
are some specificities about what type of ionizable chemical group can be found in 
these polymers. Usually, amino groups are used to produce cationic macromole-
cules, while carboxyl groups are used to produce anionic ones.

Cationic polymers with amino groups are more degradable in aqueous solution 
at acidic pH than in basic ones. As an illustration, aminoalkyl methacrylate copoly-
mer (Eudragit E) is a Food and Drug Administration (FDA)-approved cationic 

Fig. 1.4 The three main classes of materials used as pH-sensitive systems: inorganic (a, gold 
nanoparticles; b, zirconium oxide; c, hydroxyapatite delivery), organic (d, dendrimers; e, poly-
meric nanoparticles; f, liposomes; g, polymeric micelles), and hybrid systems (h, nanoparticles in 
hydrogel matrix; i, polymeric cross-linked hydrogels; j, micellar hydrogels)
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 polymer having high solubility below pH 5. On the other hand, anionic polymers 
with carboxyl groups are more degradable in basic aqueous solution than in acidic 
pH. For example, poly(methacrylic acid-co-methyl methacrylate) (Eudragit L, S, 
and F), hydroxypropylmethylcellulose phthalate (HPMC-P), and HPMC acetate 
succinate (HPMC-AS) are conventional anionic polymers.

However, some polymers are neither cationic nor anionic, but it is not a limita-
tion. Other strategies commonly employed to produce pH-sensitive polymers 
include functionalization and block copolymers. As long as there are innumerous 
polymers used in drug delivery applications, of course, the range of possibilities 
concerning pH-sensitive materials is extensive. Therefore, in the next sections, we 
shall keep our focus only on PEG-based pH-sensitive drug delivery systems. Despite 
all the almost infinite polymer candidate for pH-sensitive drug delivery systems, 
PEG has some advantages compared to other polymers, besides being an FDA- 
approved polymer and well-known behavior in the human body. Also, PEG is not an 
ionizable polymer, but some polymeric engineering techniques are used to make it 
pH-sensitive. We will explain why PEG is a proper polymer to be used in such deliv-
ery systems, as well as show what kind of applications are enabled when drug deliv-
ery systems based on PEG are employed.

2.4  Strategies to Make PEG pH-Sensitive: Chemical 
Modifications and Their Biomedical Applications

When referring to a pH-sensitive drug delivery system, PEG is often used in micel-
lar assemblies constituted of a core-shell structure (Fig. 1.5). The main advantage of 
using PEG in such systems is the fact that PEG is highly hydrophilic, enabling 
enhanced permeability and retention (commonly referred to as EPR effect) in the 
bloodstream (Kale and Torchilin 2007; Lang et al. 2019). The EPR effect is respon-
sible for making the core-shell structures to flow in the bloodstream for longer 
times, which increase the possibilities to the delivery the drug into the specific tar-
get. Also, PEG is not recognized as a foreign body by macrophages of the immune 
system, which enables it to keep in the bloodstream for extra time compared to other 
polymers (Zambanini et al. 2017). By being held in the bloodstream for a longer 
time, the drug delivery system can reach the target organ and be even absorbed by 
cells of a specific tissue. Besides, such stability in the bloodstream enables the usage 
of PEG-based drug delivery as an injectable system.

As aforementioned, PEG is not a pH-sensitive polymer by itself, which means 
that its chemical structure lacks in ionizable functional groups. However, three dif-
ferent strategies can be used to transform PEG-based systems into pH-sensitive ones:

 (a) Produce copolymers containing anionic or cationic polymer chains bonded to 
PEG chains.

 (b) Add chemical modifications into the PEG structure.
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Regarding pH-sensitive PEG-based copolymers, peptides are often used as the 
blockchain containing the ionizable chemical. Peptides are made of amino acids, 
while amino acids are organic molecules containing an amine (-NH2) and carboxyl 
groups (-COOH) in their structure. Then, because of the deprotonation of the amine 
and the carboxyl groups at different pH, peptides may display a more cationic or 
anionic polymer behavior depending on their structure. For example, arginine, his-
tidine, and lysine are positively charged amino acids, and consequently, their poly-
mers counterparts display a cationic polymer role in copolymer structures. On the 
other hand, aspartic acid and glutamic acid are negatively charged amino acids, and 
their polymers counterparts display an anionic polymer role in copolymers.

There are several works which employed PEG-based copolymers employed as 
block, as grafted, or even as a combination of block and graft. For example, in work 
carried out by Lim et al. (2019), both strategies – graft and block copolymer – were 
used to produce a carrier system to deliver DOX (doxorubicin) and chlorin e6 into 
cancer sites. To do so, they produced a drug delivery system based on an ionomer 
polymer that was a result of complexation of two copolymers. The first was com-
posed of PEG-PLL(-g-Ce6) [chlorin e6 grafted poly(ethylene glycol)-poly(L- 
lysine)], and PEG-PLL composed another system (-g-DMA)-PLA 
[2,3-dimethylmaleic anhydride grafted poly(ethylene glycol)-poly(L-lysine)-
poly(lactic acid)]. Note that both copolymers are made of a diblock or triblock main 
chain grafted with another block. Because of the ionizable chemical bonds found in 

Fig. 1.5 Example of a core-shell structure that contains PEG in a triblock-polymer structure with 
PCL (poly(ε-caprolactone)) and PDEAEMA (poly (2-(diethylamino)ethyl methacrylate)). This 
later portion is pH-sensitive. The amino groups in the PDEAEMA structure, the core-shell com-
plex, become pH-sensitive at low pH, when the PDEAEMA structure is destabilized, and the drug 
is released. Note that in the core-shell complex, the PEG portion is kept in the outer part, enabling 
the system to take advantage of all of the PEG biological properties. (Yang et al. 2013)
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the PLL (poly-l-lysine) – that is, a cationic polymer – the carrier system was able to 
collapse at pH around 6, where the chemical bond between the dimethyl maleic 
anhydride and the PLL is broken, and the drug is released.

While the block bonded to PEG is responsible for triggering the delivery of a 
drug, it is not only the unique property related to the drug release kinetics. Note that 
the pH sensitivity is an ability only related to the chemical structure of the host 
block, but it will not govern the release kinetics. The drug delivery kinetics will 
depend on the length of the host block and its chemical composition. Such effect 
was very clear in a work carried out by Mostoufi et  al. (2019), who studied the 
release kinetics of paclitaxel from series of hybrid diblock copolymers methoxy- 
poly(ethylene glycol)-b-poly(γ-benzyl-L-glutamic acid) (PEG-PBLG) and triblock 
copolymers of poly(ethylene glycol)-b-poly(L-glutamic acid-co-NULL-leucine) 
(PEG-PGA-PLeu). In such study, the glutamic acid chains are ionizable at acidic 
pH; the authors changed the length of the leucine chain, which is not ionizable. It 
was noted that a higher pH responsiveness was correlated to the longer hydrophobic 
non-ionizable segment, Pleu (Fig. 1.6).

The chemical modification enables the adding of functional chemical groups or 
ionizable molecules in a polymer structure. It is a strategy commonly used to turn 
non-ionizable polymers into pH-sensitive by introducing ionizable species

Regarding functionalization, the structure of PEG can be modified by adding 
COOH or NH2 group at the end of the PEG chain (Zhang et al. 2019). The pH- 
sensitive hybrid system, composed of graphene oxide (GO) and PEG-COOH as a 
coating agent, showed to be an effective drug delivery system to carrier doxorubicin 
(Zhang et al. 2019).

Fig. 1.6 Ionomer polymer composed of two copolymers PEG-PLL(-g-Ce6) and PEG-PLL(-g- 
DMA)-PLA.  The copolymers were prepared in separate and then complexed together to carry 
doxorubicin and Chlorin e6. When the complex reaches a pH lower than the normal pH of the 
human body (7.4), the chemical bond between the DMA and PLL is broken, which results in a 
collapse of the complex structure. Afterward, the drugs are released in the target site. (Lim et al. 
2019)
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Concerning chemical modification using molecules, usually, ionizable molecules 
are used to crease acidic or basic liable bonds, which are bonded to a specific drug. 
Then, when the drug delivery system reaches the target tissue, the drug is released. 
For example, in work carried out by Chen et al. (2019), the author produced a drug 
delivery system based on monomethoxypoly(ethylene glycol)-poly(L-lysine)-graft- 
dimethyl maleic anhydride (PEG-PLL-DMA). The chemical bond between DMA 
and PLL is liable at slight acid condition, leading to the formation of an NH3+ spe-
cies when the system reaches pH around 6.5 and DMA is also released in the medium.

The applications of pH-sensitive polymers are often focused on the delivery of 
drugs into tissues that exhibit pH different from that of the physiological fluid 
(White et al. 2017). In this case, the most used application is on cancer treatment. 
The cancer cell has low extracellular pH and, consequently, higher intracellular pH 
compared to healthy cells. Then, many types of research have used pH-sensitive 
systems to delivery doxorubicin, paclitaxel, and azoreductase, among other drugs 
(Chen et al. 2019; Cui et al. 2019; Ma et al. 2019; Mostoufi et al. 2019; Yang et al. 
2019). In addition, because of the higher specificity of pH-sensitive drug delivery 
system, they are often used allied to other therapies like photothermal therapy and 
chemotherapy or used with luminescent molecules that enable the combination of 
therapy and diagnostic (also known as theranostic) (Liu et al. 2019; Pei et al. 2019; 
Zhang et al. 2019). For example, in a work carried out by Pei et al. (2019), they 
produced a drug delivery system based on emulsion copolymerization of glycidyl 
methacrylate (GMA), poly(ethylene glycol) methyl ether methacrylate (PEGMA), 
and N-rhodamine 6G-ethyl-acrylamide (Rh6GEAm) with  N,N-bis(acryloyl)cysta-
mine) (BACy) as disulfide cross-linker, followed with conjugating DOX via an 
acid-labile hydrazone linkage (Fig. 1.7). The acid-labile hydrazine linkage enables 

Fig. 1.7 Schematic representation of PEG-PGMA microspheres and PEG-PGMA-Hy-DOX pro-
drug microspheres. (Pei et al. 2019)
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the release of DOX only at acid pH, while Rh6G emits fluorescence only at acidic 
pH. Then, such drug delivery could be used as a theranostic due to its ability to treat 
cancer and produce detectable fluorescence.

Another exciting application of pH-sensitive drug delivery systems includes the 
utilization of a system with bactericidal properties. Bacteria biofilms usually exhibit 
pH different that of the physiological body fluid, which can be used as a strategy to 
target them. For example, Zhao et al. (2019) studied a carrier system to delivery 
chlorhexidine (CHX) in cariogenic biofilm. The drug delivery system was based on 
cationic poly(ethylene glycol)-block-poly(2-(((2-aminoethyl)carbamoyl)oxy)ethyl 
methacrylate) (PEG-b-PAECOEMA), and PAECOEMA was modified by citraconic 
anhydride (CA), forming negatively charged PEG-b-PAECOEMA/CA. The citra-
conic amides of PEG-b-PAECOEMA/CA block copolymer cleave in acidic medium 
and accomplish negative to positive charge conversion in a short time. The drug 
delivery system showed to be effective against Streptococcus mutans, and the cyto-
toxicity of CHX was reduced because of the micellar structure.

3  Conclusion and Prospects

PEG-based materials are one of the most investigated matrices in the fields of 
thermo- and pH-sensitive systems. Important advances have been achieved particu-
larly on the development of drug delivery systems and tissue regeneration. However, 
the systems components choice and their synthesis control are the driving condi-
tions for obtaining appropriate structural organization and mechanical properties 
considering the biomedical applications proposed. The most used techniques for 
characterizing those systems are small-angle scattering (X-ray and/or neutrons) and 
rheology. By controlling the hydrogels phase organization and viscoelastic proper-
ties, it is possible to obtain systems capable to modulate the drug release rate, dis-
solution kinetics, bioadhesion, and the in  vivo sol-gel transition process. The 
conjugation of PEG with different synthetic polymers described in this chapter 
allowed the production of hydrogels systems responsive to physiological (as inject-
able temperature-sensitive hydrogels) or physiopathological conditions (e.g., pH- 
responsive hydrogels proposed as therapeutic strategies for acid biological 
environment). Other exciting potential for the use of PEG-based hydrogels is its 
approval by FDA, highlighting the potential safety of PEG-derivatives copolymers 
in biomedical applications. Additionally, all matrices developed must be controlled 
regrading the synthesis process, physicochemical characterization, components 
compatibility, and local or systemic toxicity, being of high interest in the fields of 
biotechnology, biomedicine, engineering, and medicine.
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1  Introduction

At the beginning of the twentieth century, when the world of gene therapy and thera-
peutic drugs was at its peak, the quest began to find suitable carriers for their deliv-
ery in in vivo systems since the solitary administration of functional genes or the 
drug proved highly disadvantageous. Rapid clearance from the system, degradation 
by enzymes, poor solubility, low bioavailability, and inability to reach the target 
destination for action, all accelerated to the worldwide research for the development 
of carriers for these compounds of therapeutic importance. However, choosing a 
suitable delivery system seemed far from easy since there were a set of conditions 
to be abided by before any entity can be labeled as a medium for delivery. These 
included size, stability, their drug-loading capacity, and the proper release of the 
drug at the target site among other basic criteria for choosing a vector for a drug or 
a genetic material. Depending upon the nature of the molecule serving as the 
medium for delivery, delivery vectors are conveniently subdivided into two main 
categories, viral vectors and non-viral vectors. As the name suggests, the former 
group comprises of the viruses in their nonpathogenic forms, while micro- and 
nano-sized particles, dendrimers, liposomes, and niosomes all come under the 
group of non-viral-mediated delivery systems.

Viruses, which are regarded as intermediate between the living and the nonliv-
ing, owing to their ability to reproduce only within host cell but not otherwise, make 
them an excellent choice for formulation of a suitable vector. The process was initi-
ated with the discovery of viral transduction, a mechanism by which virus can effi-
ciently transport their genomes within the cells they infect, in 1952 by the scientists 
duo Norton Zinder and Joshua Lederberg. These virions are able to target specific 
hosts and can successfully incorporate and integrate their genome with that of the 
host’s while ensuring stability. Their genomic composition can also be effortlessly 
amended with intent to insert or delete its functionalities, as needed (Yang 
et al. 2018).

Alternatively, just as viral entities were being developed as suitable vessels for 
the transport and subsequent delivery of medicinally important compounds or RNA 
and DNA strands, its non-viral counterparts were not much behind either. Spherical 
vesicles, enclosed by single or more lipid bilayers, termed as liposomes, were being 
designed for similar purposes. However, in spite of simple methods of formulation 
and organization, liposomes had frequent problems of destabilization, which cannot 
be disregarded, and the demand for a better and more full-proof medium for the 
transport of its contents was still present. Soon, after Dr. Richard Feynman intro-
duced the idea of nano-sized particles to the scientific world, the field of drug deliv-
ery found a suitable successor to liposomes that overcame the demerits of its 
predecessor with success. In this chapter, we discuss the various types of delivery 
systems that are currently being used or in research, their necessities, various dis-
eases against which they are being targeted, and the future prospects they hold.
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2  Necessity for Delivery Vectors in Biological Systems

Investigating the essentialities of delivery agents for therapeutic drugs in in vivo 
settings generated various aims that advocated such extensive research on the field. 
Some of the pivotal points among them are listed up as below:

2.1  Physical Protection

It is of common knowledge that the entry routes of our body are guarded efficiently 
anatomic and physiologic barriers. Though these lines of protection originally intent 
to defend our body for pathogens and harmful substances like toxins or allergens, 
being nonspecific, the protection is extended to anything that is foreign to the sys-
tem, including any external drug and/or genes. Thus, sending the therapeutic com-
pounds or genetic materials, in its naked form would almost surely result in its 
destruction soon after its entry into the body. The delivery vectors, by enclosing the 
medicinally important compounds within themselves, ensure their protection from 
the body’s immune systems and degrading enzymes.

2.2  Targeted Delivery

Successful administration of any drug of choice must be followed by reaching of the 
compound to its targeted destination. Failure to do so not only defeats the entire 
purpose of the therapeutics but also increases the chances of healthy tissues and 
cells getting affected adversely. In order to prevent that from happening, it is of 
utmost importance that the drug/genetic material reach the site of pathogenesis. 
Vessels or carrier systems have shown encouraging results in that front by accom-
panying the contents to that site, evading distractions on its way. This is generally 
achieved by the process of active targeting where the carrier system is coupled with 
a specific ligand with an intent to facilitate interaction with the antigens exhibited 
on the exterior of diseased cells (Fig. 2.1), or via passive targeting, where the carri-
ers breach through the gaps of the blood vessels at the site of pathogenesis (Fig. 2.2).

2.3  Sustained Release

After addressing the issue to targeted delivery, another aspect of importance that 
remains is that of sustained release. This is not particularly applicable in case of 
gene therapy where the delivery vehicles, carrying the gene, insert it all at once into 
the target cells. However, drugs must be released slowly, for a required interval of 
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time. If the drug is administered without a suitable carrier system, the entire load is 
exposed at once and is soon removed from the system based on its half-life period. 
Alternatively, when administered with a delivery agent, the compound is released 
slowly from the carrier, providing a longer duration for the drug to act and discard 
the prerequisite for multiple and frequent administration. However, the interaction 
of the encapsulated or embedded drug with the matrix of the delivery vector should 
be regulated carefully to make sure that the drug is not so loosely bound to the vec-
tors to allow its premature release nor as tightly bound that the drug fails to leave its 
carrier and exhibit its therapeutic functions. The kinetics governing the release of 
the drug should be studied before it is applied in vivo or in vitro. It can be regulated 
depending upon the type of vector that is being used, its material, the drug of choice, 
the disease against which it is being targeted, etc. For example, since tumor micro-
environments harness acidic pH, nanoparticles carrying antitumor compounds are 
designed in a manner such that their binding with the drug is weakened in lower 
pH ranges.

Fig. 2.1 Active targeting by coupling specific ligands with nanoparticles encapsulating therapeu-
tic drugs

Fig. 2.2 Passive delivery of drugs encapsulated in nanoparticles via enhanced permeability and 
retention (EPR) effect
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2.4  Regulated Rate of Clearance

Even though it is quintessential for medicines or therapeutic drugs to be available in 
the bloodstream for a substantial amount of time to exhibit their action, prolonged 
presence of it might in turn cause damage to the healthy tissues or cells. Thus, as 
importantly it is to be retained in the body for a required amount of time, it is also 
necessary that they are eliminated in the due process. Enclosing or coupling them 
with carrier systems ensures their regulated delivery from the system once their 
function has been executed to prevent unnecessary drug load in the blood and 
related toxicity.

3  General Overview of Viral Delivery Vectors

Viruses are microscopic entities that lie on the boundary of the living and the non-
living. When outside the host cell, its behavior replicates that of an inanimate object, 
without response to any external stimuli or any trait of a living being. However, 
when inside a host cell (can be bacterial, plant or animal), it readily replicates to 
form numerous progenies, exhibiting one of the most primary features of the living. 
Almost all viruses have specific hosts, inside whose cells it undergoes reproduction. 
In nature, virions are considered as potent carriers of gene capable of transferring 
biological information as a mode of their replication. Wide varieties of viruses are 
being used as delivery vehicles with variable properties. The most widely employed 
viruses in drug and gene delivery include adenoviruses, adeno-associated viruses, 
lentiviruses, retroviruses, and bacteriophages.

3.1  Adenovirus

The adenoviruses are viral entities with icosahedral nucleocapsids housing double- 
stranded DNA as their primary genetic material. The members of family 
Adenoviridae are characterized by the absence of envelopes, with their size gener-
ally ranging from 90 to 100 nm along with having a wide range of vertebrate hosts. 
In 1953, isolated from the human adenoid cell culture (hence, the name) and until 
this day, 51 distinct serotypes of it have been acknowledged by virologists all around 
the globe.

Adenovirus (AV)- and adeno-associated virus (AAV)-mediated delivery systems 
had been a part of many successful gene therapy procedures, which require the 
viral-mediated vectors to reach all target cells all over the body. To achieve this 
systemic delivery of the genes, the initial step should be the infusion of viral vector 
into the bloodstream. An early study on adenoviral deliveries conducted in 1992 has 
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claimed successful transfer of a certain gene to the striated muscles of neonatal 
murine model. This was accomplished by giving intravenous injections to 2–5-day- 
old mice. However, though the vector was efficacious in reaching various organs 
and tissues, the rate of transduction in the heart was approximately around 0.2% in 
contrast to the standard target of gene transfer efficiency, which was 20–50%.

During the last couple of decades, AAVs have emerged as the most prominently 
used viral vector for gene-based therapies in both human and animal models 
(Samulski and Muzyczka 2014; Muzyczka and Berns 2015). Additionally, it has 
been proved its robustness over AVs even after a year of administration without any 
major immunological response. The remarkable success in rodents had encouraged 
scientists to scale up the process to use this method of treatment for human models, 
as well (Duan 2016).

3.2  Retrovirus

One of the widely studied and documented classes of viral particles, one of whose 
member is known to cause the deadliest infection of acquired immunodeficiency 
syndrome or AIDS, is the retroviral entities. Despite its ill repute for causing patho-
genicity, the retroviral family has also shown considerable potentials as vectors for 
delivery of molecules of therapeutic importance. The enveloped virions have their 
sizes around 100 nm in diameter and contain two identical single-stranded RNA 
molecules of 7–10 kilobases in length as their primary genetic material, which can 
be converted to corresponding DNA by the action of the enzyme reverse transcrip-
tase. The strand of deoxyribonucleic acid then integrates itself with the genome of 
the host cell DNA, taking the cell hostage and using it as a site of its own 
replication.

Retroviruses, just like the other members of its viral family, are primarily used 
for gene therapy with an intention to transfer and recombine external genetic mate-
rial into the cells of the lungs, kidneys, heart, liver, or other organs to cure diseases 
and infections. The major reasons why retrovirals are considered as efficient vectors 
of gene therapy include its ability to transfer and integrate its genetic material with 
the host cell genome with stability. Using retrovirals also give researchers the ability 
to influence target specificity just by altering the heterologous envelope proteins. 
Three classes of retroviruses that are most popularly opted as vectors for gene ther-
apy include lentiviruses (derived from human immunodeficiency virus or HIV), 
gammaretroviruses (derived from murine leukemia virus or MLV), and spumavi-
ruses (derived from human foamy virus or HFV). Alongside, there are also alpharet-
roviral vectors exhibiting a relatively neutral integration pattern that can be used for 
the purpose of genetic therapies (Suerth et al. 2010).

A. Ghosh et al.



27

3.3  Designing a Retroviral Vector

The principle underlying the designing of a viral vector includes recognition of the 
viral elements or genes that are crucial for the transgene delivery and deletion of the 
remaining sequence to make room for the gene of interest (GOI). The following step 
involves providing the essential genes for vector production on separate plasmids to 
yield a round of infectious viral particles. A detailed, in-depth understanding of 
viral genomics is essential for the entire procedure. Members of retrovirus genera 
share an overall similar genetic structure that includes gag, env, and pol genes. 
While the env code for the envelope of the virion, both gag and pol have structural 
roles in the viral life cycles.

3.4  Phage Virus

The bacteriophage or the phage, as it is commonly called, is a class of viruses that 
varies significantly in composition of their envelopes, shape, and size, along with 
the genetic fragments they house. The term “bacteriophage” indicates toward their 
exclusive choice of hosts, which are bacteria and archaea only. This natural animos-
ity of these virions against bacteria makes them an excellent choice for numerous 
therapeutic procedures, collectively termed as “phage therapy.” This characteristic 
of phage particles also makes it the safest option to be employed as medium for 
delivery since they are incapable of stimulating any immune responses or causing 
any infection or cancer by itself to mammalian or human cells. They are also capa-
ble of condensing the DNA in them to give a compact packaging.

Bacteriophages can be formulated as nano-sized carriers for the targeted delivery 
of both diagnostic reporter molecules and therapeutic agents. The ligand attached to 
the phages ensures site-specific delivery of the nucleic acid fragment (DNA, 
miRNA, etc.)/drug they are carrying, and they can be effortlessly manipulated 
genetically to carry large quantities of the drug or longer DNAs. Phage-based nano-
carriers have been researched extensively against both microbial infections and 
malignancy (Karimi et al. 2016).

3.5  Filamentous Phage

Filamentous phages are characterized by a distinct structure where a long rod- 
shaped protein coat encloses single-stranded DNA (ssDNA). These phages are 
capable of infecting their host cells without killing them by integrating their DNA 
into the host’s genome. Filamentous phages mostly infect gram-negative bacteria 
like species of Pseudomonas and Escherichia. The size of these phages depends 
upon the length of the ssDNA present at its core and can be modified easily by the 
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deletion and insertion of bases. The mode of entry of this phage-based nanocarrier 
into eukaryotic cells is endocytosis. Since they are highly immunogenic, the prop-
erty can prove to be quite advantageous to be used in vaccination. Research in this 
field has been successful in producing vaccines against HIV-1 and malaria parasites. 
They have also generated therapeutic antibodies against malignancy and Alzheimer’s 
disease. Filamentous phages displaying HIV epitopes, which are derived from the 
hepatitis B virus, are adapted to protect organisms against both the diseases. Another 
application of this class of phages is being investigated for the transport and delivery 
of antibiotics (Tanaka et al. 2011; Vaks and Benhar 2011).

3.6  Lambda Phage

Discovered by Esther Lederberg in 1950, lambda phage belongs to the coliphage 
family and is capable of undergoing both lysogenic and lytic cycles. It consists of 
three parts: the capsid (head), the tail, and a double-stranded DNA sequence as the 
main genetic material enclosed within the capsid. Lambda phage is generally used 
in gene therapy, as a nanocarrier for delivery of genes. A recent study introduced the 
capsid of the lambda phage as a predesigned nanoparticle, and it was incorporated 
with several different varieties of synthetic moieties and genetically integrated pep-
tides that were exhibited on the phage surface simultaneously (Chang et al. 2014). 
Another study demonstrates that the encapsulation of the genes encoding for GFP 
and the E7 proteins of human papillomavirus (HPV) into the lambda vector are 
capable of enhancing the antitumor immune response countering the prognosis of 
HPV-expressing cancers (Ghaemi et al. 2010).

4  General Overview of Non-viral Delivery Vectors

Evidently, an advantage that non-viral delivery vectors have over its viral counter-
parts is the risks from reversion of the nonpathogenic virions to its pathogenic vari-
ants. Nonetheless, delivery vessels that are not derivatives of viral sources might 
need a convenient design, a standardized and regulated method of synthesis among 
other prerequisites for its smooth functioning.

4.1  Liposomes

Liposomes can be defined as vesicles, which are bound by at least a single lipid 
bilayer and are spherical in shape. The concept of liposomes (Greek “lipo” meaning 
fat and “some” meaning body) was first described by the British scientist Alec 
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D. Bangham in 1961 when he and his colleague R. W. Horne were observing dry 
phospholipids by negative staining under an electron microscope (Bangham and 
Horne 1964). In the following year, Bangham, Standish, and Weissmann studied the 
integrity of the closed, bilayered structure and its property of getting disintegrated 
and releasing its contents when treated with detergents formed the basis of liposome- 
based delivery systems (Bangham et al. 1965).

In 1995, liposomes were the first nanoscale medium for drug delivery that was 
approved for clinical use. Since then research on drug transport systems using lipo-
somes have come a long way aided by great advancements in technology. The lipid 
molecules constituting the bilayer of liposomes are mostly phospholipids in com-
position and possess chances of minimal toxicity since these phospholipids are all 
natural or their derivatives. They are also the most studied nanocarrier systems for 
targeted delivery of drug. One of the major advantages of employing them is that 
they are capable of housing both hydrophilic and lipophilic compound without 
being destabilized. While the polar or hydrophilic molecules are stored within the 
aqueous center of the lipid vesicles, the nonpolar or the lipophilic ones embed 
themselves within the lipid bilayer (Hua and Wu 2013). Moreover, these lipid-
based structures specialize in carrying not only varieties of drugs but also macro-
molecules like DNA and polypeptides. Properties like particle size, the charge, 
composition of the lipid bilayer, number of lamellae, and its surface modification 
with polymers and ligands can characterize liposomal formulations; all these fac-
tors decide their behaviors and stability under in  vivo and in  vitro conditions 
(Monteiro et al. 2014).

There are four major types of liposome-based delivery systems, the conventional 
liposomes, ligand-targeted liposomes, sterically stabilized liposomes, and the com-
bination of the three. In spite of its many advantages, the conventional liposomes 
were seen to be eliminated rapidly after administration by opsonization from the 
bloodstream, thus affecting its therapeutic efficacies. To overcome these shortcom-
ings, sterically stabilized liposomes were introduced in which a steric barrier 
improved the drug efficacy, in both rodent and human models, by preventing opso-
nization by the serum components. However, soon researchers faced a new problem 
with this latest design when they realized that the steric molecules that prevented 
opsonization were also responsible for preventing the essential interaction of lipo-
somes with their target cells. This paved the way for designing of ligand-targeted 
liposomes to ensure site-specific delivery of drug to particular types of cells or 
organs in in vivo systems, which selectively express or overexpress those specific 
ligands or receptors (Hua 2013). Varieties of molecules can function as ligands, like 
antibodies, polypeptides/proteins, and carbohydrates, depending upon the disease 
that is being treated, the drug that is being carried, and the phospholipids forming 
the liposomes. In spite of overcoming the disadvantages of its predecessors, ligand- 
targeted liposomes have their own limitations like poor immunogenicity and phar-
macokinetics. Hence, in the recent years, all three of these methods have been 
combined to develop liposomes having all these properties and making up for each 
one’s shortcomings (Sercombe et al. 2015).
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4.1.1  Ongoing Research and Clinically Approved Liposomal-Based 
Delivery Systems in Therapeutics

Liposomes as vessels for carrying medicinally important compounds and molecules 
have offered immense prospects against numerous ailments in the last two decades. 
With advancements in research and technology, while many lipid carrier-based 
delivery systems have already been approved for commercial use, some novel car-
rier systems have been formulated against pathological conditions and are being 
subjected to extensive in vitro and in vivo studies. For example, in murine models, 
studies involving folate, coupled with liposomes, showed enhanced distribution of 
the latter in folate-expressing neoplasms. In a separate study, immunoliposomal 
formulation with doxorubicin, functionalized with antibodies targeting the epithe-
lial growth factor receptor (EGFR), has been designed for effectively combating the 
spread of solid tumors (Mamot et al. 2012). Some of the other liposome formula-
tions that are currently under study are loaded with different types of therapeutic 
agents, including L-BLP25 peptide for lung carcinoma, irinotecan (MM-398) for 
pancreatic cancer, and cisplatin (Lipoplatin) for ovarian cancers (Wu et al. 2011; Ko 
et al. 2013; Casagrande et al. 2014). Apart from the therapeutic liposomes, there are 
also extensive research being carried on the theranostic and diagnostic properties of 
them (Xing et al. 2016). Another variety of PEGylated liposome encapsulating iri-
notecan that is presently in its Phase I trials is PEPO2, which is being used for the 
treatment of advanced refractory solid tumors (Chang et al. 2015). Besides these, 
there are also some cation-based lipid carrier systems that have received recent 
approval from FDA for medical trials.

4.2  Microparticles

With diameters ranging from 1 to 1000 μm, microparticles have shown their effi-
cacy for the delivery of various therapeutic materials that include various medicinal 
compounds as well as RNA and DNA molecules. Microparticles, having a large 
surface area-to-volume ratio, show characters which are absent in its bulk form that 
can be successfully exploited to design a suitable delivery agents, depending upon 
the item for transport.

5  Microparticles for Delivery of Therapeutic Drugs

Pioneering research on microparticles confirms its impending potentials in pharma-
ceuticals and biomedics industry. Microparticles can be synthesized from a variety 
of polymers with an intention of site-specific delivery of various drugs of therapeu-
tic importance. Some of these studies have been discoursed in brief in this section.
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Inflammatory bowel diseases (IBD) that are chronic autoimmune ailments affect 
the gastrointestinal (GI) tract that also leads to ulcerative colitis, Crohn’s disease, 
and colorectal cancer. Recurrent symptoms like abdominal pains, vomits, and bowel 
distension along with mucus diarrhea are symptoms of IBD due to which frequent 
administration of anti-inflammatory drugs becomes essential. However, despite 
that, the efficacies of the anti-IBD drugs are compromised due to their rapid absorp-
tion in small intestine region. Moreover, repetitive administration of such elevated 
doses of anti-inflammatory drugs might also generate some side effects from pro-
longed use. For such colon-related disorders, alginate microparticles have taken 
shown great potentials as a medium for delivery of therapeutic drugs, owing to its 
pH sensitivity. Alginate (salt form of alginic acid or align) is a polysaccharide, 
which is extracted from the cell walls of brown algae that is hydrophilic in nature, 
forming a viscous gum when hydrated. Numerous techniques like ionotropic gela-
tion, emulsion, and complex coacervation can be employed to prepare microparti-
cles of alginate. Their characterization, in vivo and in vitro studies have yielded 
encouraging results indicating toward a promising future for these microparticles 
(Agüero et al. 2017).

Another recent study investigates the potential of inhalable microparticles against 
lung carcinoma. This noninvasive method of treatment also enables the organ- 
specific delivery of chemotherapeutic drugs. Recent advancements in inhalable 
microparticle-based drug delivery structures for lung cancer therapy include biore-
sponsive, large, porous, solid lipid, and drug-complex microparticles. Synthetic 
hydrophobic polymers were initially used for the synthesis of MPs with intent of 
sustained drug release. However, their low drug-loading capacities and accumula-
tion of synthetic polymer in the lungs after multiple administrations compelled 
researchers to look for alternatives, which was fulfilled by the natural polymer 
sodium alginate and chitosan. Paclitaxel (PTX), cisplatin (CIS), and 5-fluorouracil 
(5-FU) are some of the most frequently used drugs to be coupled with alginate mic-
roparticles intended for lung cancer therapy. Dry powder inhalers (DPIs) are a solid- 
based delivery system that can be engaged for the application of drug-containing 
MPs to the lungs. DPIs are also advantageous for handling purposes and have last-
ing stability in storage. However, despite its many advantages, the same study also 
advocates that microparticles having size range of 3–5 μm have much low rates of 
internalization by lung cancer cells than nanoparticles with diameter 100–150 nm 
(Abdelaziz et al. 2018).

6  Microparticles for the Delivery of Genetic Material

The applications of microparticles as vehicles for delivery are not limited to thera-
peutic drugs alone. Many DNA vaccines, in recent times, have also coupled with 
MPs made of polymers for their targeted delivery as well as sustained release. These 
vaccines are extensively used in veterinary sciences but have not yet been approved 
for use on humans. However, owing to some innovative research and efforts from 
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some brilliant minds, the day might not be that far when MPs see uses as gene vec-
tors for humans as well. Some of the latest and the most pioneering of these research 
works have been discussed in brief, in this section.

DNA vaccination has been successfully demonstrated to be effective in several 
animal models for prevention and treatment of numerous infectious diseases, hyper-
sensitive reactions, cancer, as well as autoimmune disorders. This has propelled the 
study and research of DNA vaccines in human models as well (Suschak et al. 2017). 
Microparticles with their size ranging from 1 to 10 μm have been suitable carriers of 
DNA vaccines to the antigen-presenting immune cells due to preferential uptake and 
processing of the particles of that size by the APCs. The polymeric microparticles car-
rying the DNA fragments also provide protection from being degraded by nucleases. 
The most widely used polymer for microparticles, encapsulating DNA fragments, is 
poly(lactide-co-glycolide) or PLGA.  It has proved its efficacy against malignancy, 
swine flu, and hepatitis B among other disorders. Additionally, PLGA microparticles 
enclosing plasmid DNA (pDNA) encoding an antigenic peptide of the human papil-
lomavirus (HPV) are in its Phase II clinical trials and have shown to increase 
T-lymphocyte responses to HPV epitopes (Matijevic et al. 2011). Another formulation 
of PLGA microparticles was developed where the surface of the MPs was coated with 
pDNA (encoding the 1D gene of the foot-and-mouth disease virus) instead of encap-
sulating it. It showed higher production of FMDV-specific antibody and neutralizing 
antibody titers, along with increased lymphocyte proliferation in murine models com-
pared to the administration of naked plasmids (Reddy et al. 2012; Farris et al. 2016).

6.1  Nanoparticles

From the aspect of our discussion on delivery vessels, nano-sized particles hold an 
immense importance in the concerned field. Even though this is a comparatively 
novel area of study, there are scientists who claim that use of miniature molecules 
as drug carriers dated back to the Vedic ages in India where the leftover ashes from 
pyres of religious ceremonies had potential healing powers (Chaudhury 2011).

Speculations aside, there is no denying of the fact that nanoparticles have proved 
their potential, time and again as robust and competent medium of delivery for car-
rying drugs to their desired locations and to release them effectively. Nanoparticles, 
just like microparticles, are possessors of characteristics that are unknown in its 
bulk forms. NPs can be prepared from materials like natural and synthetic polymers, 
metals, etc. among others. Nanoparticles yielded from polymers are easily biode-
gradable and hence have lower chances of causing toxicity even after prolonged and 
frequent use. Due to their reliable stability in in vivo and in vitro settings and mini-
mal size ranging from 10 to 200 nm, nanoparticles are also capable of blood-brain 
barriers (BBB), gain access to the pulmonary system, and are also easily absorbed 
through tight junctions of endothelial cells of skin (Betzer et al. 2017). This enables 
therapeutic drug loaded in it to reach obscure locations of the body, which was 
almost impossible earlier with liposomes and microparticles. Another advantage of 
nanoparticles by virtue of its small size and large surface area is that they are readily 
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soluble in body fluids, hence increasing the bioavailability of the compounds they 
sheathe. Medicinal drugs that were initially discontinued for having poor solubility 
and, thus, low bioavailability were again introduced into biomedicine research to be 
coupled with nano-sized particulates (Rizvi and Saleh 2018).

7  Nanoparticulate-Based Drug Delivery in Cancer

Cancer or malignancy that is typically symptomized by the formation of neoplasm 
is one of the leading causes of mortality around the world, second only to cardiovas-
cular disorders. Radiotherapy, chemotherapy, and surgery are some of the most pre-
vailing methods of treatment and to prevent its spread, but in many cases, these 
conventional therapeutic approaches fail or might manifest serious side effects 
(Baudino 2015). Nanoparticulate-based approaches to treat malignancy have 
yielded encouraging results in recent years some of which have even been permitted 
by FDA for clinical trials and for commercialization. For instance, curcumin, a 
major component of Curcuma longa, has been speculated to have antitumor proper-
ties. However, the drug could not be used to its full potential because of its low solu-
bility in bodily fluids. Recent studies using curcumin in hydrogel-based nanoparticles 
could confirm successful inhibition of necrosis factor-κB and interlukin-6, which 
have pro-inflammatory roles in pancreatic cancer (Tajbakhsh et al. 2017).

Single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) are 
another approach to nanoparticulate-based drug therapy where an allotropic form of 
carbon with cylindrical framework is used. Doxorubicin (DOX), a popular antican-
cer drug, has been conjugated with CNTs under in vivo and in vitro conditions, 
which confirms that DOX with CNT demonstrates a more targeted delivery, and is 
more effective in destruction of neoplastic cells compared to higher doses of free 
DOX. Furthermore, the sustained release of DOX was seen to be enhanced at lower 
pH of tumor microenvironments. The needlelike shape of CNTs also elicits trans-
membrane penetration of the drug by enabling the nanocarriers to transport it to 
obscure locations in the body that were formerly inaccessible by the drug alone 
(Dinesh et al. 2016; Sanginario et al. 2017).

8  Nanoparticle-Based Drug Delivery for the Treatment 
for Tuberculosis

Caused by the bacteria Mycobacterium tuberculosis, this airborne ailment kills more 
than a million worldwide, affecting another billion each year. Initially, rifampicin 
(RIF) and isoniazid (INH) were the drugs of choice against TB and were  recommended 
as first-line anti-TB medications. However, prolonged and unregulated misuse of 
these drugs has made the causative organism resistant to the medications, giving rise 
to multidrug-resistant (MDR) strains of the bacteria. This has compelled researchers 
all across the globe to search for a novel treatment of choice, and nanoparticulate-
based drug therapy has been a significant tool in this war against drug resistivity.
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Ethionamide (ETH) is a popular second-line drug against TB, whose applica-
tions were initially compromised by its low solubility and shorter half-life. This 
problem was overcome by using nanoparticles made of polymeric β-cyclodextrins 
(pCD), biodegradable poly(D,L-lactic-co-glycolic acid) or PLGA, and polylactic 
acid. ETH-booster pair was co-encapsulated in these nanocarriers increasing not 
only its solubility but also minimizing the tendency of the therapeutic compound to 
form crystals in aqueous environment (Costa-Gouveia et al. 2017). Other diseases 
that are currently using nanoparticulate-based therapeutics include various viral, 
bacterial, and fungal infections, neurological disorders, psychiatric conditions, 
AIDS (acquired immunodeficiency syndrome), etc.

9  Hazards Associated with Various Delivery Systems

Whenever a new discovery or invention is made, each one comes with its own set of 
pros and cons. In viral delivery vectors, it is of utmost importance that pathogenic 
genes are deleted before administering it into the body. Even then, reversion of 
those viruses to its pathogenic strains is not a very uncommon phenomenon. The 
problem is further complicated if the vector is being commercialized. Under such 
large-scale productions, even the reversion of a single virion can cause huge dam-
age. Non-viral delivery methods, even though they do not pose such threats, have a 
few drawbacks of its own. Repeated administration of nano- and micro-sized parti-
cles may cause hazards, if they are not cleared from the system at regular intervals 
or metabolized. If the substance from which the particles are being synthesized is 
inorganic in nature, like metals or synthetic polymers, then the risks of accumula-
tion in the system are also elevated. Even by using natural polymers like alginate or 
chitosan, the chances of hypersensitivity or individual reaction to those compounds 
cannot be eliminated. However, comparing the pros and cons of both types of deliv-
ery systems, non-viral methods easily gain triumph over its viral counterparts; easy 
elaboration, minimal cytotoxicity, lack of oncogenic effects, ability to house larger 
DNA fragments, and immune tolerance, all advocate to the preference for non-viral 
carriers than virions acting as vectors in biological systems.

10  Latest Trends in the Field of Vector-Mediated  
Delivery Systems

In the preceding sections, we have discussed some of the conventional approaches 
of drug and gene delivery vectors that are being used extensively. However, in the 
recent years, there have been some new formulations with which the delivery of 
genes and drugs have taken a leap forward and hold a promising future in the field 
of therapeutics and theranostics. Discussing some of these recent advances, here 
are some novel modes of delivery that are presently being studied and researched.
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10.1  Niosomes

Primarily used for gene delivery, niosomes are liposome-like, bilayered structures 
that are composed of lipid molecules. The major factor that differentiates it from 
conventional liposomes is that the lipid moieties constructing it are all non- 
phospholipids (Attica et al. 2017). The lipid molecules that are used for the formula-
tion of niosomes are cationic or positively charged and form complexes (nioplexes) 
with the genetic material bearing negative charge (Agirre et al. 2015). Some major 
advantages that they offer over liposomes are that the method of synthesis is much 
cheaper and also that they can be stored for a longer duration (Rajera et al. 2011) 
along with better penetrating capabilities. Apart from the positively charged lipid 
molecules, nonionic surfactants are used to ensure stability and refrain the particles 
from aggregating, along with helper lipids that enhance the physicochemical fea-
tures of the emulsion, hence improving the efficiency of gene delivery. Numerous 
methods can be employed for the preparation of niosomes, depending upon conve-
nience, cost, and the components that are being used; reverse-phase evaporation 
(REV) methods, microfluidization method, and proniosome technology (PT) are 
some of the prominent of those.

A recent study demonstrates the ability of the niosomes of crossing the blood- 
brain barrier that can be used for the development of novel carriers for gene thera-
pies for diseases of the central nervous system. Niosomes synthesized with DOTMA 
cationic lipid, polysorbate 60 as nonionic surfactant, and lycopene as helper lipids 
were tested under in vivo conditions of rodent brain, which showed good transfec-
tion efficiencies followed by significant protein expression in the cortical glial cells, 
without compromising on the viability (Mashal et al. 2018).

A separate research evaluates the effects of chloroquine diphosphate on a nio-
some formulation of poloxamer 188, polysorbate 80 as a nonionic surfactant, and 
2,3-di (tetradecyloxy) propan-1-amine (hydrochloride salt) cationic lipid on rat 
retina for the treatment of retinal degeneration. Two varieties of niosomes are pre-
pared, one of them with and another without chloroquine by the process of reverse- 
phase evaporation technique, and are incorporated with plasmid pCMS-EGFP to 
form the respective nioplexes. In both in vivo and in vitro conditions, the  transfection 
efficiency and subsequent protein expression were improved in the former (Mashal 
et al. 2019).

11  Conclusion

We hence come to close our discussion on the numerous types of delivery systems 
that are presently in use in the field of therapeutics and biomedicines as vectors for 
targeted delivery and sustained release of drugs and genetic fragments. Apart from 
the ones discussed, there are many other novel methods, which are currently being 
studied; some of them have been mentioned and discussed in Table 2.1 Alongside, 
there are vectors that have already received approval for clinical trials and for com-
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mercialization but are being studied relentlessly for improvements. The choice of a 
suitable vector might depend on several factors, for instance, the content that is 
being delivered, the ailment against which it is being targeted, whether the delivery 
is site-specific or systemic, and most decisively the pathological and immunological 
condition of the individual on which the treatment is applied. This further ignites the 
issue of personalized medicines and its relevance in today’s world. There is no 
denying that whatever mode of delivery is chosen, the menaces of hypersensitivity 
or reversion to pathogenicity for viral vectors cannot be eliminated entirely. Only 
via extensive research can we hope to conquer the shortcomings of each of the 
methods.
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1  Introduction

Paracelsus (1493–1541): “dosis sola facit venenum.”
“The dose alone makes the poison.”

The etymological roots of the term toxicology stem from the Greek words 
τοξικον (toxikon  =  poison) and λογια (logia  =  treatise or science). Toxicology, 
therefore, was defined as the field of science responsible for the study of poisons. 
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Current research largely focuses on elucidating and describing the potential effects 
of different substances and materials considered harmful to living organisms. Other 
subfields of toxicology are related to nature, incidence, dose-response relationship, 
cellular uptake, severity (genetic, cellular, systemic, and immunogenic, among oth-
ers), reversibility, and mechanisms of action of compounds and to response mecha-
nisms in the organism (Burcham 2014; Murphy 1979). Conversely, the prefix nano 
(νανοζ), which originally meant dwarf, is currently used in the International System 
of Units to indicate a factor of 10−9.

Thus, nanotoxicology is defined as the branch of toxicology responsible for describ-
ing the effects of nanomaterials (or the nanometric scale) on living organisms, consid-
ering their physicochemical characteristics, dose-response relationship, cellular uptake, 
mechanisms of action, severity, and reversibility, among other variables.

2  Nanomaterials

To standardize terms in scientific and industrial contexts, at least two definitions of 
nanomaterials have been accepted for regulatory purposes. First, the definition 
adopted by the International Organization for Standardization/Technical 
Specifications (ISO/TS) 80004-1:2015 (ISO 2015) establishes that nanomaterials 
are those materials with at least one of their dimensions (internal, external, or sur-
face) on the nanoscale (1–100 nm). In turn, the definition published by the European 
Commission in 2011 (2011/696/EU) considers a nanomaterial as “a natural, inci-
dental or manufactured material containing particles, in an unbound state or as an 
aggregate or as an agglomerate and where, for 50 % or more of the particles in the 
number size distribution, one or more external dimensions is in the size range 
1 nm-100 nm” (European Union Commission Recommendation 2011).

Nanomaterials have gained considerable relevance in industrial fields as compo-
nents of paints, cosmetics, rubber, additives, electronics, environmental remediation 
devices, tools, textiles, and sports equipment. In the biomedical field, nanomaterials 
are mainly used in drug release, imaging, implant coatings, and aseptic methods 
(Roszek et al. 2005); in agriculture, they are used for the controlled release of her-
bicides, pesticides, and fertilizers. Currently, nanomaterial engineering research has 
gained relevance (Caballero-Guzman and Nowack 2016; Charitidis et al. 2014; Joo 
and Zhao 2017). In all the aforementioned areas, properties such as electrical con-
ductivity, high resistance, structure, electronic affinity, catalysis, photo-optical, and 
electronic characteristics, functionalization, biocompatibility, flexibility, and malle-
ability are used for specific purposes, and many nanomaterials are produced on a 
large scale, which has increased their presence in the environment (Goswami 2017; 
Peralta-Videa et al. 2011).

One of the disadvantages of nanomaterials is their potential toxicological- 
environmental effects. It has been shown that, due to their physicochemical charac-
teristics (size, surface area, shape, chemical composition), nanomaterials have 
stronger toxicological effects than those reported for the same materials in bulk or 

B. E. Millán-Chiu et al.



45

in solution (Joo and Zhao 2017; Stone et al. 2010). Most studied nanomaterials have 
shown dose-dependent toxicity, which is directly related to the availability of the 
nanomaterial in the environment (culture medium, air, water, soil, and food, among 
others), to the mechanism of cellular uptake or penetration, and, lastly, to the dura-
tion of contact with the nanomaterial (Buzea et  al. 2007; Krug and Wick 2011; 
Navarro et al. 2008). The primary toxicological factor observed in various organ-
isms, regardless of the nanomaterial, is oxidative stress, a process by which the 
production of reactive oxygen (ROS) and nitrogen species (RNS) is induced. 
Cellular damage, such as apoptosis, mitochondrial damage, plastid damage, autoph-
agy, and genotoxic effects due to deoxyribonucleic acid (DNA) fragmentation and 
chromosomal abnormalities have also been reported. In tissues, the damage depends 
on the type and amount of the captured nanomaterial and the exposed tissue, caus-
ing histological changes, cell growth inhibition, carcinogenic and/or teratogenic 
effects, and even death (Buzea et al. 2007; Gerloff et al. 2017; Lewinski et al. 2008).

2.1  Classification of Nanomaterials

There is no single classification of nanomaterials. Depending on the authors and 
research areas, aspects such as the chemical basis (organic or inorganic) (Mageswari 
et al. 2016), origin (natural or artificial), and physicochemical characteristics (mor-
phology, volume, surface area, surface charge, crystallinity) are considered for 
classification purposes. Finally, they can also be classified based on their dimen-
sionality (0, 1, 2, and 3D) (Khan et al. 2019; Lewinski et al. 2008). This chapter 
will address a classification focused on their chemical basis, albeit mentioning 
other characteristics.

2.1.1  Carbon-Based Nanomaterials

Graphene materials, fullerenes, carbon nanotubes, and nanodiamonds, among oth-
ers, are included in this group. Graphene is described as a two-dimensional (2D) 
sheet of sp2-bonded carbon atoms arranged in a flat hexagonal lattice structure, 
similar to a honeycomb (Allen et al. 2010). This arrangement can be modified on its 
surface, by oxidation-reduction reactions or by functionalization, which directly 
affects its electronic structure and therefore its physicochemical characteristics and 
interaction with other materials, including cells. Studies have shown that graphene 
toxicity is dose-dependent and that sheet size is a determining factor (Montagner 
et al. 2016; Sanchez et al. 2012). Fullerenes, in turn, consist of between 28 and 1500 
carbon atoms arranged in box-like structures. Their structures can have up to 120 
different symmetries, thanks to the arrangement of their atoms in pentagonal and 
hexagonal rings. The most symmetrical fullerene is the C60 fullerene, with a size of 
0.7 nm and a spheroid shape similar to that of a soccer ball. As with other nanoma-
terials, C60 fullerenes have a large surface area and, despite their low reactivity, are 
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susceptible to functionalization, which makes it possible to improve their chemical 
or biological activity (Isaacson et al. 2009). Carbon nanotubes (1D) have an elon-
gated shape, similar to fiber. They can be single-walled carbon nanotubes (SWCNTs) 
or multiwalled carbon nanotubes (MWCNTs). As with other allotropes of carbon, 
they are susceptible to chemical modification, which determines their physical and 
chemical characteristics and is related to their fate and toxicity potential (Alshehri 
et al. 2016; Allegri et al. 2016). Nanodiamonds, conversely, are more stable than 
other carbon-based nanomaterials. To date, studies have reported that these allo-
tropes have low toxicity (Schrand et al. 2007).

2.1.2  Inorganic-Based Nanomaterials

Inorganic-based nanomaterials include nanoparticles (0D) and thin films (2D). 
Both materials can have a metallic, ceramic, or semiconductor composition. 
Metallic nanomaterials contain zerovalent compounds such as iron, silver, and 
gold. They are mainly synthesized from metal salt precursors (Khan et al. 2019). 
Ceramic materials are nonmetallic inorganic solids produced by heat treatment; 
they can be found in amorphous, polycrystalline, dense, porous, or hollow shapes 
(Yamamoto et  al. 2004). Semiconductors, in turn, have intermediate properties, 
that is, between metals and nonmetals. They usually consist of elements from 
groups II to VI or III to V (Lewinski et al. 2008; Owen and Brus 2017). Inorganic-
based nanomaterials are currently produced by controlling synthetic methods for 
generating these materials with specific morphology, size, charge, coating, and 
optoelectrical properties. Biocompatibility or biocidal activity has been described 
for many nanomaterials. Thus, for example, among the toxic mechanisms against 
various pathogens (bacteria, fungi, and protozoa, among others) (Rodríguez-Torres 
et  al. 2019; Vazquez- Muñoz et  al. 2017) identified in many metal nanoparticles 
(Ag, Cu, and Zn, among others), the release of metal ions that interact with various 
cellular components has been reported (Krug and Wick 2011). Another significant 
deleterious effect reported for metallic, ceramic, and semiconductor nanoparticles 
is mechanical stress on cells or tissues due to the accumulation and/or morphology 
of the nanomaterial (Yamamoto et al. 2004). Unfortunately, cytotoxic effects are 
also observed in nonpathogenic organisms, in animal (including human) cells and 
tissues, and plants.

2.1.3  Quantum Dots

Quantum dots are semiconductor materials formed from elements of groups II to VI 
or III to V or from carbon-based materials. They are crystalline nanometric 
structures with a diameter that is smaller than twice the Bohr radius of its exciton 
(electron hole-electron pair), thereby producing their quantum confinement. These 
materials have adjustable band gaps depending on the size of the material and on its 
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crystalline structure, in addition to showing remarkable luminescent properties. 
Although quantum dots are usually better known, other 1D and 2D crystalline 
 nanomaterials have similar characteristics (Frecker et  al. 2016; Owen and Brus 
2017; Valizadeh et al. 2012).

2.1.4  Organic-Based Nanomaterials (Biomaterials)

Organic-based nanomaterials (lipids, carbohydrates, and other biopolymers) have 
been primarily studied in biomedical applications, particularly in the development 
of nanomaterials for drug delivery. Lipid nanomaterials can be micelles, liposomes, 
solid lipids, and nanostructured lipid carriers, which are used in the pharmaceutical, 
cosmetic, and food industries, mainly for molecule encapsulation and delivery to 
tissues (Angelova et al. 2017; Barriga et al. 2019; Jobin and Netto 2019; Tapeinos 
et  al. 2017). Polymeric nanoparticles are synthesized from cross-linked biopoly-
mers. Alginate, chitosan, gelatin, hyaluronic acid, polylactic-co-glycolic acid 
(PLGA), polylactide (PLA), polycaprolactone (PCL), and polyanionic cellulose 
(PAC) are among the most studied polymeric nanoparticles (Kumari et al. 2010; 
Nitta and Numata 2013). Dendrimers are polymeric molecules with a regular size 
and geometry and with well-defined and controlled branching via the appropriate 
selection of materials for their synthesis, thereby defining properties such as size, 
porosity, cavity type, hydrophobicity, and hydrophilicity, among others (Kesharwani 
et al. 2018; Kim et al. 2018). With the development of genetic engineering, protein- 
based nanoparticles have been recently produced from the synthesis of self- 
assembling protein subunits, which makes it possible to control characteristics such 
as surface loading, encapsulation, and ligand release, among others (Heddle et al. 
2017; Tarhini et al. 2017). To date, few cytotoxic effects of organic-based nanoma-
terials have been reported, although nanotoxicology remains a relatively young 
research field.

2.2  Nanomaterial Production

According to some authors, nanomaterials have been naturally produced through 
processes such as volcanism, hydrothermal systems (Navarro et al. 2008), soil ero-
sion, and significant energy release events such as lightning or meteorite impact 
(Isaacson et al. 2009). Interestingly, the evolution of living beings on the planet gen-
erated the production of nanomaterials from cellular processes, such as the produc-
tion of nanoparticles from bacteria (Faivre and Schüler 2008; Li et  al. 2016) and 
fungi (Park et al. 2016). The formation of carbon nanomaterials as a result of the 
combustion of organic materials in forest fires has also been observed (Buzea et al. 
2007). With mass production, nanomaterials have become a potential risk. Different 
sources of production include fossil fuel and agricultural waste burning, internal 
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combustion engines, chemical-biological waste generation and disposal, and water 
treatment processes (Bour et al. 2015; Nowack 2017). Recently, material engineering 
has become highly relevant in large-scale industrial applications, as has research on 
the controlled production of nanomaterials with a specific shape and size, and with 
high purity, which are used in a large number of commonly used devices (Koivisto 
et al. 2017).

2.3  Transport, Distribution, and the Fate of Nanomaterials 
in the Environment

In nature, nanometric- and micrometric-scale materials are ubiquitously distributed. 
The wind is one of the most important mechanisms of natural transport of nanoma-
terials (Joo and Zhao 2017). Propagation through bodies of water not only by surface 
runoff and ocean currents but also by aerosol formation (also determined by local 
climatic factors) is another key dispersion mechanism (Gottschalk et al. 2011; Joo 
and Zhao 2017). In addition, anthropogenic activities, both industrial and agricul-
tural, are an important transport route. Nanomaterials reach the air, bodies of water, 
the soil, streambeds, and the seabed naturally (due to atmospheric deposition, rain, 
and surface runoff, among other processes) or due to poor landfill management, via 
sewage sludge, or through its application in agricultural soils, among other activities 
(Wigger et al. 2015).

In the environment, nanomaterials may be exposed to various processes that 
affect their mobility patterns, bioavailability, fate, and toxicity (direct or indirect). 
Such processes involve homo-aggregation with nanomaterials of the same compo-
sition, hetero-aggregation with nanomaterials of different composition or with 
other molecules, changes in size, shape, surface charge, chemical stability, age, 
phototransformation, dissolution, interactions with other ions, and interactions 
and/or transformation with macromolecules and/or biopolymers contained in 
organic matter (Dwivedi et al. 2015; Goswami 2017).

3  Plants

To understand the toxic effects that naturally or artificially produced nanomaterials 
may have on plants, this chapter will provide an overview of the general morpho- 
anatomical and physiological characteristics of plants that affect the mechanisms of 
the interactions and the ease of uptake from the environment and discuss the resis-
tance and responses of plant cells to nanomaterials. The plant kingdom is diverse; it 
includes nonvascular plants (bryophytes), seedless vascular plants (ferns, whisk ferns, 
horsetails, and lycophytes), and seed vascular plants, which are divided into two broad 
groups: gymnosperms (cycads, ginkgo, gnetophytes, and conifers) and angiosperms, 
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which produce flowers and seeds (magnoliids and mono- and dicotyledonous plants) 
(Kaplan 2001).

Plant cells are delimited by a cell membrane (plasmalemma) that consists of 
phospholipids and proteins, which are coated with a semirigid cell wall with a simi-
lar architecture in all plants, composed of cellulose microfibrils, polysaccharides, 
lignin (only in vascular plants), structural proteins, and enzymes (peroxidases, pec-
tin esterases, extensins, and expansins, among others). They may also contain phe-
nolic compounds, gums, resins, silica, calcium carbonate, suberin, waxes, cutin, and 
Ca2+. The thickness can vary from a few hundred nanometers to a few micrometers. 
The composition of the cell wall and membrane varies depending on the species and 
even on the tissue (Khalil et al. 2010; Lee et al. 2011) (Fig. 3.1a). Adjacent cells are 
interconnected through plasmodesmata, that is, intercellular channels in which pro-
teins and membranes subdivide cell walls into microscopic channels of 3–4 nm in 
diameter and that can reach just over 10  nm. Plasmodesmata are contact areas 
through which water and nutrients flow from or to the vascular system (Fig. 3.1b) 
(Knox and Benitez-Alfonso 2014; Sevilem et  al. 2015). As in other eukaryotic 
organisms, the cellular cytoplasm has networks of microtubules and organelles, 
such as the endoplasmic reticulum, the Golgi complex, mitochondria, the cell 

Fig. 3.1 (a) Diagram of the main components of a plant cell. (b) Diagram showing that plasmo-
desmata are interconnection zones between adjacent cells. In each cell, a portion of the endoplas-
mic reticulum, termed the desmotubule, runs through the center of the plasmodesma
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nucleus, and nucleic acids. Additionally, plant cells have chloroplasts, with a large 
number of photosynthetic pigments (chlorophyll a and b) (Staehelin 2003); amy-
loplasts, the function of which is to store starches and other reserve substances; 
and chromoplasts, which contain pigments that act as both photosynthetic pig-
ments and antioxidants, such as α- and β-carotenes, lycopene, cryptoxanthins, 
lutein, lycopene, and anthocyanins (water-soluble flavonoids) (Vershinin 1999). 
Vacuoles or tonoplasts are organelles that occupy a large part of the cell volume. 
They contain water, sugars, other organic and inorganic solutes, and pigments 
(Hall et al. 1984).

Fig. 3.2 (a) Main structures of a moss plant. (b) Liverwort plant. (c) Hornwort plant
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3.1  Nonvascular Plants

Bryophytes (liverworts, hornworts, and mosses) (Fig. 3.2a–c) are plants that did not 
develop a vascular system, which is why they are known as poikilohydric plants 
(dependent on a layer of water on their surface to maintain their hydration). Most 
bryophytes can only develop in aquatic habitats, although many species are tolerant 
to dehydration (Zechmeister et al. 2003). Their dependence on water has been a 
consequence of selection pressure; therefore, these plants form simple, small, and 
thin tissues, and their cells lack lignin (Roberts et al. 2012). During their life cycle, 
they develop spores in specialized structures or sporophytes. Once bryophytes ger-
minate, their sporophytes produce structures termed gametophores, which have 
elongated cells that fix the plant and absorb water from soil termed rhizoids. The 
thallus is the undifferentiated photosynthetic tissue that grows above the substrate 
and consists of epidermal and subdermal cells, thin-walled parenchymal cells, and 
conductive cells. The leaves, when present, usually have a thick cell wall, except in 
the midribs and margins, which have multiple layers of differentiated cells. 
Gametophytes exhibit structures that are responsible for producing gametes (sexual 
reproduction cells) (Fig. 3.2a–c). Bryophytes are highly sensitive to contamination; 
therefore, they are considered good indicators (Sheffield and Rowntree 2009; 
Zechmeister et al. 2003).

3.2  Vascular Plants

Vascular plants have specialized, complex tissues, including meristematic, dermal, 
basal, vascular, and root tissues. These plants consist of different cell lines with 
distinct characteristics (Fig. 3.3).

3.2.1  Tissues

The dermal tissue or epidermis is formed by a layer of cells located on the surface 
of the plant. It is usually covered with a waxy (lipophilic) cuticle, which protects 
the plants from water loss and pathogen attacks. It has cuticular pores, the diameter 
of which ranges from approximately 2 to 2.4 nm (Eichert and Goldbach 2008). 
The epidermis also has specialized cells (guard cells) that respond to variations in 
the external and internal environments by changing shape, opening, or closing 
pores or stomata (intercellular gaps up to 100 nm or greater) (Eichert and Goldbach 
2008), depending on the stimulus. They are checkpoints through which water 
vapor, oxygen, and carbon dioxide travel. Some plant species have structures that 
are specialized for gas exchange termed lenticels; they lack a cuticle, and their 
calculated pore size is larger than 100 nm (Lendzian 2006). Trichomes are structures 
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with defensive functions in plants that accumulate heavy metals collected from 
the air (Fig. 3.4) (Lavid et al. 2001; Psaras et al. 2000).

Meristems are clusters of undifferentiated, thin-wall (<100  nm in thickness) 
stem cells (Galway 2006), which are responsible for generating cell populations 
that differentiate into (dermal, vascular, and growth) tissues formed at different 
stages of maturation. Meristems are located at growth sites in root and stem apices 
and in vascular cambium and cork cambium tissues (plants with secondary growth). 
The basal tissue mainly consists of parenchymal cells, which typically have a cell 
wall that varies in thickness, albeit thin, and in morphology. They are the most 
abundant cells in plants and are part of the mesophilic or photosynthetic (leaves 
and stems), epidermal, cortical (a region located between the vascular bundles and 

Fig. 3.3 Diagram of the main structures of a plant. Above the substrate, growth zones (shoot api-
cal meristem) and axillary buds will give rise to branches. The stem shows lenticels, branches, and 
leaves, whereas the leaves have stomata. The vascular cylinder runs internally. Under the substrate, 
the root cap, the mucigel sheath, and the formation of lateral roots and root hairs are shown

B. E. Millán-Chiu et al.



53

epidermis), and medullary (center of the stem) tissues and of the vascular system. 
Parenchyma cells specialized in storage are found in bulbs and tubers, seeds 
(endosperm), and cotyledons (Gibson 2012; Morris et al. 2016). In aquatic plants, 
these cells have a tissue termed the aerenchyma, which is characterized by intercel-
lular spaces containing air (a specialized tissue for plant buoyancy) (Smirnoff and 
Crawford 1983). They can also be part of the glandular, secretory, and trichome 
systems. Collenchyma cells are also part of the basal tissue, small, and elongated, 
and their primary cell walls have different thicknesses and proportions of cellulose, 
hemicellulose, and pectin. These components allow them to be more elastic than 
other cells. They provide support to leaves and stems and are usually found near 
the surface of the cortex and around vascular junctions in petiolate leaves and 
stems (Leroux 2012). Sclerenchyma cells (fibers and sclereids) are short cells with 
a thick, densely lignified, and rigid secondary cell wall. They provide mechanical 
support to the plant. They are found next to vascular ducts and in leaf veins and 
margins (Fig. 3.5a) (Calvin 1967).

The evolution of lignified structures in the form of tubules, which transport water 
and nutrients as components of the xylem and phloem in vascular systems, has con-
tributed to the diversification of plants with roots, stems, and leaves. The xylem is 
the system responsible for transporting water and dissolved minerals, consisting of 
tracheids and vessel elements (Fig. 3.5b). Both structures are generated by living 
cells, which die at maturity, leaving their thick, lignified, and interconnected cell 

Fig. 3.4 Diagram of leaf tissues. External structures such as the cuticle and the epidermis are 
shown, in addition to trichomes associated with the upper epidermis. Stomata are located in the 
lower epidermis. Photosynthetic (palisade and spongy mesophyll) parenchyma cells and different 
components of the vascular cylinder are also shown
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walls behind. Collectively, they form conductive tubules, the cell walls of which 
usually have thin areas termed pits, with an average pore diameter ranging from 5 to 
420 nm in angiosperms and from 10 nm to 200 μm in gymnosperms (Fig. 3.5c) 
(Carlquist and Schneider 2002; Jansen et al. 2009). Liquid flows through these pits 
inward from the tissues or outward to the tissues. Tubule architectures and pore 
sizes vary between species (Choat et al. 2008). Tracheids are aligned side by side, 
whereas vessel elements are aligned end to end; therefore, substances in the latter 
are transported vertically (Luo et al. 2019). Conversely, the phloem, which func-
tions in the transport of sugars and solutes, consists of tubular filtration elements 
(sieve elements) formed by living cells that are interconnected through lateral and 
terminal openings in their cell walls (sieve plates). Sieve elements are surrounded 
by specialized parenchymal cells, termed companion cells, which are responsible 
for transporting sugars to conductive tubes through plasmodesmata (Fig.  3.5b) 
(White 2012). In conifers and primitive vascular plants, sieve cells are found in the 
phloem. In vascular plants, the xylem and phloem are arranged in long, continuous 
strands, forming vascular bundles with arrangement patterns that are genetically 

Fig. 3.5 Diagram of the main cellular structures forming the vascular cylinder. (a) Xylem ele-
ments. (b) Phloem elements. (c) Vascular elements in dicotyledonous plants. (d) Vascular elements 
in monocotyledonous plants
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determined and that differ significantly among monocots, dicots, and other groups 
(Figs. 3.5c, d) (White 2012).

Roots usually grow below the surface; their function is to absorb water and min-
erals, to store nutrients, and to fix the plant to the soil. They have an apical meristem 
with a root cap, which is responsible for protecting the apex against mechanical 
damage and against the action of heavy metals present in the soil. In this region of 
the plant, cells secrete mucilage and exudates, composed of polysaccharides, 
organic acids, alcohols, secondary metabolites, antimicrobial proteins, and extracel-
lular DNA (Driouich et al. 2013), thereby varying the microenvironmental condi-
tions near the root tissue and promoting nutrient availability through their dissolution 
by changing the pH and substrate moisture (Baetz and Martinoia 2014). 
Morphologically, from outside to inside, the layers of root cells are arranged from 
the epidermis (protection), through the cortex (storage), to the endodermis formed 
by one or several layers of suberin-coated cells, known as Casparian strips, which 
function as a hydrophobic barrier (Chen et al. 2011; Lynch 1995). The pericycle 
consists of parenchyma cells that surround the vascular cylinder (xylem, phloem). 
In each organism, the root growth pattern is genetically determined. Many mono- 
and dicotyledonous plants have a primary root, secondary roots, and absorbing root 
hairs (lateral extensions), and some may also develop adventitious or aerial root 
systems (Longstreth and Borkhsenious 2000) (Fig.  3.6a–c). Water is transported 
from the roots through two pathways, the symplastic and apoplastic pathways; in 
both, water is absorbed through root hairs. In the symplastic pathway, water and 
minerals are transported from cell to cell through the cytoplasm between plasmo-
desmata. In the apoplastic pathway, water moves through extracellular spaces 
located between the plasmalemma and cell walls, albeit only up to the endodermis, 
wherein Casparian strips force water to enter the cells to reach the vascular cylinders 
(Fig. 3.6d) (Sevilem et al. 2013).

3.2.2  Seeds

Seeds contain a mature embryo, food reserves, and a coat or testa (Fig. 3.7a–c). Their 
formation begins with fertilization of the egg cell by sperm nuclei (pollen). The 
union gives rise to the zygote and the primary endosperm cell. The zygote initiates a 
series of mitotic divisions until the formation of a mature embryo with structures 
such as the root apex, shoot apex (epicotyl) with the first true leaves (plumule), and 
one or two seed leaves or cotyledons in mono- and dicotyledonous plants, respec-
tively (Beeckman et al. 2000; Jones and Rost 1989). Dicotyledonous embryos 
usually absorb nutrients (starch, proteins, sugars, and lipids) from the endosperm, 
storing them in cotyledons (Maroder et al. 2003). In monocotyledonous plants, the 
embryo has no contact with the endosperm until the seed germinates and digestive 
enzymes are activated (Fincher 1989). The seeds are found in the fruits, the primary 
function of which is protection. In some cases, the fruits contribute to dispersion. 
They can be dehiscent, fleshy, simple, aggregate, or multiple.
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3.2.3  Germination

Germination refers to the embryo development process after the latency period, 
which occurs when environmental conditions (temperature, humidity, amount of 
oxygen, light, and nutrients) are adequate. It begins with the movement of water 

Fig. 3.6 Diagram of the tissues that form the root and vascular cylinder. (a) General representa-
tion of a root. (b) Arrangement of vascular tissues and bundles in a dicotyledonous plant. (c) 
Distribution of vascular tissues and bundles in a monocotyledonous plant. (d) Water and nutrient 
transport pathways. In the apoplastic pathway, water is transported between the interstices separat-
ing the membranes and cell walls, only until reaching the endodermis, which has cells coated with 
suberin (hydrophobic). In the symplastic pathway, transport occurs via the cytoplasm, through 
plasmodesmata
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molecules inside the seed (imbibition) by attracting the hydrophobic groups of 
 proteins in the endosperm or in cotyledons, which swells the seed and ruptures the 
testa. This process increases the amount of oxygen, the temperature, and access to 
light hours, thus initiating the growth process, first at the root apex or radicle and 
then at the stem apex or epicotyl (Rajjou et al. 2012). When the seed coat or testa no 
longer covers the radicle, the cotyledon or cotyledons in most seeds show an 
increased number of photosynthetic chloroplasts, fulfilling the feeding function 
until the true leaves develop (Yan et al. 2014).

3.3  Associations with Microorganisms

Mycorrhizae are a mutualistic association between a plant species (pteridophytes, 
gymnosperms, and angiosperms) and a fungal species (Basidiomycota, Ascomycota, 
and Glomeromycota) (Martin et al. 2016; Tedersoo et al. 2010). Although they are 
not a plant tissue, fungi and their associations with the plant are an important ele-
ment in the absorption of water and nutrients that are difficult to obtain, such as 
phosphates, zinc, and molybdenum, among others. The mycelium covers root sur-
faces and redirects them toward nutritionally rich areas, allowing the plant to take 
advantage of resources and grow, especially in poor soils. There are two types of 
plant-fungus interactions. In ectomycorrhiza, the hyphae do not penetrate the root 
cells but instead are located in the intercellular space (Martin et al. 2016); in endo-
mycorrhiza, the hyphae penetrate root cells, wherein vesicles and arbuscules are 
formed for exchange between the fungus and the host plant (Luginbuehl and 
Oldroyd 2017). In turn, some plant species may also form a symbiosis with bacteria 
in root nodules. This association begins when nitrogen-fixing symbiotic bacteria 
enter roots through root hairs and subsequently infect cortical cells, wherein the 
bacteria reproduce and induce genetic-morphological changes. These changes lead 
to the formation of root nodules or tumor growths, consisting of the infected cells 
and plant tissue, thus enabling the plant to obtain the nitrogen necessary for its 
metabolic functions (Fig. 3.3) (Frank et al. 2017; Santoyo et al. 2016).

Fig. 3.7 (a) Diagram of embryonic structures in seeds of vascular plants. (b) Angiosperms. (c) 
Gymnosperms
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3.4  Plant Stress Response Mechanisms

Plants are continually exposed to stressors, such as variations in water availability 
(water stress), drastic changes in temperature, intense radiation, nutrient deficien-
cies (macronutrients, N, P, K, Ca, Mg, and S; micronutrients, Fe, Zn, Mn, Cu, B, and 
Mo, among others) (Lynch et al. 2012), overexposure to heavy metals or minerals, 
and pathogen infections (bacteria, fungi, worms), among others (Zhu 2016). Such 
factors are capable of inducing changes in physiological and genetic responses, 
either transient or permanent, at a local or systemic level, altering the standard con-
ditions of metabolic functioning and growth. The main plant response mechanism 
includes the generation of reactive oxygen species (ROS), which involves the partial 
reduction of molecular oxygen (O2) to other molecules, such as oxygen singlet 
(1O2), superoxide anion (O2

−), hydrogen peroxide (H2O2), or hydroxyl radicals 
(OH−). ROS production remains at baseline levels, thanks to antioxidant systems 
such as catalase (CAT), peroxidase (PER), peroxiredoxin (PRX), glutathione per-
oxidase (GPX), superoxide dismutase (SOD), ascorbate peroxidase (APX), mono-
dehydroascorbate reductase (MDAR) enzymes, and nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase (NOX)-like (respiratory burst oxidase 
homologs – RBOHs) proteins, among others; in addition, regulatory mechanisms of 
iron storage and uptake are also involved in maintaining ROS at baseline levels 
(Mittler 2017). Chloroplasts are the organelles that produce the greatest amount of 
ROS. ROS are also produced in mitochondria, peroxisomes, and other cellular com-
partments with proteins and molecules with reduction-oxidation (REDOX) reaction 
potential (Zhu 2016). ROS are considered signaling molecules that regulate devel-
opment and differentiation near the baseline state (Noctor et al. 2018). Biotic and 
abiotic stress signals and interactions with microorganisms increase or decrease the 
presence of ROS, which can induce cytostatic or even cytotoxic effects on the plant. 
Exacerbated ROS production in cells can trigger chain reactions that are harmful to 
constitutive organic molecules. For example, oxygen radicals induce lipid peroxida-
tion (Ayala et al. 2014; Cherchi et al. 2011; Nair and Chung 2014) and can promote 
enzymatic inactivation and mutations or even degradation of nucleic acids. 
Hypermethylation and gene expression changes are other mechanisms of plant cell 
defense against stress (Ghosh et al. 2019).

4  Plant Nanotoxicology

There is increasing concern about nanotoxicity in plants because they are not only a 
fundamental part of the ecology and ecological balance of the planet but also the 
basis of trophic systems. Both positive and negative effects of nanomaterials on 
plants have been described. Such effects vary with plant morphology, physiology, 
species, and the plant’s uptake capacity at different stages of maturation and with 
the presence of mycorrhizae or root nodules. The effects of a nanomaterial are 
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determined by its chemical composition, morphology, size, structure, solubility, 
concentration, area, and surface charge. In turn, the composition of the environment 
(organic matter, types of grain, pH, and humidity) and climatic conditions also help 
to strengthen or mitigate these effects. Characteristics such as the size, charge, and 
concentration of nanomaterials have been reported as the main factors underlying 
the uptake and distribution in plant tissues (Fig. 3.8).

4.1  Uptake of Nanomaterials in Plant Tissues

As mentioned above, nanomaterials are distributed by air, water, and land. Their 
mobility and toxicity vary with physicochemical factors of the particles and with 
their interaction with environmental components. Plants are very diverse, have colo-
nized terrestrial and aquatic environments, and exhibit abilities to take up, resist, 
and respond to the presence of nanomaterials that depend on complex interactions. 
The uptake of nanomaterials present in the soil occurs through the root system, in 
which the first key interaction is with symbiotic associations. Mycorrhizal and bac-
terial associations can function as remediation mechanisms for toxicity induced by 
nanomaterials present in the soil through their retention in hyphae and nodules, 
thereby preventing their accumulation in roots or their translocation to other tissues 
and mitigating their toxic effects on host plants. Feng et al. (2013) measured the 
effects of silver (Ag NPs) and iron monoxide nanoparticles (FeO NPs) on mycor-
rhizal fungi associated with white clover (Trifolium repens). Simultaneously, they 
measured the effects of NPs on plants with mycorrhizae and in control plants with-
out mycorrhizae. Their results revealed a decrease in fungal biomass. They also 
observed reduced nutrient uptake in control plants than in those with mycorrhizae.

Wang et  al. (2016) also described adverse effects on maize plants and on 
mycorrhizae exposed to high concentrations of zinc oxide (ZnO) nanoparticles. 

Fig. 3.8 Diagram of the sizes of structures such as chloroplasts
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They observed that plants with arbuscular mycorrhizae achieved better alleviation 
due to the lower bioavailability of nanoparticles in the medium and therefore 
lower accumulation in plants. Judy et al. (2015) showed that silver sulfide (Ag2S) 
nanoparticles were less toxic to tomato plants (Lycopersicum esculentum) with 
mycorrhizae than to those without, despite the decrease in fungal mass. In addi-
tion to the decrease in phytotoxicity in tomato plants (L. esculentum) with mycor-
rhizae exposed to Ag NPs, Noori et al. (2017) observed dose-dependent changes 
in both mycelial length and the expression of genes encoding membrane proteins 
(aquaporin channels, plasma membrane intrinsic protein, tonoplast membrane 
intrinsic channel, and potassium channels). These phenomena may have been 
involved in nanoparticle uptake, which was lower in plants with mycorrhizae. 
Associations with bacteria could have a similar effect because studies have shown 
that plants with root nodules exhibit some tolerance to the toxic effects of heavy 
metals. However, studies aimed at assessing the effect of nanomaterials have 
reported no results for control plants without root nodules (Cherchi et al. 2011; 
Guo and Chi 2014); therefore, no experimental evidence is currently available for 
tolerance mechanisms resulting from these associations (Tian et al. 2019). A key 
protective barrier, which decreases or favors the uptake of nanomaterials present 
in the soil, is the mucilage layer secreted by the root cap. Various researchers, 
such as Ma et al. (2011), have reported that the mucilage content of some plant 
species is able to acidify the soil, promoting the partial dissolution of some types 
of nanoparticles, whereas organic ligands associated with the root are able to take 
up metal ions. These authors showed that organic acids secreted by the cucumber 
plant (Cucumis sativus L.) modify the shape and size of the nanomaterials used 
(LaO3 NPs), altering their mobility and ability to translocate into tissues. In a 
study of cucumber plants and 7 and 25  nm cerium nanoparticles, Zhang et  al. 
(2011) observed that only a fraction of the 7 nm cerium NPs was able to enter the 
vascular system of the plant. The remaining nanoparticles were recovered in root 
washings, suggesting that the secreted mucilage layer functioned as a trap. The 
charge of the nanomaterials favors or decreases their ability to interact with plant 
tissues and therefore their uptake. Some studies have shown that positively 
charged nanoparticles are translocated at a higher rate than negatively charged 
materials and quantum dots. Wang et al. (2014) observed that CdSe/CdZn quan-
tum dots coated with cationic polymers are more easily taken up by Eastern cot-
tonwood trees (Populus deltoides) than QDs coated with anionic polymers. A 
study by Al-Salim et al. (2011) showed that quantum dots are translocated into 
study plant tissues of ryegrass (Lolium perenne), onion (Allium cepa), and chry-
santhemum (Chrysanthemum sp.), possibly due to their physicochemical charac-
teristics, again demonstrating that the charge of the particle and their interactions 
with plant fluids determine the mobility of QDs. Conversely, the entry of nanoma-
terials has been suggested to be favored in areas associated with growth, such as 
areas of rapid mitotic division in root meristems or in thin areas of nutrient uptake 
in root hairs (Fellows et al. 2003; Lv et al. 2015; Zhang et al. 2011). After entering 
the plant cells, the materials can move through apoplastic and/or symplastic path-
ways and reach the vascular ducts (Larue et al. 2012; Lv et al. 2015). The uptake 
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of nanomaterials in shoots (stems and leaves) is associated with the number of 
nanomaterials present in the air (aerosols) and with their physicochemical charac-
teristics (hydrophobicity or hydrophilicity), allowing them to interact with organic 
molecules of the plant and thereby cross biological barriers such as the cuticle or 
induce their passage through stomata to reach the vascular system (Uzu et  al. 
2010). Although the mechanism of nanomaterial penetration in seeds is in turn not 
well known, they may be able to enter through intercellular spaces between paren-
chymal cells during the imbibition process, crossing the cell membrane in the 
endosperm (Thuesombat et al. 2014).

4.2  Toxic Effects of Nanomaterials on Plants

Several studies have shown that in plants, nanomaterials are taken up by various 
tissues, both roots and shoots. These nanomaterials can produce dose-dependent 
abiotic stresses; that is, most nanomaterials cause cytotoxicity when they reach 
critical concentrations, and an imbalance in ROS production is induced. Furthermore, 
depending on the cellular compartment and on the generated physiological response 
mechanisms, the condition may be local or systemic (affecting morphology, physi-
ology, metabolism, and genetics). Some authors have suggested that the reduction 
in the photosynthetic capacity of plants is likely associated with lipid peroxidation 
in chloroplast membranes, which is associated with exacerbated ROS production in 
these organelles. Damage to photosystems directly results in decreased biomass 
(Dewez et al. 2018). In turn, changes in the numbers of carotene pigments and in 
phenols and flavonoids have been observed in plants exposed to high concentrations 
of silver nanoparticles (Gupta et al. 2018; Nair and Chung 2014). Dose-dependent 
genetic expression changes (upstream or downstream) have also been observed, 
especially in genes associated with ROS responses and those encoding cationic 
transporters associated with uptake (Taylor et al. 2014). Tables 3.1, 3.2, 3.3, 3.4, 3.5, 
and 3.6 show some damage-response examples that have been reported for vascular 
and nonvascular plants.

5  Nanotoxicological Evaluation Techniques in Plants

Many techniques have been used to evaluate the toxicity of nanomaterials in plants. 
These techniques mainly depend on studies of the nanomaterial traced within the 
tissues, the plant species, and the tissue type. To determine the phytotoxicity of a 
nanomaterial, physicochemical characterization of the nanomaterial should be per-
formed to collect data on morphology, size, charge, surface area, and the presence 
of functional groups, among other properties. To evaluate morphology and size, 
images are usually acquired using the following high-resolution techniques: trans-
mission electron microscopy, scanning electron microscopy, scanning transmission 
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electron microscopy, and atomic force microscopy. Spectroscopic techniques such 
as Raman spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible 
spectroscopy, and X-ray diffraction provide data on the chemical composition, elec-
tronic properties, and crystalline structure. Particle size is measured by dynamic 
light scattering. The hydrodynamic radius is determined by measuring the 
Z-potential (Peralta-Videa et al. 2011). Inductively coupled plasma optical emission 
spectroscopy (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), 

Table 3.2 Nanotoxicological effects reported in seedless vascular plants (ferns) and gymnosperms

Plant species

Nanomaterials 
(NMTs)/size/
morphology Concentrations

Stress response against 
NMTs References

Salvinia natans 
(fern)

ZnO 
NPs/25 nm/
semispherical

1, 10, 20, 
50 mg/L

Approximately 40% 
chlorophyll reduction. 
Reduced quantities of 
chlorophyll b and 
carotenoids. Increase in 
enzymatic activity of 
SOD, CAT, and POD

Hu et al. (2014)

Scots pine 
(Pinus sp.)
Oak (Quercus 
sp.) 
(gymnosperms)

Ag NPs; Cu 
NPs/5 nm/not 
specified

0, 5, 25, 50 ppm Dose-dependent
Ag NPs: Shortening of 
stems and low root 
mass
Cu NPs: Root diameter 
and stem length 
reduced
With both types of 
NMTs (50 ppm), there 
were changes in the 
ultrastructure of 
needles and leaves, 
especially in the 
photosynthetic 
apparatus; increased 
quantity of 
plastoglobules and 
change in their 
morphology. Reduction 
in chlorophyll 
fluorescence 
parameters

Aleksandrowicz- 
Trzcińska et al. 
(2019)

Pinus sylvestris 
(gymnosperm)

Ag 
NPs/100 nm/
semispherical

0, 10, 20, 40, 
80, and 100 mg/
kg soil and 0, 
10, 20 mg/L 
water

At concentrations 
greater than 80 mg/kg 
soil and 10 mg/L water. 
Reduction of 
germination 
percentage, root growth 
speed, and elongation. 
Reduced amount of 
plant fresh weight

Bayramzadeh 
et al. (2019)
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and single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) are 
used to quantify metal nanomaterials in suspension (Bao et al. 2016; Larue et al. 
2012). Some of these techniques have been useful for collecting data on nanomate-
rials in tissues.

Currently, there is no consensus on the optimal method for evaluating toxicity 
in plants, which has led to various sample preparation techniques and study parame-
ters. Growth effects are determined by measuring root elongation and development 

Table 3.3 Nanotoxicological effects reported in vascular plants, monocotyledonous angiosperms

Plant 
species

Nanomaterials 
(NMTs)/size/
morphology Concentrations Stress response against NMTs References

Oryza 
sativa L.

Multiwalled carbon 
nanotubes/diameter 
10–30 nm, length 
5–15 μm

0, 10, 20 40, 
80 mg/L

Dose- and time-dependent. 
Changes in cellular 
morphology, chromatin 
condensation, and cell wall 
damage. Cell death by 
apoptosis due to 
bioaccumulation. Cell death 
by necrosis in cells exposed to 
initial high NMT 
concentrations. Significant 
increase in ROS production

Tan et al. 
(2009)

Triticum 
aestivum

Commercial Ag NPs 
and manufactured/10 
and from 7.4 to 60.8/
semispherical

0–5 mg/kg 
sand

Dose-dependent. Growth 
reduction in shoot stems and 
roots. Increased proliferation 
of lateral roots. Plant biomass 
reduction. Increased ROS 
production and oxidized 
glutathione amount. 
Augmented metallothionein 
gene expression

Dimkpa 
et al. 
(2013)

Oryza sp. 
(rice)

SWCNTs, 
MWCNTs, fullerene 
C60, graphene single 
sheets/1.1 diameter, 
0.5–100 μm length, 
0.5–200 μm length

50 μg/mL 
medium

Both single-walled and 
multiwalled nanotubes had a 
positive effect on seed 
germination, with an increased 
water uptake rate
Negative effects with 
graphene nanosheets due to a 
reduction of seed germination 
percentage and low water 
uptake rate

Nair et al. 
(2012)

Spirodela 
polyrhiza

ZnO NPs/25 nm/
semispherical

0, 1, 10, 
50 mg/L

Negative effects were 
recorded with 50 mg/L. NPs 
were aggregated and 
precipitated. Reduction in the 
chlorophyll/pheophytin ratio. 
Increased enzymatic activity 
of SOD and CAT. Inhibition 
of POD enzymatic activity

Hu et al. 
(2013)
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(Lahiani et al. 2015), growth from the base of the plant to its highest point, stem 
diameter, number of secondary shoots, shoot length, and frond changes (Hu et al. 
2013; Lee et al. 2010). Germination times, percentages, and seed viability have also 
been evaluated (Vannini et al. 2014). Parameters that have been useful in determin-
ing the REDOX potential by evaluating ROS production in plant tissues are the 
activity of antioxidant enzymes, such as catalase, ascorbic acid peroxidase, super-
oxide dismutase, and peroxidase, and the reduced/oxidized glutathione ratio 
(Dimkpa et al. 2013; Hu et al. 2013). Dye tests are also used to quantify the REDOX 
potential, including Alamar blue (Ong et al. 2014), nitro-tetrazolium blue (Speranza 
et al. 2013), and 2′,7′-dichlorodihydrofluorescein diacetate assays (Yan and Chen 
2019). Conversely, X-ray absorption spectroscopy (XAS) has been very useful for 
locating nanomaterials in different tissue sections. Micro-X-ray fluorescence 
analysis (μ-XRF) and micro-X-ray absorption near-edge spectroscopy (μ-XANES) 
have been used to highlight the location and type of nanomaterials and to track 
fluorescence or measure radioactivity (Hernandez-Viezcas et  al. 2013; López-
Moreno et al. 2010; Lv et al. 2015; Zhang et al. 2011). Extraction with organic sol-
vents, quantification of chlorophyll and other pigments, and relative quantification 
of the plant biomass (wet and dry weight) have also been used as nanotoxicity 

Table 3.4 Continuation

Plant 
species

Nanomaterials 
(NMTs)/size/
morphology Concentrations Stress response against NMTs References

Oryza 
sativa 
L.

Ag NPs/20 nm/
spherical

0, 0.2, 0.5 y 
1 mg/L

Dose-dependent. Root length 
reduction. Decreased weight, 
chlorophyll, carotenoid, and sugar 
content on shoots and roots. 
Increased ROS production, lipid 
peroxidation, and proline quantities. 
Augmented expression of genes 
related to oxidative stress tolerance. 
Reduction in mitochondrial 
membrane potential of roots

Nair and 
Chung 
(2014)

Lemna 
gibba

Ag NPs/50 nm/
spherical

0, 0.01, 0.1, 
1 mg/L

Toxic effects observed with 1 mg/mL
Reduction in chlorophyll synthesis. 
Deterioration in photosynthetic 
activity due to a deficiency in energy 
transfer. Decreased plant biomass 
content

Dewez 
et al. 
(2018)

Zea 
mays L.

La2O3 NPS/80–
100 nm/not 
specified

0, 5, 50 mg/L Dose-dependent. Acceleration of the 
development of apoplastic barriers. 
Augmented expression of genes 
related to lignin synthesis. Increase in 
the concentration of ABA in roots. 
Decrease in stomatic activity, 
photosynthetic activity, and 
transpiration rate. Decrease in water 
uptake rate. Plant growth inhibition

Yue et al. 
(2019)
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evaluation parameters (Dewez et  al. 2018). Finally, some studies have utilized 
genomic analysis (RT-PCR, endpoint PCR, qPCR, random amplification of poly-
morphic DNA (RAPD), and DNA microarrays) (Hu et al. 2017; Taylor et al. 2014). 
Analyses of DNA methylation patterns, proteomics (Vannini et al. 2014; Mustafa 
et  al. 2015), and metabolomics have also been performed to highlight changes. 
Techniques such as terminal deoxynucleotidyl transferase dUTP nick end labeling 
(Kumar et  al. 2017), the Comet (also known as single-cell gel electrophoresis) 
(Cvjetko et al. 2018), and Allium (Liman et al. 2019) assays have been very useful 
in evaluating the genotoxicity of nanomaterials.

Table 3.5 Nanotoxicological effects reported in vascular plants, dicotyledonous angiosperms

Plant 
species

Nanomaterials 
(NMTs)/size/
morphology Concentrations Stress response against NMTs References

Arabidopsis 
thaliana

AL2O3, SiO2, 
FeO4, and ZnO 
NPs/150, 42.8, 
<50, and 45 nm/
semispherical

400, 2000, 
4000 mg/L

Al2O3 NPs did not affect the 
germination percentage, root 
elongation, or number of 
leaves
SiO2 NPs had no effect on 
germination but decreased 
root elongation and the 
number of leaves at 
2000 mg/L
Fe3O4 NPs decreased root 
elongation, without affecting 
the other parameters
ZnO NPs significantly 
decreased the percentage of 
germination, root elongation, 
and number of leaves in all 
concentrations tested

Lee et al. 
(2010)

Camellia 
japonica

C60/C70 and higher 
fullerenes mix 
(79:20:1%); C60 
99%

2 mg/mL With the mixture of 
fullerenes, there was a 
decrease in the percentage of 
germination up to 80%. No 
modification with C60 was 
observed

Aoyagi and 
Ugwu 
(2011)

Cucumis 
sativus

LaO3 NPs/22 nm/
spherical

0, 100, 1000, 
2000 mg/L

Dose-dependent. Decrease in 
the size and diameter of the 
root. Development of greater 
amounts of lateral shoots. 
Bio-transformation of the 
NPs from a spherical 
morphology to a needle 
shape. Negative 
ultrastructural cell changes

Ma et al. 
(2011)

Arabidopsis 
thaliana

CdSe/ZnS 
quantum dots/
length 12, 
diameter 6.3/rod

5.8 nM (5 μg/
mL of Cd2+)

Increase in ROS production
The GSH/GSSG ratio 
decreased in exposed plants

Navarro 
et al. (2012)
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6  Conclusions

Nanotechnology is a discipline that has acquired great relevance in many areas of 
research (physics, chemistry, biology, engineering, electronics, medicine, etc.), as 
well as in industrial and pharmaceutical development. A perspective of nanotech-
nology is the expansion of promising applications, such as antimicrobial bandages, 
drug carriers, catalysts, scratch-resistant coatings, self-cleaning glasses, semicon-
ductors, and UV-protected garments. However, as with many technological devel-
opments, nanotechnology may have both positive and negative effects in terms of 
health and the environment.

In the last decade, the number of nanomaterials included in objects and devices 
of common use has increased. However, the possible environmental consequences, 
resulting from the massive use of nanomaterials, have not been thoroughly 
addressed. Materials at the nanoscale behave differently than they do in their bulk 

Table 3.6 Continuation

Plant species

Nanomaterials 
(NMTs)/size/
morphology Concentrations Stress response against NMTs References

Glycine max 
L.

Ag NPs/2, 15, 
50–80 nm/not 
specified

0.2, 2, 20 ppm With 15 nm NPs, 2 ppm induced 
decreased expression of related 
proteins in cellular organization 
(annexins and myosins). 
Affectation of abundances of 
proteins associated with stress, 
signaling, and cellular 
metabolism. 20 ppm were lethal 
for seeds

Mustafa 
et al. 
(2015)

Citrus 
maxima

g-FeO3 NPs/20 
+/− 2.7 nm/
spherical

20–100 mg/L Dose-dependent. Toxicity with 
higher amounts of NPs than 
100 mg. Decrease in plant 
biomass, root length, and 
chlorophyll contents. Increase in 
the concentration of MDA 
produced by lipid peroxidation. 
Less expression in iron reductase

Hu et al. 
(2017)

Solanum 
lycopersicum

TiO2 NPs/30–
50 nm/
cylindrical/
tetragonal

0.5, 1, 2, 4 g/L Effects observed with the 
concentration of 4 g/L. Decrease 
in seed germination percentage, 
plant biomass, chlorophyll 
content, and photosynthetic 
efficiency. Increase in enzymatic 
activity of CAT and PXD in roots 
and leaves and in the expression 
of glutathione s-transferase and 
glutathione synthase. Alteration 
in the transport rates of essential 
elements (P, S, Mg, and Fe)

Tiwari 
et al. 
(2017)
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form and may be a risk to living organisms at different organization levels. 
Nanotoxicology is a relatively new research area which addresses this issue by 
studying the uptake, accumulation, chemical interaction, and biological effects of 
nanomaterials. Novel methodologies are being developed to characterize the 
 nanomaterials present in the environment and to better understand their interaction 
with cells and tissues, in order to determine if they constitute a threat. Soil microor-
ganisms in symbiotic association with plants are the first link damaged by an 
increase of nanomaterials in the environment, sometimes considerably reducing the 
growth of plants. When nanomaterials reach plant tissues by penetrating through 
their openings in roots, stems, and leaves, they may induce stress mechanisms that 
could achieve toxic levels in tissues, causing deterioration of plants, altering whole 
crops or even ecosystems. Furthermore, due to a bioaccumulation phenomenon in 
plants, nanomaterials can enter the food chain of animals and humans constituting 
a health problem. Therefore, extensive safety research projects and regulations on 
the use of nanomaterials are still needed. In this chapter, basic concepts of plant 
nanotoxicology were described, including some properties of nanomaterials, and 
the anatomy and physiology of plants, as well as the methodologies so far existing 
to evaluate the toxicity of nanoparticles.

Developments using nanomaterial engineering for specific purposes should be 
accompanied by the corresponding toxicological studies and by studies assessing 
the potential environmental damage.
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1  Introduction

Carbon nanotubes (CNTs) are available as single-walled carbon nanotubes 
(SWCNTs), double-walled carbon nanotubes (DWCNTs), triple-wall carbon nano-
tubes (TWCNTs), or else multiwalled carbon nanotubes (MWCNTs). These func-
tional nanoscale materials have a variety of unique, fascinating, and never-seen-before 
properties. DWCNTs are coaxial nanostructures composed of exactly two SWCNTs, 
one nested in another. MWCNTs consist of multiple nanotubes inside larger nano-
tubes with the same and different chiralities.

Currently, carbon nanotubes are being used in a wide range of modern technolo-
gies to harness their properties never seen before in other materials. These particular 
properties could improve crop management worldwide with exceptional advantages 
for farmers. However, there are also innumerable health and environmental con-
cerns regarding the side effects of nanotechnologies, particularly, when the use of 
nanotechnology implies the spreading of novel materials in ecosystems where 
CNTs had never been in touch.

It has been reported that c.a. 14,000 tons of MWCNT were synthesized in 2016, 
although the unregulated use of these materials could release them to the environ-
ment during production, transportation, handling, use, and final disposal (Zhao et al. 
2017). However, natural substrates such as soil, water, or air become the ideal site 
for final disposal worldwide, particularly in countries of low incomes.

After a broad database study, it was found that there are two groups with oppos-
ing results; one group presents that CNTs are severally phytotoxic, but another 
group suggests that the CNTs have positive extent beneficial effects on crops. 
SWCNTs, DWCNTs, or MWCNTs have been widely studied by plant biologists, 
because of their particular effects on the growth of different crops and the promises 
of their potential use as smart delivery systems in plants.

The CNTs have been evaluated in plant growth chambers, greenhouses, or lands 
to determinate the potential effect of these materials on crops with environmental, 
social, or economic importance. So, this chapter summarizes the main advantages 
and drawbacks regarding the use of CNTs as plant growth regulators.

2  Classification of the CNTs and Their Main Characteristics

As we know, the carbon nanotubes are like a pipe of carbon formed by a sheet of 
graphene (monolayer). They are macromolecules of graphene that are arranged by 
layers or blades of interlaced molecules of carbon given a cylinder arrangement 
(Karimi et al. 2017), where the interlaced is a typical hexagonal. The main charac-
teristics of the CNT are they are 100-fold more rigid and flexible than steel. The 
CNT has a basic unit, the hexagonal form, like graphene. Another important prop-
erty, derived from its structure, is the thermal stability, maybe semiconductor 
depending on diameter and chirality of atoms.
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2.1  Classification of the CNT According to the Wall Structure

On this classification, there are two main groups, such as SWCNT and MWCNT; on 
the last one, there have been included DWCNT, TWCNT, or more layers. The first 
one, the SWCNT, was reported in 1993. They are structured by a single layer of 
carbon given a cylindrical form with 0.4–2.3 nm of diameter range, where 1 nm is 
the most common diameter, and the longitude can be various millions of units 
(20–1000 nm) (Karimi et al. 2017). According to the cylindrical structure of CNT, 
we can find several chemical configurations. A chiral vector defines this structure; 
this means that the CNT axis and the hexagonal lattice orientation are related in the 
configuration through chiral indexes, n and m (Fig. 4.1), i.e., represent the number 
of unit vectors along of two directions in the crystal lattice of graphene. The single- 
walled carbon nanotube (SWCNT; Figs.  4.2 and 4.3) is considered a quasi-one- 
dimensional (1D) material starting of rolling up a graphene sheet (Okuyama 
et al. 2019).

2.2  Classification of the SWCNT by Carbon Configuration

The SWCNT can be classified by configuration, such as an armchair, zigzag, and 
chiral. The armchair structure is a hexagonal structure building by cyclohexene, 
where n = m, the zigzag form has m = 0, and chiral form is defined by angle Ø (angle 
between the zigzag direction and the chiral vector), so this angle is given by Ø = 

tan−

+( )












1 3

2

m

m n
. The term chiral (means “hand” and it is provided by asymmetric 

Fig. 4.1 Model of chiral vector, where the CNT axis and the hexagonal net orientation are related 
in the configuration of the structure of CNT
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Fig. 4.2 A schematic model of SWCNT derived from the model of the chiral vector. (a) Armchair 
(10, 10), (b) zigzag (10, 0), and (c) chiral (6, 4) models. (Models were created with Avogadro 
software (Version: 1.2.0))

Fig. 4.3 A model of SWCNT from an inside view. (a) Armchair (10, 10), (b) zigzag (10, 0), and 
(c) chiral (6, 4) models. (Models were created with Avogadro software (Version: 1.2.0))

carbons) refers to compounds that are typically optically active, where the asym-
metric structure of carbon is a mirror image that is not superimposable.

Multiwalled carbon nanotubes (MWCNTs) are formed by two, three, or more 
CNTs of graphene, arranged concentrically (Fig. 4.4). They can organize by a dou-
ble wall, triple wall, and multiple walls (more than three CNTs concentrically). The 
double-walled carbon nanotube (DWCNT) is composed of two different cylindrical 
(two nanotubes of graphene) parts that have in common their axis of symmetry 
(coaxially). Three different cylindrical nanotubes characterize the triple-wall carbon 
nanotube (TWCNT) arranged concentrically as well, reaching diameters over than 
10 nm. As we know, in the single-walled CNT, the carbons are united by covalent 
bond atom by atom; however, in the multiwalled NT, the concentric tubes are united 
by van der Waals interactions, forces that maintain the space between nanotubes. 
They have lengths between 1000 and 50,000 nm (Karimi et al. 2017).
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According to higher length and taking into account the chemical synthesis, it can 
be seen some kind of faults, the Stone-Wales defects, for example, the 7:5:5:7 defect 
that shows two rings of seven carbons and one pair of five-carbon rings as well 
(Fig. 4.5), deforming the curvature of the tube locally.

2.3  Characteristics

The exceptional properties of CNT are due to their chemical, physical, and physico-
chemical properties such as their high surface-area-to-volume ratio, high elastic 
modulus, tensile strength, stronger than steel, and harder than diamond. CNT can 

Fig. 4.4 A model of CNT from an inside view of single wall (SWCNT) and multiple walls 
(DWCNT and TWCNT)

Fig. 4.5 Stone-Wales 
defect of CNT. This defect 
is called 7:5:5:7 of the 
sidewalls of a CNT. (The 
model was created with 
Avogadro software 
(Version: 1.2.0))
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behave as conductors transferring heat (thermal conductivity higher than diamond) 
and electrical current higher than copper (Kaminskyj 2008; Mukesh and Jha 2017), 
and they can exhibit unusual mechanical properties as high toughness and high 
elastic moduli (Mukesh and Jha 2017). Besides, concerning electronic structure, 
they can exhibit semiconducting and metallic behavior (Mukesh and Jha 2017), 
allowing a wide opportunity for doing prominent research, versatile, and an efficient 
delivery vehicle for agricultural, food, and biomedical applications, and other 
advanced technological (such as electronics, effecting materials, environment, 
healthcare, and energy) applications as well, offering a countless potential.

3  Repository, Movement, Fate, and Bioavailability 
of Natural or Engineering CNTs in the Environment

Carbon nanotubes (CNTs) have different behaviors under natural conditions 
depending on their length, diameter, functionalization, or environment (Chen et al. 
2019). CNTs are characterized by their high resistance, low density, strong hydro-
phobicity, and severe biodegradation. Hence their impact on the environment will 
depend on their ability to interact with natural organic matter (NOM) (Khosravi- 
Katuli et al. 2017). Although CNTs are hydrophobic in aqueous suspensions, scien-
tists have explored different methods to increase their solubility by adding diverse 
chemical groups to their surface. These modifications can improve their aqueous 
solubility and biocompatibility; this, in turn, can increase their toxicity because 
these functional groups might be exchanged with NOM (Chen et al. 2019; Chang 
and Bouchard 2015). Unfortunately, this process is not wholly understood. 
Therefore, more work is needed to understand the fate and toxicity of CNTs—espe-
cially in terrestrial plants and ecosystems.

3.1  Effects and Fate of CNTs in Plants

Several studies have demonstrated that 10–200 μg/mL CNTs can stimulate seed 
germination and growth of model plants as well as crop species such as barley, 
chickpea, corn, broccoli, canola, sorghum, onion, radish, etc. (Oloumi et al. 2018; 
Pandey et al. 2018; Liné et al. 2017; Martínez-Ballesta et al. 2016). Fan et al. (2018) 
reported that CNTs could modulate the toxicity of methyl viologen by adsorbing to 
their surface. These protect the plant root by stimulating photosynthesis, activating 
the antioxidant system, and increasing the number of lateral roots that help to assim-
ilate nutrients. However, Begum et al. (2012) recorded the phytotoxic effects as a 
function of CNT concentrations greater than 1000 μg/mL. This delayed seed germi-
nation, decreased shoot length, lysed cells, and consequently led to plant death. 
These authors hypothesized that the toxic effects might be due to the aggregation of 
the CNTs in the roots, which would impede water and nutrient uptake.
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At the cellular level, CNTs can increase xylem and phloem cell size and stomatal 
density, activate aquaporins, and promote the absorption of nutrients via an increase 
in lateral roots (Verma et al. 2019; Joshi et al. 2018a, b; Liang et al. 2013). Other 
studies noted that CNTs could improve the functioning of photosynthetic machin-
ery because CNTs can integrate into the outer lipid envelope of chloroplasts; their 
semiconducting capacity tripled the photosynthetic activity through an increase in 
electron transport (Fan et al. 2018; Giraldo et al. 2014; Calkins et al. 2013).

The cellular location of CNTs in plants is poorly understood, but it depends on 
the uptake pathway; potential pathways include proteins, transport vesicles, or 
direct internalization. The latter depends on the ratio height and the radius of the 
nanomaterial. CNTs cylindrical shape and length allows them to enter through the 
cell wall and the plasma membrane of plant cells similar to a nano-syringe (Zhai 
et al. 2015; Serag et al. 2013; Liu et al. 2009; Kostarelos et al. 2007).

Wong et al. (2016) noted that the passive transport of CNTs is due to their inter-
actions with lipids as well as their size and charge. The charge of CNTs affects their 
movement through plant tissues and cells. Zhai et al. (2015) observed that the trans-
port of CNTs in the vascular system occurs via transpiration through the xylem 
toward the leaves. Subsequently, they are translocated to different parts of the cells 
such as the cell wall, cell membrane, cytoplasm, chloroplast, and mitochondria 
depending on their charge and size (Fig. 4.6). The small size and homogeneity facil-

Fig. 4.6 Uptake and translocation of carbon nanotubes (CNTs) after exposure to the plant 
system
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itates this uptake, but the charge allows the CNTs to be transported to cellular 
organelles: Negatively charged CNTs are better dispersed in the cytoplasm, and 
positively charged CNTs remained on the surface of the cell membranes and organ-
elles (Zhai et al. 2015; Larue et al. 2012a, b). Das et al. (2018) reported that CNTs 
functionalized with carboxyl groups were more easily assimilated and translocated 
from the roots to the leaves. The CNTs that were not functionalized were trans-
ported to the vacuole; however, these same CNTS localized in the cytosol when 
conjugated with DNA (Serag et al. 2013; Liu et al. 2009). Thus, CNTs have gener-
ated interest regarding their use as an intelligent drug and gene delivery system in 
plants (Cunningham et al. 2018); their large surface area offers strong potential for 
chemical modifications (Kwak et al. 2019; Li et al. 2017).

Khodakovskaya et al. (2013) studied tomato plants and demonstrated that CNTs 
added to the substrate via irrigation water could increase the number of leaves and 
flowers; the CNTs also migrated to the plants’ reproductive organs. The presence of 
CNTs in the tissues of plants can be perceived as a stress factor triggering signal 
transduction similar to those triggered by the attack of pathogens or herbivores. 
This, in turn, induces massive changes in the plant’s gene expression, metabolism, 
and physiology (McGehee et al. 2017; Hu et al. 2015). Therefore, CNTs can alter 
the concentrations of phytohormones and the enzymatic and nonenzymatic antioxi-
dant system—both of which play essential roles in counteracting the phytotoxic 
effects of CNTs (Hao et al. 2018). The impact of the CNTs depends on their inher-
ent characteristics, purity, presence of amorphous carbon, agglomeration and distri-
bution in plant tissues, chemical functionalization, and species of plant (Haghighi 
and da Silva 2014; Villagarcia et al. 2012).

3.2  Release of CNTs

The main use of CNTs in agriculture that can lead to their accumulation in plants is 
as a nanosensor for various tasks: (i) detection of pesticides (Tang et  al. 2019; 
Bandyopadhyay et  al. 2017) and secondary metabolites (Erady et  al. 2019), (ii) 
release of pesticides and fertilizers (De La Torre-Roche et al. 2013; Sarlak et al. 
2014) to increase growth and development (Bakytkarim et al. 2019), and (iii) utili-
zation as a source of new materials to increase the life of fruits after harvest (Liu 
et al. 2019). Currently, there is a growing trend in the use of CNTs in commercially 
available products such as agrochemicals (pesticides, fertilizers) in addition to their 
applications in electronics, materials, and medicine. Thus, thousands of tons are 
produced per year (Jia and Wei 2019), leading to the release of CNTs into the envi-
ronment and agricultural systems.

CNTs usually have low toxicity to soil microorganisms relative to metal nanopar-
ticles (Simonin and Richaume 2015). However, CNTs can alter the relative abun-
dance of bacteria and the compositional profiles of the soil bacterial community; 
however, the diversity and phylotype of microbial communities are not affected (Wu 
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et al. 2019). Some of the taxonomic genera affected by the presence of CNTs in 
soils are Nitrospira, Planctomyces, and Lysobacter (Hao et al. 2018).

The studies noted above confirm the bioaccumulation of CNTs by plants, but 
little is known about the bioaccumulation of CNTs. The possible transformation of 
CNTs in natural systems can change their properties and consequently affect their 
mobility and bioavailability. Some studies confirmed that CNTs could be degraded 
(Table 4.1) by chemical and enzymatic methods. Also, CNTs can be degraded by 
Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. 
This process can decompose multiwalled carbon nanotubes (MWCNTs) into CO2 
and other by-products (Chen et al. 2017a, b). Importantly, these bacteria are com-
mon in the rhizospheres of soil, surface water, and groundwater. Biodegradation of 
CNT might be via peroxidase (DyP) type and cytochrome P450 (CYP3A4) 
(EL-Sayed et al. 2019; Zhang et al. 2014). The biodegradation of CNTs by micro-
organism and enzymes is critical to removing them and reducing their negative 
impacts on the environment.

4  Main Uses of CNTs in the Agriculture Sector

Modern agriculture requires a variety of agrochemicals for increasing crop yields to 
throw control of phytopathogens and plant diseases (Rai et  al. 2015). It is well 
known that the uncontrolled use of high quantities of agrochemicals such as fertil-
izers or pesticides increases the pathogen and pest resistance, the environmental 
pollution, and the bioaccumulation of pesticides while reducing the diversity and 
abundance of microorganisms from water, air, and soil. Besides agrochemicals play 

Table 4.1 Degradation of carbon nanotubes by chemical and enzymatic methods

Method of 
degradation Sub-products of degradation References

Chemical

SWCNT, 
MWCNT

Sodium 
hypochlorite

Carbon oxides or carbonates 
ions

Zhang et al. (2019)

SWCNT, 
MWCNT

Nitric acid and 
sulfuric acid

CO2, –COOH Wang et al. (2019)

MWCNT Electrochemical Amorphous carbon Reipa et al. (2018)
Enzymatic

SWCNT Myeloperoxidase Small quantities of 
carbonaceous residues

Martín et al. (2019), Kagan 
et al. (2010)

SWCNT Eosinophil 
peroxidase

Complete degradation Kotchey et al. (2013), 
Andón et al. (2013)

SWCNT, 
MWCNT

Horseradish 
peroxidase

Morphological changes, 
defects on the nanotubes, and 
shortness

Kotchey et al. (2012), 
Russier et al. (2011), Zhao 
et al. (2011)

SWCNT single-walled carbon nanotube, MWCNT multiwalled carbon nanotube
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an important role regarding the risks to animal and human health (Rai et al. 2015; 
Solanki et al. 2015).

Several reports highlight the uses and applications of carbon nanotubes (CNTs) 
in agriculture as fertilizers, herbicides, pesticides, and nanosensors for monitoring 
soil and environmental conditions or on disease detection, among others (Aouada 
and De Moura 2015; Liné et al. 2017). The CNT could be found anywhere in the 
plant structure, as reported by Liné et al. (2017). They showed the processes involved 
in the uptake and distribution of CNTs in plants, such as (i) CNTs enter the plant 
roots by osmotic pressures, capillary forces, and pores on cell walls; (ii) CNTs cross 
through both cell wall and cell membrane (endocytosis); (iii) they may be trans-
ported by the vascular system with water and nutrients; (iv) they are found in leaves 
(mainly in the leaf xylem) and other upper parts of plants; and (v) in cell, CNTs 
accumulate mainly in cell wall, membrane, chloroplast, mitochondria, and cytoplasm.

4.1  Fertilizers

CNTs are applied in agricultural systems as a complement of the essential nutrients 
of crops; nevertheless, it is important to make most effective the use of chemical 
fertilizers and minimize the risks of ecological contamination (Solanki et al. 2015). 
The CNT as fertilizers carrier or controlled-release vectors, so-called “smart” fertil-
izers and they could improve the modern agriculture through new enhancements, 
due to the controlled fertilizer delivery such as chemicals, biofertilizers, micronutri-
ents, and other plant growth-promoting which could be more efficiently applied on 
lands. So, the CNT should improve uptake efficiency, increase the plant growth and 
therefore a high biomass production, produce food with higher crop yields, and 
reduce the cost of the ecological contamination and other drawbacks (Aouada and 
De Moura 2015; Liné et al. 2017; Mastronardi et al. 2015; Solanki et al. 2015). So, 
the nanofertilizers could regulate (i) the solubility and dispersion of mineral micro-
nutrients; (ii) the nutrient uptake efficiency to reduce the fertilizer doses; (iii) release 
modes; (iv) effective duration and to extend half-life of nutrients into soil; (v) loss 
rate of fertilizers nutrients into soil by leaching and/or leaking; (vi) release of fertil-
izers on-site target, reduction toxicity; and (vii) the CNT under drought conditions, 
can be as plant growth promoters or crop protectors (Mastronardi et  al. 2015; 
Solanki et al. 2015) and minimize the risks of global contamination and degradation 
(Solanki et al. 2015).

For example, some CNT as SWCNT significantly affected root elongation of 
tomato, cabbage, carrot, and lettuce and promoted the growth of onion and cucum-
ber (24–48 h); other crops showed effects on root elongation of Allium spp., Brassica 
oleracea, Cucumis sativus, Daucus carota, and Lactuca sativa (Ma et  al. 2010; 
Subramanian et al. 2015). The MWCNT at concentrations range of 10–40 mg mL−1 
enhanced the seed germination and growth of tomato plants (Ma et  al. 2010; 
Khodakovskaya et al. 2009). Similar results were found for some CNT when they 
showed increase on seed germination and plant growth, Table  4.2 (Mastronardi 
et al. 2015).
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Table 4.2 Beneficial effects of CNT on some crops

CNT 
type

Concentration
(μg mL−1) Crops Effects Findings References

CNT 10–40 Tomato Seed 
germination

Accelerate the 
process of seed 
germination which 
significantly 
shortened the 
germination time: 
74–82% to 12 days, 
90% to 20 days

Khodakovskaya 
et al. (2009)

Biomass Fresh weight of total 
biomass (leaves, 
stems, and roots), 
increases 2.5-fold 
than the control 
treatment

Length of 
stems and roots

Seedlings had longer 
stems and were more 
developed but 
showed similar 
lengths of a root 
system than the 
control treatment

MWCNT No data Tomato Flowers and 
fruits

Produce two times 
more flowers and 
fruits

Khodakovskaya 
et al. (2013)

MWCNT 2000 Ryegrass
Rape
Corn

Root 
elongation

1.2 better than 
control
1.3 better than 
control
1.3 better than 
control

Liu and Lal 
(2015)

MWCNT 104–1750 Onion
Cucumber

Root 
elongation

1.8–2.8 better than 
control
1.4–2.0 better than 
control

Liu and Lal 
(2015)

MWCNT 50–200 Tomato Tomato 
biomass 
seedlings and 
fruit number 
each plant

1.1–1.2 better than 
control
2.3–2.5 better than 
control

Liu and Lal 
(2015)

MWCNT 50, 100, 200 Barley
Corn
Soybean

Shoot length 1.4 better than 
control
1.1 better than 
control
1.2 better than 
control

Liu and Lal 
(2015)

(continued)
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Nevertheless, some MWCNT showed phytotoxicity activity, reducing the bio-
mass and root cap malformation of Cucurbita pepo (zucchini) (Ma et  al. 2010). 
There are findings where CNT can be beneficial or deleterious effects for the same 
crop, or helpful for a specific crop, but deleterious for another crop.

4.2  Pesticide

Some practices for crop production include the use of new herbicides, insecticides, 
fungicides, etc., to avoid or reduce the crop losses regarding diseases and pests 
which decrease the yield from 20% to 40% (Borgatta et al. 2018). So, cutting-edge 
technologies with scientific advances never seen before have been proposed for 
innocuous and affordable food production such as biotechnology and nanotechnol-
ogy. These breathtaking and latter-day knowledge areas might play an outstanding 
function in the production of edible or nonedible crops. CNT has a potential struc-
ture for the diffusion of antimicrobials; thus it can penetrate the plant cell walls 
(Liné et  al. 2017), pesticides, and delivering slowly with the aim increasing 
agrichemicals efficiency in target crops (Brandelli 2015; Liné et al. 2017). Also, 
some innovations by CNT for agricultural practices include delivery of DNA or 
RNA and nanosensors to detention crop diseases and monitor soil (Table  4.3) 
(Borgatta et al. 2018). It has been well studied that the transport of DNA or RNA 
some times can stimulate several mechanisms to fight and defending from plant 
pathogen target through the activation of some resistance mechanisms, such as the 
onset of the enzymatic expression or the synthesis of compounds with antimicrobial 
activity against phytopathogens or plant diseases (Brandelli 2015). On the other 
hand, the agrichemicals with CNT could be applied as a new technology for genetic 
engineering and might work as nanosensors detecting the degradation of pesticides 
with catalytic or photocatalytic reactions. Therefore, the CNT can carry out and 
deliver DNA or RNA for monitoring the soil, ecological resilience, or increasing the 
efficiency of the disease detection systems (Aouada and De Moura 2015).

Table 4.2 (continued)

CNT 
type

Concentration
(μg mL−1) Crops Effects Findings References

MWCNT No data Barley
Corn
Soybean

Root 
elongation

1.4 better than 
control
1.3 better than 
control
1.1 better than 
control

Liu and Lal 
(2015)

SWCNT 6.0 Chickpea Roots, shoots, 
and stems

Showed increased 
growth rates

Tripathi et al. 
(2011)

SWCNT 0.16, 0.9, 5 g Onion
Cucumber

Root growth
Germination 
seeds

Better than control Liu and Lal 
(2015)
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4.3  Other Concerns

The most commercial nanoparticles products need some certain stabilizers because 
their duration in suspension is very short, and some synergetic effects the nanopar-
ticles and stabilizers could be phytotoxicity for certain crops (Ma et al. 2010). It is 
essential to regulate production and uses of nanomaterials for a safe and sustainable 
future. So far, there is no international agreement to supervise the production, use, 
and commercialization of nanomaterials (Gwenzi and Chaukura 2018).

The CNT can help the modern agriculture, and they are more environmentally 
friendly, can reduce chemical dosage, and can be specific and efficient, with poten-
tial to solve agricultural problems caused by conventional crop management (Rai 
et al. 2015).

5  Uptake, Transport, and Accumulation of CNTs in Plant 
Cells

Up to 2016, the global production of MWCNT was approximately 13,996 tons. It is 
precisely the increase in demand and the use of CNTs that could be released to the 
environment during production, transportation, handling, use, and disposal, being 
the soil the final destination (Zhao et al. 2017). The hydrophobic character of the 
carbon nanotubes makes them concentrate on the soil 20 times more in comparison 
with the concentration that can be reached in water, so that interactions with plants 
are even more likely, and there may be a tendency to bioaccumulate in tissues of 
plants and biomagnify in the trophic chain, which represents a risk to human health 
(Zhao et al. 2017). So far there are two groups of opposing results; one group pres-
ents that the carbon nanotubes (CNTs) are severally phytotoxic; on the other hand, 
other authors suggest that the CNTs have positive and to a certain extent beneficial 
effects on diverse physiological processes of the plants.

The positive effects of CNTs on the growth and development of plants have been 
documented by several research groups, having reported that increased the growth 
of roots in onion and cucumber plants (Cañas et al. 2008) as well as grass ryegrass 
(Lin and Xing 2008). Also, it has been shown that wall carbon nanotubes multiple 

Table 4.3 Pesticide activities by CNT on some crops

CNT 
type

Concentration
(μg mL−1) Crops Effects Findings References

MWCNT No data Microbial 
community of 
soil

Bacteroidetes and 
Firmicutes

Increase Khodakovskaya 
et al. (2013)

MWCNT No data Microbial 
community of 
soil

Proteobacteria and 
Verrucomicrobia

Decrease Khodakovskaya 
et al. (2013)
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(MWCNT) can activate the growth of tomato plants and affect the expression of 
genes that are essential for cell division and plant development (Villagarcia et al. 
2012). Liu et al. (2009) demonstrated that single-walled carbon nanotubes have the 
right size to penetrate the walls and membranes of the tobacco cells. It has generated 
interest because in a similar way to aquaporins, it can help transport water and nutri-
ents very quickly inside plants (Joseph and Aluru 2008). They are also useful for 
desalination processes since they can be charged internally with Na+ and Cl− ions 
and then remove excess salts from the system (Goh et al. 2013). Stampoulis et al. 
(2009) reported negative effects such as reduction of zucchini biomass in response 
to the application of MWCNTs. Lin et al. (2009) found that the addition of SWCNTs 
to rice plants resulted in the delayed flowering and decreased the yield of this impor-
tant crop.

SWCNTs, MWCNTs, and single-walled carbon nano-horns (SWCNHs) have 
been more studied by plant biologists, because of their particular effects on growth 
of different crops and the promises of their potential use as smart delivery systems 
in plants. A critical fact is that the metal contamination in different carbon-based 
nanomaterials (graphene, carbon nanotubes, fullerenes, nanodiamonds, and nanofi-
bers) can modify the response of plant (Lahiani et al. 2015).

Currently, knowledge shows that the uptake and transport of ENPS depend on 
the properties of nanomaterials, for example, size, aggregation and size-dependent 
sedimentation or diffusion toward the cell, soil conditions, dose and method of 
application, and plants conditions (Lin and Xing 2008). Lee et al. (2008) found a 
linear relationship between high concentrations of CuNPs in the growth media and 
higher uptake and accumulation of CuNPs in plant tissues; this could be another 
influencing factor of uptake and transport. Raliya et  al. (2016) reported that the 
uptake and translocation almost depend on the shape of ENPs, for example, if the 
NPs are spherical, rhombic, or cubic, among others; as a result, there is a need for a 
thorough understanding of the effects that carbonous nanotubes have on the physi-
ology and development of plant systems at various levels.

The uptake and accumulation of different ENPs by plants is at present a motiva-
tion for some scientists. But this phenomenon is not common to every plant species. 
The uptake of nanoparticles by vegetal cells could happen in several ways, through 
aquaporins, binding to carrier proteins, endocytosis, ion channels, creating new 
channels by CNTs, or binding to organic chemicals (Fig. 4.7). This last property is 
a particular characteristic of carbonaceous hole nanostructures. Liu et  al. (2009) 
reported the ability of single-walled CNTs (SWCNTs) to penetrate the walls and 
membranes of tobacco cells; similar results were shown for Serag et al. (2011); they 
identified an endosome-escaping uptake mode of multiwalled carbon nanotubes 
(MWCNTs) by plant protoplasts. The nanoparticles can form complexes associated 
with membrane transporters or root exudates, and then nanoparticles are transported 
into the internal plant structure (Watanabe et al. 2008). The uptake occurs depend-
ing on the application way of nanoparticles; if this was on the soil (root entry) or at 
leaf level (foliar entry), then the exposed tissue of plant organ describes different 
transport and defense mechanism, and the chemical and physiological responses are 
specific in each site of contact.
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The diameter of the cell structure pores or transport channels determines the abil-
ity to entry for NPs; in roots, for example, there is a size exclusion barrier: (a) cell 
walls for the apoplastic transport pathway (5–20  nm), (b) the Casparian strip 
 transport (<1 nm), or (c) symplastic transport (3–5 nm) (Wang et al. 2016). However, 
several reports where nanoparticles dimensions were bigger than 20 nm presented 
uptake and translocation. There are possible explanations for the entry of larger 
nanoparticles than the exclusion barriers: the formation of new large pores in the 
cell wall; the rupture of membranes; and some interactions between cations, pro-
teins, and viruses among others that can cause changes in cellular structure (Wang 
et  al. 2016). Another study is Birbaum et  al. (2010); they demonstrated that the 
uptake did not depend on closed or open stomata, or under dark and light exposure 
conditions, and an interesting finding; there was no translocation into newly grown 
leaves of cultivated maize plants, after the foliar particle exposure. These investiga-
tion results may indicate that the natural entry barriers of some plants could be more 
resistant against nanoparticle translocation than mammalian barriers.

Shen et al. (2010) reported evidence of endocytosis-like structure in the plasma 
membrane in an Arabidopsis thaliana leaf cell. Other studies probed that MWCNTs 
were absorbed by the seeds and root systems of the tomato seedlings (Khodakovskaya 
et al. 2009). Similar findings were shown by Wild and Jones (2009); they detected 
MWCNTs on the root surface and in the epidermal and root hair cell walls and root 
cap of wheat seedlings. Cañas et al. (2008) found no uptake of SWCNTs and func-
tionalized SWCNTs (F-SWCNTs) by roots of cucumber seedlings after 48-h 
treatment.

Fig. 4.7 Uptake and transport of nanoparticles in the plant. (A) Root entry: root tips and hairs, 
rhizodermis, lateral roots. (B) Foliar entry: cuticle, lenticels, hydathodes, wounds, stomata
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The SWCNTs were attached to the outer surface of the main root and the second-
ary roots. Depending on the concentration, the MWCNTs form black groups associ-
ated with the cells (Tan et al. 2009). The nanotubes trigger reaction mechanisms 
similar to those unleashed by plant pathogens, causing cellular mortality (Hyung 
et al. 2007). Lin et al. (2009) studied the uptake, accumulation, and translocation of 
NOM-suspended fullerene C70 and MWCNT in rice plants; the finding of C70 in the 
form of black aggregates in the leaves suggests that they followed the route of water 
and nutrient transmission to through the xylem. In mature plants, NOM-C70 was 
predominantly present in or near the vascular systems and the leaves of the stem, 
while it was observed that the roots were devoid of C70, which supports the assertion 
of a robust translocation of the roots to the aerial parts of the plant. In a contrast 
study, Chen et al. (2010) reported that C70 hydrophobic fullerenes blocked the cell 
wall pores in Allium cepa cell suspensions, resulting in an insignificant uptake of 
NPs by cells.

Some interesting studies in rice plants (Oryza sativa) documented the uptake and 
translocation of carbon nanomaterials, and they observed that fullerene C70 was eas-
ily taken up by roots and transported to shoots through the vascular system, and it 
could also be transported from leaves to roots (Lin et al. 2009). The same research-
ers found a similar result for MWCNTs. Hussain et al. (2013), Liu et al. (2009), and 
Torney et al. (2007) reported the same findings in MWCNTs and CNPs.

Once the nanoparticles have been uptaken by the roots, they follow the same 
transport routes of nutrients and water. First, they meet the cell wall, where the 
pores restrict the access of large particles and aggregates, smaller than 5–20 nm (Ma 
et al. 2010); once internalized the particles can follow the symplastic route; in this 
pathway the NPs are translocated to leaves. Xylem is the most important way in the 
distribution and translocation of nanoparticles (Aslani et  al. 2014). Transport is 
facilitated if they interact with other cellular components such as transport proteins, 
ion channels, etc. (Anjum et al. 2016). There are reports such as Etxeberria et al. 
(2012), who proved that there is a mechanism of transport via endocytosis; in this 
work they also demonstrated that the 40 nm ENPs (nanospheres) go into vacuoles, 
while 20 nm (nanospheres) ENPs remain in the cytoplasm. Another important path-
way also reported is via 20–50  nm plasmodesmata; some author has shown the 
ability of this route to the transport of ENPs that port endosomes or nano-protein 
complex to neighboring cells (Larue et al. 2012a, b; Wang et al. 2012a, b). The NPs 
could be integrated passively through the apoplast of the endodermis before reach-
ing the stele (Judy et al. 2012). Wang et al. (2016) demonstrated the xylem- and 
phloem-mediated uptake, translocation, and distribution of nCuO. The Casparian 
strip is the last barrier of translocation, and it works keeping of the free transport of 
NPs; there are several reports in various plant species (Anjum et al. 2016).

The smart property of cell internalization of ENPs of different sizes and compo-
sitions has been observed in different plant species (Lin et al. 2009; Liu et al. 2009; 
Torney et al. 2007), and it was proposed that some of them could be applied as car-
riers of DNA or other compounds, for example, SWCNTs and mesoporous 
silica NPs.
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When the root absorbs the NPs, they are transferred and accumulated in the 
mature leaves, because they are closer to the root, so it is the mature leaves that are 
usually more exposed than the young ones; thus the time of exposure is higher; a 
few other papers document the translocation of NPs to grains, fruits, and flowers. 
Anjum et al. (2016) and Lin et al. (2009) showed that C70 fullerene is capable of 
accumulating in O. sativa seeds. Studies with SWCNTs in N. tobacum plant cell 
suspensions found their fate in vacuole as well as cytoplasmic strands (SWCNT- 
DNA) (Burlaka et al. 2015). A great concern for the accumulation of NPs in edible 
plants is their transmission to the plant’s next generation. Lin et al. (2009) reported 
that C70 was detected in the leaf tissues of second-generation rice plants. About 
biotransformation of nanoparticles C70, SWCNTs, MWCNTs, Fe3O4, and TiO2 NPs, 
biotransformation was not observed (Rico et al. 2011).

6  Beneficial and Harmful Effects of CNTs in Plants

For the past decades, a variety of experimental information has been presented about 
the new areas in which nanotechnology has become a priority in many fields of sci-
ence like physics, chemistry, pharmaceutical science, material science, medicine, 
and agriculture (Bhushan 2016; Dasgupta et al. 2017; Feizi et al. 2018). In the field 
of agriculture, a variety of nanomaterials, mostly metal-based nanomaterials (NMs) 
and carbon-based nanomaterials (CNMs), have been exploited for their absorption, 
translocation, accumulation, and effects on growth and development of crop plants 
(Zhao et al. 2017; Oloumi et al. 2018). Nevertheless, as it is still at a relatively early 
stage of development, the potential risks remain unclear (Chen et al. 2015).

Within the CNMs are found in various structures such as nanodiamond, fullerene 
C60, carbon onion, nano-horn, carbon dots, graphene, and carbon nanotubes (Baptista 
et al. 2015; Kumar et al. 2018). Specifically, in agriculture, the carbon nanotubes 
(CNTs) are used as a carrier for the fertilizers, insecticides, fungicides, nematicides, 
and herbicides, with a controlled slow, and sustained release resulting in precise dos-
age (Benelli et al. 2017; Duhan et al. 2017; Athanassiou et al. 2018). Also, recently, 
the transition metal NP-grown CNTs were used for a wide range of applications 
including environmental remediation, particularly in the sanitation of contaminated 
agricultural soil (Ibrahim et al. 2016; Cecchin et al. 2017; Feizi et al. 2018).

The CNTs stand out having unique properties, including specific structural, elec-
trical, mechanical, and thermal characteristics. There are two main forms of CNTs, 
single-walled (SWCNTs) with a diameter from 0.4 to 3.0  nm and multiwalled 
(MWCNTs) where their diameters can reach up to 100 nm (Balasubramanian and 
Burghard 2005). CNTs, for their tubular structure of crystalline outer diameters, 
may enhance their further uptake and interaction with the biological system (De La 
Torre-Roche et al. 2013). Therefore, in this section, we expose the benefits of CNTs 
on the improvement of physiological and biochemical characteristics in plants. 
However, the adverse effects on the characteristics already mentioned will be dis-
cussed. As various authors have argued, it is essential to assess the associated ben-
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efits and risks, since studies suggested that the beneficial or negative impact of 
nanomaterials on crops is dependent upon their size, shape, concentration, chemical 
composition, solubility, agglomeration, etc. (Mukherjee et  al. 2016; Singh et  al. 
2017; Tripathi et al. 2016; Tan et al. 2018). In this sense, in the course of the discus-
sion, we will comment on substrate means, size CNTs, concentrations of CNTs, 
type of plants, exposition time and environmental conditions, and in some cases the 
methodologies used to demonstrate the effects on plants.

In recent documents such as articles, review, book, book chapters, proceedings 
paper, letter, etc., evidence has been shown that, in plants, both MWCNTs and 
SWCNTs affect the physiology and biochemistry in diverse ways. Although posi-
tive, negative, and contradictory effects of impacts on plants and soil organisms 
have been reported, it is striking that in some cases in the conclusions and recom-
mendations of the papers, it is suggested that the CNTs can be a new alternative for 
increasing production, improving botanical characteristics of plants, etc., with an 
objective of providing a healthy and adequate diet. Figure 4.8 shows the increase in 
publications of the last 20  years relational with the effect of CNTs and plants, 
whether edible or nonedible. The search procedure was conducted in the database 
“Web of Science,” using different combinations of keywords. The keywords 
“nanoparticles,” “carbon nanotubes,” “CNTs” (“MWCNTs and SWCNTs”), 
“plants,” and “plants edible” were used as search parameters in the “topic” field. In 
the search for the words CNTs + plant growth, it yielded a total of 617 documents, 
while the combination of the words NPs  +  CNTs + plant was 327 documents. 
Specifically, with the words CNTs + plant growth, 287 were found documents, 
which over time has been increasing (Fig.  4.9). Finally, the combination of the 
words CNTs + plant edible were ten documents. The fact of finding few documents 
using the word edible plant does not mean that few articles have been published, but 
that many scientific works use or refer to the scientific name of the crop. For Fig. 4.9 
in the search in parameters of a topic, for the year 2019, the pursuit of the data was 
considered until May of the same year. It suggests that there is a priority for know-
ing the effect of CNTs on plants.

In the last 5 years, several reviews and scientific articles have been presented that 
describe the effect of CNTs on edible and inedible plants (Mukherjee et al. 2016; 
Vithanage et al. 2017; Zuverza-Mena et al. 2017; Verma et al. 2019). About changes 
in physiological and biochemical processes in plants, in conditions of a labora-
tory,  in the studies of Khalifa (2018), it was shown that agar media of MWCNT 
(25 μg μl−1; average length = 559.54 nm and width = 56.50 nm) for 6 days enhanced 
root elongation and the plant growth (Thlaspi arvense L.), while the growth rate was 
reduced at higher concentrations (250 μg μl−1). Also, the CNTs exhibited the ability 
to bind the genomic DNA at higher concentrations of 100 and 200 μg μl−1. Also, in 
tomato (Solanum lycopersicum L.), it was recently reported that at 10 μg mL−1 con-
centration CNTs were able to penetrate the cell membrane and change the gene 
expression profile of exposed cells (Lahiani et al. 2019). Even, formerly Lahiani 
et al. (2015) had argued that all carbon-based ENMs could potentially modify the 
expression level of genes involved in responses to stimuli.
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In other plants, besides evidencing the presence of CNTs inside the vascular 
bundles, Joshi et al. (2018a, b) found that MWCNT at 80 and 90 μg mL−1 (outer and 
inner diameter as 10 ± 1 and 4.5 ± 0.5 nm) inside oat (Avena sativa L.) enhanced the 
growth of xylem cells, the chlorophyll content, and the photosynthetic activity. This 
same author evidenced in wheat (Triticum aestivum L.) that because of MWCNT 
(diameter 13–14  nm), after 135  days, it facilitated the absorption of water and 
essential minerals such as phosphorus (P) and potassium (K), which increased crop 
yield by significantly improving grain yield (Joshi et  al. 2018a, b). Likewise, 
Martínez-Ballesta et  al. (2016) found that salt-stressed plants (100  mM NaCl) 
increased water uptake due to the positive effect of MWCNTs at 0.10 mg L−1 (aver-
age size of 0.1–0.5 μm length). Also, there were induced changes in the lipid com-
position, rigidity, and permeability of the root plasma membranes relative in 
Brassica oleracea L. var. Italica.

In a hydroponic system, the absorption of MWCNT by S. lycopersicum fruits 
significantly affected the total fruit metabolome (McGehee et al. 2017). By contrast, 
Khodakovskaya et  al. (2009) in microcosms experiment with S. lycopersicum 
showed that CNTs (10–40 μg mL−1) positively affect seed germination and growth 
of tomato seedling. Mondal et  al. (2011) revealed that the MWCNTs actively 
enhance seed germination by penetrating the seed coat, as reported in germinating 
tomato seeds, and increasing the growth of Brassica juncea L. Likewise, in different 
substrate media and environmental conditions, also it has been reported that CNTs 
have the capacity to increase stems, leaves, and root growth, as well as seedling 
development of S. lycopersicum (Ratnikova et al. 2015). However, contrary to these 
authors, others have demonstrated adverse effects (Haghighi and da Silva 2014), 
and null effects have been reported (De La Torre-Roche et al. 2013).

On the other hand, Kumar et al. (2018) showed in Allium cepa L. that CNTs in 
ZnO/MWCNTs nanocomposites at 15 μg mL−1 displayed the best seedling growth 
with maximum number of cells in telophase and the growth was proportional to the 
increase in the concentration of ZnO/MWCNTs with a negative impact on plant 
growth in contrast to the use of MWCNTs. To evaluate uptake of CNTs of agricul-
ture crops, Das et  al. (2018) used both pristine (p)-MWCNT and carboxyl- 
functionalized (c)-MWCNT (20 mg L−1). The results showed that both the MWCNT 
types were found to be present in the leaf, stem, and root tissues of the treated 
Lactuca sativa L. plants confirming their uptake and translocation in the plant. 
Other aspects and examples related to absorption and uptake can be seen in one of 
the previous sections.

CNT has been used by several years by phytoremediation. In the studies realized 
by Gong et  al. (2019), it was shown that in Boehmeria nivea L., MWCNTs at 
500  mg  kg−1 promoted the accumulation and translocation of Cd and alleviated 
Cd-induced toxicity by stimulating plant growth, reducing oxidative stress, activat-
ing antioxidant enzyme activities, and increasing specific antioxidant content. In 
other experiments of phytoremediation, Oloumi et al. (2018) found that in Brassica 
napus L., total chlorophyll (Chl) content increased with MWCNTs (10 nm) at 10 
and 50 mg L−1 exposure under cadmium or lead stress and at 10 mg L−1 mitigated 
the deleterious effects of Cd ions on total chlorophyll content of Helianthus annuus 
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L. and Cannabis sativa L. Contrary to previous studies, Shen et al. (2018) reported 
that in hydroponic conditions contaminated (lead) cultivated with Cucumis sativus 
L., the increase of MWCNTs from 0 to 1000 mg L−1 effects on pyrene bioaccumula-
tion in cucumber seedlings. The results suggest that enhanced transport was due to 
analyte movement with internalized MWCNTs driven by transpiration within the 
plant. Also, for the authors, these findings are important for evaluating the potential 
risk of MWCNTs in food safety, especially for crops grown in organic pollutant 
contaminated areas.

Other experiments with negative effect have been demonstrated by Chen et al. 
(2015), with an in vivo sampling technique. Its study revealed the impact of 
MWCNTs (inside and outside diameters, 35 nm and 10 nm) on the accumulation/
depuration behaviors of contaminants in a crop of mustard (Brassica juncea L.). 
The results show enhancement of contaminant accumulation in living plants, but 
some large black spots observed under light microscopy indicated that the MWCNTs 
aggregated within the roots, which might cause negative effects, inhibiting nutrient 
transport and affecting plant growth. Although CNTs can be considered plant 
growth promoters, the author suggests that this occurred only at a low concentra-
tion, because higher concentrations in exposure time can be phytotoxic (Vithanage 
et al. 2017). By contrast, Hao et al. (2016) found that MWCNTs and Fe-CNTs sig-
nificantly decreased the biomass production rate at 30 and 50 mg L−1 in crop rice, 
whereas Wang et al. (2012a, b) reported that 7 days of exposure to the o-MWCNTs 
medium (6–13 nm) at 10–160 μg mL−1, faster root growth and higher vegetative 
biomass were observed, but seed germination and stem length did not show any dif-
ference as compared with controls. For what has been discussed, it is observed that 
there is a diversity of effects that cause the CNTs (+ vs. −); even within the same 
organs of a plant, there are different answers. For example, Fan et al. (2018) revealed 
that 50 mg L−1 MWCNT could have a positive effect in lateral root number and 
photosynthesis, but a toxic effect on the root growth of Arabidopsis thaliana plants. 
Other examples of MWCNTs effects in plants can be in Table 4.4.

Table 4.4 Positive and negative effects of MWCNTs on physiological and biochemical 
characteristics in plants

Concentrations Size (nm)
Species of 
plant

Substrate 
medium

Description of 
the effects References

Positive effects
40 μg mL−1 NR Lycopersicon 

esculentum 
Mill., var. 
Arka Vikas

MS medium Increased seed 
germination and 
plant growth

Morla 
et al. 
(2011)

0–60 mg L−1 NR Zea mays L. BA medium Enhance the 
germinative 
growth of maize 
seedlings at low 
concentrations 
but depress it at 
higher 
concentrations

Tiwari 
et al. 
(2013)

(continued)
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Table 4.4 (continued)

Concentrations Size (nm)
Species of 
plant

Substrate 
medium

Description of 
the effects References

0–100 μg mL−1 8 nm Oryza sativa 
L.

Standard agar and 
MS medium

Increased stem 
and root length 
of the paddy 
seedlings

Jiang et al. 
(2014)

0.0, 0.05, and 
0.1 mg L−1

100–
170 nm

Phoenix 
dactylifera L.

Peat moss and 
perlite

Facilitate the 
absorption of 
nutrients and 
their 
transportation 
into the plant 
tissues

Taha et al. 
(2016)

5–50 mg L−1 20–40 nm Oryza sativa 
L.

Hoagland 
medium

Promoted rice 
root growth 
through the 
regulation of 
expression of the 
root growth- 
related genes

Zhang 
et al. 
(2017)

Negative effects
1000 mg L−1 
and 
2000 mg L−1

NR Spinacia 
oleracea L, 
Lactuca sativa 
L, and 
Cucumis 
sativus L.

Hydroponic 
medium

Reduced the root 
and shoot lengths

Begum 
et al. 
(2014)

0, 5, and 
10 μg mL−1

NR Allium cepa L. High- 
performance 
liquid 
chromatography 
(HPLC) analysis 
of DNA

Altered cellular 
morphology, 
destroyed 
membrane 
integrity, and 
disrupted 
mitochondrial 
function in root 
cells

Ghosh 
et al. 
(2015)

10, 100, and 
1000 mg kg−1

20 nm Trifolium 
pratense L.

Agricultural soil Decreased 
number of 
flowers

Moll et al. 
(2016)

150 mg L−1 Nitrogen 
co-doped 
MCNs: 
MCN1 
(150) 
MCN2 
(80 nm)

Oryza sativa 
L.

Hydroponic 
medium

The decrease in 
root length and 
shoot length

Hao et al. 
(2019)

Note: NR not reported, MS Murashige and Skoog medium, BA bacteriological agar
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In the context naturally, the activation of MWCNTs during forest fires impacts 
the development of the forest plants, as suggested by Lara-Romero et al. (2017). In 
laboratory conditions it was found that MWCNTs synthetic (30 μg mL−1; diameter, 
6–13 nm) exhibited increased germination rates of 62.5% and 40% compared to 
untreated seeds in Lupinus elegans Kunth and Eysenhardtia polystachya (Ortega) 
sarg., respectively. However, when they collected burnt wood of Pinus oocarpa 
Schiede ex Schltdl and it was examined by thermogravimetric analysis (TGA) and 
HR-TEM images and fast Fourier transforms (FFTs), the samples indicated the 
presence of CNTs. The results were strongly suggesting a possible impact on natu-
ral plants of the resinous forest ecosystems (P. oocarpa) through their effects on 
seed germination and plant growth promotion.

Regarding the SWCNTs it has been shown that increased growth of tobacco 
cells (78% increase compared to control) as well can activate seed germination of 
selected crops and enhance growth of different organs of Zea mays L.,  Solanum lyco-
persicum L., Oryza sativa L., and Glycine max (Lahiani et al. 2015). Analogous 
results were achieved by Tripathi et al. (2016) who demonstrate that SWCNTs post 
7 days stimulate the growth of roots and shoots in Cicer arietinum L. Contrary 
results were reported by Hao et al. (2016), indicating that the SWCNTs signifi-
cantly decreased N assimilation and negative effect in plant hormones concentra-
tion to rice (O. sativa L.), whereas in inedible plants, Hatami et al. (2017) found 
that SWCNTs at low concentrations induced tolerance in seedlings against low to 
moderate level of drought by enhancing water uptake and activating plant defense 
system. Other examples of SWCNTs effects in plants can be seen in Table 4.5. 
There are several methodologies, media of substrates, and concentrations to evalu-
ate the effect of CNTs on edible and inedible plants, all of the above supported by 
analysis of chemical digestion and Raman analysis, among others. However, it is 
necessary to continue contributing with improvements in the methodologies and 
specific edible crops mostly consumed by man and thus be able to know both the 
possible toxic effect on the plant and the food chain.

Table 4.5 Positive and negative effects of SWCNTs on physiological and biochemical 
characteristics in plants

Concentrations
Size 
(nm) Species of plant

Substrate 
medium

Description of the 
effects References

Positive effects
20 mg L−1 1–2 nm Zea mays L MS medium Accelerate maize 

seminal root growth
Yan et al. 
(2013)

4 μg mL−1 1–2 nm Rubus 
adenotrichos L.

In vitro 
(glass 
flasks)

Promoted the growth 
of the in vitro plants 
under this assay

Flores 
et al. 
(2014)

50 g mL−1 1–3 nm Hyoscyamus 
niger L.

Petri dishes Enhancing water 
uptake and activating 
plant defense system

Hatami 
et al. 
(2017)

(continued)
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7  Effects of CNTs on Soils and Their Organisms

For two decades, the advance of nanotechnology has progressed by leaps and 
bounds. Nanotechnological innovations have been used to cure diseases, in bio-
medical instrumentation, nanosensors, biomarkers, visualization devices, agricul-
tural technology, environmental protection, etc. About the agricultural area, 
nanotechnology has solved many of the bottlenecks compared to conventional sys-
tems, in terms of improving the production, physiological and biochemical charac-
teristics of plants, and the control of diseases, pests, and weeds (Verma et al. 2018). 

Concentrations
Size 
(nm) Species of plant

Substrate 
medium

Description of the 
effects References

Negative effects
5–250 μg mL−1 1–2 nm Arabidopsis 

thaliana L.
Cell culture Caused adverse 

cellular responses 
including cell 
aggregation, 
chromatin 
condensation, and 
plasma membrane 
deposition

Shen et al. 
(2010)

15, 25, 50, 
100 μg mL−1

NR Arabidopsis 
thaliana L.

Petri dishes Exhibited obvious 
toxic effects to the 
protoplasts such as 
the increasing 
generation of ROS, 
inducing changes of 
protoplast 
morphology, changing 
green leaves into 
yellow

Yuan et al. 
(2011)

400–
800 μg mL−1

1–3 nm Hyoscyamus 
niger L.

Petri dishes Inhibited seed 
germination and 
seedling performance, 
increased cellular 
injury indices, and 
changed antioxidant 
enzyme activities

Hatami 
et al. 
(2017)

0.1 and 1.0% 
of SWCNTs

10–
20 nm

Ferocactus 
latispinus Britton 
and Rose, 
Melocactus 
matanzanus 
Leon, and 
Parodia 
ayopayana 
Cárdenas

The black 
soil, sand, 
peat, and 
finely 
ground (ca. 
1 mm) red 
volcanic 
rock

Pristine arc-discharge 
SWCNTs exhibit the 
strongest 
phytotoxicity at 
40 weeks

Basiuk 
et al. 
(2018)

Note: NR not reported, MS Murashige and Skoog medium

Table 4.5 (continued)
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Even authors such as Jakubus et al. (2017) point to the group of carbon nanotubes 
(CNTs) as promising in agricultural and industrial applications. Within this group, 
three kinds of CNTs exist: single-walled CNTs (SWCNTs), double-walled CNTs 
(DWCNTs) with two concentric tubes, and multiwalled CNTs (MWCNTs) with 
more than two concentric tubes. CNTs diameter varies from a few nanometers for 
SWCNTs to several tens of nanometers for MWCNTs. Their length is usually of a 
few micrometers. CNTs have remarkable optical, electrical, thermal, mechanical, 
and chemical properties that make them unique among nanomaterials at the nano-
level and of great importance for their handling and application (Liné et al. 2017). 
Nevertheless, despite the great benefits of CNTs, adverse effects on the environment 
have gradually emerged (Chen et al. 2017a, b).

It is well known that the soil is the basis of multiple ecosystem services, such as 
human nutrition, climate regulation, and the nutrient cycle, among others (Cai et al. 
2015; Pachapur et al. 2016). Soil microbial communities play an important role in 
nutrient cycling, environmental pollutant removal, and maintaining the stability of 
basic soil characteristics, which are sensitive indicators of soil responses to environ-
mental stressors, such as heavy metals, pesticides, and nanomaterials (Chen et al. 
2017a, b). In this line, currently, several authors have discussed the effect of CNTs 
on microorganisms (Simonin and Richaume 2015; Chen et al. 2019; Maksimova 
2019), in the association plant-microorganisms (Achari and Kowshik 2018; Hao 
et al. 2018). Also, authors such as Liné et al. (2017) in your review have debated and 
have shown evidence of the adverse effects of CNTs on the plant, soil, and organ-
isms. There is a greater concern since it is estimated that by the year 2030, almost 
40 tons/year can be transferred to the soil (Das et al. 2018). However, Qian et al. 
(2018) argue that few studies confirmed the effect of CNTs on the physicochemical 
properties of the soil and its organisms, specifically on bacterial communities or the 
details of the relationship between the diversity of soil microbial communities. 
Even Liné et al. (2017) in your review mentioned that of 71 studies on terrestrial 
ecosystems examined, the studies on soil microorganisms and macroorganisms cov-
ered to 14% and 17% of the total studies and the less studied is the behavior of 
CNTs in soil (in laboratory soil column) with only 4% of the mentioned articles. 
Therefore, we searched for the “Web Science” database. When we focus on the top-
ics section, we find several documents that relate the word “CNTs” and “soil” (856 
documents). When the search was conducted in the title field, only 62 documents 
were found, while in the combinations of “CNTs,” “soil,” and “remediation,” the 
search showed 60 documents, but when we use other words and the combinations 
between them, such as “CNTs” and “soil microorganisms,” the database shows less 
of publications (11 documents). We see that due to concerns about the pollution of 
the environment and the need to understand complex systems, research continues, 
and the effect of nanomaterials (NMs) is not understood at all.

Depending on their length, diameter, functionalization, and environmental condi-
tions, CNTs may have different behavior in natural conditions (Jackson et al. 2013). 
However, the detection and quantitative analysis of CNTs in biological samples are 
very complex because it is difficult to detect a specific form of carbon in a carbon-
based matrix (Bourdiol et al. 2013). Due to the above, quantitative measurements of 
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CNTs in key environmental matrices (water, soil, sediment, and biological tissues) 
are needed to address concerns about their potential environmental and human 
health risks and to inform application development (Petersen et al. 2016). Although 
in this section, our intention is not to demonstrate the techniques involved in the 
quantification and analysis of CNTs, we will mention some examples of the behav-
ior of CNTs in the soil. So that, among the studies that relate the behavior of the 
CNTs and the soil matrix is that of Bennett et al. (2013) who have reported that 
surfactants and natural organic matter (NOM) stabilize CNTs in the aqueous phase, 
thereby enhancing material mobility in soil systems. The soil properties such as pH, 
clay, and organic carbon content, texture, and mineralogy could affect CNM mobil-
ity in the environment (Avanasi et al. 2014). Lu et al. (2014) found that positively 
charged MWCNTs were entirely retained in soils, while negatively charged CNTs 
broke through the soil column and were found in the outlet. Also, it demonstrated 
that soil texture, rather than organic matter, controlled MWCNT mobility.

On the other hand, Shan et al. (2015) showed that SWCNTs (2000 mg kg−1 dry 
soil) reduced mineralization, while MWCNTs at 0.2 mg kg stimulated mineraliza-
tion compared with the control soil. The inhibitory effects of SWCNTs on the min-
eralization were attributed to the inhibited soil microbial activities, and the 
stimulatory effects of MWCNTs on the mineralization were attributed to the selec-
tive stimulation of specific catechol degraders by MWCNTs at 0.2 mg kg−1. In gen-
eral, the CNMs reaction or effect in the soil environment is difficult to know. In 
addition, the study in the soil becomes more complicated since several highly cor-
related soil factors must be taken into accounts, such as their mineral and organic 
composition and the structural heterogeneity of the soil to understand the transport 
and fate of the nanoparticles, and CNM properties and the identity/susceptibility of 
potential receptors are complex.

Naturally, soil organisms can eliminate, attenuate, degrade, transform, or break 
down (through metabolic or enzymatic action) the undesirable substances to inor-
ganic components. For example, polycyclic aromatic hydrocarbons (PAHs) can be 
dissipated through biodegradation and bioremediation processes (Fernández- 
Luqueño et  al. 2017). Recently, they have used the capacity of organisms to be 
incorporated into nanotechnology. This technique is known as nanoremediation 
(Cecchin et al. 2017). Indeed, several studies have reported that due to their unique 
physicochemical characteristics (e.g., large surface area, high microporosity, and 
superb sorption capacities), the effective role of CNTs increased occurrence in the 
environment and potential value in remedying contaminated soil and sediments 
(Abbasian et al. 2016).

Nevertheless, widely varying impacts both positive and negative of CNTs have 
been reported, possibly by their application as adsorbents or membranes (Song 
et al. 2018) (Fig. 4.10). For example, Qian et al. (2018) revealed that the SWCNTs 
at concentrations of 3 and 10 μg g−1 change the composition of soil microorganism 
communities, promote soil organic degradation, and improve soil fertility in a short 
time. Likewise, Song et al. (2019) reported that the incorporation of 0.5% MWCNTs 
into the contaminated sediment with phenanthrene significantly enhanced microbial 
activity compared with the blank control. To evaluate the CNTs in contaminated soil 
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with oil alone for 30 days, Abbasian et al. (2016) found that a combination of crude 
oil and low concentrations of carbon nanotubes can increase the diversity of the 
total microbial population. Likewise, Ge et al. (2018) showed that only concentra-
tions lower of MWCNTs could affect the vegetative stage of plants and microbial 
communities, which was manifested in an increase in the number of bacteria. By 
contrast, from long ago, Chung et  al. (2011) showed that high concentrations of 
MWCNTs (5000 μg MWCNT g−1 soil) decreased the microbial activity and bio-
mass in soils. Likewise, Kerfahi et al. (2015) compare the effect of both raw and 
acid-treated or functionalized MWCNTs on soil bacterial communities. The results 
show that soil bacterial community composition was affected only by functional-
ized MWCNTs at high concentrations, while raw MWCNTs did not affect the com-
position of the soil microbial community.

Despite the benefits of nanotechnology, it is necessary to consider the CNTs 
interaction in the environment. Currently, utilizing other types of NMs, Yang et al. 
(2016) proposed an empiric model based on the use of nematode Caenorhabditis 
elegans to determine the effect of the Fe0 ENPs on soil health. The authors con-
cluded that C. elegans biomarker-based risk model affords new insights into the 
links between the widespread use of Fe0 ENPs and ecological implications of metal- 
based NPs for in situ remediations. Subsequently, to evaluate the toxicity of Ag NPs 
on organisms, Yang et  al. (2017) confirmed the effectiveness of C. elegans as a 
proxy for estimating soil risk metrics can help develop methods of management for 
mitigating the metal NP-induced toxicity on terrestrial ecosystems.

Fig. 4.10 Effects of CNTs on soils and their organisms
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In the association edible plant-organisms, Yuan et al. (2017) showed that under 
conditions of substrate artificial soil (perlite and vermiculite at 1:1 volume ratio), 
the effects of four carbon-based materials (activated carbon (AC), SWCNTs, 
MWCNTs, and graphene oxide (GO) on the rhizobium-legume symbiosis system 
consisting of Lotus japonicus and Mesorhizobium loti MAFF303099) were studied. 
The results showed that at 100 μg mL−1 MWCNTs increased by 39% at 14 days the 
number nodules, and the biological nitrogen fixation of the nodules was promoted 
by more than 10% under 100 μg mL−1. In other studies, Bai et al. (2017) investi-
gated the influence of graphene (G), GO, and CNTs on microarthropod soil com-
munities under turfgrass growth conditions. The results show that the application of 
carbon nanomaterials resulted in increased abundance of all soil microarthropods, 
especially in the GO and CNTs treatments. GO also significantly increased the 
abundances of multiple trophic functional groups, including predators, detritivores, 
herbivores, and fungivores.

By contrast, contradictory effect caused by CNTs exists; in some cases MWCNTs 
both promote and inhibit the growth of microorganisms. This effect depends on the 
type of microorganisms, the external environment, and the concentration and struc-
ture of MWCNTs. Compared with other factors, surface sorption capacity is influ-
enced by different sizes and functionalization of MWCNTs (Chen et al. 2019). For 
example, Hao et  al. (2018) showed that after 30  days of exposure, all the three 
CNMs negatively affected the shoot height and root length of rice, significantly 
decreased root cortical cells diameter, and resulted in shrinkage and deformation of 
cells, regardless of exposure doses (50 or 500 mg kg−1). Also, it revealed that the 
presence of CNMs significantly altered the composition of the bacterial community. 
In other studies, Moll et al. (2016) show that MWCNTs decreased the total number 
of flowers of red clover when applied to the soil at the concentration of 3 mg kg−1 
and increased biological nitrogen fixation by 8% at the concentration 3000 mg kg−1, 
but had no impact on plant biomass or root colonization by arbuscular mycorrhizal 
fungi (AMF).

Therefore, it is observed that in nanotechnology, although it is considered 
advanced technology, many questions about the advantages and disadvantages that 
can be generated by the use of nanomaterials have emerged. It is there is more than 
what is observed on the surface of the soil; there is a diversity of soil biota that can 
be damaged without taking into account the fundamental role in soil fertility, nitro-
gen release, climate regulation, etc.

8  Conclusion

Carbon nanotubes (CNTs) have an effect on the plant growth, but there is not a 
consensus regarding if this is positive, negative, or null. However, this evidence 
does not match between themselves because there are several biotic or abiotic fac-
tors that affect the crop performance, coupled with the intrinsic effects of CNTs. So, 
some variables such as the number of walls, concentration, size, exposition time, 
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plant phenological state at the addition of CNTs, and species of the crop, among 
others, will affect the crop development and the synthesis of plant growth regula-
tors. Metabolomics or other scientific areas such as OMICs could be very important 
to characterize not only the synthesis of plant growth regulators but also the meta-
bolic pathways involved in the synthesis of a specific compound. Therefore, the 
characterization of plant growth regulators by crops amended with CNTs could 
promote the molecular farming of high-value compounds synthesized by plants. It 
has to be remembered that environmental concerns regarding CNTs recently taken 
center stage in policy and scientific discussions around the globe due to their fre-
quently observed impact on the human and environmental health. Unfortunately, 
environmental concerns have always met with difficulties to become a priority 
worldwide because these have remained as a secondary priority for governmental or 
social organizations.
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1  Introduction

Nanotechnology has a significant influence on our economy and society by 
 providing significant advances in diverse areas, including manufacturing, nano-
electronics, medicine and health, energy, biotechnology, information technology 
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and security (Reese and Reese 2013). For the biomedical sector in particular, there 
is a universal promise that nanotechnology will provide the next industrial revolu-
tion. For example, nanomaterials are ideally suited for use as drug administration 
systems, enabling advances in new theranostics with highly sensitive detection 
capabilities (Maduraiveeran et al. 2018). Thanks to unique nanomaterial properties 
and their nanosize, new diagnostic devices (intelligent biosensors) able in detecting 
minute concentration of a desired analyte are emerging. To this aim, nanomaterials 
may be exploited as (i) transducer materials, playing a significant role in the devel-
opment of biosensors (Lan et al. 2017), (ii) bioaffinity platforms for the immobili-
zation of biomolecules (DNA, enzymes, antigens or antibodies) or (iii) electrode 
modifiers (Bravo et al. 2017; Yong Zhang and Wei 2016). The intelligent applica-
tion of nanomaterials is intended to improve the performance of miniaturized 
devices in terms of sensitivity, selectivity and stability (Choi et al. 2007; Kurbanoglu 
and Ozkan 2016; Maduraiveeran et al. 2018; Li et al. 2015). Indeed, nanomaterials 
offer excellent electrical conductivity to amplify desired signals and good bio-
compatibility with biological molecules (Fernández-baldo et al. 2009; Zhang and 
Wei 2016). The most important clinical applications involving currently available 
nanomaterials encompass DNA detection assays, discovery of biomarkers, cancer 
diagnoses and recognition of infectious microorganisms (Bravo et  al. 2017; 
Maduraiveeran et al. 2018). Thanks to this wide application range, nano(bio)sen-
sors will have a huge impact on conventional medical practices by enabling early 
ultrasensitive diagnosis as well as long-term monitoring of clinical biomarkers by 
means of point-of-care diagnostics and home healthcare instrumentation. Herein, 
we report an overview of the nano(bio)sensors developed in the last few years, thanks 
to the exploitation of nanomaterials as signal amplifiers, bioreceptor labels and 
support modifiers, as well as to design nanoelectronics, microfluidics, lab-on-a-chip 
and point-of-care devices.

2  Nanotechnology as a Revolution in Biosensor Design

The International Organization for Standardization defines the term “nanomaterial” 
as a material with an external dimension or internal structure or at the nanoscale 
(1–100  nm). Nanostructured materials have gain momentum in the last decades 
due to excellent mechanical, electrical and optical characteristics conferred by their 
nanoscale dimensions as well as the perfect combination of volume and surface 
properties with overall behaviour (Aricò et al. 2005). Their use as electrode materi-
als has a dual function: they act as electrocatalysts by reducing the energy barrier for 
electrochemical reactions and promote the transfer of electronic charge that takes 
place on surfaces (Ren and Tilley 2007). General methods are required to enforce 
architectural order in multidimensional nanomaterials composed of nano-objects 
of different shapes and sizes, such as points, spherical particles, bars, wires, horns, 
sheets and other unspecified geometric architectures.

R. Attaallah et al.



119

Nanomaterials are generally divided into three classifications:

• One-dimension nanomaterial (1D) such as thin film or monolayer with size less 
than 100 nm.

• Two-dimension nanomaterial (2D) such as carbon nanotubes.
• Three-dimension nanomaterial (3D) such as quantum dots, fullerenes and metal 

nanoparticles.

Scheme 5.1 highlights the dimensional size of various nanomaterials.
A rich assortment of nanomaterials with well-controlled physicochemical char-

acteristics, surface charge, shape and dimensions are fashioned by significant 
advances in synthetic methodologies for sensor applications. Indeed, nanomaterials 
have unique optical and electrical characteristics that make their incorporation into 
sensor configurations particularly attractive by allowing numerous benefits 
(Boverhof et al. 2015). Thanks to the large reactive surface and small particle size, 
sensors based on nanomaterials show important benefits by a physical, chemical 
and biological point of view (Farka et al. 2017). A higher surface-to-volume ratio 
allows for better catalysis and detection response and also improved optical, mag-
netic and electrical features, well-fitting with biomedical applications (Piscitelli 
et al. 2016).

In medical diagnosis and clinical analysis sectors, the usage of nanosensors to 
determine specific anatomical sites or scrupulous cell types in the human body is 
potentially expanding. Nanosensors provide high sensitivity and ease of miniatur-
ization, which can help to project a new model for clinical and field-deployable 
analytical instruments (Kneipp 2017). As above-mentioned, the main clinical appli-
cations involving nanomaterials currently available include DNA testing, biomarker 
discovery, cancer diagnosis and recognition of infectious microorganisms. A com-
prehensive variety of nanomaterials can be exploited for theranostic purposes 
(Table 5.1); they have strong binding affinities for various biomolecules and drug 
targets and have the ability to diagnose and treat serious diseases such as cancer and 
HIV/AIDS. Carbon-based nanomaterials (e.g. carbon nanotubes, fullerenes, 

Scheme 5.1 Nanomaterials and their nanodimensions

5 Nanobiosensors for Bioclinical Applications: Pros and Cons



120

 graphene) can be considered as the most exploited in electroanalytical and electro-
catalytic detection applications. Noble metal nanoparticles are also broadly 
employed as nanomaterials for biosensing approaches, as well as in other biomedi-
cal applications (Chen and Chatterjee 2013).

In this sense, there is a wide literature describing the design of nanosensors for 
the clinical sector; however, many drawbacks still require to be attempted. For 
example, the increasing need for analytical instruments requiring smaller sample 

Table 5.1 Nanomaterial-based electrochemical sensors for biomedical applications

Nanomaterial Analyte Linear range/detection limit References

MWNT-GO Glucose 28 μM Palanisamy et al. 
(2014)

AgNPs-MoS2 Dopamine 1 μM to 500 μM Sookhakian et al. 
(2018)

AuNPs/rGO-Pt Dopamine 16.57 nM Chen et al. 
(2019)

NH2-Fe3O4 
NPs-ErGO/GCE

Rutin 0.1–8.0 μM He et al. (2019)

pAuNPs Avian influenza 
virus

1 pM Lee et al. (2019)

AuNPs Human serum 
albumin

0.01 μg/mL Liu et al. (2019)

MWNT/Ag-TiO2 DNA 1 × 10−11–1 × 10−6 M/3.12 pM Smith et al. 
(2019)

ZnO-Pt/CNTs Epinephrine 0.1 μM and 0.5 μM Samadzadeh 
et al. (2019)

rGO-MWNT Cholesterol 100 fM Basu et al. (2019)
GCE/GQDs/AuNPs Norepinephrine 0.5 and 7.5 μM/0.15 μM Tapia and Segura 

(2019)
ZnO-MWNT Paracetamol 0.79 μM Kumar et al. 

(2019)
MWNT-GONPs microRNA-21 0.034 fM Lu et al. (2019)
Gold nanoparticle DNA 8.0 × 10−17–1.6 × 10−12 M/28 

aM
Jensen et al. 
(2011)

Gold nanoparticle microRNA-21 200 pM to 388 nM/100 pM Mandli et al. 
(2017)

Silver nanoparticle H2O2 5.0 × 10−5–
6.5 × 10−3 M/2.7 × 10−5

Hu et al. (2008)

Ag 
nanoparticles- 
MWNT- COOH

DNA 9 × 10−12–9 nM/3.2 × 10−12 M Zhang et al. 
(2009b)

Silver nanoparticles Carcinoembryonic 
AG

5 pg mL−1–5 ng mL−1/3.5 
pgmL−1

Lai et al. (2012)

Silver-DNA hybrid 
nanoparticles

Glucose 0.1–1.7 mM/4 mM Wu et al. (2006)

TiO2 nanotube-Ni 
composite

Glucose 0.01–15.2 mM/2 mM Wang et al. 
(2010)
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volumes, reduced energy consumption and improved performance has been a 
potent incentive behind the rapid growth of nanomaterial research. Also, the con-
ception of nanomaterials able to interact with organic/biological compounds and 
specific polymers is currently facing significant challenges. Conversely, the con-
nections between nanomaterials and entity support matrices and critical structural 
parameters can also affect the catalytic and biosensing features of nanomaterials 
(Rong et al. 2017). The following sections deal with the wide plethora of nanoma-
terials available for sensor development and main examples of diagnostic tools for 
applications in the biomedical sector.

2.1  Carbon-Based Nanomaterials

2.1.1  Carbon Nanotubes

Carbon-based nanomaterials, including single-walled carbon nanotubes 
(SWCNT), multi-walled carbon nanotubes (MWCNT), single-walled carbon 
nanohorns (SWCNHs), buckypaper and graphene, among others, offer many 
important benefits because of their excellent features, as excellent surface-to-
volume ratio, electrical conductivity, chemical stability as well as good biocom-
patibility and strong mechanical strength (Chen and Chatterjee 2013; Erol et al. 
2017; Kim et  al. 2017; Teradal and Jelinek 2017). Carbon nanomaterial-based 
biosensors can furnish better sensitivity and stability than their unmodified homo-
logues. Carbon nanohorns and carbon nanofibres are also nanomaterials explored 
as new and biocompatible matrices for the manufacture of biosensor devices 
(Chen and Chatterjee 2013).

Among carbon nanomaterials, CNTs have a distinctive combination of mechani-
cal, electrical and optical properties with the capacity to replenish them with various 
compounds, including drugs (Simon and Flahaut 2019). Carbon nanotubes are an 
allotropic form of carbon recognized in 1991 by Iijima and since then extensively 
studied and used for wide-ranging applications such as the reinforcement of materi-
als, electrode materials and/or components for nanoelectronics (biosensors) or even 
biomedical and pharmaceutical supports (Simon and Flahaut 2019). Carbon nano-
tubes can be classified as single-walled nanotubes (SWNTs), double-walled nano-
tubes (DWNTs) and multi-walled nanotubes (MWNTs) according to the quantity of 
graphite layers.

SWNTs, composed of single graphene sheets that are seamlessly wrapped in 
cylindrical tubes with a diameter between 0.4 and 2.5 nm, show outstanding physi-
cal and chemical features that allow a huge range of biomedical applications (Chen 
and Chatterjee 2013). Their high electrical conductivity, joint with their small size, 
allows them to become suitable individual nanoelectrodes; many studies have 
shown SWCNT capability to effectively promote electron transfer reactions. Yu 
et al. (2006) reported the design of electrochemical immunosensors using SWCNT 
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forest platforms with multi-labelled secondary antibody and nanotube bioconju-
gates for detection of cancer biomarkers in serum and tissue lysates with high sen-
sitivity. An amplified sensitivity was achieved by applying bioconjugates containing 
horseradish peroxidase (HRP) markers and secondary antibodies (Ab(2)) bound to 
carbon nanotubes with a high HRP/Ab(2) ratio. This approach yielded a detection 
limit of 4 pg mL−1 for prostate-specific antigen (PSA) in 10 μL of undiluted calf 
serum. This immunosensor proved its promising potential in clinical screening of 
cancer biomarkers.

MWCNTs are also employed in biological systems due to their ability to easily 
penetrate through the cell membrane, their sustained capacity and their distribution 
in cells. MWCNTs have a diameter up to 20 nm (Kechagioglou et al. 2019), and 
they can be used for diverse applications, including protein, gene and drug delivery 
and diagnostics. They have been used to build an electrochemical sensor to detect 
DNA molecules in the calf thymus (Chen and Chatterjee 2013). Wang et al. (2003) 
developed a biosensor constituted of a gold electrode modified by MWCNT for 
glucose oxidase immobilization, which indicates high sensitivity and stability in 
glucose detection and demonstrates that MWNT is a good platform for enzyme 
immobilization in biosensor construction.

Ni nanoparticles were immobilized on functionalized MWCNT (Ni-MWCNT) 
by Baskaya et al. in the design of a non-enzymatic glucose sensor (Başkaya et al. 
2017). The Ni-MWCNT-based sensor provided a good response within a linear 
range of 0.05–12.0 mM and with a low detection limit of 0.021 μM. The novel sur-
face structure, the defined interfaces between Ni and MWCNT and the described 
large surface area improved electrochemical detection performance, which also 
showed high stability.

2.1.2  Graphene

Inspired by the achievement of CNTs, graphene has been broadly described in the 
last few years as new nano-drug carrier for loading a variety of therapies, including 
anti-cancer drugs, poorly soluble drugs, antibiotics, antibodies, peptides, DNA, 
RNA and genes (Liu et  al. 2013). Graphene is a two-dimensional (2D) carbon 
lattice with a hexagonal lattice resembling a honeycomb structure that shows 
high sensitivity, great selectivity, good stability, low overvoltage, large potential 
window, negligible capacitive current and excellent electrocatalytic activity (Yu 
et al. 2017).

These crucial features make graphene a great candidate in the design of both 
electrochemical and optical (bio)sensors, being able:

 (i) To adapt the electrochemical assets of a printed electrode and to work as label/
loading agent for biomolecules and nanomaterials, thanks to its high surface 
area and easy functionalization, in the case of electrochemical transduction.

 (ii) To provide fluorescence quenching at any wavelength by means of energy 
transfer in the case of optical transduction.
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Pumera and co-workers described the astonishing features of different graphene- 
based materials (Pumera 2010) in the design of (bio)sensors to detect the most 
important bioclinical markers such as dopamine, glucose, hydrogen peroxide and 
NADH (Pumera et al. 2010). Bahadır and Sezgintürk (2015) reviewed the realiza-
tion of different kinds of electrochemical biosensor-based graphene in joint 
 combination with enzymes, antibodies and DNA for the detection of several clinical 
biomarkers, demonstrating the high potential of graphene for the effective and 
robust immobilization of the bioreceptors.

Govindhan et  al. (2015) designed an electrochemical β-nicotinamide adenine 
dinucleotide (NADH) sensor using unscrewed gold nanoparticle/reduced graphene 
oxide (AuNPs/rGO) without using redox mediators and enzymes. The AuNPs/rGO 
sensor showed superior electrocatalytic activity towards NADH oxidation in neutral 
solution by providing a suitable atmosphere for electron transfer owing to the aug-
mented electrical conductivity. This sensor showed high sensitivity (0.916  μA/
μM  cm2) and wide linear range (50  nM–500 μM) with a low detection limit of 
1.13 nM (S/N = 3).

Ryoo and co-workers (2013) exploited graphene oxide to realize an optical bio-
sensor for the determination of microRNAs exploiting peptide nucleic acids (PNA), 
highlighting the high loading capacity of graphene for bioreceptor immobilization. 
In particular, graphene oxide was used both as scaffold for peptide nucleic acid and 
as a quencher for the fluorophore attached to the PNA probe. After the addition of the 
target, the labelled PNA was able to emit fluorescence in a concentration- dependent 
manner monitoring target microRNAs in the picomolar range (Scheme 5.2).

Scheme 5.2 Strategy for the sensor based on graphene and PNA for multiplexed miRNA sensing 
in vitro. The fluorescence signal gets recovered when the fluorescent dye-labelled probes, initially 
adsorbed onto the surface of graphene, detach from graphene and hybridize with the target miRNA. 
(Reprinted with permission from Ryoo et  al. (2013). Copyright (2013) American Chemical 
Society)
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2.2  Metal Nanoparticles

Metal nanoparticles (MNPs) are a group of functional materials with distinctive 
chemical and physical characteristics, which are closely dependent on their shape, 
structure, composition and size. Great advances have been attained in MNP synthe-
sis and applications in numerous fields such as electronics, sensors, catalysis and 
medicine (Han et al. 2017; Prasad et al. 2016). For this reason, MNPs have received 
a huge interest in the realization of biosensors for biomedical fields. Gold nanopar-
ticles (AuNPs) in biology and nanomedicine have made significant progress over 
the past decade, particularly in therapeutic and imaging applications (Lv et  al. 
2018). These skills are based on their characteristic properties including finely 
adjustable optical properties, high specific surface area and the possibility of modi-
fying the surface. AuNPs have been used as catalysts in many biomedical applica-
tions. In a further development, gold nanoparticles are active in redox, which opens 
up the possibility of miniaturizing detection devices at the nanoscale, offering 
excellent prospects for chemical and biological detection.

Gold nanoparticles have found significant exploitation in the biomedical field, 
thanks to (i) their comparative chemical stability, which makes them less hazardous; 
(ii) their simple and direct synthesis and manufacturing process; and (ii) their actual 
biocompatibility and non-interference with other labelled biomaterials (e.g. anti-
bodies and other biomarkers) (Ho et al. 2010). Hu et al. developed a nanoporous 
gold electrode modified with encoded multifunctional gold nanoparticles to fabri-
cate an electrochemical DNA sensor (Hu et al. 2008), describing the ability of gold 
nanoparticles to amplify the detection signal efficiently and detect DNA targets 
quantitatively, in the range of 8.0 × 10−17–1.6 × 10−12 M.

Silver nanoparticles (AgNPs) also showed their suitability for biosensing 
approaches, being capable of providing high conductivity and biocompatibility. 
Indeed, highly sensitive and selective sensors based on noble silver nanoparticles 
created the possibility of developing new diagnostic platforms for disease markers, 
biological and infectious agents in the early detection of diseases and other physi-
ological threats (Chen and Chatterjee 2013). As an example, AgNPs were electrode-
posited on a glassy carbon electrode modified with a poly(ferrocenylsilane) DNA 
network to fabricate a hydrogen peroxide sensor. The electrochemical experiments 
demonstrated that this sensor had a high catalytic ability in the reduction of H2O2. 
This sensor provided a linear range of 2.0 mM to 353 mM with a detection limit of 
0.6 mM, becoming very useful to reveal H2O2.

Thanks to the size- and shape-dependent optoelectronic properties, platinum 
nanoparticles (PtNPs) are similarly appealing materials for a wide biomedical appli-
cation. The use of nanoparticles in biology leverages the dimensional and functional 
characteristics of their surfaces, as well as their inorganic nucleus, which results in 
specific physical properties. Furthermore, the size of these nanomaterials provides 
a large surface-to-surface-volume ratio as particle size decreases; the population of 
surface atoms increases significantly (Chen and Chatterjee 2013). By exploiting 
these outstanding properties, therapeutic nanoparticles could provide feasible alter-
native platforms for treating a great assortment of human diseases in clinical settings.
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2.3  Titanium Dioxide Nanotubes

Titanium dioxide (TiO2) nanotubes have sparked significant research activity thanks 
to their unique properties, as well as their simplicity of preparation, high orienta-
tion, large surface area, high uniformity and excellent biocompatibility. As a 
renowned semiconductor, nanostructured TiO2 has also attracted a lot of attention 
due to its non-toxicity, long-term stability, low cost and multifunctionality (Zixue 
Su 2011). TiO2 nanotube modification with other nanomaterials has been also 
reported to additionally improve the sensor performances. As an example, gold 
nanoparticles were electroplated on TiO2 nanotube arrays and used to detect ascor-
bic acid (Babu et al. 2012). The sensor was analysed following its morphological 
and electrochemical characteristics and tested with ascorbic acid and other biomol-
ecules with very promising results. The sensor was also challenged for ascorbic acid 
analysis in lemon juice exhibiting a sensitivity of 63.91 mA mM−1 cm−2 and admi-
rable selectivity towards ascorbic acid in the presence of uric acid, dopamine, glu-
cose and para-acetaminophen as interferents.

2.4  Zinc Oxide Nanoparticles

Zinc oxide (ZnO) exhibits a widespread variability of nanostructures with unique 
semiconducting, optical and piezoelectric properties. The surface of ZnO possesses 
several -OH groups, excellent candidates for the functionalization by molecules 
decorating different surface. Indeed, zinc oxide nanoparticles (ZnONPs) are used 
worldwide, which have attracted attention towards research on their impact on 
human health. In addition, many studies described the use of zinc oxide nanoparti-
cles in the biomedical sector mainly focused on cancer cell imaging applications. 
They have been positively employed in various biomedical applications as gene 
transmission and biosensors (Zhang et al. 2014).

Several studies have established that zinc oxide nanoparticles are toxic to differ-
ent bacterial species such as Escherichia coli and Staphylococcus aureus, as well as 
to primary human immune cells. A concentration > 3.4 mM and > 1 mM resulted in 
complete growth inhibition of E. coli and S. aureus, respectively (Rajeshkumar 
et al. 2019).

3  Immobilization Strategies at the Nanoscale

Biosensors have been considered economical and functional analytical devices 
broadly used in the last years, owing to their fast and simple use in the determination 
of specific analytes, particularly, and in site complex samples. In the biosensor field, 
recent progress on nanomaterials has headed to a dramatic development in the 
 miniaturization of sensing devices, with reduced sample volume and manufacturing 
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costs. In addition, since biological processes occur at the nano- and microscale, 
nanostructured materials have shown an exceptional platform to induce better inter-
action between biological species and the sensor surfaces, which guarantees higher 
stability and sensitivity of the bioelement. Thanks to their high specific surface area, 
nanoparticles can strongly adsorb biomolecules, thus showing their great potential 
in immobilizing biomolecules for the assembly of biosensors. The arrangement of 
nanomaterials and various biomolecules, as enzymes, nucleotides, antigens, DNA 
and amino acids, allowed the fabrication of several miniaturized and nanostructured 
devices and also implantable biosensors for real-time analysis, being nanomaterials 
capable of preserving their bioactivity.

As most of nanoparticles are electrostatically charged, they can immobilize bio-
molecules by electrostatic interactions. For instance, gold nanoparticles can immo-
bilize proteins by covalent bonds formed between gold atoms and amine and thiol 
groups of proteins. Indeed, gold nanoparticles are frequently deployed for protein 
immobilization (Pingarrón et al. 2008). At the beginning of the 1990s, Zhao et al. 
(1996) immobilized several types of enzymes with AuNPs and manufactured differ-
ent enzyme electrodes, and the enzyme electrodes prepared preserved their enzy-
matic activity for long period.

SiO2 nanoparticles are also an outstanding matrix for enzyme immobilization 
owing to their good biocompatibility and simplicity of preparation. Further nanopar-
ticles, including Pt, Ag, TiO2 and ZrO2, among others, can likewise be exploited to 
immobilize enzymes.

In order to modify the electrode of an immunosensor, several nanomaterials can 
be used for the immobilization of the bioelement and, at the same time, provide the 
amplification of the signals. Among nanomaterials, graphene is a talented nanoma-
terial in the biomedical field due to its excellent conductivity, large specific surface, 
good resistance and high biocompatibility (Bolotin et al. 2008). Fan et al. (2019) 
developed an electrochemical immunosensor based on rGO/Thi/AuNPs nanocom-
posites to determine CA125, which displayed an extensive linear range and low 
detection limit, with high sensitivity and accuracy. An unlabelled immunosensor for 
Japanese encephalitis B vaccine was prepared by immobilizing related antibodies 
with gold nanoparticles (Channon et al. 2018).

A further kind of biomolecule, DNA, is also immobilized with nanoparticles and 
applied for the realization of electrochemical DNA sensors. Various nanomaterials 
have been employed as platform for microRNA determination, as carbon black 
(CB) (Yammouri et al. 2017) and AuNPs (Mandli et al. 2017). The first example 
describes the use of carbon black to modify pencil graphite electrodes, in combina-
tion with multi-walled carbon nanotubes and graphene oxide to fabricate a sensor 
platform for microRNA-125a detection (Scheme 5.3). The DNA probe was cova-
lently immobilized into the surface of the nanomaterial-modified electrode, confer-
ring robustness, reproducibility and sensitivity, with a limit of microRNA-125a 
detection of 10 pM (1 pg/mL) within a linear response between 0.008 and 15 μg/
mL, which corresponds to 1  nM and 2  μM.  This demonstrated the ability of 
 nanomaterials to furnish a suitable environment for the bioreceptor immobilization 
and augmented signals, thanks to carbon black.
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Likewise, AuNPs offer excellent biocompatibility and conductivity and are able 
to immobilize thiolated bioelements easily by the strong Au-S bond (Suzuki et al. 
2009). To report an example, Yammouri et al. constructed a biosensor by immobiliz-
ing microRNA-21 complementary thiolated capture probe labelled with methylene 
blue on the surface of a carbon black and gold nanoparticle-modified pencil graphite 
electrode, showing good selectivity, stability and reproducibility (Yammouri 
et al. 2017).

Hasanjani and Zarei (2019) developed an ultrasensitive electrochemical sensor 
for the determination of mercury (II) using deoxyribonucleic acid/poly-L- 
methionine- gold nanoparticles/pencil graphite electrode (DNA/PMET-AuNPs/
PGE). Immobilization of biomolecules with nanoparticles may be an excellent 
option, as it can effectively increase stability and maintain molecular activity.

Tsai and co-workers (2009) immobilized glucose oxidase (GOx) on SWCNT, 
and it was reported that the enzyme retained 75% of its activity by adsorption. The 
resulting GOx-SWCNTs were used in electrochemical layer-by layer biosensors for 
glucose, demonstrating a good sensor response.

Rubianes and Rivas (2005) described a SWNT-mineral-oil paste containing 
lactate oxidase for amperometric lactate monitoring. Dependable lactate monitor-
ing is essential for clinical diagnosis, sports medicine, biotechnology and food 
analysis. The accelerated electron transfer reaction from hydrogen peroxide to the 
SWNT paste electrode allowed rapid detection of the analyte at a low potential 
(0.10 V).

A sensitive biosensor for cholesterol was fabricated by immobilizing cholesterol 
oxidase on a MWNT-modified gold electrode, using a layer-by-layer adsorption 
technique (Guo et al. 2004). An ideal cholesterol sensor should have sensitivities in 
the range of 2.5–10 mM since a total blood cholesterol level of less than 5 mM is 
considered to be risk-free, whereas high cholesterol levels of greater than 6 mM are 

Scheme 5.3 Scheme of the pencil graphite electrodes modified with carbon black, multi-walled 
carbon nanotubes and graphene oxide nanomaterials for microRNA-125a hybridization and analy-
sis. (Reprinted with permission from Yammouri et al. (2017). Copyright (2017) Elsevier)
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considered dangerous. The sensor response was linear in the range 0.2–6 mM, in 
agreement with the requirement for cholesterol concentration. In another case, a 
screen-printed electrode modified with MWNT mat and cholesterol oxidase had the 
capacity to detect cholesterol directly in the blood in clinically relevant ranges (Li 
et al. 2005). It was observed that carbon nanotubes promoted the electron transfer 
and almost doubled the sensitivity when compared to the control. Moreover, the 
carbon nanotube electrodes demonstrated a good correlation with the results of 
clinical analyses of blood samples from 31 patients.

4  Nanomaterials as Mediators

The electrical connection between the electrode surface and biomolecules repre-
sents a crucial parameter in the development of electrochemical biosensors (Hayat 
et al. 2014). It is noteworthy that conductive features of metal nanoparticles increase 
the electron transfer rate between the transducer surface and biomolecules. The 
mediators most commonly employed are replaced by metallic nanomaterials. The 
importance of these mediators has been described when projecting amperometric 
biosensors (Hayat et  al. 2014). Metal nanoparticles function as electron or wire 
transfer mediators to supersede the mediator currently used in the design of electro-
chemical biosensors. In contrast, certain non-metallic nanoparticles as semiconduc-
tor and oxide nanoparticles may also enhance the electron transfer rate between 
proteins and electrodes. Silver particles have also a high electrical conductivity and 
can therefore improve the electron transfer. Furthermore, in conjugation with silver 
nanoparticles and pyrolytic graphite electrodes, they can serve as electrical bridges 
to wire the electron transfer between the electrode surface and biomolecules. In a 
similar context, Ghalkhani et  al. (2009) investigated the electrocatalytic perfor-
mance of electrodes modified with Pt nanoparticles (PtNPs) and two dendritic 
hyperbranched carbosilane polymers for the NADH oxidation. The suggested strat-
egy allowed measuring NADH from +0.3  V (vs SCE), offering total protection 
against poisoning electrodes, using alcohol dehydrogenase (ADH).

Gold nanoparticles have been also deployed to enhance electron transfer between 
electrode surface and biomolecules in the development of enzymatic biosensors 
(Liu and Ju 2003). Wang et al. (2015) developed a novel MXene-Ti3C2 by etching 
Al from Ti3AlC2, to immobilize haemoglobin (Hb) and fabricate a mediator-free 
biosensor with an oxidized surface. Spectroscopic and electrochemical results vali-
dated that MXene-Ti3C2 had a strong enzyme immobilization with biocompatibility 
for redox protein, showing excellent bioactivity and stability of the proteins. Thanks 
to the peculiar structure of MXene-Ti3C2, the direct electron transfer of Hb was 
accelerated, and the developed biosensor showed brilliant ability for H2O2 detection 
with an outsized linear range of 0.1–260 μM and extremely low detection limit of 
20 nM (based on a signal-to-noise ratio of 3). The immobilization of proteins onto 
the surface of MXene-Ti3C2 showed its ability as in the design of a new sensitive 
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and stable electrochemical biosensor for H2O2. In this context, the identification of 
H2O2 is extremely important because it plays an essential role in food, pharmaceuti-
cal and environmental analyses (Somasundrum et al. 1996). H2O2 can be measured 
at low applied potentials by using peroxidase as an electrocatalyst for electrochemi-
cal reduction. Amperometric assay combining mediators with peroxidase is one of 
the most sensitive procedures. However, the addition of the mediator increases the 
time and cost of the analysis. Hence, the co-adsorption of thionine and horseradish 
peroxidase on the electrode surface has been exploited to realize H2O2 sensors (Liu 
and Chen 2005), greatly simplifying the analysis system without the addition of a 
mediator to the solution.

5  Nanomaterials as Signal Amplifiers

Several efforts have been made in the last decades to amplify the detectable signals 
of electrochemical biosensors (Miao et  al. 2015). Consequently, several signal 
amplification approaches were investigated, such as enzymatic catalysed amplifica-
tion (Akama et al. 2016), nucleic acid amplification technology (Zhao et al. 2015) 
and molecular conversion amplification (Yang et  al. 2016). Alternatively, 
nanomaterial- based signal amplification has been widely used in the construction of 
biosensors owing to their large specific surface, catalytic property and biocompati-
bility (Chen and Chatterjee 2013). Initially, nanomaterials for signal amplification 
depend on their high specific area, where an increased amount of biomolecules can 
be loaded (Wang and Liu 2014). Recently, nanomaterials with catalytic activity are 
introduced into the design of electrochemical biosensor, in which nanomaterial can 
catalyse corresponding substrate to accelerate electron transfer for signal amplifica-
tion (Voiry et  al. 2013). Thanks to significant progress in nanosciences, electro-
chemical amplification of signals based on nanometric materials has excellent 
potential to enhance the sensitivity and selectivity of electrochemical biosensors 
(Mohammadi et al. 2019). The general procedures to configure electrochemical bio-
sensors for target DNA/protein, where nanoparticle labels are used for signal ampli-
fication, are indicated in Scheme 5.4.

A variety of signal amplification pathways by nanomaterials are also outlined 
(Scheme 5.5), such as:

 1. Electrode materials for constructing detection platforms.
 2. Carriers for signal elements.
 3. Tracers based on their direct electrochemistry.
 4. Separators and collectors.
 5. Catalysts.
 6. Mediators to regulate the electron transfer process.

Finally several signal amplification techniques employing diverse nanomaterials 
and amplification procedures have also been demonstrated (Wu et al. 2014a).
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Because of their exclusive assets, various nanomaterials have been applied as 
electrode materials to create detection platforms, such as gold nanoparticles 
(AuNPs), carbon nanotubes (CNT), graphene (G), polymer NPs and their nanocom-
posites (Pilehvar et al. 2014). Biofunctional NPs can have a synergistic effect on 
catalytic activity, conductivity and biocompatibility to speed up signal transduction, 
leading to lower detection limits at even zeptomolar concentrations.

Several signal amplification strategies based on functional nanomaterials, 
coupled with different electrochemical methods, have recently gained considerable 
interest towards the emergence of high-performance analytical devices for the 

Scheme 5.4 Schematic illustration of electrochemical affinity biosensors based on use of nanopar-
ticles for signal amplification

Scheme 5.5 Schematic illustration of nanomaterial-based signal amplification strategies in DNA- 
based electrochemical sensing. (Reprinted with permission from Wu et al. (2014a). Nano Today. 
Copyright (2014) Elsevier)
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 sensitive detection of trace analyte amounts, including DNA and microRNA assays 
in clinical and environmental applications (Chen and Chatterjee 2013).

CNTs can also provide a wide specific surface area to immobilize DNA mole-
cules and considerably enhance the electrochemical features of sensors (Zelada- 
guilløn et al. 2009). The Korri-Youssoufi group (Miodek et al. 2013) designed an 
electrochemical aptasensor to reveal human cellular prions (PrPC) based on multi- 
walled carbon nanotubes (MWCNTs) modified with fourth-generation polyamido-
amine dendrimers (MWCNTs-PAMAM G4); PAMAM G4 was covalently attached 
to MWCNT via an amide linkage, and a large amount of functional groups for 
covalent fixation of the ferrocenyl group (Fc) as redox markers were introduced, 
further enhancing the amount of charge from the aptamers for prion fixation. The 
binding of prions triggered a decrease in the redox current of Fc due to the perturba-
tion of electron transfer caused by changes in the conformation of the surface layer. 
Thanks to its high surface area with lots of functional groups and the unique electri-
cal properties, a very sensitive detection limit of 0.5 pM was achieved.

The incorporation of signal amplification strategy with a microfluidic immuno-
sensor was also reported in literature, for multiplexed measurement of cancer 
 biomarkers in serum patient samples (Wu et al. 2014b). The authors designed an 
electrochemical device consisting of eight individual lines modified by graphene 
nanomaterials, further used as probes to label antibodies extremely sensitive to a 
range of specific analytes. Wu and co-workers (2013) similarly improved their 
graphene- based microfluidic immune device by triggering a controlled amplifica-
tion by polymerization on the immune device surface and achieved a self- calibrating 
system. This innovative strategy for signal amplification was claimed to improve 
electrochemical signal output significantly to minimize ambient condition impacts 
and achieve ultrasensitive detection.

6  Nanomaterials for Bioreceptor Labelling

Alternative exploitation of nanomaterials is labelling of biomolecules as antigen, 
antibodies and DNA, once again demonstrating their crucial role in the design of 
highly sensitive biosensors. Among others, carbon nanomaterials were exploited 
as label supports when incorporated in biosensors. In this case, besides being 
conjugated to the label, they were also modified with the detection antibody or 
antigen, according to the test format. These mixed conjugates have been incorpo-
rated into sandwich and competing configurations offering benefits such as more 
labels and electrochemical signal amplification (Joseph and Mustafa 2003). Tang 
et al. (2010) doped MWCNTs with nanosilica and HRP and used them as labels 
of the anti- staphylococcal enterotoxin B (SEB) antibodies in a sandwich-type 
immunosensor. The results confirmed a great correlation with the values obtained 
using a commercially available enzyme-linked immunosorbent assay (ELISA). 
Competition-type immunoassays and sensors have also been developed using car-
bon nanomaterials as immobilizers for bioreceptors and labels. Tian et al. (2014) 
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 conjugated  peroxidase- mimicking DNAzyme and microcystins (MC-LR) to 
SWCNTs. This multi-labelled MC-LR competed with free microcystin in solu-
tion for their binding to capture antibodies immobilized on SWCNTs previously 
adsorbed on the electrode. The measured current decreased linearly as the MC-LR 
concentration increased from 0.01 to 7.0 ng mL−1. Detection limit value as low as 
2.3 pg mL−1 was attained, thanks to the properties of SWCNT in terms of promo-
tion of electron transfer between the electrolyte and the electrode and the capacity 
of fixation of multiple label enzymes.

Metal nanoparticle labels can be also used in both immunosensors and DNA sen-
sors (Ding et  al. 2013). Moreover, by using external magnetic fields, magnetic 
nanoparticles linked to biomolecules can eliminate mass transfer problems and play 
a useful role as biomolecular supports and separation tool in microfluidic devices. 
Bound to an appropriate antibody, these nanomaterials can be exploited for the 
labelling of molecules, structures or microorganisms to realize immunoassays in 
which the magnetic field produced by the magnetically labelled targets is sensed by 
means of sensitive magnetometers. Binding of antibody to target molecules or 
disease- causing organism is the basis of several tests. Antibodies labelled with mag-
netic nanoparticles give magnetic signals on exposure to a magnetic field. Antibodies 
bound to targets can thus be identified as unbound antibodies disperse in all direc-
tions and produce no net magnetic signal (Kewal 2005).

7  Nanomaterials to Project Microfluidics, Lab-on-a-Chip 
and Point-of-Care

Over recent years, progress in microfluidics and lab-on-a-chip technologies has pro-
vided exceptional chances for the application of nanomaterial production processes, 
thanks to the miniaturization of the fluid environment. Microfluidic (MfD) devices 
can be incorporated into laboratory functions and processes reduced to a miniatur-
ized chip format known as a “lab-on-a-chip”, furnishing several advantages com-
pared to conventional techniques (Kewal 2005). There are numerous factors to 
consider when designing a microfluidic device, such as the choice of materials, the 
dimensions of the MfD devices and fluid control devices (e.g. pumps, valves and 
mixers). MfD systems operate in small liquid quantities (10−9 to 10−18 L) (Dhyani 
et al. 2015) and can be manufactured from a huge number of materials as glass, sili-
con, polymers and gels. Since 1985, when Unipath Inc. first commercialized the 
pregnancy test, which is still widely used, microfluidic biosensors have found 
enormous attention in the medical field, especially in the form of miniaturization 
“lab-on-chip” (LOC). The principal benefits of microfluidic biosensors are a low 
sample volume, minimally invasive methods for sample collection, laminar flow, 
reduced reagent consumption, short reaction time for analysis, multiple analyte 
detection, portable and a high surface-to-volume fluid ratio compared to other 
conventional biosensors (Gu et al. 2010).
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Recently, nanoparticles have got huge attention in the fabrication of MfD for the 
miniaturization of the sensing devices and enhance their analytical performances 
(Sri et al. 2019). The miniaturization of sensors headed to the realization of several 
point-of-care diagnostics that could be deployed in the field. In the meantime, some 
of these systems combining microfluidics and nanomaterials have demonstrated 
multiplexed detection capability through the use of a device array with unique func-
tionality and good reusability for the detection of each analyte. Moreover, the modi-
fication of transducer platforms with nanoparticles generates highly conductive 
surface interfaces that allow sensitive/catalytic detection of ionic, molecular and 
biomolecular analytes. These highly sensitive sensors are easy to incorporate and 
become good candidates for LOCs.

CNTs are employed in several devices as transducers, thanks to their high sensi-
tivity, specificity, rapidity in analysis, low cost and ease of use (Sri et  al. 2019). 
Biosensors based on CNTs have been enhanced in their portability, functionality, 
reliability and real-time diagnosis for point-of-care analysis. The use of CNTs in 
POC systems has been considered for the analysis of biological analytes such as 
DNA, glucose, proteins and viruses. POC tests based on CNT biosensors can be 
divided into three types including CNT-based lateral flow tests (LFA), CNT-based 
printed electrode, and CNT-based lab-on-a-chip (LOC) (Syedmoradi et al. 2017).

The modified CNT transducers have a larger surface area, which increases cur-
rent density and provides an increased surface area for fixing biomolecules (Serp 
and Castillejos 2010). This can augment current stability as well as the sensitivity of 
the detector. The electrical behaviour of these platforms depends on the chirality of 
the CNT, the number of carbon layers, defects and their functionalization, which 
must be carefully studied during their application. All these CNT properties are use-
ful for catalysis (Serp and Castillejos 2010), enzymatic immobilization (Feng and Ji 
2011), protein detection (Zhang et  al. 2011) and metal detection (Morton et  al. 
2009). The coupling of CNTs with LFA strips can deliver a reasonable, fast and 
sensitive approach for many biomolecule determination including DNA and pro-
tein. Recently, Qiu et al. (2015) developed a MWCNT-based lateral flow biosensor 
using streptavidin-biotinylated probe on nitrocellulose membrane and carboxylated 
MWCNT as a label. Amine-modified DNA detection probe was immobilized to the 
carboxylated MWCNT by covalent bonding between DNA amines and carboxylic 
acids of the CNT. This biosensor delivered a fast and sensitive DNA detection with 
a limit as low as 40 pM. In addition, this platform exhibited high reproducibility in 
the absence and presence of 5.0 nM and 50 nM target DNA. Combining lateral flow 
with the exclusive physical properties of MWCNTs, a 12.5 times enhanced sensitiv-
ity was achieved if compared to the GNP-based lateral flow.

A CNT-SPE has been employed for the electrochemical detection of human cho-
rionic gonadotropin (hCG). The CNT working electrode was modified with amino-
propyl triethoxysilane (APTES), in order to introduce amino groups onto CNT 
surface. These amino-modified CNTs were then attached to the antibody-target 
hCG by use of the cross-linking agents EDS and NHS.  This modified electrode 
showed a high specificity, wide linear range (0.01 × 10–9–100 × 10–9 g cm-3) and 
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low detection limit for hCG. The excellent detection capability and simplicity of 
this approach makes it a convenient method for detecting hCG in a POC diagnostic.

Okuno et al. have designed an unlabelled immunosensor modified with CNTs for 
the detection of total prostate-specific antigen. It should be noted that CNTs provide 
better electron transfer, obtaining an improved detection limit of 0.25 ng mL−1 if 
compared to unmodified electrodes.

Chua et al. (2011) reported a graphene oxide-based microfluidic amperometric 
detector that showed higher peak sensitivity, resolution and separation efficacy than 
the same device without modification. Fibronectin detection was provided with a 
detection limit of 0.5 nM, highlighting its ability to be considered as proof of con-
cept. Finally, nanoelectrodes and nanostructured electrodes attract attention for the 
analysis of biological samples at very low concentrations where the reduction in 
sensor size seems to facilitate the detection of reaction products on a similar scale.

8  Nanoelectronics

Nanoelectronics requires the development of devices at the nanoscale, to focus on 
low-power consumption, compactness and high memory chip (Gopinath et  al. 
2013b). Recently, researchers in the field of nanoelectronics have started to focus 
more on the application of nanobiosensors for early detection of diseases, their 
treatment and prevention (Gopinath et al. 2013a). High-performance detection tools 
have been projected to achieve two vital goals: (i) generating suitably high sensitiv-
ity electronics and (ii) providing compatibility with the bioelements (Huang and 
Chen 2010).

Specifically, different nanoelectronic biosensors have been successfully deployed 
from carbon nanotubes (Brett et al. 2007), nanowires (Patolsky et al. 2006), nano-
pores (Howorka and Siwy 2009) and recently graphene (Agarwal et  al. 2010). 
Compared to conventional optical, biochemical and biophysical methods, electronic 
biosensing based on nanomaterials offers unique benefits, as high sensitivity and 
new sensor capabilities, high spatial resolution for localized detection, compatibil-
ity with miniaturized lab-on-a-chip systems and easy integration with recording 
electronics for real-time monitoring at high time resolution and simple, non- invasive 
detection without the need of labelling (Huang and Chen 2010).

Among the different electrical biosensor structures, devices based on field-effect 
transistors (FETs) have attracted much attention because they can directly translate 
the interactions between target biological molecules and the FET surface into read-
able electrical signals (Chen et al. 2011). Silicon nanowire field-effect transistors 
(SiNW-FETs) have recently gained huge consideration as a promising tool in bio-
sensor design due to their ultrasensitivity, selectivity and real-time, label-free detec-
tion capabilities towards proteins, DNA sequences, small molecules, cancer 
biomarkers and viruses (Chen et  al. 2011). Specific peptide nucleic acid (PNA)-
modified SiNW-FET sensors have recently been established to diagnose dengue 
virus infection (Zhang et al. 2010). Synthetic PNA receptors were first anchored to 
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a SiNW-FET surface. A specific fragment (69 bp) derived from dengue serotype 2 
(DEN-2) virus genome sequences was selected as the target DNA and amplified by 
the reverse transcription-polymerase chain reaction (RT-PCR). Distinctive resis-
tance changes between the two different PNA receptors (i.e. complementary and 
non-complementary to the target DNAs) can be distinguished. The detection limit 
of this biosensor based on SiNW-FET was claimed to be 10 fM. These investiga-
tions suggested that the PNA-modified SiNW-FET sensor incorporated with 
RT-PCR has been successfully developed for a rapid and ultrasensitive diagnostic 
method of detecting dengue virus.

A similar promising approach allowed for revealing microRNAs (miRNAs) in 
early diagnosis of cancer (Zhang et al. 2009a). miRNAs have been characterized to 
play an important role in cell development and to be related to a number of cancers 
and neurological disorders. Therefore, the detection of miRNAs becomes more and 
more important in the field of medical science. A PNA-immobilized SiNW-FET 
was used to probe miRNA by detecting PNA-miRNA hybridization via base pair-
ing; this approach displayed an admirable detecting specificity in discriminating a 
single-base mismatch in miRNA. Moreover, the application of a PNA-functionalized 
SiNW-FET to probe the hybridization with complementary miRNAs is obviously 
preferential to a DNA-functionalized SiNW-FET, again indicating that neutral PNA 
prefers to hybridize miRNAs. Also, the PNA-functionalized SiNW-FET sensor was 
capable to sense a specific miRNA in total RNA extracted from HeLa cells.

Interdigitated electrode (IDE)-based sensors have been also described, consist-
ing of multiple electrodes and acting as capacitive sensors (Hong 2012). IDE can be 
embedded with a suitable thin film, which facilitates performance of surface func-
tionalization for biosensing applications (Choi et al. 2010). The silver IDE electrode 
is a very suitable material, due to good conductivity and ease of deposit on the sili-
con wafer sample by a conventional wet etching method. Exposure to ultraviolet 
(UV) light allows the pattern transfer to be done from the IDE mask fitted on the 
surface of the sample. A coupled IDE may apply for typing and subtyping of influ-
enza viruses (Gopinath et al. 2012, 2013a).

Zhu et al. (2012) developed a cost-effective bacterial detection device that can be 
labelled on a cell phone. This device is the first cell phone-based imaging system for 
the observation of a single bacterium or virus and has demonstrated the detection of 
E. coli as proof of concept. With a detection limit of 5–10 CFU/mL, this handheld 
device was shown to offer higher specificity for detecting E. coli, even considering 
the samples, which included a complex food matrix (Scheme 5.6).

A few decades later, Varma et al. (2005) described the use of an optical biosen-
sor on rotary disc interferometry for very high-throughput immunoassays (antibody- 
based), called BioCD. The BioCD works like an analogue sensor but is attached to 
antibodies to replace digital recording. The BioCD operates according to the micro-
diffraction quadrature principle, which allows sensitive linear detection of analyte 
and ligand interactions. Using rotary disc interferometers, an immobilized specific 
complexed analyte/ligand can be recognized using higher speed and sensitivity. This 
system has been beneficial for the analysis of E. coli. Similarly, a wide-ranging vari-
ety of bacterial species can be detected on disc technology using an appropriate probe.

5 Nanobiosensors for Bioclinical Applications: Pros and Cons



136

9  Nanoparticle Toxicity

Nanotechnology is increasing rapidly with nanoparticles produced and used in a wide 
range of commercial products worldwide. For instance, silver nanoparticles (AgNPs) 
are widely employed in electronics, biosensing, clothing, food industry, cosmetics 
and medical diagnostics. Nevertheless, these widespread applications increase human 
exposure and therefore the potential risk associated to their short- and long-term tox-
icity. Intravenous injection of Ag nanoparticles has recently been evaluated for drug 
administration and targeted applications. Rosas-hernández et al. (2009) investigated if 
Ag nanoparticles induced selective and specific biological effects on coronary endo-
thelial cells (CEC) and regulated vascular tone in aortic rings isolated from rats. At 
low concentrations, Ag nanoparticles function as antiproliferative/vasoconstrictor 
factors that interfere with nitric oxide (NO) production. At high concentration, Ag 
NP stimulated no meditated proliferation/vasorelaxation. This study showed that the 
level of exposure to Ag nanoparticles played a crucial role in toxicity and could have 
other physicochemical effects. A major concern with graphene-based materials is that 
knowledge of their environmental toxicity and  biological safety profile is limited. 
The British government agency, the Medicines and Healthcare Products Regulatory 
Agency (MHRA), and the US Food and Drug Administration (FDA) are currently 
reviewing all forms of graphene and functionalized graphene oxide (GO) because 
of their low solubility, high agglomeration, prolonged retention and relatively long 
circulation time in the blood (Nezakati et al. 2014).
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Scheme 5.6 Smartphone-based detection. An electronic-based device for point-of-care applica-
tions. (Reprinted with permission from Gopinath et al. (2019). Copyright (2019) Elsevier)
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The interactions of AuNPs with biological systems are often associated with 
their physicochemical characteristics that allow them to be absorbed into cells, 
which is not possible for larger particles. This is one of the reasons why AuNPs can 
be toxic compared to larger particles when compared to a massive dose (Fanord 
et al. 2011).

Some studies of cytotoxicity were demonstrated in triphenylphosphine- stabilized 
AuNPs employing four cell lines like tissue fibroblasts (L929), epithelial cells 
(HeLa), macrophages (J774A1) and melanoma cells (SK-Mel-28) (Pan et al. 2007). 
The results of these studies demonstrated that cellular response is dependent on 
size. As an example, 1.4  nm AuNPs were observed as the most toxic substance 
responsible for rapid cell death by necrosis, compared to 15 nm which was found to 
be non-toxic (Chen et al. 2009). However, cell proliferation was inhibited, which 
was linked to negative regulation of cell cycle genes. In addition, oxidative DNA 
damage was found in conjunction with decreased regulation of DNA repair 
(Coradeghini et al. 2013).

However, as stated by Antonacci et  al. (Antonacci and Scognamiglio 2019), 
“several criticisms emerged regarding the use of nanomaterials. The main issue is 
related to their most important aspect, the nano-size. Indeed, while this feature 
determines high reactivity and great capacity, it could become potential lethal factor 
by inducing adverse cellular toxic and harmful effects”.

For this reason, a main further concern should regard the implementation of the 
toxicological effects of nanomaterials on animal and plant cells, since few data are 
nowadays available and further investigations would be strongly required.

10  Green Nanomaterials

In recent years, nanomaterials have been intended to operate as intelligent and 
multifunctional materials in medicine and pharmacy, in particular in the diagnosis 
and treatment of cancer, as nanostructured electrodes in batteries and single-walled 
carbon nanotubes in communication technology devices, but also as antimicrobial 
materials in the cosmetics, food and clothing industries (Chithrani et  al. 2006). 
Although nanomaterials have many applications and advantages, their production 
and applications are expensive and in some cases accompanied by the creation of 
environmentally harmful by-products (Lim et al. 2009).

Moreover, the application of synthetic nanostructures in medicine is limited due 
to their risks and side effects. That is why, nowadays, scientists are trying to use 
green ways to synthesize nanomaterials to prevent such side effects. In fact, green 
nanotechnology refers to the use of nanotechnology to improve environmental sus-
tainability by means of green processes to minimize the potential environmental 
costs and risks associated with the negative externalities produced (Nair and Pradeep 
2002). Green nanotechnology represents a new route inspired by the ability of 
nature to eliminate or reduce the impact of nanomaterials on the ecosystems and the 
human well-being; this can encourage the replacement of existing nanomaterials 
with newer more environmentally friendly ones.
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Nature has developed various processes for the synthesis of inorganic materials 
at the nanoscale and microlengths, which have contributed to the development of 
relatively new products, and a largely unexplored field of research is nowadays 
based on nanomaterial biosynthesis (Mohanpuria et  al. 2008). The microbial 
enzymes or plant phytochemicals with anti-oxidizing or reducing properties are 
usually responsible for metallic compounds in their respective nanoparticles. A lot 
of nanomaterials are synthesized from different substances, such as plants, algae, 
fungi and bacteria (Table 5.2).

Recently, the diverse applications of metal nanoparticles produced by biological 
synthesis have been explored in biomedical, agricultural and environmental areas 
(Scheme 5.7).

Since ancient times, plants have been used as natural remedies to cure many 
physiological disorders in traditional oriental medicine, particularly in India and 
China. The “green” synthesis of copper (cu), gold (Au), Nickel (Ni), platinum (Pt), 
titanium (Ti), selenium (Se), silver (Ag) and zinc (Zi) nanoparticles (NP) using 
plant resources had already been reported in the literature (Mirzaei and 
Darroudi 2017).

The manufacture of AuNPs using plants as a natural source has resulted in a 
better-quality, more environmentally friendly product (Chandran et  al. 2006). 
For example, the plant extract of Aloe vera was used to obtain gold nanotriangles 

Table 5.2 Synthesis of nanomaterial from some green substrates

Green 
substrates Name

Type of 
nanomaterial

Size range 
(nm) Ref.

Plant Cinnamomum 
camphora

Au and ag 55–80 Huang et al. (2007)

Aloe vera Au 50–350 Chandran et al. (2006)
Alfalfa sprouts Ag 2–20 (Gardea-torresdey et al. 

2003)
Avena sativa (oat) Au 5–85 (Armendariz et al. 

2004)
Algae Marine macroalgae

Caulerpa peltata Au 9–20 Xie et al. (2007)
Hypnea valencia Au 8–12 Singaravelu et al. 

(2007)
Chlorella vulgaris

Sargassum wightii

Fungi Phoma sp. 3.2883 Ag 71.06–74.46 Chen et al. (2003)
Fusarium 
oxysporum

Au 20–40 Ahmad et al. (2003)

Aspergillus 
fumigatus

Ag 5–25 Bhainsa and Souza 
(2006)

Bacteria Pseudomonas 
stutzeri

Ag 1–20 Wang et al. (2018)

Acinetobacter spp. Ag 10 Nadhe et al. (2019)
Escherichia coli 
DH5α

AU 25–33 Du and Wang (2016)
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with a size between 20 and 50 nm (Das et al. 2011). Different AuNP syntheses have 
been described using a variety of plant sources and obtaining various shapes. AuNPs 
synthesized by plants are more stable than those synthesized by other methods.

Au, as a noble metal, was used in prehistoric times in ancient cultures such as 
China, Egypt and India to cure a variety of diseases such as measles, smallpox, 
syphilis and skin ulcers. Currently, Au is used as a stent, pacemaker and middle ear 
implant and in dental restoration as alloys (Svedman et al. 2006).

Copper oxide (CuO) nanoparticles have been also reported for their antimicro-
bial activity against infectious organisms such as E. coli, Bacillus subtilis, Vibrio 
cholerae, Pseudomonas aeruginosa, Syphilis typhus and Staphylococcus aureus 
(Akhavan and Ghaderi 2010; Stoimenov et al. 2002). Materials from plants includ-
ing magnolia leaf extract and Euphorbia nivulia stem latex have been employed to 
synthesize Cu nanoparticles, which have also been used as non-toxic aqueous for-
mulations for the administration of cancer treatments (Padil and Cernik 2013).

Abboud et al. (2014) used brown alga (Bifurcaria bifurcata) in the biosynthesis 
of copper oxide nanoparticles of dimensions 5–45 nm. The synthesized nanomate-
rial is characterized by UV-visible absorption spectroscopy and Fourier transform 
infrared spectrum analysis. X-ray diffraction confirms the formation and crystalline 
nature of copper oxide nanomaterial. Moreover, these nanoparticles showed high 
antibacterial activity against two different strains of bacteria, Enterobacter aero-
genes (Gram negative) and Staphylococcus aureus (Gram positive).

Scheme 5.7 Biological synthesis and biomedical applications of metal nanoparticles

5 Nanobiosensors for Bioclinical Applications: Pros and Cons
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Significant interest has arisen in the research of NPs during the last decades, 
regarding biomedical applications in particular. The integration of nanotechnolo-
gies into medical science has opened up new opportunities and led to a better under-
standing of molecular biology. As a result, it is possible to offer new methods for the 
treatment of diseases that were previously difficult to target due to size restrictions 
(Salata 2004). The synthesis of biofunctional nanoparticles is very important for 
biomedical applications and has recently attracted the attention of many research 
groups that are constantly evolving in this field (Zhang et al. 2008).

A study by Yuan et al. (2010) used ZnO quantum dots as a drug delivery system 
to target doxorubicin in HeLa cells. They encapsulated ZnO nanoparticles with chi-
tosan to improve the stability of nanomaterials. Their results indicated that this drug 
delivery system could be used as an effective way to improve patient quality of life 
system for targeting doxorubicin on cancer cells. Another main aspect in the appli-
cation of nanoparticles is their use as vectors for gene transfer to different cells, 
particularly tumour cells (Taylor and Webster 2011). The use of this system for gene 
delivery is associated with various advantages. For example, the expression of 
 plasmid containing gene on NP surface could ensure safe and efficient gene target-
ing to the receipt tissues (Asharani et al. 2008).

As with plants, microorganism would be used as a “bio-factory” for the synthesis 
of metallic nanoparticles, and a set of biological protocols for the synthesis of 
nanoparticles has been reported using bacterial biomass, supernatants and derived 
components.

Besides the use in the bioclinical field of green nanoparticles as drug delivery 
systems or for cancer treatment, their exploitation for the design of nanosensors is 
gaining momentum. A fervent literature is emerging in this field for the detection of 
bioclinical markers as glucose (Atchudan, 2019), alcohol (Gayda et al. 2019) and 
lactose (Bollella et al. 2017).

11  Conclusions

The medical diagnosis remains a primary focus in healthcare and personalized medi-
cine, and the exploitation of biosensors aims to enable continuous monitoring of dis-
eases as well as their follow-up. New diagnostic biosensors will help better diagnose 
and follow up diseases and treatments, and the implementation of novel POCs, easily 
usable by patients, and portable and implantable devices represents the challenge of 
the near future. In this scenario, nanomaterials have become important components 
in the design of bioanalytical devices because they are able to significantly improve 
diagnostic performance in terms of sensitivity, selectivity and robustness.

Furthermore, one of the main limitations of current nanotechnology is represented 
by the enormous financial costs associated with manufacturing and processing of 
nanoproducts. To this aim, further efforts should be achieved towards the synthesis 
of green nanomaterials by means of novel sustainable routes with reduced costs and 
energy consumption as well as endangering impact on the environment.
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1  Introduction

Globally cancer is one of the leading causes of mortality in the world after cardio-
logical diseases (Liu et al. 2017; Nagai and Kim 2017; Wang and Tian 2017). It can 
occur at any stage of life. Among the various cancer treatment, chemotherapy is 
most widely used to treat the various types of cancer becouse of its high cancer cell 
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killing efficiency (Gao et  al. 2017). Although several chemotherapeutic agents 
have been extensively used in cancer therapy but they are still far away from per-
fect because of their short half-life, rapid metabolism and low therapeutic efficacy 
(Kumar et al. 2017). However, unlike surgery and radiation therapy which targets 
specific areas, conventional chemotherapy works throughout the body and kills the 
cancer cells in addition to normal cells, thus causing adverse side effects (Zeng 
et al. 2017). Thus to reverse the serious side effects and further improve the thera-
peutic efficacy of chemotherapeutic drugs, various nano-sized systems like den-
drimers, micelles, polymeric nanoparticles, nanoshells, etc. have been developed 
and been used as a carrier for the delivery of chemotherapeutic agents, due to their 
unique physiological characteristics (Lale et al. 2015; Sauraj et al. 2018). Although 
nano-drug delivery systems are capable to take the drug inside the cancer cells 
through EPR effect, complete release of drugs inside the cancer cells is an impor-
tant issue in cancer drug delivery (Sauraj et al. 2018; Yang et al. 2015). Thus to 
solve this issue, a variety of stimuli-responsive systems that are capable to release 
the payload at the desire site of human body have received great attention (Li et al. 
2013; Song et al. 2016; Zhao et al. 2017). Herein, the current progress of stimuli- 
responsive drug delivery systems and their application in biomedical application 
especially in cancer drug delivery as a carrier have been discussed in details.

2  Stimuli-Used for Trigger Drug Release

In recent years, a variety of nano-drug delivery systems that response to local envi-
ronment of tumour tissue have been developed for cancer targeted drug delivery 
applications (El-Sawy et al. 2018). These biomaterials have been developed on the 
basis of internal or external stimuli of the tumour (Hossen et al. 2019; Raza, Rasheed 
et al. 2019). The internal stimuli that make different from normal tissues include 
local changes of different intensity in pH, temperature, redox conditions and the 
expression of certain biologically/enzymatically active molecules. External stimuli 
include magnetic field, heat, light (including laser beams) and ultrasound (Fig. 6.1) 
(Li et al. 2017).

3  Internal Stimuli-Responsive Drug Delivery Systems

3.1  pH-Responsive Drug Delivery System

There is a significant change in pH of our body parts, for example, the pH of the 
stomach is acidic (1.2–30) and the pH of the small intestine and large intestine are 
7.0–7.4 and 6.5–70, respectively.

Moreover, the pH of human blood (7.4) and extracellular environment of tumour 
cells (6.5–7.0) is different from the pH of early endosomes (5.5–6.3) and the pH of 
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late lysosomes (pH <5.5) (Zhou et al. 2018). On the basis of significant difference 
in the pH of intracellular and extracellular environment of tumour tissue and cell, 
various kinds of systems have been prepared and utilized for the intracellular deliv-
ery of chemotherapeutic agents in cancer therapy. The various types of chemical 
functionalities such as hydrazone, orthoester and acetal have been utilized to 
develop the pH-responsive systems (Badeau and DeForest 2019). The chemical 
structure of the most commonly used pH-responsive linkage is shown in Fig. 6.2. 
These pH-responsive bonds remain stable in the extracellular environments and 
degrade in the acidic environments of lysosomes, thus releasing the drug within cells.

By using the different acid-labile bonds between the polymer and drug, different 
kinds of pH-responsive drug delivery systems were prepared. In these system, anti-
cancer drug is conjuated with the carrier molecule through the acid-labile linkage 
which formed self-assembled nanostructures in aqueous medium and remains inac-
tive until the linker is hydrolysed.

The anti-cancer drug which has primary amine group such as doxorubicin (DOX) 
is generally attached to the polymer or carrier molecules through amide, hydrazone 
and cis-aconityl acid linkage. For example, Du et al. prepared dual pH-responsive 
polymer-drug conjugates based on PPC-Hyd-DOX-DA, where DOX was attached 
to polymer via the pH-responsive hydrazine bond. These nanoparticles showed 
acid- triggered drug release behaviour, and most of the drug was released in acidic 
environment. Further the cell cytotoxicity results demonstrate the enhanced thera-
peutic effect compared to free drug (Du et al. 2011).

In another study, Gao et al. (2017) prepared pH-responsive prodrug nanoparti-
cles for the dual delivery of doxorubicin and curcumin. In this system, DOX was 
chemically linked with oxidized sodium alginate via a Schiff base reaction which 

Fig. 6.1 Illustration of stimuli responsiveness utilized in cancer targeted drug delivery 
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formed self- assembled behaviour in aqueous medium. Subsequently, curcumin was 
loaded into the self-assembled nanoparticles. The drug release study indicates that 
the curcumin-DOX NPs exhibited pH-responsive behaviour in acidic media and 
also demonstrated a remarkable efficacy towards MCF-7 cell lines.

Kakinoki et  al. (2008) synthesize polyvinyl alcohol (PVA)-DOX conjugates 
through pH-responsive bond to improve the anti-tumour activity of DOX in cancer 
therapy. The drug release study demonstrated that the DOX was released from the 
conjugates after the hydrolysing the cis-aconityl bond.

3.2  Redox-Responsive Drug Delivery System

The presence of glutathione (GSH) in intracellular environments is much higher 
(0.5–10 mM) in comparison to extracellular environments (2–20 μM) (Badeau and 
DeForest 2019; Guo et al. 2018). On the basis of these differences in redox environ-
ments, a variety of redox-responsive systems have been prepared using various 
redox-responsive bonds. These stimuli-responsive bonds are often stable in normal 
tissues and degrade at the reductive environment of tumour cell and release acti-
vated drugs. The various types of chemical functionalities such as 3,3’-dithoidisul-
phide acid, 2-hydroxyethyl sulphide, cystamine and cystine have been used to 
design redox-responsive systems. The chemical structure of the most commonly 
used redox-responsive linkage is shown in Fig. 6.3. It is expected that these  chemical 
bonds remain stable in the extracellular environments and cleaved in the specific 
environment of tumour cell.

Fig. 6.2 The most commonly used pH-responsive chemical bonds
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Disulphide bonds are often used in development of stimuli-responsive delivery 
systems, which rapidly degrade by the GSH presence in cancer cells. These specific 
bond can be linked with polymer chain or drug molecules that further attach to 
them. In this regard, Guo et  al. (2016) developed self-assembled polycurcumin 
nanoparticle through the conjugation of curcumin with PEG polymer and biotin via 
redox-responsive disulphide (-SS-) linkage, and DOX was subsequently encapsu-
lated. The developed nanoparticles show redox-responsive behaviour in redox-
responsive environment of tumour cells and release the co-drugs, thus enhancing 
the therapeutic efficacy of anti-cancer drugs.

Song et  al. (2016) prepared reduction-responsive prodrug NPs for the self- 
delivery of DOX in breast cancer. In this system, two molecules of DOX were linked 
through disulphide linkage which formed self-assembled nanoparticles. Release 
study indicates that DOX NPs exhibited redox-responsive activity and enhanced 
cellular uptake level substantially compared with free drug DOX.

Fig. 6.3 The chemical structure of the most commonly used redox-responsive chemical bonds
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A mixed micelles system for the combination delivery of DOX and PTX in 
cancer therapy was prepared by Zhao et al. (2017). The drug release study indicates 
that the micelles released the maximum drug in reducing environment of GHS which 
demonstrated its redox-sensitive nature and also shows the significant cytotoxicity 
towards the lung cancer cells (A549 and B16).

3.3  Enzyme-Responsive Drug Delivery Systems

Just like pH, the distribution of enzymes in human tissues is non-homogeneous. 
Also, each tissue is composed of different types of enzymes having different 
expressions. For cancer cells, the expression level for these enzymes is higher than 
that of the normal cells (Badeau and DeForest 2019). Since enzymes are spatially 
as well as functionally specific, they have widespread applications in tissue engi-
neering and drug delivery regimes. Recent years have witnessed the development 
of various enzyme-responsive drug delivery systems based on enzymatically cleav-
able chemical bond or linkage (Zhou et al. 2018). The most common enzymes that 
are used to develop enzyme-sensitive drug delivery systems for cancer drug deliv-
ery applications were shown in Table 6.1 (de la Rica et al. 2012). The major class 
of enzymes responsible for the cleavage of chemical bonds by hydrolysis are known 
as hydrolases. Proteases are the subclass of hydrolases which have an important 
role in cancer progression and possess the ability to degrade extracellular matrices 
and proteins.

The literature so far describes the development of various prodrug systems which 
are based on the protease activity. Esterases secreted in the endolysosomes of cells 
have been used in cancer therapy to release the drug. Hyaluronidase-1 is a glyco-
sidic hydrolase which is secreted by the tumour cells and hence is found in the 
interstitial spaces of the tumour tissues. The hyaluronidase-1 mainly degrades the 
hyaluronic acid, therefore a large number of hyaluronic acid-based nano-drug deliv-
ery systems have been developed for the selective delivery of bio-agent. Histone 
deacetylase is an enzyme belonging to the class deacetylase, and it is responsible for 
cancer initiation and progression by regulating the expression and activity of cancer- 
causing proteins.

Table 6.1 Example of enzymes commonly used in targeted drug delivery

Class Subclass Enzyme

Hydrolases Proteases Cathepsin B
Caps
Caspase 1 thrombin collagenase chymotrypsin
PSA

Lipases PLA2

Glycosidases α-Amylase
Others Urease

Oxidoreductase Glucose oxidase
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4  Exogenous Stimuli-Responsive Drug Delivery System

4.1  Thermo-responsive Drug Delivery System

Generally the temperature of human body is close to 37 °C, whereas the temperature 
of the inflamed pathological sites or intra-tumoural environment is at a higher tem-
perature of 40–44  °C (Alsuraifi et  al. 2018). This temperature gradient is used as 
stimuli in the development of thermo-responsive drug delivery system. The 
temperature- sensitive polymers that respond in temperature change are the most 
common materials for the development of thermo-responsive drug delivery system.

Thermo-responsive polymers generally showed the phase transition at a specific 
temperature known as upper critical solution temperature (UCST) and lower critical 
solution temperature (LCST). These polymers are soluble below LCST whereas 
insoluble heating upon (LCST) (Tebaldi et al. 2018). The PNIPAAm and its deriva-
tive are most widely used in the preparation of thermo-responsive system because 
its LCST is about 32 °C which is close to temperature of human body. The LCST of 
PNIPAAm can be easily altered by random copolymerization involving different 
monomers leading to improved targeting and drug release (Raza et al. 2019a). 
The drug can be loaded at LCST and released above the temperature higher than 
LCST. Over the past few years, various thermo-responsive polymers or copolymers 
have been used in the development of thermo-responsive nanocarrier in cancer 
therapy (Kim and Matsunaga 2017; Wang et al. 2011).

Zhang et al. (2014) developed thermo-responsive polymer- encapsulated gold 
nanorods for the combined photo thermal- and thermo- responsive delivery of doxo-
rubicin in lung cancer treatment where polymer shell of thermo- responsive polymer 
helped to prolong the circulation time and protect the drug from other body enzymes. 
Further the accumulation of drug was enhanced in tumour by NIR laser irradiation.

Recently, Tian et al. (2019) prepared thermo-responsive self-assembled nanopar-
ticles based on 2-hydroxy-3-isopropoxypropyl hydroxyethyl celluloses (HIPECs) 
for the delivery of amphotericin B. The LCST of HIPEC was elevated from 21.1 to 
56.1 °C, and the change in their size with temperature was observed by DLS and 
SEM technique. The drug delivery studies suggested a much faster release rate at 
temperatures above LCST where the majority of drug got released from the nanopar-
ticles within 40 h.

4.2  Photo-/Light-Responsive Drug Delivery System

Among the various external stimuli, light has received considerable interest in 
drug delivery applications due to its non-invasive nature (Raza, Hayat et al. 2019). 
To stimulate the triggered drug release, light of infrared (IR) wavelengths can be 
used. The photosensitive biomaterials generally incorporate into the photoscissile 
 moieties which are cleaved when exposed to specific wavelengths of light. 
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Generally, ultraviolet (10–400 nm), visible or near infrared (650–900 nm) was used 
to trigger the drug or other photosensitive materials. The near infrared (NIR) light is 
more suitable than UV light due to its deep tissue penetration without significant 
damage of body tissue, whereas UV cannot penetrate the deep tissue. A large num-
ber of light-responsive drug delivery systems were developed to achieve on-demand 
drug delivery in cancer therapy (Alsuraifi et al. 2018; Annis et al. 2009).

4.3  Magnetic-Responsive Drug Delivery System

Similar to other external stimuli, magnetic field is considered as another lucra-
tive method to initiate triggered drug release (Price et al. 2018). Engineering the 
magnetically responsive materials in a specific manner may lead to the guided car-
rier accumulation and dispersion for payload delivery. In addition to delivery of 
chemo- drugs, the magnetic-responsive nanoparticles were also utilized to deliver 
the genetic components. The unique ability of magnetic-responsive nanoparticles 
is generating heat under the influence of external magnetic field. Under oscillating 
magnetic field, magnetic nanocarriers produce heat which cause significant changes 
in the structures of nanocarriers which release the payload (Hossen et  al. 2019; 
Zhou et al. 2018).

4.4  Ultrasound-Responsive Drug Delivery System

In recent year, ultrasound technique is commonly used in clinical applications. 
The ultrasound technique is commonly used in clinical as diagnostic imaging tech-
nique (Zhou et  al. 2018). Generally, 0.1–50 MHz frequency range of ultrasound 
waves is used in biomedical applications. Diagnosis is performed at low frequency, 
whereas treatment is occurring at high frequency. In addition to release of the drug, 
the US can also increase the permeability of carrier towards the cell barriers and 
blood-brain barrier by enhancing the temperature which increased the diffusion of 
drug. Ultrasound technique works on a specific process known as “sonoporation”. 
Recent study significantly indicates that the ultrasound-guided drug delivery can be 
used to cure different types of cancers that are anatomically accessible like liver 
cancer (Badeau and DeForest 2019).

5  Dual- and Multi-responsive Drug Delivery System

Due to the very complex nature of the cancer disease, one therapeutic approach is 
not sufficient to fully cure the cancer; therefore the combination of approaches was 
applied for better therapeutic effect. Various dual- or multi-responsive drug delivery 
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systems have been developed by combining two or more stimuli such as pH and 
redox, pH and temperature, temperature and magnetic field, enzyme and tempera-
ture and more other combination. So far various dual and multi-responsive drug 
delivery systems have been developed like Zhou et al. (2014) (Wang et al. 2016; Li 
et al. 2016; Hou et al. 2016), developed stimuli-responsive nanoparticles for the 
combinational chemo-phototherapy. The photosensitizer and chemotherapeutic 
agent were co-loaded on graphene oxide nanoparticles. The obtained results dem-
onstrated that the combination therapy has great impact in cancer therapy as com-
pared to individual therapy.

Similarly, Hou et al. (2016) prepared pH-sensitive prodrug nanoparticle for the 
targeted chemo-photodynamic therapy, where DOX was attached to polymer (PEG) 
through pH-sensitive (Schiff base) bond and subsequently photosensitizer Ce6 was 
encapsulated to form the combined platform. The nanoparticles showed the pH-
responsive release behaviour and simultaneously release both the drug and photo-
sensitizer at the acidic pH. Compared with free drug (DOX) and photosensitizer 
(Ce6), the nanoparticles exhibited greater antitumour efficacy against the cells, 
which was further observed by in vivo study. Thus the developed nanoparticle rep-
resents the combined effect of chemo- and phototherapy in cancer therapy.

Hou et al. (2016) developed charge-conversional nanoparticles based on histidine- 
and lipoic acid-grafted chitosan nanoparticles for improving the delivery of doxoru-
bicin (DOX) in breast cancer therapy. Due to the negative charge of the histidine at 
physiological pH, the nanoparticle showed the stability during circulation, whereas 
charge conversion of histidine from negative to positive at acidic pH enhanced the 
cellular uptake activity. The nanoparticles exhibited rapid drug release in presence 
of acidic environment of cancer. In addition, the rate of drug release was also found 
higher in high concentration of reducing glutathione (GSH).

Similarly Xu et  al. (2018) prepared pH- and redox-responsive nanoparticles, 
where DOX was conjugated with side amino groups of the corresponding 
poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL) polymer through 3,3′-dithio-
dipropionic acid. The triptolide was loaded into the inner core of polymeric micelles. 
The nanoparticles show negative charge at physiological pH, whereas it shows posi-
tive charge in the extracellular pH of tumour tissue. Most of the drug was released 
from the micelles in reductive environment of glutathione (GSH).

Yang et al. (2018) prepared dual-responsive charge-conversional NPs based on 
poly-L-lysine-lipoic acid (PLL-LA) for the effective delivery of doxorubicin 
(DOX). The NPs show negative charge at physiological pH, whereas it shows posi-
tive charge in the extracellular pH of tumour tissue. The prepared micelles released 
higher amount of drug in the reductive environment of GSH. The cell cytotoxicity 
clearly demonstrated the improved cytotoxicity of micelles against A549 cells 
which indicate the important role of dual responsiveness in cancer therapy. Recently, 
Ding et al. (2017) fabricated a multifunctional theranostic nanoparticle system for 
dual imaging and magnetic targeting, where Fe3O4 was loading chlorine- conjugated 
dextran nanoparticles. The prepared nanoparticle (DSSCe6@Fe3O4 NPs) exhibited 
dual near-infrared as well as magnetic resonance behaviour. The photosensitizer 
Ce6 shows their signal in the reductive intracellular environment, and the cellular 
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uptake of NPs was enhanced significantly in presence of magnetic field which 
demonstrated the important role of photodynamic therapy. Further the in vivo study 
demonstrated the effectiveness of DSSCe6@Fe3O4 NPs in cancer therapy.

6  Conclusion and Future Prospects

This chapter highlighted the various stimuli used to develop a large number of 
stimuli-responsive nano-drug delivery systems to improve the therapeutic efficacy 
and effectively deliver chemo-drugs clinically. The design of stimuli-responsive 
drug delivery system presents tremendous opportunities in drug delivery, biosens-
ing and regenerative medicine. In addition, various combination strategies used 
for further enhanced the therapeutic efficacy have also been discussed in details. 
Currently, numerous preclinical studies based on stimuli- responsive systems have 
been published which shows their potential cancer therapy. Hope such type of 
smart systems will be beneficial with the combination of other therapies used in 
cancer therapy.
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1  Introduction: Integration of Biology and Nanotechnology

Nanotechnology is one of the rapidly growing interdisciplinary areas of science that 
merges physics, chemistry, material science, engineering, biology, medicine, and 
allied branches of science. Nanotechnology manages materials that hold at least one 
measurement in nanometer scale. In recent times, engineered nanomaterials are 
broadly utilized in everyday regular products such as toothpaste, soaps, shampoos, 
cosmetics, and medicines (Song et al. 2009). Noble metal nanoparticles (NPs) carry 
an advantage of their surface plasmon resonance (SPR), plasmon light scattering, 
surface-enhanced Raman scattering (SERS), and surface-enhanced Rayleigh scat-
tering optical properties over bulk mass materials and largely rely on their size, 
distribution, morphology, dielectric environment, and aggregation substance (Song 
et al. 2009; Jain et al. 2007; Nalwa 2000; Terenteva et al. 2015). These elite traits 
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can be put to good use for controllable size dispersity, stability, strong adsorbing 
capacity, and biocompatibility to obtain engineered NPs (Lee et  al. 2010). The 
embedded property of SPR enables silver nanoparticles (AgNPs) and gold nanopar-
ticles (AuNPs) to own the exclusive optical behavior that let them to display intense 
color and corresponding specific extinction bands in their UV-visible (UV-vis) 
spectra of 420–450 and 530–540  nm wavelength, respectively (Rathi Sre et  al. 
2015; Ramteke et al. 2013; Sathishkumar et al. 2016; Dauthal and Mukhopadhyay 
2013). AgNPs and AuNPs are widely utilized in different sectors including electron-
ics, optical devices (Kamat 2002), textiles, cosmetics, energy, environment, cataly-
sis (Dauthal and Mukhopadhyay 2012; Kim et al. 2003) determination of organic 
compounds in analytical chemistry (Laliwala et  al. 2014; Song et  al. 2014; 
Leesutthiphonchai et  al. 2011; Miao et  al. 2013), medicine, biological labeling 
(Nicewarner-Pena et  al. 2001), tissue/tumor imaging, cancer and antimicrobial 
agent (Rathi Sre et al. 2015; Sathishkumar et al. 2016; Bindhu and Umadevi 2013; 
Parveen and Rao 2015; Huang et al. 2007; Nagajyothi and Lee 2011), drug delivery 
system (Mann and Ozin 1996), and sensor technology (Han et al. 2001). Besides 
AgNPs’ and AuNPs’ wide applicability, their synthesis has been emerged as a sig-
nificant facet of research nowadays for targeted shape, size, chemical moieties, dis-
persity, and functions. However, toxicity carryover with the NPs synthesis that 
involves hazardous chemicals has always been a matter of question. An effort to 
combat toxicity, botanical herbs came forward with interesting therapeutic proper-
ties are encouraged among scientists. Readily available and simple to handle medic-
inal plants offer environmentally benign solutions over organic solvents. Therefore, 
herein present chapter emphasizes on medicinal plant-derived synthesis of silver 
and gold nanoparticles (p-AgNPs and p-AuNPs), their antibacterial properties, and 
cytotoxicity potential on cancer cell lines.

2  Approaches of Synthesis

In general, there are two approaches to obtain nanoformulations, namely, “top- 
down” approach and “bottom-up” approach (Fig. 7.1). Top-down approach involves 
size reduction of a suitable material to fabricate NPs (Meyers et al. 2006). Many 
types of physical and chemical procedures have been cited in literatures that are 
being applied for size reduction to attain nanoscale structures. These processes 
include mechanical grinding, thermal decomposition, pyrolysis, lithography, and 
laser ablation. Tube furnaces employed in top-down approach are operated through 
evaporation-condensation process at atmospheric pressure. These processes expend 
a great amount of energy for raising the furnace temperature. The base material is 
vaporized into a carrier gas inside the tube furnace. Additionally, these setups 
occupy large spaces and consume plenty of time to attain the operational thermal 
stability during the procedures. Such processes introduce structural imperfections in 
the faces of the surface of the product that turn to be a major drawback in the impli-
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cation of top-down approach. Surface structure is viewed as a fundamental and 
crucial property of NPs that is in charge for its surface science and other physical 
properties (Thakkar et al. 2010). On the other hand, in bottom-up approach or “self- 
assembly” approach, initially the atoms undergo nucleation process to form clusters 
that grow in a particular pattern to form NPs as a final product. Large amount of NPs 
can be fabricated in a short timeframe using bottom-up approach. It additionally 
diminishes the surface structure defects and sustains homogeneity of the product. 
The approach is mainly comprised of chemical and biological routes. The chemical 
route is the most regularly exercised procedure to obtain featured NPs. It can be 
implemented through a number of techniques including chemical treatment, sono-
chemical application, electrochemical processes, polyol reduction, sol-gel pro-
cesses, and vapor deposition. Chemical route utilizes compounds for reducing, 

Fig. 7.1 General representation of top-down and bottom-up approaches for obtaining 
nanoformulations
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stabilizing, and surface capping agents such as sodium borohydride, sodium citrate, 
hydrazine, ascorbic acid, dopamine, levodopa, uric acid, ferulic acid, and 
 polyphenols (Song et al. 2009; Guzman et al. 2009; Nezhad et al. 2010; Hormozi-
Nezhad et al. 2017; Amjadi and Rahimpour 2012; Wang et al. 2007; Ozyurek et al. 
2012). These chemicals compounds used during synthesis procedures are expensive 
as well as toxic and hazardous for living beings and environment. The by-products 
produced in synthesis reactions limit its applicability in clinical and medical field 
because of the associated biological risks.

However, biological route involves biological systems for the fabrication of 
nanomaterials which offers absolutely nontoxic, environment-friendly, and biofunc-
tional alternatives to the chemical synthesis. Biological route for synthesis of NPs 
appreciates sustainability initiatives through clean chemistry (Fig. 7.2). Thus, bio-
logical route comes forward as a conjunction of nanotechnology and biotechnology 
that has gained significant attention in current scenario. NP syntheses using bacte-
rial and fungal cultures as well as plants and their parts have stated a tremendous 
success due to their benign and safe application in medicine.

Fig. 7.2 A flowchart representation of biological and chemical routes of bottom-up approach
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3  Plant-Derived Biosynthesis of Silver and Gold 
Nanoparticles

Plant derived silver and gold NPs recommend numerous benefits over bacteria and 
fungi derived NPs. Plants are easily accessible, non-infectious and hold economical 
merits together with a huge range of miscellaneous phytochemicals. A plethora of 
reports in literature have been documented stating whole plant, plant products, or 
plant parts such as leaf, stem, fruit, root, rhizome, tuber, flower, buds, and so forth 
mediated successful fabrication of functional p-AgNPs and p-AuNPs (Table 7.1).

Plants contain numerous primary and secondary metabolites and antioxidant 
compounds having therapeutic importance that are assumed to play premier role 
during synthesis of NPs. Botanic origin biomolecules including terpenoids, pheno-
lic acids, flavonoids, flavones, tannins, and proteins have the ability to function as 
reducing and stabilizing agents to synthesize NPs (Sathishkumar et  al. 2016; 
Dauthal and Mukhopadhyay 2012; Khan et  al. 2016; Liu et  al. 2018; Jain and 
Mehata 2017; Sheny et al. 2011; Philip and Unni 2011). A schematic diagram has 
been depicted in Fig. 7.3 representing participation of various phytochemicals pres-
ent in synthesis and growth of NPs. These active components may either separately 
or synergistically function as reducing and stabilizing agents. A single phytocon-
stituent may also serve dual function of phytoreduction and stabilization. The bio-
molecules also help in preventing agglomeration by forming a bio-layer around the 
NPs. The choice of plants in other words phytochemicals is profoundly responsible 
for the determination of morphology, shape, size, dispersity, stability, and aggrega-
tion state of the formed NPs. During the synthesis process firstly, phytoconstituents 
bioreduce silver or gold cations to zero-valent state, followed by nucleation process 
to form clusters. Further these clusters continue to grow and biostabilized by the 
phytoconstituent-based capping agents to form p-AgNPs and p-AuNPs (Castro 
et al. 2011).

Scientist have developed different reaction parameters for the synthesis of plant- 
assisted NPs according to their objectivity of experiments including shape and size 
of NPs to be synthesized, functionality, application, and type of phytochemicals. A 
typical synthesis reaction is initiated by mixing plant extract into salt solution fol-
lowed by incubation, centrifugation to harvest synthesized NPs, and purification 
processes (repetitive washing and drying). Here, one-pot plant-mediated synthesis 
signifies “green chemistry” that offers nontoxic, environment-friendly, cost- 
effective, biocompatible NPs. In general the procedure can be explained as a four- 
step process. In step 1, air-dried powdered or fresh plant material is extracted in 
water. Thereafter, in step 2, plant aqueous extract is added drop by drop in the flask 
containing precursor solutions (silver nitrate (AgNO3) or chloroauric acid (HAuCl4)) 
with continuous shaking in a ratio of 9:1. Further step 3 follows – continue stirring 
the reaction flask for 24  h under room temperature. The colorless AgNO3 and 
HAuCl4 solution turned to dark amber and pink-purple color solution, respectively. 
The color change is the indication of the synthesis of p-AgNPs and p-AuNPs. The 
prepared NP colloidal solutions are harvested in step 4 through centrifugation to 
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obtain synthesized NPs. Supernatant is discarded, and pellet settled near the bottom 
is washed with water. Synthesized NPs are air dried till constant weight and crushed 
to powder (Fig. 7.4). Thus, prepared NPs are weighed and stored in a glass tube in 
dark. Desired shape, size, and dispersity of NPs can be attained by managing the 
reaction parameters during the synthesis process. Concentration of metal salt solu-
tion and plant extract, volume ratio of metal salt solution to plant extract, incubation 

Fig. 7.3 Schematic diagram showing participation of various phytochemicals in synthesis and 
growth of NPs (a). Plant extract contains different types of secondary metabolites and antioxidant 
compounds that involved during synthesis as a bioreducing and biostabilizing agents (b); Ag+ or 
Au3+ undergo bioreduction in the presence of phytochemicals to convert into Ag0 or Au0, following 
nucleation and growth processes to form cluster (c). These clusters get biostabilized by the phyto-
chemical capping agents to form p-AgNPs or p-AuNPs

Fig. 7.4 A schematic diagram of plant-derived synthesis of p-AgNPs or p-AuNPs. Step 1, prepa-
ration of aqueous extract of plant material; step 2, drop-by-drop mixing of extract into the precur-
sor solution in a certain ratio; step 3, color change of the reaction solution observed with continuous 
stirring; and step 4, centrifugation of colloidal solution to harvest the synthesized NPs

S. Nath et al.
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time, temperature, and pH are regarded as effective parameters that can be altered 
during synthesis process for fabrication of diverse morphology of NPs. Some of the 
adopted parameters are listed in Table 7.2. Synthesized NPs are generally character-
ized for shape, size, surface area, and dispersity by combinations of techniques 
(Jiang et al. 2009).

4  Techniques for Characterization of Nanoparticles

Frequently used techniques are UV-vis spectrophotometry, scanning electron 
microscopy (SEM), transmission electron microscopy (TEM), powder X-ray dif-
fraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and Fourier trans-
form infrared spectroscopy (FTIR). UV-vis spectrophotometry is the main applied 
technique that provides primarily evidence of NP formation. UV-vis spectropho-
tometry demonstrates characteristic absorption peak for surface plasmon resonance 
band in the wavelength range of 420–450 and 530–540 nm for AgNPs and AuNPs, 
respectively (Rathi Sre et al. 2015; Ramteke et al. 2013; Sathishkumar et al. 2016; 
Dauthal and Mukhopadhyay 2013). Observations for shape, size, and surface mor-
phology of NPs are carried out under higher resolution in micrometer to nanometer 
range using SEM and TEM. EDX provides the qualitative and quantitative elemen-
tal composition of metal NPs (Strasser et  al. 2010). Structural analysis is done 
through a predominant tool XRD that confers the information about both crystalline 
structure and phase of NPs (Sun et al. 2000). Surface chemistry of NPs is analyzed 
through FTIR technique. Functional groups and residues attached to the surface of 
NPs can be identified using FTIR.

5  Plant-Derived Silver and Gold Nanoparticles 
as Antibacterial Agents

Antibacterial activity of p-AgNPs and p-AuNPs has been accounted by several 
researchers in the literature. Ramteke et  al. (2013) have reported antibacterial 
activity of 18 nm spherical shape p-AgNPs synthesized using leaf broth of medici-
nal herb Ocimum sanctum. The result revealed enhanced antibacterial activity of 
synthesized p-AgNPs against pathogenic strains Staphylococcus aureus and 
E. coli. Vanaja and Annadurai (2013) evaluated the antibacterial activity of Coleus 
aromaticus leaf-mediated 44 nm sized spherical p-AgNPs against Bacillus subtilis 
and Klebsiella planticola and suggested high toxicity of NPs (Vanaja and Annadurai 
2013). In a study, spherical shape p-AgNPs of size range 9 nm were prepared using 
leaf of Hibiscus cannabinus that exhibited remarkable antibacterial activity against 
pathogens such as E. coli, Proteus mirabilis, and Shigella flexneri (Bindhu and 
Umadevi 2013). In another investigation carried out by Sathishkumar et al. (2009), 

7 Plant-Mediated Synthesis of Silver and Gold Nanoparticles for Antibacterial…
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nano-sized silver particles have been prepared utilizing stem-bark extract and pow-
der of Cinnamon zeylanicum. The synthesized p-AgNPs were assessed for antibac-
terial studies against E. coli BL-21 strain, and EC50 value was found 11 ± 1.72 mgL−1. 
In the study of Rathi Sre et al. (2015), root extract of Erythrina indica was employed 
in the synthesis of p-AgNPs. The obtained NPs were spherical and ranged between 
20 and 118 nm possessing good antibacterial properties against E. coli, B. subtilis, 
Micrococcus luteus, Staphylococcus aureus, Salmonella paratyphi, and Salmonella 
typhi as compared to control. In another study reported by Khan et  al. (2015), 
3.2–6 nm p-AgNPs were synthesized from root extract of Raphanus sativus. The 
NP synthesis was done in the presence and absence of starch and cetyltrimethyl-
ammonium bromide, and antibacterial potential was determined against S. aureus 
and E. coli. They suggested that synthesized p-AgNPs revealed effective antibacte-
rial agent as they were able to cause structural changes in protein cell wall. Saxena 
et  al. (2012) demonstrated the antibacterial effects of Ficus benghalensis leaf 
extract- mediated p-AgNPs against E. coli. They proposed high surface to volume 
ratio of p-AgNPs that enabled better contact of p-AgNPs with bacteria causing 
antibacterial effects. Nagajyothi and Lee (2011) have synthesized p-AgNPs at 25 
and 80 °C from rhizome of Dioscorea batatas. These synthesized p-AgNPs were 
evaluated against B. subtilis, E.coli, and S. aureus. Synthesized p-AgNPs exhibited 
antibacterial activity more effectively in gram-positive than gram-negative bacte-
ria. p-AgNPs synthesized at 25 °C demonstrated more inhibitory activity on bacte-
ria as compared to p-AgNPs synthesized at 80 °C. In another report, bactericidal 
activities of p-AgNPs and p-AuNPs against clinically isolated pathogens E. coli 
and S. aureus were studied by MubarakAli et al. (2011). Mentha piperita was used 
as bioreductant for both the NPs. Spherical shape 90 nm p-AgNPs and 150 nm 
p-AuNPs were observed to be effective against both the pathogenic isolates. A 
mixture of triangular and spherical shape p-AuNPs ranging between 5 and 20 nm 
in size were synthesized from fruit extract of Punica granatum (Lokina et  al. 
2014). The findings of the study revealed excellent antibacterial properties of 
p-AuNPs against human pathogens, namely, S. aureus, S. typhi, and Vibrio chol-
erae. Shamaila et al. (2016) synthesized p-AuNPs in 6–40 size range and explored 
its efficiency to lyse enteric bacteria E. coli, S. aureus, B. subtilis, and Klebsiella 
pneumonia. In the study of Das et  al. (2013), Sesbania grandiflora leaf extract 
functioned as bioreductant to synthesize spherical shape p-AgNPs within the size 
range of 10–25 nm. These synthesized p-AgNPs were demonstrated to hold potent 
antibacterial effects against multidrug- resistant Salmonella enterica and S. aureus, 
human pathogenic bacteria. Ocimum sanctum leaf extract-derived fabrication of 
p-AgNPs and their antibacterial effects have been screened against both gram-
negative and gram-positive microorganisms by Singhal et  al. (2011). The study 
indicated that p-AgNPs possessing 4–30  nm size showed a better antibacterial 
action in a dose-dependent fashion than silver nitrate and standard antibiotic 
ciprofloxacin.

7 Plant-Mediated Synthesis of Silver and Gold Nanoparticles for Antibacterial…



176

6  Antibacterial Modes of Action of p-AgNPs and p-AuNPs

The mechanisms behind the bactericidal potential of p-AgNPs and p-AuNPs have 
been partially learned in several studies, which suggested few modes of action 
explaining inhibitory effects of the NPs. Selectively inhibitory behavior of p-AgNPs 
toward gram-positive and gram-negative bacteria may assigned to the composi-
tional differences of bacteria cell structure. Gram-positive bacterium cell wall com-
prised of a thickened layer of peptidoglycan backbone with linear polysaccharide 
chains containing peptide cross-linkages. Such arrangements provide rigidity to the 
cell and challenge penetration of foreign agents. However, gram-negative bacteria 
own thinner glycan layer with lipopolysaccharide membrane becoming susceptible 
to the antibacterial agents (Chaloupka et al. 2010; Kim et al. 2007; Shrivastava et al. 
2007). Some researchers believe electrostatic forces play bactericidal role in 
p-AgNP-bacteria interaction. Positively charged p-AgNPs adhere with negatively 
charged bacterial cell and intervene the electrochemical gradient of bacterial plasma 
membrane leading to disturbed permeability (Fig. 7.5). In some cases, p-AgNPs 
may serve as a reservoir for Ag+ in bio-nano-environment. Released Ag+ attach with 
phosphorus of nucleic acids and sulfur of proteins and consequently intervene DNA 
replication and protein transcription leading to obstruction of cell division causing 
cell death (Fig. 7.5) (MubarakAli et al. 2011; Hatchett and White 1996; McDonnell 
and Russell 2001). The release of Ag+ from p-AgNPs may triggered the cell to 
undergo oxidative stress through generation of reactive oxygen species (ROS) and 

Fig. 7.5 Possible modes of action of p-AgNPs and p-AuNPs on bacterial cell

S. Nath et al.



177

decreased levels of GSH leading to cytotixicity (Fig.  7.5) (Carlson et  al. 2008). 
According to another explanation, released Ag+ may get linked to thiol groups of 
bio-enzymes and/or cell envelope proteins leading to denaturation, which ends up in 
cell death (Hajipour et al. 2012; Matsumura et al. 2003). According to reports of 
Shrivastava et al. (2007), p-AgNPs have been stated to modulate the signal trans-
duction in gram-negative bacteria (Fig.  7.5). A majority of bacterial cell signal 
transductions are known to be regulated by protein substrate phosphorylation. 
p-AgNPs have been found to associate with dephosphorylation of peptide substrates 
on tyrosine residue which terminate the phosphotransfer signaling systems and ulti-
mately lead to cell death (Shrivastava et al. 2007).

p-AuNPs have shown conflicting results as an antibacterial agent. Some scien-
tists have shown p-AuNPs’ antibacterial activities, whereas most of times, it has not 
proven so (Lokina et al. 2014; Parida et al. 2011; Castro et al. 2010; Kasthuri et al. 
2009; Vankar and Bajpai 2010). These findings may infer that p-AuNPs mediated 
antibacterial activity is explored less, however, its role as nano-carriers in drug 
delivery systems possibly facilitate antibacterial activity (Brown et  al. 2012; 
Ahangari et  al. 2013). On the contrary, numerous scientific investigations have 
proven the antibacterial effects of p-AuNPs (MubarakAli et al. 2011; Naveena and 
Prakash 2013; Senthilkumar et al. 2017). The chemical constituents of plant parts or 
microorganism involved in the fabrication or bio-coatings of AuNPs were found to 
be associated with the surface modifications that may contribute toward antibacte-
rial traits of NPs (Zhou et al. 2012). Bactericidal properties of NPs primarily depend 
on shape and size of the particles. In this context, NPs that are small and spherical 
in shape have better accessibility towards the larger surface area of the bacterial cell 
prompting lethal consequences (Saxena et al. 2012; Shrivastava et al. 2007).

7  Cytotoxic Studies of p-AgNPs and p-AuNPs

A plethora of investigations have been carried out in literature on cytotoxic activi-
ties of plant-derived green synthesized p-AgNPs and p-AuNPs against several mod-
els of cancer cells. In this context, some relevant works of the researcher have been 
concluded to present a brief investigation performed on cytotoxic effects of p-AgNPs 
and p-AuNPs on different cancer cells. Rathi Sre et al. in 2015 have demonstrated 
the biosynthesis of p-AgNPs from Erythrina indica and showed cytotoxic effects of 
NPs in breast and lung cancer cell lines in their study (Rathi Sre et al. 2015). The 
study concluded that 20–118  nm size p-AgNPs showed excellent cytotoxicity 
against MCF-7 and HEP G2 indicating its applicability as promising chemopreven-
tive agent. In another recent study conducted by Lalitha in 2015, cytotoxic effects 
of Alternanthera sessilis-synthesized p-AgNPs has been studied (Lalitha 2015). 
The cytotoxic potential was estimated using MTT test against breast tumor model 
MCF-7 cell with considerable cytotoxic activity having IC50 value of 3.04 μg mL−1 
in contrast to that of standard drug cisplatin. The authors suggested that the cytotox-
icity was ascribed to spherical shape and smaller size (10–30 nm) measured through 
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TEM micrographs. The outcomes of the investigation revealed potent therapeutic 
efficacy of green p-AgNPs and their scope for future course anticancer drugs devel-
opment in the field of medicine. The study of Jang et al. in 2016 revealed the selec-
tive cytotoxicity of synthesized p-AgNPs from aqueous extract of Lonicera 
hypoglauca flower that induced apoptosis to breast cancer MCF-7 cell lines, whereas 
there was no observed toxicity on RAW 264.7 normal immune cell lines. Recently, 
Maity et al. in 2018 proposed biogenic p-AgNPs as a considerable chemotherapeu-
tic formulation in cancer therapy (Maity et al. 2018). Spherical shape p-AgNPs with 
a mean size of 2.33 nm have been synthesized from ethanolic extract of Calotropis 
gigantea latex and examined for its cytotoxic effects. Synthesized p-AgNPs showed 
in vitro cytotoxicity against Ehrlich’s ascites carcinoma, Jurkat, and breast cancer 
MCF-7 cells at respective IC50 doses of 5.6  μg  mL−1, 11.99  μg  mL−1, and 
13.33  μg  mL−1. Synthesized p-AgNPs showed no cytotoxic effect on mice and 
human lymphocytes. Further, the authors explored mechanistic actions of p-AgNP 
treated Ehrlich’s ascites carcinoma cells. Here, NPs were found capable to induce 
significant chromatin condensation, DNA fragmentation, and arrest at G2/M phase 
of cell cycle progression along with upregulation of Bax:Bcl-2 ratio and caspase-3 
proteins. Venugopal et al. (2017) synthesized p-AgNPs from Piper nigrum extract 
and demonstrated cytotoxicity potential against two different cancer cells, namely, 
MCF-7 (breast) and A549 (lung) cancer cells, in vitro (Venugopal et al. 2017). The 
biosynthesized p-AgNPs obtained were in the size range of 5–40 nm. Various con-
centrations between 10 and 100 μg of p-AgNPs have been evaluated for cytotoxic-
ity, and the outcome indicated that the p-AgNPs were significantly effective against 
MCF-7 and Hep-2 cells when compared with Piper nigrum extract in a dose- 
dependent fashion. Cytotoxic study of p-AuNPs synthesized from Punica granatum 
fruit extract was performed by Lokina et al. (2014). Authors demonstrated that mix-
ture of triangular as well as spherical shape p-AuNPs ranging from 5 to 20 nm has 
potential toxicity on cervical carcinoma HeLa cell at concentration between 7.8 and 
1000 μg mL−1. Priya and Iyer (2015) synthesized p-AuNPs from extracts of differ-
ent plants including Camellia sinensis (green tea), Coriandrum sativum, Mentha 
arvensis, Phyllanthus amarus, Artabotrys hexapetalus, Mimusops elengi, Syzygium 
aromaticum, and C. sinensis (black tea) and investigated on MCF-7 cells for anti-
cancer ability. The outcomes of the experiment suggested that p-AuNPs hold equiv-
alent good cytotoxic effects as standard drugs tamoxifen and letrozole. Concentration 
as low as 2 μg mL−1 p-AuNPs was capable of inducing cytotoxicity in cancer cells. 
Increasing trend of cytotoxic effects of p-AuNPs on cancer cells was observed to be 
associated in a concentration-dependent manner. p-AgNPs have been documented 
for their association with the intracellular biological molecules such as phosphate 
components of DNA, proteins, and nitrogenous bases. The cellular uptake of 
p-AgNPs activates the sequence of events forming free ROS, which interfere with 
physiological and biochemical mechanisms of bio-organelles. Eventually cellular 
dysfunctions trigger the collapse of cell membrane integration, oxidative stress, or 
apoptosis that compel cell to death (Moaddab et al. 2011; Satyavani et al. 2011; 
Maity et al. 2018). The various exciting approaches have been described about the 
target specific actions of NPs in drug delivery systems. The anticancer drugs could 
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be embedded with functional NPs activated with moieties to its surface, and the 
whole drug-NP complex acts as nano-carriers in drug delivery systems that would 
be capable to act against particular receptor at specified target sites without causing 
any harm to other normal cells (Lalitha 2015; Zhang et al. 2015).

8  Conclusion

Plant synthesized p-AgNPs and p-AuNPs have largely attained the global interest 
for its multifaceted advantages. Intrinsic features including environment benign, 
economic and facile encapsulation, as well as biocompatibility of p-AgNPs and 
p-AuNPs makes them preferable over chemically synthesized NPs. p-AgNPs and 
p-AuNPs have shown to be accordingly engineered for targeted dimensions, mor-
phology, and crystal structure via controlling the synthesis reaction parameters. 
Medicinal plants offer a wide variety of phytochemicals such as phenolic com-
pounds, flavonoids, terpenoids, and proteins that hold antioxidant, antimicrobial, 
and anticancer properties. These active molecules of plant extracts were known to 
have a significant role in reduction and capping of NPs. The herbal moieties add 
their therapeutic properties to p-AgNPs and p-AuNPs during synthesis and improve 
NPs bioactivities. Scientists have reported very promising antibacterial and cyto-
toxic properties of p-AgNPs and p-AuNPs against numerous disease-causing bacte-
ria and several cancer cell lines, respectively. Possible mechanism associated with 
these pharmacological actions of p-AgNPs and p-AuNPs has suggested their scope 
in target-specific drug delivery, conjugating ligands and clinical diagnosis of 
diseases.
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1  Introduction

Semiconductor oxide material-based pH sensors have been developed in numerous 
sensing fields such as biosensors, environment sensing, chemical measurements, 
and clinical investigations. However, the measurement of pH was considered as one 
of the most important requirements in biotechnology, analytical chemistry, and 
medicine applications. Bergveld fabricated the ion-sensitive field-effect transistor 
(ISFET) for pH sensor measurements in the 1970s (Bergveld 1970). Based on the 
ion-sensitive field-effect transistor, Yuqing et al. (2005) and Yin et al. (2000) devel-
oped a new structure of the pH measurements denoted as the extended gate field- 
effect transistor, which offers numerous advantages such as simpler packaging, low 
cost, and flexibility as compared to ion-sensitive field-effect transistor (Chou et al. 
2005; Chou et al. 2008). Numerous studies have been carried out using metal oxides 
as pH-EGFET membranes. Guerra et al. (2009) fabricated V2O5 thin film as pH- 
EGFET sensor by using sol-gel technique. They explored the interaction between 
the membranes with the solution charges and calculated the sensor sensitivity. The 
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results indicated a linear behaviour towards the pH values in the saturation region. 
The sensitivity of the sensor could be achieved by using measurements between 
reference electrode voltage and drain current. It can be observed the dislocation 
towards higher applied voltages as a function of the pH values. The fabricated film 
was examined as a pH-EGFET sensor within the range of 2–10 with an estimated 
sensitivity of 58.1 mV/pH. The value of the pH sensitivity of the pH sensor indi-
cated a good value and approach to theoretical value (59.2 mV/pH).

Guidelli et  al. (2012) deposited V2O5/WO3 mixed thin film on glassy carbon 
substrates by using sol-gel method to fabricate pH-EGFET sensor. V2O5/WO3 thin 
film offered a good result due to its lamellar structure, which allows for intercalation 
of the organic and inorganic species in the buffer solution. This produces several 
electrical properties of the solution due to the presence of ionic species and mixed 
valence associated with the proliferation of protons in the aqueous phase. The 
results indicated that the increase in the volumes of the solutions for the fabrication 
of the film leads to a wide change in the current compared to bulk, which causes a 
low response to the sensor. The drain to source current as a function of time for 
varying pH values was achieved by using MOSFET system in the linear regime. A 
sample test of a pH value ranging from 2 to 12 indicated a small current drift over a 
period of the time while testing the sample for each pH value takes longer to distin-
guish between each solution. V2O5/WO3 thin film was tested as membranes in pH- 
EGFET sensor with sensitivity of 68  mV/pH in the linear regime and saturated 
sensitivity of 1.36 μA1/2 pH −1. The results indicated the sensitivity of the pH sensor 
was higher than theoretical value.

Vieira et al. (2012) evaluated V2O5 nanostructures as pH sensing application. The 
V2O5 nanostructure was deposited using hydrothermal method. The sensitivity of 
V2O5 nanostructure was calculated based on the resulting voltages for 3 minutes. 
The results found indicated that the sensitivity of V2O5 nanostructures was 
approached with the specified value (59.2 mV/pH), and it is an excellent value as 
compared with other metal oxide membranes. The work revealed several advan-
tages for the fabrication of low-cost pH sensor membrane with favourable applica-
tions in the biosensor devices. Vieira et  al. (2016) fabricated V2O5 nanorods and 
polyallylamine hydrochloride as pH sensor on gold substrates by using spin-assisted 
assembly method. The sensitivity of polyallylamine hydrochloride (PAH)/V2O5 
nanorod membrane was examined by immersing the grown nanocomposite in the 
different buffer solutions and measured the dependent of output voltage of the sys-
tem along time. The sensitivity of PAH/V2O5 nanorod membrane was higher and 
close to the limit value as compared with the gold membrane without modifications. 
The results indicated the multi-layered nanocomposite was to be penetrable to the 
hydrogen ions diffusion and the V2O5 inner layers contribute to the sensitivity. PAH/
V2O5 nanorod membrane exhibited sensitivity of 52 mV/pH which depends on the 
PAH/V2O5 nanorod layer numbers. The work revealed the possibility of the spin- 
assisted assembly method for the fabrication of pH sensor by combination of the 
PAH/V2O5 nanorods deposited on the gold substrates.

Guerra et al. (2009) fabricated hexadecylamine V2O5/HDA membrane as pH sen-
sor on the glass carbon substrates using hydrothermal technique. The electrical 
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property of the V2O5/HDA membrane as pH sensor was studied by the current varia-
tion as a function of time. The results indicated the effect of the current interval in 
time. The current variation for the pH range 2–12 was 27 μA at 0 s. After 300 s, this 
current variation increased to 46 μA. Consequently, the sensitivity was calculated 
after V2O5/HDA membrane had been immersed in the buffer solutions for 300 s. 
Therefore, current variation to each pH solution can be attributed to the composition 
of different constituent ions. The sensitivity of V2O5/HDA membrane was 38.1 mV/
pH for the different pH values at saturation region. Our experimental arrangement 
presented a reasonable response with deviation of 35%.

Guerra & Mulato (2014) deposited titanium oxide (TiO) nanorods by using 
hydrothermal technique. The sensitivity of the TiO NR membrane as pH sensor can 
be calculated by evaluating the association between gate-source voltage and drain- 
source current. It is observed a shift towards high voltages with increasing pH val-
ues of the solution. The pH sensor showed a linear relation and sensitivity of 
49.6 mV/pH for the buffer solution in the range (2–12). A variation of 10% in drain 
current leads to only 1.5% variation in pH sensitivity for the range between 350 and 
450 μA.  The result revealed the average sensitivity was close to the limit value 
(59.2 mV/pH). Therefore, TiO nanorod was a promising material as pH sensor and 
can be used as a biosensor application. Lin et  al. (2012) synthesized indium tin 
oxide (ITO) nanorod as pH sensor on the Si substrates using vapour-liquid-solid 
method. The sensitivity of the untreated ITO nanorod arrays was found to be signifi-
cantly higher than the sensitivity of the film at 150  nm thickness. By using the 
photo-electrochemical treatment, the pH sensitivity of the passivated ITO nanorod 
arrays with 150 nm wavelength was improved to 57.21 mV/pH as compared to the 
unpassivated ITO nanorod structure. However, when the length of the nanorod 
increases, the pH sensitivity decreases due to the granular shape and the decrease in 
the sensitivity surface area. The results showed the ITO nanorod array can be a 
promising structure and a favourable method for enhancing the pH sensitivity.

Li et al. (2012) fabricated SnO2 nanorods (NRs) as pH sensor using hydrother-
mal method. The SnO2 NRs as pH sensor revealed the sensitivity and linearity were 
55.18 mV/pH and 0.9952, respectively. On the other hand, the linearity and sensitiv-
ity of the thin film are 0.9930 8 and 48.04 mV/pH, respectively. Moreover, it exhib-
ited better linearity of 0.9964 and a greater sensitivity 0.86 mA1/2/pH in the saturation 
regime. These results were attributed to the increase of the surface ratio to the size 
of the nanorod structure to prepare more surface sites and large areas of sensitivity. 
The results indicated the hysteresis was 3.69 mV after the pH solution was changed 
as pH 7 → pH 3 → pH 7 → pH 11 → pH 7. Lee et al. (2011) synthesized ZnO 
nanorods and ZnO thin films as pH sensor by using vapour-cooling condensation 
system. The results indicated that the the pH sensitivity of the unpassivated and pas-
sivated ZnO nanorod membrane were 47.96 μA/pH and 2.58 μA/pH, respectively. It 
was found that the sensitivity improvement for nanorod passivation due to the 
decrease of the Fermi-level pinning influence which causes the surface states and 
dangling bonds. Abd-Alghafour et al. (2017) synthesized V2O5 nanorods (NRs) as 
extended gate field-effect transistor (EGFET) pH sensor for the first time using 
spray pyrolysis method. The results showed that the V2O5 NR pH sensor exhibits a 
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superior linearity of 0.9859 and high sensitivity of 54.9 mA/pH in the saturation 
regime. These results can be attributed to the ratio of particle size to the surface of 
the nanorods which increases the surface site number and oxygen vacancies, result-
ing in larger effective sensing areas. The synthesized V2O5 NRs as pH EGFET sen-
sor can be used in the promising biosensor application.

2  pH Sensing Theory

The field of research related to pH sensing has attracted great attention in particular 
in biochemical and biological applications. The term pH is derived from a combina-
tion of p for the word power and H for the symbol of the element hydrogen (Yuqing 
et al. 2005). In the electrolytic solution, the following interaction equilibrium exists 
between the water (H2O), the acid ion (H+), and the alkali ion (OH−):

 H O H OH2 ⇔ ++ −
 (8.1)

The pH of the solution represents the number of hydrogen ions (H+), not the concen-
tration of the solution itself. The definition in pH is expressed as:

 
log10 14H OH pH pOH+ −   ( ) = + =

 
(8.2)

In chemistry, solutions with a pH of 7 are defined as neutral. As the amount of 
hydrogen ions increases, acidity increases, and solution becomes low in pH. On the 
other hand, as the amount of hydroxyl ions increases, concentration of hydrogen 
ions decreases due to the relationship given in Eq. (8.2). Therefore, solution becomes 
basic and has a pH value higher than 7. Low-pH electrolytic solutions are called 
strong acid solutions, while high-pH solutions are called strong bases. The extended 
gate field-effect transistor (EGFET) as pH sensor is another structure to generate 
FET isolation from the chemical solution, so a sensing membrane is deposited 
chemically at the end of the short signal line from the FET gate electrode (Yin et al. 
2000). The pH-EGFET sensor is a device used to indicate the acidity and alkalinity 
of the electrolyte solution by measurement of dissolved hydrogen ion concentra-
tion. The interactions between the electrolyte ions and oxide surfaces can be 
explained by site binding model which characterizes the surface reactions and layer 
potentials at the oxide-electrolyte interface (Hsi and Langmuir 1985), as shown in 
Fig. 8.1. According to this model, the insulating surface includes hydroxyl groups 
which form binding sites. They negatively charged (by losing H+) or positively 
charged (by acquiring H+) depending on the hydrogen ion concentration in the elec-
trolyte solution. The resulting surface charge depends on the number of charged site 
of one type more than the other and is a function of the pH solution. Therefore, 
hydrogen and hydroxyl ions are representing as potential determining ions of the 
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surface. In addition, pH sensing theory electrolyte contains cations and anions 
called supporting electrolyte ions which form ion pairs with oppositely charged 
surface sites. This process can be indicated as surface complexation. The formation 
of surface complexes also readjusts the acid-base equilibrium and affects the sur-
face charge.

The distribution of the electrolyte ions can be described by using Gouy-Chapman 
model (Bard et al. 1980). According to this model, electrical double layer is formed 
at the surface which contains a diffuse charge region and Stern inner layer. The dif-
fuse charge region consists of the non-specifically absorbed ions which behave as an 
ionic cloud and are balanced by the uncompensated surface sites. Inner layer con-
tains two planes, namely, inner Helmholtz plane (IHP) and outer Helmholtz plane 
(OHP). The first plane (IHP) is the position of the centres of the specifically adsorbed 
ions. The second plane (OHP) is the position of the centres of the hydrated ions with 
the closest approach to the solid. Therefore, the electrical double layer behaves as 
two capacitors diffused layer capacitance and Helmholtz capacitance. These two 
layers determine or even modulate the potential gradient across the solution, leading 
to varied currents. The higher the amount of H+ ions in the solution, the thicker the 
charge diffusion layer, and the faster the charge diffusion layer is formed, leading to 
larger current values. The focus was on the surface/electrolyte interface (Yang 2012).

Fig. 8.1 Site binding theory of electrical double layer

8 Challenges in Nanobiosensor Aiming Bioscience Applications



192

3  pH Sensitivity and Linearity

The MOSFET system (CD4007UB) was used to measure the IDS-VDS and IDS- 
VRFF curves for saturation and linear region, respectively. The value of the satura-
tion current is calculated from the relation (Chi et al. 2000; Li et al. 2013):

 
I

C W

L
V V Vn x

DS REF T DS= × −( ) +( )





°µ
λ

2
1

2

 
(8.3)

where μn is the electron mobility in the channel, λ is the channel-wavelength modu-
lation factor, C°x is the gate capacitance per unit area, VT is threshold voltage related 
to the pH values, W L/  is the ratio of channel width to length, VREF is the reference 
electrode voltage, and VDS is the drain source voltage. The square root of saturation 
current in Eq. (8.4) is given by (Chin et al. 2001):
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Here VT is the threshold voltage related to the pH value.
The sensitivity and linearity of the device can be expressed as:

 
pH current sensitivity

pH
DS=

∆
∆

I

 
(8.5)

The sensitivity and linearity of the pH voltage can be examined by using the equa-
tion as (Abdolkader et al. 2015):

 
pH voltagesensitivity

pH
REF=

∆
∆
V

 
(8.6)

The hysteresis of the membrane can be defined as the chemical interaction between 
the H+ and OH− ions in the electrolyte solution and the surface defects of the mem-
brane or slow reaction surface sites underneath the membrane surface (Yao et al. 
2014). For hysteresis effect, the values of IDS-VG curves were calculated with dif-
ferent pH values when sensor membrane was immersed in different pH buffer solu-
tions for 5 min. Then, the reference applied bias voltage for fixed drain current of 
300 μA was extracted from each curve and plotted with different pH values.

4  Measurement Processes of pH Sensing

Figure 8.2 illustrates the pH sensing system setup; it consists of two Keithley 2400 
source measurement units (SMUs) (Keithley Instruments, Inc., Cleveland, OH, 
USA). The units were connected to a personal computer (PC) via a GPIB-USB 

N. M. Abd-Alghafour et al.



193

cable, and LabTracer software (Keithley Instruments, Inc., Cleveland, OH, USA) 
was utilized to start measurements and save data for further analysis. The commer-
cial Ag/AgCl reference electrode was a standard reference electrode that gives con-
stant potential during the entire measurement process. The standard reference 
electrode and sensing unit were directly immersed in the different pH solution (from 
Titrisol Products Company) and electrically connected with the gate of commercial 
standard MOSFET device (CD4007UB).

The reference electrode was placed in the same buffer solution and kept for 
2 min at room temperature before measurement to provide a stable reference volt-
age for sensing element. The first process was used in the 2400 SMUs to apply the 
drain-source voltage (VDS) to the source and drain the terminals of the commercial 
standard MOSFET device (CD4007UB), while the second process was employed to 
apply the reference voltage (VRFF) to the reference electrode. 
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1  Introduction

In the last few years, the branch of technology and science is a rapidly emerging 
field of nanotechnology. The term “nanotechnology” was coined by Norio Taniguchi 
the professor of Tokyo Science University in 1974. The processes of semiconduc-
tor showed that the deposition of thin film might control through nanometers. 
The nanotechnology is the invitation of devices, structure, functional materials, and 
system with one superior feature. The scope of nanoscale particles are the rise and 
altering of the cell level between synthetic and biological materials (Du et al. 2007). 
It is also divided into three types (Singh et al. 2008):

• Computational nanotechnology: Handle with modeling and stimulating the 
multiplex nanometer-scale structure

• Wet nanotechnology: Handle with the biological system (cellular and enzyme 
components)
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• Dry nanotechnology: Handle with surface science, fabrication of silicon structure, 
inorganic material and carbon

Nowadays, the drug-resistant microbes are a starring role for the researcher com-
munity in the constant growth of active therapeutics. The nanoparticles synthesis 
showed the  important application in biomedicine (cancer therapy, diagnostic and 
nutraceutical delivery, HIV and AIDS treatment, drug, and gene delivery), sensors, 
catalysts, electronic, optical fibers, bio-labelling, and agriculture (Salam et al. 2012; 
Austin et al. 2014; Moss 2013). The physicochemical properties of nanomaterial 
have prospective to develop a new system, structures, devices, and nanoplatforms 
with a wide variety of disciplines (Mirzaei and Darroudi 2017).

The nanoparticle formulation was typically implanted by conventional tech-
nique. This technique has a certain restriction like the generation of hazardous toxic 
chemicals and is also expensive. The researcher  find the alternative  perspective 
for nanoparticle synthesis amid through biological systems are safe, eco- friendly 
and also exploited as green principle process for synthesis. This biological-based 
method for nanoparticle formulation is generally classified into two processes 
such as:

 1. Top-down process: The larger amount of nanoparticle  are broken down into 
smaller particles (nanoscale) by different lithographic method, e.g., milling and 
grinding.

 2. Bottom-up process: Self-assembly of atoms to new nuclei which grow into 
nanoscale particles (Fig. 9.1).

Chemical etching
Process of explosion
Ball missling
Laser ablation
Sputtering

Aerosol process

Bioreduction
Green synthesis

Deposition of vapour
Spray pyrolysis
Sol-gel process
Atomic condensation
Electrochemical deposition

Atom

Cluster

Bulk

Fragments

Top-Down

Bottom-up

Nanoparticle
synthesis

Fig. 9.1 Biological-based method for nanoparticle synthesis by “top-down” and “bottom-up” 
process
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The alternative method for the physicochemical process of nanoparticle forma-
tion is biological nanoparticles. The present study highlights the green synthesis of 
nanoparticles are established through less cost, rapid, safe for human, and 
 eco- friendly to use (Veerasamy et al. 2014). From the ancient time, the traditional 
medicinal plants are well exploited for different therapeutic compounds. The differ-
ent medicinal plants which has been already explored into a wide range of applica-
tions in a different field such as agriculture, pharmaceutical, industrial, etc. The 
different nanoparticles synthesis using plant resources have a certain advantage like 
they are safe to handle and easily available and possess various biomolecules such 
as tannins, quinines, phenols, terpenoids, alkaloids, phenols, etc. These concepts of 
herbal synthesis of nanoparticles are termed as “herbonanoceuticals” (Gannimani 
et al. 2014; Das et al. 2014).

2  Plant-Based Green Synthesis of Nanoparticles

The word “green” nanoparticles don’t mention the color yet the nanoparticle syn-
thesis from metal salts using reduction properties of biologically active compounds. 
Green synthesis is an ecologically friendly material which was derived from bacte-
ria, fungi, and plant sources. Designing of nanoparticles plays a main role for drug 
carriage system, to control the particle surface properties, size, and drug discharge 
through active sites to achieve a specific action of therapeutical process. This type 
of method isn’t too expensive and harmful; the synthesis of nanoparticle was estab-
lished using biological processes like bacteria, yeasts, molds, algae, actinobacteria, 
plant, and their byproduct (Fig. 9.2).

Fig. 9.2 Various synthesis of nanoparticles
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Therefore, the synthesis of nanoparticle was carried out by reduction of plant 
molecules and microorganism such as enzymes, proteins, alkaloids, amines, and 
pigments (Shan et  al. 2015; Nadaroglu et  al. 2017). Among the various green 
 synthesis techniques, the extraction from plant method is very effortless for metal 
nanoparticle synthesis, and also the nanoparticle formulation using bacteria and 
fungi is very simple at large-scale process. These sorts of products are mutually 
known as “biogenic nanoparticles.”

During the samhita period (600–1000  BC), ayurvedic traditional medicinal 
plant sources was mostly used for numerous diseases system. At this particular 
period of time, the metals are used in powdered forms, known as “Ayaskrati.” 
The vision of Ayurveda reveals that the combination of metal nanoparticles along 
with herbs formulation assists an effective therapeutic application. During this 
period, the metals were mostly used in the form of gold (Swarna), iron (Lauha), 
mercury (Parada), silver (Rajata), copper (Tamra), zinc (Yasada), lead (Naga), 
etc. The growth of Rasashastra was mainly owed by the presence of novel phar-
maceutical methods for metal synthesis using ayurvedic research such as Jarana, 
Marana, and Shodana on seventh century AD (Kulkarni 2013). The active mole-
cules present in herbs are able to reduce the nanoparticles and sustain them for 
the better therapeutic potential. Example, the plant extracts which consist of 
polyphenol act as reducing agent, and their −OH groups are involved in capping 
and sustaining the nanoparticles.

Traditionally, there are different methods for synthesis of metal nanoparticles 
such as gold, silver, copper, platinum, and palladium by using laser ablation, UV 
irradiation, photochemical reduction, lithography, aerosol techniques, and reduc-
tion of photochemical. Currently, the field of nanotechnology is stepped on into the 
synthesis of metal, gold, and silver particles by a natural organism. Mostly, due to 
the stability of particles, easy procedure, and possible application in biological 
imaging, antibacterial, gene sensing, chemical sensing, drug delivery, and gene 
mutation (Wei and Qian 2018). Mostly, a biological method for nanoparticle for-
mulation has certain parameters like pressure, pH range, temperature, and differ-
ent  solvents (Doble and Kruthiventi 2007). The list on the table represents the 
current outing research work progress in the field of nanotechnology using green 
synthesis (Table 9.1).

3  Protein-Based Drug Delivery System

In existing era, drug delivery to a particular site is most challenging, because of 
therapeutic compounds that need to persist in a transport barrier throughout the 
body. Nowadays, nanoscale protein-based polymers gradually increase in the field 
of vaccine and drug delivery process. The release of drug which cross certain bio-
logical barriers through blood circulation and reached their molecular site of action 
(Hubbell and Chilkoti 2012). The polymer based biomaterial acts as a drug carrier 
system has a vital pharmaceutical application like degradation, mucoadhesive in 
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nature and drug discharge. The protein-based polymers was compared to the synthetic 
polymers based on their advantages likes:

• Natural resources
• Biodegradation
• Biocompatibility
• Water solubility
• Cost-effectiveness
• Environmental sustainability
• Stability
• Complex heterogeneity
• Nontoxicity
• Flexible route of administration

The outdated methods are inappropriate for chronic and insistent condition of 
drug delivery systems due to their duration, nontoxicity, and control of the dosage 
of drug delivery at a particular time. Animal proteins such as collagen, keratin, elas-
tin, and silk are low-cost and sustainable. These types of protein have high biocom-
patibility and maintain the structural properties for biomedical application. 
Consequently, mechanical stable polymer materials encapsulated with drug act as a 
drug carriage system. Polymer-based material has various structures and shapes 
likes nanoparticle, micelles, gels, fibers, microsphere, scaffolds, hydrogels, and 
films. This type of polymer-drug delivery system can shield themselves from harsh 
gastrointestinal tract environment condition and also release the drug at an effective 
site without any side effects (Jao et al. 2017).

Biomolecules from plant sources are protein, carbohydrate, polysaccharide, and 
coenzymes with typical prospective to decrease the metal salt into nanoparticles and 
also show the tremendous controlling size of nanoparticles. The plant protein (Zein) 
was derived from maize, which are already shows that the drug delivery system has 
a progresses to interface of biological environment, retention time and absorption. 
The plant-based nanoparticles synthesized are gold, silver, and metal nanoparticles 
like other biosynthesis processes. Further plant-proteins are used for delivery of 
peptide, DNA, protein, and vaccines (Peng et al. 2016). The animal and plant pro-
tein, which have small peptides and hydrolysate, can castoff from animal (poultry 
and meat), aquatic (fish), and agriculture zones (Ferraro et al. 2016). The list on the 
table represents the protein-based polymer for drug delivery system (Table 9.2).

4  The Recent Development of Topical Delivery on Skin

The human skin acts as a shield against topical delivery (chemicals and microbes) 
and also reduces endogenous material. In the current era, the research of dermato-
logical treatment is broadly focused on the novel treatment for skin diseases. This 
type of innovation might improve the dermal localization of active compound into 
the specific affected skin area through new nanoparticles which act as a drug carrier 

9 Topical Delivery of Drugs for Skin Disease Treatment: Prospects and Promises



204

material and release the drug directly to specific target cells. Later these nanomaterials 
enter via stratum corneum into the skin and build up at the particular target site 
(Gupta et  al. 2012). To increase the transdermal delivery system, moreover, just 
modify physicochemical properties of drug or progress novel technology such as:

• Construct new molecules for carriage through various routes.
• Increase variability of poor candidates.

Table 9.2 Protein-based synthetic and natural polymers act as binding agent for drug delivery 
system in therapeutic application

Nanoparticles Drugs Types Application References

Synthetic polymer

Poly(isohexylcyano- 
acrylate)

Doxorubicin Nanosphere 
hydrophobicity and 
biodegradation

Tissue 
distribution

Verdun et al. 
(1990)

Polyalkylcyanoacrylate 3H-dactinomycin 
and 
3H-vinblastine

Degradability and 
sorptive properties

Antitumor Couvreur 
et al. (1980)

Poly (lactide-co- 
glycolic acid)

SGC8 aptamer Hydrophilic and 
hydrophobic

Cancer drug Hung et al. 
(2014)

Silk elastin protein 
polymer nanoparticles

Drug trigger Amphiphiles and 
micelles

Drug delivery Xia et al. 
(2014)

Magnetic nanoparticles 
(Fe3O4 NPs)

Target drug 
delivery

Superparamagnetic Anticancer 
and 
biomedical 
application

Yew et al. 
(2020)

PLGA – poly-L- lysine 
(PLL)-polyethylene 
(PEG) – transferrin 
nanoparticles

Daunorubicin Spherical and 
uniform 
distribution of size

Antitumor 
efficacy

Bao et al. 
(2015)

Natural polymer

Chitosan Retinol
Clobetasol-17- 
propionate

Hydrogel Skin wrinkle, 
acne

Kim et al. 
(2006)

Lecithin-chitosan Quercetin Solution Anti- 
inflammatory, 
antineoplastic

Senyigit et al. 
(2010)

Collagen-chitosan Aloe vera gel Gel (increase 
hydrophilicity)

Topical drug 
delivery

Tan et al. 
(2011)

Collagen Different 
concentration of 
dextran and zinc 
oxide

Hydrogel/scaffolds Anti-aging Rajashree 
and Rose 
(2018)

Antibacterial, 
wound 
dressing

Panea et al. 
(2016)

Polysaccharide 
(G. birdiae)

Silver 
nanoparticle 
(concentration)

Antibacterial 
and nano-
medicine 
application

De Aragao 
et al. (2019)

A. Mani and G. Mahalingam
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Topical delivery is always used in particular pathological sites of the skin where 
the drugs are entrapped by systemic absorption. These types of localization of drug 
are most significant for the treatment of dermatological process like psoriasis, 
eczema, skin cancer, and inflammatory, fungi, microbial, and viral infection that 
act as a main role for skin disorder. Among the different disorder, most significant 
and challenges skin diseases are certainly caused by infectious pathogen of skin 
flora and inflammatory conditions. The allergic contact dermatitis and atopic der-
matitis of chronic inflammatory skin diseases was  resulted  in penetration of the 
inflammatory T cells with increased production of cytokines in lesions (Fig 9.3). 
According to the report of scientific  research showed that the dermatologic dis-
eases are precise severe and frequently effects on the population of developing 
countries (Sigmundsdottir 2010).

5  How Nanoparticles Used as Drug Delivery System? 
Nanoparticles Are Used as Drug Delivery System?

The nanoparticles have unique and significant characters such as the mass ratio of 
surface, which is greater than that of other material to allow catalytic reaction process, 
and also have their capacity to entrap and carry other compounds. The nanoparticles 

Fig. 9.3 Schematic representation of skin disorder which is significantly caused by infectious 
pathogen and inflammatory conditions

9 Topical Delivery of Drugs for Skin Disease Treatment: Prospects and Promises
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act as a drug delivery system based on important criteria such as surface properties, 
control the particle size and release of pharmacologically active agents into the spe-
cific target site of action with dose-dependent manner. The characteristics of nanopar-
ticles showed that the release of drug is feasible to diffuse into body tissue which has 
been unreachable before the target site (Mura et al. 2013), though there is no sign of 
particles if the nanoparticle matrix doesn’t release the drug at a specific site. The drug 
release from nanomaterial is established on several features such as temperature, pH, 
and drug diffusion across nanoparticle matrix, drug solubility, adsorbed drug, a 
grouping of erosion, and diffusion processes (Son et al. 2017).

Most unique and possible nanocarrier used for drug delivery system is liposomes 
because of certain advantages like targeting on specific site of action, protecting the 
drug from degradation, and reducing toxicity or side effect. The disadvantage of the 
system is due to low encapsulation efficiency, less storage stability, and water- soluble 
drugs that are leaked due to the existence of blood components.

Another type of nanoparticle formation by polymeric nanoparticles is also known 
as nanosphere/nanocapsules that were established through their composition. This 
method is used to raise the stability of protein or drugs and also control the release of 
drug properties. Nanospheres are the homogenous system which is arranged in poly-
mer chain reaction as parallel to that of surfactants in micelle formation. Nanocapsules 
are a heterogeneous system, where the drug is bounded to the polymer through res-
ervoir composed (Vila et al. 2002).

Advantage of Nanoparticles as Drug Delivery System:
• Control release of drug and degradation process.
• No wastage of drug and enhance the bioavailability of drug at a specific target 

site for a sustained period time.
• Drug can be mixed with particles without any chemical response.
• Its plays a significant factor for preserving the drug.
• It improves the solubility of water-insoluble drugs.
• Progresses the prolong half-life of drug system circulation by reducing 

immunogenicity.
• It improves the therapeutic performance of drug over the conventional system 

without any side effects.
• It acts as drug delivery system based on the drug-carrying capacity, high specificity, 

and stability and controls and sustains release of the drug.
• Various types of drug administration and also have the capacity to transport 

hydrophilic and hydrophobic molecules.
• After reaching the target site, the drug is released from nanoparticle through 

diffusion, swelling, and degradation.
• Different types of nanoparticle such as polymeric, dendrimers, ceramic, and 

liposomes are mostly used for antimicrobial drug delivery system.

A. Mani and G. Mahalingam
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6  Application of Nanoparticles Used in Various Fields

Nanotechnology deals with various types of nanoscale material size which is lesser 
than 100 nm level (Laurent et al. 2010). Nanoparticle that was treated with particu-
lar compounds, atoms, and molecules for the formation of special properties such as 
materials and devices. These types of nanoparticles are used in various range of 
application like biomedical, food, environment, and industry (Fig. 9.4).

Natural nanoparticles are typically found in soils, plants, atmosphere, sediments, 
and natural water. In current decades, the applications of drug carriage system 
through nanoparticles are enriched in various divisions such as medical, pharma-
ceutical, and biological. The exploration of nanoparticle that arise the inhibition of 
protein and peptide aggregation process is related to some “misfolding diseases.” 
This type of aggregation was transformed into amyloid fibrils process, which causes 
major neurodegenerative diseases such as Parkinson, Creutzfeldt-Jakob, Alzheimer, 
and etc. (Burke et  al. 2013). The nano-biomedicines are prepared by nanoscale 
 molecules which are mostly used in drug delivery system to progress the drug 
bioavailability. Through cell precision, the nanoscale molecules are target and 
discharge the drug at particular sites (Allen and Cullis 2004).

In vivo imaging is a tool of nanoparticles. The drug design system for therapeu-
tic and pharmacological properties should be based on lipid and proteins 
based nanoparticles. For example, polymer-coated iron oxide nanoparticles inter-
rupt the bacteria clusters and have been used for chronic bacterial infection treat-
ment. The field of biomedical application of nanoparticles has greater benefits and 
valuable sources for human races. Nowadays,  the novel  approach of synthesize 
hybrid nanowires application for diagnosis and drug delivery system through optical 
devices (Hu et  al. 2018). Another fascinating research work towards the plant 

Fig. 9.4 The potential application of nanoparticles used in different fields
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inspired-Ag lignin blended with nanoparticle-based adhesive hydrogel was estab-
lished for dynamic catechol redox system. This type of hydrogel has an anti-infection 
property for repairing wound skin surface (Gan et al. 2019).

The National Nanotechnology Initiative which was held in the USA elucidated 
that the technology has a greater influence on nanoscale structure with unique prop-
erties for new applications. Nowadays,  the field of nanotechnology is implant in 
food industry with highly impacts on each aspect of food organization from food 
production, cultivation, processing, packing, transportation, bioavailability of nutri-
ents, and shelf life process (Doyle 2006; Cushen et al. 2012). The food technologist 
has greater challenges to progress food safety and supply foodstuffs. The food borne 
diseases were caused by meat, poultry, fruit, and vegetable products act as vehicles 
for the transmission of the human pathogens. The progression in the food industry 
is due to their unique and novel properties of nanoparticles that are commercially 
used. Nowadays, the food and food-associated products was mostly encompassed 
with  nanomaterials, which may  leads to be safety aspects in the view of public 
(Berger et al. 2010).

Nanotechnology has a larger potential of customer products and nanoscale mate-
rials are leads to improve the environmental condition in direct or indirect applica-
tion. In direct technique the material was identify, inhibit and eliminate the pollutants 
and indirect method the nanomaterial was design to industrial cleaner processes for 
environmental responsible. Example: iron nanoparticles eliminated the contamina-
tion from ground water and soil. The nanoscale sensor progress the detection and 
tracking the contamination level in the soil (Mansoori 2003).

7  Conclusion and Future Prospects

In recent period, the upcoming promising fields is green nanotechnology, which has 
wide ranges of application in research, pharmaceutical, industry, environmental, 
food, health/cosmetic and biomedical. The future prospects of nanotechnology 
should generate and implantation of different novel materials, and devices which 
have a greater perspective in the field of biomaterials, electronic, medicine products, 
drug delivery at target sites.

It can also improve their stability to improving the drug loading, release, target-
ing, and interaction, biological barriers, and bio-destruction of active compounds. 
It should also focus on the problem created by novel technology arises from environ-
mental, toxicity impact of nanomaterial and effect of global economics. The major 
problems like cytotoxicity of nanoparticles or degradation of materials and develop-
ment in biocompatibility are the foremost concern for future research that should be 
stepped on.

The growth rate of topical drug delivery for the healthy annual range is 25%, oral 
drug delivery 2%, and inhalation delivery 20%. The list of topical drug delivery 
system will be increased in the future with novel emerging device and technology 
of nanoparticles. The effective delivery of drug will improve the quality of patient’s 
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life which is connected with healthcare and recognition of pathogenic conditions, 
decrease the infectious diseases, and recover the clinical outcome of the patient. 
Nowadays, the field of nano-biotechnology should generate novel materials that are 
eco-friendly, cost-effective, and reliable.

Therefore, the synthesis of nanoparticles through the biological process is emerg-
ing as harmless and alternative to the conventional method. Therefore, the existing 
review reveals that the essence of green synthesis nanoparticle productions for topi-
cal drug delivery system was deliberately reported in various literatures so far. 
Undertaking the new technology and challenges can create this knowledge for years 
in research, development, and applications for future prospects.
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1  Introduction

Nanoscience and nanotechnology is one of the most emerging areas of material 
science having various applications ranging from healthcare system to food (Chau 
et al. 2007) and agriculture sector. Nanoparticles have unique physical and chemical 
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properties due to which these materials are used in various fields such as medicine, 
biotechnology, food science, agriculture sector, electronics, bioenergy and biofuel 
production, and other applications of materials science. Nanomaterials exhibit high 
aspect ratio than other compounds (Rajput 2015). Nanotechnology deals with the 
nanomaterial of size having 1–100  nm (He et  al. 2019). Different encapsulation 
techniques can be used in entrapment of agrochemicals like fertilizer, pesticides, 
plant growth regulators, herbicides, and other active compounds by using formation 
of different means of polymers, dendrimers, and other nanoformulations. 
Encapsulation of nanoparticle with other materials allows plants to uptake and 
absorb the nutrients, and in return it helps in reducing the amount of waste that 
arises out of agrochemicals. Nanoformulation in agricultural drug delivery system 
improved the materials to have more solubility and stability in adverse environmen-
tal conditions. These nanoformulations provide firmly attachment of ingredients to 
the plant surface by preventing runoff into the environment. These promising mate-
rials are needed for continuous innovations and proper execution in encapsulation 
with other biological materials for the formulation of nanobiomaterials to mitigate 
the global warming and increasing food security (Zhang et al. 2019).

Agriculture is one such sector where the practice started since human inception 
and different technological innovations are included in time to time in order to pro-
duce sufficient and sustainable products for the mankind. The technology may 
include introduction of new hybrid verities, synthetic chemicals, biotechnology, and 
many more. However, human thrusts are unlimited, and by considering the advance 
technologies, researchers are now looking on exploitation of nanotechnology in 
improving agricultural practices (Fig.  10.1). Use of nanotechnology in food and 
agriculture sector will improve the quality and quantity of crops yield. 
Nanotechnology application has been an ongoing process for searching out several 
amicable solutions by taking environmental challenges for sustainable development 
and increased productivity. Nanomaterials  in agriculture sector has certain goals: 
(1) reducing chemical treatment, (2) smart delivery of active ingredients, (3) mini-
mizing nutrient loss, (4) more productivity, (5) and effective uses of drug against the 
plant pathogen. Plant breeding and plant genetic leads to enhancement of agricul-
tural productions (Dennis et  al. 2007). In plant genetic engineering, application 
of nanotechnology provides more effective system than traditional breeding tech-
nologies (Torney et al. 2007). Additionally, despite the fact that nanotechnology has 
great  potential in the agriculture sector and its vast used are still in comparably 
marginal in the market as compared with other industrial sector.

Promoting of global food security is rendered by nanotechnology and its applica-
tions. The use of nanotechnology can provide bioavailability and nutritional value 
of the food (Srinivas et al. 2009). In fact, applications of nanomaterials in food sci-
ence enhance the food security, extend shelf-life of post-harvest produce, improve 
flavour, maintain nutritional value, and can easily detect pathogen/toxins by using 
nano-biosensor.
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This particular material is exhibiting a perfect character for rendering in food 
technology and agricultural science. Nanoparticle in processing and packaging of 
food materials is quite a success system (Weiss et  al. 2006; Durán and Marcato 
2013). Majority of the researchers in food and packaging emphasize on using 
nanoparticles to enhance post-harvest shelf-life. Food industries clearly benefitted 
from nanotechnology in particular food processing, packaging, distribution, and 
other functional foods (Fig. 10.2).

2  Biosynthesis of Nanoparticles

There are different techniques of synthesis of nanoparticles, and each technique will 
produce nanoparticles of different physical properties, size, and characters (Feng 
et al. 2010).

There are different methods of biosynthesis of nanoparticles. Broadly, the 
approach for such biosynthesis may be through chemical, physical, hybrid, and bio-
logical methods (Diallo et al. 2017; Liu et al. 2010; Chaudhry et al. 2018; Singh 
et al. 2019). Although physical and chemical methods of synthesis are quite popular 
and are more advantageous, the use of such chemicals and  toxic materials 
causes  environmental pollution and global warming which  greatly limits in bio-
medical applications (Mafuné et  al. 2001). Biological approach provides eco- 
friendly non-toxic methods for nanoparticle synthesis. Varieties of organism can be 
used in biological approach for synthesis of nanoparticles which may include plants, 
fungi, yeast, actinomycetes, and bacteria (Fig. 10.3) (Konishi et al. 2007). Biological 
synthesis of nanoparticle as per literature is given in Table 10.1.

Fig. 10.1 Application of nanoparticles in agriculture sector. Four different aspects of nanomaterials 
are utilized in agriculture sector: nanosensor, nanopesticide, nanofertilizer, and nanoherbicide

10 Biosynthesis of Nanoparticles and Their Potential Application in Food…
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3  Biosynthesis of Nanoparticle Through Plants

Plant-mediated nanoparticle synthesis is quite a success and fast, cost-effective, and 
eco-friendly methods often used by researchers despite its pros and cons. Use of plant 
extracts has certain advantages like there is no problem for maintaining the culture 
media or preservation which is a necessary protocol in microbial culture. Plant-
mediated biosynthesis of nanoparticle can be done in large scale without any contami-
nation (Kaur et  al. 2016). Various plant species have been reported to produce 
nanoparticle successfully (Table 10.1). Plant leaves are the site for photosynthesis, 
and hence they are called as food factories of plants. By taking this idea, plant leaf can 

Fig. 10.2 Applications of nanotechnology in food industry. Four different aspects are being 
utilized in food science: agrochemical, physical properties, antimicrobial, and packaging

Fig. 10.3 Biosynthesis of nanoparticle. Biological synthesis of nanoparticle may be through 
fungi, bacteria, and pants. Each organism will produce nanoparticle of different shape and size
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Table 10.1 Biological synthesis of nanoparticles

Sources Name of the organisms Localization

Types of 
nanoparticles 
produced

Size 
ranges 
(nm) References

Plant Azadirachta indica 
(neem)

Extracellular Ag, Au 50–100 Shankar et al. (2004)

Acanthella elongata Extracellular Au 7–20 Inbakandan et al. 
(2010)

Alfalfa – Ti/Ni 
bimetallic

1–4 Schabes- Retchkiman 
et al. (2006)

Simarouba glauca leaf Extracellular Au 10 Thangamani and 
Bhuvaneshwari 
(2019)

Xanthium strumarium 
leaf

Extracellular Pt 22 Kumar et al. (2019)

Mirabilis jalapa leaf – ZnO, Ag 19.3–
67.4

Nadeem et al. (2019)

Avena sativa (oat) Extracellular Au 5–85 Armendariz et al. 
(2004)

Aloe vera Extracellular Au 50–350 Chandran et al. 
(2006)

Black tea leaf – Ag/Au – Begum et al. (2009)
Capsicum annnum Extracellular Ag 10–40 Li et al. (2012)
Carica papaya Extracellular Ag 60–80 Mude et al. (2009)
Geranium leaves plant 
extract

No Ag 16–40 (Shankar et al. 2004)

Ethanolic extract of 
marigold flower

Extracellular Ag 5 Kaur et al. (2011)

Fungi 
sources

Aspergillus clavatus Extracellular Ag 10–25 Verma et al. (2010)
Aspergillus flavus Intracellular Ag 8.92 

1.62
Vigneshwaran et al. 
(2007)

Cladosporium 
cladosporioides

Extracellular Ag 10–100 Balaji et al. (2009)

Fusarium oxysporum Intracellular Au 20–40 Ahmad et al. (2003)
Verticillium sp. Intracellular Ag 25–12 Mukherjee et al. 

(2001)
Aspergillus fumigatus Intracellular Ag 5–25 Bhainsa and D’souza 

(2006)
Schizosaccharomyces 
pombe

Intracellular CdS 200 Dameron et al., 
(1989)

Fusarium oxysporum 
and Verticillium sp.

Intracellular Magnetite 20–50 Bharde et al. (2006)

Penicillium 
brevicompactum

Intracellular Ag 23–105 Shaligram et al. 
(2009)

Trametes trogii – Ag – Kobashigawa et al. 
(2018)

(continued)
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be utilized to synthesize silver nanoparticles. Many reports are available for synthesis 
of nanoparticle by using plant leaf extract (Sripriya et al. 2019). In addition, other 
parts of plant like flower have been utilized to biosynthesize the silver nanoparticle.

4  Biosynthesis of Nanoparticle Through Bacteria

Bacteria can be exploited to synthesize nanoparticle. They possess certain characters 
like fast growth and rapid reproduction and hence are frequently used in genetic 
manipulations. The production of nanoparticle through bacteria may be of two differ-
ent approaches: intracellular or extracellular. Most of the prokaryotic bacteria 
(Escherichia coli, Pseudomonas stutzeri, Pseudomonas aeruginosa, Plectonema 
boryanum, Salmonella typhus, Staphylococcus currens, Vibrio cholerae) could be uti-
lized to produce metal nanoparticles. An overall list of bacteria and their type of 
nanoparticle synthesized is given in Table 10.1. Gold nanoparticles are being also 
synthesized by bacteria even though the exact pathway of gold nanoparticle  synthesis 
is not known. Some researcher, however, had reported involvement of electron shuttle 
and enzymatic metal reduction process in gold nanoparticle synthesis (Mukherjee 
et al. 2002; He et al. 2011), while in bio-reduction process by the bacteria, NADH and 
NADH-dependent enzymes play a major role in gold nanoparticle synthesis.

Table 10.1 (continued)

Sources Name of the organisms Localization

Types of 
nanoparticles 
produced

Size 
ranges 
(nm) References

Yeast Yeast strain MKY3 Extracellular Ag 2–5 Kowshik et al. 
(2002)

Candida glabrata Intracellular CdS 200 Dameron et al. 
(1989)

Schizosaccharomyces 
pombe

Intracellular CdS 200 Dameron et al. 
(1989)

Bacteria Pseudomonas stutzeri Intracellular Ag 200 Klaus et al. (1999)
Lactobacillus strains Intracellular Ag, Au No Nair and Pradeep 

(2002)
Escherichia coli Intracellular CdS 2–5 Sweeney et al. 

(2004)
Klebsiella pneumoniae Extracellular Au 5–32 Klaus et al. (1999)
Bacillus cereus Intracellular Ag 4–5 Babu and 

Gunasekaran (2009)
Bacillus licheniformis Extracellular Ag 50 Kalishwaralal et al. 

(2010)
Brevibacterium casei Intracellular Au, Ag 10–50 Kalishwaralal et al. 

(2010)

Extracellular and intracellular biological synthesis of gold, silver, and other nanoparticles from 
different sources such as plants, fungi, bacteria, yeast, etc. is presented
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5  Biosynthesis of Nanoparticle Through Yeast

Silver nanoparticles can be produced by the yeast during the log phase growth in 
treatment with silver solution (Kowshik et al. 2002). Yeast utilized different metabo-
lites such as terpenoid, phenols, amines, amides, proteins, alkaloids, or other reduc-
tion substances for production of nanoparticles (Kouzegaran and Farhadi 2017). 
Use of yeast as biosynthesis of nanoparticle is usually taken up due to their rapid 
growth and simple culture techniques, and it can be used in mass production of 
nanoparticles. Most importantly, the production of nanoparticle by the yeast can be 
explained by the presence of membrane-bound structure (cytosolic) oxidoreductase 
and quinones. pH is one of the criteria which directly affects the activity of enzyme 
oxidoreductase. Increased pH of the internal environment of yeast could activate the 
reductase enzymes, thereby reducing the metal ions to form the nanoparticles 
(Salunke et al. 2015).

Likewise biosynthesis of nanoparticles can be through various other living 
organisms such as fungi, algae, actinomycetes, and virus.

6  Status on Food Nanotechnology

Through intervention of nanotechnology, the extensive food additives, i.e., synthetic 
amorphous silica (SAS), is used in powdered food products (E551), as a clarifying 
agent for drinks, free-flow and anti-caking agent to enhance food stability during pro-
cessing and storage, improve product features or boost nutrient potency and bioavail-
ability in foods, which is manufactured as precipitated or fumed silica and consists of 
aggregates of the reduced nanometre size range of main particles. The silica nanopar-
ticles (Dekkers et al. 2013) are use as anti-caking agents, such as calcium silicate, 
sodium aluminosilicate, dicalcium phosphate, sodium ferrocyanide, and microcrystal-
line cellulose, along with SAS.

Another important food additive is titanium dioxide (E171) used as pigment to 
improve white colour such as dairy and candy products (Weir et al. 2012). TiO2 is also 
used in a variety of non-white ingredients, including dried vegetables, nuts, seeds, 
soups, and mustard, as well as beer and wine, as a food additive and flavour enhancer. 
A study reveals that dietary intake of titanium dioxide is significantly increased, and 
as a result, 56% of titanium oxide was found in common food products in nanosize 
range (Weir et al. 2012). Nevertheless titanium dioxide  nanoparticles can be used as 
protective agent against harmful microorganism like foodborne pathogens, and the 
nanoparticles combine with other compounds or elements such as nickel oxide and 
cobalt. As per EFSA 2016 report, the titanium oxide (E171) is recommended as one 
of the safety food and feed additives (EFSA 2016).

Iron oxide nanoparticles are also used as efficient food additive agents as source 
of iron. The iron particle is reduced in such a way that the particle size will be less 
and simultaneously increases the specific surface area, solubility of the particles as 
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well as the bioavailability of the poorly acid-soluble iron compounds. Moreover 
iron oxide nanoparticles may also be useful for strengthening certain foods with 
iron (Hilty et al. 2011).

7  Status on Agriculture Nanotechnology

Nanotechnological intervention in agriculture in the form of nanopesticides, or nano-
agrochemicals, is applied to significantly improve the efficacy over the standard for-
mulations during the agricultural practices (Gogos et al. 2012; Joseph and Morrison 
2006; Kah 2015; Kah et  al. 2013; Sarkar et  al. 2015). This formulation can be 
achieved by adding the reduced nanosize ingredients along with other nano- range 
compounds mixing or incorporating them into solid-liquid or polymer nanocap-
sules (Frederiksen et al. 2003). A chitosan-based nanoencapsulates, polysaccha-
ride-derived chitin were some of the recent advancement of nanoparticle use 
in agrochemicals (Kashyap et al. 2015).

A study reveals that high load ability of the nanocapsules along with the gradual 
release of the fungicides like carbendazim and tebuconazole could reduced (negative) 
impact on crop development (Campos et al. 2015). As per another study carried out by 
Liu et al. (2006), controlled release of pesticide validamycin and herbicide 2,4-dichlo-
rophenoxyacetate, from porous hollow silica, has been assessed (Liu et al. 2006).

Nano-emulsions based on surfactants were assessed as an efficient delivery sys-
tem for the beta-cypermethrin pesticide (Wang et al. 2007). An efficient economic 
cost-effective approach to control fruit pests is formulated which includes reduced 
doses without loss of efficacy, nano-gels containing pheromone methyleugenol 
(Bhagat et al. 2013). Another group of researchers studied about the applicability of 
the natural occurring nanosize ashes and inorganic metal nanoparticles for insecti-
cidal, antimicrobial, or antifungal characteristics (Sonkar et al. 2012; Stadler et al. 
2010; Yildiz and Pala 2012).

Nanoparticles covered with polyethylene glycol and loaded with essential oils of 
garlic were researched to manage pests of the stored product (Yang et al. 2009). 
The potential application nanotechnology can boost the crop production significantly 
as well as food quality by protecting crops and food products from pests (Kole et al. 
2013; Mondal et al. 2011; Wang et al. 2012). Nanotechnological intervention can 
possibly decrease the amount of fertilizer used along with root nutrient uptake and 
water transportation (Pandey et al. 2010, Martínez-Fernández et al. 2016).

8  Toxicological Fundamentals and Risk Assessment

Nanotechnological application studies on the toxicity of the nanomaterials and its 
effect on biological systems have most crucial thing to research. As the nanomateri-
als are linked with structural arrangements, the nanomaterial toxicity is difficult to 
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predict. Indeed, although in bulk some materials are non-toxic, they might be in the 
nanoscale (“Nat Nano” 2011).

Due to the more complexity of the biological systems, nowadays the toxicity of the 
nanomaterials is usually considered to be declined (Franci et al. 2015; Krishnaraj et al. 
2016; Kwak and An 2016; Martinez-Gutierrez et al. 2010; Panáček et al. 2009; Rai 
et al. 2009; Seitz et al. 2015). Therefore, the more complicated the cell/organism is, 
the less susceptible it is considered to the poisonous impacts of AgNPs. There is no 
such distinction, however, in some research (Greulich et  al. 2012; Matveeva et  al. 
2006; You et al. 2011). However, comparative analysis of the toxic effects of a single 
silver nanoparticle on different complexity levels of biological systems is scarce.

9  Future Prospects and Conclusion

In order to promote agriculture and food industry, there has been significant increase 
in the use of nanoparticle against the conventional chemical products. Nanoparticles 
for delivery of particular drugs in plant pathogen therapy will be at its helm in near 
future, and the unique property of possessing such as site specific, targeted delivery, 
and longer retention time are of great interest for future scope. Nanoparticle treat-
ment against the fungus of plants is showing promising and emerging area. It is 
further necessary to investigate on the phytotoxic action of nanoparticles and their 
exact metabolic pathway where different metabolites may be taking role as syner-
gistic effect inculcates with environmental factors. Molecular-level studies of every 
sphere are highly commendable, and future research should try to solve the prob-
lems of comprehensive interaction between the plants and other abiotic factors by 
taking nano-biotechnology and genetic manipulations (Matsunaga et al. 2007).

Biosynthesized nanoparticle is one of the best options to replace the agrochemical 
products such as chemical fertilizers, pesticides, and other toxic chemical substances. 
This biological nanoparticle could be effectively utilized against the plant pathogen 
to protect various crop diseases. Environmental threat and global warming due to the 
output from agriculture sector may be minimized in far extent by exploiting biosyn-
thesis of nanoparticles. Thus it can be said that nanoparticle in agriculture sector will 
help the farmers to boost their income more effectively and food safety and food 
security will have positive impact. Gold, silver, and other metallic nanoparticle is the 
replacement for the current agrochemical products. Finally, use of nano- biotechnology 
in agriculture and food industry is the need of hours, and it deserves all our attention 
to boost the farmer’s income for sustainable development.
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1  Introduction

A nanoparticle (NP) is a dynamic space for research and has accomplished a decent 
position in technology developments due to its exceptional characteristics (physico-
chemical). Properties like electrical conductivity, melting point, thermal conductiv-
ity, light absorption, scattering, wettability and catalytic activity are resulting in 
improved enactment over their bulk structures. NPs are in diameter below 100 nm 
(Laurent et al. 2010) and are mostly divided into different assemblies on their basis 
of their biochemical properties, size and morphology. Few important classes of NPs 
are carbon-, metal-, ceramic-, semiconductor- and polymer- and lipid-based NPs as 
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shown in Fig. 11.1, on the basis of their biochemical and physical characteristics. 
Carbon-based NPs are carbon nanotubes (CNTs) and fullerenes, in which fullerenes 
contain nanomaterials which are designed as a hollow cage in globular shape like 
allotropic type of carbon. Fullerenes have offered remarkable commercial signifi-
cance because of their great strength, versatility and structure. Their electron affin-
ity and electrical conductivity also play major role in commercial applications 
(Astefanei et al. 2015). Fullerenes hold carbon units that have penta- and hexagonal 
arrangements, and each carbon in unit has sp2 hybridization. CNTs are the carbon- 
based NPs that have tubular and elongated structure in the diameter range of 1–2 nm 
(Ibrahim 2013). CNTs are basically resembled to rolling sheet of graphite. These 
great rolling sheets are called due to their number of partitions (walls) present in 
NPs, for example, single-walled contains single, double-walled contains double and 
multi-walled nanotube contains many walls (Fig. 11.2). CNTs are broadly synthe-
sized by carbon as precursors, deposition and vaporization by laser via graphite or 
by electric arc on metals. Recently, CNTs are manufactured by chemical vapour 
deposition method (Elliott et al. 2013). Metal-based NPs are virginally prepared by 
the metal precursors. The NPs of copper, silver and gold come in a wide absorption 
spectrum which lies in the electromagnetic range in the UV- visible band.

Metal NPs catch applications in numerous research capacities due to their 
cutting- edge optical properties. The covering of gold NPs is extensively castoff in 
the specimen for SEM, for the improvement in the electronic current that aids to 
gain a great value for SEM pictures. Ceramic-based NPs are nonmetallic inorganic 

Fig. 11.1 Classification of NPs on the basis of their chemical and physical characteristics
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entities, manufactured via heating and cooling successively. Ceramic NPs are being 
used in thick, amorphous, hollow or porous, crystalline structures (Sigmund et al. 
2006). Semiconductor materials have properties in between nonmetals and metals. 
Semiconductor NPs have broad bandgaps and consequently displayed significant 
alterated properties in tuning of bandgaps. Thus, NP is a much significant material 
that is being used in electronic devices, photo-optic including photocatalysis (Sun 
2000). Polymer-based NPs are usually based on organic NPs as generally they are 
nanocapsular or nanosphere designed (Mansha et al. 2017). Polymeric NPs can be 
functionalized readily and, therefore, have numerous applications (Abouelmagd 
et al. 2016). The lipid-based NPs comprise of lipid’s structure and are efficiently 
being used in several applications. These NPs are globular figure having a thickness 
range in between 10 and 103 nm. The lipid NPs have a dense core consists of matrix 
having molecules of lipophilic nature in soluble form. Surfactants are the stabilizers 
of the outer part of these NPs (Rawat et al. 2011).

2  Applications of Nanoparticles

NPs have exclusive properties that are being used in biomedical applications. One of 
the important biomedical applications is targeted drug delivery which targets antican-
cer drug delivery to the site-specific tumour and escapes damage to the healthy sur-
rounding cells. Recently, the main source of materials that is magnetic is iron oxide 
NPs, which are being in use for anticancer drug delivery at specific and targeted areas 
(Berry and Curtis 2003). ZnONPs and AuNPs are also used in directed drug trans-
port. Another main NP biomedical application is treatment of magnetic hyperthermia. 
The treatment of magnetic hyperthermia tumors by giving temperature above 42 ºC.  
As this method precisely targets the cancer cells and  safeguards the surroundings tis-
sues, it is far better than chemotherapy. Presently, the iron oxide NPs (Fe3O4 NPs) are 

Fig. 11.2 Various biomedical applications of NPs
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the leading NPs in the usage of cancer treatment and drug delivery (Pankhurst et al. 
2003; Laurent et al. 2011), though other nanosystems like bimetallic NPs Cu–Ni and 
Fe–Co and magnetic NPs, e.g. Ni–Co2O4, Mn–Fe2O4 and Co–Fe2O4, have likewise 
been examined. The practice of magnetic NPs for bioimaging methods like MRI and 
computational tomography is alternative significant biomedical application, as con-
trast agents (Berry and Curtis 2003; Pankhurst et al. 2003; Tartaj et al. 2003).

In MRI, Fe3O4 NPs are the key substitute being examined to substitute gadolin-
ium chelates that are now in usage. Additional magnetic NPs which are being exam-
ined as potential contrast agents comprise Fe–Pt, Co–Fe2O4, Fe–Co, Mn–Fe2O4 and 
Fe–Ni. Photoablation remedy practices materials that are light sensitive to abolish 
diseased area like cancerous tumours. Many NPs such as Fe–Pt, Au, TiO2, ZnO and 
Ag have been examined to likely use in therapy (Linsebigler et al. 1995; Dougherty 
et al. 1998; Allison et al. 2006; Kim et al. 2013a, b; Yin et al. 2013; Muddineti et al. 
2015). Biosensors have appeared as a significant biomedical application in sensing 
and detecting a range of biomolecules. Many NPs like CeO2, TiO2, Au, and Fe–Pt 
have been examined for potential usage in biosensors. This chapter explains impor-
tant NP applications in biomedical particularly immunosensor, drug delivery sys-
tem, biosensing and bioimaging, cancer therapy, antimicrobial activity, animal cell 
culturing, bone and teeth implanting, nanomaterial-based scaffolds and tissue and 
implant engineering.

3  Role of Nanotechnology in Biomedical Applications

3.1  In Drug Delivery

Nanoparticles confirm the strength and bioavailability of a drug, thus leading to 
develop nano-medical approaches for delivering drugs. Various factors, such as 
drug leakage into blood vessels, affect the strength and bioavailability of drug. 
Nanotechnology supported approach in delivering drug aids in improving perme-
ation and directing of drug along with its controlled release (Ringe et  al. 2004). 
Gene therapy is an advance approach (Langer 2001) which resulted in efective 
 treatment; also it decreases the harmful outcomes and drug amount with better 
strength of drug. Especially it is very much applicable in chemotherapy against 
cancer, which adjoining healthy cells are more important than to selectively trans-
port the drug to neoplastic cells.

Nanomaterials were used in targeting approaches which leads to higher intracel-
lular drug concentration in tumour cells, thus preventing the healthy cells from 
toxicity (Allen 2002). Non-modified nanoparticles are employed in passive target-
ing. The disadvantage of passive way is getting trapped of nanoparticles in the 
reticuloendothelial circulating system. Targeting passively uses the different path 
for tumour vasculature, retention effect (EPR) and permeability enhancement 
explicitly due to which penetration of nanoparticles occurs via minor capillaries 
which permits accumulation of drug at specific places. Design’s flexibility and big 
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surface space help in an organized drug release (Liu and Webster 2007). The key 
parameters of releasing drug are size and dispersion of nanoparticle (Gorner et al. 
1999). In releasing of drug and delivery of gene, many nanoparticulate methods 
such as PEG; silica; biodegradable chitosan; gelatin, dextran, etc. (Saji et al. 2010); 
and polymers that are non- biodegradable like polyacrylamide, polyphosphazene 
derivatives, PMMA, etc. were used (Ravi kumar et al. 2004).

By the process of diffusion and endocytosis, nanoparticles can move via cell 
membrane’s lipid bilayer. Additionally, they can move into the cells by connecting 
via immunoglobins like antibodies. Nanoparticles when connected to antibodies/
surface receptors of cancer cells, the nanoparticles which are functionalized should 
also been castoff for directed access into cancer cells (Doubrovsky et al. 2010). The 
20 nm gold nanoparticles are conjugated with many peptides which are targeted to 
deliver functionalized nanoparticles, which then targets the nucleus and also pene-
trates the cell membrane. For the medical analysis and cure of cancer, the various 
functionalized nanoparticles are used for delivering drug and directed biomarkers 
(Daraee et al. 2014). Many cytoplasmic enzymes especially which are proteolytic 
regularly hinder the drug delivery system. Drug and gene delivery system often use 
graphene oxide which acts as a transporter.

Various functional groups of graphene oxide present such as OH and COOH 
permit the conjugation with biomolecules and polymers. The functionalization of 
graphene oxide with polymer (which is cationic in nature) such as polyethylenimine 
is a good approach. Gene delivery system uses grapheme oxide because it effi-
ciently interacts with DNA and RNA’s negative charge carried by phosphate ions. 
So graphene oxide aids in transfection, reduction in cellular toxicity and improve-
ment in selectivity of cell. Delivering of protein (anti-apoptotic) Bcl-2-targeted 
doxorubicin (anticancer drug) and siRNA in conjugation with graphene oxide func-
tionalized with PEI gives an elevated efficiency in transfection and less PEI cellular 
toxicity with increased efficiency in anticancer activity, displaying a synergistic 
effect (Priyadarsini et al. 2018). In debt of unique properties like chemical, electro-
chemical, optical, electrical and electronic properties of graphene and its derivatives 
(Banerjee 2018) and the bio-functionalization of graphene-based nanomaterials 
with various biomolecules used in different biomedical applications. Apart from 
graphene oxide containing functional groups and furthermore having large surface 
area with basic sp2 planar structure, it also gives good capacity of loading and bio-
compatibility along with great solubility. Multimodal graphene oxide can be formed 
by using modest chemical conjugation or physico-absorption of proteins and bio-
molecules along with polymers onto graphene oxide. Graphene oxide is a proficient 
nano-carrier in anticancer drug (water- insoluble) delivery system.

Graphene oxide with polyethylene glycol-grafted (N-terminal) conjugated with 
an anticancer drug SN38 which is water insoluble via adsorption non-covalently 
was selectively directed against tumour. The occurrence of π-electrons in de- 
localized form on the exterior of graphene helps in conjugation of anticancer medi-
cines (aromatic) via π–π stacking. For careful assassination of tumour, nano-graphene 
oxide (NGO) PEGylated sheets along with doxorubicin in conjugation with anti-
body have been used. The doxorubicin’s quinone structure attaches to graphene 
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oxide through π–π relations, while H-bonding is seen among the NH2 and OH 
groups of doxorubicin and also between the OH and COOH groups in graphene 
oxide. There is a pH impact on loading the drugs and their kinetic release. Neutral 
pH was best for full loading of drugs; however at pH 2, around 70% of drug was 
released which is acidic in nature. In this acidic condition, the NH2 group of doxo-
rubicin becomes protonated which leads to the dissociation of the H-bonding; 
henceforth releasing of drugs occurs. For the improvement of cellular acceptance of 
doxorubicin efficacy, gold nano-clusters should be used with reduction of graphene 
oxide, resulting in suppressing of tumour’s progression.

3.2  Biosensing/Immunosensing

Research and development in different frontiers of nanobiotechnology aims to 
develop highly functional biosensors and nanosized microchips. Graphene has been 
employed for advancement of various electrochemical biosensors by virtue of its 
large surface area, high electron transfer potential and hence excellent electrical 
conductivity. Detection of various biomolecules like proteins, growth factors and 
nucleic acids by monitoring changes in an electrical signal by different field-effect 
transistor biosensors has become possible by utilization of graphene. For in situ 
sensing of biomolecules, graphene-field-effect-transistor based biosensors have 
been massively explored for the detection of nucleic acids, proteins, etc., and the 
growth factors have been effectively confirmed by using appropriately functional-
ized graphene derivatives with nucleic acids, aptamers and carbohydrates for moni-
toring target-specific changes of electrical signal with high signal-to-noise ratio 
(Park et al. 2009). Due to graphene’s fluorescent quenching property, GO-labelled 
fluorescent-marked ssDNA have been utilized for manufacturing of DNA/nucleic 
acid biosensors. ssDNA florescence is quenched by GO. The formation of double 
helix from this ssDNA upon coming in contact with target complementary DNA 
sequence displaces GO from this ssDNA strand, resulting in fluorescence recovery. 
Various biosensors for detection of DNA have been developed utilizing graphene 
(Shen et  al. 2012). For instance, nitrogen-doped graphene FET biosensors have 
been developed for detection of VEGFs and catecholamines like dopamine, epi-
nephrine and norepinephrine (Kwon et  al. 2012). For simultaneous detection of 
various metabolites of human digestion, for example, uric acid and ascorbic acid, a 
few graphene-based sensors have been created (Suvarnaphaet and Pechprasarn 
2017). Electrical signal from electrogenic cells like cardiomyocytes has been 
detected by using FET biosensors based on CVD graphene. Biosensors based on 
graphene have also been constructed for detection of hormones, proteins, adenosine 
triphosphate (ATP), fungal toxins and toxic metal ions. GO biosensors were also 
created for estimating the activity of many enzymes like trypsin, thrombin, cas-
pase-3, metalloproteinase and DNA helicase (Chung et al. 2013). Graphene-based 
biosensors have also been developed for detection of pathogens like Huang et al. 
(2011) who developed a highly selective nanoelectronic biosensing device for the 

J. Ahlawat et al.



233

recognition of Escherichia coli (E. coli). In addition, for cancer diagnosis, also gra-
phene has been utilized as immobilization support for primary antibodies against 
prostate-specific antigen (Qu et al. 2011). Further, graphene has also been utilized 
for the advancement of biosensor in detecting lipopolysaccharides (LPSs). Limulus 
amebocyte lysate (LAL) assay is the most frequently used enzymatic assay for LPS 
detection. Graphene-based biosensors resulted in sensitive, selective and rapid 
methods to sense various analytes.

3.3  Bioimaging

GO having diverse functional groups can conjugate with fluorescent dyes, so it has 
been utilized for bioimaging. Next to this, GO displays high absorbance and fluo-
rescence characteristic in the NIR spectrum, and its properties can be controlled by 
changing rate of reduction, size, pH and time of its development. Cheng et al. (2012) 
demonstrated simultaneous imaging and drug delivery using GO under mild ther-
mal annealing which showed blue fluorescence due to the development of sp2 and 
oxidized domain. Annealing induces phase transformation in GO which enhance 
oxygen diffusion, resulting in the formation of nanosized (1–1.5 nm) graphitic 
domains responsible for the blue photoluminescence.

Additionally, nanomaterials have been used for optical and MRI as contrast 
agents. Utilization of nanomaterial based agents for optical imaging has improved 
stability in both in vitro and in vivo systems, protection from photobleaching, large 
quantum yield, strong absorbance, non-toxic, and near infrared (NIR). Nanoparticles 
with NIR excitation and emission find excellent use in imaging of deep cancerous 
tissue. For example, liposomes including silica labelled with dye, quantum dots and 
gold nanoparticles (AuNPs) have been exploited as optical contrast agents. For sil-
ica/polymer labelled with dye, the source of fluorescence is dye itself encapsulated 
within matrix of nanoparticles. Though gold and silver are non-fluorescent, they 
exhibit surface plasmon resonance. Optical contrast agents having high sensitivity, 
stability and clinical safety, are in great demand.

Recently, Qdots have attracted great attention. Integration of several imaging 
techniques like fluorescence, X-ray, CT and MRI into a single nanoparticle probe 
makes for better cancer imaging. Due to low reflexivity values and potential toxic-
ity, they have been frequently used as MRI contrast agents. Water-soluble endohe-
dral metallofullerenes have also been used as MRI contrast agents. Further, 
superparamagnetic iron oxide nanoparticles have been proposed a good choice as 
MRI contrast agent due to their biocompatibility and biodegradability. Moreover, 
research is going on for use of CNTs, ultra-superparamagnetic iron oxide nanopar-
ticles (USPION) and paramagnetic liposomes as new contrast agents for MRI. As 
gold nanoparticles (AuNPs) possess interesting size-dependent chemical, elec-
tronic and optical properties, hence, they are used for nanomedicine purpose. In 
addition to it, for different biomedical purposes including cancer imaging and ther-
apy, AuNPs permit numerous surface modifications which results in its reaction 
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with lots of chemical and biochemical vectors. For imaging contrast enhancement, 
surface plasmon resonance (SPR) properties of AuNPs can be tuned to make them 
best agent. Various Au nanoforms like nanorods, gold colloids and composite or 
hollow nanoforms have been emphasized for biomedical applications (Ghosh et al. 
2008). A very simple method, galvanic replacement reaction between silver nano-
cubes and gold chloride can form novel nanoforms, Au nanocages. Enhanced spec-
troscopic images have been reported in tissues having nanocages of gold (Skrabalak 
et al. 2007). Prediction and optimization of image contrast properties is a prerequi-
site for efficient exploitation of nanostructures for imaging. Besides this, for photo-
thermal and radiotherapy, AuNPs have been intensively used (Huang et al. 2007). 
Tong et al. demonstrated a firm basis to develop a targeted photothermolysis for 
cancer therapy using gold nanorods whose effectivity got enhanced under fs pulsed 
excitation leading to high absorption in NIR spectrum and transformation of photo-
thermal energy.

The wavelength of plasmon absorption gets shifted due to use of surface- modified 
gold nanoparticles for biosensing purposes. Use of nanomaterials for development 
of biosensors resulted in their improved sensitivity, specificity and reliability. 
Pandey et al. (2008) described that the area of biosensors based on nanomaterials 
(e.g. nanowires, nanotubes, nanoshells, etc.) is very broad which involves electro-
chemical, electrical and optical biosensors along with field-effect transistors. 
Surface-enhanced Raman scattering (SERS) assisted with gold nanoparticles led to 
an effective determination tool for specific molecules. By conjugating a label mol-
ecule on their surface, a SERS nanotag has been created for detection. Moreover, 
they have been exploited for other biomedical purposes, e.g. as an effective means 
to test pregnancy based on micro-albumin (Viroj et al. 2007).

As Qdots possess physical dimensions smaller than Bohr exciton radius, they 
have been employed for imaging cancer cells and tissues. Due to their large Stoke’s 
shift value, they prove advantageous to minimize the background signal, thus result-
ing in sensitive detection. Moreover, their potential permits the simultaneous sensi-
tive determination of cancer-specific surface receptors by a single excitation. 
Further, it diagnoses the early stages of cancer (Yezhelyev et al. 2007). They have 
also been applied to label and track the cell and pathogen and develop FRET-based 
sensors. Besides that, they have played crucial part to diagnose biomolecules in real 
time even at the single molecule level. Exchange of ligand and polymer coating has 
been used to modify their surface.

Wang et al. (2011) described the development of various graphene based optical/
electrochemical biosensors, electronic devices, mass spectroscopy and bioimaging 
due to its and its derivatives unique characteristics, e.g. electronic, optical, chemi-
cal, electrochemical and electrical properties. Further, for in situ sensing of biomol-
ecules, DNA, a nanoconjugate of graphene derivative with oligonucleotide has been 
employed. Moreover, using graphene, its derivatives tagged with nucleic acids, 
aptamers and carbohydrates have been employed to determine nucleic acids and 
proteins with high signal-to-noise ratio (Park et al. 2012; Ohno et al. 2010; Kwon 
et  al. 2012;, Mao et  al. 2010; Tang et  al. 2010). Kwon et  al. (2012) described a 
nitrogen-doped graphene FET biosensor to sense vascular endothelial growth factor 
(VEGF). Similarly, Mao et al. (2010) immobilized anti-IgG onto the surface of ther-
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mally reduced graphene oxide (TRGO) through gold nanoparticles and sensed the 
precise recognition site for the binding of immunoglobulin G. Consequently, for 
biomaterials like hormonal catecholamines and heavy metals, different processes 
like DNA hybridization, protein binding events and field-effect transistors (FETs) 
based on GO have been proved as an effective tool. Further, for imaging of cells 
in vivo, MRI signals have been amplified using magnetic NPs in association with 
GO. Chen et al. (2011) described the conjugation of amino dextran-coated Fe3O4 
NPs with GO for MRI. Hong et al. (2012) reported the use of radio-labelled GO for 
imaging of cancer cells using positron emission tomography (PET). Besides this, 
for innovative biosensing techniques, graphane, a fully hydrogenated form of 
 graphene, has been discovered as a novel nanomaterial (Tan et al. 2013). In com-
parison to graphene, graphane has emerged as better option due to its electrochemi-
cal behaviour towards oxidation/reduction of different biomolecules, e.g. ascorbic 
acid, dopamine and uric acid.

3.4  In Therapeutics

Cancer medical care employs a borderline invasive methodology in the form of 
photothermal (PTT) medical care which exploits physiological effects produced by 
photothermal agents to destroy cancerous tissue. PTT exploits NIR due to its char-
acteristic to penetrate in tissues in combination with photothermal agents, which 
transform NIR radiation into heat. Using heating effect, cancerous tissue is destroyed 
as the temperature reaches to 42–43 °C, while healthy tissue does not get affected. 
Niidome et al. (2016) reported the use of different nanoforms of gold, i.e. nanoshells, 
nanorods, nanocages and nanourchins with NIR, for efficient photothermal medical 
care. The plasmonic absorption is often adjusted by optimization of surface proper-
ties, form and size of nanoparticles (Singh et al. 2018).

LAT-1 ligands like L- and D-dopa were used as reducing and capping agents in the 
preparation of AuNPs for efficient targeting of the massive neutral aminoalkanoic 
acid transporter LAT-1 (Ong et al. 2017). A great attention has been caught up by 
LAT-1 transporter due to its additional utility as a biological marker for imaging and 
therapeutics of human malignancies. Gold nanoparticles functionalized with L-dopa 
or D-dopa gave promising leads to cell lines like MDA-MB-231, MDA-MB-468, 
MCF-7 and MDA-MB-453 in comparison to non-targeted management.

Xue et  al. (2017) reported formation of golg nanosheets (AuNShs) and gold 
nanocages (AuNPs) utilizing a biotemplate named lanreoite acetate (Lan). The tem-
perature raised to 54.3 °C and 46.8 °C for AuNCs or AuNShs, respectively, upon 
NIR irradiation of 808 nm at 0.8 Wcm−2 for every 30 s in in vitro system. They 
inhibited the growth of HeLa cells upon irradiation by 86.26% for AuNCs and 
75.56% for AuNShs, hence proving them as an efficient photothermal tool.

AuNCs and AuNShs along with NIR irradiation led to strong inhibition of 
tumour growth in murine model. Gold nanocages and nanoshells were injected and 
irradiated in mice. Temperature of tumour surface raised to 48.3 °C for AuNShs 
within 5 min and more than 50 °C for AuNCs within 3 min upon injection of AuNCs 
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or AuNShs and irradiation in mice. Consequently, tumour weight decreased consid-
erably in these groups after 12 days, while control groups revealed no noteworthy 
modifications. Injection of AuNCs and AuNShs resulted in tumour inhibition by 
86.65% and 72.39%, respectively, thus establishing the effectiveness in 
PTT. Manivasagan et  al. (2018) studied the effect of gold nanorods tagged with 
chitosan oligosaccharide (COS) and lipoic acid (LA) to diminish the cytotoxicity 
caused by CTAB, which resulted in outstanding PTT. Moreover, gold nanomaterials 
(25 g/ml) injected and irradiated with NIR in tumorous mice culminated into com-
plete tumour disapperance and normal tissue reconstruction, a proof of excellent 
thermal response. Targeting the subcellular entity has been introduced as effective 
methodology to improve PTT efficacy. This protocol helps in nuclear translocation 
using nuclear localization sequence (NLS) and induces hyperthermia near specific 
organelles (Chen et  al. 2018). Biocompatibility and cellular targeting have been 
improved by developing AuNUs coated with hyaluronic acid (HA), and nuclear 
translocation was enhanced with AuNUs coated with cationic NLS. Gold nanorods 
efficiency was found intensified under certain conditions like fs-pulsed excitation, 
increased efficiency of NIR absorption and photothermal energy conversion and 
hence provides a solid foundation for developing targeted photothermolysis for can-
cer therapy (Tong et al. 2007).

These AuNU@NLS@HA nanoplatforms stood firm in testing standards of high 
stability, good biocompatibility, precise tumour-targeting, great cellular internaliza-
tion and very good photothermal activity. Moreover, experiments in in  vivo and 
in  vitro systems exhibited encouraging outcomes in suppression of primary and 
metastatic tumours (Chen et  al. 2018). Recently molecularly imprinted polymers 
(MIPs) present an innovative approach in development of new PTT agents. MIPs are 
artificially developed antibodies with relatively enhanced specificity and chemical 
stability in comparison to substantial antibodies. Yin et al. (2017) synthesized AuNRs 
imprinted with sialic acid for specific cancer cell targeting which showed promising 
photothermal effect on cancerous tissue without damaging surrounding healthy tissue.

Photosensitizers have been employed in photodynamic therapy (PDT) where reac-
tive oxygen species (ROS) are generated upon excitation by specific wavelength lead-
ing to cellular apoptosis. PDT in combination with PTT presents a promising joint 
therapeutic approach for treatment of cancer ailments. Combined use of nanoparti-
cles and molecules generating ROS is a field of fascinating prospects; moreover, there 
is decreased therapeutic effect of drug due to too fast drug release from NPs while 
entering the body. Moreover, intrinsic fluorescent quenching of photosensitizers by 
FRET makes PDT-mediated imaging of tumour and tracing of drug even more diffi-
cult. Hence, innovative approaches for photosensitizers’ loading on AuNPs are pre-
requisite for an efficient joint therapeutics and imaging using PDT/PTT. For example, 
tricarbocyanine dye, namely, indocyanine green (ICG), approved as NIR photosensi-
tizer, unfortunately showed poor stability leading to quick clearance from blood and 
thereby low quantum yield. Nowadays, an anisotropic AuNP-based nanomaterial has 
been synthesized with encouraging results as joint PDT/PTT therapeutic agent (Liu 
et al. 2017). Anisotropic AuNPs were double coated with a combined layer of CaCO3 
and ICG, where stable CaCO3 aggregates with anisotropic AuNPs prevent its fast 
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blood clearance, and acidic medium degradation of CaCO3 layer makes ICG selective 
release in tumour tissue at pH  6.4 a real possibility. An effective combined anti-
tumour effect has been observed in experimental setup in vivo as well as in vitro by 
AuNPs@CaCO3/ICG upon NIR irradiation; additionally, the NP biodistribution in 
the tumour can also be seen using fluorescence imaging.

3.5  The Radiotherapy

Cancer treatment is done by radiation therapy which can cause harm to healthy 
tissues/organs by diffusion and have less specificity towards cancerous cells 
(Cheng et al. 2018). Earlier, the effect of radiation has been increased by use of 
nanoparticle- based radiosensitizers as they have the ability to generate electrons 
which can specifically target on cancerous/tumour cells without damaging nearby 
healthy tissues. Later on there is generation of reactive oxygen species to enhance 
radiation-induced harm (Goel et al. 2017). It was studied that radiation sensitiza-
tion increased synergistically through the contact of gold and titanium oxide within 
a nanostructure. Nanostructure shows more production of reactive oxygen species 
as compared to nanoparticles of gold and titanium dioxide alone. Radiation sensi-
tization of nanostructure was justified by triple-negative breast cancer cells 
(SUM159) of mice which indicate that the tumour development was considerably 
decreased in mice treated with nanostructure and X-ray (Cheng et al. 2018).

Enzyme cyclooxygenase-2 (COX-2) overexpression was an indication of tumour 
genesis and treatment (Zhou et al. 2009; Xu et al. 2014; Karahan et al. 2018). Gene 
suppression has been done by small interfering RNA (siRNA), but still an interfer-
ence RNA provision system is essential. Zhu et  al. studied blockage of glucose 
transporter 1 (GLUT1) by modified 2-amino-2-deoxy-D-glucose (DG)-
polyethylene-glycol (PEG) gold nanoparticles and overexpression in cancer cells. 
GLUT1 act as marker of tumour genesis and can transport DG into cells. Along with 
this, functionalization of gold nanoparticles with lysine, lipoic acid and 9-poly-D- 
argine (9R) was enhanced, and siRNA/9R/DG-AuNP hydrazone nanomaterials in 
in vitro experiments suppressed COX-2 efficiently in SGC7901 and HepG2 cells.

A method for treatment of cancer is hyperthermia in which cancer cells and 
healthy cells indicate symbols of apoptosis (41–47 °C) and necrosis (above 50 °C) 
(Milleron and Bratton 2007). Due to higher rate of metabolism, cancerous cells 
were more prone to heat than healthy cells (Huff et al. 2007); therefore hyperther-
mia was likely used to treat cancer. Hyperthermia was done by microwave, laser and 
radio waves, but by using magnetic nanoparticle for heating offers a non- hostile 
way to increase cell temperatures to a therapeutic level, diagnostic level and imag-
ined by MRI.  Initially, all magnetic nanoparticles are supplied into tumours and 
heated using alternating magnetic fields to attain required temperatures (Pankhurst 
et al. 2003). Moreover, chemotherapy or radiotherapy can also be used for the func-
tionalization of magnetic particles. Brown relaxation and Neel relaxation techniques 
were used for the process of heating of magnetic nanoparticles (Cherukuri et al. 
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2010). This mechanism was also operative for materials which have near infrared 
(NIR) absorption competencies, such as gold nanoparticles (Gobin et  al. 2007; 
Gannon et al. 2008) or carbon nanotubes (Kam et al. 2005).

Magnetic nanoparticles as hyperthermia agents were also used in  vitro and 
in vivo as shown by many studies (Jordan et al. 1997). A glioblastoma multiforme 
is a type of brain cancer that was treated by aminosilane with iron oxide nanoparti-
cles (Maier-Hauff et  al. 2007). There were many MRI scans used for locating 
tumour. An alternating magnetic field was exposed to patients to persuade particle 
heating. Nanoparticles were tolerated by all patients without any difficulties. 
Deposition of nanoparticles was found stable for many weeks as observed by CT 
scans. Hyperthermic nanoparticles to cure prostate cancer were studied by related 
groups (Johannsen et al. 2007a, b).

3.6  In Diagnosis

Chemical and biological agents have been detected by use of gold nanoparticles. 
The confocal laser microscopy has gained growing attractiveness due to gold 
nanoparticles in medical and biological research (Wang et  al. 2010). Confocal 
images were taken by different confocal microscopy such as fluorescence micros-
copy or resonance scattering or two-photon luminescence. Strong decrease in back-
ground signal was the major benefit of this technique and effects in the contrast are 
being improved (Daraee et al. 2014). Gold nanoparticles, carbon nanotubes, quan-
tum dots, polymer nanocapsules, nano-HA, chitosan, dendrimers and liposomes 
have been broadly used for various medicinal applications. Early diagnosis and cure 
of disease by nanocomposites which give a promise raised area both in vitro diag-
nosis such as in intracellular molecular imaging, highly sensitive solution assays 
and molecular profiling and in vivo diagnosis such as Raman-active nanoparticles 
for Raman spectroscopy, magnetic nanoparticles for magnetic resonance imaging, 
Qdots for optical imaging, etc.

3.7  Animal Cell Culture

Due to insignificant harmfull effects on animal cells, ability of linkage, gene trans-
fection, stem cell differentiation, neural differentiation, graphene based nanomateri-
als used as scaffolds for culturing cells and engineering of tissues (Park et al. 2011; 
Wang et al. 2012; Chen et al. 2012a, b; Ryu and Kim 2013; Kim et al. 2015; Lee 
et al. 2015; Garcia-Alegria et al. 2016; Kumar and Chatterjee 2016; Bouzid et al. 
2016; Shin et al. 2016; Akhavan 2016; Shadjou and Hasanzadeh 2016). Stem cells 
of mouse embryo differentiate into haematopoietic cells and significantly increased 
by using GO-coated substrates. Haemogenic endothelial cells differentiated from 
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haemangioblasts during haematopoietic arrangement were measured as a crucial 
stage. Furthermore, graphene oxide also increases separation of embryonic stem 
cells of humans to blood cells. Likewise, it was informed that the length and number 
of neurite both improved in neuroblastoma cells of humans when scattered on gra-
phene, compared with control glass substrate (Bouzid et al. 2016; Lee et al. 2015). 
Recently, three-dimensional printable graphene was a biocompatible elastomer 
reported for growth of mesenchymal stem cells and differentiation of neuronal and 
glial genes (in vitro) and has encouraging stability at least 30 days (in vivo) (Jakus 
et al. 2015). Graphene- and graphene-based nanocomposite, e.g. graphene oxide, 
reduces graphene oxide nanosheets that showed valuable inhibition of E. coli bacte-
ria growth due to synergistic effect on their surface during insignificant cytotoxicity 
(Li et al. 2014a, b). For instance, a few studies have shown that the GO have more 
antibacterial growth as compared to reduced graphene oxide as graphene oxide pro-
vides surface for attachment and growth of cells as defined by the incentive of bacte-
rial increase (Hegab et al. 2016). Information showed that methodically washed and 
greatly purified GO showed least antibacterial properties against both Gram bacteria 
whether positive or negative. Deoxyribonucleic acid, proteins, membranes, etc. are 
different components of cells which initiate a sequence of interactions (nanomate-
rial–bacterial). These interactions depend on shape, size, hydrophobicity, roughness, 
functionality, dispersibility, concentration, purity and colloidal energies of the gra-
phene-based nanomaterials.

3.8  Tissue and Implant Engineering

In this field, research and development enhance the prudent tissue synthesis and 
osseointegration for clinical implant purposes. On the basis of hydroxyapatite (HA), 
bioactive surface coatings were done to decrease the implant rejection rate. An 
in vitro and in vivo study of nanomaterials was done in different medicinal areas 
(Robert et al. 2007). Presently, synthesis of tissue can be improved by nanotechnol-
ogy approaches which showed alternation of biomaterial surfaces and application of 
nanomaterials for new implants.

3.8.1  Alteration of Biomaterial Surfaces by Nanotechnology

Nanoscale surface roughness was improved by titanium-based implants which 
showed that nanotopography changes cellular response via protein deposition, con-
trolled growth of cells, better linkage and multiplication of bone cells. Binding abil-
ity of cells and proteins increased due to large surface area and surface energy (Jager 
et al. 2007). Modification of surface topographically and introduction of chemical 
molecules on a surface are the two approaches for nanoscale surface modification.
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3.8.2  Alteration of Surface Topographically

Colloidal and imprint lithography allows the construction of two-dimensional and 
three-dimensional structures with high resolution with effective ease (Wood 2007) 
for biological applications as compared to traditional photolithography. In addition 
to lithographic techniques, there are many physical methods like nanoparticle depo-
sition and ion beam deposition and chemical methods like anodization and acid 
etching discovered to create implant surfaces at nanoscale (Mendonca et al. 2008). 
The properties showed by nanotubular surfaces for culturing cells were better adhe-
sion, explosion, bone matrix deposition and alkaline phosphate activity as com-
pared to titanium surfaces (Popat et al. 2007). It was studied that bioactivity of such 
nanotubular surfaces increased by nanoscale hydroxyapatite (HA); HA-nanoporous 
titania in argon atmosphere was reported for increasing bond strength (Kar et al. 
2006). Nanotubular titanium alloys were provided with low temperature in biocom-
patibility point of view (Saji and Choe 2009).

3.8.3  Introduction of Nanoscale Chemical Molecules on a Surface

Surface chemistry was changed by deposition of nanoparticles onto implant 
 surfaces. Studies reported that isolated silver nanoparticles were deposited on 
poly(methyl methacrylate) (PMMA) bone cement and prevention of bacterial colo-
nization by covering orthopaedic pins with Ag nanoparticles (Wagener and Biogate 
2006). Copper metal showed the highest bacterial reduction rate as compared to 
different metal salts of silver, zinc, mercury etc. that were deposited on Ti surfaces 
for production of nanoscale sol–gel titania layers (Heidenau et  al. 2005). 
Osteointegration and antibacterial effects were studied by modified titania and 
 zirconia nanocrystal coatings (Bignozzi et al. 2008).

Three-dimensional (3D) printing in tissue and organ engineering is a novel tech-
nology used to manufacture two-dimensional graphene into a three-dimensional 
structure with the help of polymer, ceramics or metals to form three-dimensional 
columns using software related with the printer. Modern devices and sensors were 
improved by scientists and engineers for tissue engineering with the help of ink- 
based printing. The properties such as mechanically resilient, high electrical con-
ductivity, more tensile strength, ability to resist pressure and highly bioactive which 
will greatly increase the graphene material adaptability for application in biomedi-
cal (Jakus et al. 2015). The properties exhibited by functional materials for 3D gra-
phene inks are able to print rapidly and user-friendly. Necessary cell response can 
be attained by porosity of 3DG. Likewise, 3DG remain feasible for culturing and 
multiplication of human mesenchymal stem cells (MSCs). Uncontrolled abrasions 
decreased in organs due to insertion of graphene sheets. The properties like mechan-
ical and thermal strength of three-dimensional nanocomposites were enhanced by 
integration of polyurethane/polylactic acid (Syama and Mohanan 2019). Therefore, 
biomaterials may be modified for application of complex tissue engineering by 3D 
printing to get attractive multiple functionalities besides fabricating surgery-friendly 
constructs (Syama and Mohanan 2019).
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3.9  Antimicrobial Effects

Magnetic nanoparticles of titanium oxide, zinc oxide, magnesium oxide, chitosan, 
copper and silver are used as antibacterial agents for bacterial infection (Jones et al. 
2008). Silver nanoparticle synthesis and antibacterial effect on GO sheets have 
been studied (Tian et al. 2011). GO was physicochemically characterized by using 
thermogravimetric analysis, X-ray diffraction, transmission electron microscopy 
and ultraviolet-visible and Raman spectroscopy. Antibacterial property of GO and 
GO–Ag against microbes was detected with the help of standard counting plate 
method. An antibacterial effect was shown by both GO and RGO against a variety 
of Gram staining bacteria (Akhavan and Ghaderi 2010). Liu et al. (2011) presented 
the antibacterial action of graphene by connection of bacteria to graphene sheet 
surface, damage of membrane that causes intracellular content leakage and oxida-
tion of membrane components. RGO nanowalls were more toxic due to the pres-
ence of better charge transfer and sharp edges towards bacteria than GO (Guo and 
Mei 2014). By avoiding electron transport chain to make sure in use of adenosine 
triphosphate by graphene and, finally causes death of cell. The components of cell 
like protein, lipid and deoxyribonucleic acid are damaged due to formation of reac-
tive oxygen species inside the cells by graphene. Formation of lipid peroxides dur-
ing fatty acid oxidation breaks down cell membrane and finally results in cell death. 
Polymers of various graphene composites have been produced to offer antibacterial 
surface for various applications in biomedical field. GO with amine-containing 
organic compounds showed antibiofilm and antimicrobial activity against bacteria 
as compared to amines alone (Zarafu et al. 2018).

An antimicrobial peptide (G(IIKK)4I-NH2) was charged by GO and its constant 
discharge as reported by Cao et al. (2018). GO-modified surface showed three times 
higher bacterial growth which proposed that sufficient wettability for linkage and 
multiplication of bacteria were measured by GO oxygen groups. In spite of the 
contrary results, materials based on graphene can be used for coatings due to anti-
microbial property, for wound coverings (Giulio et al. 2018), on surface of medical 
devices and as smart antibiotics (Karahan et al. 2018), after a systematic analysis.

3.10  Scaffolds Based on Nanomaterials

In tissue engineering analysis, scaffolds have a major contribution because they 
provide templates to give unique construction and growth of tissues besides struc-
tural support for particular cells. Therefore, due to sensible biocompatibility and 
biodegradability property of 3D porous scaffolds, its fabrication plays important 
role (Kim and Mooney 1998). Development of fibres ranges from few microns to 
micromillimetre scale by a new technique known as electrospinning under high 
electrical fields. Therefore these scaffolds offer more surface area and some more 
advantages due to topographic features of the extracellular matrix for development 
of latest tissues (Liang et al. 2007).
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On the basis of tissue engineering in stem cell, 3D scaffolds help in regeneration 
and recovery of broken tissue due to their features like organic chemistry, biophysi-
cal and mechanical. These meaningful scaffolds are made due to proper manage-
ment and improvement of such features. Therefore, scaffolds enhance the 
regenerative ability of stem cells. Vegetative cell composition and functions like 
self-renewal, production, and stem cell differentiation were regulated by improved 
biophysical and mechanical indications together with physical possessions, stiffness 
and structure (Chen et al. 2012a, b; Kamei et al. 2013). The various properties of 
stem cells were improved due to distinct structural and mechanical properties of 3D 
scaffolds for tissue engineering. Several important techniques like electrospinning, 
lithography, microfabrication and self-assembly were widely discovered to con-
struct 3D scaffolds relevant for particular tissue uses (Kim et  al. 2013a, b). 
Undecorated trauma and non-inheritable malformations of the bone were recovered 
by tissue engineering technique. Many reports showed that graphene enhances link-
age, multiplication, osteoblasts and biological properties of scaffold materials.

Regeneration of the bone needs a signal for morphology, host cells for response, 
an appropriate carrier of this signal and a viable, well-vascularized host bed (Tiffany 
et al. 2012). For regeneration of tissues, features like biological compatibility, cell 
growth, proliferation and differentiation of scaffold material are important (Bose 
et al. 2012). Cell behaviour together with attachment, growth, repair, proliferation 
and differentiation is supported by aromatic scaffold nature of graphene and gra-
phene oxide (Ryoo et al. 2010).

Freeze-drying technique was used for the combination of GO nanoflakes (0.5 
and 1 wt. %) with gelatin–hydroxyapatite (GHA) matrix for improving mechanical 
strength and osteogenic differentiation in latest times (Nair et al. 2015). Osteogenic 
differentiation was induced by GOGHA0.5 scaffold in human mesenchymal stem 
cells of adipose tissue for continued culture experiments without any supplements 
within the medium. In medical science, biocompatible, perihable and porous 
 graphene oxide-strengthened gelatin-HA 3D scaffold which could function as an 
appropriate candidate for promotion of bone regeneration. Researchers indicated 
that coating of GO enhanced numerous medicinal features of scleroprotein scaffold. 
It also increased surface structure, compressive strength and cell development 
(Nishida et al. 2014). For bone tissue engineering, graphene–hydroxyapatite gels 
are extremely strong, permeable, electrically semiconductive and biocompatible, 
creating them promising scaffolds (Xie et al. 2015). Silk fibroin provides a striking 
example for the formation biomimetic hydroxyapatite. Shepherd and Best (2013) 
reveal that silk fibroin may be a biocompatible material because it manages the 
expansion of mineral.

Additionally, zinc ion–hydroxyapatite may increase a lot of biological functions 
to the nanoparticles, like medicine variation (Velard et al. 2009), bactericide prop-
erty (Shepherd and Best 2013; Thian et al. 2013) and bone-forming cell response 
(Webster et al. 2004). The inorganic phosphate precipitates may maintain the min-
eral section once Zn/(Zn1Ca) reached 15–20 mildew (Ren et al. 2009). The crystal 
formation of hydroxyapatite is influenced by interaction of sodium alginate and zinc 
ions with silk fibroin. Culturing of MC3T3-E1 cells onto GO-gel surfaces for differ-
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ent cellular activities, bone differentiation and mineralization were civilized. 
Furthermore, characterization of mineralization was done by alizarin red staining 
and scanning electron microscopy which finally confirms the deposition of native 
bone matrix. These studies recommend that the hybrids of GO–gel can have worthy 
use in surgery of the bone. Scaffolds of polyvinyl alcohol and graphene oxide nano-
fibrous ready by electrospinning were proved good in bone tissue engineering appli-
cation (Qi et al. 2013). Cheng et al. (2015) demonstrated formation of the bone by 
mineralization of hydroxyapatite using polydopamine and reduced graphene com-
pound (RGO-PDA) as a surface.

4  Conclusion

Existing research trends in applications of nanoparticles in different fields of 
 biomedical sciences have been reviewed here. Frequent exciting evidences for 
nanoparticles to reinforce the faith that use of nanomaterials can develop diagnosis, 
prevention of disease and treatment which can be of great help to biomedical per-
sonals. Although potenial of nano-patterning of nanoparticles in functional medical 
devices to boost the implant engineering has not yet been fully realized. 
Nanomedicine research is an exhilarating field which modifies diagnosis and thera-
peutics study in nearby future. Both clinical and non- clinical pivotal studies must be 
carried out to assess safety and tolerance of nanomaterials to garner potential com-
mercial application.
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1  Introduction

During the last decade, nanotechnology has produced unique materials with new 
properties, and it is becoming a promising field in research and development. An 
exponentially expanding area is bionanotechnology, that is, the combination of 
nanomaterials and biological molecules. Particularly interesting is gene therapy, 
which is increasingly used to replace mutated genes with healthy genes, introducing 
new genetic information into cells to fight against illnesses, such as infectious, neu-
rodegenerative, and cancer diseases, as well as to silence genes that are not expressed 
properly. The goal of this chapter is to describe some basics of structural and 
dynamic deoxyribonucleic acid (DNA) nanotechnology to foster interactions among 
students and scientists from different research areas.
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DNA is a complex structure composed of nucleotides. Its main function is to 
store the genetic information needed by an organism for its development and sur-
vival. Each nucleotide comprises a phosphate group, a 5-carbon sugar group, and a 
nitrogenous base, which can be either a purine, namely, adenine or guanine, or a 
pyrimidine, that is, cytosine or thymine (Scofield 2007).

Nanotechnology refers to the manipulation of matter at the nanometric scale, 
including materials that have at least one dimension in the 1–100 nm range and 
features such as volume ratio, surface plasmon resonance, quantum confinement, 
and enhanced mechanical properties, different from bulk materials. By combining 
nanotechnology and knowledge of the structure and behavior of nucleotides, DNA 
is automatically taken out of its biologically oriented-only context and treated 
chemically and structurally through different paths to generate materials that are 
highly biocompatible and useful for potential biomedical applications (Adams and 
Barbante 2013; Linko and Dietz 2013).

As will be described, knowing the chemical structure of DNA and its interactions 
with organic and inorganic materials allows for the design and production of inter-
esting DNA-based nanomaterials through bottom-up and top-down strategies, simi-
lar to any other nanostructure. Due to the physicochemical properties and 
biocompatibility of these nanomaterials, the main applications are oriented toward 
biomedicine, although applications in electronics have also been considered. Future 
perspectives, as well as advantages and disadvantages of these materials are dis-
cussed at the end of the chapter, justifying extensive research for their creation 
and use.

2  Structure and Function of DNA

DNA was identified for the first time by the Swiss chemist F. Miescher at the end of 
the 1860s, when he was studying the protein content of white blood cells. He called 
it “nuclein” but did not realize its remarkable importance as a biological compo-
nent. In 1910, the German biochemist A. Kossel won the Nobel Prize for the isola-
tion and description of adenine, cytosine, guanine, thymine, and uracil. Later, the 
Lithuanian-American biochemist, P. Levene, made two important discoveries: the 
first one was the determination of the order of the components of a single nucleo-
tide; the second one was the identification of the carbohydrates that belong to DNA 
and ribonucleic acid (RNA). Moreover, he proposed that DNA was composed 
equally of adenine, guanine, cytosine, and thymine, but his assumption was disre-
garded thereafter (Heather and Chain 2016). The Austrian-American biochemist, 
E. Chargaff, discarded the statement made by Levene, proposing the rules that carry 
his name: (1) The number of guanine units is equal to the number of cytosine units, 
and similarly, the number of adenine units equals the number of thymine units; (2) 
The DNA composition varies depending on the species. These rules already implied 
that DNA was the carrier of genetic information and not merely a molecule found 
within cells. The nucleotides appear in pairs of nonarbitrary combinations: adenine 
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pairs with thymine and guanine with cytosine, by means of hydrogen-bonded pairs 
of bases at corresponding positions (Watson–Crick base pairing). The order of these 
nitrogenous bases dictates the gene code or a DNA-encoded set of instructions 
regarding how to synthesize proteins (Sinden 2012).

The contribution that led to the description of DNA structure and its definition 
was made by M. Wilkins and R. Franklin. By analyzing X-ray images of DNA, they 
realized that the two strands that compose the DNA are antiparallel, which implied 
the DNA’s helical structure. Wilkins showed J. D. Watson these results. Subsequently, 
in 1962, J. D. Watson and F. H. C. Crick won the Nobel Prize for the discovery of 
the structure of DNA, which was shared with only Wilkins because Franklin had 
died in 1958 (Olby 2013).

On the other hand, N. C. Seeman is recognized as the founder of DNA nanotech-
nology, which is also known as nucleic acid nanotechnology. In 1980, he conceived 
of a three-dimensional (3D) lattice with the ability to entrap molecules of interest, 
such as proteins. He also proposed that DNA arrays could be used to model assem-
blies of other molecules that are difficult to handle by conventional procedures. 
Eleven years later, he and his group reported the synthesis of the first 3D nanoscaled 
material: a cube made of DNA. Another significant contribution from the Seeman 
group was the creation of the first DNA nanomachine (Seeman 2003). Many studies 
have since been dedicated to research related to synthesis procedures, DNA motif 
analysis, the development of devices, and computational analysis (especially for the 
prediction of DNA-based structure conformation using programs for molecular and 
thermodynamic modeling), among others.

It is possible to synthesize complex structures by means of DNA nanotechnology 
because their assembly relies on the base-pairing concept of nucleic acid molecules 
(made up of sequences of nucleotides) and DNA sequence motifs. The nanostruc-
ture design works such that DNA strands form junctions to create branched struc-
tures in the correct arrangement. Additionally, the generation of DNA-based 
nanomaterials must meet certain desired functionalities for further applications (Ito 
and Fukusaki 2004). For example, one of the latest and most useful methods to 
synthesize DNA-based nanostructures is DNA origami, which was reported by 
P. W. K. Rothemund. It consists of folding single-stranded DNA to create 2D and 
3D nanostructures (Rothemund 2006). As explained later in this chapter, the process 
is accomplished by annealing templates with several DNA strands named “staples.”

3  DNA Nanotechnology

DNA nanotechnology refers to the design and synthesis of artificial nucleic acids 
for applications in biotechnology, biomedicine, and more (Seeman and Sleiman 
2017). The structure of DNA itself is in the nanometer domain, with a diameter of 
approximately 2 nm and a 0.34-nm base-pair separation of its bases. Given that 
DNA is not a linear molecule, it is necessary for it to be manipulated in order to 
create nanostructures. So-called motifs, which are defined biologically as short 
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repetitive patterns that have been assumed to possess biological functions whose 
task is to indicate sequence-specific binding sites for proteins such as nucleases and 
transcription factors (TF), are important tools in such a manipulation. Some motifs 
influence important processes at the ribonucleic acid (RNA) level. RNA is also a 
nucleic acid assembled as a chain of nucleotides; however, generally, it is a single 
strand folded onto itself and not a paired double strand like DNA. Furthermore, it 
differs from DNA by the content of the nitrogenous base uracil, instead of thymine. 
In nanotechnology, motifs are treated as junctions. They usually possess from 4 to 
12 arms along with several helical domains, that is, they are branched constructs. 
These motifs can be joined as desired by sticky-end cohesion. The joining is medi-
ated by hydrogen or covalent bonding. Other ways to design DNA nanostructures 
utilize paranemic interactions of double helices, such as some single-stranded knots, 
Borromean rings, and polyhedral catenanes (Seeman and Belcher 2002).

DNA nanotechnology is subdivided into two subfields: structural and dynamic. 
The first focuses on the synthesis and description of nucleic acids, as well as on mate-
rials which generate static equilibrium assemblies. For the second one, it involves 
nonstatic complexes under nonequilibrium conditions. In the next sections, aspects of 
structural and dynamic nanotechnologies will be briefly explained. The classifications 
of DNA-based nanostructures from several authors will be mentioned as a reference 
and to emphasize the richness of potential applications of such structures, predomi-
nantly in the biomedical area. Another aspect to consider as an advantage is the fact 
that some of these DNA-based nanostructures already exist in nature. To take advan-
tage of them, it is necessary to exert some chemical or molecular manipulations. Other 
DNA-based nanostructures are synthetically produced, but still function as biologi-
cally generated materials. Combinatorial chemistry, along with molecular biology, is 
a path that has been taken in DNA nanotechnology because of its uniqueness and 
proficiency in the synthesis of uncommon molecules. One of the most important 
methods within combinatorial chemistry is the systematic evolution of ligands by 
exponential enrichment (SELEX), which has been used to produce synthetic DNA 
molecules such as aptamers and DNAzymes (Seeman 1998).

Supramolecular chemistry has also been applied to construct nanostructures. 
This approach is interesting because it integrates DNA along with other materials 
that are inorganic, organic, and polymeric (Conway and Sleiman 2017). In the fol-
lowing sections, some areas regarding structural and dynamic DNA nanotechnol-
ogy according to the classification by Connolly et  al. (2018) will be described 
briefly. Topics such as the DNA origami construction technique, i-motifs, and cat-
enanes, which are used for both structural and dynamic DNA-based nanotechnol-
ogy, will also be discussed.

3.1  Structural DNA Nanotechnology

This branch of DNA nanotechnology has been studied for over 30 years, showing 
exponential advances since its inception. With structural DNA nanotechnology, 
building 2D and 3D objects of diverse nanosizes and complexity has been 
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attained, using the bottom-up approach with the aim of generating static struc-
tures (Seeman 2005).

The first DNA objects at the nanoscale were created by N. C. Seeman and his 
collaborators with the aid of DNA-based scaffolds similar to Holliday junctions, 
that is, structures that contain four double-stranded arms joined together, which can 
vary their conformation depending on the sequence of nucleobases closest to the 
junction and are biologically generated in nature. These static and branched struc-
tures led to the design of 3D nano-objects. In 1991, a 3D nanocube, composed of 
only four single strands resembling a Holliday junction, was built by Seeman and 
colleagues. Later, another type of branched junction was synthesized, the double 
crossover molecule, in which two DNA double helices aligned side by side were 
joined by crossovers. Such configurations can be used to assemble tiles and motifs. 
Eventually, the triple crossover molecule was designed. Its structure is basically a 
triple parallel arrangement of double-stranded DNA motifs fastened together and 
joined through two crossovers amidst each of the double helices. Other structures, 
such as 2D and 3D lattices (extended), classified as tiles, were also developed; how-
ever, control was difficult to accomplish. When the origami technique proposed by 
Rothemund became popular, it helped somewhat to overcome this inconvenience 
(Evans and Winfree 2017).

3.1.1  G-quadruplexes and Z-DNA

G-quadruplexes and Z-DNA are non-B forms of DNA. G-quadruplexes (G4) form 
in nucleic acids through guanine-rich sequences and are helicoidal in shape, enclos-
ing guanine tetrads (G-quartets) that can form from one to four strands. 
G-quadruplexes are usually stabilized by potassium or sodium cations when they 
coordinate with the carbonyl groups of guanine. They are polymorphic construc-
tions due to strand orientation, the syn/anti glycosidic guanine conformation, and 
loop connectivity. Biologically, they participate in mechanisms such as DNA repli-
cation and transcription and are related to the regulation of gene expression and 
genome maintenance as well. These constructions have been reported to serve as 
therapeutic targets in cancer (Kwok and Merrick 2017) and as sensing probes 
(Ruttkay-Nedecky et al. 2013).

On the other hand, Z-DNA is a left-rolling double-helix structure. This configu-
ration is attained by means of alternating purine and pyrimidine base sequences 
during DNA transcription. Its biological activity involves affinity to and recognition 
of molecules such as the poxvirus protein E3L and an ortholog of the protein kinase 
PKR (Phan et al. 2006).

3.1.2  I-motifs

So-called i-motifs are secondary DNA structures that have four branches that can 
be generated in cytosine-rich sequences. They consist of two parallel-stranded 
DNA duplexes which are held in an antiparallel orientation by means of intercalated 
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cytosine–cytosine base pairs. The folding of i-motifs is pH dependent. Hence, in 
nanotechnology, i-motif-forming DNA sequences have been used as pH commuta-
tors. Originally, it was thought that i-motifs remained unstable under physiological 
conditions; however, further studies proved that their stability relies greatly on envi-
ronmental conditions and on their nucleotide sequences. I-motifs are found at sites 
related to gene regulation, that is, DNA regions that contribute to the activation or 
silencing of genes, thereby triggering certain molecular mechanisms. It has also 
been found that they possess key regulatory functions in the genome. Because of 
their high versatility, static and dynamic DNA structures can be built from them 
(Dong et al. 2014).

3.1.3  Catenanes

Catenanes are molecules very similar to chains made up by at least two cyclic 
compounds. In DNA nanotechnology, they are built by the unification of i-motifs with 
DNA assemblages. Catenanes are generated in a knot shape by topoisomerases to 
regulate replication and gene expression. Their production for nanotechnology is 
based on the use of numerous single- or double-stranded templates, within which 
there are regions of DNA complementarity. Catenanes are interlocked structures.

3.1.4  Aptamers

Aptamers are engineered species of nucleic acids, that is, they are synthesized and 
selected in a repetitive path in  vitro by SELEX.  The methodology was reported 
independently by two research groups, one led by L.  Gold and the other by 
J. Szostak, at the beginning of the 90s. SELEX is the main method for the selection 
of aptamers, although there are also other methods available. The process was 
automatized by A. Ellington, who decreased the number of iterations necessary for 
selection from 6 weeks to only 3 days (Gold 2015). Aptamers have been found to be 
useful in biomedical applications because of their high specificity and nonimmuno-
genicity (Sun et al. 2016).

3.1.5  DNAzymes

DNAzymes (catalytic DNA) are DNA molecules (oligonucleotides) that have cata-
lytic properties and are generated through in vitro selection. As aptamers, they cannot 
be found naturally, but they resemble enzymes. DNAzymes have been used in sensing 
and biomedicine (Morrison et al. 2018) and in the field of molecular computing 
systems (Zheng et al. 2019).

M. del Pilar Rodriguez-Torres et al.



257

3.1.6  DNA Origami

Folding single-stranded DNA template molecules by self-assembly into target struc-
tures is referred to as DNA origami (Fig. 12.1). This is achieved by annealing tem-
plates with DNA strands. Hydrogen bonding formed between adenine–thymine and 
between cytosine–guanine enable complementary DNA strands to form into a double 
helix. Normally, the two DNA strands are complementary. Nevertheless, if both 
strands are only partially complementary, the two strands can accept multiple DNA 
molecules. As already mentioned, during cell division, DNA can form a four- armed 
structure known as a Holliday junction. DNA structures containing six strands, stick 
cubes, branched DNA crystals, and tubes have been produced. Currently, many dif-
ferent shapes can be synthesized and folded (Kuzuya and Komiyama 2010).

3.2  Dynamic DNA Nanotechnology

Dynamic DNA nanotechnology is focused on elements that are independent, can 
be structured continuously, and work under nonequilibrium dynamics and that 
have moving parts (animated) plus time-varying performance. It is basically a 
fusion of self-assembly via programmed hybridization, along with either DNAzyme 
catalysis or DNA strand displacement reactions. Strand displacement reactions 
refer to the stepwise substitution of one strand in a double helix with another, 
invading strand set off by short overhangs of unpaired nucleotides named toeholds. 
These reactions occur naturally by means of three- or four-way branch migration 
and originally sparked interest because of their importance in genetic recombina-
tion (Simmel et al. 2019). The major drawback of strand displacement and hybrid-
ization is that the resulting arrangements may have unwanted leaking reactions that 
affect the functioning of the synthesized structure. Additionally, even though strand 

Fig. 12.1 (a–c) Scheme showing the formation of a 2D DNA array constructed from single 
strands of DNA
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displacement and hybridization are the main mechanisms responsible for most of 
the reported structures in the literature, there are other reactions that also yield 
DNA- based dynamic structures. Research on dynamic DNA nanotechnology is 
mainly directed toward the synthesis of responsive materials and devices and 
toward hybridization networks (Zhang and Seelig 2011).

Nonbiologically oriented interest in strand displacement reactions began when, 
in August 2000, B. Yurke introduced the concept of isothermal strand displacement, 
which occurs when two DNA strands partially or fully complementary hybridize, 
provoking a displacement of prehybridized strands for the construction of DNA 
tweezers. In this structure, the strands that do not get hybridized are practically 
suspended from the edge of the tweezers. The tweezers open and close by means of 
fuel strands, which are complementary to the loose ends (Yurke et al. 2000).

3.2.1  DNA Actuators

DNA actuators operate by twisting and untwisting a double helix that is very much 
alike to a DNA molecule. They have the ability to apply both push and pull forces. 
Therefore, although designed for cable-driven robotics, these actuators may work as 
part of other systems (Zampaglione et  al. 2019). They are artificial molecular 
switches. DNA actuators can be subdivided into two groups: DNA switches; and 
DNA springs, gears and tubes.

3.2.2  DNA Walkers

DNA walkers are synthetic mimics of naturally occurring molecular walkers, such 
as dynein, myosin and kinesin, in which a nucleic acid can move along a well- 
designed track assembled partially or entirely from DNA building blocks. DNA 
walkers also require a DNA track and fuel molecules, or any other form of energy 
input, to drive the motion. They are characterized fundamentally by their dynamic 
interactions with the substrate. DNA walkers can be autonomous or nonautonomous 
(Mason et al. 2018).

3.2.3  DNA Origami Machines

DNA origami machines are dynamic DNA elements that have functional applica-
tions in disease diagnostics and treatment. DNA machines are operated by DNA 
strands and external stimuli to do linear, rotational, and reciprocating movements. 
Additionally, complicated systems have been created on DNA nanostructures by 
aligning molecules and molecular machines accurately to resemble biological systems 
(Endo and Sugiyama 2018).
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4  Nanoparticles and DNA

4.1  Nanoparticles Integrated into DNA Structures

Nanoparticles of different kinds have been integrated into DNA structures, such as 
aptamers and nanocages, to construct complex materials with several functions. 
Table 12.1 summarizes part of the research work performed on this specific topic.

4.2  Nanoparticles Integrated into or Templated by DNA

Most of the materials mentioned in this section are nanocomposites, which are 
defined as hybrid materials in which at least one of its components is on the nano-
meter scale. The objective of combining materials is to promote a synergistic effect. 

Table 12.1 Representative publications dealing with DNA structures with integrated nanoparticle 
systems

DNA structures
Nanoparticles/
nanomaterials Applications References

G-quadruplexes Mesoporous SiO2 
NPs

Locking and unlocking of substrates 
trapped within the nanoparticles 
with the aid of G-quadruplexes

Ruttkay- Nedecky 
et al. (2013)

Hemin/G-
quadruplexes

Gold nanoparticles 
(AuNPs)

Amplified DNA sensing, aptasensing, 
and detection of Hg2+ ions

Pelossof et al. 
(2011)

Hemin/G-
quadruplexes

N-doped graphene/
Au nanoparticles

Ultrasensitive supersandwich-type 
biosensors for enzyme-free 
amplified microRNA detection

Wang et al. 
(2018a)

Aptamer Thiolated DNA- 
functionalized 
AuNPs

Colorimetric sensing of adenosine 
and cocaine

Liu and Lu 
(2005)

Aptamer AuNPs Electrochemical detection of cortisol Sanghavi et al. 
(2016)

Aptamer Magnetic 
nanoparticles 
(MNPs)

Cancer cell targeting Grobmyer and 
Moudgil (2010)

DNAzyme AuNPs Detection of thrombin through 
chemiluminescence

Wang et al. 
(2018b)

DNAzyme AuNPs Amplified detection of DNA or 
telomerase activity

Niazov et al. 
(2004)

DNA origami 
cage

AuNPs Proposed as an artificial structural 
platform for engineering novel 
bio-inspired, biomimetic, and 
biokleptic materials

Zhao et al. 
(2011)

Actuator AuNPs coated with 
biotinylated DNAs

Monitoring of nanoscale movements 
induced by an electric field

Tapio et al. 
(2018)

DNA walker Quantum dots 
(QDs)

Protocol for assembly Ke and Wang 
(2017)
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The intrinsic affinity of DNA molecules toward metallic ions aids the formation of 
metallic nanostructures. DNA template-induced synthesis of nanoparticles has been 
the subject of extensive study. It will be described because the properties of the 
materials yielded from DNA templates, nanoclusters, vary according to the base 
materials used for the particles, such as, for instance, silver, gold, palladium, and 
carbon. DNA can also be conjugated to nanoparticle surfaces. Metal-based and 
polymer-based DNA nanoparticles, along with their applications, will be discussed 
as well.

4.2.1  Gold Nanoparticles

Gold nanoparticles (AuNPs)  are among the most studied nanomaterials that have 
been coupled to DNA, mainly for applications such as sensing. It is interesting to 
note the wide range of nanostructures that can be produced with gold, from simple 
spherical nanoparticles up to hybrid and more complex systems for several 
applications.

Deka and colleagues (2017) exploited the optical properties of the DNA-AuNP 
system as a colorimetric assay for the measurement of helicase activity. Helicases 
are vital enzymes for many organisms, and their main task is the unpackaging of 
DNA. As a first step, the authors synthesized two batches of 20-nm nanoparticles 
functionalized by DNA (self-assembled monolayer). The difference between the 
batches was the oligonucleotide sequences used for functionalization. Then, they 
prepared a substrate by mixing the batches with a duplex to promote complementa-
tion of the DNA strands of each batch. The human RecQ4 helicase was used for the 
trials and prepared in a solution buffer. The buffer was added to the gold nanopar-
ticles with adenosine triphosphate (ATP), varying the concentration of the helicase 
enzyme in the nanomolar range. Once the enzyme interacted with the nanoparticles 
and the ATP, there was a color change in the solution which was monitored by 
means of UV-Vis spectroscopy. This was due to the unwrapping of DNA by RecQ4, 
breaking the substrate into smaller parts, and releasing the nanoparticles, which was 
proportional to the enzyme concentration. The highest unwrapping rate was found 
at the highest RecQ4 concentrations: 100 nM and 150 nM.

Chan et al. (2018) used DNA-functionalized gold nanoparticles to enhance mes-
senger ribonucleic acid (mRNA) translation. Gold nanoparticles were prepared by 
the citrate method, and later, selected DNA oligomers with thiol ends were attached 
to the nanoparticles as a conjugation step. Due to their specificity, these selected 
oligomers were used to assess the dependence of translation enhancement on them 
and insulin mRNA was used as a model molecule. The synthesized nanoparticles 
were added to HeLa (cervical cancer) cells lysates, enhancing insulin synthesis by 
2.18-fold with just the presence of the mRNA (Chan et al. 2018).

The synthesis and usage of DNA-functionalized gold nanoparticles are not only 
limited to enzyme activity presence and monitoring but also include the detection of 
metal ions (Lee et al. 2007), cellular uptake studies (Wong and Wright 2016), pro-
tein discrimination through fluorescence (Sun et  al. 2015), bacteria detection 
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(Arunrut et al. 2016), and the entrapment of the nanoparticles within nanocages in 
order to be used as delivery and release agents (Chandrasekaran and Levchenko 2016).

DNA can be used as a template for nanoparticle formation to produce AuNPs, as 
well as quantum dots, and metal oxide nanoparticles, among other structures. The 
usual DNA templates are short strands with specific sequences, for instance, scaf-
folds. If the sequence and structure of the DNA template can be tuned, nanostruc-
tures with different sizes and from different materials can be generated.

Moreover, DNA–gold hybrid nanomaterials with more complexity have been 
developed. An example is a multitask platform in which aptamer MUC-1 
functionalized- triangle DNA origami was loaded with doxorubicin (Dox) and was 
also able to transport gold nanorods to suppress the growth of resistant breast cancer 
cells (Song et al. 2017). Other gold nanostructures that can be created through DNA 
templates are listed in Table 12.2.

4.2.2  Silver Nanoparticles

Silver nanoparticles (AgNPs)  possess much better plasmonic properties than gold 
nanoparticles, namely, they have higher extinction coefficients; however, studies of 
AgNPs in combination with DNA are limited. This is attributed to the low bond 
energy of Ag-S compared to that of Au-S, as well as to their oxidation and aggrega-
tion trends. Among those few studies, which are mainly related to fluorescence 
exploitation, the following one is noteworthy: Divsar et al. (2015) developed aptamer-
conjugated silver nanoparticles for the detection of Arsenic (As (III)) ions in solu-
tion. The detection mechanism rests on the formation of As(III)–aptamer–silver 
nanoparticle (Apt-SNP) complexes, which causes a decrement in the absorbance of 
the conjugated silver nanoparticles. A three-factor, central composite design opti-
mization method, in conjunction with response surface methodology, was used for 
the maximization of the efficiency of arsenic detection. The nanoparticles were 

Table 12.2 Representative publications dealing with gold nanostructures generated by the DNA- 
templating technique

Gold nanostructures DNA templates Applications References

Nanowires DNA origami 
mold

Potential fabrication of structures 
with programmable shapes

Bayrak et al. 
(2018)

Branch-shaped X-shaped and 
Y-shaped DNA

Photothermic cancer cell treatment Song et al. 
(2017)

Bowtie nanoantennas DNA origami Single molecule surface-enhanced 
Raman spectroscopy

Zhan et al. 
(2018)

Nanorods DNA origami 
clamps

Site-specific surface 
functionalization

Shen et al. 
(2016)

Gold nanorod 
complex

DNA origami Cancer theranostics Jiang et al. 
(2015)

Circles and triangles DNA origami Nanoelectronics and plasmonics Ruiz et al. 
(2017)
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synthesized using sodium borohydride, and then, polyvinylpyrrolidone was added 
to the solution; the solution was then stored in the dark and incubated for 18 h with 
an aptamer solution to promote its attachment through covalent bonding.

In other research works on DNA and silver nanoparticles, which do not involve 
DNA conjugation to the nanoparticle surface, the template-directed method has been 
used to create nanoclusters that exhibit bright fluorescence, tunable emission and 
improved stability by just varying the sequence of the DNA template. These structures 
mainly take advantage of the generated fluorescence which can be enhanced by the 
adjustment of complementary DNA for detection purposes. Zhou et al. (2017) devel-
oped a platform consisting of DNA-template silver nanoclusters, whose emission 
could be tuned from yellow to red. This was achieved by hybridization of the nonfluo-
rescent silver nanocluster with A20-C55 complementary DNA (T20) to enhance the 
yellow color signal and with A20-C55 that shows yellow and red signals of equal 
intensity in the presence of Mg+2 ions. It was reported that the fluorescence could also 
be reverted by just separating two silver nanoclusters by means of the strand displace-
ment reaction. Other silver fluorescent nanoclusters have been developed to detect 
pathogenic bacteria such as Escherichia coli (E. coli). This system was developed as 
DNA–silver nanoclusters (AgNCs) integrated with an MDA (MNP-DNAzyme-
AChE) complex (MNP stands for magnetic nanoparticle and AChE for acetylcholin-
esterase). Its principle is based on the fact that MNPs act as separated elements, 
DNAzyme as the bacteria recognition agent, and AChE as the enzyme. After the sepa-
ration induced by the MNPs, the released AChE is transmitted to the DNA-AgNCs to 
induce the hydrolysis of acetylthiocholine (ATCh), thereby enhancing the fluores-
cence of the nanoclusters (Zhang et al. 2013). DNA- AgNCs have also been used for 
microRNA location (Zhang et al. 2018) and the detection of dopamine (Del Bonis-
O’Donnell et al. 2018) and thiol compounds (Huang et al. 2011). In some other cases, 
the published research has only been focused on the synthesis procedure and mecha-
nisms of silver nanocluster formation (Petty et al. 2004).

4.2.3  Copper, Platinum, and Palladium Nanoparticles

Copper is an element that is widely used in electricity and the production of inte-
grated circuits. Similar to silver, it is not a widely studied material in DNA nano-
technology because of its tendency to cleave DNA molecules. Nonetheless, Cu 
nanowires can be manufactured from DNA templates, and they are good potential 
candidates for use in the integrated circuit production field. Double-stranded DNA 
solutions have been used to functionalize nanoparticles from Cu (NO3)2 metal pre-
cursors. In this process, the positively charged Cu ions associate with the negatively 
charged DNA phosphate groups, and then, ascorbic acid is added to reduce copper, 
where it simultaneously forms a coat around the DNA, resulting in the formation of 
nanowires 3 nm in height (Monson and Woolley 2003).

Copper nanoblocks have been synthesized on different kinds of RNA (mRNA 
(T1E4), miRNA (miR-107), and lncRNA (SChLAP1) biomarkers) for simultaneous 
detection of multiple RNA biomarkers related to prostate cancer. This method 
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involves electrochemical RNA detection. The isolated RNA targets used in the 
study are adsorbed onto gold electrode surfaces by means of nucleic-acid-based- 
gold affinity interactions, and then a catalyzed H2O2 reduction is induced, allowing 
for the generation of an electrochemical current that can be measured by amperom-
etry, which reveals the amount of the RNA target. This application has a very inter-
esting perspective because it has an outstanding possibility to be transferred to the 
clinical domain (Koo et al. 2018).

There are also studies related to DNA-templated Cu nanoclusters for hepatitis B 
virus detection through a colorimetric approach. This method was first used with 
DNA as the probe molecule. Good outcomes were achieved mainly because no 
equipment was necessary to detect the target molecule and because this method 
could be carried out with only the naked eye, which resulted in an inexpensive and 
practical setup (Mao et al. 2016).

Platinum nanoparticles (PtNPs) have been functionalized with DNA by the 
exchange of labile surface ligands with thiol-modified DNA, in a similar fashion to 
that of DNA functionalization of AuNPs. Nanomaterials that mimic enzymes are 
referred to as nanozymes. In a publication by Fu et al. (2014), G-C-rich oligonucle-
otides (AG22 (5′-A(G3T2A)3G33′) and RET2 (5′-GC5(GC4)3T-3′)) were chosen 
as templates to synthesize peroxidase-mimicking Pt nanozymes with a size distribu-
tion of 1.7–2.9 nm and with high activity. The most efficient, synthesized Pt nano-
zyme was 66% metallic Pt0 stabilized by the i-motif RET2, with an average diameter 
of 2.9 nm. The goal of this research was to basically prove the ease of modulation 
of physicochemical properties by programming the DNA sequences used.

Palladium nanoparticles (PdNPs) possess good catalytic activities and electro-
chemical properties. Their potential applications are under study. Some reported 
studies on DNA/PdNPs are limited to their catalytic activity and their relation to 
certain types of reactions that involve catalysis under certain conditions. One of 
these systems at the nanoscale to exploit catalysis uses a Pd/DNA catalyst that was 
shown to have high activity for the selective hydrogenation of carbon–carbon triple 
bonds, carbon–carbon double bonds, and nitro groups, as well as for a Suzuki–
Miyaura coupling reaction, which involves Pd. The motivation behind this study 
was triggered by the fact that salmon testes contain DNA that could be processed 
further instead of being discarded as waste. The Suzuki–Miyaura coupling reaction, 
as well as hydrogenation, facilitates this processing (Itoh et al. 2012).

Another example is a catalyst composed of palladium nanoparticles supported 
on DNA composed of Pd(II) and Pd(IV) species in their oxide form, which aids in 
the copper- and ligand-free Sonogashira–Hagihara coupling of aryl iodides with 
terminal aromatic and aliphatic alkynes. The most important advantages reported 
were that the catalyst could be easily recovered and reused in five cycles, thereby 
showing better performance than commercial palladium catalysts. Additionally, 
such a system achieved 54–86% isolated yields using low catalyst loadings (0.5 mol) 
under mild conditions (65 °C) in methanol without air exclusion (Camacho et al. 
2017). Additional studies on these DNA-based metal nanostructures are mostly 
related to their construction and characterization but not on a specific application 
(Song et al. 2015).
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4.2.4  Magnetic Nanoparticles

Magnetic nanoparticles can be manipulated using magnetic fields. They consist of 
two components: a magnetic material (iron, nickel, or cobalt) and a chemical com-
ponent that has functionality. These nanoparticles have high field irreversibility, a 
high saturation field, superparamagnetism, extra anisotropy contributions, and 
shifted loops after field cooling. All these properties arise from narrow and finite- 
size effects and surface effects that dominate the magnetic behavior of individual 
nanoparticles (Akbarzadeh et al. 2012). The combination of MNPs and DNA gives 
rise to nanocomposites that are of two types: DNA on MNPs and NPs on DNA. Their 
applications are mainly found in nanoelectronic devices, in vivo and in vitro bio-
medical studies, magnetosensitive biosensors, drug delivery systems for therapy, 
and magnetic fluorescent nanocomposites (Pershina et al. 2014).

The identification of bacteria in urine samples via rolling circle amplification, 
MNPs, and a simple reader based on low-cost optical components was proposed by 
Mezger et al. (2015). E. coli was successfully detected in clinical samples with no 
false negatives and a total assay time, including sample preparation, amplification, 
and detection, under 4 h; this result is very promising in terms of practicality. The 
synthesized MNPs were coated with universal readout probes that matched generic 
sequences on the backbone of the padlock in an agglutination assay format. 
Fluorophore-labeled Fe3O4 NPs attached to single-stranded DNA were synthesized 
for the detection of pyrophosphate anion (P2O7

4−, PPi) in the synovial fluid. The 
concentration of proton pump inhibitors (PPi) was found to be in the 
2.0 × 10−7 − 4 × 10−6 M range, with a detection limit of 76 nM. These results could 
be valuable for the diagnosis and therapy of arthritic diseases in the future (Tong 
et al. 2015).

4.2.5  Quantum Dots

Quantum dots (QDs) are artificial semiconductor crystalline nanoparticles that have 
applications in composites, solar cells, and fluorescent biological labels. Their sizes 
are between 2 and 10 nm. QDs are generally constructed from elements of group II 
(e.g., Zn, Cd), group VI (e.g., Se, S), groups III and V, and groups IV and VI of the 
periodic table, and they possess unique physical and optical properties. Their 
 functionalization using DNA has been under study providing a good platform for 
applications, such as gene expression quantification and imaging, single-molecule 
imaging, live tracking of proteins, and self-assembly (Banerjee et al. 2016).

Mirkin (2000) published an article entitled “Programmed assembly of DNA 
functionalized quantum dots,” in which they basically reported the first successful 
modification of semiconductor nanoparticles with single-stranded DNA, the gener-
ation of DNA-linked QD assemblies, and a preliminary account of their optical 
properties. Such an investigation was a milestone for the QDs/DNA combination.

Cadmium-free DNA-functionalized Mn-doped ZnS (DNA-ZnS:Mn2+) QDs have 
also been studied. These QDs were found to have excellent photo-stability with the 
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help of polyacrylic acid (PAA) and DNA.  A Förster resonance energy transfer 
(FRET) model utilizing these QDs and WS2 nanosheets as energy donor-acceptor 
pairs, which was applied to protein detection through the terminal protection of 
small molecule-linked DNA, with positive outcomes, was reported by Zhang et al. 
(2017). Table 12.3 shows information on DNA-based quantum dots to enhance their 
potential as tools, especially for biomedical applications.

4.2.6  Other DNA-Based Nanosystems

The aforementioned studies dealt with nanomaterials comprising DNA and a nano-
structure of only one type, for example, DNA–gold nanostructures and DNA–silver 
nanostructures, but there is also research on the synthesis of nanoparticles that 
involve DNA to generate more complex nanocomposite structures that might com-
bine gold–silver nanoparticles, graphene-AgNCs, etc., with DNA-only-based struc-
tures such as cages, origami, and aptamers. Additionally, other variations of 
DNA-directed synthesis have been considered. For example, DNA templates have 
been used to synthesize combined metals or other combinations of nanomaterials. 
Table 12.4 lists some of these studies for further reference.

4.2.7  Biodegradable and Metal DNA Nanoparticles for Transfection

Biodegradable polymer-based nanoparticles have been developed to be functional-
ized by or to encapsulate DNA in the form of plasmids to genetically transform 
cells. Plasmids are loop-shaped forms of DNA that are found in bacteria and in 
some eukaryote cells. When used for cloning, transferring, and manipulating genes, 
they are called vectors. These vectors are incorporated as functionalizing agents or 
as encapsulated components within nanoparticles. Biodegradable polymers have 
been used for this purpose because they protect the plasmid. After entering into the 
cells, they are easily degraded, releasing the plasmid within the cell so that it can be 
replicated. Because of their biocompatibility, gold nanoparticles have also been 
used to transfect cells. The most common polymers used in the synthesis of this 
kind of nanoparticles are chitosan and sodium alginate. The procedure to synthesize 

Table 12.3 Representative publications dealing with DNA-quantum dot composite systems

System Application References

DNA-conjugated QDs assembled 
on photoactive thin films

Optoelectronics Noh et al. (2014)

QDs conjugated to single-stranded 
DNA

Ratiometric detection of unlabeled 
DNA

Page et al. (2016)

QDs-DNA hydrogel Delivery of Dox to cancer cells, 
increasing the potency of the drug

Zhang et al. (2017)

DNA nanocage-quantum dots 
complex

Biosensing Wang et al. (2016)
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the nanoparticles is usually the ionic gelation method. DNA interacts with the poly-
mer by means of electrostatic interactions. Once the nanoparticles have been syn-
thesized, they are mixed with a solution of the microorganisms or cells to be 
incubated and transformed. For comparison purposes, a control is usually performed 
with a chemical transfection reagent and the cells or microorganisms to be trans-
formed. Chitosan nanoparticles have been thiolated for the transfection of CaCo2 
cells (Martien et al. 2008), and sodium alginate nanoparticles have been combined 
with chitosan to provide better transfection efficiencies in NIH 3T3 cells.

5  Conclusion and Future Perspective

DNA has proved to be an excellent molecule for use in nanotechnology in many of 
its forms because it is highly versatile and can be programmed and manipulated at 
the nanoscale. The synergy between nanoparticles and DNA nanotechnology is a 
very useful interaction that takes advantage of DNA programmability and its feasi-
bility as a conjugating or templating agent, providing nanoparticles with improved 
properties in comparison with other approaches. Disadvantages of DNA nanotech-
nology include the high costs involved in the production of synthetic DNA, low 
yields, and high sensitivity of the generated structures, especially to temperature 
variations and nucleases. Nonetheless, some solutions to these limitations have been 
proposed (Tørring and Gothelf 2013).

DNA is a promising tool for the synthesis of materials in the form of oligonucle-
otides, single-stranded or double-stranded forms, or plasmids, with impressive traits 
that can be used in areas such as biomedical applications and nanoelectronics.
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1  Introduction

Nanoparticles are one of the emerging interests in recent times due to their variable 
applications in different sectors of society, which include agricultural industries, 
chemical industries, electronic industries, oil industries, consumer goods industries, 
biotechnology industries along with their use in energy production. Nanoparticles 
(NPs) are distinct entities by virtue of their morphology, for instance, nanoscopic 
size ranging from 1 to 100 nm, crystalline or amorphous shape, natural or anthropo-
genic origin, and chemical composition based on metal, carbon, composites, or den-
drimers. With time, nanoparticles have acquired extensive use in various biological 
processes along with the other physical and chemical processes aiding their poten-
tial use in the environment as well as human health. The distinct small size of the 
nanoparticles makes them favorable for penetration through cells to reach specific 
target locations, thereby increasing interactions with cellular components. The high 
volume to the surface area ratio of these structures enables them for faster adsorption 
and permitting more target-specific delivery of compounds (Khan et al. 2017). These 
impart specific properties to the nanoparticles and make the intermediary compo-
nents between bulk-sized parent components and atomic-sized molecular elements. 
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Further classification of nanoparticles based on their morphology differentiates 
between low or high aspect ratio, isometric or asymmetrical in uniformity, and com-
posed of single material or composites (Tighe-Neira et al. 2018). Significant charac-
teristics including a hike in the catalytic and photocatalytic activity are observed for 
(ZnO)NPs, (TiO2)NPs, and (CeO2)NPs. Localized adsorption of different materials 
on the surface of other metal (gold, silver, and platinum) nanoparticles was also 
observed. Also, higher surface reactivity of these particles escalates the surface 
chemistry modification and, thus, makes it appropriate for use in antimicrobials 
(Vollath 2013). Based on the modifying property of nanoparticles, they have been 
accepted industrially for technology, medicine, and environment (Corujeira et  al. 
2017; Simon et al. 2018).

Industrial and commercial use of nanoparticles has increased the release and 
accumulation of nanoparticles in our soil and water bodies even to the groundwater 
level. Generally, the nanoparticle used in the different field tends to accumulate in 
the dumping region and eventually get washed out to other neighboring regions. 
Besides this, nanoparticles are being involved in a wide range of chemical, physical, 
and biological processes, and they tend to bioaccumulate and biomagnify and are 
thus found in escalated concentrations in the modern-day food chain (Fig. 13.1) 
(Sarkar et al. 2019). Nanoparticles like copper oxide have wide use in electronic 
sensor devices, which include glucose sensors, pH sensors, and amino acid  detectors 
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Fig. 13.1 Increase of nanoparticle concentration in plants due to bioaccumulation and biomagni-
fication or different nanoparticles from various natural and anthropogenic sources
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(Ibupoto et al. 2013). They are also widely found in various electronic goods, such 
as mobiles, calculators, computers, and thermostable devices. Hence, the sources 
for copper oxide nanoparticles contamination are electronic dumps. Silver oxide 
nanoparticles possess antimicrobial benefits and thus are often utilized in different 
cosmetic compounds, textile industries, dishwashers, washing machine, pesticides, 
wastewater treatment plants, etc., and nanoparticles from these get eventually 
washed out, thus contaminating the soil and aquatic environment (Aziz et al. 2016; 
Joshi et  al. 2018). Titanium oxide from solar cells and light-emitting diodes are 
susceptible to wash out from the user devices and get cumulated in the environment 
producing nanotoxicity pollution (Environmental Working Group 2017). Aluminum 
oxide or alumina nanoparticles are widely utilized in different industrial down-
stream processes, especially in air filters, and also utilized as a drying agent or 
desiccator. Wastewaters generated out from nuclear power plants are also found to 
contain alumina nanoparticles (Sadiq et al. 2011). Other nanoparticles like silicon 
dioxide nanoparticles are found in contamination sources like batteries, semicon-
ductor devices, nanochips, and electronic wastes; for carbon nanotubes, the sources 
are modern-day sports gear like baseball bat, ice hockey stick, or different industrial 
structures like arrow bars, wing turbine, or forks. Forest fires and volcanic eruptions 
are also considered as natural sources for carbon nanotubes contamination sources 
(Murr et al. 2004; Sarkar et al. 2019). The major problem concerned with nano-
pollution and nano-contamination is that the mean of identification and localization 
of the nano-contaminants are very restricted if present at all. Bioaccumulation and 
biomagnification are the only ways for detection of such nano-contaminants. Hence, 
the study of the effects of these contaminants is very essential to monitor the level 
of contamination. This chapter explains the effects of different nanoparticles on 
plant photosynthesis.

2  Nanoparticles and Its Effects on Plant System

A variety of metallic nanoparticles are already existing in the environment in asso-
ciation with several plant species; however, their effects on plant’s growth and phe-
notypic parameters may vary among species. The effect of the nanoparticles on 
plants mostly varies due to growth conditions, growth stages, exposure time, and 
applied dosage (Rizwan et  al. 2019). Nanoparticles help in seed germination of 
plants by activating the aquaporin controlling genes, thereby improving the water 
uptake along with the penetration of nanoparticles. This regulates the cell cycle and 
helps in improved seed germination in plants (Khan et al. 2017). Along with the 
amount of water uptake, present of sufficient food as enzymes like amylase and 
protease promotes survival of the plant. TiO2 nanoparticles at low concentration 
increase the activity of amylase and protease enzymes (Laware and Raskar 2014). 
Along with several negative impacts on plants, nanoparticles also induce beneficial 
effects to their associated plants in forms of abiotic stress resistance by antioxidant 
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compounds, positive biostimulation, higher biomass production, and end products 
with higher quality standards (Tripathi et al. 2017; Apodaca et al. 2018). Titanium 
dioxide (TiO2) nanoparticles also produce significant beneficial effects on plants 
like Arabidopsis thaliana, Lactuca sativa, Avena sativa, Linum usitatissimum, and 
cabbage. It improves the germination of seeds, extends root length, and enhances 
the growth of seedling plants (Aghdam et al. 2016; Andersen et al. 2016; Szymanska 
et al. 2016). Further increased crop yield and biomass were observed for plants like 
tomato, wheat, and corn (Morteza et al. 2013; Rafique et al. 2015; Raliya et al. 2015).

The abiotic stress tolerating various antioxidant targets the reactive oxygen spe-
cies (ROS) released by different cell organelles on exposure to oxidative stress 
caused by abiotic conditions like high salinity, drought, unfavorable temperature, 
heavy metal concentration, floods, or ultraviolet radiation. Moreover, the antioxi-
dant compounds also provide a defense to the plants in such stress by stimulating 
the antioxidant activities and accumulating nutrients, osmolytes, and amino acids to 
plant system to attain the defensive action against the damage. Nanoparticles asso-
ciated with soil minerals like analcite [(AlSiO2O6)-H2O] help induce drought resis-
tivity to wheat and corn plants by facilitating their antioxidative action with the 
production of photosynthetic pigments (Zaimenko et al. 2014). In another study, it 
was also observed that foliar usage of iron nanoparticles induced stomatal closure 
in the safflower plant to combat the water scarcity in drought conditions (Zareii 
et al. 2014). However, it was also observed that noncompatible or high concentra-
tion of nanoparticles may also block the root cells by adhering to them and prevent 
water and nutrient adsorption (Martínez-Fernández et al. 2016). Nanoparticles asso-
ciated with plants at the hypothermic condition or chilling stress influence the 
upregulation of MeAPX2 and MeCu/ZnSOD genes that elevate the activity of the 
antioxidant system components like dehydroascorbate reductase, monodehydro-
ascorbate reductase, and glutathione reductase that combat the generated ROS 
within the plant cell. The report suggested that application of nanoparticles like 
SiO2 NPs and, in some cases, TiO2 NPs assists this stress tolerance mechanism in 
plants (Haghighi et al. 2014). Under heat stress, plant cells tend to produce molecu-
lar chaperone named heat shock proteins (HSPs), which provide plant cells thermo-
tolerance. It was evident in studies that carbon nanotubes help to maintain the 
sublime expression of these (Khodakovskaya et al. 2011). Other nanoparticles like 
cerium oxide (CeO2) and TiO2 NPs also have some reports with benefit for plant 
survival in heat stress. However, the contribution of these nanoparticles in photo-
synthesis is still a concern for further investigations (Zhao et  al. 2012; Qi et  al. 
2013). Other forms of abiotic stress like salinity or heavy metal contamination 
induce different plant defense mechanism which targets to compensate or nullify 
the generated ROS within the cell. Silicon oxide and titanium oxide in some cases 
have reports to help these defense mechanisms by either reducing the accumulation 
of heavy metal or maintaining membrane integrity to preserve the desired salt con-
centration within the cell (Ali et al. 2019; de Sousa et al. 2019; Rizwan et al. 2019; 
Singh and Lee 2016).
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3  Influence of Nanoparticles on Photosynthesis

Since photosynthesis is an exclusive approach to harness energy for the plants, the 
involvement of the nanoparticles and their effects on photosynthesis activity are a 
concern for recent studies. Some of the beneficial effects of nanoparticles noted of 
plant development and photosynthesis had been discussed for some plant species 
(da Costa and Sharma 2016; Sarmast and Salehi 2016; Zarate-Cruz et al. 2016; Cao 
et al. 2018). The detailed interaction of the nanoparticles with the molecular and 
ultrastructural components of plant photosynthetic system needs to be established to 
analyze the rate of the energy transformation occurring in the plants (Hossain et al. 
2015; Du et al. 2016; Panpatte et al. 2016; Sarmast and Salehi 2016; Tripathi et al. 
2017). Hence, nanoparticle interaction with plants and their impacts on plant physi-
ological processes along with biological modifications of the photosynthetic system 
makes it the center of analysis and the interest of study.

Photosynthesis relies more on the structural configuration of the participating 
organelle that is responsible for maintaining the gaseous concentrations within the 
apparatus and controlling carbon dioxide circulation to the sites of carboxylation 
(Mediavilla et al. 2001). Other factors that influence the efficiency of the photosyn-
thesis include the structural integrity of chloroplasts and mesophyll cells, adequate 
grana development, carbon dioxide aggregation, activity of photosynthetic enzyme, 
ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), and adequate pres-
ence of pigments that aids photosynthesis like chlorophyll a and chlorophyll b along 
with the regulatory proteins of the thylakoids (Wang et al. 2014; Sáez et al. 2017). 
Hence, positive impacts produced on the photosynthesis efficiency with the altera-
tion of the factors responsible for photosynthesis yield an option for crop improve-
ment (Foyer et al. 2017).

Light energy absorbed during photosynthesis is essentially converted into chemi-
cal energy, yielding different elements of the photosynthetic reaction. Nanoparticles 
can impose both positive and negative impacts on photosynthesis. It influences the 
light-harvesting complex of plants by enhancing the reaction, as well as inhibits the 
electron transport system, and alters the activity of RuBisCo, carbonic anhydrase, or 
phosphoenolpyruvate carboxylase (PEP) enzymes, thus preventing the metabolism 
pathway (Kataria et al. 2019). Scientists are currently working to produce higher 
crop yield by improving the photosynthetic efficiency of plants using embedded 
SWCNTs in their chloroplasts. SWCNTs enhanced the transport rate of electron 
and improved the biochemical sensing of signaling molecules like nitric oxide 
(Giraldo et al. 2014). Since the nanoparticles affect the functionality of the photo-
synthetic elements, thorough research with time is required to evaluate the impacts 
caused by the nanoparticles on the final products of the photosynthetic process. 
Utilization of a conjugate of silicon compound with photosystem II provided a sta-
ble photosynthetic reaction for oxygen development, which enhanced the activity of 
photosynthetic enzymes and pigments. The conjugate could also act as photosen-
sors in artificial photosynthesis (Xie et al. 2012; Siddiqui et al. 2014, 2015).
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4  Different Nanoparticles Affecting Plant Photosynthesis

Metallic nanoparticles tend to inhibit photosynthesis by the generation of oxidative 
free radicals or reactive oxygen species (ROS) that oxidizes the various photosyn-
thetic components. The triggered responses caused by nanoparticles vary among 
different plant species as discussed in Table 13.1.

Table 13.1 Nanoparticles and their effects on photosynthesis

S. 
no. Nanoparticle

Target site of 
photosynthesis Effects Remarks References

1. Zinc oxide NP Chlorophyll biosynthesis 
genes like chlorophyll 
synthetase (Chlg), 
Copper response defect1 
(Crd1), Mg chelatase 
Subunit D(Chld), 
chlorophyll A oxygenase 
(Cao), 
Mg-protoporphyrin IX 
methyl transferase 
(Chlm)
Photosystem (PS) I 
structure gene like 
photosystem I subunit 
D2 (Psad2), PS I subunit 
N (Psan), PS I subunit 
E2 (Psae2), PS I subunit 
K (Psak)

Inhibits biosynthesis 
of chlorophyll and 
also hampers the 
photosystem I; hence, 
reduces the 
photosynthetic ability 
of the plant

Harmful Wang et al. 
(2016)

2. Copper (II) oxide 
NP

Chloroplast Decreases thylakoids 
number in granum of 
chloroplasts. Inhibits 
the expressions of 
photosystem I 
proteins and 
completely 
demolishes 
photosystem II at 
higher concentration

Harmful da Costa 
and 
Sharma 
(2016)

3. Carbon 
nanodrops

Photosystem Improve electron 
transfer in 
photosystem

Helpful Wang et al. 
(2018)

4. Super 
paramagnetic 
iron oxide NP 
(Fe3O4, 
Co0.2Zn0.8Fe2O4, 
Co0.5Zn0.5Fe2O4)

Chlorophyll synthesis, 
photosystem II

Produces loads of 
reactive oxidative 
species which causes 
destruction of 
chlorophyll and other 
building parts of 
photosystem II 
causing shut down of 
whole photosynthesis 
process to huge 
extent

Harmful Barhoumi 
et al. 
(2015)

(continued)
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Table 13.1 (continued)

S. 
no. Nanoparticle

Target site of 
photosynthesis Effects Remarks References

5. Titanium oxide 
NP

Chlorophyll a content 
and photosystem II

Decreases 
chlorophyll a content 
and decreases the 
efficiency of 
photosystem II. No 
effect on RuBisCo, 
and total soluble 
sugar (TSS) was 
reported though

Harmful Dias et al. 
(2019)

6. Silver NP Chlorophyll content Significant oxidation 
of chlorophyll as well 
as components of 
photosystem. It also 
inhibits plant growth

Harmful Li et al. 
(2018)

7. Gold NP Photosystem II Au NP enables the 
reabsorption of 
photoemission from 
photosystem II, 
hence enhances the 
photosynthesis 
efficiency

Helpful Torres 
et al. 
(2018)

8. Silicon dioxide 
NP

Detoxification, oxidative 
stress relief

SiO2 NP helps plants 
to grow in deferent 
metallic stress by 
reducing the uptake 
of the metallic 
contaminants as well 
as by protecting the 
antioxidant system of 
plant

Helpful de Sousa 
et al. 
(2019)
Rizwan 
et al. 
(2019)
Ali et al. 
(2019)

9. Aluminum oxide 
NP

Chlorophyll and other 
photosynthetic pigments 
and photosystem 
components

Al2O3 NP creates 
oxidative stress in 
plants and causes 
damage on 
photosynthetic 
pigment systems

Harmful Yanık and 
Vardar 
(2018)

10. Single-walled 
carbon nanotube

Electron transport in 
photosystem and 
antioxidant system of 
chloroplast

It enhances the 
electron transport in 
chloroplast, enhances 
photoabsorption, and 
enhances the 
antioxidant system of 
chloroplast

Helpful Giraldo 
et al. 
(2014)
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4.1  Metallic Nanoparticle

The impacts caused by superparamagnetic iron nanoparticles (SPIN) (Fe3O4, 
Co0.2Zn0.8Fe2O4, Co0.5Zn0.5Fe2O4) were reported in a recent study on Lemna gibba 
plant model. The net chlorophyll content was stated to have reduced significantly in 
SPIN-supplemented plant specimens. A significant reduction was also observed in 
the efficacy of photosystem II due to an elevated amount of ROS present in the 
SPIN-treated viable cells. Due to the disparity produced in the antioxidant system, 
further oxidation of components comprising the photosynthetic complex, was 
observed, thus causing a decline in the photosynthetic yield in SPIN-treated plant 
specimen (Barhoumi et al. 2015).

Titanium dioxide (TiO2) nanoparticles induce many positive effects on plants by 
increasing the chlorophyll content in plants like tomato and oilseed (Raliya et al. 2015; 
Li et al. 2015). It was also found to exhibit the higher enzymatic activity of RuBisCo 
in Arabidopsis thaliana, Ocimum basilicum, and Spinacia oleracea (Lei et al. 2007; 
Ze et al. 2011; Kiapour et al. 2015). Although study on wheat (Triticum aestivum) 
plant showed no effect of TiO2 nanoparticles on RuBisCo activity, total soluble sugar 
content, photochemical and nonphotochemical quenching values, however the chloro-
phyll a content and the overall photosystem efficiency faced negative impacts due to 
the presence of TiO2. It was also evident that TiO2 NP builds significant oxidative 
stress in wheat plant leaves as suggested by Dias et al. (2019).

Reports suggesting silver nanoparticles for agricultural benefits state its role in 
root development of Crocus sativus by blocking the stimulation of ethylene (Rezvani 
et al. 2012). Silver NP is also known for seedling germination of Glycine max by 
reducing the cytotoxic by-products generation in glycolysis and by enhancing the 
stress-related protein expression (Mustafa et al. 2015). Certain evidence of silver 
nanoparticles was reported to favor photosynthesis in Pelargonium zonale by the 
rise in the activity of antioxidant enzymes and the measure of photosynthetic pig-
ments (Ghorbanpour and Hatami 2014). However, Ag-NP at low concentration in 
Arabidopsis thaliana was reported to have raised the amount of oxidative stress 
generation in the chloroplast, thereby subsequently reducing the production of chlo-
rophyll followed by impairing the photosynthetic elements causing a remarkable 
decline in the photosynthetic activity and restricting plant growth. It also concluded 
that diclofop-methyl minimizes the stability of these nanoparticles and its release of 
harmful oxidative groups remarkably, thus being appropriate for use against silver 
nanoparticle toxicity (Li et al. 2018).

The variety of responses initiated by zinc oxide NP in plant photosynthesis dif-
fers among plant species. For say, one study has reported its positive impacts in 
photosynthesis in Helianthus annuus L. by elevating the assimilation rate of carbon 
dioxide and chlorophyll content, which increased the stomatal carbon dioxide con-
centration significantly (Torabian et al. 2016). Similar feedback was observed on 
Moringa peregrina with growth in chlorophyll and carotenoid content due to zinc 
oxide NP. The chlorophyll content was reported to have increased by threefolds in 
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Cyamopsis tetragonoloba with the use of zinc oxide NP as foliar (Raliya and 
Tarafdar 2013). A separate study conducted on Arabidopsis thaliana demonstrated 
the suppressive effects exhibited by zinc oxide NP on the chlorophyll biosynthesis 
gene like copper response defect 1 (Crd1), chlorophyll synthetase (Chlg), 
Mg-protoporphyrin IX methyltransferase (Chlm), chlorophyll A oxygenase (Cao), 
and Mg-chelatase subunit D (Chld). It was also found to inhibit the genes respon-
sible for photosystem I, which includes PS I subunit E2 (Psae2), PS I subunit D2 
(Psad2), PS I subunit K (Psak), and PS I subunit N (Psan). Hence, it was concluded 
that zinc oxide NP acts as a blocking agent of chlorophyll biosynthesis and prevents 
the photosystem I, thereby reducing the photosynthetic ability of A. thaliana (Wang 
et  al. 2016). Drawbacks of zinc oxide NP were reported for Azolla filiculoides, 
where the nanoparticles depleted the contained chlorophyll significantly (Zarate- 
Cruz et al. 2016).

Copper NP in the different study showed having a toxic effect on photosynthesis 
in different plant system. One study on Oryza sativa showed that copper oxide NP 
decreased thylakoid number in granum of chloroplast, which reduces its photosyn-
thetic ability to a huge extent. The inhibition of protein expression was observed by 
copper oxide NP for PSI; however, complete demolish of the PSII was detected with 
an increase in the applied dose (da Costa and Sharma 2016). Copper oxide NP also 
minimized the concentration of photosynthetic pigments in Landoltia punctata like 
carotenoids, chlorophyll a, and chlorophyll b (Lalau et al. 2015). However, some 
reports favored the utilization of copper oxide NP, suggesting their noninterference 
with chlorophyll content. When exposed to Elodea nuttallii, copper oxide NP or 
copper ions exhibited no toxic effects on photosynthetic pigment even after an 
exposure period of 24 h (Regier et al. 2015). A similar nondeleterious effect on the 
photosynthetic pigment was also noted in Capsicum annuum; however, the declina-
tion in efficiency was observed due to depletion in electron transport capacity of PS 
II (Rawat et al. 2018).

The level of nanotoxicity induced by gold nanoparticles on plants depends on 
the coating material used to stabilize the nanostructure. The use of organic 
 compound like citrate or inorganic agents like carbonate to build the coatings for 
stabilizing agents issued no harmful impacts on the photosynthetic process of 
Chlamydomonas reinhardtii (Behra et al. 2015). But interestingly, when a study 
conducted on the same species with gold nanoparticle having a coating of mono-
saccharides like mannose, the photosynthetic yield was decreased to a significant 
extent (Perreault et al. 2011). Glycine max plant showed the dependent chlorophyll 
loss when gold nanoparticle was applied as well as the efficiency of photosystem 
I. The reason behind it was predicted as gold NP locks the electrons of photosystem 
I (Ghosh and Chattopadhyay 2015). However, in recent in vitro study, gold nanopar-
ticles had exhibited positive impact on photosynthesis by enabling the photosystem 
II for reabsorption of emitted light or photon and increase its efficiency (Torres 
et al. 2018).
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4.2  Nonmetallic Nanoparticle

Nonmetallic nanoparticles like single-walled carbon nanotube (SWCNT), carbon 
nanodrop, and silicon dioxide nanoparticle are biocompatible and less oxidative, 
thus having very few toxic effects on plant photosynthesis. Among these nonmetallic 
nanoparticles, silicon dioxide nanoparticle has a diverse use in agriculture as it 
boosts germination and seedling growth in different plant species, which include 
Lycopersicum esculentum, Solanum lycopersicum L., Lenus culinaris Medik., 
Cucurbita pepo L., and Agropyron elongatum L. (Haghighi et al. 2012; Azimi et al. 
2014; Siddiqui et al. 2014; Sabaghnia and Janmohammadi 2014; Almutairi 2016). 
Silicon dioxide nanoparticles are also established for the detoxification in plants. For 
instance, maize plants grown in acidic soil build up internal oxidative stress due to 
the exposure to the high concentration of aluminum, which degenerates the photo-
synthetic pigment system of maize. Silicon dioxide nanoparticles used in forms of 
fertilizer as a foliar not only reduced the generated oxidative stress by aluminum 
contamination but also seized the aggregation of aluminum in the stromal cells 
within the photosynthetic apparatus of maize (de Sousa et  al. 2019). Studies on 
Oryza sativa and Triticum aestivum L. (wheat) have reported similar kind of effects 
of SiO2 NPs, where it detoxicated the effect of heavy metal like cadmium accumula-
tion in plants (Ali et al. 2019; Rizwan et al. 2019). These nanoparticles also intensi-
fied the photosynthetic rate, stomatal conductance, and synthesis of photosynthetic 
pigments in Crataegus sp. (Ashkavand et al. 2015). Significant elevation of the chlo-
rophyll content in Ocimum basilicum was observed, which magnified its photosyn-
thetic efficiency and made competent to survive in high salinity stress (Kalteh et al. 
2014). Hence, it can be claimed that SiO2 NPs have beneficial stress combat applica-
tion in agriculture as well as enhancement of photosynthetic rate. Other nonmetallic 
nanoparticles like carbon nanodrops are also reported with a beneficial effect in 
photosynthesis in mung bean sprout (Wang et  al. 2018). SWCNT also showed 
amplification of photosynthetic efficiency in an in  vitro study on chloroplasts 
(Giraldo et al. 2014). Carbon nanoparticles mainly function by increasing the rate of 
electron transport within the chloroplast by virtue of their ability to redirect electrons 
and attachment with biological membranes. Their role in the reduction of photocata-
lytic or chemo-oxidative stress originated within the chloroplast by providing stabil-
ity was also evident.

5  Conclusion

The development and emphasis on nanotechnology have produced a variety of 
nanoparticles with their distinct applications in multitudinous sectors of modern 
life. But with the increase in its implementation for societal advancement, their 
release from different anthropogenic sources accumulates in the environment as 
contaminants. Their typical structural profile makes them highly reactive and stable 
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in nature, which permits them to persist in the environment for a prolonged period. 
The exposure of higher concentration of these nanoparticles predominantly has 
deteriorative effects on biological systems. The current agricultural industry 
employs these nanoparticles in forms of fertilizers, pesticides, and supplements 
since their nanoscopic size makes them ideal for absorption within plants. However, 
the different responses triggered by the applied plants in the presence of these 
nanoparticles vary among species. The metal-based nanoparticles usually tend to 
lower the rate of photosynthesis through the generation of oxidative stress within 
the chloroplast, which depletes the number of photosynthetic pigments contained in 
the organelle. Nonmetallic nanoparticles like carbon nanodrops, carbon nanotubes, 
and silicon dioxide promote the photosynthesis mechanism by amplifying the rate 
of electron transport within the chloroplast or providing a defensive system against 
the generated oxidative stress. The detailed mechanisms associated with the interac-
tions between the nanoparticles with the photosynthetic system are not well defined 
and their lies a huge scope of intensive research.
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1  Introduction

Myconanotechnology is a recent branch in the nanotechnology field which depends 
on fungal biomass as a reducer and a stabilizer agent to synthesize green metallic 
nanoparticles (NPs), especially from edible and medicinal mushrooms (Owaid and 
Ibraheem 2017). Macrofungi/mushrooms grow on the organic substrate in nature 
(Nivedita et  al. 2009). Fungal biomasses include a wide variety of amino acids, 
proteins, polysaccharides, and phenols existing in mushrooms that are used in the 
mycosynthesis of both intracellular and extracellular selenium, gold, cadmium, 
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 silver, and iron NPs (Owaid and Ibraheem 2017) . The biosynthesis of metallic 
nanoparticles has been carried out from microorganisms and plants such as fungus 
(Al-Bahrani et al. 2017), yeast (Rahimi et al. 2016), bacterium (Prabhusaran et al. 
2016), algae, and plants (Khan et  al. 2016; Al-Bahrani et  al. 2018; Owaid et  al. 
2019) . The first study that applied the biosynthesis of nanoparticles from the mush-
room started in 2004 when Numata et al. (Numata et al. 2004) produced nanofibers 
from the polysaccharides/β-1,3-glucan (Schizophyllan) from Schizophyllum com-
mune mushroom for the first time, but Vigneshwaran et  al. (Vigneshwaran et  al. 
2007) used the protein of spent mushroom substrates (SMS) of oyster mushroom in 
2007 to mycosynthesize the nanoparticle which has a medical importance toward 
different pathogenic microorganisms. The green chemistry in the field of production 
of metallic nanoparticle from the mushroom was improved to mycosynthesize eco-
friendly AuNPs, AgNPs, and FeNPs, etc., compared to the toxic chemical methods 
(Owaid and Ibraheem 2017).

2  Mushroom-Mediated Synthesis of Metallic NPs

2.1  Silver Nanoparticles

The synthesized AgNPs from the mushroom have an excellent antibacterial activity 
against E. coli and P. aeruginosa compared to S. aureus (Nithya and Ragunathan 
2009), and thus these AgNPs are effective in controlling the microbes 
(Balashanmugam et al. 2013). The antibacterial action of mushroom AgNPs was 
effective against E. coli, K. pneumoniae, V. cholera, P. aeruginosa, and S. aureus 
(Elumalai et al. 2012). However, the biosynthesized AgNPs exhibited antibacterial 
efficacy against different pathogenic bacteria like K. pneumoniae and S. aureus 
(Vigneshwaran et al. 2007) because of their important role in degradation and dam-
aging of cellular macromolecules and DNA of the microbe (Sen et al. 2013a).

2.2  Gold Nanoparticles

The mycosynthesized gold nanoparticles (AuNPs) from the crude extract or glu-
can of Pleurotus florida have been successful (Bhat et al. 2013; Sen et al. 2013a). 
Mycosynthesis of AuNPs in watery mixture by free-cell filtrate of P. sapidus as a 
reducer and stabilizer agent has an average size of 65  nm (Sarkar et  al. 2013). 
However, polysaccharides of the mushroom P. florida were used for biosynthesiz-
ing the spherical AuNPs with a rough-cluster surface reached from 5 to 15 nm (Sen 
et al. 2013a). The reason for the various sizes and shapes of the AuNP is related to 
the temperature of the reaction (Philip 2009). Pleurotus ostreatus has been used to 
form gold nanoparticles (5–50 nm) from specific proteins (laccase and tyrosinase) 
(Vetchinkina et al. 2013; El-Batal et al. 2015). These nanoparticles have a spheri-
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cal shape with sizes ranging from 22 to 39 nm; they are applied in the field of 
decolorization of dyes (El-Batal et al. 2015). Fresh and dry aqueous extracts of 
Pleurotus cornucopiae var. citrinopileatus (oyster mushroom) are an important 
selection for reduction of gold ions and in the production of the stable spherical 
gold nanoparticle ranging from 16 nm to 91 nm and from 23 nm to 100 nm, respec-
tively (Owaid et al. 2017a). Other macrofungi were used to mycosynthesize Ag 
nanoparticles such as Terminalia sp. (the desert truffle) (Owaid et al. 2018) and 
Agaricus bisporus (Atila et al. 2017; Owaid et al. 2017c).

2.3  Selenium Nanoparticles

Also, the selenium nanoparticle (SeNP) has become a new research point since it 
was found to keep remarkable bioavailability, low toxicity, and excellent anticancer 
activity. However, SeNPs tend toward aggregation easily and have significant anti-
cancer activity. SeNPs were synthesized from polysaccharide–protein complexes 
obtained from P. tuber-regium sclerotia (Wong 2014). Also, Wu et al. (2012) used 
polysaccharides–protein complex of mushrooms to synthesize SeNPs and applied 
them in cellular uptake and anticancer (antiproliferative) efficacy. The anticancer 
activity is beneficial when using the mushroom Pleurotus ostreatus in the synthesis 
of selenoproteins through the absorption of element of Se from the supplemented 
media, in vitro (Kaur et al. 2013).

2.4  Iron Nanoparticles

Alternatively, the iron nanoparticles (FeNPs) were significantly biosynthesized 
inside the hypha of oyster mushroom (Pleurotus sp.). The uptake of FeNPs through 
the fungal cell membrane involves a reduction process from Fe+3 (ferric ion) to Fe+2 
(ferrous ion). Almost all iron uptakes in fungi involve the reduction from the ferric 
ion to the ferrous ion form using two approaches in two subdivisions, basidiomy-
cota and ascomycota (Mazumdar and Haloi 2011).

2.5  Zinc Sulfide Nanoparticles

Also, oyster mushrooms were used to synthesize zinc sulfide nanoparticles 
(ZnSNPs) having a size of less than 200 nm (Senapati and Sarkar 2014). The oyster 
mushroom Pleurotus ostreatus was used in the formation of a spherical ZnS NP 
with sizes ranging from 2 to 5 nm, which has crystalline nature (Senapati and Sarkar 
2014). However, Wu et al. (2010) synthesized ZnS-N3 NPs from ubiquitin (protein) 
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of P. ostreatus with diameter average reaching 15 nm, which are applied as desalting 
probes in protein analysis.

2.6  Cadmium Sulfide Nanoparticles

Fungi were successfully used in mycosynthesis of CdSNPs (Nasrin et al. 2014). The 
extract of P. ostreatus was used to synthesize CdSNPs, which are used in industrial 
applications. In intracellular, spherical CdS-Pleurotus NPs had approximate size of 
5 nm (Borovaya et al. 2015), which were used in different industrial applications. 
Coriolus versicolor extract was used with cadmium sulfide to form spherical 
CdSNPs, which have 100–200 nm (Sanghi and Verma 2009a).

3  Biomedical Applications of Mushroom NPs

3.1  Antibacterial Activity

The biosynthesized silver nanoparticles (AgNPs) from medicinal and edible mush-
rooms were investigated toward Gram-positive and Gram-negative bacteria, in vitro. 
The mushroom has antibacterial efficacy (Owaid et al. 2015a); therefore, its fruiting 
bodies and mycelia are used for the biosynthesis of metallic nanoparticles. The 
polysaccharide and the protein of oyster mushrooms were used to mycosynthesize 
AgNPs (Vigneshwaran et al. 2007; Sen et al. 2013b). Polysaccharides and proteins 
are used as bioreducers and as capping agents, the size them being controllable, and 
their stability being high (Wong 2014).

Those metallic nanoparticles exhibited antibacterial efficacy toward Gram- 
positive and Gram-negative bacteria. Intracellularly, the spherical AgNPs were 
(their diameter ranged from 31 to 100 nm) produced inside mycelia of Agaricus 
bisporus, Pleurotus ostreatus, Calocybe indica, Ganoderma lucidum (Mirunalini 
et  al. 2012), Pycnoporus sanguineus (Chan and Don 2013), and Schizophyllum 
commune (Chan and Don 2013; Arun et al. 2014). From another side, extracellu-
larly, both mycelia and fruiting bodies extracts were synthesized and applied as a 
nanodrug against human pathogenic bacteria, as mentioned in Table 14.1.

Many studies and researchers referred to mycosynthesis of the silver nanoparti-
cle (AgNP) from medicinal and edible mushrooms like Pleurotus florida (Bhat et al. 
2011), Pleurotus ostreatus (Devika et al. 2012), Pleurotus sajor-caju (Nithya and 
Ragunathan 2009; Nithya 2012; Rahi and Barwal 2014), Pycnoporus sanguineus 
(Chan and Don 2013), Ganoderma lucidum (Karwa et al. 2011), Tricholoma cris-
sum (Ray et al. 2011), Schizophyllum commune (Chan and Don 2013; Arun et al. 
2014; Sujatha et al. 2016), and Lentinula edodes (Sujatha et al. 2015). Moreover, the 
mycosynthesized AgNPs from the natural extracts of the fungal mycelia (biomass) 
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Table 14.1 Antibacterial activity of the mushroom nanoparticles and their characteristics

Mushrooms The used parts
Type of 
nanoparticles

Shape of 
NPs

Diameter 
(nm) References

Pleurotus 
sajor-caju

Proteins of SMS AgNPs Spherical 30.5 Vigneshwaran et al. 
(2007)

Pleurotus 
florida

Polysaccharides AgNPs Crystalline ND Sen et al. (2013b)

Agaricus 
bisporus

Mycelia 
(intracellular)

AgNPs Spherical 80–100 Mirunalini et al. 
(2012)

Calocybe 
indica

Mycelia 
(intracellular)

AgNPs Spherical 100 Mirunalini et al. 
(2012)

Ganoderma 
lucidum

Mycelia 
(intracellular)

AgNPs Spherical 50 Mirunalini et al. 
(2012)

Pleurotus 
ostreatus

Mycelia 
(intracellular)

AgNPs Spherical 100 Mirunalini et al. 
(2012)

Pycnoporus 
sanguineus

Mycelia 
(intracellular)

AgNPs Spherical 53 Chan and Don 
(2013)

Schizophyllum 
commune

Mycelia 
(intracellular)

AgNPs Spherical 54 Chan and Don 
(2013)

Schizophyllum 
commune

Mycelia 
(intracellular)

AgNPs Spherical 54–99 Arun et al. (2014)

Pleurotus 
ostreatus

Mycelia 
(extracellular)

AgNPs Spherical 8–50 Devika et al. (2012)

Pleurotus 
florida

Mycelia 
(extracellular)

AgNPs Spherical 20 Bhat et al. (2011)

Pleurotus 
sajor-caju

Mycelia 
(extracellular)

AgNPs Spherical 5–50 Nithya and 
Ragunathan (2009)

Pleurotus 
sajor-caju

Mycelia 
(extracellular)

AgNPs Spherical 35 Nithya (2012)

Pleurotus 
sajor-caju

Mycelia 
(extracellular)

AgNPs Spherical 4–22 Rahi and Barwal 
(2014)

Pycnoporus 
sanguineus

Mycelia 
(extracellular)

AgNPs Spherical 64–70 Chan and Don 
(2013)

Lentinula 
edodes

Mycelia 
(extracellular)

AgNPs ND ND Sujatha et al. 
(2015)

Ganoderma 
lucidum

Mycelia 
(extracellular)

AgNPs Various 10–70 Karwa et al. (2011)

Schizophyllum 
commune

Mycelia 
(extracellular)

AgNPs ND 51–93 Arun et al. (2014)

Schizophyllum 
commune

Mycelia 
(extracellular)

AgNPs Spherical 56 Chan and Don 
(2013)

Schizophyllum 
commune

Mycelia 
(extracellular)

AgNPs Variable 300–500 Sujatha et al. 
(2016)

Tricholoma 
crissum

Mycelia 
(extracellular)

AgNPs Spherical, 
hexagonal

5–50 Ray et al. (2011)

Pleurotus 
ostreatus

Fruiting bodies AgNPs ND 50 Elumalai et al. 
(2012)

(continued)
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Table 14.1 (continued)

Mushrooms The used parts
Type of 
nanoparticles

Shape of 
NPs

Diameter 
(nm) References

Pleurotus 
ostreatus

Fruiting bodies AgNPs Spherical 100 Mirunalini et al. 
(2012)

Pleurotus 
ostreatus

Fruiting bodies AgNPs Spherical 40 Al-Bahrani et al. 
(2017)

Pleurotus 
florida

Fruiting bodies AgNPs ND ND Sujatha et al. 
(2013)

Pleurotus 
florida

Fruiting bodies AgNPs Spherical 5–40 Kaur et al. (2018)

Pleurotus eous Fruiting bodies AgNPs ND ND Latha (2010)
Pleurotus 
platypus

Fruiting bodies AgNPs Spherical 560–710 Sujatha et al. 
(2013)

Pleurotus 
pulmonarius

Fruiting bodies AgNPs ND ND Shivashankar et al. 
(2013)

Pleurotus 
djamor

Fruiting bodies AgNPs ND ND Shivashankar et al. 
(2013)

Pleurotus 
giganteus

Fruiting bodies AgNPs Spherical 5–25 Debnath et al. 
(2019)

Phellinus 
igniarius

Fruiting bodies AgNPs Spherical <100 Paul et al. (2015b)

Hypsizygus 
ulmarius

Fruiting bodies AgNPs ND ND Shivashankar et al. 
(2013)

Calocybe 
indica

Fruiting bodies AgNPs ND ND Sujatha et al. 
(2013)

Ganoderma 
lucidum

Fruiting bodies AgNPs Spherical 50–100 Mirunalini et al. 
(2012); Paul et al. 
(2015b)

Ganoderma 
lucidum

Fruiting bodies AgNPs Face 
centric 
cubic

75 Paul et al. (2015a)

Ganoderma 
applanatum

Fruiting bodies AgNPs Spherical 133–0.36 Mohanta et al. 
(2016)

Inonotus 
obliquus

Fruiting bodies AgNPs Spherical 14–35 Nagajyothi et al. 
(2013)

Microporus 
xanthopus

Fruiting bodies AgNPs Spherical 40 Balashanmugam 
et al. (2013)

Tricholoma 
matsutake

Fruiting bodies AgNPs Spherical 10–20 Anthony et al. 
(2014)

Agaricus 
bisporus

Fruiting bodies AgNPs Spherical 10–20 Narasimha et al. 
(2011)

Agaricus 
bisporus

Fruiting bodies AgNPs ND ND Dhanasekaran and 
Latha (2013); 
Sujatha et al. 
(2013)

Agaricus 
bisporus

Fruiting bodies AgNPs Spherical 30 Sudhakar et al. 
(2014)

(continued)
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have a spherical shape and they show high efficacy against the pathogenic bacteria 
in vitro.

Also, the natural extracts of mushrooms’ fruiting bodies were used as green 
reducers to produce silver nanoparticles (AgNP) and gold nanoparticles (AuNP), as 
given in Table 14.1. AuNPs were produced from Agaricus bisporus and applied as 
antibacterial agents (Eskandari-Nojehdehi et  al. 2016). Otherwise, AgNPs were 
produced from various mushrooms like Pleurotus ostreatus (Elumalai et al. 2012; 
Mirunalini et  al. 2012; Al-Bahrani et  al. 2017), Pleurotus florida (Sujatha et  al. 
2013; Kaur et al. 2018), Pleurotus eous (Latha 2010), Pleurotus platypus (Sujatha 
et  al. 2013), Pleurotus pulmonarius, Pleurotus djamor, Hypsizygus ulmarius 
(Shivashankar et  al. 2013), Pleurotus giganteus (Debnath et  al. 2019), Phellinus 
igniarius (Paul et  al. 2015b), Calocybe indica (Sujatha et  al. 2013), Ganoderma 
lucidum (Mirunalini et al. 2012; Paul et al. 2015b), Inonotus obliquus (Nagajyothi 
et al. 2013), Microporus xanthopus (Balashanmugam et al. 2013), Tricholoma mat-
sutake (Anthony et  al. 2014), and Agaricus bisporus (Narasimha et  al. 2011; 
Dhanasekaran and Latha 2013; Sujatha et al. 2013; Sudhakar et al. 2014).

The antibacterial activity of the mycosynthesized oyster mushroom AgNPs was 
investigated by Mirunalini et al. (Mirunalini et al. 2012) against S. aureus and they 
observed a good inhibition zone. The silver nanoparticles (AgNPs) are known to be 
good anti-inflammatory and antibacterial agents, and are thus applied to enhance 
wound healing (Fu et al. 2006). The antibacterial mechanisms of Ag+ are not exactly 
known until now and may be derived through the electrostatic attraction between 
the negative charge of bacterial cell membranes and the positive charge of silver 
nanoparticles (Dibrov et al. 2002). Thus, the mycosynthesized AgNPs were selected 
as a suitable nanodrug against different pathogenic bacteria.

3.2  Antifungal Activity

The silver nanoparticles (AgNPs) biosynthesized from edible and medicinal mush-
rooms were tested against fungi (molds and yeasts) in vitro. The mushroom has 
antifungal efficacy (Owaid et al. 2017b) and thus their mycelia and fruiting bodies 
are used to biosynthesize metallic nanoparticles.

These nanoparticles were synthesized intracellularly and extracellularly of 
mycelia and from fruiting bodies. Intracellularly, the spherical AgNPs were (their 

Table 14.1 (continued)

Mushrooms The used parts
Type of 
nanoparticles

Shape of 
NPs

Diameter 
(nm) References

Agaricus 
bisporus

Fruiting bodies AgNPs Dispersed 20–44 Ul-Haq et al. 
(2015)

Agaricus 
bisporus

Fruiting bodies AuNPs ND 33.5–0.8 Eskandari- 
Nojehdehi et al. 
(2016)

ND non-detected
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diameter ranged from 54 to 99 nm) produced inside mycelia of Schizophyllum com-
mune and they exhibited antidermatophytic fungal activity (Arun et al. 2014). From 
another side, extracellularly, both mycelia and fruiting bodies’ extracts were synthe-
sized and exhibited antiplant pathogenic fungal activity, antidermatophytic fungal 
activity, and anticandidal activity as shown in Table 14.2.

Many researchers reported mycosynthesis of AgNPs with antifungal efficacy 
from edible and medicinal mushrooms such as Schizophyllum commune (Arun et al. 
2014), Pleurotus ostreatus (Yehia and Al-Sheikh 2014), Tricholoma crissum (Ray 
et al. 2011), Pleurotus cornucopiae var. citrinopileatus (Owaid 2013; Owaid et al. 
2015b), and P. sajor-caju (Musa et al. 2017). However, the biosynthesized AgNPs 
from the extracts of fungal mycelial (biomass) were spherical in shape and exhib-
ited high effect toward Candida spp. in  vitro. The results of antifungal activity 
showed that AgNPs have moderate inhibitory activity against C. pseudotropicalis, 
C. glabrata, C. albicans, and C. krusei infections, in vitro (Owaid et al. 2015b). 
Also, the antifungal efficacy of the AgNP toward the yeast Candida albicans was 
reported by Yehia and Al-Sheikh (Yehia and Al-Sheikh 2014).

Some researchers have referred that the positive charges of silver element are cru-
cial for their antifungal activity through cell permeability and progressive release of 
membrane constituents (Sastry et al. 1997), free radical generation (Sanghi and Verma 
2009b), and the electrostatic attraction between the negative charge of the fungal cell 
membrane and the positive charge of the AgNP (Janga et al. 2011; Meng et al. 2011).

Table 14.2 Antifungal activity of mushroom nanoparticles and their characteristics

Mushrooms The used parts
Type of 
nanoparticles

Shape of 
NPs

Diameter 
(nm) References

Schizophyllum 
commune

Mycelia 
(intracellular)

AgNPs Spherical 54–99 Arun et al. 
(2014)

Schizophyllum 
commune

Mycelia 
(extracellular)

AgNPs ND 51–93 Arun et al. 
(2014)

Pleurotus ostreatus Mycelia 
(extracellular)

AgNPs Spherical 4–15 Yehia and 
Al-Sheikh 
(2014)

Tricholoma crissum Mycelia 
(extracellular)

AgNPs Spherical 
and 
hexagonal

5–50 Ray et al. 
(2011)

Pleurotus 
cornucopiae var. 
citrinopileatus

Fruiting bodies AgNPs Spherical 20–30 Owaid et al. 
(2015b)

Pleurotus 
cornucopiae var. 
citrinopileatus

Fruiting bodies AgNPs Spherical 10–50 Owaid (2013)

P. sajor-caju Fruiting bodies AgNPs Spherical 17 Musa et al. 
(2017)

ND non-detected
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3.3  Antioxidant Activity

In general, the mushroom has antioxidant efficacy that leads to raise its anticancer 
and antitumor activities (Chang and Miles 2004; Patra et al. 2013). This phenome-
non is useful to mycosynthesize the metallic NP, which has a positive antioxidant 
property that reflects on the potential anticancer characteristics (Owaid and Ibraheem 
2017). The mycosynthesized Ag nanoparticle from various mushrooms leads to its 
application as a nanodrug because of its high anticancer activity and low toxicity to 
the normal cell in  vivo compared with the chemo-synthesized Ag nanoparticle 
(Egorova et  al. 2016). Fruiting bodies of Agaricus bisporus (Dhamodharan and 
Mirunalini 2012, 2013), Ganoderma lucidum, Phellinus igniarius (Paul et  al. 
2015b) and Inonotus obliquus (Nagajyothi et  al. 2013) were used to synthsize 
nanoparticles which had antioxidant activity, as in Table 14.3.

3.4  Anticancer Activity

The mycosynthesized metallic nanoparticles, such as AuNPs (Bhat et  al. 2013), 
AgNPs (Ismail et al. 2015), and SeNPs (Wu et al. 2013b), are considered a potential 
nanodrug against many cancer cell lines that have been investigated and applied. 
Polysaccharides–protein complex of some mushrooms like Pleurotus tuber-regium 
and Polyporus rhinocerus was used to biosynthesize SeNPs (Wu et al. 2013a; Wong 
2014). Mycelia (intracellular) and mycelia (extracellular) of the mushroom 
Schizophyllum commune were used to mycosynthesize AgNPs (Arun et al. 2014), 
while only mycelia (extracellular) of Pleurotus ostreatus (Yehia and Al-Sheikh 
2014) and Ganoderma neo-japonicum (Gurunathan et al. 2015) were used in the 
previous work as in Table 14.4.

The extracts of fruiting bodies of mushrooms also were used as a green reducer 
to produce AgNPs and gold nanoparticles (AuNPs) as in Table 14.4. AuNPs were 
produced from Pleurotus florida (Bhat et al. 2013) and Hericium erinaceus (Raman 
et  al. 2015) and applied as anticancer agents. Otherwise, AgNPs were produced 

Table 14.3 Antioxidant activity of the mushroom nanoparticles and their characteristics

Mushrooms
The used 
parts

Type of 
nanoparticles

Shape of 
NPs

Diameter 
(nm) References

Ganoderma 
lucidum

Fruiting 
bodies

AgNPs Spherical <100 Paul et al. (2015b)

Phellinus 
igniarius

Fruiting 
bodies

AgNPs Spherical <100 Paul et al. (2015b)

Inonotus 
obliquus

Fruiting 
bodies

AgNPs Spherical 14–35 Nagajyothi et al. (2013)

Agaricus 
bisporus

Fruiting 
bodies

Chitosan ND ND Dhamodharan and 
Mirunalini (2012, 2013)

ND non-detected
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from various mushrooms like Pleurotus ostreatus (Ismail et  al. 2015), Pleurotus 
djamor var. roseus (Ramana et al. 2015), Inonotus obliquus (Nagajyothi et al. 2013), 
Phellinus igniarius, and Ganoderma lucidum (Paul et al. 2015b).

The gold nanoparticle (AuNP) showed remarkable dose-dependent antiprolifera-
tive effect toward different cancer cell lines due to its irregular shape and its func-
tionalization with organic moieties. The potential applications of the mycosynthesized 
gold nanoparticle (AuNP) from P. florida, magnetite nanoparticle, and other inor-
ganic nanoparticles in hyperthermia of cancer cells were investigated by Bhat et al. 
(Bhat et al. 2013).

However, The AgNPs of Pleurotus sanguineus with a size of 20 nm have more 
cytotoxic than ions of silver. Also, the smallest particle size of AgNP has been 
recorded to have a greater ability for apoptosis induction in Mc3T3-E1 cell line than 

Table 14.4 Anticancer activity of the mushroom-nanoparticles and their characteristics

Mushrooms The used parts
Type of 
nanoparticles

Shape of 
NPs

Diameter 
(nm) References

Mushroom Polysaccharides– 
protein complex 
(PPC)

SeNPs Spherical <50 Wu et al. 
(2012)

Pleurotus 
tuber-regium

PPC SeNPs ND ND Wong (2014)

Polyporus 
rhinoceros

PPC SeNPs Spherical ND Wu et al. 
(2013a)

Schizophyllum 
commune

Mycelia 
(intracellular)

AgNPs Spherical 54–99 Arun et al. 
(2014)

Schizophyllum 
commune

Mycelia 
(extracellular)

AgNPs ND 51–93 Arun et al. 
(2014)

Pleurotus 
ostreatus

Mycelia 
(extracellular)

AgNPs Spherical 4–15 Yehia and 
Al-Sheikh 
(2014)

Ganoderma 
neo-japonicum

Mycelia 
(extracellular)

AgNPs Crystalline <6 Gurunathan 
et al. (2015)

Inonotus 
obliquus

Fruiting bodies AgNPs Spherical 14–35 Nagajyothi 
et al. (2013)

Pleurotus 
djamor var. 
roseus

Fruiting bodies AgNPs Spherical 5–50 Ramana et al. 
(2015)

Pleurotus 
ostreatus

Fruiting bodies AgNPs Spherical 17.5 Ismail et al. 
(2015)

Phellinus 
igniarius

Fruiting bodies AgNPs Spherical <100 Paul et al. 
(2015b)

Ganoderma 
lucidum

Fruiting bodies AgNPs Spherical <100 Paul et al. 
(2015b)

Pleurotus 
florida

Fruiting bodies AuNPs Irregular, 
spherical, 
triangular

10–50 Bhat et al. 
(2013)

Hericium 
erinaceus

Fruiting bodies AuNPs Spherical 20–40 Raman et al. 
(2015)

ND non-detected

M. N. Owaid
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the larger AgNP. Thus, the design of nanoparticles sizes needs to be done carefully 
for use in biomedical and pharmaceutical applications (Chan and Don 2013). The 
anticancer characteristics of silver nanoparticles have been tested against MCF7 
cells (breast carcinoma cells). They caused a remarkable decrease in the cell viabil-
ity of MCF7 cell lines and inhibited the growth of cells up to 78% depending on the 
AgNPs dose (Yehia and Al-Sheikh 2014).

4  Conclusion and Future Prospects

This chapter aims to distinguish synthesizing metallic nanoparticles from edible and 
medicinal mushrooms in terms of so-called “myconanotechnology.” Mycomaterials 
have been used as a mycoreducer to produce green metallic nanoparticles. 
Mycomaterials include crude extracts like extracts of fruiting bodies, fungal myce-
lia, and free cell filtrate, or purified matters like polysaccharides, enzymes/proteins, 
and polysaccharide–protein complexes. Green chemistry methods have attempted 
to mycosynthesize AgNPs, AuNPs, FeNPs, SeNPs, CdSNPs, ZnSNPs, and PaNPs 
using mycological materials by various approaches. The green mushroom nanopar-
ticles (mushroom NPs) have been investigated as antibacterial, antifungal, antican-
didal, antioxidant, anticancer, and antitumor agents. Generally, Pleurotus AgNPs 
have a higher synthesis and wider therapeutic applications among mushrooms. The 
medical role of all synthesized nanoparticles is due to their unique characteristics 
such as nanosize, crystalline nature, and eco-friendly agents.
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1  Introduction

Nanotechnology is a rapidly developing area of research with chemical, biological, 
physical, and engineering sciences interspersed (Gouda et al. 2015). Nanotechnology 
is mainly focused on creating nanostructures such as metal nanoparticles, graphene, 
and their composites, carbon nanotubes (CNTs) and quantum dots (QDs) (Singh 
et  al. 2018). It is a science centered on atomic, molecular, and supermolelcular 
chemistry that involves the synthesis, design, and manipulation of particle size that 
ranges from 10 to 100 nm (Moodley et al. 2018; Roy 2017). Nano scale sizes have 
an advantage of significant enormous surface-to-volume ratio and expanded surface 
area, and enhanced physical and chemical properties of NPs in solution (Abdi et al. 
2018). Due to its unique properties, nanoparticles show applications in healthcare, 
environment, chemical industries, optics, etc. Nanobiotechnology deals with the 
biological systems that investigate the use of nanoparticles. It also provides differ-
ent techniques to synthesize environment-friendly, nontoxic, and clean technology 
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for the synthesis of metal nanoparticles. Nanoparticles possess specific properties 
like size, distribution, and morphology in comparison to larger particles (Roy 2017).

Nano is utilized to explain one billionth of a meter. Nano is a Greek phrase that 
means extremely small. The term nanotechnology was instituted by Professor Norio 
Taniguchi in 1974 to explain the production of materials at the nanometric level. 
Nanotechnology is a rapidly developing field with its application to formulation of 
nanoscale-level materials in the area of innovation and science.

It is a multidisciplinary scientific challenge, and entails creation and utilization 
of substances capabilities at nanoscale. Nano phasic and nanostructured materials 
are attracting more attention due to their specific process which makes their applica-
tions in biological and pharmaceuticals. More than this, it also covers the pollution 
sensing through various techniques, and helps in environmental risk assessment and 
monitoring. It is also applied in cosmetic, electronic, and energy-related applications.

Nanoparticle can be said as bridge between bulk materials and molecular struc-
tures. Bulk materials have constant physical properties because they have grain 
structures with random grains individually oriented in space and connecting each 
other across grain boundaries but nanomaterials are made up of a single grain with 
all the atoms oriented in crystalline lattice.

Nanoparticles indicate various properties such as surface plasma resonance, 
quantum confinement, and melting temperature decrease, which might be immedi-
ately identified with the crystalline lattice of the nanomaterials (Sharma et al. 2009). 
The nanoparticles are fundamentally characterized into two classes: inorganic 
nanoparticles and organic nanoparticles. Inorganic nanoparticles are noble nanopar-
ticles, for instance, silver and gold nanoparticles; semiconductor nanoparticles, for 
example, zinc oxide and titanium oxide; and organic nanoparticles incorporate car-
bon nanoparticles, for instance, fullerenes. Silver nanoparticles are utilized in wide 
scope of utilizations in beautifying agents, pharmaceuticals, medical devices, cloth-
ing, and water refinement.

In nature, numerous metals are present, but only a few of them are synthesized in 
nanostructure like gold, zinc, palladium, platinum, and silver (Pirtarighat et  al. 
2019). Among those mentioned above, silver nanoparticles attract attention due to 
their unique properties such as morphology, particular geometry, and stability 
(Shaik et al. 2018). Application of AgNPs includes agriculture, air filtration, water 
purification, and pharmaceuticals (Pirtarighat et al. 2019). AgNPs are also used in 
coating materials, molecular switches, data packing, and sensing devices. 
Furthermore, AgNPs possess extremely good antimicrobial activities against some 
microorganism. Silver nanoparticles have superior antimicrobial activity to other 
metals such as copper, mercury, lead, and chromium (Premasudha et al. 2015).

Numerous methods for the synthesis of nanoparticles are developed to improve 
the properties and some modified methods are developed to achieve specific 
nanoparticles. The synthesis of nanoparticles is classified into two methods: bot-
tom- up and top-down (Ealias and Saravanakumar 2017). The construction method 
or the bottom-up method includes the accumulation of materials from the base: 
atom by atom, molecule by molecule, or group by group. This procedure is mostly 
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used to create nanoscale materials with the ability to produce a uniform shape, size, 
and distribution. Spinning, Sol gel, pyrolysis, biosynthesis, and chemical vapor 
deposition (CVD) are the most commonly used bottom-up methods for nanoparticle 
synthesis. The destructive or top-down method refers to a reduction in bulk materi-
als and makes it smaller to particles on a nanometric scale. Laser ablation, nano-
lithography, sputtering, thermal decomposition, and mechanical milling are among 
the broadly used nanoparticle synthesis techniques (Ealias and Saravanakumar 2017).

The physical methodologies are evaporation, condensation, and laser ablation. 
Nonattendance of solvent contamination in prepared nanoparticles is an advantage 
of physical method in contrast with the chemical method. The physical method of 
a tube furnace at atmospheric pressure has a few drawbacks like more power con-
sumption, a huge space for tube furnace, and a large amount of energy. Some studies 
have shown a synthesis of silver nanoparticles by way of a small ceramic heater with 
a local heating region. This physical method is useful to synthesize small NPs in 
high concentration. The laser ablation of bulk metal materials is also used for silver 
NPs. The productivity of synthesized nanoparticles relies upon a few parameters, for 
example, wavelength of laser, the laser fluence, length, and duration, etc. From these 
techniques, unadulterated and uncontaminated metal colloids can be synthesized as 
nonappearance of chemical compounds in a solution (Iravani et al. 2014).

The chemical method includes the synthetic decrease by organic and inorganic 
reducing dealers for synthesis of different nanoparticles. For the reduction of silver 
ions to silver nanoparticles, different reducing agents are used such as sodium 
citrate, Tollens reagent, N, N-dimethylformamide (DMF), and sodium borohydride 
(NaBH4) solutions. To keep away from the agglomeration of synthesized metal 
nanoparticles, surfactants are used that protect the particles from the loss of their 
surface properties and sedimentation. It has been reported that polymeric mixes are 
protective agents for stabilizing nanoparticles (Iravani et  al. 2014). Physical and 
chemical strategies are costly and non-eco-friendly. Therefore, these chemical and 
physical methods are facing challenges and inspiring the researchers to find an alter-
native way to synthesize NPs.

In this context, biological methods are ecological and cost-effective for the syn-
thesis of nanoparticles. As a reducing agent, plants and microorganisms are used. 
The biogenic synthesized nanoparticles are highly stable and have good properties. 
Several studies reported the fungi, bacteria, and algae utilized for synthesis of bio-
genic nanoparticles (Iravani et al. 2014).

Green plant-mediated nanoparticles have received more attention in evaluation 
with chemical and physical methods. This method is environmentally friendly, cost- 
effective, and safe for biomedical applications (Iravani et al. 2014). Also, they offer 
a large-scale production of nanoparticles because of low-cost advantages. Apart 
from this, it reduces the labor in the maintenance of cell culture. Extracts of plants 
go about as a capping and reducing agent for green nanoparticles synthesis. The 
presence of secondary metabolites (alkaloids, flavonoids, phenols, tannins, terpens, 
etc.) in plant extracts is responsible for the core mechanism of reduction. Figure 15.1 
shows the different approaches of nanoparticle synthesis.
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It is well known that mangroves and mangrove associates are abundant in sec-
ondary metabolites due to their unique environmental conditions (Lanka 2017). 
There are restricted investigations that reveal the synthesis of green nanoparticles 
utilizing mangroves (Abdi et al. 2018).

Mangroves trees are halophytes, a plant that thrives in salty conditions. They 
develop in conditions where no other vascular plants can develop productively; this 
makes a significant contribution that benefits the environment (Mangrove.org). The 
term mangrove was referred by Tomlinson (1986) (Naik and Dhabe 2018). The total 
mangrove forest cover in India is about 4662.56  km2 while globally they cover 
around 1,46,500.00 km2. This represents 3% of the global mangrove area and 0.14% 
of the total geographical area of the country (Devi and Pathak 2016).

Mangroves are most gainful and naturally significant biological systems of the 
world since it gives significant and uncommon ecosystem good services and other 
supportive features to human culture, coastal, and marine systems. Mangroves have 
high economic and ecological importance because they allow to stabilize seashores 
and lessen the overwhelming effects of natural disasters like hurricanes and tsu-
namis, reproducing nursing grounds to marine species as well as food, gasoline, 
medicinal drug, and constructing fabric for local communities. The fast degradation 
and disappearance of mangroves ought to have bad outcomes on the marine system 
and impact the atmospheric composition and weather (Giri et al. 2011).

Fig. 15.1 Different approaches of nanoparticles synthesis
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Mangroves forests survive in extreme situations like excessive temperatures, 
high saltiness, low oxygen, and muddy soil (Devi and Pathak 2016). Mangroves 
have different habitat strategies to survive in harsh environment like adjustments to 
low oxygen, restricting salt admission, limiting water loss, nutrient uptake and 
expanding survival of offspring (Patra and Mohanta 2014). They have developed 
different chemophysiological processes to reproduce and survive in unique environ-
ments and habitats. Such a metabolic process of mangrove plants stimulates the 
synthesis of various secondary metabolites. These secondary metabolites utilized as 
bioactive compounds also serve as anticancerous, antimicrobial, antifungal, and 
antiviral medicines, etc. (Table 15.1). The capacities of mangrove plants to produce 

Table 15.1 Medicinal properties of different mangrove species

Sr.
No.

Mangrove 
species

Plant 
part used Medicinal properties References

1. Rhizophora 
apiculata

Stem, 
bark

Antioxidants

2. Rhizophora 
mucronata

Leaves, 
bark

Elephantiasis, hematoma, hepatitis, ulcers, 
and a febrifuge, bark-powerful, astringent 
useful in diabetics, hemorrhage

Revathi (2013)

3. Acanthus 
illicifolius

Paralysis, asthma, rheumatic pains, 
analgesics, anti- inflammatory and 
leishmanicidal activities, anticancer and 
anti-viral agents, used for reducing the 
poison snakebite, skin diseases, kidney 
stone, smallpox and ulcer

Bandaranayake 
(2002)
Revathi (2013)

4. Aegicerasc 
orniculatum

Asthma, diabetes, rheumatism Revathi (2013)

5. Avicennia 
marina

Leaves Rheumatism, small pox, ulcers Revathi (2013)

6. Avicennia 
officinalis

Leaves Small pox, joint pain, urinary disorders, 
bronchial asthma, stomach disorders, as an 
aphrodisiac, diuretic, hepatitis, leprosy

Revathi (2013)

7. Bruguiera 
cylindrica

Hepatitis Revathi (2013)

8. Bruguiera 
gymnorhiza

Fruit 
root & 
leaves,

Eye diseases, diarrhea, root & leaves- to 
treat burns

Bandaranayke 
(1998)
Bamroongrugsa 
(1999)

9. Ceriops 
decandra

Hepatitis, ulcer Revathi (2013)

10. Excoecaria 
agallocha

Uterotonic, purgative, treatment of epilepsy, 
conjunctivitis, dermatitis, hematuria, 
leprosy, toothache

Revathi (2013)

11. Lumnitzera 
racemosa

Antifertility, treatment of asthma, diabetes, 
snakebite

Revathi (2013)

12. Sonneratia 
apetala

Leaves Hepatitis Revathi (2013)
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such unique molecules encourage the researchers to discover significant medica-
tions for some potent therapeutic products (Patra and Mohanta 2014). In the adverse 
environmental stress conditions, mangroves produce different constituents like 
alkaloids, phenols, tannins, flavonoids, and saponins that possess different antimi-
crobial activities. Much research is undertaken for the discovery of biological activ-
ities of the mangrove plant. Disk diffusion assays, agar well diffusion assays, 
dilution assays, and bioautographic assays have been used to investigate the antimi-
crobial activities of mangroves. The most widely recognized methods of activity for 
antimicrobial activities are interfering with nucleic acid, interfering with cell wall 
and cell membrane, and enzyme interactions, etc. (Patra and Mohanta 2014). The 
major compounds that are involved in antimicrobial activities are quinons, flavones, 
flavonoids, flavonols, tannins, terpens, polypeptides, and alkaloids. Mangroves are 
a novel source of development of novel drugs (Patra and Mohanta 2014).

The mangroves offer forestry (charcoal, firewood, honey, wood, and many oth-
ers.) and fishery products (crab, mollusk, fish, prawn, and so forth.). The twigs of 
mangroves are used for preparing firewood and charcoal because of its excessive 
calorific values. Mangrove forests are extraordinarily crucial coastal assets, which 
can be crucial to our socio-socio-economic development. The mangroves are 
resources of fairly valued business merchandise and fishery assets and also as web-
sites for developing eco-tourism. The forests of mangroves have been appeared to 
continue extra than 70 direct human activities, which includes gas-wood collection 
to fisheries (Kathiresan and Bingham 2001). Mangroves offer accurate area to 
honey bees and assist to facilitate apiculture activities. In the Sundarban area, it 
provides employment to over 2000 people, who extract a large amount of honey 
annually (Krishnamurthy 1990). Avicennia and other mangroves are also used as a 
meals supplement for camel, sheep, buffaloes, and other cattle in India, the Persian 
Gulf area, Pakistan, and Indonesia (Mukhtar and Hannan 2012).

2  Biomedical Application of Green Synthesized 
Nanoparticles

2.1  Drug Delivery

For drug therapy, nanoparticles have been used. To the targeted tissue, the appropri-
ate dose of drugs could be reached, but to ensure the highest efficiency with patient’s 
safety, they are engineered to deliver in an arranged time span. Gold nanoparticles are 
used to prepare scaffolds and vehicles for medication conveyance because of its non-
toxicity, nonimmunogenicity, and functionalization properties. The different states of 
nanoparticles react to different infrared wavelengths, for instance, nanocapsules, and 
nanobones are dissolved at light wavelengths compared to 1100 and 800 nm, sepa-
rately. Au nanoparticles are also used for cancer therapy (Razavi et al. 2015). ZnO 
nanoparticles are also used for the drug delivery system due to their basic properties. 
ZnO nanoparticles can enter through little vessels (smaller capillaries) due to their 
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smaller size and consumed by using the cells for an effective  amassing of medications 
to the focused areas. Moreover, for preparation of nanoparticles, biodegradable mate-
rials were utilized, which allows the delayed release of medications at the engaged 
site over a period of days or even weeks (Kalpana and Devi Rajeswari 2018).

2.2  Bioimaging

The plasmonic properties of silver nanoparticles can be distinguished by different 
optical microscopy procedures and it is valuable over other utilized fluorescent dyes 
that break down during imaging. AgNPs are extensively utilized as biological 
probes to reveal dynamic events due to their photostable properties. Moreover, 
researchers also reported the ongoing investigation of silver nanoparticles to observe 
early embryonic development. The small metallic nanoparticle of AgNPs also 
encourages its uses as therapeutic tools. AgNPs are employed in bioimaging in two 
ways. First of all is the incubation of silver nanoparticles with cells in order to check 
the uptake and physical interaction and the second is on the surface of AgNPs, the 
functionalization of biomolecule since it increases the specificity of the cell mem-
brane (Khatoon et al. 2017). There are numerous reports that demonstrate the usage 
of ZnO nanomaterials for cell imaging as ZnO nanomaterials contain basic exci-
tonic blue and near UV emission, which has green luminescence associated with O2 
vacancies. Green fluorescent ZnO NPs conjugated with transferrin were used to 
obtain images of cancer cells, as they have the capacity to infiltrate into the cell core 
(Kalpana and Devi Rajeswari 2018).

2.3  Biosensors and Labeling

Biosensors are broadly utilized in ecological observing, sustenance industry, social 
insurance, and in chemical or biological examination. Photometric, electrochemi-
cal, calorimetric, and piezoelectric are examples of biosensors which are categories 
on the detection principles (Kalpana and Devi Rajeswari 2018). Metal nanoparticles 
are used as biosensors due to their high surface region, which could be used for 
immobilizing biomolecules like catalysts, antibodies, and so forth, and they give a 
wide way to deal with the improvement of electronic and optical biosensors (Razavi 
et al. 2015; Kalpana and Devi Rajeswari 2018). Metal nanoparticles like gold and 
silver show plasmon absorbance bands in the visible spectra region and this is con-
strained by particles size. Binding to special molecules changes their optical behav-
iors which allow the ion quantification and detection of analytes. Au nanoparticles 
change their absorption properties when agglomeration occurs. Moreover, research-
ers also used metal particles for bioassay labeling and tissue staining as a way to deal 
with the observing natural (biological) process (Razavi et al. 2015). The plasmonic 
properties of silver nanoparticles primarily rely upon the shape, size, and dielectric 
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medium that encompass it, and this makes it appropriate for biosensing. For sens-
ing different interactions, the distinctively formed AgNPs are fused in biosensors. 
The triangular AgNP manufactured by Haes and van by nanosphere lithography 
are covered on glass substrate and those surface-covered nano biosensors are uti-
lized to find out interactions between biomolecules, for example, biotin-streptavidin 
and two biomolecules which are responsible for Alzheimer’s disease. The rhombo-
hedral or cubical AgNPs were used for sensing protein interaction. Furthermore, 
 AgNPs- based biosensors are also used in cancer detection and additionally studies 
also showed the utilization of silica-coated nanosilver as biosensors for the detec-
tion of bovine serum albumin (Khatoon et al. 2017).

Metal nanoparticles have electron absorbing properties which are used to pro-
duce contrast. Gold nanoparticles have highly absorbing electron capacity which 
makes it suitable for use as a contrasting agent in transmission electron microscopy. 
In addition, they are utilized for biotagging or labeling, as they have the same size 
of proteins. Au nanoparticles provide a very high spatial resolution and thus utilized 
for some of labeling applications, that is, with antibodies (immunostaninng) (Razavi 
et al. 2015).

2.4  Medicine and Dentistry

Nanoparticles also demonstrate the antimicrobial, antibacterial, antiviral, and anti-
fungal, properties, etc. due to their enormous surface region. Metallic nanoparticles 
have the capacity to adequately repress the development of numerous microorgan-
isms, therefore expanding their application in medication and dentistry (Razavi 
et  al. 2015). Numerous examinations exhibited the antifungal action of silver 
nanoparticles against Candida species, for example C. krusei, C. glabrata, C. albi-
cans, and C. parapsilosis. In conclusion, AgNPs synthesized using Ocimum sanc-
tum L. (Tulsi) indicated antifungal movement against an entrepreneurial human 
parasitic pathogen. The cytoprotective properties of silver have been utilized for 
avoidance of HIV cooperation to the host cells. Additionally, it is used to avoid 
contamination after a medical procedure and as against HIV-1 agent (Khatoon et al. 
2017). In dental materials, nanoparticles can be utilized as antibacterial agents. 
Titanium is broadly utilized in the domain of dentistry due to its ductility and high 
fracture resistance; however, it does not support cell bond and development because 
of its absence in bioactivity. In the past, apatite covering on titanium was utilized 
because of their capacity to bond with bone and bioactivity; yet, nonuniformity and 
thickness of apatite are considered as constraints. In addition, for nutrient transport, 
permeable structures are required. Ceramic nanoparticles are utilized to configure 
an artificial hybrid material that could be placed on the surface of the tooth to 
improve scratching. Nanosized features in bone implants are also an emerging 
approach, as they reduce the chances of rejection on the surface of the prosthesis 
because they stimulate the production of osteoblasts (Razavi et al. 2015).
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Furthermore, silver nanoparticles are also utilized in medical devices such as 
catheters, bone cement, and wound healing. Silver nanoparticles are broadly used in 
topical treatments, such as in creams used as an antiseptic to cure infection and 
wounds. In addition, they are also used in implants and medical devices. Catheters 
coated with nanoparticles are biocompatible, as they have an inclination to dis-
charge explicitly and support arrival of silver at the implantation site (Khatoon et al. 
2017). Metal nanoparticles are likewise utilized for water decontamination and 
expulsion of pesticides from drinking water.

3  Synthesis of Nanoparticles by Mangroves and Their 
Application

The nanoparticles are utilized in different areas of technology, science, and engi-
neering, from optics to biomedicine, paints, biosensors, horticulture, materials, and 
search engines. They are in each field of innovation and progress. Studies state that 
a broad spectrum of nanoparticles has been synthesized by several biogenic strate-
gies that use natural substrates and reducing agents. Nanoparticles that have been 
combined thus far and efficaciously consolidated in distinctive biomedical, agrar-
ian, and present-day programs consist of gold (Au), iron (Fe), copper (Cu), lead 
(Pd), silver (Ag), lead (II) sulfide (PbS), copper (II) oxide (CuO), ruthenium (Ru), 
cadmium sulfide (CdS), zinc oxide (ZnO), and titanium dioxide (TiO2). These 
applications are constrained to utilize a greater part of the nanoparticles obtained 
from earthbound life forms, abandoning the nanoparticles obtained from living 
beings from the mangrove environment. Because of the unforgiving natural condi-
tions, the creatures from these areas have created different pressure-tolerant mixers 
and biotics of excessive ethnobotanical significance. As indicated by one estimate, 
mangrove soil sequesters roughly 22.8 million large metric amounts of carbon every 
year. This important coastal area is explored and the presence of bioactive com-
pounds in these mangrove plants for synthesizing nanoparticles results in their 
application in the biomedical field (Gouda et al. 2019).

Mangroves were utilized in medications and extracts of mangrove species have 
demonstrated inhibitory action against plant pathogens, creatures, and humans. A 
few types of mangrove produce bioactive compounds that can control microbial 
development. Additionally, fundamental investigations have exhibited that the 
extracts of mangrove plants have antibacterial action against some strains of patho-
genic bacteria; Escherichia coli, Staphylococcus sp., Pseudomonas sp., and 
antimicrobial- resistant bacterial strains; Proteus sp., and Staphylococcus sp. 
Extracts of mangroves can likewise be the potential source of mosquito larvicides, 
anticancer, antiviral, antifungal agents and against diabetic compounds. Secondary 
compounds such as steroids, alkaloids, terpenoids, and phenolics were described 
from mangroves and their associates possess pharmacological, toxicological, and 
natural significance (Saranraj and Sujitha 2015).
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Mangroves are the potential source of nanoparticle synthesis, as they survive in 
extremely different conditions from terrestrial plants and have proven antimicrobial 
activities (Gouda et al. 2015). The first mangrove species to be used for synthesis of 
nanoparticles were Rhizophora mucronata and Rhizophora apiculata by their leaves 
extract using the bioreduction method. The size of synthesized nanoparticles was 
20–100  nm. Synthesis of gold nanoparticles was also reported using the 
polysaccharide- mediated method by the whole plant of Padina gymnospora (a man-
grove associates) and synthesized NPs ranged between 53 and 67 nm (Gouda et al. 
2015). The antimicrobial potential of synthesized silver nanoparticles (AgNPs) 
from mangroves against some bacteria is also reported in research papers. AgNPs 
synthesized using leaves extract of Ipomoea pes-caprae show antibacterial activity 
against E. coli, K. Pneumonia, P. Aeruginoa, Enterobacter sp., and S. aureus (Subha 
et al. 2015; Veeramani et al. 2018; Satyavani et al. 2013).

Photo-mediated green synthesized AgNPs using two mangrove species Heritiera 
fomes and Sonneratia apetala possess antimicrobial activities with sizes of 
20–30 nm and 70–100 nm, respectively (Thatoi et  al. 2016). The leaf extract of 
Excoecaria agallocha mangrove is also utilized for silver nanoparticles synthesis 
(Sangeethaarun et  al. 2014). Furthermore, Acanthus ilicifolius mangrove plant- 
synthesized silver nanoparticles confirm the larvicidal activity against 
Armigeressubalbatus and Aedesaegypti mosquito (Ali et al. 2015). Biosynthesized 
silver nanoparticles (71–110 nm) using mangrove plant Avicennia marina extract 
possess a higher antimicrobial activity against gram-negative and gram-positive 
bacteria (Gnanadesigan et al. 2012). Researchers also demonstrated the mosquito 
larvicidal activity of Avicennia marina mangrove species.

Moreover, the mangrove associate Hibiscus tilliaceus plant leaf extract was eval-
uated for insecticidal activities against Spodoptera litura and Helicoverpa armigera 
and also antibacterial activity against Xanthomonas campestris and Ralstonia sola-
nacearum (Rani et al. 2016). Synthesized silver nanoparticles showed an average 
size of 75 nm.

4  Conclusion

Nanotechnology is an emerging science that deals with nanomaterials ranging from 
1 to 100 nm. The nanomateials have high surface-to-volume ratio which makes it 
applicable to various fields such as health care, food industry, and medical devices. 
Syntheses of these nanoparticles using physical and chemical methods are harmful 
for the environment as well as for humans. Thus, plant-mediated green synthesis of 
nanoparticles is a widely used method by researchers, as it is nontoxic, ecofriendly, 
cost-effective, and can be used for large-scale production. Mangroves are exclu-
sively utilized for synthesis of nanoparticles due to their unique properties to survive 
in extreme conditions and also mangrove-synthesized nanoparticles have different 
properties from those of terrestrial plants. Nowadays, green synthesized nanoparti-
cles have increased application in biomedical technology because of their unique 
properties, and this encourages researchers to study and advance further in this field.
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1  Introduction

From ancient times, research involves the discovery of various new medicines, com-
pounds, metabolites, and related pharmaceutical products. The findings like new 
compounds, metabolites and research data related to their discoveries were pro-
ceeded  further as a potential therapeutic agents, and these materialized as conven-
tional method of drug delivery (Langer 1990). The introduction of therapeutic 
agents into the human body and their mechanisms are known as the conventional 
drug delivery systems. Before the existence of drugs as delivery agents, the grinding 
of medicinal plants, leaves, or roots and the inhaling of smoke of the burning medic-
inal herbs were followed as the drug delivery in olden days (Nikam et al. 2018). In 
the eighteenth and nineteenth centuries, the conventional way of drug delivery sys-
tem underwent a modification, which included the uniformity and texture of the 
drug to reach the target, mainly as capsules, tablets, eye drops, creams, or lotions, 
and the endovenous method of delivery. These are the major conventional forms of 
drugs delivered into the human body as remedial methods for the diseases. But the 
security and efficacy of the drugs would not reach the target area because of the lack 
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of permeability. The traditional drug delivery system had many drawbacks  like 
missing chances of drug dosage whose half life is less and its frequency of admin-
istration is more. Also, attaining the steady state condition is less. then, more 
flucctuation leads to high dosage or inadequate dosage leads to adverse effect, 
which were overcome by the development of the new advanced methods of drug 
delivery.

The new mode of advanced drug delivery system involves the evolution of the 
nanotechnological approach (Nikam et al. 2018). The new drug delivering mode is 
enhanced by the means of restrained ratio, passive distribution, focused delivery, 
and with these concepts including some other devices and techniques, a new tech-
nology has emerged and is called the “controlled release technology” (CRT). These 
CRTs are being popularized by many researchers and publications, and transforma-
tion has happened in the treatment and remedy of a lot of diseases with these CRT 
systems. The transdermal delivery, transmucosal approach, nasal inhalation, and 
buccal delivery of drugs are the few ways in which the modified drug delivery CRT 
systems function (Tiwari et al. 2012). Nanotechnology is the emerging advanced 
scientific field that includes various branches such as chemistry, physics, and biol-
ogy, and it also unfolds the novel nanodimension structures involving effective 
therapeutic application for pharmacology and biomedical field.

2  Nanoemulsion and Drug Delivery

The drug delivery system has advanced from microscale to nanoscale fairly. The 
perfect drug delivery system is capable of performing the focused drug release and 
the control over release of the pills. The focused spot release will ensure enhanced 
efficacy of the drug molecule with fewer side effects. The control mechanism over 
the drug dispensation will reduce the side effects of the drug release and target. The 
construction and standardization of the nanoscale system for the drug delivery are 
drawing attention of many researchers and scientists for many reasons (Simonazzi 
et al. 2018). The nanodimension has various properties like optical, magnetic, and 
structural surface area ratio, which make it an interesting field of research in all 
aspects. Especially as the surface area is high in nanoscalar drugs or devices, it is 
utilized as a nanocarrier and a nanoadsorbent, and acts as a nanocarrier of drugs, 
proteins, or probes. Figure 16.1 shows the structure of nanoemulsion.

One such nanoscalar approach in the drug delivery system is the formulation of 
nanoemulsions. Nanoemulsions are very stable in kinetics, and it is the nanosized 
emulsion that contains oil-in-water (o/w) droplets of small size ranging from 50 to 
200 nm (Ledet et al. 2014). Nanoemulsions have attractive dimensions such as easy 
preparation, thermodynamic stability, elevated surface area, transparency in the 
optical property, and identical small droplets (Lovelyn and Attama 2011) and thus 
the pharmaceutical compounds with less bioavailability will get maximum bioavail-
ability with the help of nanoemulsion development. (Hassan and Mujtaba 2017). 
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The dispersion of one phase to another phase as minute droplets is generally called 
nanoemulsion; as shown in Fig. 15.1, there are two different phases with the drug 
trapped inside.

3  Nanoemulsion, Its Preparation, and Applications  
as Drug Delivery

Nanoemulsions based on their composition are classified into three types: they 
include oil-in-water dispersion (O/W nanoemulsions), water-in-oil dispersion 
(W/O) nanoemulsions, and bi-continuous nanoemulsions. Nanoemulsions come 
under the multiphase colloidal system and are known for their stability and translu-
cent nature without high energy expenditure (Savardekar and Bajaj 2016). Few of 
the methods are listed below through which nanoemulsions are made. They are

 1. High-pressure homogenization
 2. Ultrasonication
 3. Micro-fluidization
 4. Phase inversion method
 5. Hydrogel method
 6. Solvent evaporation technique
 7. Spontaneous emulsification

Fig. 16.1 Nanoemulsion – the capturing of hydrophobic drugs for passive release
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In the present review, the nanoemulsion acts as a drug transmission system for the 
managing and controlling of diabetes and has different routes of applications such 
as parenteral nanoemulsion, drug delivery through the mouth, topical approach, 
transdermal drug delivery, intra-nasal drug delivery, otic and optic drug delivery 
system, and for cancer therapy, cosmetics, vaccine development (Chime et al. 2014), 
bioterrorism, and also in cell culture technology (Singh et  al. 2017). Different 
approaches of nanoemulsion and specific disease conditions for the drug transmis-
sion are presented in Table 16.1.

4  Diabetes Mellitus (DM)

Diabetes is a lifestyle disorder, which could be managed well by altering the diet 
intake with regular physical activities and maintaining balanced weight. Diabetes 
mellitus is a silent killer because the uncontrolled increase in blood glucose leads to 
many long-term complications that ultimately lead to a fatal condition without 
showing any prior symptoms. The dangerous elements of DM are shown in Fig. 16.2. 
The pancreas performs a key role in the controlling of high blood glucose level.

The condition when there is high glucose in the blood is termed as hyperglycae-
mia, as shown in Fig. 16.3a and various organ involvements are shown in Fig. 16.3b; 
this is because of lack of absorption of glucose in the cells due to the impairment of 
pancreas, which leads to insulin resistance and causes type 2 DM.  The islets of 
Langerhans in the β cells secrete the insulin if the hyperglycaemic condition exists, 
which in turn orders the liver to store the excess glucose as glucagon. Thus, the 
β-cells dysfunction, resistance to insulin, and persistent inflammation are the major 
pathophysiological conditions. The healthy functioning and unhealthy functioning 
of pancreas lead to insulin secretion and its lacking leads to type 2 DM as shown in 
Fig. 16.4a, b.

Table 16.1 Different approaches of nanoemulsion and specific disease condition for the drug 
transmission

S. No. Way of drug delivery approach Disease condition

1 Parenteral nanoemulsions Cancer
2 Topical nanoemulsions Psoriasis
3 Intra nasal drug delivery Alzheimer’s, Parkinsonism, psychotic drugs for 

targeting
4 Transdermal drug delivery Diabetes
5 Oral route of drug delivery Diabetes, AIDS
6 Vaccine development Immunization vaccines
7 Otic and ocular drug delivery 

system
Retinal neovascularization

8 Pulmonary route Pulmonary aspergillosis
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As per the International Diabetes Federation (IDF), the prevalence of diabetes 
globally in the age group 20–79 years in 2017 is 424.9 million (346.4–545.4 mil-
lion) and it is predicted to rise to about 628.6 million (477.0–808.7 million) in 
2045 (IDF Diabetes Atlas 2017). The environment and genetics both play an 
important role in the pathophysiology of diabetes for an individual; hence, it is said 
to be a multifactorial diseased condition (Fitipaldi et  al. 2018; Tiwari 2015). 
Insulin plays a major role in the management of diabetes by injection and includes 
much discomfort to patients. This will be rectified by the intervention of nanotech-
nology in the administration of insulin by various modes of administration such as 
transdermal, nasal, pulmonary and closed-loop delivery systems (Tiwari 2015). 
According to WHO, the management of diabetes is mainly correlated with health-
care sectors and easy access to medicines and technology and patient’s active par-
ticipation (WHO 2016 2016). The patient’s participation is a big question mark 
due to cost of medications and insulin injections. These can be rectified by the 
involvement of nanoscale devices and drugs with targeted drug delivery in a cost-
effective manner.

Fig. 16.2 Major risk factors of type 2 diabetes mellitus
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5  Applications of NE as Therapeutics in DM

In DM, the most common method of management is the insulin dose either by injec-
tion or orally; the advancement in insulin therapy is the involvement of nanotech-
nology, which will be either nanoparticle or nanoemulsion systems. The nanoscale 

Fig. 16.3 (a) The hyperglycaemic condition. (b) Factors associated with the hyperglycaemic 
condition
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approach in DM is mainly done by using the transdermal delivery mode of insulin 
therapy. The formulations based on the nanoscale level will gain a greater approach 
in the management of DM among scientists and researchers (Veiseh et al. 2015). 
Since diabetes is multifactorial from both the genetic and non-genetic base, it is 
associated with many long-term complications; so, the research and scientific 

Fig. 16.4 (a) Healthy functioning of pancreas and glucose monitoring. (b) Type 2 diabetic melli-
tus condition and insulin deficiency
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 community is focused towards using the nano-based formulations as the drug deliv-
ery system (Woldu and Lenjisa 2017) for complications associated with diabetes.

The transdermal way of nanoscale formulation is the most convenient method of 
drug delivery compared to oral dosage. Because the oral dosage has to pass through 
the gastrointestinal tract and liver enzymes and is digested or lost due to 
 bioavailability, in order to reduce the risk of loss of bioavailability, predominantly 
transdermal drug delivery is preferred (Li and Gupta 2019). Thus, the dosage is 
minimized and bioavailability is increased with the nanoscale approach of drug 
delivery since diabetes is a long-term medication system. The various nanoemulsion 
formulations using medicinal plants and other modes, its preparation methods and 
mode of application are listed in Table 16.2.

Table 16.2 Various nanoemulsion formulations, their methods of preparation and applications as 
a drug delivery agent in diabetes mellitus

S. No. Nanoemulsion Method of preparation
Application in drug 
delivery References

1 Nano formulation of 
fenugreek oil

Emulsion phase 
inversion and 
emulsion titration 
technique

Potent anti-diabetic 
properties

Hassan and 
Mujtaba 
(2017)

2 Microcapsules possess 
replacement islets of 
Langerhans cells

Microcapsule 
containing pores

Glucose control 
feedback loop

Tiwari (2015)

3 2,4,6-triphenylaniline 
(TPA), olive oil, 
surfactant (tween 80)

Coarse emulsion Oral lipid-based drug 
delivery for diabetes

Ranganathan 
and 
Mahalingam 
(2019)

4 Pioglitazone (PZ) 
encapsulation

Carbopol-based 
transgel

Transdermal drug 
delivery for diabetes

Prasad et al. 
(2016)

5 Bay leaves (Eugenia 
polyantha Wight) ethyl 
acetate fraction

Tween 80: PEG 400: 
Virgin coconut oil 
(30%: 60%: 10%) in 
5 mL

Self-nanoemulsifying 
drug delivery system 
(SNEDDS) for the 
treatment of 
antidiabetic mellitus 
type-2 resistance 
insulin (ADMRI)

Prihapsara 
(2017)

6 Bitter gourd seed oil 
nanoemulsion 
(BGO-NE)

Bioactive lipid – 
conjugated linolenic 
acid (CLNA)

Potent nutraceutical 
against diabetes 
mellitus

Paul et al. 
(2014)

7 Encapsulated into the 
Nano capsules

Tripolyphosphate 
sodium (TPP)

Micro-gel system, 
in vivo insulin 
delivery

Yu et al. 
(2016)

8 Stimuli-responsive 
anti-diabetic drug 
delivery systems

Glucose-responsive 
based closed-loop 
systems

Therapeutic potency 
for diabetes treatment

Yu et al. 
(2016)

9 Ethanolic extract of 
Enicostemma littorale 
(NEL)

Cross-linking with 
calcium chloride and 
solvent removal

Anti-diabetic activity 
in streptozotocin- 
induced male rats

Deepa et al. 
(2012)

(continued)
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Table 16.2 (continued)

S. No. Nanoemulsion Method of preparation
Application in drug 
delivery References

10 Repaglinide (RPG) 
nanoemulsion

Sefsol-218 (5% v/v) 
as an oil phase, 30% 
v/v of Tween-80 and 
transcutol as a 
surfactant and 
co-surfactant by 
titration method

Possess 
hypoglycaemic effect 
when compared to 
tablet formulation in 
streptozotocin 
(STZ)-induced 
diabetic experimental 
rats

Akhtar et al. 
(2016)

11 Carvacrol-based 
nanoemulsion

Oil/water emulsion 
technique, tween 
80 (surfactant)

Hyperglycaemia and 
neurodegenerative 
diseases

Hussein et al. 
(2017)

12 Nanoemulsion of 
Foeniculum vulgare 
mill. Essential oil

Oleic acid as the oil 
phase, surfactant 
tween 20 and 
co-surfactant 
propylene glycol

Transdermal 
nanoemulsion 
delivery as 
antidiabetic therapy

Mostafa et al. 
(2015)

13 (i) GCL transdermal 
nanoemulsion gel
(ii) Nanoemulsion of 
essential oil of fennel

Surfactant (labrafac) 
and co-surfactant 
(triacetin) carrying
Oleic acid and PG 
(propylene glycol; 
co-surfactant) 
as enhancer for 
permeation 

Transdermal delivery
Transdermal route

Rai et al. 
(2018)

14 LDL-like nanoemulsion Plasma kinetics of 
both free(FC) and 
esterified cholesterol 
(EC)

Type 2 diabetes 
mellitus

Oliveira et al. 
(2009)

15 Nanoemulgel exhibited Nanoemulsion with 
hydrogel matrix, 
emulsifying method

Therapeutic agents. Chellapa et al. 
(2015)

16 Alginate/chitosan Alg/chit through 
electrostatic 
cross-linking

Oral insulin delivery 
systems

Xiaoyang Li 
et al. (2013)

17 Magnetically 
responsive 
nanoemulsions

Intermolecular 
hydrogen bonding 
with sodium dodecyl 
sulphate (SDS) 
molecules at the 
oil–water interface 
gives stretched 
lamellae-like structure

Non-enzymatic 
approach for glucose 
detection

Mahendran 
and Philip 
(2014)

18 Polyethylene glycol 
template-assisted 
cupric oxide (CuO) 
nanoleaves on the 
gold-coated glass

Hydrothermal growth 
method

Glucose sensor 
electrode

Ibupoto et al. 
(2013)

(continued)
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6  Conclusion and Challenges

The fate of nanoemulsion after entering into the gastrointestinal(GI) tract when it is 
administered orally was discussed here (Singh et al., 2017). The lipases were one of 
the digestive enzymes which will digest the lipid layer of nanoemulsion, thus form-
ing the simple lipid forms of diglycerides and fatty acids, and oil droplets. Further 
the digested simple lipid forms were simplified in to smaller units in order to reveal 
the drug into the biological system. But it has to undergo a further process by bile 
and other mechanisms which leads to the diffusion or transcellular mechanism of 
drug molecule to perform the site-specific action.

The fate of nanoemulsion through the intravenous route will be that it enters the 
blood stream, and if the drug gets solubilized its outreach is far and broader to vari-
ous organs; it may enter the liver, spleen, or gall bladder and also to the cellular level 
by undergoing phagocytosis, pinocytosis, and endocytic mechanisms. At the end, 
the NE will be excreted by the liver, kidney, or bilary disposals, depending upon 
their size and features present on their surface. Even though this review has dis-
cussed the great potentialities of nanoemulsions as a therapeutic drug delivery sys-
tem, challenges are still there to be overcome in the near future. Since diabetes is 
multifactorial, the management of the disease condition is still a big black hole. In 
the pharmaceutical market, the NE has yet to get the mainstream line in order to 
reach the laboratory work to become the patient-friendly mode (Woldu and Lenjisa 

Table 16.2 (continued)

S. No. Nanoemulsion Method of preparation
Application in drug 
delivery References

19 Nanoemulsion (NE) 
formulation of 
α-tocopherol (α-TC)

Mechanochemical 
method

Efficacious to 
improve the oral 
bioavailability and 
antioxidative 
activities in 
streptozotocin- 
induced diabetic rats

Hatanaka et al. 
(2010)

20 Ne containing lapachol Emulsion phase 
inversion (EPI) 
method

Promising biological 
activities

Rodrigues 
et al. (2018)

21 Micro-needle-based 
delivery

Biosensors using 
transdermal delivery

Transdermal patch 
formulation for 
diabetes therapy

Li and Gupta 
(2019)

22 Thermodynamically 
stable (TDS) and 
meta- stable (MS) 
nanoemulsion

Lipidic artificial 
lipoprotein-like nano 
sphere

Chemotherapeutic 
application

Sarker (2005)

23 Insulin Cremophor RH40 as 
surfactant 
Homogenization in a 
tube rotator

Enhancing oral 
absorption and 
efficacy in diabetes

Li et al. (2014) 

A. Devaraj and G. Mahalingam
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2017). The principal disadvantages and limitations are listed in Fig. 16.5. By over-
coming all these limitations, a bright future for the nanoemulsion as a therapeutic 
agent in diabetes mellitus is envisaged. The nano-based drug delivery will come in 
common practice within next 5–8 years with all satisfactory outcomes for the bet-
terment of human society to increase the life span by a few more years.

Acknowledgement The authors are thankful to the Chancellor of Vellore Institute of Technology, 
Tamil Nadu, India, for providing the required expertise to carry out the present research work.
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1  Introduction

The demand for natural colorants is on the rise due to the detrimental effects of 
synthetic colors, and natural colorants have become the important part of any com-
modity. The major sources of natural colorants are from plants and microbes. Plant 
pigments have many downsides like nonavailability and pigment stability. Microbes 
provide an alternative source of natural colorants (Arulselvi et al. 2014). Microbial 
pigments have various applications and are advantageous compared to plant pig-
ments: independent of weather conditions, low cost medium, easy processing 
(Manikprabhu and Lingappa 2013a). The lack of awareness and cost-effective 
extraction of natural ingredients hamper the improvement of natural food colorants. 
There is an expanded push to lessen the production costs for microbial colors by 
utilizing low-cost substrates or strain improvements, and soon, there might be an 
imposing business model market for microbial shades (Rao et al. 2017).

Nanotechnology plays an important role and is used in biotech, pharma, elec-
tronics and communication, and automobiles, etc. (Fig. 17.1) (Venil et al. 2013), 
and microbes have been considered for their ability for nanoparticle synthesis. 
Silver nanoparticles were investigated for the first time from bacteria, Pseudomonas 
stutzeri AG259, and their prospective as organic metal composites in thin film and 
surface coating technology was studied (Klaus et al. 1999). Microbial food nano-
colorants have better shelf life, stability, solubility, and can better adhere to food and 
feed (Jixian et al. 2017). This chapter emphasizes the possibility of microbial pig-
ments, their benefits and challenges, and explores pharmacological applications of 
pigment-mediated nanoparticles.

2  Microbial Pigments

The microbial pigments are used for various industrial applications due to their 
rapid growth on low-cost medium and are able to produce multicolor shades. Also, 
they are environmentally friendly and nonhazardous compared to synthetic dyes. 
Recently, quite a lot of methods have been established that include the use of 

Fig. 17.1 Applications of nanoparticles
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 biological materials. Among them are nanoscale bio-pigments (Table 17.1), although 
they have received scanty attention compared to other biological materials.

Streptomyces coelicolor KLMP33 produces blue pigment and synthesized gold 
nanoparticles under microwave-assisted conditions (Manikprabhu and Lingappa 
2013c). Pigment (1  mL) was made to react with chloroauric acid solution 
(10−3 mol l−1) and gold nanoparticles (25–30 nm) were formed at 10 s of reaction. 
Further, at 30 s, gold nanorods of 45 nm were synthesized and at 90 and 120 s, the 
size increased to 200 and 250 nm, respectively. Yarrowia lipolytica NCYC 789 pro-
duces melanin pigment and Nair et  al. (2013) synthesized gold nanostructures 
which exhibited antibacterial activities. Mubarak Ali et  al. (2012) reported that 
Phormidium tenue NTDM05 produces C-phycoerythrin and nanoparticles synthe-
sized using cadmium sulfide (CdS).

3  Nanoparticle Synthesis

Recently, nanotechnology is employed to explore the darkest avenues to combat the 
diseases caused by drug-resistant microbes (Singh et al. 2014). Nanoparticles have 
exceptional characteristics such as thermal conductivity, several properties (physi-
cal and chemical), and these properties make them applicable to electronic science, 
textiles, medicines, etc. The biological nanoparticles have numerous prospects like 
cancer therapy, gene therapy, biosensors, and antibacterial agents (Li et al. 2011). 
Presently, researchers work on biological nanoparticles, which are environmentally 
friendly, and these nanomaterials can be synthesized from plants and microbes 
(Fig. 17.2).

The use of sodium bromohydride in nanoparticle synthesis is unattractive due to 
the harmful nature of the chemical. Presently, there is a necessity to establish envi-
ronmentally friendly procedures for synthesizing nanoparticles that do not employ 
toxic chemicals (Patra and Baek 2014). Toward the expansion of ‘green chemistry,’ 
researchers are focusing on microbial compounds that have drawn remarkable 
attention (Iravani 2011).

4  Different Methods of Metallic Nanoparticle Synthesis

Preparing nanoparticles by physical or chemical methods is not eco-friendly and 
requires attention. Physical methods use thermal or electrical energy, whereas 
chemical methods use harmful chemicals for nanoparticle synthesis. Many chemi-
cally synthesized nanoparticles are not appropriate for biological applications 
because of chemical contamination (Khan et al. 2019). Currently, efforts are made 
to improve the procedure consisting of environmentally acceptable solvent system, 
nontoxic reducing and capping agent, resulting in the green synthesis of  nanoparticle 

C. K. Venil et al.
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(Das et al. 2017). Biological reducing agents such as bacteria, eukaryotic, and plant 
extracts are used to synthesize nanoparticles (Iravani et al. 2014).

5  Pharmacological Applications of Pigment-Mediated 
Metallic Nanoparticles

There is increasing interest for eco-friendly natural products following the preva-
lence of food-related disorders. The bio-nanotechnology researchers are focusing 
on designing a novel strategy for well-being and nutraceuticals (Jafari and 
McClements 2017; Assadpour and Jafari 2019; Huang et al. 2010).

6  Antibacterial Activities of Metallic Nanoparticles

The nanoparticles exhibit microbiocidal, microbiostatic actions and assist as pro-
spective antimicrobial agents for various pharmaceutical applications (Nasrollahi 
et al. 2011). Stoimenov et al. (2002) reported that the nanoparticles showed bacteri-
cidal activity against both Gram-positive and Gram-negative bacteria. The synthe-
sized nanoparticles are effective antibacterial agents and used in therapeutic and 
industrial applications (Nasrollahi et al. 2011).

Patel et al. (2015) reported that silver nanoparticles from phycocyanin pigment 
by Nostoc linckia exhibited antibacterial activity against Gram-positive 
(Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa, 
Klebsiella pneumonia and E. coli). Phycocyanin from Limnothix sp. 37-2-1 formed 
spherical and elongated silver nanoparticles.

Biosynthesized silver nanoparticles showed significant antibacterial effect on 
both classes of bacteria (El-Naggar et al. 2017). Silver nanoparticles come in con-
tact with bacterial cell wall and deactivate the production of enzymes, disrupt cell 
membrane, cellular proteins necessary for adenosine tri-phosphate (ATP) synthesis 
or influence the bacterial DNA replication functions (Agnihotri et  al. 2014). 
Microbial synthesized nanoparticles are effective antimicrobial agents due to their 
least toxicity possessing in vitro and in vivo applications (Krishnaraj et al. 2010). 
Silver nanoparticles have a large surface area for interaction and have a bactericidal 
effect compared to larger nanoparticles. These nanoparticles, apart from interacting 
with the surface, penetrate into the bacteria and inactivate DNA replicating ability, 
causing the devastation of the cell.

Among the biomolecules that have been exploited in green nanotechnology are 
pigments obtained from microorganisms that are appropriate for biomedical appli-
cations. Manikprabhu and Lingappa (2013a) reported that Streptomyces sp. pro-
duces actinorhodin pigment and the nanoparticle synthesis of this pigment showed 
remarkable antimicrobial activity. Also, the silver nanoparticles synthesized using 
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Fig. 17.2 Schematic representation for synthesis of nanoparticles using bacterial pigments
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pigment from Streptomyces coelicolor KLMP33 showed antimicrobial activity. 
They display notable antimicrobial activity against extended-spectrum beta- 
lactamase (ESBL) producing E. coli (Manikprabhu and Lingappa 2014). Similarly, 
other microbial pigments, including flexirubin, melanin, phycocyanin, and 
C-phycoerythrin, showed potent antibacterial activities (Mubarak Ali et al. 2012; 
Apte et  al. 2013b; Jena et  al. 2015; Patel et  al. 2015; Kumar et  al. 2016;Venil 
et al. 2016).

7  Antifungal Activities of Metallic Nanoparticles

The synthesis and characterization of nanoparticles using natural pigments from 
microorganisms are still in their infancy and a lot can be learned from studies con-
ducted on plant pigments, as some chemical families (chlorophylls, carotenoids, 
etc.) exist in the two sources. Bioreducing agents such as the previously mentioned 
chlorophylls and carotenoids are of great interest to substitute chemical and physi-
cal methods used for the synthesis of nanoparticles. Chlorophylls are pretty well 
known for their redox character as a basic phenomenon in the photosynthesis pro-
cess. Bacteriochlorophylls a, b, c, cs, d, e, f, and g produced by Purple bacteria, 
Heliobacteria, Green Sulfur Bacteria, Chloroflexi, etc., will be soon investigated as 
alternatives to plant chlorophylls, which were demonstrated to have antifungal 
properties against Candida albicans ATCC 10231 when prepared as pigment- 
mediated silver nanoparticles (AgNPs). Such AgNPs (50 μg/ml) were able to inhibit 
this unicellular fungi (26 mm identical zone of inhibition ZOI) (Baraka et al. 2017).

One interesting aspect when making pigment-mediated nanoparticles with fluo-
rescent pigments is that you are able to follow the progress of reduction reaction, the 
enrollment of the pigments through easy methods such as FTIR (Fourier Transform 
InfraRed spectroscopy) and fluorescence analyses.

8  Anti-Inflammatory Activities of Metallic Nanoparticles

Srilekha et al. (2018) showed that a marine strain, Micrococcus sp., produces yellow 
pigment which has potential anti-inflammatory and wound-healing properties. 
Pigment containing ointment application resulted in effective reduction of acces-
sory skin structures along with increase in the dermal collagen content over control.

The anti-inflammatory properties of synthesized nanoparticles were investigated 
by applying AgNP-coated, 0.5% silver nitrate (AgNO3), or saline wound dressings 
to a porcine model of contact dermatitis. These coated wound dressings proved that 
silver nanoparticle-treated pigs had normal skin after 72 hours while other groups 
remained inflamed (Nadworny et al. 2008).
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9  Anticancer Activity on Pigment-Mediated Nanoparticles

Because of their exclusive properties, silver nanoparticles play a significant role in 
the diagnosis and treatment of cancer. Jain et al. (2019) observed that the anticancer 
activity improved in beta-carotene solid–lipid nanoparticles (BC-SLNs) when com-
pared to free beta-carotene. The availability of BC-SLNs is enhanced by their 
release from lipid core and prolongation of circulation time in the body. Solid lipid 
nanoparticles can be an effective and promising strategy that can be followed to 
improve the biopharmaceutical properties of carotenoids for anticancer effects.

10  Antioxidant Mechanisms of Pigment-Mediated 
Nanoparticles

Some carotenoids have pro-vitamin activity and are considered as treasured lipo-
soluble components with antioxidant activity, which reduces the threat of infections 
and age-related biological transformations (Jomova and Valko 2013; Neville et al. 
2013; Rao and Rao 2007; Walk et al. 2017). Carotenoids are valuable nutrients and 
are essential for our health and must be provided through diet (Ruiz-Sola and 
Rodríguez- Concepción 2012). During food processing, carotenoids are exposed to 
light, temperature, and in  vivo conditions, that is, in the gastrointestinal tract 
(enzymes, acidic pH), which change the activity of carotenoids and restrict their 
applicability in food (Rostamabadi et  al. 2019). To overcome this, encapsulation 
methods have been introduced for the safe passage of carotenoids into the gastroin-
testinal tract and their release at the targeted site (Huang et  al. 2010; Jafari and 
McClements 2017). Among various encapsulation techniques, lipid-based nanoen-
capsulation is one the efficient techniques with exceptional prospects for encapsula-
tion of carotenoids (Bhatt et al. 2016; Esposito et al. 2017; Singh et al. 2017; Xia 
et al. 2015).

Melanins display strong antioxidant properties, as they are negatively charged 
with high molecular weight formed by oxidative polymerization of phenolic com-
pounds (Langfelder et al. 2003). The quinone of melanin via a semi-quinone state 
alternates between phenol and quinone (Horak and Gillette 1971). Phenolic com-
pounds mediate synthesis of nanoparticles in biological systems (Sivaraman et al. 
2009). Melanins have vast scope for applications in agriculture and pharmaceutical 
industries (Patil et al. 2018).

Nel et  al. (2006) established the capability of melanin to act as free radicals 
in vitro and in vivo. Melanin acts as a nonoxidative agent and shows scavenging 
activities on free radicals (Bridelli et al. 2006; Perna et al. 2009). Melanin combines 
with oxygen, hydroxyl radical, and superoxide ion, and has been documented for its 
capability to prevent lipid peroxidation. Abdelhalim et al. (2018) studied the inflam-
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matory liver damage in rats, and the treatment with melanin increased the alanine 
aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase 
(GGT), total bilirubin (TBIL), total protein, and malondialdehyde (MDA), thereby 
reducing the inflammation. Melanin is a strong antioxidant and can protect hepato-
cytes from the damage caused by oxidative stress (Patil et al. 2018).

11  Factors Influencing Synthesis of Pigment-Mediated 
Nanoparticles

Recently, synthesis of nanoparticles have gained utmost importance due to their 
unique properties and considered as the best alternative for standard drugs. The 
synthesis, characterization, and applications of nanoparticles are affected by several 
factors like size, shape, concentration, zeta potential, and researchers described the 
modification in nature of synthesized nanoparticles with the type of adsorbate used 
(Ajayan 2004; Somorjai and Park 2008). Pennycook et al. (2012) reported that syn-
thesized nanoparticles have severe implications and change with time and environ-
ment. The properties of nanoparticles have to be given more attention in designing 
nanoparticles-mediated pigments for therapeutic applications.

11.1  Method

The physical, chemical, and biological methods are employed for synthesizing 
nanoparticles, using organic or inorganic chemicals. Among them, the biological 
methods, which are nontoxic and environmentally benign, are used for synthesis of 
nanoparticles and are more acceptable because of its green technology (Kharissova 
et al. 2013; Vadlapudi and Kaladhar 2014).

11.2  pH Effect

The pH plays an important role in changing the size and shape of nanoparticles. 
Armendariz et al. (2004) reported that the pH strongly influenced the size and struc-
ture of nanoparticles. Phanjom and Ahmed (2017) reported that alkaline conditions 
are mandatory for the reduction of metal ions. Moreover, the particle size also 
decreases with increased pH due to the silver ion reduction by electrons given by 
OH− ions.
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11.3  Temperature Influence

The physical methods for synthesizing nanoparticles require higher temperatures, 
that is, >350°C, whereas chemical methods require <350°C and biological methods 
require temperatures less than 100°C. The temperature of the reaction medium reg-
ulates the synthesis of nanoparticles (Rai et al. 2006). Higher temperature supports 
the formation of smaller nanoparticles due to the increase in adsorption of silver 
nitrate and reaction rate (Gurunathan et al. 2009).

11.4  Time

Mudunkotuwa et al. (2012) reported that storage time greatly influenced the charac-
teristics of nanoparticles.

11.5  Particle Shape and Size

Akbari et al. (2011) reported that the melting point of nanoparticles is related to the 
size of nanoparticles and the particle size plays an important role in determining the 
characteristics of nanoparticles. Smaller nanoparticles will have increased stability 
and enhanced action compared to larger nanoparticles (Roy et al. 2019). The large 
surface area of smaller nanoparticles provides higher interaction area (Gurunathan 
et al. 2014; Raza et al. 2016). The nanoparticles of 10–15 nm have excellent antimi-
crobial activity (Yacam’an et al. 2001). The silver nanoparticles were synthesized 
using monosaccharides (glucose, galactose) and disaccharides (maltose, lactose) 
and tested for antimicrobial activity. The disaccharides exhibited maximum activity 
against Gram-positive and Gram-negative bacteria because of smaller sized 
nanoparticles. Li et  al. (2013) showed that enhanced antibacterial effect was 
observed in small-sized nanoparticles of 5 nm and these small-sized nanoparticles 
get attached to the cell membrane easily causing membrane damage leading to 
cell death.

The shape of the nanoparticles also plays a significant role in antimicrobial activ-
ity due to the various degrees of interaction with the cell membrane. The antibacte-
rial activity of different shaped silver nanoparticles (triangle, sphere, and hexagon) 
was studied by El-Zahry et al. (2015), and they found that hexagonal-shaped silver 
nanoparticles exhibited the highest activity. Few researchers reported that the shape 
of the nanoparticles does not have a significant effect on antimicrobial activity 
(Actis et al. 2015).
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11.6  Concentration

The concentration of nanoparticles is another factor and is directly related to the 
type of microbes. Kim et al. (2007) reported that the growth of E.coli was inhibited 
at lower concentrations compared to S. aureus.

11.7  Zeta Potential

Zeta potential is another important factor because the interaction between nanopar-
ticles and cell membrane is based on electrostatic adhesion (Mandal et al. 2016; 
Shameli et al. 2012; Phanjom and Ahmed 2017). El Badawy et al. (2011) found that 
there exists a direct relationship between nanoparticle surface and antimicrobial 
activity. Positive silver nanoparticles are susceptible to Bacillus strains compared to 
negative particles. This is because of the repulsion between negative charge on cell 
surface and nanoparticle surface.

11.8  Environment

Lynch et al. (2007) reported that synthesized nanoparticles formed a thick coating 
and were large sized when biological methods were used, and this was established 
by the surrounding environment.

12  Challenges in Nanotechnology

The use of nanomaterials in green chemistry is challenging in terms of toxicity to 
environment, health, social issues, and uncertainty in market and consumer accep-
tance. Due to their special properties, these nano-based products will cause risk to 
the ecosystem. There is a risk for nano-based products like cosmetics by interfering 
with cellular and subcellular mechanisms (Murthy et al. 2012). In-depth research on 
toxicity of nanomaterials in cosmetic formulations should be carried out with better 
regulations which will satisfy the consumer to choose the products. The need arises 
to identify the possible risks for humans and environment because of the nano- 
based products. Toxicity is the major problem because these nanomaterials are more 
reactive and toxic. When the nanoparticles enter the body, it can cause increased 
oxidative stress, thereby generating free radicals which lead to DNA mutation and 
cancer. Kampers (2008) reported that nano-based food products have been reported 
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for consumer safety. The specific guidelines for checking nano-based food products 
should be followed. The Food and Drug Administration (FDA) should develop 
 specific guidelines for evaluating the nano-based food products for safety, packag-
ing, etc.

13  Conclusions

Microbial pigments have demonstrated a great potential for various applications and 
synthesis of pigment-mediated nanoparticles has widened its scope for industrial 
applications. The richness of these materials in different biomolecules that can drive 
the process of synthesis of nanoparticles will lead to economically viable means to 
produce nanoparticles on a larger scale through novel green approaches. This chap-
ter summarizes the importance of microbial pigments in nanotechnology and their 
pharmacological applications.
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1  Introduction

Malaria disease is prevalent throughout the world and is caused by the Plasmodium 
genus (an apicomplexan protozoa). Infected female Anopheles vector transmits five 
Plasmodium species viz. Plasmodium falciparum, Plasmodium vivax, Plasmodium 
malariae, Plasmodium ovale and Plasmodium knowlesi by biting a healthy human. 
Worldwide, every year, in 92 countries, an estimated 3.4 billion people are being 
infected with malaria and 1.1 billion people are at high risk, that is, more than 1 
person in 1000 population (in these 92 countries) has the chance of getting malaria 
in a year. This burden was high in the African region, where 93% of death occurred 
due to malaria and children under 5 years contribute 61% towards malaria deaths 
(WHO 2018).

In the years 2017, 2016 and 2015, there were an approximated 219, 217 and 214 
million malaria cases with about 435,000, 451,000 and 446,000 of death cases 
reported, respectively (WHO 2016, 2017, 2018).
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With a high infection and incidence rate, Plasmodium parasites are becoming 
resistant to chloroquine, sulfadoxine, pyrimethamine and arteesunate. Chloroquine 
is highly resistant in most malaria P. falciparum-affected areas. Sulfadoxine 
 pyrimethamine (SP) has also developed resistance rapidly. In Thailand, Vietnam 
and Cambodia, mefloquine resistance is confined which has emerged within 6 years 
of careful deployment (Zuber and Takala-Harrisons 2018). In P. vivax, the epidemi-
ology of resistance is less thoroughly investigated; resistance to chloroquine is 
pressing only in some portions of Papua New Guinea, Indonesia and nearby areas. 
Resistance to SP in P. vivax is also comprehensive (White 2004). Slowly, all 
Plasmodium parasites are gaining resistance to antimalarial drug for which combi-
nation therapy is needed. By using nanoparticles, the dilemma correlated with anti-
malarial drug resistance can be solved (Dennis et al. 2015).

Elimination of mosquito-breeding ground, long-lasting insecticidal nets (LLINs), 
indoor residual spraying (IRS) and proper chemotherapy for patients are the four 
major interventions that provide for malaria reduction (Bhatt et al. 2015). Despite 
all efforts, malaria control is difficult because its control is also being threatened by 
insecticide-resistant Anopheles vectors (Ranson and Lissenden 2016) and inade-
quacy of public health insecticides (Hemingway et al. 2013). Therefore, biologi-
cally synthesized nanoparticles (NPs) have been studied for their efficacy against 
mosquitocidal activities to obtain the body parts of mosquito that are more sensitive 
because of their eco-friendly and biogenic character with a minimum dosage and 
organism specificity (Haldar et al. 2013).

1.1  Nanotechnology

The word ‘Nano’ means small, which comes from Greek. The study of nanosize 
particles that range from 1 nanometer to 100 nm in size is called ‘nanotechnology’. 
It is a technique that allows manipulation of properties at a very small scale. 
Nanotechnology concept was first proposed in 1974 by Prof. N. Taniguchi, and this 
field has received huge recognition since 1980. It is an essential study that is a com-
bination of various types of NPs with different sizes, structures and various contra-
riety synthetic compounds (Fig. 18.1). Currently, the making of valuable metal NPs, 
viz. zinc, platinum, gold, silver and palladium, from biological sources has gained 
important attention because of an urgent necessity to produce eco-friendly tech-
nologies in these substances (Song et al. 2010).

NPs were biosynthesized utilizing biologically obtained organic compounds like 
proteins, carbohydrates, vitamins, lipids, biodegradable polymers, microorganisms 
and botanical extracts, and the possibility of development of nanotechnology has 
increased (Rahman et  al. 2019). These improvements have affected the result of 
small quantity of inorganic nanoparticles, different metal oxides, metal NPs and 
salts. Several plant parts, viz. stem, latex, root, seed and leaf, have been recently 
engaged to biosynthesize metal nanoparticles. Compared to other chemicals, bio-
synthesis of NPs is healthy, recyclable, ecological, economical, reliable and eco- 
friendly (Postma et al. 1999; Rahman et al. 2019). The activity of biosynthesis is 
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slower when microbes are used to biosynthesize NPs. Furthermore, nanoparticles 
which are restricted in size and shape are generated from microbes. Currently, fungi 
is considered as one of the best candidates for the biosynthesis of AgNPs (Rahman 
et al. 2019). Naturally occurring materials are better than artificial NPs which create 
ecological NPs. In this chapter, we describe the current advancement on NPs and 
nanotechnology for the prevention and therapy of malaria.

2  Role of Nanotechnology in Malaria Treatment

Nanotechnology fights against many parasitic diseases, viz. lymphatic filariasis, 
schistosomiasis, parasitic zoonoses, soil-transmitted helminthiasis, leishmaniasis 
ectoparasitic skin infections, onchocerciasis, tuberculosis, leprosy, and malaria. 
Nanotechnology works to control malaria by implementing successful therapeutic 
approaches to targeting parasite directly and eliminate vector. The followings are 
some nanotechnological applications that will assist in the simple and secure ther-
apy of malaria.

2.1  Lipid-Based Nanoparticles

Over 20 years ago, liposome was studied to use for the therapy of leishmaniasis and 
malaria (Rahman et al. 2019). Liposomal formulation treatments seem superior in 
comparison with other malarial drug treatment. Several examples illustrate that the 

Fig. 18.1 (a) Different types of nanoparticles. (b) Different aspects of nanotechnology and its 
application towards malaria therapy
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toxicity of a drug is reduced if the infected tissue is targeted with a huge volume of 
drugs. Furthermore, the usefulness of the treatment is developed by increasing the 
dose instead of enhancing the dosage that is provided to the sufferers. Frequent use 
of nanotechnology is able to reduce the virulent property of the drug molecules 
(Goodsell 2004).

If artesunate liposomes with encapsulated beta artemether were released slowly 
for 24  hours, it reduced the dosing frequency for a malaria-resistant treatment 
(Chimanuka et  al. 2002). Small lipid nanodrops co-loaded with artemether and 
lumefantrine have a greater potency and can quickly enter into the target site 
(Parashar et  al. 2016). For meningeal malaria treatment, artemether packed into 
lipid NPs is an effective treatment in the animal model (Vanka et  al. 2018). 
Experimental cerebral malaria (ECM) induced in P. berghei K 173-infected mice 
were treated successfully when different types of liposomes were used weather it 
coupled or encapsulated with human tumour necrosis recombinant factor, its clear 
form in limiting ECM-associated death by repressing mice parasite load (Rahman 
et  al. 2019). P. berghei-infected mice were treated successfully when liposomes 
were combined with Plasmodium amino acid sequence. Peptide containing a con-
served region I and consensus heparin sulphate proteoglycan binding sequence 
were connected to the lipid Y polyethylene glycol bio-conjugated distal end. This 
was fused into phosphatidylcholine liposomes (Longmuir et al. 2006).

RTS, S malaria antigen encapsulated with liposomes including lipid A, produced 
huge cytotoxic T-cell immune response and antibody compared to non-fusion RTS, 
S when it was used in mice immunization (Richards et al. 1998). In 2014, RTS, S 
antigen vaccine successfully prevented malaria in African children (Alonso and 
Noor 2017).

Polyethylene glycol (PEG)-coated halofantrine filled with poly-d,l-lactic acid 
(PLA) nanocapsules were examined towards malaria, and the decline in its cardio 
toxicity was estimated in P. berghei-infected mice. In the study, primaquine with 
diethylmethylidene malonate NPs were estimated in P. berghei-infected mice which 
shows a greater extended life span index and to target liver cell, this molecule was 
capsulated with gelatin and albumin NPs with different sizes (Mbela et al. 1992). 
Primaquine formulation with lipid nano emulsion (10–200 nm) as an antimalarial 
factor was found very active against P. berghei infection in Swiss albino mice (Singh 
and Vingkar 2008).

Violacein, which has anti-plasmodial (antimalarial) properties, was confirmed 
in vivo and in vitro (Costa et al. 2006). In the previous work, the NP violacein was 
examined towards P. chabaudi selecting mouse as a model and an accretion was 
found daily in the anti-plasmodial activity. However, non-infected mice obtaining 
equal doses of violacein did not show any notable difference in anti-plasmodial 
activity. Laboratory assay against P. falciparum suggests that violacein is more pro-
ductive than the generally observed antimalarial drug quinine (Durán et al. 2007). 
Presently, the results of antimalarial drugs packed into immuno liposomes targeted 
with the compressed red blood cells (pRBC)-specific monoclonal antibody have 
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been investigated (Urbán et al. 2011). Antimalarial drug efficacy increased by ten 
fold when liposomes were encapsulated with chloroquine and fosmidomycin.

2.2  Nucleic Acid–Based Nanotherapy

MicroRNAs are noncoding RNAs which are small and engaged in gene silencing 
and targeting. These microRNAs are also utilized as therapeutic tools for different 
types of diseases, although microRNA is a physiological regulator (Rahman et al. 
2014). These also play a vital function in malaria prevention. An attempt has been 
taken which finds that P. falciparum is sensitive to antisense oligonucleotide 
(ODN-NS) NPs (Gujjar et al. 2009). This method generally uses antisense oligo 
deoxy (OD) N-chitosan particles, whose size is 50 nm. These oligo deoxy parti-
cles raise the antisense ODNiinternalization by Pf infect erythrocytes within 
erythrocyte diffusion pathways that choose the Plasmodium topoisomerase II 
gene (Phillips et  al. 2008). ODN chitosan NPs are +vely and −vely charged. 
Compared to free ODNs, ODN– chitosan NPs were observed to be higher 
sequence-specific inhibitors in their antisense impact. Likewise, the −vely charged 
surface of ODN–chitosan NPs revealed the noticeable impact of about 87% on the 
P. berghei maturity while the free ODNs revealed 68% and positively charged 
surface were 74%.

2.3  Protein-Based Nanotechnology for Malaria Treatment

Currently, study is continuing to produce protein-based nanoparticles for antima-
larial drug distribution. Recently, Gelatin has played a major function in nano trans-
fer system for bioactive compounds and it is utilized in pharmaceutical 
nanotechnology. Gelatin is a biocompatible and biodegradable collagen denatured 
protein where amide groups obtain it +vely charged (Yang et al. 2007; Young et al. 
2005). It is also an adjuvant and sustained plasma expander because of its security 
report. For ideal distribution of chloroquine at a physiological pH, the gelatin NPs 
were used and it is taken by a double dissolution method which may then be sup-
ported by a proper cross-linking agent (Bajpai and Choubey 2006). However, ade-
quate antimalarial activity has not been seen. Currently, to transfer malaria-specific 
antigens to the mark receptor favourably, nano protein adjuvants have been used. 
Nano protein adjuvants in combination with particular antigens varying from 16 to 
73 nm in width exhibited a satisfactory immune response towards malaria- contrasted 
antigens individually upon injecting into the mice (Scaria et al. 2017). Due to low 
adaptability with target vaccine or antigen external protein, adjuvants have limited 
use. Additionally, Kaba et al. 2018, have designed and developed a self-assembling 
protein nanoparticles (SAPNs) comprising epitopes from the P. falciparum circum-
sporozoite protein (PfCSP).
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2.4  Green Nanotechnology for the Therapy of Malaria

Gold, silver, zinc and copper are the biogenic structure of metallic NPs and have 
latent antimalarial actions against five Plasmodium species (Table 18.1). Palladium, 
platinum and silver are the green NPs and are proven to be more active in control-
ling malaria parasites. The biologically synthesized NPs are ecofriendly and have 
huge advantages in malarial drug production (Kuppusamy et al. 2016). Fungi, algae, 
yeast, bacteria and plants are used to produce carbohydrates, lipids, and proteins 
which are also health secure (Rahman et al. 2019).

AgNPs synthesis through plants product is eco-friendly and cost-effective (Ullah 
Khan et al. 2018). Leaf extracts of medicinal plants like Garcinia mangostana and 
Acalypha indica have been used to synthesize AgNPs of size 35 and 20–30  nm 
respectively (Veerasamy et al. 2011). Capsicum annuum and Aloe vera also were 
used for the synthesis of AgNPs (Li et al. 2007). Additionally, the leaf extract of 
Euphorbia hirta (40–50 nm) exhibited influential action, as it is a biogenic synthe-
sized AgNPs. Like plants, both Gram-positive and Gram-negative bacteria, are 
being utilized for the green synthesis of AgNPs (Parikh et al. 2011).

A few bacteria also can produce extracellular AgNPs and intracellular AgNPs 
viz. Aeromonas spp. SH10, Calothrix pulvinata, Vibrio alginolyticus, Plectonema 
boryanum UTEX 485, Lactobacillussspp and Anabaena flos-aquae (Brayner et al. 
2007; Rajeshkumar et al. 2013; Mouxing et al. 2006; Lengke et al. 2007). Current 
study stated that for the synthesis of AgNPs, Bacillus licheniformis was employed 
(Kalimuthu et al. 2008).

Penicillium expansum HA2N (14–25  nm) and Aspergillus terreus HA1N 
(10–18 nm) are two fungal strains also used for the synthesis of AgNPs and both 
these strains have outstanding antifungal potential (Ammar and El-Desouky 2016). 
Other studies reported that the Aspergillus fumigatus (5–25 nm) and Fusarium oxy-
sporum (5–50  nm) are biogenic synthesized AgNPs, and had active potential 
towards fungal strains (Bhainsa and D’Souza 2006).

Current studies stated that red algae have also been employed for the making of 
AgNPs green NPs. Cellulose also plays an outstanding function in the making of 
AgNPs. Alcohol and Aldehyde functional group have a significant function in 

Table 18.1 Impact of photosynthetic metallic nanoparticles towards Plasmodium parasites

Plant species name
Synthesized metallic 
nanoparticles Plasmodium Species name

Calotropis gigantae Titanium NPs All sp. Of Plasmodium (Marimuthu 
et al. 2011)

Ashoka & Neem Silver NPs P. falciparum (Mishra et al. 2013)
Catharanthus roseus Silver NPs P. falciparum (Panneerselvam et al. 

2011)
Andrographis 
paniculata

Silver NPs P. falciparum (Panneerselvam et al. 
2011)

NPs Nanoparticles, P. falciparum Plasmodium falciparum
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 cellulose modification and stabilization while Ag ion is formed (Tummalapalli et al. 
2015). Likewise, other biomolecules viz. proteins and nucleic acid are also employed 
for the AgNPs green synthesis.

2.5  Nanotechnology for the Control of Malaria Vectors

Vector control is an essential element of malaria elimination and control strategies. 
Vector control has been successfully reduced or interrupts malaria transmission. By 
targeting various biomolecules or biochemical, physiological and molecular actions, 
nanotechnology controls the density of Anopheles vector mosquitoes (Blandin et al. 
2002; Rayner 2009).

The green synthesis of nanoparticles has gained outstanding consideration 
because of its environment-friendly property and is effective in relation to its cost. 
Currently, filamentous fungus Cochliobolus lunatic has been utilized to synthesize 
metallic NPs which have strong activity against An. stephensi (Salunkhe et al. 2011). 
In India, Aspergillus niger has been used for the synthesis of extracellular gold NPs 
which is highly virulent for Anopheles vectors and it is also effective against Culex 
quinquefasciatus and Aedes aegypti. However, no after effects were observed in the 
environment. Chrysosporium tropicum is a gold and silver pathogenic fungus-medi-
ated NPs; that it can eliminate An. stephensi was also reported by the same author 
(Soni and Prakash 2012). Numerous entomopathogenic fungi like Trichoderma har-
zianum are utilized commonly for the control of biological pests. This can be utilized 
to synthesize metallic NPs which can kill the Anopheles mosquitoes at any stage of 
their growth (Banu and Balasubramanian 2014). Despite fungal arbitrate NPs, plants 
and bacteria also maintain metallic NPs with several vital actions. Synthesized bac-
terial NPs of gold, cobalt, zinc, copper, and silver, by utilizing Bacillus thuringien-
sis, control the Anopheles mosquitoes in different regions of the earth (Marimuthu 
et al. 2013). The photosynthesis of NPs of several metals has also been used as an 
agent for controlling mosquitoes. Biosynthesized silver NPs (AgNPs) will be an 
expedient substitutions for synthetic chemical insecticides in future which may 
cause lower ecological destructions. Hence, green synthesized NPs are necessary to 
control mosquitoes that cause malaria (Table 18.2); (Santhoshkumar et al. 2011); 
however, the possibility of plant products for the biosynthesis of NPs towards 
Anopheles vector mosquitoes has yet to be completely investigated.

3  Nanotechnology and Its Limitations

Nanotechnology has an encouraging discipline to cure malaria and control the 
Plasmodium parasites as well as the vector, but no conventional principle of action 
of these particles has been explained yet (Foldbjerg et al. 2015). Almost all of the 
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nanotechnological procedures correlated with the distribution of drugs; it cannot 
determine the exact concentration of a specific drug and has very precise impacts. 
However, recently, a long-lasting injectable atovaquone solid drug NPs designed by 
Bakshi et al. 2018, have specified applications and long-running impact. The study 
mainly centred on the impact of NPs towards egg, larval and pupal developmental 
stages of mosquitoes, but there is inadequate knowledge obtainable about the impact 
of these NPs on the adult mosquitoes and their ovicidal characteristics (Benelli 
2016). Hence, despite an extensive investigation in this area, there are still several 
problems and difficulties that are required to be resolved.

4  Conclusion

Malaria control is a continuing challenge for the current study. Researchers were 
attempting to define an efficient procedure to cure malaria. However, due to insecti-
cide and drug resistance, climatic, social and environmental factors, no adequate 
and future assuring method has been explained. From last 2 decades, the progress of 
superior techniques in composing liposomes, the expansion of tissue-specific nano- 
bio- circuits and nano-pores and introduction to green nanotechnology have provide 
the opportunity for a reliable, cost-effective and environment-friendly curative 
approach for malaria treatment. Though NPs are very effective in malaria therapy 
and vector control, very less research has been conducted. Industrial applications in 
NPs increased significantly, but till now, the relationship between NPs and biologi-
cal applications are not clearly understood. Metallic NPs are widely used due to its 
high speed, low cost and ease of synthesis. Chemically produced NPs are restricted 
to use in clinical fields due to toxic materials in it. Photosynthetic metallic NPs have 
a significant impact on different Plasmodium species and Anopheles vector. 
Biosynthesized silver NPs (AgNPs) will be an expedient substitutions for synthetic 
chemical insecticides in future, which may cause lower ecological destructions. 
However, more research is required in this area to investigate the conventional prin-
ciple of action and side effects.

Table 18.2 Impact of photosynthetic metallic nanoparticles towards Anopheles vector mosquitoes

Plant species
Synthesized metallic 
nanoparticles Anopheles vector name

Cymbopogon 
citratus

Gold NPs Different species of Anopheles vectors 
(Murugan et al. 2015)

Plectranthus 
amboinicus

Zinc NPs An. stephensi (Vijayakumar et al. 2015)

Morinda citrifolia Titanium NPs – (Suman et al. 2015)
Nelumbo nucifera – Different species of Anopheles vectors 

(Santhoshkumar et al. 2011)
Eclipta prostrate Silver NPs An. subpictus (Rajakumar et al. 2011)
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1  Introduction

Every year, a large amount of industrial effluents from the chemical, mining, textile, 
metallurgical industries, etc., is discharged to the environment, which is mainly 
responsible for contaminating the drinking water. This contaminated water contains 
toxic dyes, heavy metal ions such as arsenic, zinc, copper, nickel, mercury, cad-
mium, lead, and chromium, and other organic toxic elements that are very much 
harmful to the environment as well as carcinogenic to human beings.

Various methods and techniques, such as ion exchange and chemical redox fol-
lowed by precipitation and reverse osmosis, have been developed for the removal of 
these toxic materials from both water and wastewater. But many drawbacks are 
involved in these processes. For example, the major drawback related to precipita-
tion, in large-scale chemical redox method, is slurry production. Due to the high 
operating costs, both ion exchange and reverse osmosis methods are not economi-
cally attractive. A large number of catalysts/adsorbents have been developed for the 
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removal of toxic cations and other toxic organic dyes present in both water and 
wastewater. But most of them have certain drawbacks, like high operational costs 
for treatment, high capital, and the disposal of the residual metal sludge. For exam-
ple, because of high Brunauer–Emmett–Teller (BET) surface areas, activated car-
bon was adopted as an efficient adsorbent for the removal of the heavy metals, but 
it can be regenerated at a very high temperature. Thus, there is a great need to 
develop low-cost materials and better methods for the degradation of toxic elements 
present in both water and in wastewater.

Currently, the researchers are working towards the development of nanoscience 
and nanotechnology to provide a solution for the abatement of environmental pollu-
tions. Due to the high BET surface areas and fast adsorption kinetics, the metal 
oxide nanoparticles (e.g., Al2O3, SiO2, and TiO2) and their composites are greatly 
considered for the treatment of water and wastewater. But the methods such as 
deposition precipitation, impregnation, photoreduction, and reduction, which are 
employed for the preparation of these catalysts, are very much expensive and 
involve the use of harmful chemicals such as hydrazine hydrate, sodium borohy-
dride, dimethylformamide (DMF), and ethylene glycol that pose harmful effects to 
the environment. Thus, there is a great need to prepare these materials by green 
route without using any toxic chemicals. The use of biological materials to synthe-
size these nanomaterials agrees with the many principles of green chemistry, as it 
uses renewable materials and takes place at ambient temperatures and pressures. In 
comparison to other biological materials, plant extracts are very much promising for 
the synthesis of stable nanocomposites, as they contain a large number of phytocon-
stituents which are safe and easily available, and there is no requirement of growing 
the pure culture of microorganisms, as it is a very time-consuming and cumbersome 
process. The biomolecules of leaf extract, such as polyphenols, phenolics, ascorbic 
acid, flavonoids, and various sugars, have very high potentials to synthesize stable 
nanoparticles, because they act as both capping and reducing agents. The biomole-
cules of the plant extract formed capped nanostructures during the synthesis 
(Fig. 19.1). These capping agents prevent the aggregation of the nanoparticles and 
stabilize the nanosystem. Biocompatibility of biosynthesized nanomaterials is 
improved in the presence of capping agents. The use of natural surfactant in the 
synthesis of metal oxide may enhance the surface area, morphology, and size of the 
metal oxide/metal oxide composites due to the interaction of these surfactants with 
some specific lattice plane of metal oxide/metal oxide composites. Experimentally, 
it is seen that the catalysts prepared by the green method have either superior or 
comparable catalytic behavior in comparison to the catalytic behavior of the same 
catalysts prepared by the chemical methods (Arabatzis et al. 2003; Naik et al. 2013; 
Liang et al. 2012; Mishra et al. 2016). This method is industrially feasible and eco-
nomical. But due to the availability of scanty literature in this field, more research is 
indeed needed to develop these highly efficient superior materials for application in 
environmental pollution abatement.
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2  Multifunctional Activities of Plant-Mediated Synthesized 
Metal Oxide Nanocomposites Towards Pollution 
Abatement

2.1  Degradation of Toxic Dyes

Bio-based metal oxide nanocomposites synthesized using plant biomolecules 
showed tremendous potential towards the degradation of toxic dyes (Table 19.1). 
Two-dimensional TiO2@Ag heterojunction structure was synthesized using edible 
corn crispy, which exhibited efficient photocatalytic activity towards the degrada-
tion of methylene blue (MB) (Jiang et al. 2013). Liang et al. synthesized Au/TiO2 
and Ag/TiO2 composites using Citrus limon plant extracts, studied their photocata-
lytic activity for the degradation of organic dye, and reported that these catalysts 
are as active as M/TiO2 composites prepared by the chemical method (Liang et al. 
2012). Naik et al. synthesized Au/TiO2 by using aqueous leaf extract of Cinnamomum 
tamala (C. tamala) and also studied its remarkable activity towards the photocata-
lytic degradation of methyl orange (Naik et  al. 2013). Cu/MgO nanocomposites 
synthesized by Cassytha filiformis L. extract showed excellent catalytic activity 
towards the degradation of methylene blue (Nasrollahzadeh et  al. 2018a, b). 
Ag/RGO/Fe3O4 nanocomposites synthesized by Lotus garcinii aqueous leaf extract 
showed catalytic activity towards the degradation of rhodamine B (RhB) and congo 
red (CR) (Maham et al. 2017). Cu/Fe3O4 magnetic nanocatalyst synthesized using 
Morinda morindoides leaf extract showed catalytic activity towards the degradation 
of congo red (CR) and rhodamine B (RhB) (Nasrollahzadeh et al. 2016). (RGO)/
Fe3O4 nanocomposites were synthesized using Solanum trilobatum extract and 
were used for the degradation of methylene blue dye (Vinothkannan et al. 2015). 
Ag/ZnO nanocomposite synthesized using Valeriana officinalis L. root extract 

Fig. 19.1 Schematic representation of the interaction of biomolecules with the nanoparticles
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Table 19.1 Plant-mediated synthesis of metal oxide nanocomposites for application towards the 
degradation of toxic dyes

Serial 
number

Plant used for 
synthesis

Bio-based metal 
oxide 
nanocomposites 
synthesized

Application towards 
the degradation of 
toxic dyes References

1 Edible corn 
crispy

TiO2@Ag Methylene blue (MB) Jiang et al. (2013)

2 Citrus limon 
plant extracts

Au/TiO2 and Ag/
TiO2

Orange G Liang et al. (2012)

3 C. tamala leaf 
extract

Au/TiO2 Methyl orange Naik et al. (2013)

4 Cassytha 
filiformis 
L. extract

Cu/MgO Methylene blue (MB) Nasrollahzadeh et al. 
(2018a, b)

5 Lotus garcinii 
leaf extract

Ag/RGO/Fe3O4 Congo red (CR) and 
rhodamine B (RhB)

Maham et al. (2017)

6 Morinda 
morindoides leaf 
extract

Cu/Fe3O4 Congo red (CR) and 
rhodamine B (RhB)

Nasrollahzadeh et al. 
(2016)

7 Solanum 
trilobatum 
extract

(RGO)/Fe3O4 Methylene blue dye Vinothkannan et al. 
(2015)

8 Valeriana 
officinalis L. root 
extract

Ag/ZnO Methyl orange (MO), 
congo red (CR), and 
methylene blue (MB)

Yeganeh-Faal et al. 
(2017)

9 Pepper extract Fe3O4–Pd Acid brown and acid 
black

Khaghani et al. (2017)

10 Lemon extract Fe3O4–CeO2 Acid red and acid 
brown

Moradi et al. (2018)

11 Picrasma 
quassioides 
aqueous extract

GO–AgNPs Methylene blue (MB) 
dye

Sreekanth et al. (2016)

12 Green tea extract RGO–AuNPs Congo red, safranin 
T, and eosin Y

Šimšíková et al. (2016)

13 Piper 
pedicellatum C.

Au–RGO Rhodamine B, 
methyl red, methyl 
orange, methylene 
blue, and 
bromocresol green

Saikia et al. (2016)

14 Musa balbisiana 
bract extract

TiO2@C Methylene blue (MB) Karmakar et al. (2017)

15 Moringa oleifera 
(MO) leaves 
extract

Ni/Fe3O4 Malachite green 
(MG) dye

Prasad et al. (2017a, b)

16 Euphorbia 
maculata extract

Ni/Fe3O4 Congo red (CR), 
methylene blue 
(MB), and rhodamine 
B (RhB)

Pakzad et al. (2019)

(continued)
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showed excellent results towards the degradation of toxic organic dyes (Yeganeh-
Faal et al. 2017). Fe3O4–Pd nanocomposites synthesized using pepper extract had 
shown very good results towards the degradation of acid brown and acid black 
under ultraviolet (UV) irradiation (Khaghani et al. 2017). Fe3O4–CeO2 nanocom-
posites prepared using extract of lemon showed good results towards the degrada-
tion of azo dyes (Moradi et al. 2018). GO–AgNPs synthesized through Picrasma 
quassioides aqueous extract exhibited higher activity towards the degradation of 
methylene blue (MB) dye (Sreekanth et al. 2016). RGO–AuNPs nanocomposites 
synthesized using green tea extract showed excellent results towards the degrada-
tion of toxic organic dyes like congo red, safranin T, and eosin Y (Šimšíková et al. 
2016). Au–RGO nanocomposite synthesized using leaf extract of Piper pedicella-
tum C. showed very good results towards the degradation of methyl red, rhodamine 
B, methyl orange, bromocresol green, and methylene blue (Saikia et  al. 2016). 
TiO2@C nanocomposites were synthesized using banana (Musa balbisiana) bract 
extract and evaluated towards the degradation of methylene blue (MB) dye 
(Karmakar et al. 2017). Naik et al. studied the green synthesis of Au/TiO2 nanocom-
posite using Cinnamomum tamala leaves and its photocatalytic activity towards the 
degradation of methyl orange (Naik et al. 2013). Ni/Fe3O4 MNPs synthesized using 
extract of Moringa oleifera (MO) leaves showed very good results towards the deg-
radation of the dye malachite green (MG) (Prasad et al. 2017a, b). Green synthe-
sized Ni/Fe3O4 using Euphorbia maculata extract showed excellent results towards 
the degradation of organic dyes such as methylene blue (MB), rhodamine B (RhB), 
and congo red (CR) under UV irradiation (Pakzad et al. 2019). Cu/Al2O3 NPs syn-
thesized using Commersonia bartramia extract showed great potential towards the 
reduction of congo red (CR), methylene blue (MB), and 2,4-dinitrophenylhydrazine 

Table 19.1 (continued)

Serial 
number

Plant used for 
synthesis

Bio-based metal 
oxide 
nanocomposites 
synthesized

Application towards 
the degradation of 
toxic dyes References

17 Commersonia 
bartramia 
extract

Cu/Al2O3 Congo red (CR) and 
methylene blue (MB)

Nasrollahzadeh et al. 
(2019)

18 Commelina 
diffusa

Cu/ZrO2 Congo red (CR), 
nigrosin (NS), and 
methyl orange (MO)

Hamad et al. (2019)

19 Grape juice Nd2Sn2O7–Nd2O3 Erythrosine Zinatloo-Ajabshir et al. 
(2019)

20 Sida rhombifolia 
leaf extract

Ag/ZnO Methylene blue (MB) 
and malachite green 
(MG)

Babu and Antony 
(2019)

21 Euphorbia 
prolifera leaf 
extract

Cu/ZnO Methylene blue (MB) 
and congo red (CR)

Momeni et al. (2016)
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(2,4-DNPH) at room temperature in aqueous medium (Nasrollahzadeh et al. 2019). 
7-hydroxy-4′-methoxy-isoflavon, extracted from the Commelina diffusa leaf 
extract, is used for the synthesis of Cu/ZrO2 nanocomposite, which had shown very 
good results towards the reduction of various organic dyes such as congo red (CR), 
nigrosin (NS), and methyl orange (MO) and 2,4-dinitrophenylhydrazine (2,4-
DNPH) (Hamad et al. 2019). Nd2Sn2O7–Nd2O3 nanostructure, which was synthe-
sized using grape juice, showed excellent results towards the degradation of 
erythrosine (Zinatloo-Ajabshir et al. 2019). Ag/ZnO synthesized using Sida rhom-
bifolia leaf extract showed excellent photodegradation efficiency towards the pho-
todegradation of methylene blue (MB) and malachite green (MG) dye (Babu and 
Antony 2019). Cu/ZnO NPs synthesized using the aqueous extract of the leaves of 
Euphorbia prolifera showed very good results towards the degradation of methy-
lene blue (MB) and congo red (CR) (Momeni et al. 2016).

2.2  Degradation of Toxic Elements Present in Water Other 
Than Dyes

Plant-mediated synthesized metal oxide nanocomposites showed excellent catalytic 
activity towards the reduction of toxic elements like Cr(VI), 4-nitrophenol, 
2,4- dinitrophenylhydrazine present in water. Mishra et al. studied the reduction of 
Cr(VI) using Au/Fe3O4 synthesized using aqueous leaf extract of Averrhoa caram-
bola (A. carambola) (Mishra et al. 2016). Padhi et al. studied the degradation of 
phenol and reduction of Cr(VI) using green-synthesized Fe3O4/RGO nanocompos-
ite (Padhi et al. 2017). Cu/MgO nanocomposites synthesized by Cassytha filiformis 
L. extract showed excellent potential towards the photocatalytic reduction of 
2,4-dinitrophenylhydrazine and 4-nitrophenol in aqueous media (Nasrollahzadeh 
et al. 2018a, b). Ag/RGO/Fe3O4 nanocomposites synthesized using Lotus garcinii 
leaves showed catalytic activity towards the reduction of 4-nitrophenol (Maham 
et  al. 2017). Pd/RGO/Fe3O4 nanocomposite synthesized using leaf extract of 
Withania coagulans showed very good potential towards the degradation of 4-nitro-
phenol (Atarod et  al. 2016). RGO/ZnO hybrid nanocomposite synthesized using 
Prunus × yedoensis leaf extract is used for phosphate removal from aqueous solu-
tions (Manikandan et al. 2018). RGO–Ag nanohybrid synthesized using tea poly-
phenols acts as an efficient catalyst in the reduction of 4- nitrophenol (4-NP) (Wang 
et al. 2015). Au–RGO nanocomposite synthesized using leaf extract of Piper pedi-
cellatum C. showed excellent results in nitro- reduction (Saikia et  al. 2016). Pd/
Fe3O4 nanocomposite synthesized using Hibiscus tiliaceus L. extract showed cata-
lytic activities towards the reduction of 4- nitrophenol (4-NP), Cr(VI), and 2,4-dini-
trophenylhydrazine (2,4-DNPH) (Nasrollahzadeh et al. 2018a, b). Ag/ZnO and Ag/
CuO synthesized using Sida rhombifolia leaf extract exhibited more significant 
catalytic properties towards photoreduction of 4-nitrophenol to 4-aminophenol 
(Babu and Antony 2019).

P. M. Mishra



365

2.3  Biosynthesized Metal Oxide Nanocomposites as Sensors

Green-synthesized metal oxide nanocomposites also act as excellent sensors for the 
detection of toxic elements present in water. Ag–RGO synthesized using Acacia 
nilotica gum showed excellent sensing ability towards selective detection of Hg2+ 
ions in aqueous media in the presence of other associated ions (Gavade et al. 2019). 
Ag–RGO and Ag–Au–RGO synthesized using Azadirachta indica leaves extract 
were used for nonenzymatic hydrogen peroxide sensor applications (Babu et  al. 
2014). RGO–Au nanocomposites synthesized using rose water as reductant showed 
very good results towards glucose sensing applications (Tabrizi and Varkani 2014). 
AuNPs–RGO nanocomposite synthesized using willow bark waste was success-
fully used for glucose detection (Qin et al. 2013). Using the synergistic advantages 
of chitosan, AuNPs, and graphene nanosheets, a new plant esterase-based (PLaE–
CS–AuNPs–GNs) biosensor was synthesized which was used for the ultrasensitive 
detection of organophosphosphate pesticides spiked in carrots and apples (Bao et al. 
2015). Ikhsan et  al. synthesized GO–Ag nanocomposite using garlic extract and 
applied its modified electrode as an electrochemical sensor for the detection of 
nitrite ions (Ikhsan et  al. 2015). Biosynthesized Ag–RGO nanocomposite using 
Psidium guajava extract shows remarkable performance in detecting methylene 
blue with concentration as low as 10−8 M (Chettri et al. 2017). Al-Marri et al. stud-
ied the synthesis of graphene/Ag nanocomposites using Pulicaria glutinosa plant 
extract (PE) as reducing agent and explained that it can be used as a potential sub-
strate for surface-enhanced Raman scattering (SERS) activities for the detection of 
chemical and biological analytes (Al-Marri et  al. 2015). RGO–SnO2 composite 
using lemon extract showed great results towards the detection of ascorbic acid (Sha 
and Badhulika 2018). Fe3O4–carbon dots prepared by lemon and grape fruit extracts 
are novel photoluminescence sensors for the detection of Escherichia coli (E. coli) 
bacteria (Ahmadian-Fard-Fini et al. 2018). RGO@AgNPs synthesized using Pinus 
densiflora leaf extracts showed excellent results towards colorimetric platform for 
the detection of dopamine and Cu2+ (Basiri et al. 2018).

2.4  Biosynthesized Metal Oxide Nanocomposites 
as Adsorbents

Biosynthesized metal oxide nanocomposites can be used as very good adsorbents 
for the adsorption of toxic elements present in water. Green-synthesized SiO2@
OPW nanocomposites prepared using orange peel waste (OPW) has shown excel-
lent results for enhanced lead(II) removal from water (Saini et  al. 2018). Prasad 
et al. studied the removal of toxic heavy metal ions of Pb(II) by using RGO/Fe3O4 
nanocomposite synthesized by a green method utilizing Murraya koenigii (Mk) 
leaves (Prasad et  al. 2017a, b). Ag/CuO synthesized using Sida rhombifolia leaf 
extract possesses superior adsorption capacity for MG removal (Babu and Antony 
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2019). RGO/Fe NPs (iron nanoparticles) synthesized using eucalyptus extract 
showed a high adsorption of MB (199.4 mg/g) (Weng et al. 2018). But scanty litera-
ture is found on the use of biosynthesized nanocomposites as adsorbents. So, more 
research in this field is essentially required.

3  Conclusion and Future Prospects

Exposure to water contaminated with toxic elements causes various problems 
related to health like severe diarrhea, epigastric pain, nausea, skin irritation, derma-
titis, vomiting, and hemorrhage. Oxide-based nanomaterials (e.g., Al2O3, SiO2, TiO2 
etc.) and their composites are of immense importance and have been the subjects of 
interest in the field of removal of organic and inorganic pollutants. Due to the haz-
ardous effect of the chemical synthesis of these metal oxide nanocomposites, now 
the researchers have concentrated on the synthesis of these nanocomposites using 
plant biomolecules, which is eco-friendly as well as cost-effective. This chapter 
focused on the plant-mediated synthesis of metal oxide nanocomposites and some 
of their applications towards environmental remediations. It is observed that plant- 
mediated synthesized metal oxide nanocomposites have shown tremendous poten-
tial towards the degradation of environmental pollutants in comparison to 
nanocomposites prepared by chemical methods. A lot of works have been carried 
out on the synthesis of metal oxide nanocomposites by chemical methods. But very 
few works have been done on the synthesis of bio-based nanocomposites and their 
applications. So, it is indeed very much essential to carry out more research work on 
the bio-based synthesis of these novel nanocomposites by using plant biomolecules 
for application in environmental pollution abatement.
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1  Introduction

Nanotechnology is a prompt, multidisciplinary emerging research area with 
 promising applications in diverse fields such as medicine, agriculture and industry 
with a purpose of implementing useful materials at nano levels, with an approxi-
mate size of 0.1–1000 nm. The term nano is derived from nanos (Greek), which 
means dwarf. The concept of nanotechnology was put forward by the Physicist, 
Professor Richard P. Feynman in 1959 (Manivasagan et al. 2016). Nanoparticles are 
synthesised through chemical, physical and biological methods. The chemical and 
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physical  syntheses depend on the top-down approach, where the large-size  materials 
are progressively crushed down to nano-ranged materials. Biological synthesis 
relies on the bottom-up approach that assembles the atoms or molecules to nano-
sized materials. The top-down strategy is highly expensive and also generates 
extremely toxic compounds as by-products along with huge energy consumption. 
Hence, there arises a vital necessity to implement biological, environmentally 
friendly “green” approach for unpolluted, toxic-free, bio-compatible synthesis of 
technologically relevant nanomaterials (Parikh et al. 2011). The green approach uti-
lises both plants and microbes for biological nanoparticle synthesis by exploiting 
the usefulness of phytochemicals and enzymes, prompting the reduction of metal 
compounds to nanosized particles (Narayanan et  al. 2012; Chauhan et  al. 2011; 
Hiremath et al. 2014).

Actinobacteriology is one of the emerging areas in research since actinobacteria 
are biotechnologically valuable and prominent group of microbes known for their 
inexhaustible production of biologically active compounds with applications in agri-
cultural, medical and industrial sectors (Zotchev 2012; Velho-Pereira and Kamat 
2013). Actinomycetes are gram-positive, aerobic, non-motile and filamentous ter-
restrial or aquatic habitants. They are unicellular, mycelium producers and share the 
characteristic features of both bacteria and fungi. Nearly, 10,000 bioactive metabo-
lites have been explored from this actinobacterial group, which covered 45% of the 
total microbial metabolites (Anandan et al. 2016). Amongst the actinobacteria, the 
genus Streptomyces is the most economically important group since it is the pro-
ducer of approximately 50–55% of recognised antibiotics (Manivasagan et al. 2014) 
and extensively used in pharmaceutical and enzyme industries (Alani et al. 2012).

Actinobacterial genera Streptomyces and Arthrobacter have been considered as 
possible ‘nanofactories’ and widely exploited for nanoparticle biosynthesis. In 
Streptomyces sp., more number of extracellularly synthesised nanoparticles were 
reported when compared to intracellular production. Gold (Ahmad et al. 2003a, b; 
Balagurunathan et al. 2011), silver (Sapkal and Deshmukh 2008; Alani et al. 2012), 
zinc and manganese nanoparticles (Chauhan et  al. 2013) synthesised from 
Streptomyces hygroscopicus (Sadhasivam et  al. 2012), Streptomyces sp. LK3 
(Karthik et  al. 2014), Streptomyces viridogens (HM10) (Balagurunathan et  al. 
2011), Streptomyces naganishii (MA7) (Shanmugasundaram et  al. 2013) and 
Streptomyces avidinii (Park et al. 2006) have been reported. Nanoparticle produc-
tion has also been reported in certain rare actinobacteria like Thermomonospora sp. 
(Ahmad et  al. 2003a), Nocardia farcinica (Oza et  al. 2012), Rhodococcus sp. 
(Ahmad et al. 2003b) and Nocardiopsis sp. MBRC-1 (Manivasagan et al. 2013a). 
Table 20.1 shows the actinobacterial genera utilised for nanoparticles synthesis.

Table 20.1 Different actinobacterial genera utilised for nanoparticle production

Actinobacteria Nanoparticle

Streptomyces spp., Thermoactinomyces spp., Thermomonospora 
spp., Nocardia spp.

Gold

Streptomyces spp., Thermoactinomyces sp., Nocardiopsis sp., 
Rhodococcus spp.

Silver

Streptomyces spp. Zinc, copper, manganese
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2  Nanoparticles: Different Types

Major classifications of nanoparticle are based on molecular base and structures. 
Molecular-base-related nanoparticles are of two types, organic and inorganic 
nanoparticles. Organic nanoparticles are carbon based, which have useful appli-
cations in medicine. Inorganic nanoparticles include magnetic, noble metal and 
semiconductor nanoparticles. Magnetic nanoparticles (usually 5–50 nm diameter) 
comprise the elements with magnetic properties such as cobalt, nickel, and iron 
and their compounds. They can be manipulated by magnetic field and are appli-
cable in magnetic resonance imaging (MRI), nanomaterial-based catalysts, nano-
fluids, imaging of magnetic particles, environmental remediation, biomedicine, 
optical filters and also in data storage (Lu et al. 2004; Gleich and Weizenecker 
2005; Gupta and Gupta 2005). Nanoparticles based on noble metals like gold, 
silver, platinum, ruthenium, palladium and copper are used in biomedical applica-
tions including sensitive diagnostic assays, radiotherapy and gene- or drug deliv-
ery. They act as non- toxic carriers for gene- and drug delivery applications (Xie 
et al. 2010). Semiconductor nanoparticles like ZnS, ZnO and CdS are synthesised 
using chemical methods. This is useful in fluorescent labelling and barcodes.

Nanoparticles have three major structures, namely, liposomes, carbon nanotubes 
and dendrimers. Liposomes are tiny bubble, or closed-vesicle-formed phospholipid 
bilayers, which have hydrophilic heads pointing outwards and the hydrophobic tails 
pointing inwards. The inside of liposomes is water soluble and capable of protecting 
soluble drugs or biomolecules, and hence liposomes are used in medicine for drug 
delivery. They are also used in cosmetology and environmental bioremediation 
(Panahi et  al. 2017). Carbon nanotubes are cylindrical carbon molecules with 
extraordinary thermal conductivity, electrical and mechanical properties. They have 
valuable applications in electronics, optics, nanotechnology and other areas of 
materials science. They are used as additives to numerous structural materials 
(Eatemadi et al. 2014). Dendrimers are hyperbranched-type nanoparticles and have 
two basic structures – one is the globular structure containing interior core where 
polymer branches radiate and the second has no central core and consists simply of 
a series of multibranched polymers. They can target the cell surface by specialised 
structures on the outer surface polymers called ‘molecular hooks’. They are used as 
nanoscale catalysts, micelle for drug- and gene delivery, chemical sensors and 
imaging agents (Abbasi et al. 2014).

3  Actinobacterial Nanoparticle Biosynthesis

Recently, actinobacteria have been renowned as the effectual synthesisers of 
nanoparticle (both extra- and intracellularly) with better size, exquisite morphology 
and surface characteristics exhibiting ranges of bioproperties. Compared to other 
fungi and bacteria, the actinomycetes secrete more proteins that consecutively raise 
biosynthesis production. Actinobacterial nanoparticle synthesis is a biogenic 
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 process in which no toxic chemicals are involved (Singh et al. 2014). The  elementary 
principle behind nanoparticle synthesis is reduction of the metal ions to stable 
nanoparticles by actinobacterial enzymes when provided with metal ions as sub-
strates. Usually, the substrates provided for the secreting enzymes to silver nanopar-
ticle synthesis are the solution of silver nitrate (AgNO3) (Renganathan et al. 2013) 
and for gold nanoparticle synthesis, the substrates are the solution of chloroauric 
acid (AuCl4). Other metals, such as zinc, copper and manganese, are also used for 
nanoparticle synthesis. Toxic heavy metal resistance to actinobacteria is mainly per-
formed by chemical detoxification or adenosine-triphosphate (ATP)-dependent ion 
efflux by chemiosmotic cation (ATPase) or proton anti-transporters (Bruins et al. 
2000; Beveridge et al. 1996). These processes can be carried out by intracellular 
bioaccumulation and extracellular biomineralisation, precipitation and biosorption. 
Extracellular practice of actinobacterial nanoparticle production includes fermenta-
tion, filtration of broth and complex formation of enzyme substrates in dark condi-
tion, whereas the intracellular production requires some additional steps such as 
treatment of enzyme–substrate complex with ultrasound or detergents. Extracellular 
synthesis gives commercial advantage of particular dimension with more polydis-
persity than the intracellular synthesis (Manivasagan et al. 2016).

3.1  Extracellular Synthesis of Actinobacterial Nanoparticles

Extracellular metal nanoparticle synthesis by actinobacteria depends on the localisa-
tion of the reductive components in the cell. It involves soluble secreted enzymes or 
cell wall reductive enzymes which could recognise the metal ions and get reduced to 
nanoparticle forms (Mohanpuria et al. 2008). The polydispersity characterisation of 
extracellular nanoparticles provides broad applications in electronics, bioimaging, 
optoelectronics and sensor technology. Extracellular nanoparticle production by acti-
nomycetes has been widely reported. Thermomonospora sp., an alkalothermophilic 
actinomycete, produced gold nanoparticles (AuNPs) of 8 nm in size using gold chlo-
ride as the substrate (Ahmad et al. 2003a, b). AuNPs with the size range of 9–10 nm 
were synthesised from Thermomonospora sp. isolated from compost samples in the 
Barabanki district, Uttar Pradesh, India (Sastry et  al. 2003). Extracellular AgNPs 
with 68.33 nm size have been produced from a soil isolate Streptomyces sp. JAR that 
revealed antimicrobial activity to broad spectrum of fungal and bacterial pathogens 
(Chauhan et al. 2013). Spherical AuNPs of 15–20 nm size have been  synthesised 
from Nocardia farcinica collected from the National Collection of Industrial 
Microorganisms (NCIM), Pune (Oza et al. 2012). Subashini and Kannabiran (2013), 
reported that green-synthesised spherical, 20–70-nm-sized AgNPs from soil isolate, 
Streptomyces sp. VITBT7, displayed antimicrobial activity. Biologically synthesised, 
cubical shaped AuNPs (90 nm size) collected from the culture extract of Streptomyces 
sp. VITDDK3 were reported to possess anti-dermatophytic properties and also 
showed antifungal activities against Microphyton gypseum and Trichophyton rubrum 
(Vinay Gopal et  al. 2013). Streptomyces sp. LK3 (JF710608) mediated AuNPs 
between 5 and 50  nm size possessed anti-malarial activity (Karthik et  al. 2014). 
Rhodococcus sp., a metabolically versatile actinobacterium (Otari et al. 2012) and 
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Streptomyces glaucus 71MD, a novel actinobacterial strain (Tsibakhashvili et  al. 
2011), were reported to be the extracellular producers of AgNPs. Table 20.2 shows 
the reported details of extracellularly produced nanoparticles from actinobacteria.

3.2  Intracellular Synthesis of Actinobacterial Nanoparticles

Intracellular nanoparticle synthesis by actinobacteria requires some additional pro-
cessing steps like ultrasound treatment or addition of certain detergents for efficient 
release to culture media. Ahmad et al. (2003b) have first described the intracellularly 

Table 20.2 Actinobacterial nanoparticles synthesised using extracellular preparation

Actinobacteria
Nano-
par ticle Property Applications Reference

Thermomonospora sp. Gold Spherical, 9–10 nm 
size

ND Sastry et al. (2003)

Thermomonospora sp. Gold 30–60 nm size Biosensor Torres-Chavolla et al. (2010)

Rhodococcus sp. Silver Spherical, 10 nm size ND Otari et al. (2012)

Streptomyces sp. Gold 5–50 nm size Anti-malarial Karthik et al. (2013)

Streptomyces sp. Gold Cubical, 90 nm size Antifungal Vinay Gopal et al. (2013)

Streptomyces griseus Gold Spherical, 50 nm ND Khadivi Derakhshan et al. 
(2012)

Streptomyces sp. Silver Spherical, 10–100 nm ND Faghri Zonooz and Salouti 
(2011)

Streptomyces sp. Silver Spherical, 21–48 nm Antibacterial Sivalingam et al. (2012)

Streptomyces 
hygroscopicus

Silver Spherical, 20–30 nm Antimicrobial Sadhasivam et al. (2010)

Streptomyces 
albogriseolus

Silver Spherical, 16.25 nm Antibacterial Samundeeswari et al. (2012)

Streptomyces sp. Gold Spherical, 10–30 nm ND Zonooz et al. (2012)

Streptomyces 
hygroscopicus

Gold Spherical, 10–20 nm Antibacterial Sadhasivam et al. (2012)

Streptomyces 
albidoflavus

Silver Spherical, 10–40 nm Antibacterial Shetty and Kumar (2012)

Thermoactinomyces sp. Silver Spherical, 20–40 nm Antibacterial Deepa et al. (2013)

Nocardia farcinica Gold Spherical, 15–20 nm ND Oza et al. (2012)

Streptomyces sp. 
VITBT7

Silver Spherical, 20–70 nm Antimicrobial Subashini and Kannabiran 
(2013)

Streptomyces sp. Silver Spherical, 20–70 nm Antibacterial Subashini et al. (2013)

Streptomyces sp. JAR Silver Spherical, 68.13 nm Antimicrobial Chauhan et al. (2013)

Actinomycete Silver Spherical, 5–40 nm Antibacterial Sukanya et al. (2013)

Streptomyces sp. LK3 Silver Spherical, 5 nm Anti-parasitic Karthik et al. (2013)

Streptomyces sp. Silver Spherical, 28–50 nm Antibacterial Manikprabhu and Lingappa 
(2013)

Nocardiopsis sp. 
MBRC-1

Silver Spherical, 45 nm Anticancer; 
Antimicrobial

Manivasagan et al. (2013a)

Streptomyces sp. Silver ND Antimicrobial Shirley et al. (2010)

ND not determined
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synthesised AuNPs (5–15 nm) with good monodispersity from alkalotolerant acti-
nomycetes, Rhodococcus sp. These particles were attached on the cytosplasmic 
membrane in addition to the cell wall. Perhaps, they were more concentrated on the 
cytoplasmic membrane. The presence of enzymes on the cell wall and cytoplasmic 
membrane possibly reduces the metal ions to nano clumps. The intracellular 
nanoparticle synthesis, described mainly from bacteria and fungi, was only less 
reported from actinobacteria. A convenient, intracellular method of zinc and manga-
nese nanoparticle (10–20 nm) production has been testified by reducing zinc sul-
phate (ZnSO4) and manganese sulphate (MnSO4) via Streptomyces sp. HBUM171191 
(Waghmare et al. 2011). According to Balagurunathan et al. (2011), Streptomyces 
spp. strains (D10, ANS2, HM10 and MSU) isolated from the mountainous regions 
of the Himalaya were efficient for spherical and rod-shaped intracellular AuNP 
(18–20  nm) synthesis and also showed antibacterial activity. Alani et  al. (2012), 
made a comparison of the intracellular manufacture of silver nanoparticles (AgNPs) 
from Aspergillus fumigatus and Streptomyces sp. Nanoparticle formation could be 
designated by changing the colourless solution to light brownish to dark brownish 
colour. After 24 h, the initial nanoparticle formation was faster with A. fumigatus, 
but continued up to 48 h with the Streptomyces resulting in higher concentrations. 
Transmission electron microscopic pictures exposed that Streptomyces sp. had finer 
size distribution of 15–25 nm than A. fumigatus (15–45 nm). The higher productiv-
ity and better narrower size dispersal of Streptomyces make clear its well- established 
use for industrial purposes. Table 20.3 provides the details of intracellularly pro-
duced nanoparticles from actinobacteria.

4  Characterisation and Evaluation of Actinobacterial 
Nanoparticles

Currently, many researchers are actively involved in actinobacterial nanoparticle 
manufacture through the green approach; hence, different types of nanomaterials 
are manufactured day by day, which ultimately requires more precise and reliable 
methods for their evaluation and characterisation. The nanoparticle formation can 
be detected by change in the colour of solution. Colour change from pale yellow to 
brown indicates the formation of silver nanoparticles, while the colour change from 

Table 20.3 Actinobacterial nanoparticles synthesised using intracellular preparation

Actinobacteria Nanoparticle Property Applications Reference

Streptomyces sp. Silver 15–25 nm ND Alani et al. (2012)
Streptomyces sp. Manganese 

and zinc
10–20 nm ND Waghmare et al. (2011)

Streptomyces sp. Gold 11–25 nm ND Sapkal and Deshmukh (2008)
Streptomyces 
viridogens

Gold Spherical, 
18–20 nm

Antibacterial Balagurunathan et al. (2011)

Rhodococcus sp. Gold 5–15 nm ND Ahmad et al. (2003b)
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pale yellow to pink specifies the formation of gold nanoparticles and from whitish 
yellow to yellow shows the production of zinc and manganese nanoparticles 
(Chauhan et al. 2013). Moreover, they are characterised based on the shape, size, 
dispersity and surface area (Jiang et al. 2009). Some common techniques relevant 
for the characterisation of nanoparticles are UV–visible (UV–vis) spectrophotome-
try, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), 
dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning 
electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive 
X-ray (EDX) analysis and Fourier transform infrared  spectrometer (FTIR) analysis.

UV–vis spectroscopy is a generally used technique to evaluate the reduction of 
metal ions. Wavelengths in a range of 200–800 nm are commonly employed for 
characterising 2–100-nm-sized nanoparticles (Feldheim and Colby Jr 2002). More 
precisely, absorption measurements of silver and gold nanoparticles were character-
ised by using the wavelength ranges of 500–550 and 400–450  nm, respectively 
(Manivasagan et al. 2016, 2014). XRD provides information on nanoparticle crys-
talline structure, size, lattice parameters and identification of phase. The freeze-
dried and powdered forms used to penetrate X-rays at a speed of 0.02/min and the 
consequential diffraction can be related with the standard to derive the structural 
evidences (Vidhya and Balagurunathan 2013). The characterisation of the size, dis-
tribution and surface charge of liquid-suspended nanoparticles can be done using 
DLS (Jiang et  al. 2009). FTIR spectroscopy is suitable for distinguishing the 
nanoparticle surface chemistry, for example, the presence of surface chemical resi-
dues and other organic functional groups such as hydroxyl and carbonyl groups 
(Zarina et al. 2014; Chithrani et al. 2006). Electron microscopy, SEM and TEM, is 
employed for morphological characterisation of nanoparticles (Schaffer et al. 2009). 
Surface morphology and size of metal nanoparticles can be determined using 
SEM. For SEM analysis, sonicated, dried powder nanoparticles are used (Dwivedi 
2013). While comparing to scanning electron microscopy, TEM provides 1000-fold 
greater morphological resolution of nanoparticles. The ultrasonicated nanoparticles 
on a copper grid and coated with carbon or palladium were used for TEM analysis. 
EDX is used for determining the elemental configuration of metal nanoparticles 
(Strasser et al. 2010). The topological appearance and size can be determined by 
AFM.  The AFM images also help analyse the porosity, roughness and fractal 
 dimension of nanoparticles. A thin film of sonicated metal nanoparticles was used 
for the AFM study (Hussain et al. 2014).

5  Applications

Nowadays, nanoparticles synthesised using the green approach are being utilised in 
various applications, exclusively in diagnostics because of their antifungal, antibac-
terial, larvicidal, anticancerous, antifouling and antioxidative properties (Youns et al. 
2011; Doria et al. 2012). Especially, AuNPs and AgNPs have broad-spectrum antimi-
crobial activity against animal and some human pathogens (Sivalingam et al. 2012; 
Vinay Gopal et al. 2013).
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5.1  Antibacterial Properties

The antibacterial properties of metal nanoparticles is associated with cellular toxic-
ity through the releasing reactive oxygen species (ROS) (Nel et  al. 2009). 
Antibacterial properties of AuNPs and AgNPs are concomitant with their oxidation 
and liberation of ions such as Ag+ and Au3+, giving ideal biocidal properties. Also, 
nanoparticles with well-developed surface area exhibited good antibacterial proper-
ties; hence, they deliver maximum contact to the environment (Krutyakov et  al. 
2008). Metal nanoparticles have shown excellent antibacterial properties by disturb-
ing cellular permeability as well as cellular respiration. The positively charged 
metal ions pierce into the bacterial cell by binding and disrupting the negatively 
charged bacterial cell wall, resulting in the denaturation of proteins, disrupting 
DNA replication and ultimately leading to the death of organism (Lin et al. 1998; 
Morones et al. 2005). Silver nanoparticles cause the exhaustion of intracellular ATP 
by bursting the plasma membrane or by obstructing the respiration by changing the 
cell wall oxygen and sulphydryl (–S–H) groups to R–S–S–R groups, thereby lead-
ing to cell death (Lok et  al. 2007; Kumar et  al. 2004). AuNPs synthesised from 
S. viridogens displayed excellent antibacterial activity against Staphylococcus 
aureus and Escherichia coli (Balagurunathan et  al. 2011). AgNPs from a novel 
Streptomyces sp. BDUKAS10 also showed better bactericidal activity towards cer-
tain bacteria (Sivalingam et al. 2012). According to Samundeeswari et al. (2012), 
AgNPs from Streptomyces albogriseolus helped to eliminate some food microbial 
pathogens, for example, Bacillus cereus, E. coli and S. aureus. AgNPs synthesised 
from Streptomyces albidoflavus through the green chemistry approach exposed the 
potential antibacterial effect of AgNPs against some gram- positive and gram-nega-
tive strains (Shetty and Kumar 2012). Subashini et  al. (2013) reported that the 
AgNPs from Streptomyces sp. showed activity against  anti- extended spectrum beta-
lactamase-producing strain Klebsiella pneumoniae (ATCC 700603) and also against 
some other medically important pathogens such as E. coli and Citrobacter species.

5.2  Antifungal Properties

Recently, gold and silver nanoparticles have been materialised as potential anti-
fungal agents. Gold nanoparticles synthesised via green approach using 
Streptomyces sp. VITDDK3 displayed good antifungal activity against 
Microsporum gypseum and Trichophyton rubrum by fluctuating the membrane 
potential and hindering the ATP synthase activity (Vinay Gopal et al. 2013). The 
anti-dermatophytic activity of gold nanoparticles might be due to the vulnerability 
to pathogen cells and the toxicity of gold metal. Nanoparticles decrease the gen-
eral metabolism of pathogens by altering the membrane potential and hindering 
the action of ATP synthase. They also block the ribosome subunits from transfer 
ribonucleic aid (tRNA) binding, demonstrating a collapse of biological processes. 
Silver nanoparticles also improve chemotaxis in the early reaction phase 
(Kalishwaralal et al. 2010).
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5.3  Anti-biofouling Properties

Anti-biofouling is a process of eliminating biofouling that causes microbes to 
aggregate on the wetted surfaces, thereby making biofilms and producing foul 
smell. Biofilms create certain operational problems in industrial sectors including 
medicine, sensor sensitivity, water treatment and shipping. The efficient exploita-
tion of anti-fouling properties of biosynthesised nanoparticles can effectively pre-
vent or eliminate biofilm accumulations (Chapman et  al. 2010). Biosynthesised, 
spherical, 5–50-nm-sized silver nanoparticles from Streptomyces naganishii (MA7) 
showed effectiveness against 10 different biofouling bacteria in  vitro 
(Shanmugasundaram et al. 2013).

5.4  Antioxidative Properties

The nanoparticles showing antioxidative properties hinder the oxidation of some 
molecules by obstructing the defence mechanism prominently generating 
ROS.  Spherical, 5–50  nm silver nanoparticles synthesised from Streptomyces 
naganishii (MA7) showed potential antioxidative properties. The 1,1-diphenyl-
2-picrylhydrazine (DPPH) radical scavenging assay confirmed that the silver 
nanoparticles produced are free radical  scavengers. Owing to their high effective 
scavenging activity, they can be efficiently used in the treatment of cancer, neuro-
degenerative diseases and AIDS (Shanmugasundaram et al. 2013).

5.5  Anti-parasitic Properties

Metal nanoparticles exhibited anti-parasitic properties against some parasites that 
transmit diseases. Nanoparticles enter into the intracellular space through larval 
membrane and lead to the denaturation of organelles and intracellular enzymes. 
Silver nanoparticles produced by Streptomyces sp. GRD displayed effective larvici-
dal activity against Culex quinquefasciatus and Aedes aegypti, which is considered 
as an effective bioprocessing method for mosquito control (Kaler et al. 2010). Silver 
nanoparticle synthesised from a marine actinobacterial isolate, Streptomyces sp. 
LK3 exhibited significant larvicidal property against Haemaphysalis bispinosa and 
Rhipicephalus microplus (Karthik et al. 2014).

5.6  Anti-malarial Properties

Malaria-causing protozoan parasites, Plasmodium species, especially Plasmodium 
falciparum, are highly resistant to available anti-malarial drugs. Chemotherapeutic 
strategies using the uniqueness of metal nanoparticles have been utilised as an addi-
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tive to numerous drugs, which are labelled as passive medicines. An effective gold 
compound, Auranofin (AF), shows potential anti-malarial property by hindering the 
growth of P. falciparum (Panyala et al. 2009). The precise mechanism of action is 
still unknown, perhaps it acts via immunological mechanisms and by altering lyso-
somal enzyme activities (Sannella et al. 2008). Karthik et al. (2014), reported that 
the biosynthesised gold nanoparticles from Streptomyces sp. LK3 possessed anti- 
malarial activity in addition to other anti-parasitic activities and might be deliber-
ated as an impending foundation for drug development against malaria.

5.7  Anticancerous Properties

Nanobiotechnology delivers an effective tool for diagnosing and treating cancer 
through the minimisation of costs and side effects. Biosynthesised silver nanopar-
ticles by a new strain, Nocardiopsis sp. MBRC-1, isolated from oceanic sediments 
of Busan coast, South Korea, showed in vitro cytotoxic action against HeLa cell 
lines (the cervical cancer cell line) (Manivasagan et al. 2013a). Shanmugasundaram 
et  al. (2013), reported that silver nanoparticles synthesised using S. naganishii 
(MA7) isolated from Salem district of Tamil Nadu in India also unveiled cytotoxic 
property against HeLa cancer cell lines.

5.8  Biosensing Properties

Gold nanoparticles produced using Thermomonospora sp. can be utilised as bio-
sensing enhancement analytical devices meant for detection purpose in pollution 
control field and military field (Torres-Chavolla et al. 2010).

6  Conclusion

The application of synthesising strategies with biological processes and green 
chemistry led to the development of an environment-friendly approach in non-toxic 
nanoparticle production. In contrast to other hazardous processes, biosynthesis of 
nanoparticles from actinobacteria is eco-friendly and cost-effective, and the 
nanoparticles thus produced exhibit potential biological properties, for example, 
antifungal, antibacterial, anti-biofouling, anticancerous, anti-parasitic, anti- malarial, 
and antioxidative. Due to their rich actinobacterial diversity and innate potential for 
nanoparticle synthesis, actinobacteria are considered as significant ‘biofactories’ for 
nanoparticle manufacture. The extensive knowledge of bioprocess mechanisms, 
chemical structure and reaction kinetics of actinobacterial nanoparticles might lead 
to further applications. 
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