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Abstract. Let G = (V,E) be a simple graph. A set D ∈ V is called a
vertex-edge dominating set of G if for each edge e = (u, v) ∈ E, either
u or v is in D or one vertex from their neighbor is in D. Simply, a
vertex v ∈ V , vertex-edge dominates every edge (u, v), as well as every
edge adjacent to these edges. The vertex-edge dominating problem is
to find a minimum vertex-edge dominating set of G. Herein, we study
the vertex-edge dominating set problem in unit disk graphs and prove
that this problem is NP-hard in that class of graphs. We also show that
the problem admits a polynomial time approximation scheme (PTAS) in
unit disk graphs.

Keywords: Dominating set · Vertex-edge dominating set · Unit disk
graph · Approximation algorithm · Approximation scheme

1 Introduction
Let G = (V, E) be a simple undirected graph. The open neighbourhood of a
vertex v ∈ V in G is the set NG(v) = {u ∈ V | (u, v) ∈ E} whereas the closed
neighbourhood is the set NG[v] = NG(v) ∪ {v}. A dominating set D of G is a
subset of V such that every vertex in V is in D or adjacent to at least one vertex
in D. A vertex v ∈ D dominates all its neighbors and itself. The dominating set
problem is to find a minimum cardinality subset D ⊆ V such that D dominates
all the vertices of G.

A vertex-edge dominating set (VEDs) of a simple undirected graph G =
(V, E) is a set D ⊆ V of G such that every edge of G is incident with a vertex
of D or a vertex adjacent to a vertex of D. The VEDs problem asks to find a
VEDs of minimum size in a given graph. A set D ⊆ V is a double vertex-edge
dominating set if every edge e ∈ E is vertex-edge dominated by at least two
vertices in D. A set D ⊆ V is called a total vertex-edge dominating set if every
edge e ∈ E is vertex-edge dominated by D and the graph induced by D has no
isolated vertices.

2 Releated Work
The vertex-edge dominating set problem was introduced by Peters [18] and then
studied further by different researchers. In particular, bounds on the vertex-edge
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domination number in several graph classes were studied in [3,14–16,20], vertex-
edge degrees and vertex-edge domination polynomials of different graphs were
discussed in [4,9,23,24], whereas the relations between some vertex-edge domi-
nation parameters were discussed in [3,5,12,15,16], several algorithmic aspects
were discussed in [15]. Some variants of vertex-edge domination problem were
studied in [2,6,11,13,19].

The minimum cardinality of a vertex-edge dominating set (double vertex-
edge dominating set, respectively) of G is termed the vertex-edge domination
number and denoted by γve(G) (the double vertex-edge domination number,
γdve(G), respectively). Krishnakumari et al. [14] proved that for every tree T

of order n ≥ 3 with � leaves and s support vertices, we have (n−�−s+3)
4 ≤

γve(T ) ≤ n
3 . In [11], Krishnakumari et al. showed that determining γdve(G) for

bipartite graphs is NP-hard, whereas for every non-trivial connected graphs G,
γdve(G) ≥ γve(G) + 1, and for every tree T , we have γdve(T ) = γve(T ) + 2. They
also provided two lower bounds on the double vertex-edge domination number of
trees and unicycle graphs in terms of order n, the number of leaves and support
vertices, respectively.

Boutrig et al. [3] presented a new relationship between the vertex-edge dom-
ination and some other domination parameters, answering the four open ques-
tions posed by Lewis [15]. Then, for every non-trivial connected K1,k-free graph,
with k ≥ 3, they provided an upper bound for the independent vertex-edge
domination number in terms of the vertex-edge domination number and showed
that for every non-trivial tree the independent vertex-edge domination number
can be bounded by the domination number. For connected C5-free graphs, they
also established an upper bound on the vertex-edge domination number. Next
Boutrig and Chellali [2] studied the total vertex-edge domination. The mini-
mum cardinality of a total vertex-edge dominating set of graph G called the
total vertex-edge domination number and denoted by γt

ve(G). They showed that
determining γt

ve(G) for bipartite graphs is NP-hard, and in case of tree T differ-
ent from a star having order n, with � leaves and s support vertices, respectively,
we have γt

ve(GT ) ≤ (n−�+s)
2 . In the same article, they established a necessary

condition for a graph G such to satisfy γt
ve(G) = 2γve(G) and for a tree T ,

γt
ve(T ) = 2γve(T ).

Later Venkatakrishnan and Kumar [22] proved that the minimum double
vertex-edge dominating set problem is NP-hard for chordal graphs and APX-
hard for bipartite graphs with maximum degree 5. They also proposed a linear-
time algorithm for finding a minimum double vertex-edge dominating set in
proper interval graphs. In addition, showed that the minimum double vertex-
edge dominating set problem can not be approximated the factor (1 − ε) ln |V |
for any ε ≥ 0 unless NP ⊂ DTIME(|V |O(ln ln |V |)). Finally, influence of edge
removal, edge addition and edge subdivision on the double vertex-edge domina-
tion number of a graph was investigated by Krishnakumari and Venkatakrishnan
[12]. Next, Horoldagva et al. [9] obtained some results on the regularity and irreg-
ularity of vertex-edge and edge-vertex degrees in graphs. Recently, Żyliński [25]
proved that for any connected graph G of order n ≥ 6, γve(G) ≤ ⌊

n
3

⌋
.
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3 Our Contribution

We study the VEDs problem in unit disk graphs. A unit disk graph (UDG)
is the intersection graph of equal-radii disks in the plane. Given a set S =
{d1, d2, . . . , dn} of n circular disks in the plane, each having diameter 1, the
corresponding UDG G = (V, E) is defined as follows: each vertex vi ∈ V corre-
sponds to the disk di ∈ S, and there is an edge between two vertices if and only
if the Euclidean distance between the relevant disk centers is at most 1.

We show that the decision version of the VEDs problem is NP-complete in
unit disk graphs (Sect. 4). We also propose a polynomial-time approximation
scheme for the problem (Sect. 5).

4 NP-Hardness

In this section, we show a polynomial-time reduction from the NP-hard vertex
cover problem in planar graphs [7] to the VEDs problem to prove that the latter
one is also NP-hard. The decision versions of both these problems are defined
below.

The VEDs problem on UDGs (Veds-Udg)
Instance: A unit disk graph G = (V, E) and a positive integer k.
Question: Does there exist a vertex-edge dominating set D of G such that

|D| ≤ k?

The vertex cover problem on planar graphs (Vc-Pla)
Instance: A planar graph G = (V, E) having maximum degree 3 and a positive

integer k.
Question: Does there exist a vertex cover C of G such that |C| ≤ k?

Lemma 1 ([21]). A planar graph G = (V, E) with maximum degree 4 can be
embedded in the plane using O(|V |2) area in such a way that its vertices are
at integer coordinates and its edges are drawn so that they are made up of line
segments of the form x = i or y = j, for some i and j.

This embedding is known as the orthogonal drawing of a graph. There is
a linear-time algorithm given by Biedl and Kant [1] that gives an orthogonal
drawing of a given graph with at most 2 bends along each edge (see Fig. 1).

Corollary 1. A planar graph G = (V, E) with maximum degree 3 and |V | ≥ 3
can be embedded in the plane with its vertices are at (4i, 4j) and its edges are
drawn as a sequence of consecutive line segments on the lines x = 4i or y = 4j,
for some i and j.

Lemma 2. Let G = (V, E) be an instance of Vc-Pla with |E| ≥ 2. An instance
G′ = (V ′, E′) of Veds-Udg can be constructed from G in polynomial-time.
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Fig. 1. (a) A planar graph G, (b) its embedding on a grid, and (c) a UDG construction
from the embedding.

Proof. Our construction of G′ from G is done in three steps.

Step 1: Embedding graph G into a grid of size 4n×4n. G can be embedded
in the plane using one of the algorithms [8,10] (see Lemma 1 and Corollary 1)
with each of its edges as a sequence of connected line segment(s) of length four
units. Let the total number of line segments used in the embedding is �. The
points {p1, p2, . . . , pn} are termed node points in the embedding correspond to
the vertex set V = {v1, v2, . . . , vn} (see Fig. 1(a) and (b)).
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Step 2: Adding extra points. For each edge (pi, pj) having length 4 units, (i)
we add two points α and β on the edge (pi, pj) such that α is 0.8 unit apart from
pi and β is 0.8 unit appart from pj , and (ii) add another three points between
α and β with distance 0.6 unit from each other, respectively (thus adding five
points in total, see edge (p4, p5) in Fig. 1(c)). For each edge of length greater
than 4 units, we also add points as follows: (i) add a point in the joining point
(grid point) of each line segments other than the node points and name it as a
joint point (see empty circular points in Fig. 1(c)), (ii) for one of the two line
segments whose one endpoint is associated with node point, we add five points
at distances 0.8, 1.4, 2, 2.6 and 3.2 units from the node point, and for other line
segments we add three points at distance 1 units from each other excluding the
joint points (see the edge (p3, p4) in Fig. 1(c)). We name the points added in this
step as added points.

Step 3: Construction step. For convenience, denote the set of node points by
N and set of added points by A, respectively, that is, N = {pi | vi ∈ V } and
A = {q1, q2, . . . , q4�+|E|}. We construct a UDG G′ = (V ′, E′), where V ′ = N ∪ A
and there is an edge between two points in V ′ if and only if the Euclidean distance
between the points is at most 1 (see Fig. 1(c)). Observe that |N | = |V |(= n) and
|A| = 4� + |E|, where � is the total number of line segments in the embedding
and |E| is the total number of edges in G. Since G is planar, |E| = O(n). It also
follows from Lemma 1 that � = O(n2). Therefore both |V ′| and |E′| are bounded
by O(n2), and hence G′ can be constructed in polynomial-time. �	
Theorem 1. Veds-Udg is NP-complete.

Proof. For any given set D ⊆ V and a positive integer k, we can verify in
polynomial-time whether D is a vertex-edge dominating set of size at most k by
checking whether each edge in E is vertex-edge dominated by a vertex in D or
not. Hence, Veds-Udg ∈ NP.

Now, we need to prove Veds-Udg ∈ NP-hard. For the hardness proof, we
show a polynomial time reduction from Vc-Pla to Veds-Udg. Let G = (V, E)
be an instance of Vc-Pla. Construct the instance G′ = (V ′, E′) of Veds-Udg
as discussed in Lemma 2. We have the following claim.

Claim. G has a vertex cover of size at most k if and only if G′ has a vertex-edge
dominating set of size at most k + �.

Necessity. Let C ⊆ V be a vertex cover of G such that |C| ≤ k. Let N ′ = {pi ∈
N | vi ∈ C}, i.e., N ′ is the set of vertices in G′ that correspond to the vertices
in C. The idea is to choose one vertex from each segment in the embedding such
that the chosen vertex set A′(⊆ A) together with N ′, i.e., N ′ ∪ A′ will form a
VEDs of cardinality k + � in G′. As C is a vertex cover in G, every edge in G
has at least one of its endpoints in C. Let (vi, vj) be an edge in G and assume
vi ∈ C (the same argument works for vj ∈ C or if both vi and vj ∈ C). It follows
from the construction of G′ that the edge (pi, pj) is represented as a sequence
of line segments in the graph G′, where pi and pj are nodes in G′ corresponding
to vertices vi and vj in G. Start traversing the segments from pi, and add each
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fourth vertex to A′ encountered from pi to pj in the traversal (see Fig. 2 for an
illustration, where both big circles and squares belong to A′ while traversing
from p1 to p2, p2 to p3, p1 to p3, p4 to p2, p4 to p5 and p4 to p3, respectively).

Fig. 2. (a) A vertex cover {v1, v2, v4} of G, and (b) the construction of A′ in G′

Apply the same process to each chain of line segments in G′ corresponding
to each edge in G. Observe that the cardinality of A′ is � as we have chosen one
vertex from each segment in the embedding. Let D = N ′ ∪ A′. Now, observe
that D is a vertex-edge dominating set in G′ as each edge in G′ is vertex-edge
dominated by at least one vertex in D and |D| = |N ′| + |A′| ≤ k + � as required.

Sufficiency. Let D ⊆ V ′ be a VEDs of size at most k + �. We argue that G
has a vertex cover of size at most k based upon the following claim: (i) at least
one vertex on each segment in the embedding must belongs to D and hence
|A ∩ D| ≥ �, where � is the total number of segments in the embedding. We shall
show that, by removing and/or replacing some vertices in D, a set of at most
k vertices from N can be chosen such that the corresponding vertices in G is a
vertex cover. Let C = {vi ∈ V | pi ∈ D ∩ N}. If any edge (vi, vj) in G has none
of its end vertices in C, then consider the points pi and pj corresponding to vi

and vj respectively.

Case (i): If pi is the only vertex that is connected with pj in G′, then the chain
of segments (say �′) in the path pi � pj in G′ has at least �′ + 1 vertices in D
(see Fig. 3(a) for example). In this case, we delete one point from the segment
containing two points in D and introduce pi in D.
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Fig. 3. (a) pi is connected with only pj , (b) pi is connected with pk and pj is connected
with p�.

Case (ii): If both pi and pj are connected with some points pk and p� respectively
in G′, then either the chain of segments (say �′) in the path pi � pj in G′ has
at least �′ + 1 vertices in D (see Case (i)) or the chain of segments (say �′) in
both the path pi � pk and (pj � p�) in G′ has at least �′ + 1 vertices in D (see
Fig. 3(b) for example). In this case, we choose the segment having two points
in D and remove one point of the segment from D and introduce pj in D if
pk ∈ D or p� is only connected with pj , otherwise introduce pi in D. Update C
and repeat the process till every edge has at least one of its end vertices in C.
Due to Claim (i), C is a vertex cover in G with |C| ≤ k. Therefore, Veds-Udg
is NP-hard.

As Veds-Udg is in NP as well as NP-hard, Veds-Udg is NP-complete. �	

5 Approximation Scheme

In this section, we propose a PTAS for the VEDs problem in UDGs. Let
G = (V, E) be a given UDG. Our PTAS is based on the concept of m-separated
collection of subsets of V for some integer m. Given a graph G, let d(u, v) denote
the number of edges on a shortest path between u and v. For V1, V2 ⊆ V , d(V1, V2)
is defined as d(V1, V2) = minu∈V1,v∈V2{d(u, v)}. We use notations V ED(A) and
V EDopt(A) to denote a vertex-edge dominating set of A (⊆ V ) in G and an
optimal vertex-edge dominating set of A in G. We also define the closed neigh-
borhood of a set A ⊆ V as NG[A] =

⋃

v∈A

NG[v] and the r-th neighborhood of a

vertex v as Nr
G[v] = {u ∈ V | d(u, v) ≤ r} in G.

Let S = {S1, S2, . . . , Sk} be a collection of disjoint vertex subsets in G such
that each Si ⊂ V for i = 1, 2, . . . , k. S is refered as a m-separated collection of
vertices if d(Si, Sj) > m, for 1 ≤ i, j ≤ k and i �= j (see Fig. 4 for a 4-separated
collection). Nieberg and Hurink [17] considered 2-separated collection to propose
a PTAS for the minimum dominating set problem on unit disk graphs.

Lemma 3. If S = {S1, S2, . . . , Sk} is a m-separated collection in a graph G =

(V, E), then
k∑

i=1
|V EDopt(Si)| ≤ |V EDopt(V )| for each m ≥ 4.
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Proof. For each Si ∈ S, consider Pi = {u ∈ V | v ∈ Si and d(u, v) ≤ 2}, for
i = 1, 2, . . . , k. Since m ≥ 4, Pi ∩Pj = ∅ as d(Si, Sj) > m for i �= j. Observe that,
for each i = 1, 2, . . . , k, Si ⊆ Pi and Pi ∩V EDopt(V ) is a vertex-edge dominating
set of Si. Therefore, (Pi ∩ V EDopt(V )) ∩ (Pj ∩ V EDopt(V )) = ∅, and hence, we

have
k∑

i=1
|(Pi∩V EDopt(V ))| ≤ |V EDopt(V )|. As Pi∩V EDopt(V ) is a vertex-edge

dominating set of Si, for i = 1, 2, . . . , k, and V EDopt(V ) is a minimum vertex-

edge dominating set of the graph G, we obtain
k∑

i=1
|V EDopt(Si)| ≤

k∑

i=1
|(Pi ∩

V EDopt(V ))| ≤ |V EDopt(V )|. �	

Fig. 4. A 4-separated collection S = {S1,S2,S3,S4,S5}

Lemma 4. Let S = {S1, S2, . . . , Sk} be an m-separated collection in a graph
G = (V, E), m ≥ 4, and let R1, R2, . . . , Rk be subsets of V with Si ⊆ Ri for all
i = 1, 2, . . . , k. If there exists ρ ≥ 1 such that |V EDopt(Ri)| ≤ ρ|V EDopt(Si)|
holds for all i = 1, 2, . . . , k, and if

k⋃

i=1
V EDopt(Ri) is a vertex-edge dominating

set in G, then
k∑

i=1
|V EDopt(Ri)| is at most ρ times the size of a minimum vertex-

edge dominating set in G.
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Proof.
k∑

i=1
|V EDopt(Si)| ≤ |V EDopt(V )| (from Lemma 3).

Hence,
k∑

i=1
|V EDopt(Ri)| ≤ ρ

k∑

i=1
|V EDopt(Si)| ≤ ρ|V EDopt(V )|. �	

5.1 Construction of Subsets

In this section, we discuss the process of constructing the desired 4-separated
collection of subsets S = {S1, S2, . . . , Sk} and the corresponding subsets
R1, R2, . . . , Rk of V such that Si ⊆ Ri for all i = 1, 2, . . . , k. The algorithm pro-
ceeds in an iterative manner. The basic idea of the algorithm is as follows: start
with an arbitrary vertex v ∈ Vi, where Vi is the vertex set in the i-th iteration of
the algorithm. Note that in the first iteration V1 = V and the algorithm computes
S1 and R1. More specifically, for r = 1, 2, . . ., we find the vertex-edge dominating
set of the graphs induced by the r-th neighborhood as well as the (r + 4)-th neigh-
borhood of the vertex v until |V ED(Nr+4

G [v])| > ρ|V ED(Nr
G[v])| holds. Here,

V ED(Nr+4
G [v]) and V ED(Nr

G[v]) are vertex-edge dominating sets of Nr+4
G [v]

and Nr
G[v], respectively, and ρ = 1 + ε (ε > 0). Let r̂ be the smallest r violating

the above condition. Set Si = N r̂
G[v], Ri = N r̂+4

G [v] and V ′
i = Vi \ N r̂+3

G [v]. Note
that removing N r̂+4

G [v] from Vi implies removing the relevant edges connecting
N r̂+4

G [v] to Vi\N r̂+4
G [v] for which vertex-edge domination may not be maintained.

Hence, removing N r̂+3
G [v] from Vi removes the edges for which V ED(N r̂+4

G [v])
is a vertex-edge dominating set. Let Ti be the set of vertices consisting of all
singleton vertices after removing N r̂+3

G [v] vertices from Vi in the i-th iteration of
the algorithm. Set Vi+1 = V ′

i \ Ti. The process stops while Vi+1 = ∅ and returns
the sets S = {S1, S2, . . . , Sk} and R = {R1, R2, . . . , Rk}. The collection of the
sets S is a 4-separated collection.

We compute the vertex-edge dominating set of the r-th neighborhood of a
vertex v, V ED(Nr

G[v]) with respect to G as follows. Find a maximal independent
set I for the graph induced by the vertices of Nr

G[v]. Observe that if we choose
each vertex vi ∈ I in V ED(Nr

G[v]), then it forms a vertex-edge dominating set
for Nr

G[v] (see Lemma 5).

Lemma 5. V ED(Nr
G[v]) is a VEDs of Nr

G[v] in G.

Proof. Suppose to the contrary, assume that V ED(Nr
G[v]) is not a VEDs of

the graph G′ = (V ′, E′) induced by Nr
G[v]. That means, there exist an edge

(u, v) ∈ E′ such that NG′ [u] /∈ V ED(Nr
G[v]) and NG′ [v] /∈ V ED(Nr

G[v]). It
contradicts the fact that I is a maximal independent set in G′. Thus, the
lemma. �	
Lemma 6. The worst case size of a vertex-edge dominating set of the r-th neigh-
borhood of a vertex v is bounded by (r + 2)2, i.e.,|V ED(Nr

G[v])| ≤ (r + 2)2.

Proof. We compute a maximal independent set I before computing a vertex-edge
dominating set in the graph G′ = (V ′, E′) induced by Nr

G[v]. The cardinality
of a maximal independent set in the UDG G′ is bounded by the number of
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non-intersecting unit disks packed in a disk of radius r + 2 centered at v. So,
|I| ≤ π(r+2)2

π(1)2 = (r + 2)2. From Lemma 5, in any graph, the cardinality of a
minimum vertex-edge dominating set is bounded by the cardinality of maximal
independent set. Therefore, |V ED(Nr

G[v])| ≤ (r + 2)2. �	
Lemma 7. For ρ = 1 + ε, there always exists an r violating the condition
|(V ED(Nr+4

G [v])| > ρ|V ED(Nr
G[v])|.

Proof. Suppose to the contrary that there exists a vertex v ∈ V such that
|(V ED(Nr+4

G [v])| > ρ|V ED(Nr
G[v])| for all r = 1, 2, . . ..

From Lemma 6, we have |(V ED(Nr+4
G [v])| ≤ (r + 6)2.

Therefore, if r is even,
(r + 6)2 ≥ |(V ED(Nr+4

G [v])| > ρ|V ED(Nr
G[v])| > · · · > ρ

r
2 |V ED(N2

G[v])| ≥ ρ
r
2 ,

and if r is odd,
(r + 6)2 ≥ |(V ED(Nr+4

G [v])| > ρ|V ED(Nr
G[v])| > · · · > ρ

r−1
2 |V ED(N1

G[v])| ≥
ρ

r−1
2 .
Hence,

(r + 6) >

{
(√ρ)r, if r is even
(√ρ)r−1, if r is odd

(1)

Observe that in the inequality (1), the right side is an exponential function where
as the left side is a polynomial function in r, which results in a contradiction. �	
Lemma 8. The smallest r violating inequality (1) is bounded by O(1

ε log 1
ε ).

Proof. Let r̂ be the smallest r violating the inequalities (1). We prove r̂ ≤
O(1

ε log 1
ε ) by using the inequality log(1 + ε) > ε

2 for 0 < ε < 1. For a fixed ε > 0,
consider the inequality (1+ε)x < x2. Let x = c

ε log 1
ε , for some constant c > 0. By

taking logarithm on the both sides of the inequality, we get log c + log log 1
ε > 0.

Note that we can always find ε′ such that log c + log log 1
ε > 0 for 0 < ε < ε′.

Therefore, (1 + ε)x < x2 < (x + 6)2 holds for sufficiently smaller ε values and
hence, r̂ ≤ O(1

ε log 1
ε ). �	

Lemma 9. For a given v ∈ V , minimum vertex-edge dominating set
V EDopt(Ri) of Ri can be computed in polynomial time.

Proof. Let G′ = (V ′, E′) be a graph induced by Ri ⊆ Nr+4
G [v]. From Lemma 6,

the size of Nr+4
G [v] is bounded by O(r2), so we take every possible tuple of size at

most O(r2) and check whether the selected tuple is a vertex-edge dominating set
of the graph G′. This process takes O(

(
n
r2

)
) = O(nr2) time. Since r = O(1

ε log 1
ε )

by Lemma 8, V EDopt(Ri) can be computed in polynomial time. �	

Lemma 10. For the collection of subsets {R1, R2, . . . , Rk}, D =
k⋃

i=1
V ED(Ri)

is a vertex-edge dominating set in G = (V, E).
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Proof. To prove D is a vertex-edge dominating set of the graph G, we need to
prove for every edge (vi, vj) ∈ E, there exists at least one vertex from NG[vi]
or NG[vj ] in D. It follows from our construction of the subsets R1, R2, . . . , Rk

(Sect. 5.1) that each edge (vi, vj) belongs to a particular subset Ri and V ED(Ri)
is a vertex-edge dominating set of the graph induced by the vertices of Ri. Thus
the lemma. �	

Corollary 2. D∗ =
k⋃

i=1
V EDopt(Ri) is a vertex-edge dominating set in G, for

the collection R = {R1, R2, . . . , Rk}.

Theorem 2. For a given UDG, G = (V, E), and an ε > 0, we can design a
(1 + ε)-factor approximation algorithm to find a VEDs in G with running time
nO(c2), where c = O(1

ε log 1
ε ).

Proof. The proof of the theorem follows from Lemmas 4, 7, 9 and Corollary 2.�	

6 Conclusion

In this article, we studied the minimum vertex-edge dominating set problem
(VEDs) on unit disk graphs, and showed that the VEDs problem is NP-complete.
We also proposed a PTAS for the VEDs problem.
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