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Abstract. In order to understand underlying structural regularities in
a graph, a basic and useful technique, known as modular decomposition,
looks for subsets of vertices that have the exact same neighbourhood
to the outside. These are known as modules and there exist linear-time
algorithms to find them. This notion however is too strict, especially
when dealing with graphs that arise from real world data. This is why it
is important to relax this condition by allowing some noise in the data.
However, generalizing modular decomposition is far from being obvious
since most of the proposals lose the algebraic properties of modules and
therefore most of the nice algorithmic consequences. In this paper we
introduce the notion of ε-module which seems to be a good compro-
mise that maintains some of the algebraic structure. Among the main
results in the paper, we show that minimal ε-modules can be computed in
polynomial time, on the other hand for maximal ε-modules it is already
NP-hard to compute if a graph admits an 1-parallel decomposition, i.e.
one step of decomposition of ε-module with ε = 1.

1 Introduction

Introduced by Gallai in [13] to analyze the structure of comparability graphs,
modular decomposition has been used and defined in many areas of discrete
mathematics, including for graphs, 2-structures, automaton, partial orders, set
systems, hypergraphs, clutters, matroids, boolean, and submodular functions
[8,9,11,15], see [22] for a survey on modular decomposition. Since they have
been rediscovered in many fields, modules appear under various names in the
literature, they have been called intervals, externally related sets, autonomous
sets, partitive sets, homogeneous sets, and clans. In most of the above examples
the family of modules yields a kind of partitive family [4,5], and therefore has a
unique modular decomposition tree that can be computed efficiently.

Roughly speaking, elements of the module behave exactly the same with
respect to the outside of the graph, and therefore a module can be contracted
to a single element without losing information. This technique has been used to
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solve many optimization problems and has led to a number of elegant graph algo-
rithms, see for instance [21]. On the other hand, direct applications of modular
decomposition in other areas include computational protein-protein interaction
networks [12] and graph drawing [25], to name a few. More recently, new appli-
cations have appeared in the study of networks in social sciences [29], where a
module is considered as a regularity or a community that has to be detected and
understood. Although it is well-known that almost all graphs have no non-trivial
modules, in some recent experiments [24] in real data, many non-trivial modules
were found in these graphs. How can we explain such a phenomena? It could be
that the way the data is produced can generate modules, but it could also be
because we reach some known regularities as predicted by Szemerédi’s regularity
lemma [30]. In fact for every ε > 0 Szemerédi’s lemma asserts that ∃n0 such that
all undirected graphs with more than n0 vertices admits a ε-regular partition of
the vertices. Such a partition is a kind of approximate modular decomposition.
For graphs we now have linear-time algorithms to compute a modular decom-
position tree, see [16]. In this paper we study a new generalization of modular
decomposition, relaxing the strict neighbourhood condition of modules with a
tolerance of some errors, i.e., some missing edges. The aims of this paper are
twofold: first a theoretical study of an approximation of modular decomposi-
tion, and secondly a practical application for the computation of overlapping
communities in bipartite graphs.

Organization of the Paper: We begin by giving necessary notations and a back-
ground on classical modular decomposition in Sect. 2, as well as illustrating some
applications of ε-modular decomposition on various areas, on data compres-
sion and exact encodings for instance as well as in approximation algorithms.
Section 3 introduces the notion of ε-modules and ε-modular decomposition, and
their first basic properties. In Sect. 4, we give algorithmic results, in particular
the computation of minimal ε-modules, as well as testing ε-primality. We then
focus on two classes of graphs, bipartite graphs and 1-cographs (to be defined
later) and conclude our discussion in the last section. In particular for bipartite
graphs we can compute in O(n2·ε(n + m)) a covering of the vertices using max-
imal ε-modules, in which two ε-modules can overlap on at most 2 · ε vertices.
This can be of great help for community detection in bipartite graphs.

2 Approximations of Modules

Let G be a simple, loop-free, undirected graph, with vertex set V (G) and edge
set E(G), n = |V (G)| and m = |E(G)| are the number of vertices and edges
of G respectively. For every X ⊆ V (G), we denote by G(X) the induced sub-
graph generated by X. N(v) denotes the neighbourhood of v and N(v) the
non-neighbourhood, this notation could also be generalized to set of vertices, i.e.
for X ⊆ V (G), N(X) = {x ∈ V (G)\X such that ∃y ∈ X and xy ∈ E(G)} (resp.
N(X) = {x ∈ V (G) \ X such that ∀y ∈ X and xy /∈ E(G)}). For x, y ∈ V , we
call false-twins if N(x) = N(y) and true-twins if N(x) ∪ {x} = N(y) ∪ {y}.
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A Moore family on a set X is a collection of subsets S ⊂ X closed under
intersection, and the set X itself.

Formally for an undirected graph G, a module M ⊆ V (G) satisfies ∀x, y ∈ M ,
N(x) \ M = N(y) \ M . In other words, V (G) \ M is partitioned into X,Y such
that there is a complete bipartite between M and X, and no edge between M
and Y . For convenience let us denote X (resp. Y ) by N(M) (resp. N(M)). It is
easy to see that all vertices within a module are at least false twins.

Fig. 1. Left, a graph with its maximal modules grouped. Right, its corresponding
modular decomposition tree.

A single vertex {v} and V are always modules, and called trivial modules.
A graph that only has trivial modules is called a prime graph. By the Modular
Decomposition Theorem [5,13], every graph admits a unique modular decom-
position tree, in which a graph is decomposed via three types of internal nodes
(operations): parallel (disjoint union) and series (connect every pair of nodes in
disjoint sets X and Y ), and prime nodes. The leaves represent the vertices of
the graph, see Fig. 1.

A graph is a complement reducible graph if there is no prime node in
its decomposition tree [7]. Complement reducible graphs are also known as
cographs in the literature, or P4-free graphs [28]. Cographs form a well studied
graph class for which many classical NP -hard problems such as maximum clique,
minimum coloring, maximum independent set, Hamiltonicity become tractable,
see for instance [7].

Finding a non trivial tractable generalization of modules is not an easy task;
indeed in trying to do so, we are faced with two main difficulties. The first one
is to obtain a pseudo-generalization, for example if we change the definition of
a module into: ∀x, y ∈ M , Neighbour∗(x) \ M = Neighbour∗(y) \ M , where
Neighbour∗(x) means something like “vertices at distance at most k” or “joined
by an odd path”, etc. As it turns out, in many of these cases, the problem
transforms itself into the computation of precisely the modules of some auxiliary
graph built from the original one, some work in this direction avoiding this
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drawback can be found in [3]. The other one is NP-hardness. Consider the notion
of roles defined in sociology, where two vertices play the same role in the social
network if they have the same set of colours in the neighbourhood. If the colours
of the vertices are given the problem is polynomially solvable, otherwise, this
problem is a colouring one that is NP-hard to compute [10].

In this work, we will study two variations on the notion of modules both of
which try to avoid these difficulties. Some aspects of them are polynomial to
compute, and we believe they are worth studying further. We present the most
promising one. Before we do so, we motivate this notion of ε-modules further,
in two areas. The first one is in data compression and exact encodings, and the
latter is its usefulness in approximation algorithms.

Before formally defining ε-modules, we want the reader to think of them as a
subset of vertices that almost looks the same to the outside of the graph. Mean-
ing, for all x, y ∈ M , an ε-module, N(x)\M and N(y)\M are the same with
the exception of at most ε errors. Modular decomposition is often presented as
an efficient way to encode a given graph. This property transmits to ε-modules.
One can contract a non-trivial ε-module to a single vertex keeping almost the
entirety of the original graph, and then recurse on the decomposition. To this
end, let M be a non-trivial ε-module of G and X (resp. Y ) be its neighbourhood
(resp. non-neighbourhood). If we want an exact encoding of G, we can contract
M to a unique vertex m connected to X, and not connected to Y , keep the sub-
graph G(M) and keep tract of the errors (i.e., the edges missing in the bipartite
(M,X) and the edges that appear in the bipartite (M,Y )). Thus, this new exact
encoding has at least |M | · (|X| − ε) − 1 edges fewer than the original encoding.

A second application of approximate modular decomposition is in approxima-
tion algorithms. Consider the classical colouring and independent set problems
on cographs. Both algorithms use modular decomposition to give optimal linear
time solutions to both problems. The way the algorithms work is by comput-
ing a modular decomposition tree – known as the cotree – and keeping track of
the series or parallel internal nodes by scanning the tree from the leaves to the
root. We later define extensions of a cograph and a cotree to an ε-cograph and
ε-cotree, and show in particular for ε = 1, we get a simple 2-approximation for
1-cographs for these two classical problems, just by summing over all ε errors.
In particular, when ε = 1, this means the neighbourhood of every pair x, y ∈ M
differs by at most one neighbour/non-neighbour with respect to the outside of
M .

2.1 Subset Families

Subset Families: Two sets A and B overlap if A ∩ B 	= ∅, A \ B 	= ∅, and
B \ A 	= ∅. Let F be a family of subsets of a ground set V . A set S ∈ F is
called strong if ∀S′ 	= S ∈ F : S does not overlap S′. Let Δ be the symmetric
difference operation.

Definition 1 [5]. A family of subsets F over a ground set V is partitive if
it satisfies the following properties: (i) ∅, V and all singletons {x} for x ∈ V
belong to F . (ii) ∀A,B ∈ F that overlap, A ∩ B,A ∪ B,A \ B and AΔB ∈ F .
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Partitive families play fundamental roles in combinatorial decompositions [4,5].
Every partitive family admits a unique decomposition tree, with two types of
nodes: complete and prime. It is well known that the strong elements of F form a
tree ordered by the inclusion relation [5]. In this decomposition tree, every node
corresponds to a set of the elements of the ground set V of F , and the leaves of
the tree are single elements of V .

3 ε-Modules and Basic Properties

One first idea to accept some errors is to say that at most k edges, for some fixed
integer k, could be missing in the complete bipartite between M and N(M), and
symmetrically that at most k edges can exist between M and N(M). But doing
so we loose most of the nice algebraic properties of modules of graphs which yield
partitive families. Furthermore most algorithms for modular decomposition are
based on these algebraic properties [5].

Another natural idea is to relax the condition on the complete bipartite
between M and N(M), for example asking for a graph that does not contain
any 2K2. Unfortunately as shown in [27] to test whether a given graph admits
such a decomposition is NP-complete. In fact they studied a generalized join
decomposition solving a question asked in [18] studying perfection. This is why
the following generalization of module defined for any integer ε, seems to be a
good compromise1.

Definition 2. A subset M ⊆ V (G) is an ε-module if ∀x ∈ V (G) \ M , either
|M ∩ N(x)| ≤ ε or |M ∩ N(x)| ≥ |M | − ε.

In other words, we tolerate ε edges of errors per node outside the ε-module,
and not ε errors per module. It should be noticed that with ε = 0, we recover
the usual definition of modules [16], i.e., ∀x ∈ V (G) \ M , either M ∩ N(x) = ∅
or M ∩ N(x) = M . Necessarily we will only consider ε < |V (G)| − 1.

Let us consider the first simple properties yielded by this definition.

Proposition 1. If M is an ε-module for G, then

(a) M is an σ-module for G, for every ε ≤ σ.
(b) M is an ε-module for G.
(c) M is an ε-module for every induced subgraph H of G such that M ⊆ V (H).
(d) every ε-module of G(M) is an ε-module of G.

Definition 3. ε-neighbourhoods. For A ⊆ V (G), let us denote by Nε(A) (resp.
Nε(A)) the vertices of V (G) \ A, that are connected (resp. not connected) to
M except for at most ε vertices. Similarly Sε(A) = {x ∈ V (G) \ A such that
ε < |N(x) ∩ A| < |A| − ε}. Sε(A) is called the set of ε-splitters of A.

Equivalently a module can therefore be defined as a subset of vertices having
no ε-splitter.
1 We use ε to denote small error, despite being greater than 1.
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Lemma 1. Some easy facts, for A ⊆ V (G).

(i) If 2 · ε + 1 ≤ |A| then Nε(A) ∩ Nε(A) = ∅.
(ii) If |A| ≤ 2 · ε + 1 then Sε(A) = ∅.
(iii) If |A| = 2 · ε + 1 then Nε(A) and Nε(A) partition V (G) \ A.
(iv) If |A| < 2 · ε then Nε(A) = Nε(A).

So the subsets of vertices having size 2 · ε + 1 seem to be crucial to study
this new decomposition. If A is such a set, for every z /∈ A either z ∈ Nε(A) or
z ∈ Nε(A), but not both.

Lemma 2. If s is a ε-splitter for a set A, then s is also a ε-splitter for every
set B ⊇ A such that s /∈ B.

Proof. Since ε < |A ∩ N(x)| and N(x) ∩ A ⊆ N(x) ∩ B we have: ε < |B ∩ N(x)|.
|A∩N(x)| < |A|− ε is equivalent to |A\N(x)| > ε. But A\N(x) ⊆ B \N(x)

implies |B \ N(x)| > ε. So ε < |B ∩ N(x)| < |B| − ε. ��
Theorem 1. The family of ε-modules of a graph satisfies:

(i) V (G) is an ε-module and ∀A ⊆ V (G) such that |A| ≤ 2 ·ε+1 are ε-modules.
(ii) ∀A,B ⊆ V (G) ε-modules then, A ∩ B is an ε-module and for the subsets

A \ B and B \ A their ε-splitters can only belong to A ∩ B.

Proof. (i) By definition V (G) has no ε-splitter. Let A ⊆ V (G), such that |A| ≤
2 · ε + 1 and let x ∈ V (G) \ A.
Suppose |N(x) ∩ A| = k > ε but since |A| ≤ 2 · ε + 1, ε ≥ |A| − ε − 1
Therefore: |N(x) ∩ A| = k ≥ |A| − ε and A has no ε-splitter.

(ii) First we notice that if A,B ⊆ V (G) are 2 trivial modules, obviously A ∩ B,
A \ B and B \ A are trivial ε-modules.
Let A,B ⊆ V (G) be two non trivial ε-modules. If A ∩ B has an ε-splitter
outside of A ∪ B then using Lemma 2 also A,B would have an ε-splitter, a
contradiction. Suppose now that A∩B admits an ε-splitter in B\A but then
with the same Lemma we know that A would have an ε-splitter. Therefore
A ∩ B is an ε-module. Let us now consider A \ B, if admits an ε-splitter in
B \ A, using again Lemma 2, A would have a ε-splitter too. Similarly if the
ε-splitter is outside A ∪ B. Then the only potential ε-splitters for A \ B and
B \ A are in A ∩ B. ��

Corollary 1. A graph G with |V (G)| ≤ 2 · ε + 2 admits only trivial modules.

By convention we will call such a graph ε-degenerate in order to distinguish
with really ε-prime graphs.

Corollary 2. If A,B are overlapping minimal ε-modules then A∩B is a trivial
ε-module.

We know then the ε-modules generate a Moore family of subsets worth study-
ing. For usual modules as can be seen in [5,16], A ∪ B, B \ A and A \ B are also
modules. Unfortunately this does not always hold for ε-modules. Moreover we
cannot bound the error as can be seen the next proposition.
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Proposition 2. Let A,B ⊆ V (G) be two non trivial ε-modules, then

1. there could be c = Ω(min(|A|, |B|)), s.t. A ∪ B is not an ε-module, ∀ ε ≤ c.
2. there could be c = Ω(n), s.t. A-B is not an ε-module, for all ε ≤ c.

In fact we can prove a weaker result.

Theorem 2. Let A,B ⊆ V (G) be two non trivial overlapping ε-modules, if
|A ∩ B| ≥ 2ε + 1 then A ∪ B, AΔB (i.e., symmetric difference) are 2ε-modules.

Proof. Let z ∈ V (G)\B. Since B is an ε-module then Sε(B) = ∅, since B is non
trivial, |B| ≥ 2 · ε + 2, therefore Nε(B) and ε-Nε(B) partition V (G) \ B, using
Lemma 1. Suppose z ∈ Nε(B), z has at most ε non neighbors in A∩B. Therefore
it has at least ε + 1 neighbors in A ∩ B, therefore z ∈ Nε(A). For A ∪ B in the
worst case z has at most ε non-neighbors in A \ B and at most ε non-neighbors
in B \ A. Therefore A ∪ B is a 2ε-module. For AΔB, the worst case is obtained
when a given vertex z ∈ A ∩ B has ε errors in A \ B and ε errors in B \ A.
Therefore AΔB is a 2ε-module. ��

Theorem 1 allows us to define a graph convexity. Since the family of ε-modules
is closed under intersection, it yields a graph convexity and we can compute the
minimal under inclusion ε-module M(A) that contains a given set A, with strictly
more that 2 · ε + 1 elements, computing a modular closure via ε-splitters.

3.1 A Symmetric Variation of ε-Modules

One could want to restrict the definition of the ε-modules in a symmetric way.
Here symmetric means that the condition is applied symmetrically on the vertices
of the ε-module M and on the vertices outside, i.e., V (G) \ M .

Definition 4. An ε-module M is symmetric if every x ∈ M is adjacent (resp.
non-adjacent) to all vertices in N(M) (resp. N(M)) except for at most ε vertices.

In other words for ε = 1, in the bipartite M,N(M) only a matching is missing. It
is a restriction of the ε-modules and all the previous results could be generated
similarly for symmetric ε-modules.

Proposition 3. If P = {V1, . . . Vk} is a partition of V (G) into ε-modules, then
the Vi’s are necessarily symmetric ε-modules.

With this definition in mind, we present extensions of the series and parallel
nodes in the classical setting, as well as introduce a new graph class we call
1-cographs, the definition of which we present below.

Using Proposition 1(d) and mimicking the case of modular decomposition we
may define an ε-tree decomposition as follows.

Definition 5. An ε-tree decomposition is a tree whose nodes are labelled with
ε-modules ordered by inclusion with 4 types of nodes ε-series, ε-parallel, ε-prime
and ε-degenerate. Each level of the tree corresponds to a partition of V (G), start-
ing with {V (G)} at the root and the leaves correspond to a partition of V (G)
into ε-degenerate nodes.
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For standard modular decomposition the notion of strong modules as modules
that do not overlap with any other is central. For ε-modular decomposition we
can observe that there are no strong modules other than V and {v}, v ∈ V that
are strong ε-modules. The reason is that, for ε ≥ 1, any subset of vertices of size
2 is a trivial ε-module, then assume there is a classical strong module V1 	= V ,
|V1| > 1, then take any vertex v ∈ V1 and any vertex u ∈ V \ V1, then {u, v} is
a ε-module and overlapping with V1.

3.2 ε-Series and ε-Parallel Operations

Definition 6. For a graph G with |V (G)| ≥ 2ε + 3, we say that G admits
an ε-series (resp. ε-parallel) decomposition if there exists a partition of V (G),
P = {V1, . . . Vk} such that: ∀i, 1 ≤ i ≤ k, |Vi| ≥ 2ε + 1 and ∀x ∈ Vi and for
every j 	= i, x is adjacent (resp. non-adjacent) to all vertices of Vj with perhaps
ε errors.

Using Proposition 3, all the Vi’s are necessarily symmetric ε-modules. Further-
more in such cases every union of V ′

i s are also symmetric ε-modules. Fortunately
with ε = 1 the problem of recognizing if a graph admits an 1-parallel decom-
position corresponds to a nice combinatorial problem first studied in [14]. The
complexity of this problem known as finding a matching cut-set is now well-
known [1,6,23] and therefore we have:

Theorem 3. Finding if a graph admits an 1-parallel decomposition is NP-hard.

Proof. Let G be a graph with minimum degree 3, and suppose that it admits
an 1-parallel decomposition into V1, . . . , Vk. Necessarily ∀i, |Vi| > 1, since there
is no pending vertex. Therefore {V1,∪1<i≤kVi} is a matching cut set of G. So
using [6], deciding if a graph admits 1-parallel decomposition is NP-complete. ��
Definition 7. An ε-cograph is a graph that is decomposable with respect to
ε-series, ε-parallel decompositions until we reach only degenerate subgraphs.

Using this definition above, it is clear that cographs are precisely the
0-cographs and let us call ε-cotree and ε-modular decomposition the correspond-
ing tree and decomposition of an ε-cograph.

Proposition 4. A graph is an ε-cograph iff it admits a ε-cotree using only
ε-series and ε-parallel internal nodes.

Proof. Suppose that G admits a ε-series composition with a partition P =
{V1, . . . Vk}. First we must notice that these two operations are exclusive. It
is the case since every part has at least 2 · ε + 1 vertices, we cannot have 2 parts
Vi, Vj both ε-connected and ε-disconnected. Therefore we start a ε-cotree start-
ing with a node labelled ε-series and recurse on all the subgraphs G(Vi) using
proposition d. ��
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a b c d

e f

h g

1− series

degenerate

{a, b, c, d }
degenerate

{e, f, g, h}

Fig. 2. 1-MD(H): A 1-cotree of a 1-cograph graph H. Notice that H is not a cograph
since it contains 2 induced P ′

4s, namely H({a, b, c, d}) and H({e, f, g, h}).

a

b c

d

ef

x y

1− parallel

degenerate

{a, b, f, x }
degenerate

{c, d, e, y}

1− parallel

degenerate

{a, b, e, d }
degenerate

{e, f, x, y}

Fig. 3. This 1-cograph G admits 2 different 1-cotrees, the internal nodes have the same
label but the partitions of V (G) induced by the leaves are not the same.

Let us consider now the 2 examples described in Figs. 2 and 3. The first one
shows a 1-cograph H that admits a unique 1-cotree. The second one shows a 1-
cograph G that admits 2 different legitimate 1-cotrees. Moreover by substituting
in each vertex of G a graph isomorphic to G and if we repeat this process we
can build a 1-cograph which admit exponentially many different legitimate
1-cotrees. At this particular time regarding for a graph the existence of ε-tree
decomposition is not clear and as shown with ε-cographs we cannot ask for a
unique one if it exists.

Unfortunately, it turns out, as one might expect, that finding this matching
cutset is an NP-complete problem, as was shown by Chvátal in [6]. In the same
work, Chvátal showed in particular that the problem is NP-hard on graphs with
maximum degree four, and polynomial on graphs with maximum degree three.

Furthermore, it was shown that computing a matching cutsets in the follow-
ing graph classes is polynomial: for graphs with max degree three [6], for weakly
chordal graphs and line-graphs [23], for Series Parallel graphs [26], claw-free
graphs and graphs with bounded clique width, as well as graphs with bounded
treewidth [1], graphs with diameter 2 [2]. and for (K1,4,K1,4+e)-free graphs [20].

Therefore, to check if any of these graphs are 1-cographs, it suffices to run the
corresponding matching cutset algorithms on either the graph or its complement.

But we conjecture that even 1-cographs that can be decomposed into exactly
two cographs are hard to recognize in the general case.
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4 Computing the Minimal ε-Modules

Despite the negative results of the previous sections, we shall now examine how
to compute all minimal ε-modules in polynomial time. As seen previously non
trivial ε-module have strictly more than 2 · ε+1 elements. Since ε-module family
is closed under intersection, it yields a graph convexity and we can compute the
minimal under inclusion ε-module M(A) that contains a given set A, with strictly
more that 2·ε+1 elements, computing a modular closure via ε-splitters. In fact
we built a series of subsets Mi starting with M0 = A, and satisfying Mi ⊆ Mi+1.

Algorithm 1. Computing minimal ε-modules.
Input: a graph G and A ⊆ V (G) with |A| ≥ 2 · ε + 2 .
Output: M(A) the minimal ε-module that contains A

1 M0 ← A, i ← 0 ;
2 S ← {x ∈ V (G) \ M0 such that ε < |N(x) ∩ M0| < |M0| − ε};
3 while S 	= ∅ do
4 i ← i + 1;
5 Mi ← Mi−1 ∪ S;
6 S ← {x ∈ V (G) \ Mi such that ε < |N(x) ∩ Mi| < |Mi| − ε};
7 M(A) ← Mi;

Proposition 5. Algorithm1 computes the minimal ε-module that contains A.

Proof. If A is an ε-module, then at line 2, S = ∅, else all the elements of S have
to be added to A. In other words, using Lemma 2 there is no ε-module M such
that: A � M � A ∪ S. At the end of the While loop either Mi = V (G) or we
have found a non trivial ε-module. ��
Theorem 4. Algorithm1 can be implemented in O(m + n).

Proof. In fact we can implement it as a kind of graph search as follows.
At the end of this Algorithm2 the set M(A) contains a minimal ε-module

that contains A. At first glance this algorithm requires O(n2) operations, since
for each vertex we must consider all its neighbours and all its non neighbours.
But if we use a partition refinement technique as defined in [17], starting with a
partition of the vertices in {A, V (G)−A}, then we keep in the a same part B(i, j)
vertices x, y, such that edge(x) = edge(y) = i and nonedge(x) = nonedge(y) =
j. Then when visiting a vertex it suffices for each part B(i, j) of the current
partition to compute B′(i + 1, j) = B(i, j) ∩ N(z) and B′′(i, j + 1) = B(i, j) −
N(z), which can be done in O(|N(z)|). It should be noticed that the parts need
not to be sorted in the current partition and we may have different parts with
the same (edge, nonedge) values. Therefore can be implemented in O(m + n). ��
Theorem 5. Using Algorithm1, one can compute all minimal non-trivial
ε-modules in O(m · n2·ε+1).
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Algorithm 2. Computing minimal ε-modules.
Input: a graph G and A ⊆ V (G) with |A| ≥ 2 · ε + 2 .
Output: M(A) the minimal ε-module that contains A

1 OPEN ← A;
2 M(A) ← ∅;
3 ∀u ∈ V (G), CLOSED(u) ← FALSE; edge(u) ← 0; nonedge(u) ← 0;
4 while OPEN �= ∅ do
5 z ← Choice(OPEN), Delete z from OPEN ;
6 Add z to M(A);
7 CLOSED(z) ← TRUE;
8 ∀ neighbours u of z
9 if CLOSED(u) = FALSE and u /∈ M(A) then

10 edge(u) ← edge(u) + 1;
11 if ε < edge(u) and ε < nonedge(u) then
12 Add u to OPEN

13 ∀ non neighbours v of z
14 if CLOSED(u) = FALSE and u /∈ M(A) then
15 nonedge(v) ← nonedge(v) + 1;
16 if ε < edge(u) and ε < nonedge(u) then
17 Add v to OPEN

Proof. It suffices to use Algorithm 1 starting from every subset with 2 · ε + 2
vertices. There exist O(n2·ε+2) such subsets. And therefore this yields an algo-
rithm in O(m ·n2·ε+2). But we can do all the partition refinements in the whole,
using the neighbourhood of one vertex only once. Since a vertex may belong to
at most n2·ε+1 parts, it yields an algorithm working in O(m · n2·ε+1). ��

If we consider the ε = 0 case, this gives an implementation of the algorithm
in [19] which also computes all minimal modules in O(m · n), to be compared to
the original one in O(n4).

Corollary 3. Using Theorem5, one can compute a covering of V (G) with an
overlapping family of minimal ε-modules in O(m ·n2·ε+1) and for any two mem-
bers of the covering their overlapping is bounded by 2 · ε + 1.

Proof. Using Theorem 5, we can compute an overlapping family of minimal ε-
modules in O(m·n2·ε+1). Perhaps it is not a covering of V (G), since some vertices
may not belong to any minimal non-trivial ε-module. To obtain a covering we
simply add as singletons the remaining vertices. ��
This could be very interesting if we are looking for overlapping communities in
social networks, the overlapping being bounded by 2 · ε + 1.

To go a step further we can use Theorem 2 and merge every pair A,B of
ε-modules such that |A ∩ B| ≥ 2 · ε + 1, either keeping A ∪ B as a 2 · ε-module
or compute M(A ∪ B) the minimal ε-module that contains A ∪ B. But this
depends on the structure of the maximal ε-modules, and unfortunately we do
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not know yet under what conditions there exists a unique partition into maximal
ε-modules.

Corollary 4. Checking if a graph is ε-prime can be done in O(m · n2·ε+1).

Proof. It suffices to test whether for every set with 2·ε+2 vertices if its closure is
equal to V (G). So either we find a non-trivial ε-module or the graph is ε-prime.
Since every non-trivial ε-module necessarily contains one of the sets with 2 · ε+2
vertices. ��
Corollary 5. Finding for a graph G the smallest ε such that G has an ε-module
can be done in O(logn · m · n2·ε+1).

Proof. To find such an ε we can use the above primality test in a dichotomic
way, just adding a logn factor to the complexity. ��

5 The Bipartite Case

Let us consider now a bipartite graph G = (X,Y,E(G)). Unfortunately the ε-
modules can be made up with vertices of both X,Y . But in some applications
we are forced to consider X and Y separately. As for example in the case where
X is a set of customers (resp. DNA sequences) and Y a set of products (resp.
organisms), usually one wants to find regularities on each side of the bipartite
graph. Let Fε(X) = {M | ε-module of G such that M ⊆ X}. It should be noticed
that X is not always an ε-module of G.

Proposition 6. ∀A,B ∈ Fε(X), A ∩ B,A \ B,B \ A ∈ Fε(X).

Proof. Using Theorem 1, the only ε-splitters of the sets A \ B and B \ A must
belong to A ∩ B. But since A,B ⊆ X, which is an independent set, it is
impossible. ��

As a consequence, using a notion of false ε-twins, we obtain.

Theorem 6. For a bipartite graph G = (X,Y,E(G)), the maximal elements of
Fε(X) can be computed in O(n2·ε(n + m)).

It should be noticed that these maximal elements of Fε(X) may overlap, but the
overlap is bounded by 2 · ε. Furthermore the experimentation on real data has
still to be done to evaluate the quality of the covering obtained.

5.1 Conclusions and Perspectives

The polynomial algorithms presented here have to be improved. Since it is hard
to compute from the minimal ε-modules some hierarchy of modules – because we
may have to consider an exponential number of unions of overlapping minimal
ones – perhaps a good way to analyze a graph is to compute the families of
minimal ones with ε = 1, 2, 3 . . . and consider a hierarchy of overlapping families.
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This notion of ε-modules yields many interesting questions both theoretical
and practical. As for example for ε = 1 to characterize 1-cographs or graphs that
admits a 1-modular decomposition tree. The study of 1-primes is also worth to
be done. On the other hand are there many ε-modules in real data? A natural
consequence of this work is to extend the Courcelle’s cliquewidth parameter into
an ε-cliquewidth and similarly to define an ε-split operation in graphs.

Acknowledgments. The authors wish to thank anonymous reviewers for their helpful
comments.
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6. Chvátal, V.: Recognizing decomposable graphs. JGT 8(1), 51–53 (1984)
7. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Dis-

crete Appl. Math. 3(3), 163–174 (1981)
8. Ehrenfeucht, A., Harju, T., Rozenberg, G.: Theory of 2-structures. In: Fülöp, Z.,
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