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Abstract. The lexicographic method is a technique that was introduced
by Hell and Huang [Journal of Graph Theory, 20(3): 361–374, 1995] as
a way to simplify the problems of recognizing and obtaining represen-
tations of comparability graphs, proper circular-arc graphs and proper
interval graphs. This method gives rise to conceptually simple recogni-
tion algorithms and leads to much simpler proofs for some characteriza-
tion theorems for these classes. Threshold graphs are a class of graphs
that have many equivalent definitions and have applications in integer
programming and set packing problems. A graph is said to have a thresh-
old cover of size k if its edges can be covered using k threshold graphs.
Chvátal and Hammer conjectured in 1977 that given a graph G, a suit-
ably constructed auxiliary graph G′ has chromatic number equal to the
minimum size of a threshold cover of G. Although this conjecture was
shown to be false in the general case by Cozzens and Leibowitz, it was
shown to be true for graphs having a threshold cover of size 2 by Raschle
and Simon [Proceedings of the Twenty-seventh Annual ACM Symposium
on Theory of Computing, STOC ’95, pages 650–661, 1995]. That is, a
graph G has a threshold cover of size 2 if and only if G′ is bipartite—this
is the only known forbidden structure characterization of graphs having
a threshold cover of size 2. We show how the lexicographic method can be
used to obtain a completely new and much simpler proof for this result.
This method also gives rise to a simple new LexBFS-based algorithm for
recognizing graphs having a threshold cover of size 2. Although this algo-
rithm is not the fastest known, it is a certifying algorithm that matches
the time complexity of the fastest known certifying algorithm for this
problem. The algorithm can also be easily adapted to give a certifying
recognition algorithm for bipartite graphs that can be covered by two
chain subgraphs.

Keywords: Lexicographic method · Threshold cover · Chain graph
cover

1 Introduction

We consider only simple, undirected and finite graphs. A graph G is said to be
a threshold graph if it does not contain a pair of edges ab, cd such that ad, bc /∈
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E(G); or equivalently, G is (2K2, P4, C4)-free [1]. A graph G = (V,E) is said to
be covered by the graphs H1,H2, . . . , Hk if E(G) = E(H1)∪E(H2)∪· · ·∪E(Hk).
A graph G is said to have a threshold cover of size k if it can be covered by k
threshold graphs. The threshold dimension of a graph G is defined to be the
smallest integer k such that G has a threshold cover of size k. Mahadev and
Peled [12] give a comprehensive survey of threshold graphs and their applications.

Chvátal and Hammer [1] showed that the fact that a graph has a threshold
cover of size k is equivalent to the following: there exist k linear inequalities on
|V (G)| variables such that the characteristic vector of a set S ⊆ V (G) satisfies all
the inequalities if and only if S is an independent set of G (see [13] for details).
They further defined the auxiliary graph G′ (defined in Sect. 2) corresponding
to a graph G and showed that any threshold cover of G must have size at least
χ(G′). This gave rise to the question of whether there exist any graph G that
does not have a threshold cover of size χ(G′). Cozzens and Leibowitz [4] showed
the existence of such graphs. In particular, they showed that for every k ≥ 4,
there exists a graph G such that χ(G′) = k but G has no threshold cover of size k.
The question of whether such graphs exist for k = 2 seems to have been intensely
studied but remained open for a decade (see [11]). Ibaraki and Peled [7] showed
that if G is a split graph or if G′ contains at most two non-trivial components,
then χ(G′) = 2 if and only if G has a threshold cover of size 2. They further
conjectured that every graph G satisfying χ(G′) ≤ 2 has a threshold cover of size
2. Cozzens and Halsey [3] studied some properties of graphs having a threshold
cover of size 2 and show that it can be decided in polynomial time whether the
complement of a bipartite graph has a threshold cover of size 2. Finally, in 1995,
Raschle and Simon [13] settled the question by extending the methods of Ibaraki
and Peled: they showed that every graph G whose auxiliary graph G′ is bipartite
has a threshold cover of size 2. This proof is very technical and involves the use of
a number of complicated reductions and previously known results. In particular,
they construct a set of edges that have a “threshold completion” by finding a
2-colouring of G′ that is so-called “AC2l-free”, where l ≥ 2 (a colouring of G′ is
AC2l-free, if for each colour class S, there is no cyclical sequence v1, v2, . . . , v2l, v1
of vertices in G such that vivi+1 ∈ S if and only if i is odd). It is then shown
that this reduces to finding a 2-colouring of G′ which is AC6-free. This further
reduces to finding a so-called “AP6-free” 2-colouring of G′ which further reduces
to finding a so-called “double AP6-free 2-colouring” of G′. The most intricate
part is the proof of correctness of an algorithm that computes this particular
kind of 2-colouring of G′.

The paper of Raschle and Simon also gives an O(|E(G)|2) algorithm that
checks whether a graph G has a threshold cover of size 2 and outputs two thresh-
old graphs that cover G in case it has. If the input graph G does not have a
threshold cover of size 2, the algorithm detects an odd cycle in the auxiliary
graph G′. This odd cycle gives edges e1, e2, . . . , ek in G, where k is odd, such
that the edges ei, ei+1, for 1 ≤ i < k, and the edges ek, e1, can never both belong
to any threshold subgraph of G (because their endpoints induce a 2K2, P4 or
C4 in G). In this way, the algorithm provides an easily verifiable “certificate” for
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the fact that there does not exist two threshold graphs that cover G. If G does
have a threshold cover of size 2, then the two threshold graphs returned by the
algorithm that cover G form an easily verifiable certificate for that fact. Such
algorithms are called certifying algorithms [8].

Since as noted above, an odd cycle in the auxiliary graph G′ corresponds to
a structure present in G that serves as an “obstruction” to it having a threshold
cover of size 2, the result of Raschle and Simon can also be seen as a “forbidden
structure characterization” of graphs having a threshold cover of size 2. That is,
a graph G has a threshold cover of size 2 if and only if the said obstruction is
not present in G. Such characterizations are known for many different classes of
graphs—for example, interval graphs [9] and circular-arc graphs [5].

In this paper, we propose a completely different and self-contained proof
for the theorem of Raschle and Simon that a graph G can be covered by two
threshold graphs if and only if G′ is bipartite. Our proof is short and direct, and
also gives rise to a simpler (although having the same asymptotic worst case
running time of O(|E(G)|2)) certifying recognition algorithm for graphs having
a threshold cover of size 2.

Note that faster algorithms for determining if a graph has a threshold cover
of size 2 are known. After the algorithm of Raschle and Simon [13], Sterbini
and Raschle [15] used some observations of Ma [10] to construct an O(|V (G)|3)
algorithm for the problem. But this algorithm is not a certifying algorithm in
the sense that if the input graph G does not have a threshold cover of size 2, it
does not produce an obstruction in G that prevents it from having a threshold
cover of size 2. Note that there is an obvious way to make this algorithm a
certifying algorithm: if the algorithm answers that the input graph G does not
have a threshold cover of size 2, run a secondary algorithm that constructs G′

and finds an odd cycle in it (this odd cycle can serve as a certificate). But a naive
implementation of the secondary algorithm will take time Ω(|E(G)|2), and it is
not clear if there is a way to run it in time o(|E(G)|2).

In the current work, we show that a graph G has a threshold cover of size
2 if and only if its auxiliary graph G′ is bipartite using a technique called the
lexicographic method which was introduced by Hell and Huang [6]. Hell and
Huang demonstrated how this method can lead to shorter proofs and simpler
recognition algorithms for certain problems that can be viewed as orienting the
edges of a graph satisfying certain conditions—for example, they showed how
this method can lead to simpler characterization proofs and recognition algo-
rithms for comparability graphs, proper interval graphs and proper circular-arc
graphs. The method starts by taking an arbitrary ordering of the vertices of the
graph. It then prescribes choosing the lexicographically smallest (with respect
to the given vertex ordering) edge to orient and then orienting it in one way
or the other, along with all the edges whose orientations are forced by it. Hell
and Huang showed that the lexicographic approach makes it easy to ensure that
the orientation so produced satisfies the necessary conditions, if such an orienta-
tion exists. We adapt this technique to the problem of generating two threshold
graphs that cover a given graph, if two such graphs exist. This shows that the
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applicability of the lexicographic method may not be limited to only problems
involving orientation of edges. However, it should be noted that in our proof,
we start with a Lex-BFS ordering of the vertices of the graph instead of an
arbitrary ordering. It is an ordering of the vertices that gives the order in which
a Lex-BFS, or Lexicographic Breadth First Search, a graph searching algorithm
that was introduced by Rose, Tarjan and Lueker [14], may visit the vertices of
the graph. A Lex-BFS ordering always gives an order in which a breadth-first
search can visit the vertices of the graph, but has some additional properties.
Lex-BFS can be implemented to run in time linear in the size of the input graph
and Rose, Tarjan and Lueker originally used this algorithm to construct a linear-
time algorithm for recognizing chordal graphs. Later, Lex-BFS based algorithms
were discovered for the recognition of many different graph classes (see [2] for a
survey).

2 Preliminaries

Let G = (V,E) be any graph. Two edges ab, cd are said to form a pair of cross
edges in G if ad, bc /∈ E(G). If ab, cd form a pair of cross edges in G, we say that
the set {a, b, c, d} is a crossing set in G (such a set is called an AC4 in [13]). It
is easy to see that threshold graphs are exactly the graphs that contain no pairs
of cross edges, or equivalently no crossing set.

For a graph G, the auxiliary graph G′ is defined to be the graph with V (G′) =
E(G) and E(G′) = {e1e2 : e1, e2 form a pair of cross edges in G}. We shall refer
to the vertex of G′ corresponding to an edge ab ∈ E(G) alternatively as {a, b}
or ab, depending upon the context. The following lemma is just a special case
of the observation of Chvátal and Hammer [1] that a graph G cannot have a
threshold cover of size less than χ(G′).

Lemma 1. If a graph G = (V,E) has a threshold cover of size two then G′ is
bipartite.

Proof. Let G be covered by two threshold graphs H1 and H2. By the definition
of G′, if {ab, cd} ∈ E(G′) then ad, bc /∈ E(G). The fact that H1 and H2 are
threshold subgraphs of G then implies that neither H1 nor H2 can contain both
the edges ab and cd. We therefore conclude that the sets E(H1) and E(H2) are
both independent sets in G′. Since G is covered by H1 and H2, we have that
V (G′) = E(H1) ∪ E(H2). Thus, {E(H1), E(H2) \ E(H1)} forms a bipartition of
G′ into two independent sets. This completes the proof. ��
Our goal is to provide a new proof for the following theorem of Raschle and
Simon [13].

Theorem 1. A graph G can be covered by two threshold graphs if and only if
G′ is bipartite.

By Lemma 1, it is enough to prove that if G′ is bipartite, then G can be covered
by two threshold graphs. In order to prove this, we find a specific 2-coloring of
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the non-trivial components of G′ using the lexicographic method of Hell and
Huang [6].

Let < be an ordering of the vertices of G. Given two k-element subsets
S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} of V (G), where s1 < s2 < · · · < sk
and t1 < t2 < · · · < tk, S is said to be lexicographically smaller than T , denoted
by S < T , if sj < tj for some j ∈ {1, 2, . . . , k}, and si = ti for all 1 ≤ i < j ≤ k.
In the usual way, we let S ≤ T denote the fact that either S < T or S = T . For
a set S ⊆ V (G), we abbreviate min< S to just min S. Note that the relation <
(“is lexicographically smaller than”) that we have defined on k-element subsets
of V (G) is a total order. Therefore, given a collection of k-element subsets of
V (G), the lexicographically smallest one among them is well-defined.

3 Proof of Theorem1

Assume that G′ is bipartite. Let < denote a Lex-BFS ordering of the vertices
of G. The following observation states a well-known property of Lex-BFS order-
ings [2].

Observation 1. For a, b, c ∈ V (G), if a < b < c, ab /∈ E(G) and ac ∈ E(G),
then there exists x ∈ V (G) such that x < a < b < c, xb ∈ E(G) and xc /∈ E(G).

We shall now construct a partial 2-coloring of the vertices of G′ using the
colors {1, 2}. Notice that choosing a color for any vertex in a component of G′

fixes the colors of all the other vertices in that component. Recall that every
vertex of G′ is a two-element subset of V (G). For every non-trivial component
C of G′, perform the following operation: Choose the lexicographically smallest
vertex in C (with respect to the ordering <) and assign the color 1 to it. This
fixes the colors of all the other vertices in C. Note that after this procedure, every
vertex of G′ that is in a non-trivial component has been colored either 1 or 2.
For i ∈ {1, 2}, let Fi = {e ∈ V (G′) : e is colored i}. Further, let F0 denote the set
of all isolated vertices in G′. Clearly, F0 is exactly the set of uncolored vertices of
G′ and we have V (G′) = F0 ∪F1 ∪F2. Consider the subgraphs H1 = (V, F1 ∪F0)
and H2 = (V, F2 ∪ F0) of G. We claim that H1 and H2 are two threshold graphs
that cover G. Clearly E(G) = E(H1) ∪ E(H2); so it only remains to be proven
that both H1 and H2 are threshold graphs. Note that for any edge ab ∈ E(G),
ab /∈ E(H1) ⇒ ab ∈ F2 and ab /∈ E(H2) ⇒ ab ∈ F1.

Observation 2. If ab, cd form a pair of cross edges in G, then exactly one of
the following is true:

1. ab ∈ F1 and cd ∈ F2, or
2. ab ∈ F2 and cd ∈ F1.

Therefore, ab and cd cannot be present together in either H1 or H2.

Proof. As ab, cd form a pair of cross edges in G, the vertices ab and cd are
adjacent in G′. Therefore one of them will be colored 1 and the other 2 in the
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partial 2-coloring of G′. This implies that one of ab, cd belongs to F1 and the
other to F2. Since F1 = E(H1) \ E(H2) and F2 = E(H2) \ E(H1), ab and cd
cannot be both present in either E(H1) or E(H2). ��

For i ∈ {1, 2}, let Pi = {{x, y, z, w} : xy, zw ∈ E(Hi), xw /∈ E(G) and yz ∈
E(G)\E(Hi)} and Ci = {{x, y, z, w} : xy, zw ∈ E(Hi), xw, yz ∈ E(G)\E(Hi)}.
By Observation 2, it can be seen that the crossing sets in Hi are exactly the
elements of Pi ∪ Ci. Define P = P1 ∪ P2 and C = C1 ∪ C2. Notice that in order
to show that both H1 and H2 are threshold graphs, we only need to prove that
P ∪ C = ∅. We shall first show that P = ∅. Suppose not. Let {a, b, c, d} be the
lexicographically smallest element in P.

Lemma 2. {a, b, c, d} /∈ P1.

Proof. Suppose for the sake of contradiction that {a, b, c, d} ∈ P1. By definition
of P1, we can assume without loss of generality that ab, cd ∈ E(H1), ad /∈ E(G)
and bc ∈ E(G) \ E(H1). Since E(G) = E(H1) ∪ E(H2), we have that bc ∈
E(H2) \ E(H1), which implies that bc ∈ F2. By the definition of F2, we have
that bc belongs to a non-trivial component C of G′ and has been colored 2.
Therefore {b, c} is not the lexicographically smallest vertex in C. Let {bk, ck} be
the lexicographically smallest vertex in C (k is defined below). Then we have
{bk, ck} < {b, c} and by our construction the vertex {bk, ck} must have received
color 1. Let bc = b0c0, b1c1, . . . , bk−1ck−1, bkck be a path in C between {b, c} and
{bk, ck}, where for 0 ≤ i < k, bici+1, bi+1ci /∈ E(G). Note that k is odd, bici ∈ F2

for each even i and bici ∈ F1 for each odd i, where 0 ≤ i ≤ k.
We claim that abi, cid ∈ E(H1) for each even i and abi, cid ∈ E(H2) for

each odd i, where 0 ≤ i ≤ k. We prove this by induction on i. The case where
i = 0 is trivial as b0 = b and c0 = c. So let us assume that i > 0. Consider
the case where i is odd. As i − 1 is even, by the induction hypothesis we have,
abi−1, ci−1d ∈ E(H1). As abi−1, bici ∈ E(H1) and bi−1ci /∈ E(G), by Observa-
tion 2, we have that abi ∈ E(G). Now as abi, ci−1d form a pair of cross edges
in G and ci−1d ∈ E(H1) the same observation then implies that abi ∈ E(H2).
Similarly, as ci−1d, bici ∈ E(H1) and bici−1 /∈ E(G), we have cid ∈ E(G).
Again, as cid, abi−1 form a pair of cross edges in G and abi−1 ∈ E(H1) we have
cid ∈ E(H2). The case where i is even is also similar and hence the claim.

By the above claim, abk, ckd ∈ E(H2). Since bkck ∈ F1, bkck /∈ E(H2).
Recalling that ad /∈ E(G), we now have that {a, bk, ck, d} ∈ P2. Since {bk, ck} <
{b, c}, we have that {a, bk, ck, d} < {a, b, c, d}, which is a contradiction. ��
Lemma 3. {a, b, c, d} /∈ P2.

Proof. Suppose for the sake of contradiction that {a, b, c, d} ∈ P2. By definition
of P2, we can assume without loss of generality that ab, cd ∈ E(H2), ad /∈ E(G)
and bc /∈ E(H2). Recall that bc /∈ E(H2) ⇒ bc ∈ F1. As bc ∈ F1, the vertex bc
belongs to a non-trivial component of G′. Then there exists a neighbor b′c′ of
bc in G′ such that bc′, b′c /∈ E(G). By Observation 2, bc ∈ F1 implies b′c′ ∈ F2.
Further, ab, b′c′ ∈ E(H2) and bc′ /∈ E(G) implies that ab′ ∈ E(G). Now ab′, cd
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form a pair of cross edges in G. Since cd ∈ E(H2), we now have by Observation 2
that cd ∈ F2 and ab′ ∈ F1. This implies that cd is in a non-trivial component C1

of G′. Similarly, as cd, b′c′ ∈ E(H2) and b′c /∈ E(G) we have that c′d ∈ E(G).
Now c′d, ab form a pair of cross edges in G. Since ab ∈ E(H2), we have by
Observation 2 that ab ∈ F2 and c′d ∈ F1. This implies that ab is in a non-trivial
component C2 of G′.

We now prove two claims using the fact that < is a Lex-BFS ordering of
V (G).

Claim 1. d < a < c is not possible.

Suppose not. Note that da /∈ E(G) and dc ∈ E(G). Then by Observation 1,
there exists x ∈ V (G) such that x < d < a < c, xa ∈ E(G) and xc /∈ E(G). Now
cd, xa form a pair of cross edges in G. By Observation 2, cd ∈ F2 implies that
xa ∈ F1. As bc ∈ F1, xc /∈ E(G) and ab /∈ E(H1) (recall that ab ∈ F2) we then
have that {x, a, b, c} ∈ P1. Further, x < d implies that {x, a, b, c} < {a, b, c, d}
which is a contradiction.

The next claim is symmetric to the claim above, but we give a proof for the
sake of completeness.

Claim 2. a < d < b is not possible.

Suppose not. Note that ad /∈ E(G) and ab ∈ E(G). Then by Observation 1,
there exists x ∈ V (G) such that x < a < d < b, xd ∈ E(G) and xb /∈ E(G). Now
ab, xd form a pair of cross edges in G. By Observation 2, ab ∈ F2 implies that
xd ∈ F1. As bc ∈ F1, xb /∈ E(G) and cd /∈ E(H1) (recall that cd ∈ F2) we then
have that {x, d, c, b} ∈ P1. Further, x < a implies that {x, d, c, b} < {a, b, c, d}
which is a contradiction.

As cd ∈ F2, cd must have received color 2 in the partial 2-coloring of G′.
This means that cd is not the lexicographically smallest vertex in the component
C1. Let {ck, dk} be the lexicographically smallest vertex in C1. Then we have
{ck, dk} < {c, d} and by our construction, the vertex {ck, dk} must have received
color 1. Let cd = c0d0, c1d1, . . . , ck−1dk−1, ckdk be a path in C1 between cd and
ckdk, where for 0 ≤ i < k, cidi+1, ci+1di /∈ E(G). Note that k is odd, cidi ∈ F2

for each even i and cidi ∈ F1 for each odd i, where 0 ≤ i ≤ k.

Claim 3. cib, c
′di ∈ F1 for each even i and cib, c

′di ∈ F2 for each odd i, where
0 ≤ i ≤ k.

We prove this by induction on i. The case i = 0 is trivial as c0 = c and d0 = d.
So let us assume that i > 0. Consider the case where i is odd. As i − 1 is even,
we have by the induction hypothesis that ci−1b, c

′di−1 ∈ F1. As cidi, ci−1b ∈ F1

and ci−1di /∈ E(G), by Observation 2, we have cib ∈ E(G). Now since cib, c
′di−1

form a pair of cross edges in G (recall that bc′ /∈ E(G)) and c′di−1 ∈ F1, the
same observation then implies that cib ∈ F2. Similarly, as cidi, c

′di−1 ∈ F1 and
cidi−1 /∈ E(G), we have that c′di ∈ E(G). Now since c′di, ci−1b form a pair of
cross edges in G and ci−1b ∈ F1, we can deduce as before that c′di ∈ F2. The
case where i is even can be proved in the same way. Hence the claim.
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Recall that ab ∈ F2, ab is in a non-trivial component C2 of G′, and it has
color 2 in the partial 2-coloring of G′. Therefore, there exists a lexicographically
smallest vertex {ak, bk} in C2 which has been colored 1. Clearly, {ak, bk} < {a, b}.
Let ab = a0b0, a1b1, . . . , ak−1bk−1, akbk, be a path in C2 between {ak, bk} and
{a, b}, where for 0 ≤ i < k, aibi+1, ai+1bi /∈ E(G). Note that k is odd, aibi ∈ F2

for each even i and aibi ∈ F1 for each odd i, where 0 ≤ i ≤ k. The following
claim is symmetric to Claim 3, but we give a proof for the sake of completeness.

Claim 4. aib
′, cbi ∈ F1 for each even i and aib

′, cbi ∈ F2 for each odd i, where
0 ≤ i ≤ k.

We prove this by induction on i. The case i = 0 is trivial as a0 = a and b0 = b.
Consider the case where i is odd. As i − 1 is even we have ai−1b

′, cbi−1 ∈ F1.
Now as aibi, ai−1b

′ ∈ F1 and ai−1bi /∈ E(G), by Observation 2, we have that
aib

′ ∈ E(G). Now aib
′, cbi−1 form a pair of cross edges (recall that b′c /∈ E(G))

and cbi−1 ∈ F1 the same observation then implies that aib
′ ∈ F2. Similarly, as

aibi, cbi−1 ∈ F1 and aibi−1 /∈ E(G), we have that cbi ∈ E(G). Now cbi, ai−1b
′

form a pair of cross edges and ai−1b
′ ∈ F1, implying that cbi ∈ F2. The case

where i is even can be proved in the same way. Hence the claim.
Recall that ckdk ∈ F1. By Claim 3, ck−1b ∈ F1 and ckb ∈ F2, implying that

ckb /∈ E(H1). As ck−1dk /∈ E(G) we then have {ck−1, b, ck, dk} ∈ P1. Similarly, as
akbk ∈ F1, akbk−1 /∈ E(G), and by Claim 4, we have cbk−1 ∈ F1 and cbk /∈ E(H1)
(as cbk ∈ F2), we have {ak, bk, c, bk−1} ∈ P1. We get the final contradiction from
the following claim.

Claim 5. Either {ak, bk, c, bk−1} < {a, b, c, d} or {ck−1, b, ck, dk} < {a, b, c, d}.

Suppose d > a. By Claim 2, we then have d > b. Now, since {ak, bk} <
{a, b}, we have {ak, bk, c, bk−1} < {a, b, c, d}, and we are done. So we shall
assume that d < a. By Claim 1, we now have that c < a, implying that
a > max{c, d}. If min{ck, dk} < min{c, d}, then we have min{ck, dk} < a, c, d,
which implies that {ck−1, b, ck, dk} < {a, b, c, d}, proving the claim. So we shall
assume that min{ck, dk} ≥ min{c, d}. Therefore, since {ck, dk} < {c, d}, we
have min{ck, dk} = min{c, d} and max{ck, dk} < max{c, d}. Thus we have
a > max{ck, dk}, implying that {ck−1, b, ck, dk} < {a, b, c, d}. ��

From Lemmas 2 and 3, it follows that P = ∅.

Lemma 4. C = ∅.
Proof. Suppose for the sake of contradiction that C �= ∅. Then there exists
i ∈ {1, 2} such that Ci �= ∅. Consider an element {a, b, c, d} ∈ Ci. We can assume
without loss of generality that ab, cd ∈ E(Hi), ad, bc ∈ E(G) \ E(Hi). As ad ∈
E(G)\E(Hi), it belongs to a non-trivial component of G′. Therefore there exists
a neighbor a′d′ of ad in G′ such that ad′, a′d /∈ E(G). Therefore by Observation 2,
we have that a′d′ ∈ E(Hi). As ab, a′d′ ∈ E(Hi), where ad′ /∈ E(G), by the same
observation we then have a′b ∈ E(G). Now if a′b ∈ E(Hi), then the fact that
cd ∈ E(Hi), bc ∈ E(G) \ E(Hi) and a′d /∈ E(G) implies that {a′, b, c, d} ∈
Pi which is a contradiction to our earlier observation that P = ∅. Therefore
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a′b ∈ E(G) \ E(Hi). As ab, a′d′ ∈ E(Hi) and ad′ /∈ E(G), it then follows that
{a, b, a′, d′} ∈ Pi which again contradicts the fact that P = ∅. This completes
the proof. ��

We have now shown that P ∪ C = ∅, or in other words, there is no crossing
set in either H1 or H2. Thus H1 and H2 are two threshold graphs that cover G.
We have thus shown that if G′ is bipartite then G has a threshold cover of size
two. As we already have Lemma 1, this completes the proof of Theorem 1.

4 A Certifying Algorithm

Our proof of Theorem1 gives an algorithm which when given a graph G as input,
either constructs two threshold graphs that cover G, or produces an odd cycle
in G′ as a certificate that G cannot be covered by two threshold graphs.

Algorithm 2-Threshold-Cover

Input: A graph G.
Output: If G has a threshold cover of size 2, two threshold graphs H1,H2

such that they cover G, otherwise the auxiliary graph G′ and an
odd cycle in it.

1. Run the Lex-BFS algorithm on G (starting from an arbitrarily chosen vertex)
to produce a Lex-BFS ordering < of V (G).

2. Construct the auxiliary graph G′.
3. Initialize V (H1) = V (H2) = V (G) and E(H1) = E(H2) = {e ∈ V (G′) : e

belongs to a trivial component of G′}.
4. While there exist uncolored vertices in a non-trivial component C of G′, do

(i) Choose the lexicographically smallest vertex uv in C and assign the color
1 to it.

(ii) Complete the 2-coloring of C by doing a BFS starting from the vertex uv.
If an odd cycle is detected, return the cycle and exit. Otherwise update
E(H1) = E(H1)∪{e ∈ V (C) : e is colored 1 in G′}, E(H2) = E(H2)∪{e ∈
V (C) : e is colored 2 in G′}.

5. Output H1 and H2.

Correctness of the algorithm follows from the proof of Theorem 1. The Lex-
BFS on G can be done in O(|V (G)| + |E(G)|) time and the remaining steps in
O(|V (G′)| + |E(G′)|) time. As G′ contains at most |E(G)| vertices and at most
|E(G)|2 edges, the running time of this algorithm is O(|E(G)|2).

5 The Chain Subgraph Cover Problem

A bipartite graph G = (A,B,E) is called a chain graph if it does not contain a
pair of edges whose endpoints induce a 2K2 in G. A collection of chain graphs
{H1,H2, . . . , Hk} is said to be a k-chain subgraph cover of a bipartite graph G
if it is covered by H1,H2, . . . , Hk. The problem of deciding whether a bipartite
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graph G can be covered by k chain graphs, i.e. whether G has a k-chain subgraph
cover, is known as the k-chain subgraph cover (k-CSC) problem. He showed that
3-CSC is NP-complete and pointed out that using the results of Ibaraki and
Peled [7], the 2-CSC problem can be solved in polynomial time as it can be
reduced to the problem of determining whether a split graph can be covered by
two threshold graphs. Ma and Spinrad [11] note that a direct implementation
of this approach to the 2-CSC problem only gives an O(|V (G)|4) algorithm and
instead propose an O(|V (G)|2) algorithm for the problem. This algorithm works
by reducing the 2-CSC problem to the problem of deciding whether a partial
order has Dushnik-Miller dimension at most 2. Note that this algorithm does
not produce a directly verifiable certificate, such as a forbidden structure in the
graph, in case the input graph does not have a 2-chain subgraph cover. Our algo-
rithm can be easily modified to make it an O(|E(G)|2) certifying algorithm for
deciding if an input bipartite graph G has a 2-chain subgraph cover as explained
below. In fact, the only modification that is needed is to change the definition
of G′ so that two edges of G are adjacent in G′ if and only if they induce 2K2 in
G. As shown below, we can start with an arbitrary ordering of vertices in this
case, i.e. we do not need to run the Lex-BFS algorithm to produce a Lex-BFS
ordering of the input graph as the first step.

Let G = (A,B,E) be a bipartite graph. We now redefine the meaning of the
term “cross edges”. Two edges ab, cd ∈ E(G) are now said to be cross edges
if and only if a, c ∈ A, b, d ∈ B and ad, bc /∈ E(G). Note that the meaning
of the auxiliary graph G′ now changes, but our proof that χ(G′) ≤ 2 if and
only if there exists two graphs H1,H2, each containing no cross edges, such that
E(G) = E(H1)∪E(H2) still works verbatim. We could, however, let the ordering
< on V (G) be any arbitrary ordering. In that case, we cannot use Observation 1
and any argument that uses it. Note that Observation 1 is used only in the proof
of Lemma 3. We show how this proof can be modified so that Observation 1 is no
longer needed. Observation 1 is used only in Claims 1 and 2, which in turn are
used only in Claim 5. Remove Claims 1 and 2 and replace the proof of Claim 5
with the following proof.

Claim 5. Either {ak, bk, c, bk−1} < {a, b, c, d} or {ck−1, b, ck, dk} < {a, b, c, d}.

As ck−1b, c
′d ∈ F1 and c′b /∈ E(G), we have ck−1d ∈ E(G). From Claim 3,

we have c′dk−1 ∈ F1. Then, c′dk−1, cb ∈ F1 where c′b /∈ E(G) implies that
cdk−1 ∈ E(G). As ckdk−1, ck−1dk /∈ E(G), we can conclude that c �= ck and
d �= dk. Since c, ck ∈ A and d, dk ∈ B, we further have that c �= dk and d �= ck.
Therefore we get,

c, d > min{ck, dk} (as ckdk < cd) (1)

From Claim 4, we have ak−1b
′ ∈ F1. Now ak−1b

′, cb ∈ F1 where cb′ /∈ E(G)
implies that ak−1b ∈ E(G). Since cbk−1, ab′ ∈ F1 and cb′ /∈ E(G), we have
abk−1 ∈ E(G). As akbk−1, ak−1bk /∈ E(G) we can conclude that a �= ak and
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b �= bk. Since a, ak ∈ A and b, bk ∈ B, we further have that a �= bk and b �= ak.
Therefore we get,

a, b > min{ak, bk} (as akbk < ab) (2)

If a ≤ min{ck, dk} and d ≤ min{ak, bk}, we get by (1) and (2) that a ≤
min{ck, dk} < d ≤ min{ak, bk} < a, which is a contradiction. Therefore, either
a > min{ck, dk} or d > min{ak, bk}. If a > min{ck, dk}, then by (1), we get
{ck−1, b, ck, dk} < {a, b, c, d}, and we are done. Similarly, if d > min{ak, bk},
then by (2), we have {ak, bk, c, bk−1} < {a, b, c, d}, again we are done. This
proves the claim.

Thus Algorithm 2-Threshold-Cover can be modified into a certifying recog-
nition algorithm for deciding if a bipartite graph has a 2-chain subgraph cover
by just changing the definition of G′. Moreover, this algorithm can choose any
arbitrary ordering of the vertices of the input graph to start with and hence does
not require the implementation of the Lex-BFS algorithm. Note that we do not
know the answer to the following question: Would Algorithm 2-Threshold-Cover
correctly decide whether the input graph G has a threshold cover of size 2 even
if it lets < be an arbitrary ordering of V (G)?

6 Conclusion

Chvátal and Hammer [1] showed that the problem of deciding whether an input
graph has a threshold cover of size at most k is NP-complete, when k is part
of the input. Yannakakis [16] observes that a bipartite graph G = (A,B,E) has
a k-chain subgraph cover if and only if the split graph H obtained from G by
making every pair of vertices in A adjacent to each other has a threshold cover
of size k. He notes that therefore, his proof of the NP-completeness of the 3-CSC
problem implies that the problem of deciding if an input graph has a threshold
cover of size at most 3 is also NP-complete.

We believe that our result demonstrates once again the power of the lexico-
graphic method in yielding short and elegant proofs for certain kinds of problems
that otherwise seem to need more complicated proofs. Further research could
establish the applicability of the method to a wider range of problems.
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