
Algorithms for Radon Partitions
with Tolerance

Sergey Bereg(B) and Mohammadreza Haghpanah

University of Texas at Dallas, Richardson, TX 75080, USA
{besp,Mohammadreza.Haghpanah}@utdallas.edu

Abstract. Let P be a set n points in a d-dimensional space. Tverberg
theorem says that, if n is at least (k − 1)(d + 1), then P can be par-
titioned into k sets whose convex hulls intersect. Partitions with this
property are called Tverberg partitions. A partition has tolerance t if
the partition remains a Tverberg partition after removal of any set of t
points from P . A tolerant Tverberg partition exists in any dimensions
provided that n is sufficiently large. Let N(d, k, t) be the smallest value
of n such that tolerant Tverberg partitions exist for any set of n points
in R

d. Only few exact values of N(d, k, t) are known.
In this paper, we study the problem of finding Radon partitions (Tver-

berg partitions for k = 2) for a given set of points. We develop several
algorithms and found new lower bounds for N(d, 2, t).

Keywords: Tverberg’s theorem · Linear classifiers · Tolerance

1 Introduction

Tverberg’s theorem and Tverberg partitions are of crucial importance in combi-
natorial convexity and stands on the intersection of combinatorics, topology and
linear algebra. Tverberg partitions with tolerance showed importance in these
fields, years after the main theorem.

Theorem 1 (Tverberg [32]). For any set P ⊂ R
d of at least (k−1)(d+1)+1

points, there exists a partition of P ⊂ R
d into k sets P1, P2, . . . , Pk such that

their convex hulls intersect

k⋂

i=1

conv(Pi) �= ∅. (1)

This is a generalization of Radon’s theorem from 1921 [26] which provides a
partition of at least d+1 points for k = 2. We call a partition satisfying Equation
(1) a Tverberg partition. If k = 2, we call it a Radon partition.

The computational complexity of finding a Tverberg partition according to
Theorem 1 is not known. Teng [31] showed that testing whether a given point
is in the intersection of convex hulls of a partition is coNP-complete. On the
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 476–487, 2020.
https://doi.org/10.1007/978-3-030-39219-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_38&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_38

Algorithms for Radon Partitions with Tolerance 477

other hand, such a point can be computed in nd2
time if d is fixed [2]. Mulzer

and Werner [24] found an approximation algorithm for Tverberg partitions with
linear running time.

A Tverberg partition has tolerance t if after removing t points from P it still
remains Tverberg partition.

Definition 2. (t-tolerant Tverberg partition) Let P be set of point in R
d. Π =

{P1, P2, . . . , Pk} be a partition of size k of P . A partition Π = {P1, P2, . . . , Pk}
of P is called t-tolerant if for every C ⊂ P with |C| ≤ t

k⋂

i=1

conv(Pi \ C) �= ∅.

In 1972, Larman [21] proved that every set of size 2d + 3 admits a 1-tolerant
Tverberg partition into two sets, i.e., a 1-tolerant Radon partition. Garćıa-Coĺın
[13] proved the existence of a Radon partition for any tolerance t, see also [14].
Soberon et al. [30] proved if |P | > (t + 1)(k − 1)(d + 1) then P has a t-tolerant
Tverberg partition. Examples of a Tverberg partition (with tolerance 0) and
tolerant Tverberg partitions are shown in Fig. 1.

Fig. 1. (a) A Tverberg partition for k = 3 (the intersection of 3 convex hulls is shaded).
Points from the same set of the partition have the same shape (disk, circle or square).
(b) A 1-tolerant Tverberg partition for k = 2. (c) A 2-tolerant Tverberg partition for
k = 2.

The problem of finding Tverberg partitions with tolerance seems more dif-
ficult. For example, Tverberg’s theorem provides a tight bound for the number
of points. On the other hand, only a few tight bounds are known for Tverberg
partitions with tolerance. Let N(d, k, t) be minimum number such that every set
of points P ⊂ R

d with |P | ≥ N(d, k, t) has a t-tolerant Tverberg partition. For
fixed t and d, Garcia et al. showed [15], N(d, k, t) = kt + o(t) using a general-
ization of the Erdos-Szekeres theorem for cyclic polytopes in R

d. Soberon [29]
improved the bound to N(d, k, t) = kt + O(

√
t). Mulzer and Stein [23] provided

an algorithm for finding a t-tolerant Tverberg partition of size k for a set P ⊂ R
d

in O(2d−1dkt+kt log t) time. The algorithm by Mulzer and Stein [23] for finding

478 S. Bereg and M. Haghpanah

a t-tolerant Tverberg partition uses large number of points. A natural question
is to find algorithms when n is relatively small. In this paper, we consider the
following problems.

Problem 1. (ComputingTolerantPartition)

Given a finite set P ⊂ R
d and an integer t.

Compute a t-tolerant Tverberg partition for P if it exists.

Our motivation for this problem is to construct sets of points in R
d with large

tolerance t to find new lower bounds for N(d, t, k) for some small values of d and
t. One approach to this problem is to check all possible partitions and solve the
following problem for them. This is possible in practice only for relatively small
n, k, and d.

Problem 2. (ComputingMaxTolerance)

Given a finite set P ⊂ R
d, a Tverberg partition Π = {P1, P2, . . . , Pk} of P .

Compute the largest t such that Π is t-tolerant Tverberg partition.

For a Tverberg partition Π, we say that the tolerance of Π is t and write
τ(Π) = t if partition Π is t-tolerant but not (t + 1)-tolerant. Thus, the problem
ComputingMaxTolerance is to compute the tolerance of a Tverberg parti-
tion. The decision problem of ComputingMaxTolerance has been studied
by Mulzer and Stein [23].

Problem 3. (TestingTolerantTverberg)

Given a finite set P ⊂ R
d, a partition Π = {P1, P2, . . . , Pk} of P , and an

integer t ≥ 0.
Decide whether Π is a t-tolerant Tverberg partition of P .

Mulzer and Stein [23] proved that TestingTolerantTverberg is coNP-
complete by a reduction from the problem of testing a centerpoint. In fact, their
proof is for k = 2. We call the problem TestingTolerantTverberg in this
case TestingTolerantRadon.

In this paper we study algorithms for problems ComputingTolerantPar-

tition, ComputingMaxTolerance and TestingTolerantTverberg aim-
ing to compute point configurations in d dimensions with high tolerance. These
problems are hard even for k = 2, i.e., for Radon Partitions. In this paper we
focus on Radon Partitions only. We use M(d, t) = N(d, 2, t) for simplicity. They
would provide new lower bounds for M(d, t). We are not aware of any program
supporting lower bounds for M(d, t). Our results can be summarized as follows.

1. We found that the problem ComputingMaxTolerance for k = 2 (Radon
partitions) is related to linear classifiers with outliers which is a well-known
classification problem in machine learning and statistics. The literature on
linear classifiers is vast, see for example [3,9,16,18,25,27,33]. This classifi-
cation problem is also known as the weak separation problem [5,10,12,19,22]
and linear programming with violations [7]. In fact, our Theorem 3 states that
two optimization problems are equivalent (ComputingMaxTolerance and
optimal weak separation problem).

Algorithms for Radon Partitions with Tolerance 479

2. The relation between ComputingTolerantPartition and the classifica-
tion problem can be used to solve ComputingTolerantPartition more
efficiently. We provide three algorithms for the problem ComputingToler-

antPartition. The first algorithm is simple and easy to implement. The
second algorithm improved testing separable partition (Step 3) in the first
algorithm by using BFS and hamming distances. As a result, the second
algorithm is faster. To provide a more memory efficient algorithm, we used
gray code in the last algorithm.

3. Using the algorithms for ComputingRadonPartition, we established new
lower bounds on M(d, t). For this purpose, we design algorithms for generating
sets of points and improving them. The bounds computed by the program are
shown in Table 1 (different algorithms for different pairs of d and t). Because
of the efficiency of these algorithms, we could solve ComputingRadonPar-

tition for set of points as large as 26.

Following [5,19,20], in this paper we assume that the points of set P are in
general position. In Sect. 2 we show that Radon partitions and linear classifiers
are related. In Sect. 3 we discuss algorithms for Radon partitions. In Section 4
we discuss experiments and lower bounds for M(d, t).

2 Radon Partitions and Linear Classifiers

In this section we show a relation between the problem ComputingMaxTol-

erance for two sets (i.e. the problem of computing the maximum tolerance of
a Radon partition in d dimensions) and linear classifiers with outliers which is
a well-known classification problem in machine learning and statistics, see for
example [3,25,27,33]. Outlier detection algorithms are often computationally
intensive [27] (Fig. 2).

Fig. 2. Example of a classification problem in the plane that can be solved with a
linear classifier and few outliers.

480 S. Bereg and M. Haghpanah

This classification problem is also known as the weak separation problem
[5,10,12,19,22] and can be defined as follows. Let P be a bicolored set of points
in R

d, i.e. P = R ∪ B where R be a set red points in R
d and B is a set blue

points. Let h be a hyperplane a1x1 · · ·+adxd = a0. Let h+ be the halfspace that
contains the points satisfying a1x1 · · · + adxd ≤ a0 and let h− be the halfspace
that contains the points satisfying a1x1 · · · + adxd ≥ a0. If h were a separator
(or classifier) of P , we would have R ⊂ h+ and B ⊂ h−. A red point x is an
outlier, if x /∈ h+. A blue point x is an outlier, if x /∈ h−. The weak separation
problem is to find a hyperplane h minimizing the number of misclassified points
(outliers)

mis(h) = |R \ h+| + |B \ h−|.
The weak separation problem in the plane is well studied. Gajentaam and

Overmars [12] showed the weak separation problem is 3Sum-hard by reducing
the point covering problem to it. An algorithm with O(n2) time complexity is
provided for the weak separation problem by Houle [19]. Cole et al. [8] pre-
sented an O(Nk(n) log2 k + n log n) time algorithm to compute the k-hull of n
points in the plane where Nk(n) is the maximum number of k-sets for a set
of n points. This algorithm can be used to compute the space of all classifiers
misclassifying up to k points in the plane in O(nt log2 t+n log n) time [5]. Thus,
a t-weak separator can be computed within the same time. A better algorithm
with O(nt log t + n log n) time have been found by Everett et al. [10]. In higher
dimensions, Aronov et al. [5] proved that the weak separation problem can be
solved using duality in O(nd) time.

The connection of tolerant Radon partitions and the weak separations is
estableshed in the next theorem.

Theorem 3. Let Π = {P1, P2} be a Radon partition of a set P ⊂ R
d (i.e.

conv(P1) ∩ conv(P2) �= ∅). The tolerance of partition Π is t if and only if the
number of outliers in an optimal solution for the weak separation problem for P1

and P2 is t + 1.

Theorem 3 shows the equivalence between the weak separation problem and
the problem ComputingMaxTolerance for k = 2, see Fig. 3 for an example.

Proof. Recall that Π is a t-tolerant Radon partition if and only if for any set
C ⊂ P of at most t points

conv(P1 \ C) ∩ conv(P2 \ C) �= ∅.

Suppose that Π is a t-tolerant Radon partition. We show that the number of
outliers in an optimal solution for the weak separation problem for P1 and P2 is
at least t + 1. The proof is by contradiction. Suppose that there is a hyperplane
h such that the number of misclassified points mis(h) = |P1 \ h+| + |P2 \ h−| is
at most t. Let Ch be the set of points misclassified by h, i.e. Ch = (P1 \ h+) ∪
(P2 \ h−). Then P1 \ Ch ⊂ h+ and P2 \ Ch ⊂ h−. Therefore

conv(P1 \ Ch) ∩ conv(P2 \ Ch) ⊂ h.

Algorithms for Radon Partitions with Tolerance 481

Fig. 3. A linear classifier with 2 outliers (and maximum margin) corresponding to the
1-tolerant Radon partition in Fig. 1(b).

The hyperlane h contains at most d points of P1 ∪ P2 (due to general position).
Then

conv(P1 ∩ h) ∩ conv(P2 ∩ h) = ∅.

Therefore

conv(P1 \ Ch) ∩ conv(P2 \ Ch) = conv(P1 ∩ h) ∩ conv(P2 ∩ h) = ∅.

and Π is not t-tolerant. Contradiction.
Now, suppose that Π is not a (t+1)-tolerant Radon partition. We show that

the number of outliers in an optimal solution for the weak separation problem
for P1 and P2 is at most t + 1. There is a set C of size at most t + 1 such that

conv(P1 \ C) ∩ conv(P2 \ C) = ∅.

By Minkowski hyperplane separation theorem [6, Section 2.5.1]1 there is a
separating hyperplane h for conv(P1\C) and conv(P2\C), i.e., conv(P1\C) ⊂ h+

and conv(P2 \ C) ⊂ h−. Then, the number of misclassified points mis(h) =
|P1 \ h+| + |P2 \ h−| is at most |C| ≤ t + 1.

Therefore, if the tolerance of partition Π is t, then the number of outliers in
an optimal solution for the weak separation problem for P1 and P2 is t + 1. The
converse is true and the theorem follows. ��

3 Algorithms for Tolerant Radon Partitions

In this section, we design several algorithms for the problem ComputingToler-

antPartition in order to find new lower bounds for tolerant Radon partitions.
In this section, we assume that given points are in general position. The first
idea is based on the connection of the problem ComputingMaxTolerance for

1 See also https://en.wikipedia.org/wiki/Hyperplane separation theorem.

https://en.wikipedia.org/wiki/Hyperplane_separation_theorem

482 S. Bereg and M. Haghpanah

k = 2 to linear classifiers with outliers that we discussed in the previous section.
We can iterate through all possible partitions of given set into two sets and check
if the partition is t-tolerant or not (Problem TestingTolerantRadon). The
test can be done using an algorithm for weak separation with O(nt log t+n log n)
time for the plane [10] and O(nd) time for higher dimensions. This approach has
O(2nTd(n)) running time complexity where Td(n) is the time complexity of the
problem TestingTolerantRadon.

Since the problem is computationally difficult, all our algorithms have expo-
nential running time and can be used only for bounded n, t and d. However,
the algorithms have different running time and space bounds. This allows us to
obtain lower bounds for n up to 27 in Sect. 4. We assume in this section that
t = O(1) is a constant.

The above approach uses TestingTolerantRadon with O(nd) running
time which is not easy to implement. Our first algorithm is simpler. The algo-
rithm uses separable partitions. A partition of P into k subsets is seprable [20]
if their convex hulls are pair-wise disjoint. The number of separable partitions
for k = 2 is well-known Harding number H(n, d) [17]. Harding proved

H(n, d) =
d∑

j=0

(
n − 1

j

)
= Θ(nd).

Hwang and Rothblum [20] provided a method for enumerating separable 2-
partitions in O(nH(n, d)) time. It is based on the following recursive formula

H(n, d) = H(n − 1, d) + H(n − 1, d − 1).

Algorithm 1

1. Let P = {p1, p2, . . . , pn}. Construct S, the set of all separable partitions
using the enumeration from [20]. For any separable partition P = P1 ∪P2, we
assume that p1 ∈ P1 and we encode the partition with a binary code b1 . . . bn
where bi = j − 1 if pi ∈ Pj . Note hat |S| = H(n, d).

2. Construct P, the set of all partitions of P = P1 ∪ P2 with p1 ∈ P1. Encode
the partitions as in Step 1.

3. For every binary code b = (b1, b2, . . . , bn) ∈ S and every C ⊂ [n] with |C| ≤ t,
we make a b′ by flipping bi for all i ∈ C and remove b′ from P.

4. Return any remaining partition in P as tolerant partition of points P .

Running Time Analysis. The partitions of S and their correspondent binary
codes can be computed in O(nd+1). The number of all binary codes in P is
2n−1, and creating each of them takes O(n). Therefore, Step (2) takes O(n2n)
time. Step (3) searches |S|nt = O(nd+t) binary codes in P. Thus, Step (3) takes
O(nd+t+1) time. Each binary code contains n bits. The total time for Algorithm
1 is O(n2n + nd+t+1).

Correctness. We prove the following for the correctness of the algorithm.

Algorithms for Radon Partitions with Tolerance 483

(1) Every binary code deleted from S is not t-tolerant,
(2) Every binary code remained in S is t-tolerant.

Clearly, every binary code b deleted from P can be transformed into a binary
code in S by flipping at most t bits. Since a binary code in S corresponds to a
separable partition, the partition of b is not t-tolerant.

For the second part, suppose that a binary code b in P corresponds to a
partition that is not t-tolerant. Then, it can be transformed to a separable code
by flipping at most t bits. Therefore, b must be deleted from P.

Algorithm 1 can be improved using the fact that it tries to delete the same
binary code a multiple numbers of times. The second algorithm avoids it.

Algorithm 2

1. Construct S and P as in Algorithm 1.
2. Let S0 = S and remove S0 element form P. For each i ∈ [t] compute Si as

follows.
2a. For each b ∈ Si−1 and each position j ∈ [n], we change j-th position of b

and call it b′. Then, if b′ is in P, we remove it from P and add it to Si.
3. Return remaining elements in P as tolerant partition of points P .

We show that Algorithm 2 is correct. First if binary code b′ is removed from
P in Step (2a) there is a binary code b in S such that hamming distance between
b′ and b is at most t. So the partition corresponding to b′ is not t-tolerant.

It remains to show that every binary code b ∈ P corresponding to a partition
Π with τ(Π) < t is removed from P. Let t1 = τ(Π). There exists b′′ ∈ S such
that hamming distance between b and b′′ is t1. Algorithm 2 will change t1 bits
in b′′ in Step (2a), and create binary code b. Then binary code b will be removed
from P. Only codes correspondent to t-tolerant partition will be left in P.

Since both S and P contain at most 2n−1 binary codes, Algorithm 2 takes
only O(n2n+nd+1) time. Using Algorithm 2 we were able to obtain more bounds
on M(d, t) (the bounds are shown in Sect. 4).

We also develop Algorithm 3, which is slower than Algorithm 2 but it is
memory efficient. The idea is to apply gray code to enumerate all binary codes
for P. Let hd(u, v) be the hamming distance between binary codes u and v (the
number of positions where u and v are different). For each binary code b, we
compute a hamming vector vb = (v1, v2, . . . , vN) where

• N = |S| = H(n, d) is the size of S,
• vi = hd(b, si), i = 1, 2, . . . , N and
• si is the binary code of the i-th partition of S.

Algorithm 3

1. Construct S as in Algorithm 1.
2. For each binary code b ∈ P, generated by the gray code, compute the ham-

ming vector vb as follows.

484 S. Bereg and M. Haghpanah

2.1 For the first binary code b, compute vb directly by computing every vi =
hd(b, si) in O(n) time.

2.2 For every other binary code b following binary code b′, b and b′ are differ-
ent in only one position. Then hd(b, si) = hd(b′, si)± 1 and the hamming
vector vb can be computed in O(N) time.

2.3 If all entries of vb are greater than t, then the Radon partition corre-
sponding to binary code b is t-tolerant and the algorithms stops.

3. If the algorithm does not stop in Step (2.3), then P does not admit a t-tolerant
Radon partition.

For the correctness of Algorithm 3 it is sufficient to proof following lemma.

Lemma 1. Let Π be a Radon partition, and b is binary representation of it. All
entries of vb are greater than k if and only if Π is t-tolerant.

Proof. It follows as a sequence of equivalences. All entries of vb are greater than
k ⇐⇒ hd(si, b) > k for every i ∈ N ⇐⇒ for every separable partition si ∈ S
there is at least k + 1 outliers ⇐⇒ Π is a t-tolerant Radon partition. ��

Running Time Analysis. Step (2.1) calculates vb in O(nN) time, and it only
happens one time through the algorithm. Step (2.2) takes O(2nN) time. So, the
time complexity of above algorithm is O(2nnd).

4 Experimental Results

There have been some known lower bound for M(d, t) which are listed as follows.
Larman [21] proved for M(d, 1) ≥ 2d + 3 for d = 2, 3. Forge et al. [11] proved
M(4, 1) ≥ 11. Ramı́rez-Alfonśı [4] proved that, for any d ≥ 4,

M(d, 1) ≥
⌈

5d

3

⌉
+ 3. (2)

Garćıa-Coĺın and Larman [14] proved

M(d, t) ≥ 2d + t + 1. (3)

Soberón [28] proved a lower bound for N

N(d, k, t) ≥ k(t + �d/2� + 1). (4)

As we concern about lower bound of M , M(d, t) ≥ 2t+d for odd d, and M(d, t) ≥
2t + d + 1 for even d.

To improve a lower bound on M(d, t) for a pair of d and t, it is sufficient
to find a set of points in R

d which its size is larger than previous lower bound
on M(d, t) such that every partition of it into two sets is not t-tolerant. One
approach finding such a set of points is as follows. For a given number of points
n, we start with initial points set P computed randomly. We can use one of

Algorithms for Radon Partitions with Tolerance 485

Table 1. Lower bounds on M(d, t) using point configurations computed by algorithms
from Sect. 2 for tolerance t ≤ 10 and dimension d = 2, 3, 4. We omit bounds for d = 1
and t = 1 because the tight bounds are known [4,21,23].

t d = 2 d = 3 d = 4

2 10 11 13

3 12 14 16

4 14 16 18

5 17 18 21

6 19 20 23

7 21 - -

8 23 - -

9 25 - -

10 27 - -

the algorithms for problem ComputingTolerantPartition from the previous
section. There are two possible outcomes. If a t-tolerant Radon partition for P
does not exists, then M(d, t) ≥ n+1, which a lower bound for M . Otherwise, the
algorithm output a t-tolerant Radon partition for P , say Π = {P1, P2}. Since P
is t-tolerant Radon partition every classifier of Π has at least t + 1 outliers. We
compute all classifiers of Π, and choose a classifier c which has the minimum
number of misclassification. We want to decrease the number of misclassifications
of c by moving one of the points of P . Therefore, we compute the distance of
c and all outliers of c and pick one of the outliers p which has the minimum
distance to c. Finally, we move p to the other side of c randomly and continue
this process with the new set of points.

Table 1 shows the lower bounds we obtained by using of mentioned algorithms
in this paper. Using Algorithm 1, we have achieved new lower bounds for M(2, 5)
and M(2, 6); however, it is slow for larger t in the plane. The results in the Table
for d = 3 and d = 4 are computed by Algorithm 2. Algorithm 3 is more memory
efficient than Algorithm 2 and it is used larger number of points in the plane,
including M(2, 10) ≥ 27. In higher dimensions, Algorithm 2 performed better
than others since it has less dependency on the dimension of points than other
Algorithms.

We provide a website with the point sets corresponding to the lower bounds
in Table 1 at [1]. A point set providing a lower bound for M(d, t) must have
points in general position and there must be no t-tolerant Radon partition for
it. The following basic tests can be used for verification.

1. Test whether d + 1 points lie on the same hyperplane,
2. Given a point p and a hyperplane π such that p /∈ π, test whether p ∈ π+ or

p ∈ π−.

486 S. Bereg and M. Haghpanah

Both tests can be done using the determinant of the following matrix defined by
points p1, p2, . . . , pd+1 ∈ R

d

⎡

⎢⎢⎢⎢⎢⎣

p1,1 p2,1 p3,1 . . . pd+1,1

p1,2 p2,2 p3,2 . . . pd+1,2

...
...

...
. . .

...
p1,d p2,d p3,d . . . pd+1,d

1 1 1 . . . 1

⎤

⎥⎥⎥⎥⎥⎦
.

If the determinant is equal to 0, then the points lie on the same hyperplane.
Otherwise, let π be the hyperplane passing through the points p1, p2, . . . , pd.
Then the sign of the determinant corresponds to one of the cases pd+1 ∈ π+ or
pd+1 ∈ π−. The points in our sets have integer coordinates and the determinant
can be computed without rounding errors.

References

1. Point sets. http://www.utdallas.edu/∼besp/soft/NonTolerantRadon.zip
2. Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and Tverberg points.

ACM Trans. Algorithms 5(1), 5:1–5:20 (2008)
3. Aggarwal, C.C., Sathe, S.: Theoretical foundations and algorithms for outlier

ensembles. SIGKDD Explor. 17(1), 24–47 (2015)
4. Alfonśın, J.R.: Lawrence oriented matroids and a problem of mcmullen on projec-

tive equivalences of polytopes. Eur. J. Comb. 22(5), 723–731 (2001)
5. Aronov, B., Garijo, D., Rodŕıguez, Y.N., Rappaport, D., Seara, C., Urrutia, J.:

Minimizing the error of linear separators on linearly inseparable data. Discrete
Appl. Math. 160(10–11), 1441–1452 (2012)

6. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press,
New York (2004)

7. Chan, T.M.: Low-dimensional linear programming with violations. SIAM J. Com-
put. 34(4), 879–893 (2005)

8. Cole, R., Sharir, M., Yap, C.K.: On k-hulls and related problems. SIAM J. Comput.
16, 61–77 (1987)

9. Corrêa, R.C., Donne, D.D., Marenco, J.: On the combinatorics of the 2-class clas-
sification problem. Discrete Optim. 31, 40–55 (2019)

10. Everett, H., Robert, J., van Kreveld, M.J.: An optimal algorithm for the (≤ k)-
levels, with applications to separation and transversal problems. Int. J. Comput.
Geom. Appl. 6(3), 247–261 (1996)

11. Forge, D., Las Vergnas, M., Schuchert, P.: 10 points in dimension 4 not projectively
equivalent to the vertices of a convex polytope. Eur. J. Comb. 22(5), 705–708
(2001)

12. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Comput. Geom. 5(3), 165–185 (1995)

13. Garćıa-Coĺın, N.: Applying Tverberg type theorems to geometric problems. Ph.D.
thesis, University College of London (2007)

14. Garćıa-Coĺın, N., Larman, D.G.: Projective equivalences of k-neighbourly poly-
topes. Graphs Comb. 31(5), 1403–1422 (2015)

http://www.utdallas.edu/~besp/soft/NonTolerantRadon.zip

Algorithms for Radon Partitions with Tolerance 487

15. Garćıa-Coĺın, N., Raggi, M., Roldán-Pensado, E.: A note on the tolerant Tverberg
theorem. Discrete Comput. Geom. 58(3), 746–754 (2017)

16. Hamel, L.H.: Knowledge Discovery with Support Vector Machines. Wiley-
Interscience, New York (2009)

17. Harding, E.F.: The number of partitions of a set of n points in k dimensions induced
by hyperplanes. Proc. Edinb. Math. Soc. 15(4), 285–289 (1967)

18. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edn.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

19. Houle, M.F.: Algorithms for weak and wide separation of sets. Discrete Appl. Math.
45(2), 139–159 (1993)

20. Hwang, F.K., Rothblum, U.G.: On the number of separable partitions. J. Comb.
Optim. 21(4), 423–433 (2011)

21. Larman, D.G.: On sets projectively equivalent to the vertices of a convex polytope.
Bull. London Math. Soc. 4(1), 6–12 (1972)

22. Matouvsek, J.: On geometric optimization with few violated constraints. Discrete
Comput. Geom. 14(4), 365–384 (1995)

23. Mulzer, W., Stein, Y.: Algorithms for tolerant Tverberg partitions. Int. J. Comput.
Geom. Appl. 24(04), 261–273 (2014)

24. Mulzer, W., Werner, D.: Approximating Tverberg points in linear time for any
fixed dimension. Discrete Comput. Geom. 50(2), 520–535 (2013)

25. Niu, Z., Shi, S., Sun, J., He, X.: A survey of outlier detection methodologies and
their applications. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds.) AICI 2011,
Part I. LNCS (LNAI), vol. 7002, pp. 380–387. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23881-9 50

26. Radon, J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten.
Math. Ann. 83, 113–115 (1921)

27. Sathe, S., Aggarwal, C.C.: Subspace histograms for outlier detection in linear time.
Knowl. Inf. Syst. 56(3), 691–715 (2018)

28. Soberón, P.: Equal coefficients and tolerance in coloured Tverberg partitions. Com-
binatorica 35(2), 235–252 (2015)

29. Soberón, P.: Robust Tverberg and colourful Carathéodory results via random
choice. Comb. Probab. Comput. 27(3), 427–440 (2018)

30. Soberón, P., Strausz, R.: A generalisation of Tverberg’s theorem. Discrete Comput.
Geom. 47(3), 455–460 (2012)

31. Teng, S.-H.: Points, Spheres, and Separators: a unified geometric approach to graph
partitioning. Ph.D. thesis, School of Computer Science, Carnegie-Mellon University
(1990). Report CMU-CS-91-184

32. Tverberg, H.: A generalization of Radon’s theorem. J. London Math. Soc. 1(1),
123–128 (1966)

33. Yuan, G., Ho, C., Lin, C.: Recent advances of large-scale linear classification. Pro-
ceedings of the IEEE 100(9), 2584–2603 (2012)

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-642-23881-9_50
https://doi.org/10.1007/978-3-642-23881-9_50

	Algorithms for Radon Partitions with Tolerance
	1 Introduction
	2 Radon Partitions and Linear Classifiers
	3 Algorithms for Tolerant Radon Partitions
	4 Experimental Results
	References

