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Abstract. Conflict free q-Colouring of a graph G refers to the colour-
ing of a subset of vertices of G using q colours such that every vertex
has a neighbour of unique colour. In this paper, we study the Mini-
mum Conflict free q-Colouring problem. Given a graph G and a
fixed constant q, Minimum Conflict free q-Colouring is to find a
Conflict free q-Colouring of G that minimises the number of coloured
vertices. We study the Minimum Conflict free q-Colouring prob-
lem parameterized by the treewidth of G. We give an FPT algorithm for
this problem and also prove running time lower bounds under Exponen-
tial Time Hypothesis (ETH) and Strong Exponential Time Hypothesis
(SETH).

Keywords: Conflict free colouring of graphs · Parameterized
complexity · FPT algorithms · Treewidth · Exponential Time
Hypothesis · Strong Exponential Time Hypothesis

1 Introduction

Given a graph G(V,E) a q-colouring refers to a function c : V → [q], where
[q] = {1, 2, . . . , q}. A well studied colouring problem in graphs is the Proper
Colouring problem which is a colouring c with the added constraint that if
(u, v) ∈ E then c(u) �= c(v). Many other versions of graph colouring are also
studied. In this paper, we study the Conflict Free Colouring problem in
graphs.

Given a hypergraph G(V, E), a Conflict free q-colouring of G refers to a colour-
ing c : V → [q] such that every hyperedge E ∈ E has a vertex v with a distinct
colour c(v) i.e., no other vertex in E has the colour c(v) under c. Conflict free
colouring was initially studied for geometric hypergraphs motivated by the fre-
quency allocation problem in wireless networks [6]. Later, Pach and Tardos [10]
studied this problem for hypergraphs induced by graph neighbourhoods. In this
version, all vertices of the graph are coloured. Abel et al. [1] studied a closely
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related problem of colouring only a subset of vertices of G such that for every
vertex in V there exists a vertex with a distinct colour in its neighbourhood.
They studied algorithmic and combinatorial problems on Conflict free colouring
of planar and outerplanar graphs. [1] also studied the bicriteria problem of min-
imizing the number of coloured vertices in a Conflict free q-colouring of graphs.
We study this problem for general graphs.

We now state the problem that we study. Consider a graph G(V,E) and a
fixed constant q. Let N(v) denote the open neighbourhood of a vertex v i.e.,
the set of all vertices u in V such that (u, v) ∈ E and N [v] denote the closed
neighbourhood of v i.e., N [v] = N(v) ∪ {v}. A Closed Neighbourhood Conflict
Free q-Colouring is a colouring c of a subset V ′ of V such that for every vertex
v ∈ V , there exists a vertex u ∈ N [v] such that c(u) �= c(u′) for any vertex
u′ ∈ N [v] \ {u}. Similarly, a Open Neighbourhood Conflict Free q-Colouring is
a colouring c of a subset V ′ of V such that for every vertex v ∈ V , there exists
a vertex u ∈ N(v) such that c(u) �= c(u′) for any vertex u′ ∈ N(v) \ {u}. We
study the following minimisation problems.

Min-q-CNCF: Given a graph G(V,E) and a fixed constant q, find a Closed
Neighbourhood Conflict Free q-Colouring that minimises the number of coloured
vertices.

Min-q-ONCF: Given a graph G(V,E) and a fixed constant q, find a Open
Neighbourhood Conflict Free q-Colouring that minimises the number of coloured
vertices.

The above problems can be seen as variants of an important problem in graph
theory called the Minimum Dominating Set problem. Specifically, when q = 1,
Min-q-CNCF and Min-q-ONCF respectively are the Efficient Dominat-
ing Set problem and Perfect Dominating Set problem. Therefore Min-q-
CNCF and Min-q-ONCF are NP-hard [7,12].

We study the parameterized complexity of the minimum Conflict Free q-
colouring problem when parameterized by the treewidth τ of the graph and
prove upper and lower bounds.

1. We show that Min-q-CNCF and Min-q-ONCF are FPT when parameter-
ized by treewidth. This can also be proved using Courcelle’s theorem [3]. We
give a constructive proof by giving an algorithm with running time O(qO(τ))
for both problems.

2. For q = 1, we show that an algorithm with running time O(2o(|V |)) can-
not exist for Min-q-CNCFand Min-q-ONCF , under Exponential Time
Hypothesis. Since |V | is an upper bound for τ , this also rules out the pos-
sibility of algorithms with running time O(2o(τ)). For q = 2, we show that
an algorithm with running time O(2o(|V |)) cannot exist for Min-q-CNCF
and we show that an algorithm with running time O(2o(τ)) cannot exist for
Min-q-ONCF.

3. For q ≥ 3, we show that an algorithm with running time O((q−ε)o(τ)) cannot
exist for Min-q-CNCF and Min-q-ONCF , under Strong Exponential Time
Hypothesis.



Minimum Conflict Free Colouring Parameterized by Treewidth 441

2 Preliminaries

In this section, we give definitions and results that will be used in subsequent
sections.

Parameterized Complexity: Parameterized complexity was introduced as
a technique to design efficient algorithms for problems that are NP-hard. An
instance of a parameterized problem is a pair (Π, k) where Π is the input and k
is the parameter. A parameter is a positive integer that represents the value of
a fixed attribute of the input or output and is assumed to be much smaller than
the size of the input, n. A parameterized problem is said to be fixed parameter
tractable (FPT) if there exists an algorithm that solves it in f(k)nO(1) time,
where f is a computable function independent of n. Refer [4,5] for a detailed
description of Parameterized Complexity. We denote an FPT running time using
the notation O(f(k)) that hides the polynomial functions.

Exponential Time Hypothesis (ETH) [4]: For q ≥ 3, let δq be the infinimum
of the set of constants of c for which there exists an algorithm solving the n
variable q-SAT in time O(2cn). ETH states that δ3 > 0. Strong Exponential
Time Hypothesis (SETH) states that lim

q→∞ δq = 1. In other words, ETH

implies that 3-SAT cannot be solved faster than O(2o(n)) and SETH implies
q-SAT cannot be solved faster than O((q − ε)n).

Treewidth [4]: A tree decomposition is a pair T = (T, {Xt}t∈V (T )) where T is
a tree whose every node t is assigned to a vertex subset, Xt ⊆ V (G), called a
bag, such that the following conditions hold.

–
⋃

t∈V (T ) Xt = V (G). In other words, every vertex of G is at least in one bag.
– For every (u, v) ∈ E(G), there exists a node t of T such that bag Xt contains

both u and v.
– For every node u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt}, i.e. the set of

nodes whose corresponding bags contain u, induces a connected subtree of T .
The width of the tree decomposition T is the maximum size of the bag minus
1. The treewidth of the graph G, denoted by τ(G) is the minimum possible
width of a tree decomposition of G.

Nice Tree Decomposition: A rooted tree decomposition, (T, {Xt}t∈V (T )) is
nice if

– Xr = ∅ and Xl = ∅ where r is the root and l is a leaf of the tree.
– Every other node of T is one of the following
– Introduce node: A node t with exactly one child t′ such that Xt = Xt′ ∪{v}

where v /∈ Xt

– Forget node: A node t with exactly one child t′ such that Xt = Xt′\{w}
– Join node: A node t with two children t1, t2 such that Xt = Xt1 = Xt2 .
– Introduce edge node: A node t that introduces the edge (u, v) where u, v ∈

Xt and has only one child t′ such that Xt = Xt′ .
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In this variant of the tree decomposition, the total number of the nodes is
still O(τn). It is known that we can compute a nice tree decomposition (T,X )
of G with |V (T )| ∈ |V (G)|O(1) of width at most 5τ in time O(2O(τ)n), where τ
is the treewidth of G [4].

Positive 1-in-3 SAT Problem: Given a 3-CNF formula φ with all positive
literals, the Positive 1-in-3 SAT problem asks whether there exists a truth
assignment such that exactly one literal is true in all clauses.

For a given graph G, let χCF (G) represent the minimum value of q such
that there exists a Conflict free q-colouring of G. In a conflict free colouring c
of V ′ ⊆ V , if a vertex v has a neighbour u ∈ V ′ such that c(u) is unique in the
neighbourhood of v, then v is said to be conflict-free dominated by u.

3 FPT Algorithm for Min-q-CNCF

We present an FPT algorithm for the Min-q-CNCF problem parameterized
by treewidth. Our algorithm uses a popular FPT technique known as Dynamic
Programming over Treewidth. Assume a nice tree composition T of G is given.
For a node t in T , let Xt represent the set of vertices in the bag of t. With each
node t of the tree decomposition we associate a subgraph Gt of G defined as:
Gt = (Vt, Et = {e : e is introduced in the subtree rooted at t}). Here, Vt is the
union of all bags present in the subtree rooted at t.

For every node t, we define colouring functions α, β, f where α : Xt →
{c0, c1, ..., cq}, β : Xt → {c1, ..., cq} and f : Xt → {B,W,C,R}. Here, ci repre-
sents the ith colour for 1 ≤ i ≤ q and c0 denotes a no-colour assignment. α(u)
and β(u) denotes the colour of the vertex u and the colour it is dominated by
respectively. The function f denotes the ‘state’ of each vertex. We now give a
little more insight to what α, β and f represent. For any vertex u ∈ Xt we have
the following.

A Black vertex is denoted by f(u) = B. Intuitively, a black vertex is coloured
and dominated in Gt. A Cream vertex is denoted by f(u) = C. A cream vertex is
coloured but not dominated in Gt. A White vertex is denoted by f(u) = W and
is not coloured but is dominated in Gt. A Grey vertex is denoted by f(u) = R.
It is not coloured and not dominated in Gt. A tuple [t, α, β, f ] is valid if the
following conditions are true for every vertex u ∈ Xt.

– If f(u) = B then α(u) �= c0.
– If f(u) = C then α(u) �= c0 and α(u) �= β(u).
– If f(u) ∈ {W,R} then α(u) = 0.

A colouring c : Vt → {c0, c1, ..., cq} is said to extend [t, α, β, f ] if every vertex in
Vt \ Xt is conflict-free dominated and for every v ∈ Xt, the following is true:

1. c(v) = α(v).
2. if f(v) ∈ {B,W}, then v has exactly one neighbour u in Gt such that c(u) =

β(v).
3. if f(v) ∈ {C,R} then no neighbour of v in Gt is given the colour β(v) by c.
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We now define sub problems for every node t. Let dp[t, α, β, f ] denote the min-
imum number of coloured vertices in any colouring of Vt that extends [t, α, β, f ].
Every tuple, which is either invalid or cannot be extended to a conflict free
colouring, corresponds to dp[t, α, β, f ] = ∞.

We define fv→γ where γ ∈ {B,W,R,C}, as the function where fv→γ(x) =
f(x), if x �= v, and fv→γ(x) = γ, otherwise. Similarly, we define αv→γ , for
γ ∈ {c0, c1, . . . , cq} and βv→γ for γ ∈ {c1, c2, . . . , cq}. We now give recursive
formulae for dp[., ., ., .].

Leaf Node: In this case Xt = φ. So, dp[t, φ, φ, φ] = 0.

Introduce Vertex Node: Let t′ be the only child node of t. Then, ∃ v /∈ Xt′

such that Xt = Xt′ ∪ {v}.

dp[t, α, β, f ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dp[t′, α|Xt′ , β|Xt′ , f |Xt′ ] + 1 if f(v) = B ∧ α(v) = β(v).
dp[t′, α|Xt′ , β|Xt′ , f |Xt′ ] + 1 if f(v) = C ∧ α(v) �= β(v).
dp[t′, α|Xt′ , β|Xt′ , f |Xt′ ] if f(v) = R.

∞ otherwise.

The correctness of the recurrence formula follows from the fact that a vertex is
an isolated vertex when it is introduced and can be conflict-free dominated only
by itself.

Forget Vertex Node: Let t′ be the only child node of t. Then, ∃v /∈ Xt such
that Xt′ = Xt ∪ {v}. The vertex v cannot be dominated by a vertex introduced
above Xt. Hence [t, α, β, f ] cannot be extended by a colouring if f(v) ∈ {C,R}.
Hence we get the following:

dp[t, α, β, f ] = min
1≤i,j≤q

{
dp[t′, αv→ci , βv→cj , fv→B ].
dp[t′, αv→c0 , βv→ci , fv→W ].

Introduce Edge Node: Let t be an introduce edge node with child node t′.
Let (u∗, v∗) be the edge introduced at t. Consider distinct u, v ∈ {u∗, v∗}. We
decide the value of dp[t, α, β, f ] based on the following cases.

dp[t, α, β, f ] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dp[t′, α, β, fu→C,v→C ] ((f(u), f(v)) = (B, B) ∧ (α(u) = β(v)) ∧ (α(v) = β(u))).

dp[t′, α, β, fv→C ] (f(u) ∈ {B, C} ∧ f(v) = B ∧ α(u) = β(v) ∧ α(v) 
= β(u)).

dp[t′, α, β, fv→R] (f(u) ∈ {B, C} ∧ f(v) = W ∧ α(u) = β(v)).

∞ (f(u) ∈ {B, C} ∧ f(v) ∈ {C, R} ∧ α(u) = β(v)).

dp[t′, α, β, f ] otherwise.

Clearly, the edge (u, v) can only dominate v if u is coloured with β(v). If v is
conflict-free dominated by u and f(v) ∈ {W,B}, then v was not conflict-free
dominated in t′ under the same colouring functions α and β. Hence if f(v) is
black (or white), we set f(v) to cream (or grey) in the child node.

Join Node: Let t be a join node with 2 child nodes t1, t2 and Xt = Xt1 = Xt2 .
We call tuples [t1, α1, β1, f1] and [t2, α2, β2, f2] as [t, α, β, f ]-consistent if the
following conditions hold for all v ∈ Xt.
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– α(v) = α1(v) = α2(v).
– β(v) = β1(v) = β2(v).
– If f(v) = B then (f1(v), f2(v)) = (B,B) ∧ α(v) = β(v) or (f1(v), f2(v)) ∈

{(B,C), (C,B)} ∧ α(v) �= β(v)).
– If f(v) = C then f1(v) = f2(v) = C.
– If f(v) = R then f1(v) = f2(v) = R.
– If f(v) = W then (f1(v), f2(v)) ∈ {(W,G), (G,W )}.

All other colourings are not consistent. For example, assume f1(v) = f2(v) =
W and both dp[t1, α1, β1, f1] and dp[t2, α2, β2, f2] are finite. Then v is conflict
free dominated in Gt1 and Gt2 . By the property of nice tree decomposition, an
edge between two vertices in a join node is introduced above the join node. Hence
Xt induces an independent set in Gt. Therefore v is conflict free dominated by a
vertex outside Xt in both Gt1 and Gt2 . Now, in Gt, v has two neighbours with
colour β(v) and hence v cannot be conflict free dominated.

Now we give the recurrence formula for dp[].

dp[t, α, β, f ] = min (dp[t1, α1, β1, f1] + dp[t2, α2, β2, f2] − |f−1(B)| − |f−1(C)|)

where tuples [t1, α1, β1, f1] and [t2, α2, β2, f2] are [t, α, β, f ]-consistent.
Now dp[r, ∅, ∅, ∅] where r is the root of T gives the desired solution. Also, it

can be seen that all recurrences except those for join nodes, can be computed
in O((4q2)τ ) time. For a join node t, two tuples are consistent with [t, α, β, f ]
if (f, f1, f2) is in one of 7 forms. Thus, processing a join node can be done in
O((7q2)τ ) time. Hence, we get the following result.

Theorem 1. There exists an FPT algorithm with running time O(qO(τ)) for
Min-q-CNCF parameterized by the treewidth of the graph.

We also prove a similar result for Min-q-ONCF . The algorithm is very similar
to that given above and can be found in the full version of the paper.

Theorem 2. There exists an FPT algorithm with running time O(qO(τ)) for
Min-q-ONCF parameterized by the treewidth of the graph.

4 Lower Bounds

In this section, we give lower bounds that complement the results given in Sect. 3.

4.1 Lower Bounds for Min-q-CNCF

Theorem 3. Min-1-CNCF cannot be solved in O(2o(n)) time, unless ETH
fails.
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Fig. 1. Clause gadget
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Fig. 2. Combination of vertex and
clause gadgets

We prove the theorem by giving a linear reduction from the Positive 1-in-
3 SAT problem. It is known that Positive 1-in-3 SAT cannot be solved in
O(2o(n)) time, unless ETH fails [9,11]. Let φ be an instance of the Positive
1-in-3 SAT problem, with n variables and m clauses. We will construct a graph
G(V,E) corresponding to φ. For every variable u of φ, we add two nodes u1, u2

to V (G) and the edge (u1, u2) to E(G). For every clause c, we add a gadget as
shown in Fig. 1.

If a variable u belongs to a clause c, then in G, the vertex u2 is connected to
one of the vertices in {cu, cv, cw} in the clause gadget of c, through a connector
vertex pu,c as shown in Fig. 2. The vertex cb in each clause gadget is connected
to a global vertex g1. The global vertex also has two neighbours of degree 1, g2
and g3. Clearly G has 2n + 8m + 3 vertices.

Lemma 1. φ is satisfiable if and only if G can be conflict-free coloured using
one colour.

Proof. Assume that φ has a satisfying assignment. We now give a valid conflict
free 1-colouring of G. Colour the global vertex g. If a variable u is true in the
satisfying assignment, then we colour the vertex u1 of the corresponding vari-
able gadget, otherwise we colour the vertex u2. Observe that if the vertex u1

is coloured, then u2 is conflict-free dominated by u1 and hence, u2 cannot be
coloured. For the same reason, a connector vertex pu,c that connects u2 to the
clause gadget of clause c cannot be coloured. Therefore, in order to conflict-free
dominate the vertex pu,c, the vertex cu of the clause gadget should be coloured.
By similar arguments, if the vertex u1 in variable gadget is uncoloured then the
corresponding vertex cu in clause gadget should also be uncoloured.

Let c be an arbitrary clause in φ and let u, v, w be the variables in c. In a
satisfying assignment, exactly one among u, v, w is true. Without loss of gener-
ality, let u be the variable that is true. Then cu is coloured and is conflict free
dominated by itself. cv, cw and ca are uncoloured but conflict free coloured by
cu. This means that for every clause c in φ the vertex cb of the corresponding
clause gadget in G is uncoloured and is conflict-free dominated by g. This gives
us a valid 1-conflict free colouring of graph G.

Similarly we can prove that if G has a valid 1-conflict free colouring then φ
has a satisfying assignment. 
�
Now we will consider the case q = 2. Assume the colours used are red and blue.
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Theorem 4. Min-2-CNCF cannot be solved in O(2o(n)) time, unless ETH
fails.

We use the following lemma from [1].

Lemma 2. [Lemma 3.2, [1]] Let G be any graph, u, v ∈ V (G) and e = (v, u) ∈
E(G). If N(v) contains two disjoint and independent copies of a graph H = Gq

with χCF (H) = q, not adjacent to any other vertex w ∈ G, every q-conflict-free
colouring of G colours v. If the same holds for u and in addition, NG(u)∩NG(v)
contains two disjoint and independent copies of a graph J = Gq−1 with χCF (J) =
q − 1, not adjacent to any other vertex w ∈ G, every q-conflict-free colouring of
G colours u and v with different colours.

We’re looking at the special case, where q = 2. As given in Lemma 2, G1 is
a single vertex. G2 is K1,3 with one edge subdivided by another vertex.

We define a vertex v′ ∈ V (G) as a special vertex if N(v′) contains two disjoint
and independent copies of G2. We also define an edge gadget between 2 special
vertices u′ and v′ as a special edge between u′ and v′ if (u′, v′) ∈ E(G) and
NG(u) ∩ NG(v) contains two disjoint and independent copies of G1. We note
that by Lemma 2, a special vertex in a graph needs to be coloured red or blue
and if there exists a special edge between two special vertices u′ and v′, then u′

and v′ needs to be coloured with opposite colours.

a′
1

a′
2

a′
4

a′
3

a′
5

a′
6

u′

b′
1

b′
2 b′

4

b′
3

b′
5

b′
6

v′
t

v′
f

a′
1

a′
2

a′
4

a′
3

a′
5

a′
6

u′

b′
1

b′
2 b′

4

b′
3

b′
5

b′
6

v1t

v1f

R’

(a) Vertex Gadget (b) Clause Gadget

v3t

v3f

v2t

v2f

(c) Vertex Gadget vi connected to Clause Gadget Cj connected to the palette vertex R′

: Edge Gadget

: Special Vertex

Fig. 3. All the gadgets used in this proof
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We give a linear reduction from the 3-Sat problem to Min-2-CNCF . Let
φ be an instance of the 3-Sat problem with n variables and m clauses. We
construct an instance of Min-2-CNCF , G(V,E), corresponding to φ. For every
variable v in φ, we add a vertex gadget to G which consists of two special vertices
v′

t and v′
f connected by a special edge. We define a sub-clause gadget which

consists of 6 special vertices denoted as a′
1, a

′
2, a

′
3, a

′
4, a

′
5, a

′
6 where a′

i, i ∈ [5] form
C5 - {a′

1, a
′
3, a

′
5, a

′
4, a

′
2, a

′
1}. The vertex a′

6 is adjacent to a′
5. For every clause c

in φ, we add a clause gadget to G. A clause gadget is constructed by taking 2
sub-clause gadgets {a′

1, . . . , a
′
6} and {b′

1, . . . , b
′
6} and connecting them through

a vertex u′ by adding special edges between a′
6 and u′, and b′

1 and u′. Let the
variables in the clause ci be denoted as vi

k, k ∈ [3]. Then the variable gadgets
corresponding to the the variables vi

1, v
i
2, v

i
3 in G are respectively connected to

the vertices a′
1, a

′
2, b

′
2 of the clause gadget corresponding to ci, through special

edges. If the variable v appears in ci as a positive literal, then vf is connected to
the clause gadget, otherwise vt is connected. Finally, there exists a palette vertex
R such that there is a special edge between R and b6 for all clause gadgets. (Refer
Fig. 3). Since every vertex gadget and clause gadget has a constant number of
vertices, V has O(n + m) vertices. Specifically, V contains k = 2n + 13m + 1
special vertices.

Lemma 3. Let vertices a′
1 and a′

2 have exactly 1 neighbour outside the sub-
clause gadget which is coloured the opposite to it and conflict-free dominates
itself. Then, given that we colour only special vertices, if a′

1 and a′
2 are both

coloured red, a′
6 will be coloured red. If a′

1 or a′
2 is coloured blue, then there

exists a colouring where a′
6 will be coloured blue.

Proof. We first prove that colouring a′
1 and a′

2 red forces a′
6 to be coloured red.

By construction of the sub-clause gadget, a′
1 and a′

2 are adjacent to each other.
It’s given that both a′

1 and a′
2 have one blue neighbour outside the gadget. The

colour red appears twice in the closed neighbourhood of a′
1. Thus, the only colour

which can dominate a′
1 is blue. If a′

3 is coloured blue, a′
1 would not be conflict

free dominated. Thus, a′
3 is coloured red. By a similar argument involving a′

2,
we can show that a′

4 has to be coloured red. In this way, let a′
5 be coloured

blue. By contradiction, if a′
5 is coloured red, then a′

3 does not have a conflict
free neighbour as all its neighbours are red. Thus, a′

6 gets coloured red. If it
gets coloured blue, then a′

5 will have 2 red and 2 blue neighbours in its closed
neighbourhood and cannot get dominated. Thus, a′

6 is coloured red. If both a′
1

and a′
2 are coloured blue, then we can prove, in a similar case to the one done

above, that a′
6 will be coloured blue.

To prove the second part, let’s assume without loss of generality, that a′
1 is

coloured red and a′
2 is coloured blue. Since a′

1 is connected to a blue neighbour
outside the sub-clause gadget, a′

3 is forced to be coloured blue. Likewise, a′
4 is

coloured red. To ensure that a′
6 gets a blue colour, we need a′

5 to be coloured
blue. It can be seen that this is a valid colouring. 
�

Lemma 4. Any instance φ of 3-Sat is satisfiable if and only if G can be conflict
free 2-coloured with at most k coloured vertices.
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Proof. Assume there exists a 2-conflict free colouring of G which colours at most
k vertices. We will show that φ has a satisfying assignment. By Lemma 2, in
any conflict free 2-colouring of G every special vertex is coloured. Since we have
coloured at most k vertices, only the special vertices are coloured. The palette
vertex, R, is coloured since it is a special vertex. Without loss of generality,
let it be coloured red. Since b′

6 vertices of all the clause gadgets have special
edges to R, they are coloured blue. By Lemma 3, we know that at least one of
a′
1, a

′
2, b

′
2 is coloured blue. Let that one vertex be u. Now, u is connected to a

corresponding variable gadget. If it is connected to v′
t, then assign that variable

v in φ false, otherwise assign true. It is easy to see that this is a satisfying
assignment. Similarly, we can see that if there exists a satisfying assignment of
φ, there exists a conflict free 2-colouring of G. 
�

Now the theorem follows from ETH. 
�
Now we consider q ≥ 3.

Lemma 5. For q ≥ 3, an algorithm with running time O((q − ε)o(τ)) cannot
exist for Min-q-CNCF , under Strong Exponential Time Hypothesis.

We reduce Proper q-colouring to Min-q-CNCF. We know from [8] that
Proper q-colouring under SETH, cannot be solved faster than O((q−ε)τ(G)).
As shown in Lemma 3.4 from [1], from any graph G, we can construct G′ which
can be Conflict free q-coloured if and only if G can be proper q-coloured. From
Claim 2, Lemma 7 from [2], we know that the treewidth of G′ is max{τ(G), q}.
where τ(G) is the treewidth of the graph G. Hence, Min-q-CNCF colouring
cannot be solved faster than O((q − ε)max{τ(G),q}) and the lemma follows. 
�

4.2 Lower Bounds for Min-q-ONCF

Theorem 5. Min-1-ONCF cannot be solved in O(2o(n)) time, unless ETH
fails.

Proof. We give a reduction from Positive 1-in-3 SAT. Let φ′ be an instance
of Positive 1-in-3 SAT with n variables and m clauses. We will construct a
graph G′(V,E) corresponding to φ′. For each variable and clause we construct
a variable gadget and a clause gadget respectively. The variable gadget for an
arbitrary variable u is a path of length 3. The clause gadget is shown in Fig. 4.
There is a global gadget which consists of a path of length 4, g1 − g2 − g3 − g4
with a pendant vertex connected at vertex g3. If a variable u belongs to a clause
c, then vertex u3 is connected to vertex cu,1 in G′. Vertex g4 is connected to
vertex cy of all clause gadgets. Clearly, G′ has 8m + 3n + 5 vertices.

Lemma 6. φ′ is satisfiable if and only if G′ can be conflict free 1-coloured.

Proof. We will show that if G′ has a valid 1-conflict free colouring then φ′ has
a satisfying truth assignment. We can show the other direction by similar argu-
ments. Observe that the vertices g2, g3 should always be coloured and g1, g5, g4
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cu,1

cv,2cv,1

cw,1 cw,2

cu,2

cx cy

(a) Clause gadget for
clause c

u1 u2 u3

(b) variable gadget for
variable u

Fig. 4. Clause and variable gadgets

cu,1

cv,2cv,1

cw,1 cw,2

cu,2

cx cy

u1 u2 u3

v1 v2 v3

w1 w2 w3

g5

g4

g3

g2 g1

Other Clauses

c′w,1

Fig. 5. Combined gadget

should always be uncoloured as it is the only way to conflict free colour the ver-
tices g1, g2, g3, g4 and g5. Since g4 is uncoloured and is dominated by g3, all its
neighbours except g3 should also be uncoloured and dominated in a valid colour-
ing. Hence, for every clause c, the vertex cy in G′ should be uncoloured and cx

should be coloured. To conflict free dominate cx, exactly one among the vertices
cu,2, cv,2, cw,2 should be coloured. Without loss of generality, assume that the
vertex cu,2 is coloured. Since cu,2 is coloured, the vertex u1 should be coloured
and the vertices v1, w1 should be uncoloured. Then, assign true to variable u and
false for variables v and w. It can be seen that this gives a satisfying assignment
for φ′ (Fig. 5). 
�

Theorem 6. Min-2-ONCF cannot be solved in O(2o(τ)), assuming ETH is
true.

Proof. [2] gives a result that a variant of Min-2-ONCF where every vertex
needs to be coloured cannot be solved in time O(2o(τ)) under ETH. For prov-
ing this result, they give a reduction from the 3-Sat problem that reduces an
instance of the 3-Sat problem, φ, to an instance of the Min-2-ONCF problem,
G, with treewidth a linear function of |φ|. We use the same reduction and mod-
ify G by connecting a vertex of degree 1 to every vertex in G. Note that the
treewidth of the modified instance, G′, is still a linear function of |φ|. Now, we
will show that φ has a satisfying assignment if and only if G′ has a valid conflict
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free 2-colouring that colours at most |V (G)| vertices. This follows from the result
in [2] and the fact that a vertex of degree one can only be conflict free dominated
by its neighbour when open neighbourhood is considered.

Lemma 7. Min-q-ONCF cannot be solved in time O((q − ε)τ(G)) under
SETH.

Proof. We give a reduction from the Proper q-colouring problem to the
Min-q-ONCF problem. We know from [8] that Proper q-colouring under
SETH, cannot be solved faster than O((q − ε)τ(G)). We consider the graph G′

in lemma 5 in [2] and construct graph G′′ by adding a vertex with degree 1 to
all the vertices in G′. Now the proof follows as before.
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