
On the Parameterized Complexity
of Spanning Trees with Small

Vertex Covers

Chamanvir Kaur and Neeldhara Misra(B)

Indian Institute of Technology, Gandhinagar, Gujarat, India
{chamanvir.kaur,neeldhara.m}@iitgn.ac.in

Abstract. We consider the minimum power spanning tree (MPST)
problem with general and unit demands from a parameterized perspec-
tive. The case of unit demands is equivalent to the problem of finding
a spanning tree with the smallest possible vertex cover (MCST). We
show that MPST is W[1]-hard when parameterized by the vertex cover
of the input graph, and is W[2]-hard when parameterized by the solu-
tion size—the latter holds even in the case of unit demands. For the
special case of unit demands, however, we demonstrate an FPT algo-
rithm when parameterized by treewidth. In the context of kernelization,
we show that even MCST is unlikely to admit a polynomial kernel under
standard complexity-theoretic assumptions when parameterized by the
vertex cover of the input graph.
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1 Introduction

A spanning tree is a minimally connected subgraph of a graph that spans all
of its vertices. The problem of finding spanning trees of minimum weight is a
fundamental algorithmic question and has received much attention. Variations
of this question have also attracted a lot of interest, wherein one is interested
in spanning trees with special structural properties, such as having bounded
diameter [10], many leaves [4], or minimum poise (the sum of the diameter and
the maximum degree [11]).

Our focus, in this work, is on the problem of finding spanning trees with
small vertex covers. This is a special case of a more general problem which we
also address, namely the minimum power spanning tree problem (MPST). Here,
we are given an edge-weighted graph G = (V,E), where the weights can be
thought of as “demands”, and the objective is to find a spanning tree and to
assign “power” values to vertices such that all the edges of the spanning tree are
covered. An edge is covered if the assigned power in one of its extremities is at
least its demand. The goal is to minimize the sum of powers over all vertices.
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Observe that if all edges have unit demands, then this question is equivalent to
finding a spanning tree with the smallest possible vertex cover. As an example,
consider the complete graph, which has two spanning trees that are extreme
from this perspective: the first is a star, which has a vertex cover of size one and
the other is a Hamiltonian path, where we need roughly half the vertices of the
graph to cover all the edges involved.

The minimum power variation of various optimization problems—notably,
vertex cover (power vertex cover), Steiner trees (minimum power Steiner trees),
and cut problems—are widely studied for their suitability in application scenar-
ios. As a consequence of being more general, these problems usually model more
sophisticated scenarios. Several applications arise in the context of connectiv-
ity questions in the domain of wireless networks and placements of sensors and
cameras on road and home networks.

Our Contributions. In this contribution, we explore the parameterized complex-
ity of the MPST problem and special cases. Our main result is that MPST is
W[1]-hard when parameterized by the vertex cover of the input graph (Theo-
rem 2), even when the weights are polynomially bounded in the size of the input.
In fact, assuming ETH (Exponential Time Hypothesis), this also implies that
there is no algorithm with a running time of no(�), where � denotes the size of
the vertex cover.

Motivated by this intractibility, we turn to the special case with unit
demands, which we refer to as the Minimum Cover Spanning Tree problem
(MCST). We show that MCST is W[2]-hard when parameterized by the solu-
tion size (Theorem 1). On the other hand, we show an FPT algorithm when
parameterized by the treewidth of the input graph (Theorem 3). In the context
of kernelization, we show that even MCST is unlikely to admit a polynomial
kernel under standard complexity-theoretic assumptions when parameterized by
the vertex cover of the input graph (Corollary 3).

Related Work. The MPST problem, in the form that we propose and study it
here, was considered by Angel et al. [2], who establish the hardness of approxi-
mation for this problem by a reduction from Dominating Set. In fact, our FPT
reduction showing that MCST is W[2]-hard is in similar spirit. For a treatment of
MCST from the perspective of approximation algorithms and on special classes
of graphs, see [8].

Our result showing the hardness of MPST when parameterized by the vertex
cover uses some ideas from the reduction employed by Angel et al. [3] to demon-
strate that the Power Vertex Cover problem is also similarly intractable when
parameterized by treewidth. The Power Vertex Cover problem is the natural
“power”-based analog of the traditional vertex cover problem, where we seek an
assignment of power values to the vertices, minimizing the total power assigned,
so that the demand of every edge is met.

Closely related to MPST and MCST is the minimum power analog of the
Steiner Tree problem, which has also been studied quite extensively (see, for
instance, [1,9]). However, we remark that in these treatments, the demand of an
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edge is met only if both of its endpoints receive a power value that is at least as
much as its demand. For recent developments in approximation algorithms for
power covering problems, see [5].

2 Preliminaries

We use [n] to denote the set {1, 2, . . . ,n}. We follow standard notation and
terminology from parameterized complexity [6] and graph theory [7]. We recall
some of the definitions that will be relevant to our discussions.

The neighborhood of a vertex is denoted N(v) and consists of all vertices u

adjacent to v. The closed neighborhood of a vertex is denoted N[v] and is defined
as N(v) ∪ {v}. A tree is a connected and acyclic graph. Given a graph G, a
spanning tree T is a subgraph of G such that V(T) = V(G) and T is a tree. For
any two vertices u and v, we let d(u, v) denote the length of the shortest path
between the vertices. For S ⊆ V, G[S] denotes the graph induced by S in G. The
vertex set of G[S] is S, and the edge set is {(u, v) | u ∈ S, v ∈ S and (u, v) ∈ E}.
We say that a vertex v is global to a set S of vertices if v is adjacent to every
vertex in S. We now turn to the description of some of the problems that will
be considered in this contribution.

The Minimum Power Spanning Tree (MPST) problem is the following.

Minimum Power Spanning Tree (MPST)

Input: A graph G, a demand function w : E → R
+, and k ∈ Z

+.
Question: Does G admit a spanning tree T and an assignment of power
values ρ : V(G) → R

+ such that
∑

v∈V(G) ρ(v) � k and for every edge
e ∈ E(T) with endpoints u and v, max(ρ(u), ρ(v)) � w(e)?

We now consider this problem in the context of unit demands. Noting that
this is equivalent to finding a spanning tree with the smallest vertex cover, we
refer to this as Minimum Cover Spanning Tree (MCST) problem.

Minimum Cover Spanning Tree (MCST)

Input: A graph G and a positive integer k.
Question: Does G admit a spanning tree T with a vertex cover of size
at most k?

The problems RBDS and MCIS (defined below) are known to be W[2]-hard
and W[1]-hard, respectively, when parameterized by the solution size [6].

Red-Blue Dominating Set (RBDS)

Input: A bipartite graph G = (R ∪ B,E) and a positive integer k.
Question: Does there exist a subset S ⊆ R of size at most k such that
for every v ∈ B, |N(v) ∩ S| � 1?
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Multi-Colored Independent Set (MCIS)

Input: A G = (V,E) and a partition of V = (V1, . . . ,Vk) into k parts.
Question: Does there exist a subset S ⊆ V such that S is independent
in G and for every i ∈ [k], |Vi ∩ S| = 1?

We now turn to the notion of the treewidth of a graph.

Definition 1. Let G be a graph. A tree-decomposition of G is a pair T =
(T , (Bt)t∈V(T)), where T is a rooted tree, and for all t ∈ V(T), Bt ⊆ V(G)
such that

� ∪t∈V(T)Bt = V(G),
� for every edge xy ∈ E(G) there is a t ∈ V(T) such that {x,y} ⊆ Bt, and
� for every vertex v ∈ V(G) the subgraph of T induced by the set {t | v ∈ Bt}

is connected.

The width of a tree decomposition is maxt∈V(T) |Bt| − 1 and the treewidth
of G is the minimum width over all tree decompositions of G and is denoted by
tw(G).

For completeness, we also define here the notion of a nice tree decomposition
with introduce edge nodes, as this is what we will work with in due course. We
note that a given tree decomposition can be modified in linear time to fulfill the
above constraints; moreover, the number of nodes in such a tree decomposition
of width w is O(w · n) [12].

Definition 2. A tree decomposition T = (T , (Bα)α∈V(T)) is a nice tree decom-
position with introduce edge nodes if the following conditions hold.

1. The tree T is rooted and binary.
2. For all edges in E(G) there is exactly one introduce edge node in T , where

an introduce edge node is a node α in the tree decomposition T of G labeled
with an edge {u, v} ∈ E(G) with u, v ∈ Bα that has exactly one child node α ′;
furthermore Bα = Bα′ .

3. Each node α ∈ V(T) is of one of the following types:
� introduce edge node: as described above;
� leaf node: α is a leaf of T and Bα = ∅;
� introduce vertex node: α is an inner node of T with exactly one child
node β ∈ V(T); furthermore Bβ ⊆ Bα and |Bα\Bβ| = 1;
� forget node: α is an inner node of T with exactly one child node β ∈
V(T); furthermore Bα ⊆ Bβ and |Bβ\Bα| = 1;
� join node: α is an inner node of T with exactly two child nodes β,γ ∈
V(T); furthermore Bα = Bβ = Bγ.
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3 The Standard Parameter

In this section, we show that MCST is W[2]-hard with respect to the standard
parameter (i.e, the solution size). In particular, we describe an FPT reduction
from RBDS to MCST.

Theorem 1. MCST is W[2]-hard when parameterized by the solution size.

Proof. Let (G,k) be an instance of RBDS where G = (R ∪ B,E). Without loss
of generality, we assume that every vertex in B has at least one neighbor in R,
because if this is not the case, we may return a trivial No instance. We now
describe the transformed instance of MCST, which we denote by (H,k′). The
graph H is obtained from G by adding a global vertex to R, which in turn has
(k + 2) new neighbors of degree one, which we refer to as guards. In particular,
we have:

V(H) = V(G) ∪ {g,g1, . . . ,gk+2},
and:

E(H) = E(G) ∪ {(g,g1), (g,g2), . . . , (g,gk+2)} ∪ {(g, v) | v ∈ R}.

We let k′ = k + 1. This completes the description of the reduction, and we
now turn to a proof of the equivalence of the instances.

The Forward Direction. Let S ⊆ R be a dominating set. For a vertex v ∈ B, let
pv ∈ R denote a vertex from S such that pv ∈ N(v). In the event that there
are multiple vertices in S that are adjacent to v, the choice of pv is arbitrary.
Consider the spanning tree T given by the following edges:

E(T) = {(g,g1), (g,g2), . . . , (g,gk+2)} ∪ {(g, v) | v ∈ R} ∪ {(v,pv) | v ∈ B}.

It is easy to verify that {g} ∪ S is a vertex cover of size (k + 1) for the edges
of T . Indeed, it is evident that any edge in T that is not incident to g is incident
to a vertex from S and this concludes the argument in the forward direction.

The Reverse Direction. Let T be a spanning tree of H with a vertex cover S of
size (k + 1). Observe that the edge (g,gi) belongs to T for any 1 � i � k + 2:
if not, the vertex gi would be isolated in T . Therefore, we also conclude that
g ∈ S, since it would otherwise be too expensive for S to account for covering
the edges incident to all the guards.

Let S′ := S ∩ (R ∪ B). By the argument above, we have that |S′| � k. For any
v ∈ B ∩ S′, let pv denote an arbitrarily chosen neighbor of v in R. Now consider
the set given by:

S� := (S ∩ R) ∪ {pv | v ∈ S ∩ B}.
It is easy to see that |S�| � k and that S� ⊆ R dominates all vertices in B.

Indeed, consider any v ∈ B. If v ∈ S ∩ B, then pv ∈ S� dominates v. If not, then
observe that for some vertex u ∈ N(v), the edge (u, v) must belong to T (if not,
v is isolated in T , a contradiction). By the case we are in, v /∈ S, so to cover the
edge (u, v), we must have that u ∈ S. Further, since G is bipartite, u ∈ R, thus
u ∈ (S ∩ R). This implies, by construction, that u ∈ S�, and u dominates v, as
required. This concludes the proof. �	
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4 Vertex Cover and Treewidth

We begin by establishing that MPST is W[1]-hard when parameterized even by
the vertex cover of the input graph (and therefore also its treewidth). Thereafter,
we show a FPT algorithm for the special case of unit demands, i.e, the MCST

problem, when parameterized by treewidth. We remark that the ideas in the
reduction demonstrating the hardness parameterized by vertex cover are inspired
by the construction used for showing the hardness of the power vertex cover
problem when parameterized by treewidth [3].

Theorem 2. MPST is W[1]-hard when parameterized by the vertex cover of the
input graph.

Proof. We reduce from MCIS. Let (G,k) be an instance of MCIS where G =
(V,E) and further, let V = (V1, . . . ,Vk) denote the partition of the vertex set V.
We assume, without loss of generality, that |Vi| = n for all i ∈ [k]. Specifically,
we denote the vertices of Vi by {vi

1, . . . , v
i
n}. We are now ready to describe the

transformed instance of MCST, which we denote by (H,w,k′). The construction
is a combination of choice gadgets and checker gadgets.

Choice Gadgets. For each 1 � i � k, introduce two vertices xi and yi, and
further, introduce n vertices zi

1, . . . , z
i
n. We add the edges (xi, zi

j) and (yi, zi
j)

for all j ∈ [n]. The weight function is defined as follows, for all 1 � j � n.

w(u, zi
j) =

{
j if u = xi,
n − j + 1 if u = yi.

In other words, for all 1 � i � k and 1 � j � n, the vertex zi
j is adjacent to

xi with an edge of weight j and to yi with an edge of weight (n− j+1). We refer
to xi and yi as anchors and their neighbors in the choice gadget as guards.

Checker Gadgets. For each edge e = (va
p, vb

q) ∈ E(G), we introduce a vertex ce,
which is adjacent to the vertices xa,ya, xb,yb in the choice gadgets. The edge
weights are given by:

w(ce,u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p + 1 if u = xa,
n − p + 1 if u = ya,
q + 1 if u = xb,
n − q + 1 if u = yb.

Our transformed instance comprises of all the k choice gadgets and m checker
gadgets. Further, we add a vertex g universal to all the anchor vertices and intro-
duce b vertices {g1, . . . ,gb} that are adjacent only to g, where b = nk + 2. All
edges incident to g have a weight of one. This completes the description of the
graph H. We refer the reader to Fig. 1 for a schematic depiction of the graph H.
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The target total power, k′, is set to nk+ 1. Observe that the anchor vertices
along with the vertex g form a vertex cover of size (2k + 1) for H—indeed, all
edges not incident to the universal vertices are either edges between anchors and
guards, or between anchors and the vertices in the checker gadgets representing
the edges of G. We now turn to a proof of equivalence.

Fig. 1. An overview of the reduction used in the proof of Theorem 2. The anchor
vertices are placed in the blue box, and along with the vertex g, form a vertex cover
of size 2k + 1. The red vertices are the guards while the green vertex is an example of
a vertex from a checker gadget. (Color figure online)

Forward Direction. Let S ⊆ V be a multicolored independent set of G. Further,
let τ : [k] → [n] denote the choice of S from the parts of V. Specifically:

S ∩ Vi := {vi
τ(i)}.

We now describe our spanning tree T and a power assignment ρ of total cost
at most k′ = nk + 1. First, we choose all edges incident on g. Next, from the
choice gadget containing vertices xi and yi, we pick the following edges:

{(xi, zi
1), . . . , (xi, zi

t), (yi, zi
t+1), . . . , (yi, zi

n)},

where t := τ(i). Before describing how we will connect ce to the structure devel-
oped so far, it will be useful to describe the power value assignment ρ. We have
the following, where i ∈ [k]:

ρ(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if u = g,
τ(i) if u = xi,
n − τ(i) if u = yi,
0 for all other vertices.
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We now consider again the checker gadgets. Let e = (va
p, vb

q) ∈ E(G). Con-
sider the case when va

p ∈ S (the other scenarios are symmetric). Then vb
q /∈ S.

Consider ρ(xb). We know that ρ(xb) 
= q. If ρ(xb) < q, then:

ρ(yb) = n − ρ(xb) > n − q � n − q + 1 = w(ce,yb),

and we choose the edge (ce,yb) in our spanning tree, noting that its demand is
met by ρ. On the other hand, if ρ(xb) > q, then:

ρ(xb) > q � q + 1 = w(ce, xb),

and we choose the edge (ce,yb) in our spanning tree in this case. It is easy to
verify that T is indeed a spanning tree and that ρ accounts for the demands of all
the edges in T . Further, observe that the total power assigned by ρ is (nk + 1),
as required, and this completes the argument in the forward direction.

Reverse Direction. Let T be a spanning tree and let ρ be a assignment of power
values with total power value at most (nk + 1). Notice that by an argument
similar to the one used in the proof of Theorem 1, we have that:

∑

v∈V(H)\{g,g1,...,gb}

ρ(v) � nk. (1)

This is to say that any valid assignment of power values must assign a power
value of one or more to the vertex g. Therefore, we are left with nk “units of
power” to distribute amongst the k choice gadgets and the m checker gadgets.
Our next claim is that if Ci ⊆ V(H) denotes the set of vertices used in the ith

choice gadget, then: ∑

v∈Ci

ρ(v) � n. (2)

Indeed, suppose not. Fix i ∈ [k] and suppose ρ(xi) = p and ρ(yi) = q. If
p + q � n, then there is nothing to prove, therefore, assume that p + q < n.
This implies that for vertices zi

j, where p < j < n − q + 1, ρ(zi
j) � 1, since the

assignment to the vertices xi and yi will not be enough to meet the demands of
either of the edges incident to zi

j. This implies that the total power assigned by
ρ in this gadget is:

p + q + ((n − q + 1) − p) − 1 = n,

and the claim follows. The inequalities (1) and (2) imply that every choice gadget
is assigned a total power of n according to ρ, which also gives us that ρ(ce) = 0
for all e ∈ E.

Now, we choose our independent set as follows. Let τ(i) denote ρ(xi). Then
from Vi we choose the vertex vi

τ(i). We claim that these chosen vertices must be
independent in G. Indeed, suppose not, and in particular, suppose the vertices
chosen from parts a,b ∈ [k] are adjacent in G. Let the chosen vertices be va

p and
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vb
q. Note that the power assignments made by ρ on the relevant choice gadget

can be inferred to be:

ρ(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p if u = xa,
q if u = xb,
p′ if u = ya,
q′ if u = yb.

Here, we know that p′ � n − p and q′ � n − q. Now consider the vertex ce.
The spanning tree T must include one of the following edges, since these are the
only edges incident to ce:

{(ce, xa), (ce,ya), (ce, xb), (ce,yb)}.

However, recalling the weights of these edges from the construction, the fact
that ρ(ce) = 0, and given what we have inferred about the power values on
the vertices xa,ya, xb and yb, it is clear that ρ does not meet the demand of
any of these possible edges that is used by T to span the vertex ce. This is a
contradiction, implying that the chosen vertices indeed form an independent set.
This argument concludes the proof. �	

Observing that the vertex cover of the reduced graph in the proof of Theorem 2
was bounded linearly in k, and based on the fact that there is no no(k) algorithm
for MCIS unless the ETH is false, we obtain the following consequence.

Corollary 1. If there exists an algorithm which, given an instance (G =
(V,E),w) of MPST where G has a vertex cover of size �, computes an opti-
mal solution in time |V |o(�), then the ETH is false. This holds even if all weights
are polynomially bounded.

Our next result shows that when we restrict our attention to unit demands,
then the problem of finding a minimum power spanning tree (equivalently,
MCST) becomes tractable. Our approach is quite similar to the one used to
show that Steiner Tree is FPT parameterized by treewidth, with two main
differences: in the Steiner Tree problem, we need to explicitly track the subset
of vertices that are “touched” by the solution, which we do not need to do since
every vertex is effectively a terminal for the spanning tree problem. On the other
hand, for the Steiner Tree problem, the cost of a solution is linked to its size in
a rather straightforward manner, while for MCST, the structure of the edges
involved in the spanning tree (or, for partial solutions, the spanning forests)
is rather relevant. Therefore, we explicitly store not only the partition induced
on a bag by a spanning forest, but also guess the specific edges from the bag
that participate in the forest. This helps us keep track of the vertex cover as we
go along, but it does affect the running time since our dynamic programming
(DP) tables have 2O(w

2) rows in contrast with the 2O(w logw) that turn out to be
enough for Steiner Tree.

Theorem 3. MCST admits an algorithm with running time 2O(w
2) where w

denotes the treewidth of the input graph.
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Proof. (Sketch.) Let (G,k) be an instance of MCST with G = (V,E), where
n := |V | and m := |E|. Let T = (T , {Bt}t∈V(T)) be a nice tree decomposition of G

(with introduce edge nodes) of width w. Let t be a node of V(T) and Bt be the
bag associated with it. Note that |Bt| � w + 1.

We use Gt to denote the graph induced by the vertex set
⋃

t′ Bt′ , where t ′

ranges over all descendants of t, including t. By E(Bt) we denote the edges
present in G[Bt]. We use Ht to denote the graph on vertex set V(Gt) and the
edge set E(Gt) \ E(Bt).

Let H be a subgraph of G. For a subset of vertices X ⊆ V(H) and a partition
P of X into s parts X1, . . . ,Xs, we say that a spanning forest F of H is compatible
with P if F has exactly s components C1, . . . ,Cs such that Xi ⊆ Ci for all i ∈ [s].
We are now ready to describe the semantics of our DP table. For each t ∈ V(T),
for all possible partitions P of Bt, for each F ⊆ E(Bt), X ⊆ V(Bt) and k ∈ [n],
we let:

D[t,P, F,X,k] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if there exists a spanning forest F� of Gt compatible
with P with a vertex cover S of size at most k,
such that F� ∩ E(Bt) = F and S ∩ Bt = X,

0 otherwise.

Note that the solution to the problem is the smallest k for which:

D[t,P, F,X,k] = 1,

for any choice of F and X, where t is the root node and P is the partition with
exactly one part. Also observe that the size of the DP table is 2O

�(w2) · nO�(1).
The recursive relationships are described in a standard fashion, but we briefly
sketch some of the interesting cases.

The calculations for the leaf nodes and the introduce vertex nodes are trivial.
When at an introduce edge node, if the introduced edge belongs to F, then it
is important to check that X includes one of its endpoints. At a forget node, if
v is the forgotten vertex and P is the partition under consideration, we review
all rows in the child bag consistent with P on the vertices in Bt but where v

belongs to one of the given parts, and ignore rows where v is a standalone part.
The value of k will also have to be adjusted appropriately depending on whether
v was chosen in the vertex cover or not, and in all the cases where v was not in
the vertex cover, we need to run a sanity check to ensure that edges incident to
v as given by the row of the child node under consideration are covered by the
current choice of vertex cover in Bt.

The most non-trivial case is the join nodes. Intuitively, the procedure for
the join node involves “patching” the solutions from the two child nodes, while
adjusting for the double-counting of the cost of vertex cover vertices in X. How-
ever, a straightforward patch may lead to cycles in our combined solution, which
might also lead to suboptimal costs for the corresponding vertex covers. It can
be verified that in this case, we can follow an approach similar to what is used
in the case of Steiner Trees, except that the auxiliary graphs used for “acyclic
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merges” have to now account for the edges given in F. Due to lack of space, defer
a detailed description to a full version of this manuscript. �	

We conclude this section by making some observations about the relationship
between spanning trees that have small vertex covers and the vertex covers of
the underlying graph.

Observation 1. Every connected graph G admits a spanning tree with a vertex
cover of size at most κ, where κ is the size of a smallest connected vertex cover
of G.

Proof. Let S ⊆ V(G) be a connected vertex cover of size at most κ. Let T be
a spanning tree for G[S]. For any vertex v ∈ V\S, let sv denote an arbitrarily
chosen vertex from N(v). Note that N(v) ⊆ S (since S is a vertex cover) and
N(v) 
= ∅ (since G is connected). Consider the tree T ′ obtained from T by adding
the edges (v, sv) for all v ∈ V\S. Observe that T ′ is a spanning tree and S covers
all edges of T , which is |S| � κ, as desired. This concludes the proof. �	

Combined with the well-known fact that any connected graph that has a
vertex cover of size � also has a connected vertex cover of size at most 2� (for
instance, by choosing all the non-leaf vertices of a depth-first search traversal,
which is known to be a two-approximate vertex cover), we have the following.

Corollary 2. Every graph admits a spanning tree with a vertex cover of size at
most 2�, where � is the size of a smallest vertex cover of G.

Although far from optimal—for instance, consider the complete graphs—the
bound in Observation 1 is tight, as witnessed by the graph consisting of two
stars on three leaves whose centers are connected by an edge. We remark that
the size of the vertex cover of the transformed instance constructed in the proof
of Theorem 1 is bounded by (|R|+1), which implies the following consequence in
the context of kernelization when parameterized by the size of the vertex cover.

Corollary 3. When parameterized by the solution size, MCST does not admit
a polynomial kernel unless coNP ⊆ NP/poly.

5 Concluding Remarks

We showed that MPST is W[1]-hard when parameterized by the vertex cover
of the input graph, and is W[2]-hard when parameterized by the solution size.
For the special case of unit demands, however, we demonstrate an FPT algo-
rithm when parameterized by treewidth. We also demonstrated the hardness of
polynomial kernelization for MCST when parameterized by the vertex cover.
For MPST, the dynamic programming algorithm presented would also give us
a FPT algorithm for the combined parameter (w,M), where M is the maximum
demand and w is the treewidth. To achieve this, we would have to store all
possible power assignments to the vertices in the bags.
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Our contributions here for the MCST problem leave open several directions
for future work. The most natural question is if we can improve the running
time of the dynamic programming algorithm when parameterized by treewidth,
possibly using randomized approaches such as “Cut and Count”, which have
proven to be successful for the related Steiner Tree problem. We also leave open
the question of whether there is a deterministic single-exponential algorithm
when parameterized by the vertex cover of the input graph. This seems to be an
intuitively appealing possibility, and indeed, it is promising to pursue the natural
approach where we guess the interaction of a possible optimal solution with a
given vertex cover. We also leave open the question of obtaining Turing or lossy
kernels for MPST or MCST when parameterized by vertex cover. Finally, we
believe that it would be interesting to study these problems on special classes of
graphs, especially those relevant to application scenarios, from a parameterized
perspective. We note that the reduced instance in Theorem 1 is bipartite.
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