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Abstract. We consider a variation of arboricity, where a graph is par-
titioned into p forests and q independent sets. These problems are
NP-complete in general, but polynomial-time solvable in the class of
cographs; in fact, for each p and q there are only finitely many minimal
non-partitionable cographs. In previous investigations it was revealed
that when p = 0 or p = 1, these minimal non-partitionable cographs can
be uniformly described as one family of obstructions valid for all values
of q. We investigate the next case, when p = 2; we provide the com-
plete family of minimal obstructions for p = 2, q = 1, and find that they
include more than just the natural extensions of the previously described
obstructions for p = 2, q = 0. Thus a uniform description for all q seems
unlikely already in the case p = 2.

Our result gives a concrete forbidden induced subgraph character-
ization of cographs that can be partitioned into two forests and one
independent set. Since our proof is algorithmic, we can apply our char-
acterization to complement the recognition algorithm for partitionable
cographs by an algorithm to certify non-partitionable cographs by find-
ing a forbidden induced subgraph.

Keywords: Vertex arboricity · Independent vertex feedback set ·
Cograph · Forbidden subgraph characterization · Colouring · Partition

1 Introduction and Motivation

The vertex-arboricity of a graph G is the minimum integer p such that the
vertices of G can be partitioned into p parts each of which induces a forest. It is,
in general, NP-complete to decide if a graph G has arboricity less than or equal
to a fixed p, p ≥ 2 [9]. This is a situation analogous to deciding if a graph G has
chromatic number less than or equal a fixed q, q ≥ 3 [6]. Both problems can be
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efficiently solved on the class of cographs, and in [8], the authors have studied,
for cographs, a blended problem, whereby a graph is partitioned into p parts
inducing forests and q parts that are independent sets. Each of these problems
can be efficiently solved in the class of cographs, and in fact characterized by a
finite number of minimal cograph obstructions. This parallels the situation for a
similar blended problem studied earlier, where a cograph G is to be partitioned
into k independent sets and � cliques [2,10].

Cographs are one of the most popular and intensively studied classes of per-
fect graphs. We say that G is a cograph if it has no induced subgraph isomorphic
to P4, the path on 4 vertices. Equivalently [1], cographs can be recursively defined
as follows: (i) The graph on single vertex is a cograph; (ii) If G1, G2, ..., Gk are
cographs then so is their union, G1 ∪ G2 ∪ ... ∪ Gk; and (iii) If G is a cograph,
then so is its complement G. Since cographs are perfect, many intractable prob-
lems can be solved in polynomial time on the class of cographs [7]. Moreover, the
recursive description of cographs corresponds to a natural data structure (called
a co-tree [1]), and partition problems like the chromatic number or arboricity can
be solved in linear time directly on the co-tree. This is explicitly done for the
chromatic number in [1], and can be done in a very similar fashion for vertex-
arboricity. In fact, in [8], the authors similarly solve, for cographs, the blended
problem of partition into p forests and q independent sets (and for even more
general partitions). Furthermore, it follows from [3] that each of these problems
has a characterization by a finite set of minimal cograph obstructions. Here a
minimal cograph obstruction is a cograph G that does not admit a required parti-
tion, but each proper induced subgraph of G does admit such a partition. Thus a
cograph admits a required partition if and only if it does not contain an induced
subgraph isomorphic to a minimal cograph obstruction.

Minimal cograph obstructions for partition into k independent sets and �
cliques were described in [2,4,5,10]; they have (k + 1)(� + 1) vertices, and admit
a partition into k+1 independent sets of size �+1 as well as a partition into �+1
cliques of size k + 1. In particular, the unique minimal cograph obstruction for
partition into k independent sets is Kk+1, and the minimal cograph obstruction
for partition into � cliques is K�+1 (as is required for perfect graphs).

Minimal cograph obstructions for partition into p forests and q independent
sets were investigated in [8]. Consider first the special case of q = 0, that is
partitions into forests (arboricity). Since cographs are perfect, there are two
minimal cograph obstructions for being a forest, i.e., admitting a partition with
p = 1: these are the cycles C3 and C4. For partitions into p = 2 forests, there
turn out to be exactly 7 minimal cograph obstructions, forming the family A2

depicted in Fig. 1.
Each of these obstructions has a natural generalization to minimal cograph

obstruction for partition into p forests. For example, K5 generalizes to K2p+1,
3K3 generalizes to (p + 1)Kp+1, and so on. These 7 generalizations form a family
Ap, given by an explicit uniform description in [8]. They are all minimal cograph
obstructions to partition into p forests. Nevertheless, it turns out that there are
in general many additional minimal cograph obstructions, and in fact the number
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(a) K5 (b) 3K3 (c) 2K2 ⊕ (K1 +K2)

(d) 2 2K2

)
⊕ K3 (e) 2K3 ⊕ K2

(f) 3K2 +K1 (g) 2K2 +K3

)
⊕ K2

Fig. 1. The family A2.

of minimal cograph obstructions for partition to p forests grows exponentially
with p [8].

There is, however, a class of partition problems in which minimal cograph
obstructions can be uniformly described. This is the class of problems general-
izing the problem of independent vertex feedback set [8]. A q-colourable vertex
feedback set of a graph G is a set V of vertices such that G\V admits a q-
colouring. Thus a graph admits a q-colourable vertex-feedback set if and only
if it has a partition into p = 1 forest and q independent sets. It is shown in [8]
that there are precisely two minimal cograph obstructions for such a partition,
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namely Kq+3 and (q + 2)K2. (Note that for q = 0 we again obtain C3 and C4

as the minimal cograph obstructions to being a forest.) This family describes all
minimal cograph obstructions for partitions into p = 1 forest and q of indepen-
dent sets, uniformly for all values of q. As mentioned above, there is only one
minimal cograph obstruction for partitions into (p = 0 forests and) an arbitrary
number q of independent sets, namely Kq+1, which is again a family uniformly
described for all values of q. This motivates the natural question whether there
are other values of p for which such uniformity is possible.

In this paper we investigate the first open case of p = 2. In order to address
the question of possible unform description, we explicitly describe all minimal
cograph obstructions for partition into p = 2 forests and q = 1 independent
set. Each member of the family A2 again has a natural generalization as an
obstruction for such a partition. For example, K5 generalizes to K6, because an
independent set will take only one vertex and the remaining K5 cannot be parti-
tioned into 2 forests. Similarly, 3K3 = K3,3,3 generalizes to K3,3,3,3, 3K2 + K1 =
K2,2,2 ⊕K1 generalizes to K2,2,2,2 ⊕K1, 2K2 ⊕ (K1 +K2) = K2,2 ⊕K1,2 general-
izes to K2,2,2 ⊕ K1,2, and so on. Below, we present a complete set F of minimal
cograph obstructions for partition into p = 2 forests and q = 1 independent set.
The family F contains 9 cographs, and while most of them can be interpreted as
generalizations of members of A2, some appear to be definitely new. In particu-
lar, the last member, 9, of the family F , does not seem to arise from any member
of the family A2 in any obvious fashion. Thus the evidence suggests that a uni-
form description of minimal cograph obstructions for all (2, q)-partitions seems
unlikely.

The reference [8] presents a linear-time dynamic programming algorithm to
decide whether an input cograph G admits a (2, 1)-partition (or any other (p, q)-
partition. As an application of our result we explain how to certify a negative
outcome of the algorithm (i.e., a non-partitionable cograph G) by finding an
actual forbidden induced subgraph.

2 The List of Minimal Obstructions

For brevity, we call a partition of a graph G into p forests and q independent
sets, a (p, q)-partition of G. Thus, in the remainder of the paper, we describe all
minimal cograph obstructions for (2, 1)-partition.

We introduce the family of cographs F . The members of the family are:

1. K6

2. K3,3,3,3

3. K2,2,2 ⊕ K1,2

4. K2,2,2,2 ⊕ K1

5. 2K3 ⊕ K2,2

6. (K2,2 + K3) ⊕ K2,2

7. 2K2,2 ⊕ K3,3

8. 2K2,2 ⊕ 2K2,2

9. (K4 + K3,3,3) ⊕ K2
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Lemma 1. Each graph in F is a minimal cograph obstruction to (2, 1)-partition.

Proof. It is clear from their descriptions that each graph in the F family is a
cograph. We claim that each of these graphs is a minimal obstruction for (2, 1)-
partition.

Consider first K6: it does not have a (2, 1)-partition, because any forest in
K6 can have at most two vertices, and hence two forests can have at most four
vertices. This leaves at least two vertices, but no two vertices in K6 form an
independent set. Moreover, when a vertex is removed we have K5, which has an
obvious (2, 1)-partition where each forest is one edge and the independent set is
a single vertex. Therefore K6 is a minimal obstruction.

For the graph G = K3,3,3,3, we observe that any induced forest in G has at
most four vertices, and this happens only when the forest is a tree. Thus two
forests can cover at most eight vertices, and since K3,3,3,3 has no independent
set of size four, it does not have a (2, 1)-partition. When a vertex is removed, we
obtain K2,3,3,3, where we can take one independent set consisting of a part with
three vertices, and cover the vertices of the remaining two parts of size three by
stars centered at the remaining two vertices. Hence K3,3,3,3 is also a minimal
obstruction.

The proof for most of the remaining obstructions follows a similar approach,
and we skip the details (which are included in the last section). We do include
the proof for the last two obstructions on our list, which are more interesting.

Consider the graph 2K2,2⊕2K2,2 from 8. Any independent set must be on one
side of the join, and include at most four vertices. The remaining vertices contain
an induced 2

(
2K2

)⊕K3, which is one of the obstructions for (2, 0)-partition from
Fig. 1. When a vertex is deleted, we obtain the graph ((K1,2 + K2,2) ⊕ 2K2,2),
which has the following (2, 1)-partition: one independent set of four vertices on
the bigger side of the join, one forest consisting of 2K1,2 on the smaller side of
the join, and one forest which is a star on five vertices. Thus 2K2,2 ⊕ K2,2 is
indeed a minimal cograph obstruction for (2, 1)-partition.

Finally, we prove that the graph (K4 + K3,3,3) ⊕ K2 is a minimal cograph
obstruction for (2, 1)-partition. We consider what an independent set S must
contain in order for none of the minimal cograph obstructions for (2, 0)-partition
(from Fig. 1) to remain after S is removed. Note that our graph contains K2,3,3,3,
while in Fig. 1 there is both a K3,3,3 and a K1,2,2,2. Moreover, when S is removed
there must not remain a copy of K5. To satisfy just these restrictions, S must
contain one vertex of the K4, and three vertices of one entire part of the K3,3,3.
Since this is a maximal independent set, S must be this set; but then its removal
results in a graph containing an induced

(
2K2 + K3

) ⊕ K2 (the last graph in
Fig. 1). It remains to partition the graphs resulting from deleting a vertex from
(K4 + K3,3,3) ⊕ K2. If a vertex in the K4 is deleted, then we obtain a (2, 1)-
partition by taking the independent set S as above, and two stars centered at
the two vertices of the K2, each involving one 3-vertex part of the K3,3,3 and
one vertex of the K4. If a vertex of the K2 is deleted, we can take again the
independent set S, one forest consisting of an edge from the K4 and one part of
the K3,3,3, and one star centered at the other vertex of the K2. If a vertex v in
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the K3,3,3 is deleted, we can take for the independent set the vertices in the K2,
and partition the remaining vertices into two forests each consisting of one edge
of the K4 and one star on four vertices.

3 The Completeness of the List

We now prove that the list of minimal cograph obstructions for (2, 1)-partition
given in Lemma 1 is complete.

Theorem 1. A cograph has a (2, 1)-partition if and only if it is does not contain
an induced subgraph from F .

Proof. Let G be a cograph. It is easy to see that a disconnected cograph G admits
a (2, 1)-partition if and only if each connected component of G admits a (2, 1)-
partition. Thus we may assume G is a connected cograph which does not contain
an induced subgraph from F , and proceed to prove it has a (2, 1)-partition.

For brevity, we shall say that a graph is F -free if it does not contain F as an
induced subgraph, and F-free, if it doesn’t contain any member of the family F
as an induced subgraph.

Since G is connected, there exist cographs G1 and G2 such that G = G1⊕G2.
If G1 and G2 are forests, then G trivially has a (2, 1)-partition. So, at least one
of G1, G2 must contain an induced cycle. Without loss of generality, assume that
at least G1 has an induced cycle; since G1 is a cograph, the only cycles possible
are C3 or C4.

1. Assume G1 is C3-free. In this case G1 has an induced C4; moreover,
G1 is a bipartite graph. We will take a concrete bipartition and refer to (X,Y )
as the parts. If G2 is a forest, then we have a trivial (2, 1)-partition with two
independent sets and a forest. Thus we may assume that G2 also has a cycle.
We have the following two subcases:

(a) Both G1 and G2 are C3 free. This implies that both cographs G1 and
G2 are bipartite, and each has an induced C4. Both G1 and G2 cannot have more
than one connected component with C4 because G is 2K2,2 ⊕ 2K2,2-free. Hence
without loss of generality we may assume that G2 has exactly one component,
say A, with a C4, and the other components are trees. Note that A must be a
complete bipartite graph since G2 has no induced P4. The graph G1 must also
contain at least one connected component, say B, which is a complete bipartite
graph. If G1 has other components with an induced C4, then one of the parts
of A in G2 has exactly two vertices, because G is 2K2,2 ⊕ K3,3-free. If the other
connected components of G1 are trees, then one of the subgraphs A or B has a
bipartition with one of the parts having exactly two vertices, since G is K3,3,3,3-
free. In either case, we can obtain a (2, 1)-partition of G as follows. Suppose the
connected component A of the graph G2 has a bipartition (X,Y ), where X has
exactly two vertices. The first forest is obtained by taking one vertex from X,
the entire other part Y , and the remaining tree components of G2. Since graph
G1 is also bipartite, another forest can be obtained by taking one of the parts of
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G1 and the remaining vertex in X. The remaining vertices form an independent
set in G1.

(b) G1 is C3 free but G2 contains a C3. Since G1 contains a K2,2 and
since G is 2K3 ⊕ K2,2-free and (K2,2 + K3) ⊕ K2,2-free, there is exactly one
component of G2 with a C3, and the other components of G2 are forests. Let the
set (v1, v2, v3) induce a C3 in G2, and let B be the component of G2 containing it.
Since B is a connected cograph, we have B = B1 ⊕B2 for cographs B1, B2. The
component B cannot contain an induced K4 and hence none of the graphs B1

and B2 have a C3. So, we assume without loss of generality that v1, v2 ∈ V (B1),
and v3 ∈ V (B2); moreover, B2 must be an independent set since G is K6-free. If
B2 has at least two elements, then B1 must be a K2, since G is K2,2,2⊕K1,2-free
and K2,2,2,2 ⊕ K1-free. Hence either B1 is a K2 or B2 is a K1. We construct a
(2, 1)-partition in both the cases.

When B1 = K2, then taking one of the parts of the bipartite graph G1 along
with one vertex in B1 we obtain one first forest in our partition. To construct
the second forest we include B2 along with the remaining vertex in B1 and the
remaining tree components of G2. The remainder in G1 is the independent set
in the partition.

When B2 consists of a single vertex, then taking this vertex with one of
the parts of the bipartite graph G1 yields the first forest in the partition. The
remaining parts of G2 form a forest which becomes the second forest in the
partition. The remaining part of G1 is our independent set in the (2, 1)-partition.

This concludes the first case.
2. Assume that G1 contains C3. Without loss of generality we can assume

that G2 is a forest as otherwise we have a K6, or a situation symmetric to the
case 1(b). We consider several possible cases, noting that in all the cases where
G2 has at least one edge, G1 does not contain K4, since G is K6-free.

(a) Suppose first that G2 has at least three vertices and at least one
edge. Consider a copy of C3 on v1, v2, v3 in G1, and the component B of G1

containing it. Since B is a connected cograph, we have B = B1⊕B2 for cographs
B1, B2. Since B does not contain a K4, neither B1 nor B2 can contain a C3.
So, we assume without loss of generality that v1, v2 ∈ V (B1), and v3 ∈ V (B2);
moreover, B2 is an independent set. If B1 has an induced C4, then B2 will be just
a single vertex because G is K2,2,2 ⊕K1,2-free and K2,2,2,2 ⊕K1-free. (Note that
G2 contains a copy of K1,2 or K1,2.) In conclusion, each component B = B1⊕B2

of G1 which contains a C3 either has a single vertex in B2 and a bipartite B1,
or an independent set B2 and a forest B1. Each component of G1 without a C3

is bipartite.
We find a (2, 1)-partition of the graph G as follows. One forest will be formed

by the vertices in G2. We partition G1 into a forest and an independent set; it
suffices to partition each component B of G1 separately. A component B =
B1 ⊕ B2 with C3 which has a single vertex v in B2 yields a star centered at v
and using one part of the bipartition of B1, with the other part of the bipartition
yielding an independent set. In a component B = B1 ⊕ B2 with C3 where B2

is an independent set and B1 is a forest, we trivially have a desired partition.
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Finally, each remaining component B is bipartite and one part can be taken as
a forest and the other part as an independent set.

(b) Assume G2 has exactly two vertices, which are adjacent. Since
G1 does not contain K4, it is is three colourable. One of the colour classes along
with one vertex of G2 forms one forest of the partition. Another colour class with
the other vertex of G2 yields another forest. The remainder is a single colour
class which forms the independent set of the partition.

(c) Assume G2 has exactly two vertices, which are not adjacent. If
G1 does not contain an induced K4, we obtain a partition of G as in case 2(b); so
we assume that G1 has a K4. Note that we may take G2 for the independent set
of a (2, 1)-partition, and it remains to find a partition of G1 into two forests (a
(2, 0)-partition). Clearly, it suffices to find such a partition for each component
B of G1 separately.

Note that while at least one component of G1 has a K4, there could be
other components B of G1 without a K4. Such components B must have a
(2, 0)-partition because otherwise G1 contains a minimal cograph obstruction for
(2, 0)-partition from the family A2, and adding the independent set G2 would
yield a member of F . (This can be easily seen by comparing the two families.)

Now we consider components B = B1 ⊕ B2 of G1 which do contain a K4.
Suppose first that both B1, B2 are bipartite. Note that both B1 and B2

cannot contain an induced a C4 since G is K2,2,2,2 ⊕ K1-free. If both B1 and B2

are forests, then we have a trivial partition of B into two forests. Hence, say, B1

has a C4 and B2 is a forest. In fact, B2 must be just an edge, say uv, because G
is K2,2,2,2 ⊕ K1-free and K2,2,2 ⊕ K1,2-free. In this case a (2, 0)-partition of B is
formed by taking one star centered at u with one part of the bipartition of B1,
and one star centered at v with the other part of B1.

Thus we may assume that one of B1, B2, say B1, contains a C3. Since G
is K6-free, B is K5-free, and so B2 must an independent set. Now we further
consider each component D = D1 ⊕ D2 of B1. At least one such component D′

must contain a C3, but there could also be bipartite components D; all must be
K4-free.

If B2 has at least two vertices, then exactly one component, namely D′, of
B1 has a cycle (specifically a C3). Bipartite components D cannot have a cycle
(i.e., a C4), because G is (K3 + K2,2) ⊕ K2,2-free. Moreover no other component
D �= D′ can have a C3, because G is 2K3 ⊕ K2,2-free. Hence if B2 has at least
two vertices then all the components D of B1, other than D′, are forests.

Suppose that v1, v2, v3 form a C3 in D. Since D = D1 ⊕ D2 is K4-free,
neither of the graphs D1,D2 has a C3. So we may assume v1, v2 ∈ V (D1) and
v3 ∈ V (D2); moreover we may assume D1 is a bipartite graph and D2 is an
independent set.

If the bipartite graph D1 contains a C4, then both D2 and B2 must consist
of a single vertex because G is K2,2,2,2 ⊕ K1-free.
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If D1 is a forest with more than the two vertices v1, v2, then it contains an
induced K1,2 or K1,2, Therefore, at least one of D2, B2 must be a single vertex,
since G is K2,2,2,2 ⊕ K1-free and K2,2,2 ⊕ K1,2-free.

Otherwise D1 is just the edge v1v2.
Finally, if there is no C3 in D, i.e., D is bipartite, then D1 is an independent

set.
We now describe a (2, 0)-partition of B = B1 ∪ B2. Recall that B2 is an

independent set, and B1 consists of components D = D1 ⊕ D2 where each D2 is
an independent set and each D1 is bipartite, with the following four possibilities:
(i) D1 contains a C4, in which case D2, as well as B2, has a single vertex; (ii)
D1 is a forest of more than two vertices, in which case D2 or B2 has a single
vertex; (iii) D1 is an edge v1v2; or (iv) D1 is an independent set. Moreover, in
cases (ii–iv), if B2 has more than one vertex, then all but one component D of
B1 are forests.

We first describe a (2, 0)-partition of B = B1 ∪ B2 when B2 has at least two
vertices. In this case, there is one component D′ = D′

1 ⊕ D′
2 of B1 with D′

1 a
forest with one or more vertices (cases (ii, iii)), and all other components D of
B are forests themselves. We obtain a (2, 0)-partition of G1 as follows. If D′

1 is
just an edge, say xy, the first forest consists of a star centred at the vertex x
covering the independent set D′

2, along with the rest of the forest components
of B′

1. The second forest is a star centred at the remaining vertex v covering the
independent set B2. If D′

1 has at least two vertices, then D′
2 is a single vertex

u, and we can take D′
1 together with all other components D as one forest; the

other forest will be the star centered at u and covering B2.
Now consider a component B = B1 ∪ B2 of G1 when B2 has a single vertex,

say v. We put together one forest for a (2, 0)-partition of B from the following
forests in the various components D = D1 ⊕ D2 of B. From components D of
type (i) we take the star centered at the single vertex of D2 and covering one
part of the bipartition of D1; from components D of type (ii-iv) we take the
forests D1. The other forest for a (2, 0)-partition of B will be formed by a star
centered at v and covering all the remaining vertices. (These are the other parts
of all D1 for components of type (i), as well as all D2 for components of type
(ii-iv); note that this is an independent set of vertices.)

(d) Finally, we assume that G2 is just a single vertex, say v. The proof
here is similar to the case 2(c), except that in the case (i), when D1 contains an
induced C4, we can only claim that B2 or D2 is a single vertex, and in the case
(ii), when D1 is a forest with more than two vertices, we cannot claim anything
about the size of B2 or D2 (Fig. 2).

Nevertheless, there is a (2, 1)-partition of the entire G. (Since G2 is a single
vertex v, we may use v to form a star for the forests of the partition, and we no
longer use G2 as the independent set.) Before describing the partition, recall that
G consists of a vertex v adjacent to all other vertices, and G\v has components
B = B1⊕B2 of two kinds, either B2 is a single vertex, or B2 is an independent set
with at least two vertices. For components B′ = B′

1 ⊕B′
2 of the first kind (where

B′
2 is a single vertex w), we only note that B′

1 consists of bipartite components
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D. For the components B of the second kind (where B2 is a larger independent
set), we distinguish components D′ = D′

1 ⊕ D′
2 in which D′

2 consists of a single
vertex z, and other components D = D1 ⊕ D2 where D2 is a larger independent
set and D1 is a forest. We now describe the first forest of a (2, 1)-partition of
G. It is a star centered at v and covering the sets D2 of all components D of
B′

1 for the components B′ of the first kind (where B′
2 is a single vertex), as well

as the sets B2 of all components B of the second kind. The second forest of the
partition contains, for each component B′ of the first kind (where B′

2 is a single
vertex w), a star centered at w and covering all first parts of the bipartitions of
all D1 of the components D of B′

1. It also contains, for each component B of
the second kind, and each component D′ in which D′

2 consists of a single vertex
z, a star centered at z and covering the first part of the bipartition of D′

1, and
containing D1 for each component D in which D1 is a forest. The remaining
vertices are easily seen to form an independent set which we take for the desired
(2, 1)-partition of G.

2

G2

v

G
1

...

...

B’
2

B
2

...

...

...

...

z

w

B

B’

...

...

...

...

D1
...

D

Fig. 2. An illustration of the case 2(d): one forest is indicated by large filled circles,
the other forest by double circles, the remainder is independent
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4 Conclusions

Theorem 1 implies that any cograph that is not (2, 1)-partitionable must have
a member of F as an induced subgraph. In [8] there is a linear-time dynamic
programming algorithm to recognize (2, 1)-partitionable cographs. It computes
for each cograph G the set of all triples (p, q, r) such that p + q + r ≤ 3, p ≤
2, q ≤ 1, and G has a set R with r vertices such that G\R is (p, q)-partitionable.
The cograph G is (2, 1)-partitionable if and only if (2, 1, 0) is included in this
set of triples. To compute these triples is trivial when G has one vertex, and
explicit formulas are given for computing them when G = G1 + G2 and when
G = G1⊕G2. Thus a bottom-up calculation on the cotree of G (a data structure
that captures the description of the recursive construction of G) allows us to
compute the triples for G. If the triple (2, 1, 0) is not present, we can apply a
top-down process to actually recover a forbidden induced subgraph from the
family F . We can identify in the cotree a cograph G′, subgraph of G, which
does not have a (2, 1)-partition, but all of whose descendants have a (2, 1)-
partition. Clearly, this means that G′ was obtained by a join operation, and
we may assume G′ = G1 ⊕ G2. Reading the proof of Theorem 1, we see that
the relevant information we need includes whether or not G1, G2 contain an
induced C3 and where (or whether they are bipartite), and similarly for C4,
or K4; we would also like to keep track of how many vertices they contain.
Moreover, if G1 or G2 are themselves obtained by a disjoint union operation,
we need similar information about their descendants. It is easy to see all this
information can be computed during the construction of the cotree, so we assume
we have it available for G′ and its descendants. Then the proof of Theorem 1
directly specifies how to find a forbidden induced subgraph, since G′ is known
to not be (2, 1)-partitionable. For example, if G1 and G2 are both bipartite
and both are joins of two bipartite cographs each of which contains a C4, then
case 1(a) of the proof explains we can identify (from those C4’s) an induced
copy of 2K2,2 ⊕ 2K2,2. The remaining cases are similar, with the exception of
components B without K4 in case 2(c). In this case we rely on the corresponding
results of [8], which identify forbidden induced subgraphs for a (2, 0)-partition, to
which we need to add one or both vertices of G2. It is not difficult to implement
all this in linear time. A detailed implementation will be presented in the third
author’s M.Sc. thesis.

5 The Remaining Proofs for Lemma 1

For the graph G = K2,2,2 ⊕ K1,2, we note that any subgraph of G on at least
four vertices contains an induced cycle. Hence, one forest in the partition can
cover at most three vertices and two forest can cover at most six vertices, and
since G has no independent set of size three, K2,2,2 ⊕K1,2 is an obstruction. For
H = K1,2,2 ⊕ K1,2, one of the two forests will be K1,2, and removing another
forest on three vertices, the remainder is an independent set on two vertices,
yielding a required (2, 1)-partition. For H = K2,2,2 ⊕K2, take one of the vertices



26 P. Hell et al.

of K2 with one of the parts in K2,2,2 to obtain one forest. We obtain the other
forest in similar way and the remainder is just an independent set of size two.
Hence, K2,2,2 ⊕ K1,2 is a minimal obstruction.

To prove that G = K2,2,2,2 ⊕K1, is an obstruction, note that any forest must
be a tree and hence can have at most three vertices. Two forests can cover at
most six vertices, and the remaining three vertices will contain an edge, and
hence not be independent. To prove that G is indeed minimal, note that both
H1 = K2,2,2,2 and H2 = K1,2,2,2 ⊕K1 have a (2, 1)-partition in which each forest
is a tree on three vertices and the independent set has two vertices.

For G = 2K3 ⊕ K2,2, one of the two forests can cover at most four vertices
and the other forest can cover at most three vertices. Hence, two forests can
cover at most seven vertices and there is no independent set of size at least
three in G. Hence, G does not have a (2, 1)-partition. Now we will show that
H1 = (K2 + K3) + ⊕K2,2 and 2K3 ⊕ K1,2 have a (2, 1)-partition. For H1, the
partition consists of one forest that is 2K2 and has four vertices. The other
forest is a tree on three vertices and the remainder is just an independent set
on two vertices. In H2, the first forest consists of the middle vertex in K1,2

along with one vertex in the each of the K3. The other forest has four vertices
consisting of 2K2 each. The remainder is an independent set on two vertices.
Thus G = 2K3 ⊕ K2,2 is indeed minimal.

Similarly, for G = (K2,2+K3) ⊕ K2,2, one of the two forests in G can have at
most five vertices, and then the other forest can have at most three vertices. The
remainder will have at least 3 vertices. Since G does not have an independent
set of size three, G does not have a (2, 1)-partition. We will prove that all the
graphs obtained from deleting one vertex from G have a (2, 1)-partition. That is,
H1 = (K1,2+K3)⊕K2,2, H2 = (K2,2+K2)⊕K2,2 and H3 = (K2,2+K3)⊕K1,2,
each have a (2, 1)-partition. For the graph H1, the partition has one forest on five
vertices consisting of K1,2 and K2,, and the other forest is just a K1,2, leaving
an independent set on two vertices.

For G = 2K2,2 ⊕ K3,3, two forests can cover at most ten vertices. Either
there is only one forest on six vertices and the other forest then can have at
most four vertices, or one can obtain two forest on five vertices each. There
is no independent set on four vertices., so G does not admit a (2, 1)-partition.
To see that G is indeed minimal, note that both H1 = (K2,2 + K1,2) ⊕ K3,3

and H2 = 2K2,2 ⊕ K2,3 have a (2, 1)-partition. For H1 one such partition has
one forest consisting of two copies of K1,2 and other forest is a K1,3, leaving
an independent set of three vertices. For H2, a partition can be obtained with
two forests which are stars on five vertices each, and the remainder is just an
independent set on three vertices.
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