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Abstract. Given two vertices u, v in a graph G, a shortest (u, v)-path
in G is called an (u, v)-geodesic. Let IG[u, v] denote the set of all vertices
in G lying on some (u, v)-geodesic. Given a set T ⊆ V (G), let IG[T ] =
∪u,v∈T IG[u, v]. If IG[T ] = T , we call T a convex set. The convex hull,
denoted by 〈T 〉G, is the smallest convex set containing T . A subset T
of vertices of a graph G is a hull set if 〈T 〉G = V (G). Moreover, T is
a geodetic if IG[T ] = V (G). The hull number h(G) of a graph G is
the minimum size of a hull set. The geodetic number g(G) of G is the
minimum size of a geodetic set. The shadow graph, denoted by S(G),
of a graph G is the graph obtained from G by adding a new vertex v′

for each vertex v of G and joining v′ to the neighbors of v in G. In
this paper, we study the geodetic and hull numbers of shadow graphs.
Bounds for the geodetic and hull numbers of shadow graphs are obtained
and for several classes exact values are determined. Graphs G for which
g(S(G)) ∈ {2, 3} are characterized.
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1 Introduction

Convexities in graphs are extensively studied due to their prominent role in
graph theory as well as their contributions to axiomatic convexity theory. Given
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a finite set X, a family C of subsets of X is a convexity on X if ∅ ∈ C,X ∈ C,
and C is closed under intersections [12,13,21]. A set T ⊆ X is said to be C-
convex if T ∈ C. The C-convex hull of T ⊆ X, 〈T 〉C , is the minimum C-convex
set containing T . The cardinality of minimum set whose convex hull is X is the
hull number of C.

The most studied graph convexities are convexities defined by a family of
paths P, in a way that a set T of vertices of G is convex if and only if each
vertex that lies on an (u, v)-path of P belongs to T . In this paper, we consider
the geodetic convexity in graphs. In this convexity, P is the family of geodesics
(shortest paths) of the graph.

One of the most studied numbers associated with graphs is the chromatic
number. The chromatic number χ(G) is the minimum number of colors that can
be assigned to the vertices of G so that adjacent vertices are colored differently.
It is clear that χ(G) ≥ ω(G), where ω(G) is the size of a largest clique in
G. However, a graph G may have arbitrarily large chromatic number without
triangles (ω(G) = 2). In 1955 Jan Mycielski used a fascinating construction
called the Mycielskian or Mycielski graph [9,16]. His construction preserves the
property of being triangle-free but increases the chromatic number. Applying the
construction repeatedly to a triangle-free starting graph, we obtain a triangle-
free graph with arbitrarily large chromatic number. A graph closely related to
this construction is called the shadow graph. The shadow graph S(G) of a graph
G is the graph obtained from G by adding a new vertex v′ for each vertex v of G
and joining v′ to the neighbors of v in G (the vertex v′ is called the shadow vertex
of v). The star shadow graph of a graph G is the graph obtained from the shadow
graph S(G) of G by adding a new vertex s∗(star vertex) and joining s∗ to all
shadow vertices. The Mycielski’s construction consists of repeatedly finding the
star shadow of the previous one beginning with the cycle C5. Particularly, s∗(C5)
is called the Grötzsch graph (a triangle-free graph) with chromatic number four.
The term shadow graph was coined in [9,11].

In this paper, we continue our investigation of hull and geodetic numbers on
shadow graphs. In Sect. 2, we fix the notation, terminologies and discuss some
preliminary results of the geodetic and hull numbers already available in the
literature.

2 Preliminaries

Let G be a connected graph and u, v ∈ V (G). The distance dG(u, v) between u
and v is the minimum number of edges on a (u, v)-path. The maximum distance
between all pairs of vertices of G is the diameter diam(G) of G. A (u, v)-path
of length dG(u, v) is called an (u, v)-geodesic. Then, the geodetic interval IG[u, v]
between vertices u and v of a graph G is the set of vertices x such that there exists
a (u, v)-geodesic which contains x. For T ⊆ V (G) we set IG[T ] =

⋃
u,v∈T

IG[u, v].
The set T is a geodetic set if IG[T ] = V (G). The geodetic number, denoted
by g(G), is the size of a minimum geodetic set. To simplify the writing, we
may omit the index G in the above notation provided that G is clear from the
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context. The geodetic number of a graph was introduced in [14] and [1,2,6–
8,17,18] contain numerous results and references concerning geodetic sets and
the geodetic number.

The set T is convex in G if IG[T ] = T . The convex hull 〈T 〉G of T is the
smallest convex set that contains T , and T is a hull set of G if 〈T 〉G is the whole
vertex set of G. A smallest hull set is a minimum hull set of G, its cardinality
is the hull number h(G) of G. The convex hull 〈T 〉G can also be formed from
the sequence {IkG[T ]}, k ≥ 0, where I0G[T ] = T , I1G[T ] = IG[T ] and IkG[T ] =
IG[Ik−1

G [T ]] for k ≥ 2. From some term on, this sequence must be constant.
Let p be the smallest number such that IpG[T ] = Ip+1

G [T ]. Then IpG[T ] is the
convex hull 〈T 〉G. The hull number of a graph was introduced by Everett and
Seidman in [15]. See [2,5,10,17] for recent developments on the hull sets and the
hull number of a graph. The hull number of composition, cartesian product, and
strong product of graphs were studied in [3,4] and [19], respectively. A vertex v
is called a simplicial vertex G if the subgraph induced by the neighbors of v is
complete. The set of all simplicial vertices in a graph G is denoted by simp(G)
and sp(G) = |simp(G)|. A graph is chordal if it contains no induced cycle of
length greater than three. A graph G is an extreme hull graph if the set of all
simplicial vertices forms a hull set. In this paper, we make use of the following
result.

Lemma 1. [2,10] In a connected graph G, each simplicial vertex belongs to
every hull set of G.

3 Hull Number of Shadow Graphs

In this section, we estimate the upper and lower bounds of the hull number of
shadow graphs and simplify the exact values for the shadows of complete graphs,
hyper-cubes, grids, cycles and complete bipartite graphs. We prove a formula for
the hull number of the shadow graph of a tree.

Lemma 2. For any non-trivial connected graph G, a vertex v in S(G) is a
simplicial vertex of S(G) if and only if v is a shadow of a simplicial vertex in G.

Proof. Since NS(G)(v′) = NG(v), it follows that v′ is a simplicial vertex in S(G)
for any simplicial vertex v in G. On the otherhand, let x be any simplicial vertex
of S(G). Then observe that x must be a shadow vertex, say x = v′, shadow of v.
Now, if v is non-simplicial, then there exist non-adjacent neighbors, say s and t
of v in G. This shows that s and t are also non-adjacent neighbors of v′ in S(G),
impossible. Thus v must be simplicial in G. �

Lemma 3. (i) Let x and y be non-adjacent vertices in G. Then
(1) dS(G)(x, y) = dG(x, y).
(2) dS(G)(x, y′) = dG(x, y).
(3) dS(G)(x′, y′) = dG(x, y).

(ii) Let x and y be adjacent vertices in G.Then
(1) dS(G)(x, y)= dG(x, y) = 1.
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(2) dS(G)(x, y′) = dS(G)(x, y) = 1.

(3) dS(G)(x′, y′) =

{
2 if xy lies on an induced K3

3 otherwise

Proof. (i) First consider the case x and y are non-adjacent in G. Let dG(x, y) =
d ≥ 2 and let P : x = x0, x1, . . . , xd = y be a (x, y)-geodesic in G. This
shows that x′ is adjacent with x1 and y′ is adjacent with xd−1 in S(G). Hence
x′, x1, x2, . . . , xd−1, y

′ is an (x′, y′)-path of length d in S(G) and so dS(G)(x′, y′) ≤
d. Now, suppose that dS(G)(x′, y′) = k < d. Let Q : x′ = y0, y1, . . . , yk = y′ be
an (x′, y′)-geodesic of length k. Then it follows from the definition of S(G) that
y1, yk−1 ∈ V (G) and xy1, yyk−1 ∈ E(G). Now, suppose that the (y1, yk−1)-
subpath Q1 of Q in S(G) contains a shadow vertex u′ of u, say yi = u′. Then
2 ≤ i ≤ k−2 and yi−1, yi+1 ∈ V (G). Then it follows from the definition of S(G),
the vertex u is adjacent to both yi−1 and yi+1 in G. This shows that (y1, yi−1)-
subpath of Q1 together with the path yi−1, u, yi+1 and the (yi+1, yk−1)-subpath
of Q1 is a (y1, yk−1)-path which has the same length of Q1. Hence for each
shadow vertex in Q1, can be replaced with the corresponding vertex without
changing the length of Q1. Hence without loss of generality, we may assume that
Q1 has no shadow vertices and so Q1 is a path in G. Then Q1 together with the
edges xy1 and yk−1y is an (x, y)-walk of length k in G. Then dG(x, y) ≤ k < d,
a contradiction. Thus dS(G)(x′, y′) = dG(x, y). Proof for the remaining cases are
similar. �

Lemma 4. For every graph G, it holds h(S(G)) ≤ h(G) + sp(G).

Proof. Let T be a hull set of G and T ′ be the set of all vertices of S(G) formed
by the shadow vertices of T . We claim that T ′ ∪ simp(G) is a hull set of S(G).

Observe from Lemma 3 that V (G)\T is contained in the convex hull of T ′.
Next, let v ∈ T\simp(G) and let u,w ∈ NG(v) such that uw /∈ E(G). If u ∈ T ,
then u′ ∈ T ′, otherwise, u belongs to the convex hull of T ′. Therefore, V (G) is
contained in the convex hull of T ′ ∪ simp(G).

Now, by Lemma 2, every shadow vertex not in T ′ is not a simplicial vertex
of S(G), and then it has two non-adjacent neighbors in V (G). �

Theorem 1. For any non-trivial connected graph G of order n,

max{2, sp(G)} ≤ h(S(G)) ≤ min{n, h(G) + sp(G)}.

Proof. The left inequality is an immediate consequence of Lemmas 1 and 2. By
Lemma 4, it remains to prove that h(S(G)) ≤ n. Now, let V ′ be the set of shadow
vertices of V (G) in S(G). We claim that V ′ is a hull set in S(G). For, let v be
any vertex in G. First suppose that degG(v) ≥ 2. Let u and w be two distinct
neighbors of v in G. Then the shadow vertices u′ and w′ of u and w, respectively
are adjacent to v in S(G). This shows that v ∈ IS(G)[u′, w′] ⊆ 〈V ′〉S(G). So,
assume that v is a pendent vertex in G. Let u be the unique neighbor of v in G and
let v′ and u′ be the corresponding shadow vertices of v and u respectively. Then
it follows from Lemma 3 that dS(G)(u′, v′) = 3 and v ∈ IS(G)[u′, v′] ⊆ 〈V ′〉S(G).
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This shows that 〈V ′〉S(G) = V (S(G)) and so V ′ is a hull set of S(G). Hence
h(S(G)) ≤ |V ′| = n. �

Now, the following formulas that can be easily deduced from the Theorem 1.
The k-cube Qk has the vertex set {0, 1}k, two vertices being adjacent if they
differ in precisely one coordinate.

• h(S(Kn)) = h(Kn) = n, where n ≥ 2.
• h(S(Km,n)) = h(Km,n) = 2, where m,n ≥ 2.
• h(S(Qn)) = h(Qn) = 2, where n ≥ 2.

• h(S(Cn)) = h(Cn) =
{

2 if n is even
3 if n is odd

• h(S(Gn,m)) = h(Gn,m) = 2, where Gn,m(n,m ≥ 2) is the 2 dimensional grid
of order nm.

In view of Theorem 1, we also have the following result.

Theorem 2. Let G be a connected graph of order n. If h(S(G)) = n, then G is
a chordal graph of diameter at most three.

Proof. First suppose that h(S(G)) = n. Let V ′ denotes the set of all shadow
vertices of V (G) in S(G). We first claim that diam(G) ≤ 3. Assume the con-
trary that there is a shortest path, say u = u0, u1, u2, u3, u4 = v of length
four in G. For each i in the interval 0 ≤ i ≤ 4, let u′

i denote the shadow ver-
tices of ui. Then by Lemma 3, dS(G)(u′

0, u
′
4) = dG(u0, u4) = 4. We prove that

V ′\u2
′ is a hull set of S(G). Since V ′ is a hull set of S(G), it is enough to

prove that u2
′ ∈ IS(G)[V ′\u2

′]. Now, since P : u′
0, u1, u

′
2, u3, u

′
4 is a path of

length four and dS(G)(u′
0, u

′
4) = 4, we know that P is a (u′

0, u
′
4)-geodesic con-

taining the vertex u′
2. Hence u′

2 ∈ IS(G)[u′
0, u

′
4] ⊆ I[V ′\u′

2] and so V ′\u′
2 is a

hull set of S(G). This shows that h(S(G)) ≤ |V ′\u′
2| = n − 1, a contradic-

tion. Thus diam(G) ≤ 3. Now, suppose that G contains an induced cycle, say
C : u1, u2, . . . , un, u1 of length n ≥ 4. As above, we claim that V ′\u1

′ is a hull set
of S(G). Since 〈V ′〉S(G) = V (S(G)), it is enough to prove that u1

′ ∈ IS(G)[V ′\u′
1].

Now, since C is chordless, it follows from Lemma 3 that u1 ∈ IS(G)[u′
2, u

′
n], u3 ∈

IS(G)[u′
2, u

′
4] and un−1 ∈ IS(G)[u′

n−2, u
′
n]. Hence u2, un ∈ I2S(G)[V

′\u′
1]. Thus

u′
1 ∈ IS(G)[un, u2] ⊆ I3S(G)[V

′\u′
1]. This shows that u′

1 ∈ 〈V ′\u′
1〉S(G) and so

V ′ ⊆ 〈V ′\u′
1〉S(G). Hence 〈V ′\u′

1〉S(G) = 〈V ′〉S(G) = V (S(G)). This leads to the
fact that h(S(G)) ≤ |V ′\u′

1| = n − 1, a contradiction. This proves that G is a
chordal graph. �

The converse of Theorem 2 need not be true. Consider the chordal graph
of diameter 2 shown in the Fig. 1. The set T ′ = {v′

1, v
′
4, v

′
5} is the set of all

simplicial vertices of the shadow graph of G. Now, IS(G)[T ′] = T ′ ∪ {v2, v3} and
I2S(G)[T

′] = IS(G)[T ′] and so T ′ is not a hull set of S(G).
On the otherhand, since the set T ′ = {v′

1, v
′
4, v

′
5, v

′
3} is a hull set of S(G). It

follows that h(S(G)) = 4 < 5 = n. This example also shows that the inequalities
in Theorem 1 can be strict.
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Fig. 1. G

In the following, we determine a formula for the hull number of shadow graph
of a tree. A vertex v in a tree T is a support vertex if it is adjacent to a pendant
vertex in T . A support vertex v is said to be a first order support vertex of T , if
T − v has atmost one non-trivial component.

Theorem 3. Let T be a tree with k end vertices and l first order support vertices.
Then h(S(T )) = k + l.

Proof. Let v1, v2, . . . , vk be the end vertices of T . Since each end vertex is a sim-
plicial vertex, it follows from Lemma 1 that h(S(T )) ≥ k. Let R be a hull set
of S(T ). Then v′

1, v
′
2, . . . , v

′
k ∈ R. Let v be a first order support vertex of T.

Then T − v has at most one non-trivial component. This shows that if v lies on
a (u,w)-geodesic in T , then atleast one end, say u, must be an end vertex of T .
Now, suppose that the shadow vertex v′ of v lies only on a (x, y)-geodesic in S(T ),
say P : x = x0, x1, . . . , xi = v′, . . . , xn = y. Then Q : x = x0, x1, . . . , xi =
v, . . . , xn = y is also an (x, y)-geodesic in S(T ) containing the vertex v. Now, if Q
contains any shadow vertex, then we can replace each shadow vertex by the cor-
responding vertex in T . Hence we can assume without loss of generality that Q
is (x, y)-geodesic in T containing v. Thus x = u or y = u, say x = u. Also note
that the vertex u lies internally only on (v, v′)-geodesic in S(T ). This shows that
either u ∈ R or v′ ∈ R and so |R| ≥ k+ l. Now , on the otherhand consider the set
R′ = {v′

1, v
′
2, . . . , v

′
k, w

′
1, w

′
2, . . . , w

′
l}, where w1, w2, . . . , wl are the first order sup-

port vertices of T . Then IS(G)[R′] = V (S(T )) − {vi}. Then I2S(G)[R
′] = V (S(T )),

implies that R′ is a hull set of S(T ). Therefore, h(S(T )) = |R′| = k + l. �

The hull number of the shadow graph of a graph can be significantly small.
For instance, in the class of wheels W1,n(n ≥ 5), one can observe that h(W1,n) =⌊
n
2

⌋
. Whereas, one can easily check that the set T = {u, u′}(u is the vertex

with largest degree in W1,n) is a hull set of the shadow graph of W1,n. Thus
h(S(W1,n)) = 2. In general, if a graph G of order n has a vertex of degree n− 1,
then h(S(G)) = 2. In view of this observation, we leave the following problems
as open.
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Problem 1. Characterize graphs G for which h(S(G)) = 2.

Problem 2. Characterize graphs G for which h(S(G)) = 3.

4 Geodetic Number of Shadow Graphs

In this section, we estimate the upper and lower bounds of the geodetic number
of any shadow graph and for several classes of shadow graphs the exact values are
determined. We prove that K2 is the only connected graph in which g(S(G)) = 2;
and the graphs K3 and P3 are the only connected graphs in which g(S(G)) = 3.

Definition 1. For any set T ′ ⊆ V (S(G)), the set π(T ′) is defined as π(T ′) =
{v ∈ V (G) : v ∈ T ′ or v′ ∈ T ′}.
Lemma 5. If T ′ is a geodetic set of S(G), then π(T ′) is a geodetic set of G.

Proof. Let x be any vertex in G such that x /∈ π(T ′). Then x′ /∈ T ′. Since T ′ is a
geodetic set in S(G), there exist vertices u, v ∈ T ′ such that x′ ∈ IS(G)[u, v]. Let
P : u = u0, u1, . . . , ui = x′, . . . , un = v be a (u, v)-geodesic in S(G) containing
the vertex x′. Then ui−1, ui+1 ∈ V (G).
Case 1: Both u, v ∈ V (G). Since dG(u, v) ≥ 2, by Lemma 3, dG(u, v) =
dS(G)(u, v). Now, the path Q : u = u0, . . . , ui−1, x, ui+1, . . . , un = v is a (u, v)-
geodesic in S(G) containing the vertex x. Now, if Q contains any shadow vertex
y′ then we can replace y′ by the corresponding vertex y. Hence without loss of
generality, we may assume that Q has no shadow vertices and so Q is a (u, v)-
geodesic in G containing the vertex x. Thus x ∈ IG[u, v] ⊆ IG[π(T ′)].
Case 2: Both u and v are shadow vertices, say u = r′ and v = t′. Since
x′ ∈ IS(G)[r′, t′], it is clear that dS(G)(r′, t′) ≥ 4 and so dG(r, t) = dS(G)(r′, t′).
This shows that the path Q : r, u1, . . . , ui−1, x, ui+1, . . . , un−1, t is an (r, t)-
geodesic in S(G) containing the vertex x. Again without loss of generality, we
may assume that Q has no shadow vertices and so Q is a (r, t)-geodesic in G
containing the vertex x. Then x ∈ IG[r, t] ⊆ IG[π(T ′)].
Case 3: u = r′ and v ∈ V (G). Again, since x′ ∈ IS(G)[r′, v], we have that v 	= r
and dS(G)(r′, v) ≥ 3. Hence similar to the above cases, we have that the path
Q : r, u1, . . . , ui−1, x, ui+1, . . . , un = v is an (r, v)-geodesic in G containing the
vertex x. Again, we may assume that Q has no shadow vertex and so Q is a
(r, v)-geodesic in G containing the vertex x. Hence x ∈ IG[r, v] ⊆ IG[π(T ′)].
Thus in all cases π(T ′) is a geodetic set in G. �

A set T of vertices in a graph G is an open geodetic set if for each vertex v
in G, either (1) v is a simplicial vertex of G and v ∈ T or (2) v is an internal
vertex of an (x, y)-geodesic for some x, y ∈ T . The minimum size of an open
geodetic set is the open geodetic number og(G) of G. In the following, we obtain
an upper bound for the geodetic number of S(G) in terms of the open geodetic
number of G. The open geodetic number of a graph was introduced and studied
in [20].
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Theorem 4. Let G be any connected graph of order n. Then

g(G) ≤ g(S(G)) ≤ min{n, og(G) + sp(G)}.

Proof. Let T ′ be a minimum geodetic set of S(G). Then by Lemma 5, π(T ′) is
a geodetic set of G. Thus g(G) ≤ |π(T ′)| ≤ |T ′| = g(S(G)). On the other hand,
let R be a minimum open geodetic set in G. We claim that T = R∪ simp(S(G))
is a geodetic set of S(G). Observe that V (G) ⊆ IG[R] ⊆ IS(G)[T ]. Now let
v′ be any shadow vertex in S(G) corresponding to the vertex v of G. If v is
simplicial, then v′ ∈ T . So, assume that v is non-simplicial. Since R is an open
geodetic set, there exist x, y ∈ R such that v ∈ IG[x, y] with v 	= x and v 	= y.
Let P : x = u0, u1, . . . , ui = v, ui+1, . . . , vn = y with 1 ≤ i ≤ n − 1 be a
(x, y)-geodesic in G containing the vertex v internally. Then by Lemma 3, the
path P : x = u0, u1, . . . , vi−1, v

′, vi+1, . . . , vn = y is an (x, y)-geodesic in S(G)
containing the vertex v′. Hence v′ ∈ IS(G)[T ]. This shows that T is a geodetic set
of S(G) and so g(S(G)) ≤ |T | = og(G) + sp(G). Now, as in the case of Theorem
1, one can easily verify that the set of all shadow vertices of V (G) is a geodetic
set of S(G). Thus g(S(G)) ≤ n. Hence the result follows. �

The following two observations are used to characterize graphs G in which
g(S(G)) ∈ {2, 3}.

Observation 5. Let u and v be two distinct vertices in G. Then u ∈ IS(G)[u′, v′]
if and only if u and v are adjacent vertices in G having no common neighbors.

Observation 6. Let u be any vertex in G. Then u′ /∈ IS(G)[u, x] for any x ∈
V (S(G)) distinct from u′.

Theorem 7. Let G be any connected graph. Then g(S(G)) = 2 if and only if
G = P2.

Proof. Let T = {x, y} be a geodetic set in S(G). If x ∈ V (G), then by Obser-
vation 6, x′ /∈ IS(G)[x, y]. Hence x must be a shadow vertex, say x = v′ for some
v ∈ V (G). Now, since T is a geodetic set of S(G), we have that v ∈ IS(G)[x, y].
But, in this case, one can easily observe that v ∈ IS(G)[x, y] if and only if y = u′

where u is adjacent to v in G. This is possible only when G = P2. Hence the
result follows. �

Theorem 8. Let G be any connected graph. Then g(S(G)) = 3 if and only if G
is either K3 or P3.

Proof. First, suppose that G = K3 or G = P3, then one can easily verify that
g(S(G)) = 3. Conversely, assume that g(S(G)) = 3. If G has only three vertices,
then G = K3 or G = P3. So, assume that G contains at least four vertices. Let
T be a geodetic set in S(G) of size three. We consider the following cases.
Case 1: T = {x′, y′, z}, where x′ and y′ are shadow vertices of x and y in
G and z ∈ V (G). First suppose that z = x or z = y, say z = x. Choose
w ∈ V (G) be such that w /∈ {x, y, z} (This is possible because G has at least
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four vertices). Now, since dS(G)(x′, x) = 2, it follows that w′ ∈ IS(G)[x′, y′].
This shows that dS(G)(x′, y′) ≥ 4 and hence by Lemma 3, x and y are non-
adjacent in G. This shows that y /∈ IS(G)[x, x′] and so y ∈ IS(G)[y′, x′],
a contradiction to Observation 5. Hence z 	= x and z 	= y. Now, it fol-
lows from Observation 6 that z′ ∈ IS(G)[x′, y′]. Thus dS(G)(x′, y′) ≥ 4. Let
x′ = x0, x1, . . . , xi−1, xi = z′, xi+1, . . . , xn = y′ be an (x′, y′)-geodesic in S(G)
containing the vertex z′. Then xi−1, xi+1 ∈ V (G) and so the path P : x′ =
x0, x1, xi−1, z, xi+1, . . . , xn = y′ is also an (x′, y′)-geodesic containing the ver-
tex z. This shows that z ∈ IS(G)[x′, y′] and so IS(G)[x′, z] ⊆ IS(G)[x′, y′] and
IS(G)[z, y′] ⊆ IS(G)[x′, y′]. This shows that the set U = {x′, y′} is a geodetic set
in S(G), a contradiction to the fact that g(S(G)) = 3.
Case 2: T = {x′, y, z}, where x′ is a shadow vertex of x in G and y, z ∈ V (G).
Now, if x = y or x = z, say x = y, then it follows from Observation 6 that
z′ ∈ IS(G)[y, y′]. This leads to the fact that dS(G)(y, y′) ≥ 3, a contradiction.
Hence x 	= y and x 	= z. Again by Observation 6, z′ ∈ IS(G)[x′, y]. Hence as in the
previous case, we can show that z ∈ IS(G)[x′, y]. Thus IS(G)[x′, z] ⊆ IS(G)[x′, y]
and IS(G)[z, y] ⊆ IS(G)[x′, y]. This leads to the fact that the set U = {x′, y} is a
geodetic set in S(G), a contradiction.
Case 3: T = {x, y, z} ⊆ V (G). By Observation 6, we have that y′ ∈ IS(G)[x, z].
Hence as in the previous cases, y ∈ IS(G)[x, z] and hence U = {x, z} is a geodetic
set in S(G), a contradiction.
Case 4: All the three vertices of T are shadow vertices, say T = {x′, y′, z′}.
Choose w ∈ V (G) be such that w /∈ {x, y, z}. Since T is a geodetic set,
we may assume that w′ ∈ IS(G)[x′, y′]. This shows that dS(G)(x′, y′) ≥ 4.
Hence by Lemma 3, the vertices x and y are non-adjacent in G. Moreover,
dG(x, y) = dS(G)(x′, y′) ≥ 4. Now, by Observation 5, it follows that both
x, y /∈ IS(G)[x′, y′]. Now, suppose that x ∈ IS(G)[x′, z′] and y ∈ IS(G)[y′, z′],
it follows from Observation 5 that both x and y must be adjacent with z in G.
Then dS(G)(x′, y′) = dG(x, y) = 2, a contradiction. Hence either x /∈ IS(G)[x′, z′]
or y /∈ IS(G)[y′, z′], say x /∈ IS(G)[x′, z′] . Now, since T is a geodetic set of
S(G), we have that x ∈ IS(G)[y′, z′]. Moreover, recall that dG(x, y) ≥ 4. This
shows that dS(G)(y′, z′) ≥ 4 and so by Lemma 3, dG(y, z) = dS(G)(y′, z′) ≥ 4.
Now, let P : y′ = u0, u1, . . . , ui−1, ui = x, ui+1, . . . , un = z′ be a (y′, z′)-geodesic
in S(G) containing the vertex x. Note that ui−1 	= y′ and ui+1 	= z′. Now
without loss of generality, we may assume that both ui−1 and ui+1 are ver-
tices in G. Otherwise, if they are shadow vertices, we can replace these ver-
tices by the corresponding vertices in G. This shows that the path P ′ : y′ =
u0, u1, . . . , ui−1, x

′, ui+1, . . . , un = z′ is a (y′, z′)-geodesic containing x′ and so
x′ ∈ IS(G)[y′, z′]. Hence as the previous cases, the set U = {y′, z′} must be a
geodetic set in S(G), a contradiction. Hence the result follows. �

The following result is an immediate consequence of Theorems 4, 7 and 8.

• g(S(Kn)) = g(Kn) = n, where n ≥ 2.
• g(S(Km,n)) = og(Km,n) = 4, where m,n ≥ 2.
• g(S(Qn)) = og(Qn) = 4, where n ≥ 2.
• g(S(Gn,m)) = og(Gn,m) = 4, where n,m ≥ 2.
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Theorem 9. Let T be a tree with k end vertices and m support vertices. Then
g(S(T )) = k + m.

Proof. Let v1, v2, . . . , vk be end vertices of T , let u1, u2, . . . , um be the corre-
sponding support vertices and let M ′ be a geodetic set of S(T ). Then by Lemma
2, v′

i ∈ M ′ for all i = 1, 2, . . . , k. For each i = 1, 2, . . . , k, if the vertex vi
in S(G) lies internally on an (x, y)-geodesic in S(T ), then x = u′

i or y = u′
i,

where ui is the corresponding support vertices of vi. This shows that either
ui ∈ M ′ or vi ∈ M ′. Hence |M ′| ≥ k + m. On the other hand, consider the set
R′ = {v1, v2, . . . , vk} ∪ {u′

1, u
′
2, . . . , u

′
m}. Let x be any vertex of S(T ) such that

x /∈ R′.
Case 1: x ∈ V (G). Then x lies on a (vi, vj)-geodesic in T , say
vi = y0, y1, . . . , yr = x, yr+1, . . . , yk = vj . Then by Lemma 3, the path
y′
0, y1, . . . , yr, x, yr+1, . . . , yk−1, y

′
k is an (y′

0, y
′
k)-geodesic in S(T ) containing the

vertex x and so x ∈ IS(G)[R′].
Case 2: x = u′, a shadow vertex of u in T . If u is a support vertex, then u′ ∈ R′.
So, assume that u is not a support vertex. This shows that u lies on a (vi, vj)-
geodesic in R′, say vi = y0, y1, . . . , yr = u, yr+1, . . . , yl = vj . Since u is not a
support vertex of T , we have that 2 ≤ r ≤ l − 2.

This shows that by Lemma 3, the path v′
i = y0, y1, . . . , yr−1, u

′, yr+1, . . . , yl =
v′
j is a (v′

i, v
′
j)- geodesic in S(T ) containing the vertex u′. Hence R′ is a geodetic

set of S(T ) and so g(S(T )) = k + m. �
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