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Abstract. A connected graph is said to be self-centered if all its vertices
have the same eccentricity. The family of generalized Petersen graphs
P (n, k), introduced by Coxeter [6] and named by Watkins [18], is a family
of cubic graphs of order 2n defined by positive integral parameters n and
k, n ≥ 2k. Not all generalized Petersen graphs are self-centered. In this
paper, we prove self-centeredness of P (n, k) whenever k divides n and
k < n

2
, except the case when n is odd and k is even. We also prove non-

self-centeredness of generalized Petersen graphs P (n, k) when n even
with k = n

2
; n = 4m+2 with k = n

2
− 1 for some positive integer m ≥ 3;

n ≥ 9 is odd and k = 2 or k = n−1
2

; and n = m(4m + 1) ± (m + 1)
with k = 4m + 1 for any positive integer m ≥ 2. Finally, we make an
exhaustive computer search and get all possible values of n and k for
which P (n, k) is non-self-centered.

Keywords: Eccentricity · Center of graph · Self-centered graph ·
Generalized Petersen graphs

1 Introduction

Graph centrality plays a significant importance in facility location problem, and
has a great role in designing a communication network. In a locality, for the
efficient use of resources, we place them at central nodes. Because of this, self-
centered graphs are ideal as the facility can be placed (located) at any node or
vertex of the locality. In the paper, by a graph G = (V (G), E(G)) (or simply G)
we mean a simple finite graph with the vertex set V (G) and the edge set E(G).
The length of a shortest u–v path in a graph G gives the distance between
vertices u and v, which is denoted by dG(u, v) (or d(u, v)). The maximum of
distances from a vertex v to all other vertices in a graph G is known as the
eccentricity (denoted by e(v)) of the vertex v. The radius of G, denoted by
rad(G), is the minimum eccentricity of vertices in G. Similarly, the diameter of
G, denoted by diam(G), is the maximum eccentricity of vertices. Vertices with
minimum eccentricity are called central vertices and the subgraph induced on
these vertices is called the center C(G) of the graph G. A graph G is known
as a self-centered graph if C(G) = G. In other words, for a self-centered graph
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G, rad(G) is equal to diam(G). Further, if eccentricity of every vertex in a
self-centered graph is d then the graph is known as d-self-centered graph.

As a generalization of the well-known Petersen graph, the generalized
Petersen graph has attracted the attention of several researchers. For each pos-
itive integers n and k with n ≥ 2k, the generalized Petersen graph P (n, k) is
a graph with vertex set V (P (n, k)) = {u0, u1, u2, ..., un−1, v0, v1, v2, . . . , vn−1}
and the edge set E(P (n, k)) = {uiui+1, uivi, vivi+k : 0 ≤ i ≤ n − 1}, where
subscripts are addition modulo n. Throughout the paper, we refer this notation
for vertex set and edge set of P (n, k). For n = 5 and k = 2, P (5, 2) is the well
known Petersen graph.

The generalized Petersen graphs, named by Watkins [18] were defined by
Coxeter [6] but not with this name. The essence of the Petersen graph is a
remarkable configuration that serves as a counterexample to many optimistic
predictions and conjectures about what might be true for graphs in general. The
generalized Petersen graphs have been studied by several authors; for instance,
Tait coloring of generalized Petersen graphs have been studied and analysed in
[4], generalization of generalized Petersen graphs on the basis of symmetry prop-
erties have been discussed in [13]. A result on maximum number of vertices in
a generalized Petersen graph was given by authors in [1], where number of ver-
tices is treated as a function of diameter. A formula for number of isomorphism
classes of generalized Petersen graphs was presented by Steimle and Staton [17].
For works related to domination number in generalized Petersen graphs, one can
refer to [5,7], and [9]. However, there were no significant work done related to
self-centeredness of generalized Petersen graphs because of the complex structure
of these graphs. This motivated us to work on the self-centeredness property of
generalized Petersen graphs.

The theorem below gives a criteria for generalized Petersen graphs to be
isomorphic.

Theorem 1. [17] Let n > 3 and k, l relatively prime to n with kl ≡ 1 (mod n).
Then P (n, k) ∼= P (n, l).

The theorem stated below is useful in proving the self-centeredness of gener-
alized Petersen graph P (n, 1).

Theorem 2. [16] Let G = G1�G2 be the Cartesian product of graphs G1 and
G2. If G1 and G2 are l- and m-self centered graphs, respectively, then G is
(l + m)-self centered graph.

We note that P (n, 1) is the Cartesian product of the cycle Cn and the com-
plete graph K2. Since Cn is �n

2 �-self-centered graph and K2 is 1-self-centered
graph, by Theorem 2 we get the result below.

Theorem 3. For n ≥ 3, the generalized Petersen graph P (n, 1) is a d-self-
centered graph, where d = �n

2 � + 1.

Vertex transitive graphs are self-centered. In [8], the authors have proved
that P (n, k) is vertex transitive if and only if k2 ≡ ±1(mod n), or n = 10 and
k = 2. So, one get the following result.
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Theorem 4. For n ≥ 3, generalized Petersen graph P (n, k) is self-centered for
k2 ≡ ±1(mod n), or n = 10 and k = 2. Moreover, P (10, 2) is 5-self-centered
and the other P (n, k) are d-self-centered, where

d =

⎧
⎪⎨

⎪⎩

k + 1, if n = k2 − 1,
k + 1, if n = k2 + 1 and k is even, k �= 2,
k + 2, if n = k2 + 1 and k is odd.

Self-centered graphs were studied and surveyed by many authors in the
last few decades. For the same, we refer the articles [2], [3], and [10–12]. Self-
centeredness of different types of graph products are studied by the authors in
[14,15].

In the remaining of the paper, we assume k ≥ 2. The main technique followed
in this paper for verification of self-centeredness of P (n, k) is the determination
of eccentricities of u0 and v0, because P (n, k) is symmetric on outer vertices
u0, u1, u2, . . . , un−1 and also symmetric on inner vertices v0, v1, v2, . . . , vn−1. If
e(u0) = e(v0) then the generalized Petersen graph is self-centered, otherwise not.

The rest of the paper is organized as follows. In Sect. 2, we prove the non-
self-centeredness of generalized Petersen graphs P (n, k) when n even, k = n

2 or
n = 4m + 2 with k = n

2 − 1 for some positive integer m ≥ 3. Then we prove
self-centeredness of P (n, k) whenever n is even, k < n

2 and k divides n. In Sect. 3,
we study self-centeredness of generalized Petersen graphs P (n, k) for odd n. We
prove that P (n, k) is not self-centered for odd n ≥ 9 with k = 2 or k = n−1

2 . Then
we prove the self-centeredness of P (n, k) for odd n and odd k, k < n

2 , and k|n.
Also, we prove non-self-centeredness of P (n, k) when n = m(4m + 1) ± (m + 1)
with k = 4m+ 1 for any positive integer m ≥ 2. Finally, we make an exhaustive
computer search and get all possible values of n and k for which P (n, k) is
non-self-centered.

2 Self-centeredness of P (n, k) for an Even n

In the following result, we investigate the self-centeredness of P (n, k) for an even
n and k = n

2 .

Theorem 5. Let P (n, k) be a generalized Petersen graph such that n ≥ 4 is
even and k = n

2 . Then P (n, k) is not a self-centered graph.

Proof. To prove the result, it is sufficient to show that eccentricity of two vertices
in P (n, k) are not equal. We note that C : v0, u0, u1, u2, . . . , uk, vk, v0 induces a
cycle of length k + 3, see Fig. 1, where the cycle C is highlighted by thick lines.
We observe that d(u0, ui) = d(u0, un−i), for i ∈ {1, 2, 3, ..., n

2 }. Depending on
the parity of k, we distinguish following two cases.

Case 1. The integer k is even.
Since k = n

2 , in this case n will be a multiple of four. Consider vertices u0

and v0. Since u0 lies on C and C is of length k + 3,

max{d(u0, ui) : 1 ≤ i ≤ n

2
} = �k + 3

2
� =

k + 2
2

=
n + 4

4
=

n

4
+ 1. (1)
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Fig. 1. Generalized Petersen graph P (n, k) with n even and k = n
2

Next, we find d(u0, vi) for 1 ≤ i ≤ n
2 . First, let 1 ≤ i ≤ n

4 . For these values of
i, we get that d(u0, vi) = d(u0, ui) + 1. Now, max{d(u0, ui) : 1 ≤ i ≤ n

4 } = n
4

and so

max{d(u0, vi) : 1 ≤ i ≤ n

4
} = max{d(u0, ui) + 1 : 1 ≤ i ≤ n

4
} =

n

4
+ 1. (2)

For n
4 < i ≤ n

2 , a shortest vi–u0 path is given by Pi : vi, vi+k, ui+k, ui+(k+1),
ui+(k+2), . . . , u0, where l(Pi) = n − i − k + 2 = n

2 + 2 − i (since k = n
2 ). The

maximum length of Pi is for i = n
4 + 1, and hence

max{l(Pi) :
n

4
< i ≤ n

2
} =

n

4
+ 1. (3)

From Eqs. (1)−(3), we get that e(u0) = n
4 + 1.

Since v0 lies on C and n is a multiple of four,

max{d(v0, ui) : 1 ≤ i ≤ n

2
} = �k + 3

2
� =

n

4
+ 1. (4)

Next for n
4 ≤ i ≤ n

2 , we obtain d(v0, vi) = d(u0, vi) + 1, and this gives

max{d(v0, vi) :
n

4
≤ i ≤ n

2
} =

n

4
+ 1. (5)

Finally, for 1 ≤ i ≤ n
4 , a shortest vi–v0 path is given by P ′

i :
vi, vi+k, ui+k, ui+(k+1), . . . , u0, where l(P ′

i ) = n − i − k + 3 = n
2 + 3 − i,

and the maximum length of P ′
i is for i = n

4 + 1, i.e.,

max{l(P ′
i ) : 1 ≤ i ≤ n

4
} =

n

2
+ 3 − n

4
− 1 =

n

4
+ 2. (6)

Hence e(v0) = n
4 + 2. Thus, we get that e(u0) �= e(v0) and P (n, k) is not a

self-centered graph in this case.
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Case 2. The integer k is odd.
In this case n is not a multiple of four but cycle C is of an even length. Since
u0 and v0 lie on C, for 1 ≤ i ≤ n

2 , we have

max{d(u0, ui) : 1 ≤ i ≤ n

2
} =

k + 3
2

and, (7)

max{d(v0, ui) : 1 ≤ i ≤ n

2
} =

k + 3
2

. (8)

For 1 ≤ i ≤ �n
4 �+1, a shortest u0–vi path is given by Qi : u0, u1, u2, . . . , ui, vi,

where l(Qi) = i + 1 and maximum length of Qi is for i = �n
4 � + 1, i.e.,

max{l(Qi) : 1 ≤ i ≤ �n
4

� + 1} = �n
4

� + 1 + 1 = �k + 3
2

�. (9)

Again, for �n
4 �+2 ≤ i ≤ n

2 , a shortest u0–vi path is given by Q′
i : vi, vi+k, ui+k,

ui+(k+1), . . . , u0 and the length of Q′
i is n

2 +2−i. The path Q′
i has a maximum

length for i = �n
4 � + 2, i.e.,

max{l(Q′
i) : �n

4
� + 2 ≤ i ≤ n

2
} =

n

2
− �n

4
� =

k + 1
2

. (10)

From Eqs. (7), (9), and (10), we have e(u0) = k+3
2 .

Next, we consider the vertex v0. For 1 ≤ i ≤ �n
4 �+1, a shortest v0–vi path is

given by Ti : v0, u0, u1, u2, . . . , ui, vi. The length of the path Ti is i + 2. The
maximum length of Ti is for i = �n

4 � + 1, i.e.,

max{l(Ti) : 1 ≤ i ≤ �n
4

� + 1} = �n
4

� + 1 + 2 =
k + 5

2
. (11)

Finally, for �n
4 � + 2 ≤ i ≤ n

2 , a shortest v0–vi path is given by T ′
i :

vi, vi+k, ui+k, ui+(k+1), . . . , un = u0, v0, where l(T ′
i ) = n

2 + 3 − i. We get
the maximum length of T ′

i for �n
4 � + 2, i.e.,

max{l(T ′
i ) : �n

4
� + 2 ≤ i ≤ �n

2
�} =

k

2
+ 1. (12)

From Eqs. (8), (11), and (12), we have e(v0) = k+5
2 . This proves that e(u0) �=

e(v0). Hence, P (n, k) is not a self-centered graph in this case also. 
�
In the following theorem we get some non-self-centered generalized Petersen

graphs P (n, k), where n is even but not divisible by k.

Theorem 6. Let P (n, k) be a generalized Petersen graph such that n = 4m+ 2
for some positive integer m ≥ 3 and k = n

2 −1. Then P (n, k) is not a self-centered
graph.
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Fig. 2. Generalized Petersen graph P (n, k) with n = 4m+ 2 and k = n
2

− 1

Proof. Here we obtain a cycle C : u0, u1, u2, . . . , un
2 −1, vn

2 −1, v0, u0 of length n+4
2

i.e. of length 2m + 3, see Fig. 2, where the cycle C is highlighted by thick lines.
Since u0 and v0 lie on C, we have

max{d(u0, ui) :1 ≤ i ≤ n

2
− 1} = max{d(v0, ui) :1 ≤ i ≤ n

2
− 1} = �2m+ 3

2
� = m+ 1.

(13)
We have d(u0, um+1) = d(u0, um+2) = m + 1 and d(v0, um) = d(v0, um+1) =

m + 1. Next, for every j ∈ {1, 2, . . . ,m} ∪ {m + 3,m + 4, . . . , 2m + 1}, we get
d(u0, vj) ≤ m + 1. Similarly, for every l ∈ {1, 2, . . . ,m − 1} ∪ {m + 2,m +
4, . . . , 2m+1}, d(v0, vl) ≤ m+1. Now for l = m+1 and m+2, a shortest u0–vi
paths P1 and P2 are given below.

P1 : un = u0, un−1, un−2, . . . , un−(m−1), vn−(m−1), vm+1 = vl, and
P2 : un = u0, un−1, un−2, . . . , un−(m−2), vn−(m−2), vm+2 = vl.

Also,
l(P1) = m + 1 and l(P2) = m. (14)

Further for l = m and m + 1, smallest v0–vi paths are as given below.

P3 : v0, u0, u1, u2, . . . , um, vl = vm, and

P4 : v0, u0, un−1, un−2, . . . , un−(m−1), vn−(m−1), vl = vm+1. We notice that

l(P3) = m + 2 and l(P4) = m + 2. (15)

From the above three equations, we conclude that e(u0) = m + 1 and e(v0) =
m + 2. Thus, e(u0) �= e(v0), and hence P (n, k) is not a self-centered graph. 
�
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Theorem 7. Let P (n, k) be a generalized Petersen graph with n even, k < n
2

and n be divisible by k. If n = kq then P (n, k) is a d-self-centered graph, where

d =

{
q
2 + �k+3

2 �, if k divides n
2 ,

� q+1
2 � + �k

2 � + 1, otherwise.

Proof. To prove the result, we consider the following sets of vertices in P (n, k).

• R1 : {u0, v0, vk, uk, uk−1, uk−2, . . . , u3, u2, u1} and R′
1 : {v1, v2, . . . , vk−1}

• R2 : {uk, vk, v2k, u2k, u2k−1, u2k−2, . . . , uk+1} and R′
2 : {vk+1, vk+2, . . . , v2k−1}

...
• Rq : {u(q−1)k, v(q−1)k, vqk, uqk, uqk−1, uqk−2, . . . , uqk−k+1} and

R′
q : {vk( q

2 −1), vk( q
2 −1)+1, . . . , v kq

2 −1}
We see that vertices of each Ri, i ∈ {1, 2, . . . , q}, induces a cycle of length

k + 3, vertices of each R′
i induces independent set and

⋃q
i=1(Ri ∪ R′

i) =
V (P (n, k)). Next, we find distances from u0 and v0 to other vertices of P (n, k).
It is sufficient to find the distances from u0 and v0 to vertices u1, u2, . . . , un

2
,

v0, u0, v1, v2, . . . , vn
2
. Here, we have following two cases.

Case 1. When k divides n
2 .

Since vertices of R1 induces a cycle u0, v0, vk, uk, . . . , u2, u1, u0 of length k+3,
we have

max{d(u0, x) : x ∈ R1} = max{d(v0, x) : x ∈ R1} = �k + 3
2

�. (16)

max{d(u0, x) : x ∈ R′
1} = max{d(v0, x) : x ∈ R′

1} = �k + 3
2

� + 1. (17)

We see that for any vertex x ∈ R2, d(u0, x) = d(u0, v0) + d(v0, vk) + d(vk, x)
and thus, we have

max{d(u0, x) : x ∈ R2} = �k + 3
2

� + 2, and (18)

max{d(u0, x) : x ∈ R′
2} = �k + 3

2
� + 3, (19)

and,

max{d(v0, x) : x ∈ R2} = �k + 3
2

� + 1, and (20)

max{d(v0, x) : x ∈ R′
2} = �k + 3

2
� + 2. (21)

Similarly, we get

max{d(u0, x) : x ∈ Rq} = �k + 3
2

� +
q

2
, and (22)
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for the vertices vj ∈ R′
q for j �= k(q−1)

2 and k(q−1)
2 + 1 when k is even, then

max{d(u0, x) : x ∈ R′
q, x �= v k(q−1)

2
, v k(q−1)

2 +1
} = �k + 3

2
� +

q

2
. (23)

For j = k(q−1)
2 , a shortest u0–vj path is given by

P : u0, u1, . . . , u k
2
, v k

2
, v k

2+k, v k
2+2k, . . . , v k

2+
k(q−1)

2
and thus d(u0, uj) = k+q

2 .
Due to symmetric structure of the graph, the same can be obtained for j =
k(q−1)

2 + 1.
Finally, consider vertices vj ∈ R′

q for j �= q(k−1)
2 when k is odd. Then

max{d(u0, x) : x ∈ R′
q, x �= v q(k−1)

2
} = �k + 3

2
� +

q

2
, (24)

and for j = q(k−1)
2 a shortest u0–vj path is given by

P ′ : u0, u1, . . . , u k+1
2
, v k+1

2
, v k+1

2 +k, v k+1
2 +2k, . . . , v k+1

2 +k( q
2 −1) of length k+q+1

2

and thus d(u0, uj) = k+q+1
2 .

Now, for the vertex v0, we obtain

max{d(v0, x) : x ∈ Rq} = �k + 3
2

� +
q

2
− 1. (25)

max{d(v0, x) : x ∈ R′
q} = �k + 3

2
� +

q

2
. (26)

From Eqs. (16)–(26), we conclude that e(u0) = e(v0) = q
2 + �k+3

2 �.
Case 2. When k does not divide n

2 .
Given that n = kq and k does not divide n

2 , so q is an odd integer. This means
k must be even. In this case, the distance between the vertex u0 and a vertex
in R1∪. . .∪R q−1

2
is the same as obtained in the Case 1. That is, the maximum

distance between u0 and any vertex from R q−1
2

is � q−1
2 �+�k+3

2 �. Next consider
the vertices from the region R q+1

2
. Now, because of the symmetry of P (n, k)

for an even n, the vertex farthest from u0 (v0) lie in the region R q+1
2

. The
vertex farthest from u0 and v0 are the vertices un

2
and vn

2
, respectively, at a

distance � q+1
2 � + �k

2 � + 1, and hence the result. 
�
Theorem 8. The generalized Petersen graph P (n, k) is not self-centered for
n = 4m(4m + 1) and k = 2m(4m − 1) for some positive integer m ≥ 1.

Proof. In this case, we find that vn
2

is the farthest vertex from both u0 and
v0 and have obtained that d(u0, vn

2
) = 4m + 2 and d(v0, vn

2
) = 4m + 1. So,

e(u0) = 4m + 2 and e(v0) = 4m + 1 and hence the given generalized Petersen
graphs are not self-centered in this case. 
�
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3 Self-centeredness of P (n, k) for Odd n

In this section, we first investigate self-centeredness of P (n, k) for k = 2. First
of all, we prove that P (5, 2) and P (7, 2) are self-centered graphs.

Theorem 9. The generalized Petersen graph P (n, 2) is 2- or 3-self-centered
graphs for n = 5 or 7, respectively.

Proof. For n = 5, the graph P (n, 2) is the well known Petersen graph and we
know that radius and diameter of P (5, 2) is two. Thus, P (5, 2) is 2-self-centered
graph.

Let us consider the vertices u0 and v0 in P (7, 2). The shortest path from u0 to
u1, u2, or u3 is through the edges in cycle C : u0, u1, u2, u3, u4, u5, u6, u0. So we
get that d(u0, u1), d(u0, u2), and d(u0, u3) are equal to 1, 2, and 3, respectively. A
shortest u0–vi path for i = 0, 1, 2, and 3 is (u0, v0), (u0, u1, v1), (u0, v0, v2), and
(u0, u1, v1, v3) with lengths 1, 2, 2, and 3, respectively. Similarly, a shortest v0−ui

path for i = 0, 1, 2, and 3 is (v0, u0), (v0, u0, u1), (v0, v2, u2), (v0, v2, u2, u3) with
lengths 1, 2, 2, and 3, respectively. Further, a shortest v0–vi path for i = 1, 2, and
3 is (v0, u0, u1, v1), (v0, v2), and (v0, v5, v3) with lengths 3, 1, and 2 respectively.
From this we can say that e(u0) = e(v0) = 3. Hence P (7, 2) is a 3-self-centered
graph. 
�
Theorem 10. The generalized Petersen graph P (n, 2) is not self-centered for
odd integers n ≥ 9.

Proof. We take n = 4m+ 1 or 4m+ 3 for some positive integer m ≥ 2. We shall
find d(u0, ui), d(u0, vi), d(v0, ui), and d(v0, vi) for i ∈ {1, 2, . . . , �n

2 �}. First, we
consider the vertex u0. We note that d(u0, ui) = i for i = 1, 2, 3, and 4.

For an even index i, 6 ≤ i ≤ 2m, a shortest u0–ui and u0–vi path is given
by Pi : u0, v0, v2, v4, . . . , vi, ui and P ′

i : u0, v0, v2, . . . , vi, where l(Pi) = i+4
2 and

l(P ′
i ) = i+2

2 . Now,

max{l(Pi) : 6 ≤ i ≤ 2m, i even} = m + 2. (27)
max{l(P ′

i ) : 6 ≤ i ≤ 2m, i even} = m + 1. (28)

For an odd index i, a shortest u0–ui and u0–vi path is given by Qi :
u0, v0, v2, v4, . . . , vi−1, ui−1, ui and Q′

i : u0, u1, v1, v3, . . . , vi, where l(Qi) = i+5
2

and l(Q′
i) = i+3

2 . If n = 4m + 1 then

max{l(Qi) : 5 ≤ i ≤ 2m − 1, i odd} = m + 2 (29)
max{l(Q′

i) : 5 ≤ i ≤ 2m − 1, i odd} = m + 1, (30)

and for n = 4m + 3, we get

max{l(Qi) : 5 ≤ i ≤ 2m + 1, i odd} = m + 3 (31)
max{l(Q′

i) : 5 ≤ i ≤ 2m + 1, i odd} = m + 2. (32)
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Next, we consider the vertex v0. For an even index i, 6 ≤ i ≤ 2m, a shortest
v0–ui and v0–vi path is given by Li : v0, v2, v4, . . . , vi, ui and L′

i : v0, v2, v4, . . . , vi,
where l(Li) = i+2

2 and l(L′
i) = i

2 .

max{l(Li) : 6 ≤ i ≤ 2m, i even} = m + 1. (33)
max{l(L′

i) : 6 ≤ i ≤ 2m, i even} = m. (34)

Next let i be an odd index. When n = 4m + 1, for 5 ≤ i < 2m − 1, a short-
est v0–vi path is given by Mi : v0, v2, v4, . . . , vi−1, ui−1, ui, vi and the length
of the path Mi is i+5

2 , and for i = 2m − 1, a shortest v0–vi path is M ′
i :

v0, v4m−1, v4m−3, . . . , v4m−(2m+1) with length m+ 1. When n = 4m+ 3, for 5 ≤
i < 2m + 1, a shortest v0–vi path is given by Ni : v0, v2, v4, . . . , vi−1, ui−1, ui, vi
and the length of the path Ni is i+5

2 , and for i = 2m + 1, a shortest v0–vi path
is N ′

i : v0, v4m+1, v4m−1, v4m−3, . . . , v4m−(2m−1) with length m + 1. Now, we get
the following.

max{l(Mi) : 5 ≤ i ≤ 2m − 3, i odd} = m + 1. (35)

max{l(Ni) : 5 ≤ i ≤ 2m − 1, i odd} = m + 2. (36)

From the Eqs. (27)–(36), we have

e(u0) =

{
m + 2, for n = 4m + 1
m + 3, for n = 4m + 3,

and

e(v0) =

{
m + 1, for n = 4m + 1
m + 2, for n = 4m + 3

Thus, e(u0) �= e(v0) and hence P (n, 2) is not self-centered graph. 
�
Corollary 1. The generalized Petersen graph P (n, k) is not self-centered for
odd integers n ≥ 9 and k = n−1

2 .

Proof. By the structure of generalized Petersen graph, for an odd integer n
we get that P (n, n+1

2 ) and P (n, n−1
2 ) are isomorphic. Since n+1

2 is relatively
prime with n, and n is odd, by Theorem 1 we get P (n, 2) and P (n, n+1

2 ) are
isomorphic and thus P (n, 2) and P (n, n−1

2 ) are isomorphic. Since, P (n, 2) is not
a self-centered graph for n ≥ 9 with odd n, P (n, n−1

2 ) is also not a self-centered
graph and hence the result. 
�

In the next theorem we prove that the generalized Petersen graph is a self-
centered graph when both n and k are odd, and n is divisible by k.

Theorem 11. Let P (n, k) be a generalized Petersen graph, where n and k are
both odd and k divides n. Then P (n, k) is a d-self-centered graph, where d =
q+k
2 + 1 and n = kq.



Self-centeredness of Generalized Petersen Graphs 151

Fig. 3. Generalized Petersen graph P (n, k) with both n and k odd, k divides n

Proof. Due to symmetric structure of P (n, k) we have d(u0, ui) = d(u0, un−i)
for i ∈ {1, 2, . . . , �n

2 �}. We consider the cycle C : u0, u1, u2, . . . , uk, vk, v0, u0 of
length k + 3, see Fig. 3, where C is highlighted by thick lines. Since u0, v0 ∈ C,
we have

max{d(u0, ui) : ui ∈ C} = max{d(v0, ui) : ui ∈ C} =
k + 3

2
. (37)

Next, we determine d(u0, ui), d(u0, vi), d(v0, ui), and d(v0, vi), where ui, vi /∈ C.
Let m = 1, 2, . . . , q−1

2 − 1, q−1
2 . We have following cases depending on the values

of i. In the first three cases, we consider m = 1, 2, . . . , q−1
2 − 1, and in the fourth

case we take m = q−1
2 .

Case 1. mk ≤ i < mk + k+1
2 , m = 1, 2, . . . , q−1

2 − 1.
Since mk ≤ i, we can write i = mk + j for j = 0, 1, 2, . . . , k−1

2 . Now, a
shortest u0–ui and v0–ui paths are given by the paths P1 and P2 respectively,
where

P1 : u0, v0, vk, v2k, . . . , vmk, umk, umk+1, . . . , umk+j

P2 : v0, vk, v2k, . . . , vmk, umk, umk+1, . . . , umk+j .

Moreover, l(P1) = m+ j+2 and l(P2) = m+ j+1. Both P1 and P2 obtain their
maximum length for m = q−1

2 − 1 and j = k−1
2 , i.e.

max{l(P1) : i < mk +
k + 1

2
} =

q + k

2
. (38)

max{l(P2) : i < mk +
k + 1

2
} =

q + k

2
− 1. (39)

Similarly, a shortest u0–vi and v0–vi paths are given by P3 and P4, respectively,
where

P3 : vi, vi−k, vi−2k, vi−3k, . . . , vi−mk, ui−mk, ui−mk−1, . . . , u0

P4 : v0, vk, v2k, . . . , vmk, umk, umk+1, . . . , umk+j , vmk+j
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Now, l(P3) = 1 + i − (k − 1)m and l(P4) = m + j + 2. Length of path P3 is
maximum for m = q−1

2 − 1 and corresponding value of i i.e. i = mk + k+1
2 − 1.

This gives

max{l(P3)} =
q + k

2
− 1. (40)

Also, the path P4 obtains its optimum length for m = q−1
2 −1 and j = k−1

2 , i.e.

max{l(P4)} =
q + k

2
. (41)

Case 2. mk + k+1
2 < i < mk + k, m = 1, 2, . . . , q−1

2 − 1.
Since mk+ k+1

2 < i < mk+k, we write i = mk+(k−x) for x = 1, 2, . . . , k−3
2 .

A shortest u0–ui and v0–ui paths are given below.

P5 : u0, v0, vk, v2k, . . . , vmk, vmk+k, umk+k, umk+(k−1), umk+(k−2), . . . , umk+(k−x)

P6 : v0, vk, v2k, . . . , vmk, vmk+k, umk+k, umk+(k−1), umk+(k−2), . . . , umk+(k−x)

We see that l(P5) = 3 +m+ x and l(P6) = 2 +m+ x. Now, maximum length of
the paths P5 and P6 are obtained when m = q−1

2 − 1 and x = k−3
2 , respectively.

Hence,

max{l(P5)} =
q + k

2
+ 1, and max{l(P6)} =

q + k

2
− 1. (42)

Further, shortest u0–vi and v0–vi paths are given by P7 and P8, respectively,
where

P7 : vi, vi−k, vi−2k, . . . , vi−mk, vn+i−mk−k, un+i−mk−k, un+i−mk−k−1, un+i−mk−k−2, . . . , u0

P8 : v0, vk, v2k, v3k, . . . , vmk, vmk+k, umk+k, umk+(k−1), umk+(k−2), . . . , umk+(k−x), vmk+(k−x)

Moreover, l(P7) = 2 + m + (m + 1)k − i and l(P8) = 3 + m + x, and so

max{l(P7)} =
q + k

2
− 1, and max{l(P8)} =

q + k

2
. (43)

Case 3. i = mk + k+1
2 , m = 1, 2, . . . , q−1

2 − 1.
In this case, a shortest u0–ui, v0–ui, u0–vi, and v0–vi paths are given by the

following paths P9, P10, P11, and P12, respectively, where

P9 : u0, v0, vk, v2k, . . . , vmk, umk, umk+1, umk+2, . . . , umk+ k+1
2

P10 : v0, vk, v2k, . . . , vmk, umk, umk+1, umk+2, . . . , umk+ k+1
2

P11 : vi, vi−k, vi−2k, . . . , vi−mk, ui−mk, ui−mk−1, ui−mk−2, . . . , u0

P12 : v0, vk, v2k, . . . , vmk, umk, umk+1, umk+2, . . . , umk+ k+1
2
, vmk+ k+1

2
.

Moreover, l(P9) = 2+m+ k+1
2 , l(P10) = 1+m+ k+1

2 , l(P11) = 1+i−(k−1)m, and
l(P12) = 2+m+ k+1

2 . These paths attain their maximum length for m = q−1
2 −1,

and hence we get
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max{l(P9)} =
q + k

2
+ 1,max{l(P10)} =

q + k

2
,max{l(P11)} =

q + k

2
,

and max{l(P12)} =
q + k

2
+ 1 (44)

Case 4. i = mk + l and m = q−1
2 , where l = 0, 1, 2, . . . , �k

2 �
Shortest u0–ui, v0–ui, and v0–vi paths are given by:

P13 : u0, v0, vk, v2k, . . . , v(m+1)k, u(m+1)k, u(m+1)k+1, . . . , u(m+1)k+l

P14 : v0, vk, v2k, . . . , v(m+1)k, u(m+1)k, u(m+1)k+1, . . . , u(m+1)k+l,

P15 : v0, vk, v2k, . . . , v(m+1)k, u(m+1)k, u(m+1)k+1, . . . , u(m+1)k+l, v(m+1)k+l.

We have l(P13) = 3 + m + l, l(P14) = 2 + m + l, and l(P15) = 3 + m + l,
respectively. Finally, the path P16 : vi, vi−k, vi−2k, . . . , vi−mk, ui−mk, ui−mk−1,
ui−mk−2, . . . , u0 gives a shortest u0–vi path and the length of the path P16 is
1 + m + i − mk. The path P16 attains its maximum length for m = q−1

2 and
i = mk + �k

2 �, i.e.

max{l(P16)} =
q + k

2
. (45)

From the Eqs. (38)–(45), we conclude that e(u0) = e(v0) = q+k
2 + 1. Thus,

generalized petersen graph is a d-self-centered graph, where d = q+k
2 + 1. 
�

In the theorem given below, we investigate self-centeredness of P (n, k) for
n = m(4m + 1) ± (m + 1) and k = 4m + 1.

Theorem 12. For n = m(4m + 1) ± (m + 1), k = 4m + 1, and any positive
integer m ≥ 2, the generalized Petersen graph is not a self-centered graph.

Proof. We have following two cases here.

Case 1. k = 4m + 1 and n = m(4m + 1) + (m + 1) = 4m2 + 2m + 1 for any
m ≥ 2.
In this case, v k−1

2
and vn−( k−1

2 ) are equivalently most distant vertices from u0 as

well as v0 and their path lengths are k−1
2 and k−1

2 +1, respectively. This implies
that, e(u0) = k−1

2 and e(v0) = k−1
2 + 1 and they differ by one.

Case 2. k = 4m + 1 and n = m(4m + 1) − (m + 1) = 4m2 − 1 for any m ≥ 2.
In this case, v k+1

2
and vn−( k+1

2 ) are equivalently most distant vertices from u0 as

well as v0 and their path lengths are k+1
2 and k+1

2 +1, respectively. This implies
that, e(u0) = k+1

2 and e(v0) = k+1
2 + 1 and the eccentricities differ by one.

In both the above cases we get that e(u0) �= e(v0). Hence, the generalized
Petersen graph is not a self-centered. 
�
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4 Computer Search and Concluding Remarks

We made an exhaustive computer search and found all possible values of n
and k for which P (n, k) are non self-centered. In this search, we have discarded
isomorphs of these generalized Petersen graphs using Theorem 1. We list all
non-isomorphic generalized Petersen graphs in Tables 1 and 2 and address their
theoretical proofs obtained in this paper.

Table 1. Non-self-centeredness of P (n, k), n odd

n k Theoretical support

n ≥ 9 k = 2 Theorem 9

n = m(4m+ 1) ± (m+ 1), m ≥ 2 k = 4m+ 1 Theorem 11

Table 2. Non-self-centeredness of P (n, k), n even

n k Theoretical support

n ≥ 4 k = n
2

Theorem 5

n = 4m+ 2, m is a positive integer k = n
2

− 1 Theorem 6

n = 4m(4m+ 1), m is a positive integer k = 2m(4m − 1) Theorem 8

For complete characterization, one has to prove theoretically that all gen-
eralized Petersen graphs P (n, k) other than those in Tables 1 and 2, and their
isomorphs are self-centered. Hence, we make the following conjecture.

Conjecture: The generalized Petersen graphs P (n, k) other than those in
Tables 1 and 2 and their isomorphs are self-centered.

Acknowledgement. We are thankful to the referees for their constructive and detail
comments and suggestions which improved the paper overall.
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