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Abstract. For a graph G, a complete bipartite subgraph of G is called
a biclique of G. For a weighted graph G = (V, E, w), where each edge
e ∈ E has a weight w(e) ∈ R, the Maximum Weighted Edge Biclique
(MWEB) problem is to find a biclique H of G such that

∑
e∈E(H) w(e)

is maximum. The decision version of the MWEB problem is known to
be NP-complete for bipartite graphs. In this paper, we show that the
decision version of the MWEB problem remains NP-complete even if the
input graph is a complete bipartite graph. On the positive side, if the
weight of each edge is a positive real number in the input graph G, then
we show that the MWEB problem is O(n2)-time solvable for bipartite
permutation graphs, and O(m+n)-time solvable for chain graphs, which
is a subclass of bipartite permutation graphs.

Keywords: Maximum Weighted Edge Biclique · Bipartite
permutation graphs · Chain graphs · NP-completeness · Graph
algorithms

1 Introduction

Let G = (V,E) be a graph. A biclique of G is a complete bipartite subgraph of
G. The Maximum Vertex Biclique (MVB) problem is to find a biclique of
G with maximum number of vertices. The decision version of the MVB prob-
lem is NP-complete for general graphs [1], but the MVB problem is polynomial
time solvable for bipartite graphs [1]. The Maximum Edge Biclique (MEB)
problem is to find a biclique in G with maximum number of edges. The decision
version of the MEB problem is NP-complete for general graphs [1] and it also
remains NP-complete for bipartite graphs [2]. Many researchers have also stud-
ied some other variations of these problems, see [1,3–5]. The Maximum Edge
Biclique problem was first introduced in [1] and further studied in [2,6–9]. The
MEB problem has applications in biclustering analysis techniques, where one is
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interested to capture the relationship between genes and conditions. The goal of
biclustering algorithms is to find a subset of genes J and a subset of conditions
C such that the change in the expression level of each j ∈ J with respect to each
c ∈ C is significant. More details about the application of the MEB problem
can be found in [3,8]. Since the MEB problem is also hard to approximate in
bipartite graphs within nδ for some δ > 0 [10,11] under certain assumptions such
as random 4-SAT or 3-SAT hardness hypothesis, researchers have also studied
the problem for subclasses of bipartite graphs. The MEB problem is polynomial
time solvable for the following subclasses of bipartite graphs: chordal bipar-
tite graphs, convex bipartite graphs and bipartite permutation graphs [8,12–16].
Some other hardness results are also available for the MEB problem based on
some assumptions [6,9,17,18]. In this paper, we study the weighted version of
the MEB problem.

The weighted version of the MEB problem, namely Maximum Weighted
Edge Biclique (MWEB) problem is also studied in literature, see [3–5,7].
Given a weighted graph G = (V,E,w), where each edge e ∈ E has a weight
w(e) ∈ R, the MWEB problem is to find a biclique C of G such that the sum
of the weights of edges of C is maximum. Note that the Maximum Weighted
Edge Biclique problem is the generalized version of the Maximum Edge
Biclique problem. So, the hardness results for the Maximum Edge Biclique
problem are also valid for the Maximum Weighted Edge Biclique problem.
Given a graph G and an integer k > 0, the Weighted Edge Biclique Deci-
sion Problem (WEBDP) is to find a biclique C of G such that the sum of edge
weights of C is at least k. In this paper, we show that WEBDP is NP-complete
even for complete bipartite graphs.

There exists a restricted version of the MWEB problem, namely the S-
MWEB problem, where S is a subset of real numbers from which edge weights
are taken and the input graph is a bipartite graph. In 2008, Tan [7] proved that
for a wide range of choices of S, no polynomial time algorithm can approximate
the S-MWEB problem within a factor of nε for some ε > 0 unless RP=NP. He
also proved that the decision version of the S-MWEB problem is NP-complete
even for S = {−1, 0, 1}. In this paper, we show that this problem remains NP-
complete when S = {1,−M} (M > |E(G)|). On the positive side, we show
that for a set S of positive real numbers, the S-MWEB problem is quadratic
time solvable for bipartite permutation graphs and linear-time solvable for chain
graphs.

The rest of the paper is organized as follows. In Sect. 2, we give some per-
tinent definitions and notations used in the paper. In Sect. 3, we show that
the Weighted Edge Biclique Decision Problem is NP-complete even for
complete bipartite graphs. In Sect. 4, we show that the S-MWEB is O(n2)-time
solvable for bipartite permutation graphs if S is as set of positive real numbers.
In Sect. 5, we propose a linear-time algorithm to solve the S-MWEB problem in
O(m+n)-time for chain graphs (under the assumption that S is a set of positive
real numbers). Finally, Sect. 6 concludes the paper.
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2 Preliminaries

We are considering undirected, simple and connected graphs throughout this
paper. A graph G is called a bipartite graph if its vertex set can be partitioned
into two sets, say V1 and V2 such that every edge of G has one end point in
V1 and other end point in V2. The set {V1, V2} is called a bipartition of G. We
denote such a bipartite graph by G = (V1, V2, E), where E is the edge set of G.
A biclique of G is a complete bipartite subgraph of G. A biclique of a bipartite
graph is called maximal if it is not a proper subgraph of any other biclique of
G. Weight of a biclique is defined as the sum of weights of all edges belonging
in it. For a complete bipartite graph with bipartition {X,Y } such that |X| = s
and |Y | = t, we use the notation Ks,t. For a vertex v of a graph G, d(v) denotes
degree of v and N(v) denotes the open neighborhood of v which is the set of
vertices adjacent to v in G. For a set S ⊆ V (G), N(S) denotes the union of open
neighborhooods of all vertices in S. Throughout this paper, n denotes order
(number of vertices) of the graph and m denotes the size (number of edges) of
the graph under consideration.

A binary relation that is reflexive, symmetric and transitive on the same set,
is called an equivalence relation. For an equivalence relation ∼ on a set S, the
equivalence class of x ∈ S is the set containing all elements which are related to
x by ∼. We denote equivalence class of an element x by [x]. Equivalence classes
of two elements are either disjoint or identical. Disjoint equivalence classes give
a partition of the set on which the relation was defined.

3 NP-completeness

In this section, we show that the Weighted Edge Biclique Decision Prob-
lem (WEBDP) is NP-complete for complete bipartite graphs which is a very
restricted subclass of bipartite graphs.

Theorem 1. WEBDP is NP-complete for complete bipartite graphs.

Proof. Clearly, WEBDP is in NP. To prove the NP-hardness of the WEBDP for
complete bipartite graph, we make a polynomial reduction from the unweighted
version of the same problem for bipartite graphs. So, we prove a construction of
a weighted complete bipartite graph from an unweighted bipartite graph.

Let G = (X,Y,E) be an unweighted bipartite graph with |X| = n1 and
|Y | = n2. We construct a new graph H which is nothing but Kn1,n2 . Now, for
an edge e in H, we define its weight to be 1 if e ∈ E and −M otherwise, where
M > m = |E|. So, H is a weighted complete bipartite graph with weights as
any real number. Figure 1 illustrates the construction of H from G. The dashed
edges in Fig. 1 are the edges with weight −M .

Now to complete the proof of the theorem, we only need to prove the following
claim.
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Fig. 1. An illustration to the construction of H from G.

Claim. G has a biclique of size at least k > 0 if and only if H has a biclique of
weight at least k > 0.

Proof. The proof is easy and hence is omitted. ��
Hence, the theorem is proved. ��

We have observed that the WEBDP is NP-complete even for complete bipar-
tite graphs. In next sections, we will discuss S-MWEB problem with S as the
set of positive real numbers, which will be the restricted version of the MWEB
problem. Throughout Sects. 4 and 5, by MWEB problem we mean S-MWEB
problem, where S = R

+.

4 Bipartite Permutation Graphs

A graph G = (V,E) is called a permutation graph if there exists a one-to-
one correspondence between its vertex set and a set of line segments between
two parallel lines such that two vertices of G are adjacent if and only if their
corresponding line segments intersect. A graph G = (V,E) is called a bipartite
permutation graph if it is both bipartite and permutation graph. We describe two
characterizations of bipartite permutation graphs. A strong ordering (<X , <Y )
of a bipartite graph G = (X,Y,E) consists of an ordering <X of X and an
ordering <Y of Y , such that for all edges ab, a′b′, with a, a′ ∈ X and b, b′ ∈ Y :
if a <X a′ and b′ <Y b, then ab′ and a′b are edges in G. An ordering <X of
X has the adjacency property if, for every vertex in Y , its neighbors in X are
consecutive in <X . The ordering <X has the enclosure property if, for every pair
of vertices y, y′ of Y with N(y) ⊆ N(y′), the vertices of N(y′) \ N(y) appear
consecutively in <X . Strong ordering, adjacency property and enclosure property
described above give rise to the following results which are already proven facts
[19] providing two characterizations of bipartite permutation graphs.

Theorem 2. [19] The following statements are equivalent for a graph G =
(X,Y,E).
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1. G = (X,Y,E) is a bipartite permutation graph.
2. G has a strong ordering.
3. There exists an ordering of X which has the adjacency property and the enclo-

sure property.

For a connected graph, statements 2 and 3 of Theorem2 can be combined as
Lemma 1 which follows from the proof of Theorem1 in [19].

Lemma 1. [20] Let (<X , <Y ) be a strong ordering of a connected bipartite per-
mutation graph G = (X,Y,E). Then both <X and <Y have the adjacency prop-
erty and the enclosure property.

Throughout this section, G = (X,Y,E) denotes a weighted bipartite permuta-
tion graph such that |X| = k and |Y | = k′. Weights on the edges are some
positive real numbers. We assume that the strong ordering (<X , <Y ) of ver-
tices of G are already given for the input graph. This ordering is considered as
{x1, x2, . . . , xk} and {y1, y2, . . . , yk′} for X and Y respectively. We write u <X v
or u <Y v for vertices u, v of G if u appears before v in the strong ordering
of vertices of G. We write u < v when it is clear from the context that u, v
are coming from which side of the bipartition. For any edge xiyj , its weight is
denoted by wij .

Now, we define first and last neighbor of a vertex in G. Since both <X and
<Y satisfy adjacency property, for a vertex v of G, its neighbor set has some
consecutive vertices in <X or <Y . First neighbor of v is defined as the vertex
that appears first in the strong ordering of G in its neighbor set and last neighbor
of v is defined as the vertex that appears last in the strong ordering of G in its
neighbor set. For any vertex u of G, f(u) denotes the first neighbor of u and l(u)
denotes the last neighbor of u. For u in X, we denote f(u) by yαu

and l(u) by
yβu

where 1 ≤ αu ≤ βu ≤ k′. Combining above results, it can be observed that
for a bipartite permutation graph G with its strong ordering (<X , <Y ), it has
the following properties which will be used in the further discussion (See [21]):

1. Given any vertex of G, its neighbor set consists of some consecutive vertices
in <X or <Y .

2. For a pair of vertices u, v from X or Y , if u < v then f(u) ≤ f(v) and
l(u) ≤ l(v).

Now, we will discuss about the structure of a maximal biclique of G which will
be used in getting a maximum biclique of G.

4.1 Maximal Bicliques

Let G′ = (X ′, Y ′, E′) denotes a maximal biclique of G with X ′ = {xi, xi+1, . . . ,
xj} and Y ′ = {yi′ , yi′+1, . . . , yj′} then edge xiyi′ is called the first edge of G′.
We call an edge uv of G as a safe edge if it is the first edge of some maximal
biclique of G. We will see that one safe edge corresponds to exactly one maximal
biclique of G and vice versa.
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Lemma 2. Let G′ = (X ′, Y ′, E′) be a biclique of G with X ′ = {xi, xi+1, . . . , xj}
and Y ′ = {yi′ , yi′+1, . . . , yj′}, then G′ is a maximal biclique of G if and only if
the following holds for the graph G.

(a) l(xi) = yj′

(b) f(xj) = yi′

(c) l(yi′) = xj

(d) f(yj′) = xi

Proof. First, let us assume that G′ is a maximal biclique. We need to show
that conditions (a), (b), (c) and (d) are true. For (a), it is clear that l(xi) ≥ yj′

since G′ is a biclique. If equality holds, we are done. So, let l(xi) > yj′ , say
l(xi) = yt(> yj′). Since vertices are ordered according to the strong ordering,
all vertices of X ′ are adjacent to the vertices yj′+1, yj′+2, . . . , yt in G implying
that G′ is not a maximal biclique of G. Now for (b), suppose that f(xj) < yi′ ,
say f(xj) = yp(< yi′). All vertices of X ′ are adjacent to yp, yp+1, . . . , yi′−1 in
G because of the strong ordering of the vertices of G, but G′ was maximal.
Similarly (c) and (d) can be proven.

Conversely, we assume that the conditions (a), (b), (c) and (d) are true. Let,
if possible, G′ is not maximal. Then there exists a vertex v in G for which one of
the following conditions must be satisfied: (i) v < xi and vyj′ ∈ E(G), (ii) v <
yi′ and vxj ∈ E(G), (iii) v > xj and vyi′ ∈ E(G), and (iv) v > yj′ and vxi ∈
E(G). But none of the edges vyj′ , vxj , vyi′ , vxi can be present in G because of our
assumption that (a), (b), (c) and (d) are true. So, G′ is a maximal biclique. ��

For any edge e = uv, the biclique corresponding to e, is the subgraph induced
by the vertices {u, ..., l(v), v, ..., l(u)}. From Lemma 2, it can be observed that
any maximal biclique of G can be identified from its first edge (safe edge). Given
any edge uv (u ∈ X and v ∈ Y ) of G, one can easily check whether that is a safe
edge or not as follows: If first neighbor of last neighbor of v is equal to v and
first neighbor of last neighbor of u is equal to u, then uv qualifies as a safe edge.
We observe from Lemma 2 that this condition is both necessary and sufficient
for a biclique(corresponding to an edge uv) to be a maximal biclique. Hence,
we can say that number of safe edges in G is equal to the number of maximal
bicliques of G. We denote the maximal biclique corresponding to the safe edge e
by Ge. For every vertex u of G, we define an array called prefix sum array(psa)
of u of size d(u) as an array in which each value equals the sum of weights of
edges up to that position starting from f(u). The psa of xi(or yj) is denoted
by Ai[ ](or Bj [ ]). Figure 2 represents a bipartite permutation graph. Next, we
illustrate all the terminologies defined in this section using Fig. 2.

In bipartite permutation graph shown in Fig. 2, x2y2 is a safe edge since
f(l(x2)) = f(y5) = x2 and f(l(y2)) = f(x4) = y2 but x4y4 is not as f(l(x4)) =
f(y5) = x2 	= x4. Prefix sum array of the vertex x6 is A6 = {27, 37, 48, 99},
where A6[1] = 27, A6[2] = 27 + 10 = 37, A6[3] = 27 + 10 + 11 = 48 and
A6[4] = 27 + 10 + 11 + 51 = 99.
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Fig. 2. An example of bipartite permutation graph.

4.2 Our Algorithm

Our idea for finding a maximum biclique is to look at all possible maximal
bicliques of G and then return the one with the maximum weight. Since weights
are positive real numbers any maximum biclique is some maximal biclique of G.
The idea behind our algorithm is the following.

1. Find all safe edges of G.
2. Find psa of each vertex of G.
3. For each vertex u ∈ X,

for each v ∈ N(u) (choose vertex v in the given ordering)
if e = uv is a safe edge

find the maximal biclique Ge

find We, the weight of biclique Ge using psa of vertices.
4. Output the maximal biclique Ge∗ for which We∗ is maximum.

Note: we implement step 3 for each vertex in O(n)-time and hence overall com-
plexity of step 3 is O(n2). The detailed algorithm is given in Algorithm 1.

Theorem 3. Algorithm 1 outputs a maximum weighted edge biclique of the
bipartite permutation graph G.

Proof. The proof is omitted due to space constraints. ��

Theorem 4. Algorithm 1 runs in O(n2)-time.

Proof. For any edge e, it will take constant time to check whether an edge
qualifies as a safe edge or not by Lemma 2. So, preprocessing all safe edges take
O(m)-time as it scans all the edges one by one. For a vertex u of G, calculating
its psa will take d(u) amount of time. Hence, finding psa of each vertex will take
O(m)-time. For a vertex u ∈ X, step 3 can be implemented in O(n)-time. This
is possible because, for all the safe edges in which one of the end point is u, we
can find the weights of the corresponding bicliques in O(n)-time altogether. So,
overall step 3 takes O(n2)-time. Therefore, the algorithm returns a maximum
weighted edge biclique of G in O(m) + O(m) + O(n2) ≈ O(n2)-time. ��
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Algorithm 1. Algorithm for finding a maximum weighted edge biclique of a
bipartite permutation graph
Input: A bipartite permutation graph G = (X, Y, E) with the strong ordering of its

vertices
Output: A maximum weighted edge biclique of G
/* identifying safe edges */

for each edge e=uv in E do
if f(l(v))==v and f(l(u))==u then

mark e as a safe edge

/* finding prefix sum arrays of vertices of G */

/* If N(xi) = {ys1 , ys2 , . . . , ysd(xi)
}, Sxi denotes the set {1, 2, . . . , d(xi)} */

for each vertex xi from X do
for every j from Sxi do

Ai[j] = Ai[j − 1] + wisj

/* similarly we can find psa of vertices of Y */

max:=0
for each vertex x = xi from X do

sum:=0
/* S′

x denotes the set {ya1 , ya2 , . . . , yat} where a1 < a2 < . . . < at such

that xya1 , xya2 , . . . , xyat are safe edges */

for j = 1 to t do
/* finding maximal biclique corresponding to the safe edge e = xyaj

*/

Xe := {xi, xi+1, . . . , xp} // xp = l(yaj )
Ye := {yaj , yaj+1, . . . , yq} // yq = l(xi)
Ee := {uv|u ∈ Xe, v ∈ Ye}, Ge := (Xe, Ye, Ee)
if sum==0 then

for each vertex x′ = xb from Xe do
sum := sum + Ab[q − αx′ + 1] − Ab[aj − αx′ ]

We := sum

else
We := sum + W1 − W2, sum := We

/* W1 and W2 are the weights of the subgraphs

induced by the vertices {xc+1, . . . l(yaj ), yaj , . . . , yq} and

{xi, . . . xc, yaj−1 , . . . , yaj−1} respectively, where xc = l(yaj−1).
W1 and W2 are obtained using psa of vertices */

if We > max then
max := We, e∗ := e

return Ge∗ and max

5 Chain Graphs

A bipartite graph G = (X,Y,E) is called a chain graph if there exists an
ordering of vertices of X = {x1, x2, . . . , xn1} and an ordering of vertices
of Y = {y1, y2, . . . , yn2} such that N(x1) ⊆ N(x2) ⊆ . . . ⊆ N(xn1) and
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N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(yn2). Throughout this section, G = (X,Y,E) denotes
a weighted chain graph with |X| = n1 and |Y | = n2. Weights on the edges are
some positive real numbers. We assume that this ordering is given with the input
graph.

For u, v in G, we define u and v to be similar vertices if N(u) = N(v). For a
set S ⊆ V (G), we define S to be a similar neighborhood set if every two vertices
from S are similar.

Now, we define a relation ∼ on X as for u, v ∈ X, u ∼ v if and only if vertices
u and v are similar. One can easily observe that ∼ is an equivalence relation so
it provides a partition P of the set X. If we define the same relation on the set
Y , we will get a partition P ′ for the set Y . For any set S ∈ P , we keep the order
of the vertices in S as it was given in the input chain graph. Order of the sets
in P is also considered in such a way that taking union of all sets in that order
gives the actual ordering of the vertices. We write P = {X1,X2, . . . , Xk1} and
P ′ = {Y1, Y2, . . . , Yk2}, the partitions obtained for X and Y respectively from
the relation ∼. Recall that [x] denotes the equivalence class of the element x
from X.

Lemma 3. Let ∼ be the relation defined on X and Y as discussed above, then
partitions P and P ′ are of same size, i.e. |P | = |P ′|.
Proof. We have defined the relation in such a way that vertices in one set of
these partitions are similar to each other, so N(X1) ⊂ N(X2) ⊂ . . . ⊂ N(Xk1)
and N(Y1) ⊃ N(Y2) ⊃ . . . ⊃ N(Yk2) holds true. For any i < j, N(Xi) is a proper
subset of N(Xj), so, say, y ∈ N(Xj) such that y /∈ N(Xi). Since the graph is
connected, this give rise to atleast two sets in P ′. Hence, we get that k2 ≥ k1.
Similarly, N(Yi) ⊃ N(Yj) gives k1 ≥ k2 implying that |P | = k1 = k2 = |P ′|. ��

Now, we define the representative vertex for each set of P . For a set S ∈ P ,
a vertex from S is called the representative vetex of the set S, if it is the least
indexed vertex among all vertices of S. We denote representative vertex of a set
S by rS . Next we state some observations related to maximal bicliques of a chain
graph which leads to a maximum weighted edge biclique of G.

5.1 Maximal Bicliques

Lemma 4. Let G′ = (X ′, Y ′, E′) be a maximal biclique of G, then the following
holds:

(a) If x ∈ X ′, then [x] ⊆ X ′.
(b) If, y ∈ Y ′, then [y] ⊆ Y ′.

Proof. (a) Here, we will show that [x] ⊆ X ′ for any x ∈ X ′. Let x0 ∈ [x], as
x0 and x are similar vertices, N(x0) = N(x). Now, Y ′ ⊆ N(x) = N(x0) implies
that x0 is adjacent to all vertices of Y ′ in G. We must have these edges in G′ as
it is a maximal biclique. So, [x] ⊆ X ′ is true.

Proof of the part (b) is similar. ��
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Below, we give a result which describes the detailed structure of a maximal
biclique of a chain graph.

Lemma 5. Let G′ = (X ′, Y ′, E′) be a maximal biclique of G. Then there exists
an index 1 ≤ i ≤ k such that X ′ = Xi ∪ Xi+1 ∪ . . . ∪ Xk and Y ′ = N(rXi

).

Proof. We know that vertices of G have an ordering as {x1, x2, . . . , xn1} and
{y1, y2, . . . , yn2} for X and Y respectively. Let j be the minimum index from
{1, 2, . . . , n1} such that xj ∈ X ′ and there is some t such that xj ∈ Xt. Now
Lemma 4 tells that [xj ] = Xt ⊆ X ′ implying that xj = rXt

. Since j is the smallest
index, we get that {X1∪X2∪ . . .∪Xt−1}∩X ′ = φ. Now, as Y ′ ⊆ N(xj) and G is
a chain graph, X ′ = Xt ∪Xt+1∪ . . .∪Xk. Hence, for i = t, one part of the lemma
holds. For the remaining part, it is enough to show that N(xj) ⊆ Y ′. So, let y be
a neighbor of xj , then y is adjacent to all vertices in the set {xj+1, xj+2, . . . , xn1}
implying that y ∈ Y ′. Hence, Y ′ = N(rXi

) and X ′ = Xi ∪ Xi+1 ∪ . . . ∪ Xk. ��
It can be identified from Lemma5 that a chain graph has exactly k maximal

bicliques, where k is the number of distinct equivalence classes corresponding to
the relation ∼. Now, we define an array called partition sum array (ptsa) of size
k for each y ∈ Y . In a partition sum array of a vertex y, each value contains
the sum of weights of the edges incident on the vertex y coming from one set
of P . We denote the ptsa of yi by Ai[ ]. Figure 3 represents a chain graph. We
illustrate all the terminologies defined in this section using Fig. 3.

Fig. 3. An example of chain graph.

In the chain graph shown in Fig. 3, the partition P = {X1,X2,X3,X4},
where X1 = {x1, x2},X2 = {x3, x4},X3 = {x5} and X4 = {x6}. Vertices x3, x4

are similar but x1, x3 are not and all the sets in P are similar neighborhood
sets. Partition sum array of the vertex y1 is A1 = {98, 43, 3, 36}, where A1[1] =
55 + 43 = 98, A1[2] = 19 + 24 = 43, A1[3] = 3 and A1[4] = 36.

From, Lemma 5, we know the structure of maximal bicliques of G. One can
easily see that each maximal biclique can be identified from the representative
vertex of one of the Xi’s from P . We use the notation Gx for the maximal
biclique corresponding to the representative vertex x and, Wx for the weight of
the maximal biclique Gx, where x is the representative vertex of some set in P .
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5.2 Our Algorithm

Our basic idea for finding a maximum biclique in chain graphs is to find weight
of each maximal biclique of G and output the one with the maximum weight.
Since G has only k maximal bicliques, so, in order to get the desired biclique,
we need to find out the weights of these k bicliques. Since chain graph is a
subclass of bipartite permutation graph, we may also use Algorithm 1 to compute
a maximum weighted edge biclique of G. The ordering of vertices of G as given
in chain graph will also work for bipartite permutation graph. In this way, we
will get our desired output in O(n2)-time. Here, we propose an algorithm in
which we use a different method to find out the sum of each maximal biclique of
G which results in overall running time O(m + n). The difference here is to use
partition sum array instead of prefix sum array. The idea behind our algorithm
is the following.

Algorithm 2

1. Find the partitions P = {X1,X2, . . . , Xk} and P ′ = {Y1, Y2, . . . , Yk} from the
equivalence relation ∼, say R =< rXk

, rXk−1 , . . . , rX1 >.
2. Calculate the ptsa for each vertex of Y .
3. For each vertex u according to the order in which it appears in R,

find the maximal biclique Gu corresponding to the vertex u.
find Wu, the weight of biclique Gu using ptsa of vertices from Y ∩ V (Gu).

4. Output the maximal biclique Gu∗ for which Wu∗ is maximum.

Note that we implement step 3 for each vertex u ∈ R such that WrXj
is calculated

using ptsa of vertices of N(rXj
). The implementation details are omitted due to

space constraints. Proof of correctness of Algorithm 2 follows from the fact that
it considers weights of all maximal bicliques of G and any maximum biclique is
one of the maximal bicliques. So, we can directly state the following theorem.

Theorem 5. Algorithm 2 outputs a maximum weighted edge biclique of a chain
graph G.

To analyse the running time of Algorithm 2, we need to bring some notations
into consideration. We denote the cardinalities of sets in the partition P and P ′

by pi, qj for Xi, Yj respectively, i.e. |Xi| = pi and |Yj | = qj . Now, we give a result
which will be used in analyzing the running time of Algorithm 2.

Lemma 6. Let G be a chain graph with a partition obtained from the ∼ relation
defined on X as well as on Y . Then m ≥ kq1 + (k − 1)q2 + . . . + qk.

Proof. We know that the relation ∼ made the sets from the partitions P and P ′

to follow the strict inclusion as N(X1) ⊂ N(X2) ⊂ . . . ⊂ N(Xk) and N(Y1) ⊃
N(Y2) ⊃ . . . ⊃ N(Yk). Since Y1 ∪Y2 ∪ . . .∪Yk = Y and for i 	= j, Yi ∩Yj = φ, we

can write that m =
∑

y∈Y1

d(y)+
∑

y∈Y2

d(y)+ . . .+
∑

y∈Yk

d(y) = q1
k∑

i=1

pi + q2
k∑

i=2

pi +

. . . + qkpk ≥ kq1 + (k − 1)q2 + . . . + qk. The last inequality follows since |Xi| ≥ 1
for 1 ≤ i ≤ k. ��
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Theorem 6. Algorithm 2 runs in O(m + n)-time.

Proof. Step 1 will take O(n)-time as we have to go through all the vertices of G.
To find out the time taken by step 2, we see that we are doing some number of
additions during Algorithm 2. For each vertex y of Y , we are doing d(y) number
of additions, so overall step 2 takes

∑

y∈Y

d(y) = O(m) time. Now, to analyse step

3, we see that in our proposed algorithm, we are finding weights of maximal
bicliques in the order WrXk

,WrXk−1
, . . . ,WrX1

. For calculating WrXj
, we are

doing
j∑

i=1

qi+(j−1) number of additions, where j varies from k downto 1. Hence,

step 3 performs
k∑

i=1

qi +
k−1∑

i=1

qi + . . . + q1 + (k − 1) + (k − 2) + . . . + 2 + 1 + 0 ≤
kq1 + (k − 1)q2 + . . . + qk + k(k+1)

2 number of additions. Now we know that
m ≥ k(k+1)

2 since N(X1) ⊂ N(X2) ⊂ . . . ⊂ N(Xk1) and N(Y1) ⊃ N(Y2) ⊃
. . . ⊃ N(Yk2). Now using Lemma 6, we can say that step 3 will take O(m)-time
to execute. Clearly, choosing maximum among all the Wu’s will take O(k)-time.
Therefore, the Algorithm 2 returns a maximum weighted edge biclique of G in
O(n) + O(m) + O(m) + O(k) ≈ O(m + n) time. ��

6 Conclusion

Our paper deals with the Maximum Weighted Edge Biclique problem. In
this paper, we show that the decision version of the Maximum Weighted Edge
Biclique problem remains NP-complete even for complete bipartite graphs,
which is a subclass of bipartite graphs. On the positive side, we show that for
the input graph G, if the weight of each edge is a positive real number, then the
MWEB problem is O(n2)-time solvable for bipartite permutation graphs and
O(m+n)-time solvable for chain graphs. It will be interesting to try linear-time
algorithm for bipartite permutation graphs, as for the unweighted graph this
problem is linear-time solvable. One may also try linear-time algorithm for the
Maximum Edge Biclique problem in convex bipartite graphs.
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