
Manoj Changat
Sandip Das (Eds.)

LN
CS

 1
20

16

6th International Conference, CALDAM 2020
Hyderabad, India, February 13–15, 2020
Proceedings

Algorithms
and Discrete Applied
Mathematics

Lecture Notes in Computer Science 12016

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Manoj Changat • Sandip Das (Eds.)

Algorithms
and Discrete Applied
Mathematics
6th International Conference, CALDAM 2020
Hyderabad, India, February 13–15, 2020
Proceedings

123

Editors
Manoj Changat
University of Kerala
Thiruvananthapuram, India

Sandip Das
Indian Statistical Institute
Kolkata, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-39218-5 ISBN 978-3-030-39219-2 (eBook)
https://doi.org/10.1007/978-3-030-39219-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-39219-2

Preface

This volume contains the papers presented at CALDAM 2020: the 6th International
Conference on Algorithms and Discrete Applied Mathematics held during February
13–15, 2020, in Hyderabad, India. CALDAM 2020 was organized by the Department
of Computer Science and Engineering, Indian Institute of Technology, Hyderabad, and
the Association for Computer Science and Discrete Mathematics (ACSDM).

The conference had papers in the areas of graph algorithms, graph theory, combi-
natorial optimization, combinatorial algorithms, computational geometry, and com-
putational complexity. We received 102 submissions with authors from 15 countries.

The reputation of the conference was enhanced by its Program Committee and the
invited talks. We were able to get highly respected researchers to serve on our Program
Committee. Each submission received at least one detailed review and nearly all were
reviewed by three Program Committee members. The Program Committee had to take
tough decisions as the quality of papers were very much competitive. The committee
decided to accept 38 papers. The program also included two invited talks by Sergio
Cabello and Douglas West, who are prominent figures in discrete mathematics, graph
theory, and geometry.

As volume editors, we would like to thank all the authors for contributing
high-quality research papers to the conference. We are very much indebted to the
Program Committee members and the external reviewers for reviewing the papers at a
high standard within a very short period of time. We thank Springer for publishing the
proceedings in the Lecture Notes in Computer Science series. Our sincerest thanks are
due to the invited speakers Sergio Cabello (University of Ljubljana, Slovenia) and
Douglas West (Zhejiang Normal University, China, and University of Illinois, USA)
for accepting our invitation. We thank the Organizing Committee, chaired by
Subramaniyam Kalyanasundaram from Indian Institute of Technology, Hyderabad, for
the smooth functioning of CALDAM 2020 and Indian Institute of Technology,
Hyderabad, for proving the facilities for the smooth conduct of the conference. We are
immensely grateful to the chair of the Steering Committee, Subir Ghosh, for his active
help, support, and guidance throughout. We thank our sponsors Google Inc., the
National Board for Higher Mathematics (NBHM), the Department of Atomic Energy,
Government of India, for their financial support. We also thank Springer for its support
of the Best Paper Presentation Awards. We thank the EasyChair conference manage-
ment system, which was very effective in handling the entire review process.

Our sincerest thanks were also due to French speakers and IFCAM for arranging a
relevant pre-conference school (Indo-French School) on Algorithms and Combina-
torics. It provided an excellent overview to the participants about the research on
emerging graph theory and discrete mathematics techniques.

February 2020 Manoj Changat
Sandip Das

Organization

Program Committee

Amitabha Bagchi Indian Institute of Technology Delhi, India
Aritra Banik National Institute of Science Education and Research,

India
Niranjan Balachandran Indian Institute of Technology Bombay, India
Boštjan Brešar University of Maribor, Slovenia
Tiziana Calamoneri Sapienza University of Rome, Italy
Manoj Changat (Chair) University of Kerala, India
Victor Chepoi Aix-Marseille University, France
Sandip Das (Chair) ISI Kolkata, India
Josep Diaz Polytechnic University of Catalonia, Spain
Sumit Ganguly Indian Institute of Technology Kanpur, India
Daya Gaur University of Lethbridge, Canada
Sathish Govindarajan Indian Institute of Science Bangalore, India
Pavol Hell Simon Fraser University, Canada
Christos Kaklamanis University of Patras, Greece
Ramesh Krishnamurti Simon Fraser University, Canada
Van Bang Le University of Rostock, Germany
Andrzej Lingas Lund University, Sweden
Anil Maheshwari Carleton University, Canada
Bodo Manthey University of Twente, The Netherlands
Bojan Mohar Simon Fraser University, Canada
Apurva Mudgal Indian Institute of Technology Ropar, India
N. S. Narayanaswamy Indian Institute of Technology Madras, India
Sudebkumar Pal Indian Institute of Technology Kharagpur, India
David Peleg Weizmann Institute of Science, Israel
Iztok Peterin University of Maribor, Slovenia
Abhiram Ranade Indian Institute of Technology Bombay, India
M. V. Panduranga Rao Indian Institute of Technology Hyderabad, India
André Raspaud University of Bordeaux, France
Sagnik Sen Indian Institute of Technology Dharwad, India
Michiel Smid Carleton University, Canada
Éric Sopena University of Bordeaux, France
Joachim Spoerhase Aalto University, Finland
C. R. Subramanian Institute of Mathematical Science Chennai, India

Organizing Committee

N. R. Aravind Indian Institute of Technology Hyderabad, India
Swami Dhyanagamyananda Ramakrishna Mission Vivekananda Educational

and Research Institute, India
Partha P. Goswami Association for Computer Science and Discrete

Mathematics, India
Subrahmanyam

Kalyanasundaram
(Chair)

Indian Institute of Technology Hyderabad, India

Pritee Khanna Indian Institute of Technology Design
and Manufacturing Jabalpur, India

Rogers Mathew Indian Institute of Technology Hyderabad, India
Tathagata Ray BITS Pilani Hyderabad, India
Tarkeshwar Singh BITS Pilani Goa, India
Karteek Sreenivasaiah Indian Institute of Technology Hyderabad, India

Steering Committee

Subir Kumar Ghosh (Chair) Ramakrishna Mission Vivekananda Educational
and Research Institute, India

Gyula O. H. Katona Alfréd Rényi Institute of Mathematics,
Hungarian Academy of Sciences, Hungary

János Pach École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland

Nicola Santoro School of Computer Science, Carleton University,
Canada

Swami Sarvattomananda Ramakrishna Mission Vivekananda Educational
and Research Institute, India

Chee Yap Courant Institute of Mathematical Sciences,
New York University, USA

Additional Reviewers

Agrawal, Ravi
Alikhani, Saeid
Ashok, Pradeesha
Babu, Sobhan
Balakrishnan, Kannan
Bandyapadhyay, Sayan
Banerjee, Subhashis
Baswana, Surender
Beaudou, Laurent
Benkoczi, Robert
Bessy, Stéphane

Bhattacharya, Srimanta
Bhore, Sujoy
Božović, Dragana
Cabrera Martinez, Abel
Chakraborty, Dibyayan
Chellali, Mustapha
Choudhary, Keerti
Couetoux, Basile
Danda, Sravan
Das, Arun Kumar
de Graaf, Maurits

viii Organization

Dev, Subhadeep
Dey, Hiranya
Diner, Oznur Yasar
Dorbec, Paul
Dourado, Mitre
Fertin, Guillaume
Gahlawat, Harmender
Gologranc, Tanja
González Yero, Ismael
Groshaus, Marina
Gupta, Sushmita
Gurski, Frank
Hernández-Cruz, César
Hoeksma, Ruben
Iranmanesh, Ehsan
Jakovac, Marko
Kalinowski, Rafal
Kalyanasundaram, Subrahmanyam
Kare, Anjeneya Swami
Kelenc, Aleksander
Kern, Walter
Khan, Muhammad Ali
Khare, Niraj
Klasing, Ralf
Knauer, Kolja
Kowaluk, Miroslaw
Kraner Šumenjak
Krithika, R.
Kumar, Neeraj
Lee, Chia-Wei
Levcopoulos, Christos
Macgillivray, Gary
Madireddy, Raghunath Reddy
Misra, Neeldhara
Mittal, Rajat

Mulzer, Wolfgang
N. R., Aravind
Nandakumar, Satyadev
Nandi, Soumen
Nasre, Meghana
Natarajan, Aravind
Nederlof, Jesper
Ordyniak, Sebastian
P. D., Pavan
Padinhatteeri, Sajith
Pal, Sagartanu
Parter, Merav
Pattanayak, Debasish
Paulusma, Daniel
Protti, Fabio
Ramamoorthi, Vijayaragunathan
Ray, Chiranjit
S., Taruni
Sahoo, Uma Kant
Saivasan, Prakash
Samadi, Babak
Sandeep, R. B.
Saxena, Nitin
Serna, Maria
Sharma, Roohani
Singh, Nitin
Singh, Rishi Ranjan
Sivaraman, Vaidy
Tewari, Raghunath
Thangadurai, Ravindran
Togni, Olivier
Valicov, Petru
Venkitesh, S.
Zylinski, Pawel
Štesl, Daša

Organization ix

Abstracts of Invited Talks

Interactions Between Geometry, Graphs
and Algorithms

Sergio Cabello1,2

1 Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
2 Institute of Mathematics, Physics and Mechanics,

Slovenia
sergio.cabello@fmf.uni-lj.si

I will describe some of the interactions between graphs and geometry, with an algo-
rithmic slant. A part of the talk will be devoted to explain how tools from computa-
tional geometry become useful to efficiently manipulate distances in planar graphs and
graphs of bounded treewidth. In particular, I will explain the main ideas to compute in
subquadratic time the sum of the distances and the sum of the inverse of the distances
between all pairs of vertices in those graphs.

Another part of the talk will be devoted to the problem of finding a maximum
matching in a geometric intersection graph. In this part we will provide the main ideas
to compute a maximum matching in the intersection graph of n unit disks in the plane
in O nx=2

� �
time with high probability, where x is any constant, x[2, such that two

n� n matrices can be multiplied in O nxð Þ time.
The second part of the talk is based on joint work with Édouard Bonnet and

Wolfgang Mulzer available at https://arxiv.org/abs/1910.02123.

https://arxiv.org/abs/1910.02123

The Slow-Coloring Game on a Graph

Douglas West1,2

1 Departments of Mathematics, Zhejiang Normal University, Jinhua, China
2 University of Illinois, Urbana IL, USA

dwest@math.uiuc.edu

The slow-coloring game is played by Lister and Painter on a graph G. Initially, all
vertices of G are uncolored. In each round, Lister marks a non-empty set M of
uncolored vertices, and Painter colors a subset of M that is independent in G. The game
ends when all vertices are colored. The score of the game is the sum of the sizes of all
sets marked by Lister. The goal of Painter is to minimize the score, while Lister tries to
maximize it. The score under optimal play is the sum-color cost or simply cost of the
graph, written�s Gð Þ. The game was introduced by Mahoney, Puleo, and West [6], who
obtained various basic results on the problem. This talk presents results from this and
subsequent papers.

From the definition of the game, the cost satisfies a recursive formula:

�s Gð Þ ¼ max
;6¼M�V Gð Þ

Mj j þmin�s G� Ið Þð Þ;

where the minimum is taken over subsets I of M that are independent in G.
A general lower bound is given by the chromatic sum of the graph, written

P
Gð Þ,

which is the minimum of
P

v2V Gð Þ c vð Þ over all proper colorings c that color the
vertices using positive integers (introduced by Kubicka [4, 5]). The chromatic sum is
the outcome of the game when Lister follows the strategy of always marking all
uncolored vertices.

A greedy strategy for Painter keeps the cost of G to at most v Gð Þn when G has
n vertices, with strict inequality unless G has no edges. Wu [8] showed that this is
asymptotically sharp for Turán graphs, obtaining more generally�s Kr1;...;rk

� �� nþ Pi\j uriurj,

where ur is the maximum t such that
tþ 1
2

� �
� r (approximately

ffiffiffiffiffi
2r

p Þ.
On sparser families with bounded chromatic number, Painter can do better. We

begin with n-vertex trees. Mahoney, Puleo, and West [6] showed that the maximum
cost is 3n=2b c, achieved by trees, and the minimum cost is nþ un�1, achieved by stars.
Puleo and West [7] obtained a linear-time algorithm and inductive formula to compute
�s Gð Þ on trees, and they also determined all the extremal n-vertex trees. A triangular

number is a number having the form
k
2

� �
for k 2 N. With ur as defined above, these

results are the following.

Research supported by National Natural Science Foundation of China grants NNSFC 11871439
and 11971439.

Theorem 1 ([7]). Let T be a forest. If T has no edges, then �s Tð Þ ¼ V Tð Þj j. If v is is a
non-leaf vertex in T with at most one non-leaf neighbor, and R is the set of leaf
neighbors of v, with r ¼ Rj j, then

�s Tð Þ = �s T � R� vð Þþ rþ 1þ ur; if rþ 1 is not a triangular number;
�s T � Rð Þþ rþ ur; if r þ 1 is a triangular number:

�

Theorem 2 ([7]). The maximum of �s over n-vertex trees is 3n=2b c, achieved precisely
for trees containing a spanning forest in which every vertex has degree 1 or 3, except
for one vertex of degree 0 or 6 when n is odd. The minimum equals nþ un�1 and is
achieved only by stars, except for a few other star-like trees when n� 1 or n� 2 is a
triangular number.

These results are proved using a careful analysis of the optimal moves on stars
together with a bound arising from a separation of the vertices into two sets. Here G A½ �
denotes the subgraph of G induced by A, and A;B½ � is the set of edges with endpoints in
A and B.

Lemma 1 ([7]). If G is a graph and A;Bf g is a partition of V Gð Þ, then
�s G A½ �ð Þ þ�s G B½ �ð Þ��s Gð Þ��s G A½ �ð Þþ�s G B½ �ð Þ þ A;B½ �j j:

[7] showed also that on trees the cost equals a parameter due to Bonamy and Meeks [1]
called the “interactive sum choice number”. The parameters differ already on even
cycles.

Building on the results for trees, Gutowski, Krawczyk, Maziarz, West, Zajac, and
Zhu [3] studied bounds on �s Gð Þ for various families of sparse graphs. One general
upper bound, proved by a strategy for Painter motivated by Wu’s argument, uses a
partition of the vertices into subsets on whose induced subgraphs Painter has a good
strategy.

Theorem 3 ([3]). Let G be an n-vertex graph. If�s G Vi½ �ð Þ� ci Vij j for 1� i� t, where
V Gð Þ is the disjoint union of V1; . . .;Vt, then

�s Gð Þ�
X
i

ffiffiffiffiffiffiffiffiffiffi
ci Vij j

p !2

�
X
i

ci

 !
n:

When V1; . . .;Vn are independent sets, this bound yields
�s Kr1;...;rk

� �� nþ 2
P

i\j
ffiffiffiffiffiffi
rirj

p
, which was proved for k ¼ 2 in [6] and shows that Wu’s

lower bound on �s Kr1;...;rk

� �
is almost exact. Wu improved this to

nþ P
i\j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ri � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rj � 1

p
using a more difficult argument.

Using Theorem 3 and the basic upper bound for forests, [3] proved the following
upper bounds. A graph is k-degenerate if every subgraph has a vertex of degree at most
k, and it is acyclically k-colorable (see [2]) if it has a proper coloring with no 2-colored
cycle.

The Slow-Coloring Game on a Graph xv

Theorem 4 ([3]). If G is an n-vertex graph, then

(a) �s Gð Þ� 3kþ 4
4 n when G is k-degenerate (improving to 3kþ 3

4 n when k is odd),
(b) �s Gð Þ� 3n when G is a planar graph whose dual has a spanning cycle, and
(c) �s Gð Þ� 1

k ½
ffiffiffiffiffiffiffiffi
3=4

p
k � 1ð Þþ 1�2n when G is acyclically k-colorable and k is odd (the

coefficient is 2.4881 when k ¼ 3 and 3.9857 when k ¼ 5).

The most difficult results in [3] use a potential method. Here a potential function /
assigns a potential to each vertex and edge of the graph, depending on such properties
as vertex degree, membership in triangles, etc. The potential U Gð Þ of a graph G is the
sum of the potentials of the vertices and edges.

When Lister marks a set M in a graph G in family closed under taking subgraphs,
Painter will seek an independent set X�M such that Mj j �U Gð Þ � U G� Xð Þ. That is,
the total score in the current round should be at most the loss in potential by coloring
X. Since the potential is reduced to 0 when the game is over, always being able to find
such a set X yields�s Gð Þ�U Gð Þ. This technique yields the following results.

Theorem 5 ([3]). If G is an n-vertex graph with m edges, then

(a) �s Gð Þ� 8nþ 3mð Þ=5 when G is 4-colorable (hence�s Gð Þ� 3:4n when G is pla-
nar), and

(b) �s Gð Þ� 7=3ð Þn when G is outerplanar.

Except on the families of trees and complete multipartite graphs, the bounds given
above are not expected to be sharp. In particular, the worst known constructions for
n-vertex outerplanar graphs have cost 2n and for n-vertex planar graphs have cost
2.5n. Also, Puleo showed that the cartesian product of a 4-cycle and a path has cost
1:75n� 1, which is the highest known for bipartite planar graphs.

The slides for the talk and the papers [3, 6, 7] are available at https://faculty.math.
illinois.edu/west/pubs/publink.html.

References

1. Bonamy, M., Meeks, K.: The interactive sum choice number of graphs (2017). arXiv:1703.
05380

2. Borodin, O.V.: On acyclic colorings of planar graphs. Discrete Math. 25, 211–236 (1979)
3. Gutowski, G., Krawczyk, T., Maziarz, K., West, D.B., Zajac, M., Zhu, X.: The slow-coloring

game on sparse graphs: k-degenerate, planar, and outerplanar (submitted)
4. Kubicka, E.M.: The chromatic sum and efficient tree algorithms. ProQuest LLC, Ann Arbor,

MI, Thesis (Ph.D.)–Western Michigan University (1989)
5. Kubicka, E.: The chromatic sum of a graph: history and recent developments. Int. J. Math.

Math. Sci. 29–32, 1563–1573 (2004)
6. Mahoney, T., Puleo, G.J., West, D.B.: Online sum-paintability: the slow-coloring game on

graphs. Discrete Math. 341,1084–1093 (2018)
7. Puleo, G.J., West, D.B.: Online sum-paintability: slow-coloring of trees. Discrete Appl. Math.

262, 158–168 (2019)
8. Wu, H.: Personal Communication and Lecture at International Workshop on Graph Theory.

Ewha Woman’s University, Seoul, Korea, 5 January 2018

xvi D. West

https://faculty.math.illinois.edu/west/pubs/publink.html
https://faculty.math.illinois.edu/west/pubs/publink.html
http://arxiv.org/abs/1703.05380
http://arxiv.org/abs/1703.05380

Contents

Graph Algorithms

Complexity of Restricted Variant of Star Colouring. 3
M. A. Shalu and Cyriac Antony

Partitioning Cographs into Two Forests and One Independent Set 15
Pavol Hell, César Hernández-Cruz, and Anurag Sanyal

Monitoring the Edges of a Graph Using Distances 28
Florent Foucaud, Ralf Klasing, Mirka Miller, and Joe Ryan

The Lexicographic Method for the Threshold Cover Problem 41
Mathew C. Francis and Dalu Jacob

Approximating Modular Decomposition Is Hard . 53
Michel Habib, Lalla Mouatadid, and Mengchuan Zou

Vertex-Edge Domination in Unit Disk Graphs . 67
Sangram K. Jena and Gautam K. Das

Geometric Planar Networks on Bichromatic Points 79
Sayan Bandyapadhyay, Aritra Banik, Sujoy Bhore,
and Martin Nöllenburg

Hardness Results of Global Total k-Domination Problem in Graphs. 92
B. S. Panda and Pooja Goyal

Hardness and Approximation for the Geodetic Set Problem
in Some Graph Classes . 102

Dibyayan Chakraborty, Florent Foucaud, Harmender Gahlawat,
Subir Kumar Ghosh, and Bodhayan Roy

Maximum Weighted Edge Biclique Problem on Bipartite Graphs 116
Arti Pandey, Gopika Sharma, and Nivedit Jain

Graph Theory

Determining Number of Generalized and Double Generalized
Petersen Graph . 131

Angsuman Das

Self-centeredness of Generalized Petersen Graphs . 141
Priyanka Singh, Pratima Panigrahi, and Aakash Singh

Weak Roman Bondage Number of a Graph . 156
P. Roushini Leely Pushpam and N. Srilakshmi

On the Geodetic and Hull Numbers of Shadow Graphs 167
S. V. Ullas Chandran, Mitre C. Dourado, and Maya G. S. Thankachy

Indicated Coloring of Complete Expansion and Lexicographic
Product of Graphs . 178

P. Francis, S. Francis Raj, and M. Gokulnath

Smallest C2lþ 1-Critical Graphs of Odd-Girth 2kþ 1 184
Laurent Beaudou, Florent Foucaud, and Reza Naserasr

Ramsey Numbers for Line Graphs . 197
Huzaifa Abbasi, Manu Basavaraju, Eeshwar Gurushankar, Yash Jivani,
and Deepak Srikanth

D-Convexity Number and D-Number of Graphs and Graph Products 209
Bijo S. Anand, Prasanth G. Narasimha-Shenoi, and R. Sabeer Sain

On Cartesian Products of Signed Graphs . 219
Dimitri Lajou

List Distinguishing Number of pth Power of Hypercube and Cartesian
Powers of a Graph . 235

L. Sunil Chandran, Sajith Padinhatteeri, and Karthik Ravi Shankar

On Algebraic Expressions of Two-Terminal Directed Acyclic Graphs 248
Mark Korenblit and Vadim E. Levit

The Relative Oriented Clique Number of Triangle-Free
Planar Graphs Is 10. 260

Soura Sena Das, Soumen Nandi, and Sagnik Sen

Combinatorial Optimization

On the Minimum Satisfiability Problem . 269
Umair Arif, Robert Benkoczi, Daya Ram Gaur,
and Ramesh Krishnamurti

Waiting for Trains: Complexity Results . 282
Bjoern Tauer, Dennis Fischer, Janosch Fuchs, Laura Vargas Koch,
and Stephan Zieger

Distributed Algorithms

Oriented Diameter of Star Graphs . 307
K. S. Ajish Kumar, Deepak Rajendraprasad, and K. S. Sudeep

xviii Contents

Gathering over Meeting Nodes in Infinite Grid . 318
Subhash Bhagat, Abhinav Chakraborty, Bibhuti Das,
and Krishnendu Mukhopadhyaya

0-1 Timed Matching in Bipartite Temporal Graphs 331
Subhrangsu Mandal and Arobinda Gupta

Arbitrary Pattern Formation by Opaque Fat Robots with Lights 347
Kaustav Bose, Ranendu Adhikary, Manash Kumar Kundu,
and Buddhadeb Sau

Combinatorial Algorithms

Greedy Universal Cycle Constructions for Weak Orders 363
Marsden Jacques and Dennis Wong

A New Model in Firefighting Theory . 371
Rolf Klein, David Kübel, Elmar Langetepe, Jörg-Rüdiger Sack,
and Barbara Schwarzwald

An Algorithm for Strong Stability in the Student-Project Allocation
Problem with Ties . 384

Sofiat Olaosebikan and David Manlove

Computational Complexity

Overlaying a Hypergraph with a Graph with Bounded Maximum Degree. . . . 403
Frédéric Havet, Dorian Mazauric, Viet-Ha Nguyen, and Rémi Watrigant

Parameterized Algorithms for Directed Modular Width 415
Raphael Steiner and Sebastian Wiederrecht

On the Parameterized Complexity of Spanning Trees with Small
Vertex Covers . 427

Chamanvir Kaur and Neeldhara Misra

Minimum Conflict Free Colouring Parameterized by Treewidth 439
Pradeesha Ashok, Rathin Bhargava, Naman Gupta, Mohammad Khalid,
and Dolly Yadav

Computational Geometry

Planar Projections of Graphs . 453
N. R. Aravind and Udit Maniyar

Contents xix

New Algorithms and Bounds for Halving Pseudolines 463
Sergey Bereg and Mohammadreza Haghpanah

Algorithms for Radon Partitions with Tolerance . 476
Sergey Bereg and Mohammadreza Haghpanah

Author Index . 489

xx Contents

Graph Algorithms

Complexity of Restricted Variant
of Star Colouring

M. A. Shalu(B) and Cyriac Antony

IIITDM Kancheepuram, Chennai, India
{shalu,mat17d001}@iiitdm.ac.in

Abstract. Restricted star colouring is a variant of star colouring intro-
duced to design heuristic algorithms to estimate sparse Hessian matrices.
For k ∈ N, a k-restricted star (k-rs) colouring of a graph G is a func-
tion f : V (G) → {0, 1, . . . , k − 1} such that (i) f(x) �= f(y) for every
edge xy of G, and (ii) there is no bicoloured 3-vertex path(P3) in G
with the higher colour on its middle vertex. We show that for k ≥ 3,
it is NP-complete to decide whether a given planar bipartite graph of
maximum degree k and girth at least six is k-rs colourable, and thereby
answer a problem posed by Shalu and Sandhya (Graphs and Combina-
torics 2016). In addition, we design an O(n3) algorithm to test whether
a chordal graph is 3-rs colourable.

Keywords: Graph coloring · Star coloring · Restricted star coloring ·
Unique superior coloring · Vertex ranking · Ordered coloring ·
Complexity

1 Introduction

Many large scale optimization problems involve a multi-variable function f :
R

n → R. The (second-order) approximation of f using Taylor series expansion
requires an estimation of the Hessian matrix of f . Vertex colouring of graphs and
its variants have been found immensely useful as models for estimation of sparse
Hessian and Jacobian matrices (see [8] for a survey). To compute a compressed
form of a given sparse matrix, Curtis et al. [5] partitioned the set of columns of
the matrix in such a way that columns that do not share non-zero entries along
the same row are grouped together. By exploiting symmetry, Powell and Toint
[13] designed a heuristic algorithm for partitioning columns of a sparse Hessian
matrix implicitly using restricted star colouring. Restricted star colouring was
also studied independently in the guise of unique superior colouring, a gener-
alization of ordered colouring [2,9] (Ordered colouring is also known as vertex
ranking, and has applications in parallel processing and VLSI circuit design [6]).
Heuristic algorithms for restricted star colouring are given in ColPack software
suite [7] as well as [4,8]. Note that restricted star colouring appears unnamed in
[8] and under the name independent set star partition in [15].

First author is supported by SERB (DST), MATRICS scheme MTR/2018/000086.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-39219-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_1&domain=pdf
http://orcid.org/0000-0001-7503-801X
https://doi.org/10.1007/978-3-030-39219-2_1

4 M. A. Shalu and C. Antony

In this paper, we consider only vertex colourings of finite simple undirected
graphs. A k-star colouring of a graph G is a function f : V (G) → {0, 1, . . . , k − 1}
such that (i) f(x) �= f(y) whenever xy is an edge in G, and (ii) G contains no
bicoloured P4 (as subgraph). Let Vi := {v ∈ V (G) : f(v) = i}. Note that for
i �= j, every component of G[Vi ∪Vj] is a star (K1,p where p ≥ 0). A k-restricted
star (k-rs) colouring of a graph G is a function f : V (G) → {0, 1, . . . k − 1}
such that (i) f(x) �= f(y) whenever xy is an edge in G, and (ii) G contains no
bicoloured P3 with the higher colour on its middle vertex (i.e., no path x, y, z
with f(y) > f(x) = f(z)). In other words, whenever i < j, every vertex in Vj has
at most one neighbour in Vi. Note that for i < j, every non-trivial component of
G[Vi ∪ Vj] is a star with its centre in Vi. Hence, every k-restricted star colouring
is a k-star colouring; but the converse is not true [15].

The rs chromatic number of a graph G is defined as χrs(G) := min{k : G
admits a k-rs colouring}. We use n to denote the number of vertices unless
otherwise specified. The length of a shortest cycle in a graph G is called its girth.
A graph with maximum degree at most three is called a subcubic graph. The
known results on restricted star colouring include the following: (i) χrs(G) =
O(log n) for a planar graph G [9], (ii) χrs(T) = O(log n

log log n) for a tree T [9],
(iii) χrs(G) ≤ 7 for a subcubic graph G [2], (iv) χrs(Qd) = d + 1 for the
hypercube Qd [2], and (v) χrs(G) ≤ 4α(G) for a graph G of girth at least five
where α(G) is the independence number of G [15].

We focus on the following decision problems in this paper.

k-RS Colourability RS Colourability
Instance: A graph G Instance: A graph G, an integer k ≤ |V (G)|
Question: Is χrs(G) ≤ k? Question: Is χrs(G) ≤ k?

Note that a graph G is 2-rs colourable (or 2-star colourable) if and only if every
component of G is a star. Hence, 2-RS Colourability is in P.

Question: Is k-RS Colourability NP-complete for k ≥ 3 ? [15]

In this paper, we prove that for k ≥ 3, k-RS Colourability is NP-complete
for the class of planar bipartite graphs of maximum degree k and girth at least
six (in Sect. 3). This answers the above question in the affirmative. In addi-
tion, we present a linear-time algorithm to test whether a tree is 3-rs colourable
(in Sect. 4), and an O(n3) algorithm to test whether a chordal graph is 3-rs
colourable (in Sect. 5).

The organization of the rest of this paper is as follows. In Sect. 2, we present
necessary preliminaries. Sections 3, 4, 5 and 6 deal with planar bipartite graphs,
trees, chordal graphs and cobipartite graphs respectively.

2 Preliminaries

We follow West [16] for graph theory terminology and notation. We denote (i) by
a1, a2, . . . , an, a path with vertex set {a1, a2, . . . , an} and edges a1a2, a2a3, . . . ,

Complexity of Restricted Variant of Star Colouring 5

an−1an, and (ii) by (a1, a2, . . . , an), a cycle with vertex set {a1, a2, . . . , an} and
edges a1a2, . . . , an−1an, ana1. We call a vertex of degree three or more as
a 3-plus vertex. The following observations are pivotal to our results on 3-RS
Colourability. Proof of Observation 2 is easy, and hence omitted.

Observation 1. Let G be a graph. If f : V (G) → {0, 1, 2} is a 3-rs colouring
of G, then f has the following properties.

(P1) If a is a 3-plus vertex in G, then f(a) = 0 or 1.
(P2) If ab is an edge joining 3-plus vertices a and b in G, then f(b) = 1 − f(a).
(P3) Both end vertices of a P3 in G cannot be coloured 0 by f . So, if a, b, c is a

P3 in G such that f(a) = 0 and c is a 3-plus vertex, then f(c) = 1.

Note: Properties above are numbered as a mnemonic. Property P2 is about path
P2, and Property P3 is about path P3.

Proof. We prove the contrapositive of Property P1. Suppose f(a) = 2 for a ver-
tex a in G. Since f(a) = 2, by definition of 3-rs colouring, a has at most one
neighbour coloured 0 and at most one neighbour coloured 1. Hence, deg(a) ≤ 2.
This proves Property P1. Observe that whenever f(a), f(b) ∈ {0, 1}, either
f(b) = f(a) or f(b) = 1 − f(a). Therefore, Property P2 follows directly from
Property P1 as f(b) �= f(a). Contrary to Property P3, assume that there is a
path a, b, c in G with f(a) = f(c) = 0. Then, a, b, c is a bicoloured P3 with the
higher colour on its middle vertex b. This is a contradiction. �	
Observation 2. Let u, v, w, x be a path in a graph G, and let f be a 3-rs colour-
ing of G such that f(u) = 0 and f(v) = 1. Then, f(w) = 2, and therefore
f(x) = 0.

3 Planar Bipartite Graphs

In this section, we prove that for k ≥ 3, k-RS Colourability is NP-complete
for the class of planar bipartite graphs of maximum degree k and girth at least
six. First, we show that 3-RS Colourability is NP-complete for subcubic pla-
nar bipartite graphs of girth at least six using a reduction from Cubic Planar
Positive 1-in-3 Sat. To describe the latter problem, we introduce necessary
terminology assuming that the reader is familiar with satisfiability problems.

A CNF formula B = (X,C), where X is the set of variables and C is the
set of clauses, is called a positive CNF formula if no clause contains a negated
literal; in other words, the clauses are subsets of X. Let B = (X,C) be a positive
CNF formula with X = {x1, x2, . . . , xn} and C = {C1, C2, . . . , Cm}. The graph
of formula B, denoted by GB, is the graph with vertex set X ∪C and edges xiCj

for every variable xi in clause Cj (i = 1, 2, . . . , n, j = 1, 2, . . . , m). Figure 1a
shows the graph GB for the formula B = (X,C) where X = {x1, x2, x3, x4},
C = {C1, C2, C3, C4}, C1 = {x1, x2, x3}, C2 = {x1, x2, x4}, C3 = {x1, x3, x4}
and C4 = {x2, x3, x4}.

6 M. A. Shalu and C. Antony

Cubic Planar Positive 1-in-3 Sat (CPP 1-in-3 Sat)

Instance: A positive 3-CNF formula B = (X,C) such that
GB is a cubic planar graph

Question: Is there a truth assignment for X such that
every clause in C has exactly one true variable?

This problem is proved to be NP-complete by Moore and Robson [12] (Note: in
[12], the problem is called Cubic Planar Monotone 1-in-3 Sat. We use ‘positive’
rather than ‘monotone’ to be unambiguous). Observe that the graph GB is cubic
if and only if each clause contains three variables and each variable occurs in
exactly three clauses. As a result, in a CPP 1-in-3 Sat instance, the number
of variables equals the number of clauses, that is m = n.

Theorem 1. 3-RS Colourability is NP-complete for the class of subcubic
planar bipartite graphs of girth at least six.

Proof. 3-RS Colourability is in NP because given a 3-colouring f (certificate)
of the input graph, we can verify in polynomial time that all bicoloured paths
x, y, z satisfy f(y) < f(x).

Fig. 1. Example for construction of graph G from GB

To prove NP-hardness, we transform Cubic Planar Positive 1-in-3 Sat
(CPP 1-in-3 Sat) problem to 3-RS Colourability problem. Let B = (X,C)
be an instance of CPP 1-in-3 Sat where X = {x1, x2, . . . , xn} and C =
{C1, C2, . . . , Cn}. We recall that B is a positive CNF formula and GB is a cubic
planar graph. We construct a graph G from GB as follows. First, an intermediate

Complexity of Restricted Variant of Star Colouring 7

graph is constructed. For each clause Cj = {xj1 , xj2 , xj3}, replace vertex Cj in
GB by a triangle (cj1, cj2, cj3) and replace edges xj1Cj , xj2Cj , xj3Cj in GB by
edges xj1cj1, xj2cj2, xj3cj3 (see Fig. 1).

The graph G is obtained by subdividing each edge of this intermediate graph
exactly once. Let us call the new vertex introduced upon subdividing the edge
xicjk as yij and the new vertex introduced upon subdividing the edge cjkcj k+1

as bjk. We call (i) each vertex xi in the constructed graph G as the gadget
for variable xi, (ii) each 6-vertex cycle (cj1, bj1, cj2, bj2, cj3, bj3) as the gadget
for clause Cj , and (iii) each path xi, yij , cjk as the gadget that represents the
occurrence of variable xi in clause Cj .

Since the intermediate graph is a cubic planar graph of girth three (see
Fig. 1b), G is a subcubic planar bipartite graph of girth six (see Fig. 1c). The
graph GB can be constructed in O(n) time, and it has 2n vertices and 3n edges.
Also, G can be constructed from GB in O(n) time since there are only 10n
vertices and 12n edges in G. All that remains is to prove that G admits a 3-rs
colouring if and only if B is a yes instance of CPP 1-in-3 Sat. This is established
with the help of following claims.

(CL1) If f is a 3-rs colouring of G, then for each j, exactly one vertex among
cj1, cj2, cj3 is coloured 0 by f

(CL2) If f is a 3-rs colouring of G, then f(cjk) = 1 − f(xi) whenever xi, yij , cjk
is a path in G

Since xi’s and cjk’s are 3-plus vertices in G, f(xi), f(cjk) ∈ {0, 1} for 1 ≤
i, j ≤ n, 1 ≤ k ≤ 3 by Property P1. Observe that every pair of vertices from
cj1, cj2, cj3 is at a distance two. Since Property P3 forbids assigning colour 0 to
both end vertices of a P3, at most one vertex among cj1, cj2, cj3 is coloured 0
by f . Thus to prove claim CL1, it suffices to show that at least one of them is
coloured 0 by f . On the contrary, assume that f(cj1) = f(cj2) = f(cj3) = 1.
Since cj1, bj1, cj2 is a bicoloured P3 with colour 1 at the end vertices, its middle
vertex must be coloured 0. That is, f(bj1) = 0. Similarly, f(bj2) = 0. This means
bj1, cj2, bj2 is a P3 with 1 = f(cj2) > f(bj1) = f(bj2) = 0 ; a contradiction. This
proves claim CL1.

Next, we prove claim CL2 for k = 1. The proof is similar for other values of
k. Let xi, yij , cj1 be a path in G where 1 ≤ i, j ≤ n. Recall that f(xi), f(cj1) ∈
{0, 1}. If f(xi) = 0, then f(cj1) = 1 due to Property P3. So, it suffices to
prove that f(xi) = 1 implies f(cj1) = 0. On the contrary, assume that f(xi) =
f(cj1) = 1. Since xi, yij , cj1 is a bicoloured P3 with colour 1 at its end vertices,
its middle vertex yij must be coloured 0 (by f). Thus, we have f(yij) = 0 and
f(cj1) = 1. Therefore, by applying Observation 2 on paths yij , cj1, bj1, cj2 and
yij , cj1, bj3, cj3, we have f(bj1) = f(bj3) = 2 and f(cj2) = f(cj3) = 0 (see Fig. 2).
The equation f(cj2) = f(cj3) = 0 contradicts Property P3. This completes the
proof of claim CL2.

Now, we are ready to prove that G is 3-rs colourable if and only if B is a
yes instance of CPP 1-in-3 Sat. Suppose that G has a 3-rs colouring f . We
define a truth assignment A for X by setting variable xi ← true if f(xi) = 1,

8 M. A. Shalu and C. Antony

Fig. 2. f(xi) = f(cj1) = 1 leads to a
contradiction

Fig. 3. Scheme used to assign colours to
vertices bj1, bj2, bj3 (when f(cj1) = 0)

and xi ← false if f(xi) = 0. We claim that each clause Cj has exactly one true
variable under A (1 ≤ j ≤ n). Let Cj = {xp, xq, xr}. By claim CL1, exactly
one vertex among cj1, cj2, cj3 is coloured 0 under f . Without loss of generality,
assume that f(cj1) = 0 and f(cj2) = f(cj3) = 1. As xp, ypj , cj1 is a path in G,
f(xp) = 1 − f(cj1) = 1 by claim CL2. Similarly, f(xq) = 1 − f(cj2) = 0 and
f(xr) = 1 − f(cj3) = 0 (consider path xq, yqj , cj2 and path xr, yrj , cj3). Hence,
by definition of A, xp is true whereas xq and xr are false. Therefore, A is a truth
assignment such that every clause Cj has exactly one true variable (1 ≤ j ≤ n).

Conversely, suppose that X has a truth assignment A such that each clause
has exactly one true variable. We produce a 3-rs colouring f of G as follows. First,
colour vertices xi by the rule f(xi) := 1 if xi is true; otherwise f(xi) := 0. Next,
vertices yij and cjk are coloured. Assign colour 2 to all yij ’s. Whenever xi, yij , cjk
is a path in G, assign f(cjk) = 1−f(xi). This ensures that the path xi, yij , cjk is
not bicoloured. Finally, for each j = 1, 2, . . . , n, colour vertices bj1, bj2, bj3 using
the scheme shown in Fig. 3 (‘rotate’ the colours when f(cj2) = 0 or f(cj3) = 0;
by claim CL1, exactly one vertex among cj1, cj2, cj3 is coloured 0).

We claim that f is a 3-rs colouring of G. Since no two adjacent vertices in
G have the same colour, f is indeed a 3-colouring of G. The bicoloured P3’s
in G are either entirely inside a clause gadget, or of the form (i) yij , xi, yij′ ,
or (ii) yij , cjk, bjk′ . Every bicoloured P3 within clause gadgets has colour 0 at
its middle vertex (see Fig. 3). Every bicoloured P3 of the form yij , xi, yij′ or
yij , cjk, bjk′ has colour 2 at its end vertices because all yij ’s are coloured 2. So,
no bicoloured P3 in G has the higher colour at its middle vertex, and thus f is
a 3-rs colouring. Therefore, G is 3-rs colourable.

So, B is a yes instance of CPP 1-in-3 Sat if and only if G is 3-rs colourable.
This completes the proof for NP-hardness of 3-RS Colourability problem
when restricted to the class of subcubic planar bipartite graphs of girth at least
six. �	

Theorem 1 can be generalized using a simple operation. For a graph G
with Δ(G) = k, the graph G+ is defined as the graph obtained from G by
adding enough pendant vertices at every vertex v of G so as to ensure that
degG+(v) = k + 1. Hence, each vertex in G+ has degree 1 or k + 1. As we are
only adding pendant vertices, G+ preserves the planarity, bipartiteness and girth
of G. Moreover, we have Δ(G+) = k + 1. Further, this operation is useful in the
construction of graphs of desired rs chromatic number.

Complexity of Restricted Variant of Star Colouring 9

Observation 3. Let G be a graph with Δ(G) = k where k ∈ N. Then, G is k-rs
colourable if and only if G+ is (k + 1)-rs colourable.

Proof. If G is k-rs colourable, we can colour the new pendant vertices added to
G with a new colour k so that G+ is (k + 1)-rs colourable. Conversely, suppose
that G+ admits a (k + 1)-rs colouring f . Recall that for every vertex u of G+,
degG+(u) = 1 or k + 1. We claim that a vertex of degree k + 1 cannot receive
colour k under a (k + 1)-rs colouring. This is a generalization of Property P1,
and can be proved similarly. Hence, no non-pendant vertex in G+ is coloured
k by f . Observe that the set of non-pendant vertices in G+ is precisely V (G).
Since only colours 0 to k − 1 are used on non-pendant vertices of G+ (under f),
the restriction of f to V (G) is a k-rs colouring of G. �	
Since G+ preserves planarity, bipartiteness and girth of G, Observation 3 helps
us to generalize Theorem 1 as follows.

Theorem 2. For k ≥ 3, k-RS Colourability is NP-complete for the class of
planar bipartite graphs of maximum degree k and girth at least six.

4 Trees

The only known result on rs colouring of trees is that χrs(T) = O(log n/ log log n)
and the bound is tight [9]. We design a linear-time algorithm to test 3-rs coloura-
bility of trees. We sketch the outline of the algorithm, and leave the details for
the longer version of the paper.

A simple observation regarding 3-rs colouring of a tree T is that some sub-
graphs of T force colours on vertices of T . For instance, if u, v, w is a path in T
where u, v and w are 3-plus vertices, then every 3-rs colouring of T must assign
f(v) = 0 and f(u) = f(w) = 1 (by Properties P1 and P2). Colouring forced on
v and w this way in turn force colours on neighbours of w and their neighbours
(see Observation 2). Therefore, an algorithm to test 3-rs colourability must iden-
tify it when colours assigned to some vertices in a tree T force colours on other
vertices of T .

To make things simpler, we view the input tree T (not a path) as a rooted
tree with a 3-plus vertex as its root. The following definitions are helpful in
presenting the key ideas at play. Let T be a partially coloured tree. If u is a
vertex of T with degT (u) �= 2, the rooted subtree of T at u, denoted by Tu, is the
subgraph of T induced by u and its descendants in T with parent-child relations
and colours inherited from T . If we ‘split’ Tu at u, each resulting piece is called
a branch of T at u (i.e., each branch of T at u is Tu[Vi ∪ {u}] with inherited
parent-child relations and colours, where Vi is the vertex set for some component
of Tu − u).

Note that if T has a branch at a vertex v, then v must be a 3-plus vertex.
Consider a branch B of T (at a vertex v) comprised of a rooted subtree Tu and
a path u1, u2, . . . , ud, v where u1 = u and d ∈ N. We claim that if no vertex in
V (T)\V (Tu) is coloured, then the branch B can affect 3-rs colouring of the rest
of the tree only in a limited number of ways as follows.

10 M. A. Shalu and C. Antony

(I) B doesn’t admit 3-rs colouring extension. (For all other cases, B admits
3-rs colouring extension).

(II) For every 3-rs colouring extension φ of B, φ(v) = 0 (and no further restric-
tions).

(III) For every 3-rs colouring extension φ of B, φ(ud) = 0 and φ(v) = 1.
(IV) For every 3-rs colouring extension φ of B, φ(v) = 1 (and no further restric-

tion).
(V) For every 3-rs colouring extension φ of B, either (i) φ(v) = 0, or

(ii) φ(ud) = 0, φ(v) = 1.
(VI) For every 3-rs colouring extension φ of B, φ(v) = 0 or 1 (by Property P1,

and no further restriction).

This gives a partition of branches. We call the corresponding equivalence classes
as Class (I), Class (II), . . . , Class (VI). Similarly, we partition rooted subtrees
Tv as follows (based on how they affect 3-rs colouring on the rest of the tree).

(A) Tv doesn’t admit 3-rs colouring extension. (For all other cases, Tv admits
3-rs colouring extension).

(B) For every 3-rs colouring extension φ of Tv, φ(v) = 0 (and no further restric-
tions).

(C) For every 3-rs colouring extension φ of Tv, φ(v) = 1 and φ(w) = 0 for a
child w of v.

(D) For every 3-rs colouring extension φ of Tv, φ(v) = 1 (and no further restric-
tions).

(E) For every 3-rs colouring extension φ of Tv, either (i) φ(v) = 0, or
(ii) φ(v) = 1, φ(w) = 0 for a child w of v.

(F) For every 3-rs colouring extension φ of Tv, φ(v) = 0 or 1 (and no further
restriction).

(G) Tv is a single vertex (that is, v is a leaf in T).

The above partition induces an equivalence relation, and we call the equivalence
classes under this relation as Class (A), Class (B), . . . , Class (G).

For a branch B of T at a vertex v comprised of a rooted subtree Tu and a
path from u to v, the equivalence class of B can be determined from Table 1
based on the equivalence class of Tu and the distance d = distT (u, v) (proof is
omitted). The equivalence class of a rooted subtree Tv can be determined from
Fig. 4. (Let p, q, r, s, t denote respectively the number of Class (II) branches,
Class (III) branches, . . . , Class (VI) branches of T at v where p, q, r, s, t ≥ 0).
(Proof is omitted).

The algorithm visits vertices of T in bottom-up order (by post-order traver-
sal) and determines the equivalence classes of all branches and rooted subtrees of
T until it comes across a branch/rooted subtree that doesn’t admit 3-rs colouring
extension (i.e., a Class (I) branch or a Class (A) rooted subtree), or all vertices
of T are visited. In the former case, T is not 3-rs colourable. In the latter case,
T itself is in one of the equivalence classes Class (B), Class (C), . . ., Class(G),
and therefore, T is 3-rs colourable.

Theorem 3. 3-RS Colourability is in P for the class of trees.

Complexity of Restricted Variant of Star Colouring 11

Table 1. Equivalence class of branch
B in terms of the equivalence class of
Tu (column) and value of d (row)

B C D E F G

1 III I II III V VI

2 IV II V VI VI ”

3 II III IV V ” ”

4 V IV VI VI ” ”

5 IV II V ” ” ”

6 VI V VI ” ” ”

7 V IV ” ” ” ”

8 VI VI ” ” ” ”

9 ” V ” ” ” ”

≥10 ” VI ” ” ” ”

p ≥ 0, q + r ≥ 0 =⇒ Tv ∈ Class(A)
p ≥ 0, q = r = 0 =⇒ Tv ∈ Class(B)
If p = 0 and q + r ≥ 0,
. q + s = 0 =⇒ Tv ∈ Class(D)
. q + s = 1 =⇒ Tv ∈ Class(C)
. q + s ≥ 2 =⇒ Tv ∈ Class(A)
If p = q = r = 0,
. s = 0, t ≥ 0 =⇒ Tv ∈ Class(F)
. s = 1 =⇒ Tv ∈ Class(E)
. s ≥ 2 =⇒ Tv ∈ Class(B)
. s = t = 0 =⇒ Tv ∈ Class(G)

Fig. 4. Rules for finding the equiva-
lence class of a rooted subtree

5 Chordal Graphs

In this section, we show that 3-RS Colourability is polynomial-time decidable
for the class of chordal graphs. This is possible because triangles in a graph G
limit the number of 3-rs colourings of G. The following observation is a direct
consequence of Property P1.

Observation 4. Let G be a graph and (a, b, c) be a triangle in G. If a, b, c are
all 3-plus vertices in G, then G is not 3-rs colourable.

The following theorem shows that we can get rid of triangles in a given graph
without affecting its 3-rs colourability status.

Theorem 4. Let G be a graph and let (a, b, c) be a triangle in G. Let c be a
vertex of degree two in G. Let G′ be the graph obtained from G − c by attaching
two pendant vertices each at a and b (see Fig. 5). Then, G is 3-rs colourable if
and only if G′ is 3-rs colourable.

a b H

c

G

a b H

l1 l2 l3 l4

G′

Fig. 5. Graphs G and G′

12 M. A. Shalu and C. Antony

Proof. Suppose that G admits a 3-rs colouring. Then, G admits a 3-rs colouring
f such that f(c) = 2 (for instance, if a 3-rs colouring of G assign colour 2 at b,
then degG(b) = 2 and hence swapping colours at b and c gives a 3-rs colouring
of G that assign colour 2 at c). Now, the restriction of f to V (G − c) can be
extended into a 3-rs colouring of G′ by assigning colour 2 on the newly added
pendant vertices. Conversely, suppose that G′ admits a 3-rs colouring f ′. Since
a and b are 3-plus vertices in G′, f ′(a), f ′(b) ∈ {0, 1} by Property P1. Then, f ′

restricted to V (G − c) can be extended into a 3-rs colouring of G by assigning
colour 2 at c. �	

We can test whether a given connected chordal graph G is 3-rs colourable as
follows. List all triangles in G in O(n3) time. If G contains a triangle (a, b, c) with
all a, b, c being 3-plus vertices, then G is not 3-rs colourable by Observation 4.
If the graph passes this test, we can get rid of all triangles in it by repeated
application of Theorem 4 (see Fig. 6). The resultant graph will be a tree T on
at most n + 3

(
n
3

)
= O(n3) vertices. Thus, we can test 3-rs colourability of G in

O(n3) time by testing 3-rs colourability of T .

d a1 b1

c1

a2 b2

c2

d a1 b1

l1 l2 l3 l4

a2 b2

c2

d a1 b1

l1 l2 l3 l4

a2 b2

l5 l6 l7 l8

Fig. 6. Construction of a tree T from a chordal graph G such that χrs(T) ≤ 3 if and
only if χrs(G) ≤ 3

Theorem 5. 3-RS Colourability is in P for the class of chordal graphs.

6 Cobipartite Graphs

Star colouring and ordered colouring are colouring variants closely related to
restricted star colouring. A k-ordered colouring of a graph G is a function
f : V (G) → {0, 1, . . . , k − 1} such that (i) f(x) �= f(y) for every edge xy of
G, and (ii) every non-trivial path with the same colour at its end vertices con-
tains a vertex of higher colour [10]. Let us denote by χs(G) (resp. χo(G)), the
least integer k such that G admits a k-star (resp. k-ordered) colouring. Anal-
ogous to the problem k-RS Colourability (resp. RS Colourability), we
can define problems k-Star Colourability and k-Ordered Colourability
(resp. Star Colourability and Ordered Colourability).

For every graph G, χs(G) ≤ χrs(G) ≤ χo(G) [9]. It is known that the three
parameters can be arbitrarily apart [9]. On the other hand, all three parameters
are equal for cographs [11,14]. We prove that the same is true for cobipartite
graphs.

Theorem 6. For a cobipartite graph G, χs(G) = χrs(G) = χo(G).

Complexity of Restricted Variant of Star Colouring 13

Proof. Let G be a cobipartite graph whose vertex set is partitioned into two
cliques A and B. Let k = χs(G), and let f be a k-star colouring of G. To prove
the theorem, it suffices to show that G admits a k-ordered colouring. Clearly,
each colour class under f contains at most one vertex from A and at most one
vertex from B. Let {U0, U1, . . . , Uk − 1} be the set of colour classes under f . Let
t be the number of colour classes with cardinality two. We assume that t �= 0
(If t = 0, then k = n and f itself is a k-ordered colouring of G). W.l.o.g., we
assume that |Ui| = 2 for 0 ≤ i ≤ t − 1, and |Ui| = 1 for t ≤ i ≤ k − 1. Observe
that if ai ∈ Ui ∩ A, bi ∈ Ui ∩ B, aj ∈ Uj ∩ A and bj ∈ Uj ∩ B, then aibj /∈ E(G)
and ajbi /∈ E(G) (if not, the path aj , ai, bj , bi or the path ai, aj , bi, bj is a P4

in G bicoloured by f). Therefore, there are no edges between A ∩ ⋃t−1
i=0 Ui and

B ∩ ⋃t−1
i=0 Ui in G. We claim that h : V (G) → {0, 1, . . . , k − 1} defined as h(v) = i

∀v ∈ Ui is a k-ordered colouring of G. Suppose that u, v are distinct vertices in
G with h(u) = h(v) = j (where 0 ≤ j ≤ k − 1). Then, j ≤ t − 1. W.l.o.g., we
assume that u ∈ A and v ∈ B. Then, u ∈ A ∩ ⋃t−1

i=0 Ui and v ∈ B ∩ ⋃t−1
i=0 Ui.

Hence, every u, v-path Q in G must contain a vertex wQ from Ut ∪ · · · ∪ Uk − 1.
Since f(wQ) > f(u) and u, v,Q are arbitrary, h is indeed a k-ordered colouring
of G. �	
Since k-Ordered Colourability is in P for every k, and Ordered
Colourability in NP-complete for cobipartite graphs [3], we have the fol-
lowing corollary.

Corollary 1. For the class of cobipartite graphs, problems k-RS Coloura-
bility and k-Star Colourability are in P for all k, whereas problems RS
Colourability and Star Colourability are NP-complete.

7 Conclusion

Deciding whether a planar bipartite graph admits a 3-star colouring is NP-
complete [1]. We prove that deciding whether a subcubic planar bipartite graph
of girth at least six admits a 3-restricted star colouring is NP-complete. We
also present an O(n3) algorithm to test whether a chordal graph is 3-restricted
star colourable. The complexity of RS Colourability in classes of trees and
chordal graphs remains open.

References

1. Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R.:
Coloring with no 2-colored P4’s. Electron. J. Comb. 11(1), 26 (2004)

2. Almeter, J., Demircan, S., Kallmeyer, A., Milans, K.G., Winslow, R.: Graph 2-
rankings. Graphs Comb. 35(1), 91–102 (2019). https://doi.org/10.1007/s00373-
018-1979-4

3. Bodlaender, H.L., et al.: Rankings of graphs. SIAM J. Discrete Math. 11(1), 168–
181 (1998). https://doi.org/10.1137/S0895480195282550

https://doi.org/10.1007/s00373-018-1979-4
https://doi.org/10.1007/s00373-018-1979-4
https://doi.org/10.1137/S0895480195282550

14 M. A. Shalu and C. Antony

4. Bozdağ, D., Çatalyürek, Ü.V., Gebremedhin, A.H., Manne, F., Boman, E.G.,
Özgüner, F.: Distributed-memory parallel algorithms for distance-2 coloring and
related problems in derivative computation. SIAM J. Sci. Comput. 32(4), 2418–
2446 (2010). https://doi.org/10.1137/080732158

5. Curtis, A.R., Powell, M.J., Reid, J.K.: On the estimation of sparse Jacobian matri-
ces. J. Inst. Math. Appl. 13(1), 117–120 (1974). https://doi.org/10.1093/imamat/
13.1.117

6. Dereniowski, D.: Rank coloring of graphs. In: Kubale, M. (ed.) Graph Colorings,
pp. 79–93, Chap. 6. American Mathematical Society (2004). https://doi.org/10.
1090/conm/352/06

7. Gebremedhin, A., Nguyen, D., Patwary, M.M.A., Pothen, A.: ColPack: software for
graph coloring and related problems in scientific computing. ACM Trans. Math.
Softw. (TOMS) 40 (2013). https://doi.org/10.1145/2513109.2513110

8. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph
coloring for computing derivatives. SIAM Rev. 47(4), 629–705 (2005). https://doi.
org/10.1137/S0036144504444711

9. Karpas, I., Neiman, O., Smorodinsky, S.: On vertex rankings of graphs and its
relatives. Discrete Math. 338(8), 1460–1467 (2015). https://doi.org/10.1016/j.disc.
2015.03.008

10. Katchalski, M., McCuaig, W., Seager, S.: Ordered colourings. Discrete Math.
142(1–3), 141–154 (1995). https://doi.org/10.1016/0012-365X(93)E0216-Q

11. Lyons, A.: Acyclic and star colorings of cographs. Discrete Appl. Math. 159(16),
1842–1850 (2011). https://doi.org/10.1016/j.dam.2011.04.011

12. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput.
Geom. 26(4), 573–590 (2001). https://doi.org/10.1007/s00454-001-0047-6

13. Powell, M., Toint, P.L.: On the estimation of sparse Hessian matrices. SIAM J.
Numer. Anal. 16(6), 1060–1074 (1979). https://doi.org/10.1137/0716078

14. Scheffler, P.: Node ranking and searching on graphs. In: 3rd Twente Workshop on
Graphs and Combinatorial Optimization, Memorandum No. 1132 (1993)

15. Shalu, M.A., Sandhya, T.P.: Star coloring of graphs with girth at least five. Graphs
Comb. 32(5), 2121–2134 (2016). https://doi.org/10.1007/s00373-016-1702-2

16. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle
River (2001)

https://doi.org/10.1137/080732158
https://doi.org/10.1093/imamat/13.1.117
https://doi.org/10.1093/imamat/13.1.117
https://doi.org/10.1090/conm/352/06
https://doi.org/10.1090/conm/352/06
https://doi.org/10.1145/2513109.2513110
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1016/j.disc.2015.03.008
https://doi.org/10.1016/j.disc.2015.03.008
https://doi.org/10.1016/0012-365X(93)E0216-Q
https://doi.org/10.1016/j.dam.2011.04.011
https://doi.org/10.1007/s00454-001-0047-6
https://doi.org/10.1137/0716078
https://doi.org/10.1007/s00373-016-1702-2

Partitioning Cographs into Two Forests
and One Independent Set

Pavol Hell1 , César Hernández-Cruz2 , and Anurag Sanyal1(B)

1 School of Computing Science, Simon Fraser University, University Dr 8888,
Burnaby, BC V5A 1S6, Canada
{pavol,anurag sanyal}@sfu.ca

2 Facultad de Ciencias, Universidad Nacional Autónoma de México,
Av. Universidad 3000, Circuito Exterior S/N,
Ciudad Universitaria, 04510 CDMX, Mexico

chc@ciencias.unam.mx

Abstract. We consider a variation of arboricity, where a graph is par-
titioned into p forests and q independent sets. These problems are
NP-complete in general, but polynomial-time solvable in the class of
cographs; in fact, for each p and q there are only finitely many minimal
non-partitionable cographs. In previous investigations it was revealed
that when p = 0 or p = 1, these minimal non-partitionable cographs can
be uniformly described as one family of obstructions valid for all values
of q. We investigate the next case, when p = 2; we provide the com-
plete family of minimal obstructions for p = 2, q = 1, and find that they
include more than just the natural extensions of the previously described
obstructions for p = 2, q = 0. Thus a uniform description for all q seems
unlikely already in the case p = 2.

Our result gives a concrete forbidden induced subgraph character-
ization of cographs that can be partitioned into two forests and one
independent set. Since our proof is algorithmic, we can apply our char-
acterization to complement the recognition algorithm for partitionable
cographs by an algorithm to certify non-partitionable cographs by find-
ing a forbidden induced subgraph.

Keywords: Vertex arboricity · Independent vertex feedback set ·
Cograph · Forbidden subgraph characterization · Colouring · Partition

1 Introduction and Motivation

The vertex-arboricity of a graph G is the minimum integer p such that the
vertices of G can be partitioned into p parts each of which induces a forest. It is,
in general, NP-complete to decide if a graph G has arboricity less than or equal
to a fixed p, p ≥ 2 [9]. This is a situation analogous to deciding if a graph G has
chromatic number less than or equal a fixed q, q ≥ 3 [6]. Both problems can be

This research was supported by the first author’s NSERC Discovery Grant and the
second author’s SEP-CONACYT grant A1-S-8397.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 15–27, 2020.
https://doi.org/10.1007/978-3-030-39219-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_2&domain=pdf
http://orcid.org/0000-0001-7609-9746
http://orcid.org/0000-0002-5867-3801
https://doi.org/10.1007/978-3-030-39219-2_2

16 P. Hell et al.

efficiently solved on the class of cographs, and in [8], the authors have studied,
for cographs, a blended problem, whereby a graph is partitioned into p parts
inducing forests and q parts that are independent sets. Each of these problems
can be efficiently solved in the class of cographs, and in fact characterized by a
finite number of minimal cograph obstructions. This parallels the situation for a
similar blended problem studied earlier, where a cograph G is to be partitioned
into k independent sets and � cliques [2,10].

Cographs are one of the most popular and intensively studied classes of per-
fect graphs. We say that G is a cograph if it has no induced subgraph isomorphic
to P4, the path on 4 vertices. Equivalently [1], cographs can be recursively defined
as follows: (i) The graph on single vertex is a cograph; (ii) If G1, G2, ..., Gk are
cographs then so is their union, G1 ∪ G2 ∪ ... ∪ Gk; and (iii) If G is a cograph,
then so is its complement G. Since cographs are perfect, many intractable prob-
lems can be solved in polynomial time on the class of cographs [7]. Moreover, the
recursive description of cographs corresponds to a natural data structure (called
a co-tree [1]), and partition problems like the chromatic number or arboricity can
be solved in linear time directly on the co-tree. This is explicitly done for the
chromatic number in [1], and can be done in a very similar fashion for vertex-
arboricity. In fact, in [8], the authors similarly solve, for cographs, the blended
problem of partition into p forests and q independent sets (and for even more
general partitions). Furthermore, it follows from [3] that each of these problems
has a characterization by a finite set of minimal cograph obstructions. Here a
minimal cograph obstruction is a cograph G that does not admit a required parti-
tion, but each proper induced subgraph of G does admit such a partition. Thus a
cograph admits a required partition if and only if it does not contain an induced
subgraph isomorphic to a minimal cograph obstruction.

Minimal cograph obstructions for partition into k independent sets and �
cliques were described in [2,4,5,10]; they have (k + 1)(� + 1) vertices, and admit
a partition into k+1 independent sets of size �+1 as well as a partition into �+1
cliques of size k + 1. In particular, the unique minimal cograph obstruction for
partition into k independent sets is Kk+1, and the minimal cograph obstruction
for partition into � cliques is K�+1 (as is required for perfect graphs).

Minimal cograph obstructions for partition into p forests and q independent
sets were investigated in [8]. Consider first the special case of q = 0, that is
partitions into forests (arboricity). Since cographs are perfect, there are two
minimal cograph obstructions for being a forest, i.e., admitting a partition with
p = 1: these are the cycles C3 and C4. For partitions into p = 2 forests, there
turn out to be exactly 7 minimal cograph obstructions, forming the family A2

depicted in Fig. 1.
Each of these obstructions has a natural generalization to minimal cograph

obstruction for partition into p forests. For example, K5 generalizes to K2p+1,
3K3 generalizes to (p + 1)Kp+1, and so on. These 7 generalizations form a family
Ap, given by an explicit uniform description in [8]. They are all minimal cograph
obstructions to partition into p forests. Nevertheless, it turns out that there are
in general many additional minimal cograph obstructions, and in fact the number

Partitioning Cographs into Two Forests and One Independent Set 17

(a) K5 (b) 3K3 (c) 2K2 ⊕ (K1 +K2)

(d) 2 2K2

)
⊕ K3 (e) 2K3 ⊕ K2

(f) 3K2 +K1 (g) 2K2 +K3

)
⊕ K2

Fig. 1. The family A2.

of minimal cograph obstructions for partition to p forests grows exponentially
with p [8].

There is, however, a class of partition problems in which minimal cograph
obstructions can be uniformly described. This is the class of problems general-
izing the problem of independent vertex feedback set [8]. A q-colourable vertex
feedback set of a graph G is a set V of vertices such that G\V admits a q-
colouring. Thus a graph admits a q-colourable vertex-feedback set if and only
if it has a partition into p = 1 forest and q independent sets. It is shown in [8]
that there are precisely two minimal cograph obstructions for such a partition,

18 P. Hell et al.

namely Kq+3 and (q + 2)K2. (Note that for q = 0 we again obtain C3 and C4

as the minimal cograph obstructions to being a forest.) This family describes all
minimal cograph obstructions for partitions into p = 1 forest and q of indepen-
dent sets, uniformly for all values of q. As mentioned above, there is only one
minimal cograph obstruction for partitions into (p = 0 forests and) an arbitrary
number q of independent sets, namely Kq+1, which is again a family uniformly
described for all values of q. This motivates the natural question whether there
are other values of p for which such uniformity is possible.

In this paper we investigate the first open case of p = 2. In order to address
the question of possible unform description, we explicitly describe all minimal
cograph obstructions for partition into p = 2 forests and q = 1 independent
set. Each member of the family A2 again has a natural generalization as an
obstruction for such a partition. For example, K5 generalizes to K6, because an
independent set will take only one vertex and the remaining K5 cannot be parti-
tioned into 2 forests. Similarly, 3K3 = K3,3,3 generalizes to K3,3,3,3, 3K2 + K1 =
K2,2,2 ⊕K1 generalizes to K2,2,2,2 ⊕K1, 2K2 ⊕ (K1 +K2) = K2,2 ⊕K1,2 general-
izes to K2,2,2 ⊕ K1,2, and so on. Below, we present a complete set F of minimal
cograph obstructions for partition into p = 2 forests and q = 1 independent set.
The family F contains 9 cographs, and while most of them can be interpreted as
generalizations of members of A2, some appear to be definitely new. In particu-
lar, the last member, 9, of the family F , does not seem to arise from any member
of the family A2 in any obvious fashion. Thus the evidence suggests that a uni-
form description of minimal cograph obstructions for all (2, q)-partitions seems
unlikely.

The reference [8] presents a linear-time dynamic programming algorithm to
decide whether an input cograph G admits a (2, 1)-partition (or any other (p, q)-
partition. As an application of our result we explain how to certify a negative
outcome of the algorithm (i.e., a non-partitionable cograph G) by finding an
actual forbidden induced subgraph.

2 The List of Minimal Obstructions

For brevity, we call a partition of a graph G into p forests and q independent
sets, a (p, q)-partition of G. Thus, in the remainder of the paper, we describe all
minimal cograph obstructions for (2, 1)-partition.

We introduce the family of cographs F . The members of the family are:

1. K6

2. K3,3,3,3

3. K2,2,2 ⊕ K1,2

4. K2,2,2,2 ⊕ K1

5. 2K3 ⊕ K2,2

6. (K2,2 + K3) ⊕ K2,2

7. 2K2,2 ⊕ K3,3

8. 2K2,2 ⊕ 2K2,2

9. (K4 + K3,3,3) ⊕ K2

Partitioning Cographs into Two Forests and One Independent Set 19

Lemma 1. Each graph in F is a minimal cograph obstruction to (2, 1)-partition.

Proof. It is clear from their descriptions that each graph in the F family is a
cograph. We claim that each of these graphs is a minimal obstruction for (2, 1)-
partition.

Consider first K6: it does not have a (2, 1)-partition, because any forest in
K6 can have at most two vertices, and hence two forests can have at most four
vertices. This leaves at least two vertices, but no two vertices in K6 form an
independent set. Moreover, when a vertex is removed we have K5, which has an
obvious (2, 1)-partition where each forest is one edge and the independent set is
a single vertex. Therefore K6 is a minimal obstruction.

For the graph G = K3,3,3,3, we observe that any induced forest in G has at
most four vertices, and this happens only when the forest is a tree. Thus two
forests can cover at most eight vertices, and since K3,3,3,3 has no independent
set of size four, it does not have a (2, 1)-partition. When a vertex is removed, we
obtain K2,3,3,3, where we can take one independent set consisting of a part with
three vertices, and cover the vertices of the remaining two parts of size three by
stars centered at the remaining two vertices. Hence K3,3,3,3 is also a minimal
obstruction.

The proof for most of the remaining obstructions follows a similar approach,
and we skip the details (which are included in the last section). We do include
the proof for the last two obstructions on our list, which are more interesting.

Consider the graph 2K2,2⊕2K2,2 from 8. Any independent set must be on one
side of the join, and include at most four vertices. The remaining vertices contain
an induced 2

(
2K2

)⊕K3, which is one of the obstructions for (2, 0)-partition from
Fig. 1. When a vertex is deleted, we obtain the graph ((K1,2 + K2,2) ⊕ 2K2,2),
which has the following (2, 1)-partition: one independent set of four vertices on
the bigger side of the join, one forest consisting of 2K1,2 on the smaller side of
the join, and one forest which is a star on five vertices. Thus 2K2,2 ⊕ K2,2 is
indeed a minimal cograph obstruction for (2, 1)-partition.

Finally, we prove that the graph (K4 + K3,3,3) ⊕ K2 is a minimal cograph
obstruction for (2, 1)-partition. We consider what an independent set S must
contain in order for none of the minimal cograph obstructions for (2, 0)-partition
(from Fig. 1) to remain after S is removed. Note that our graph contains K2,3,3,3,
while in Fig. 1 there is both a K3,3,3 and a K1,2,2,2. Moreover, when S is removed
there must not remain a copy of K5. To satisfy just these restrictions, S must
contain one vertex of the K4, and three vertices of one entire part of the K3,3,3.
Since this is a maximal independent set, S must be this set; but then its removal
results in a graph containing an induced

(
2K2 + K3

) ⊕ K2 (the last graph in
Fig. 1). It remains to partition the graphs resulting from deleting a vertex from
(K4 + K3,3,3) ⊕ K2. If a vertex in the K4 is deleted, then we obtain a (2, 1)-
partition by taking the independent set S as above, and two stars centered at
the two vertices of the K2, each involving one 3-vertex part of the K3,3,3 and
one vertex of the K4. If a vertex of the K2 is deleted, we can take again the
independent set S, one forest consisting of an edge from the K4 and one part of
the K3,3,3, and one star centered at the other vertex of the K2. If a vertex v in

20 P. Hell et al.

the K3,3,3 is deleted, we can take for the independent set the vertices in the K2,
and partition the remaining vertices into two forests each consisting of one edge
of the K4 and one star on four vertices.

3 The Completeness of the List

We now prove that the list of minimal cograph obstructions for (2, 1)-partition
given in Lemma 1 is complete.

Theorem 1. A cograph has a (2, 1)-partition if and only if it is does not contain
an induced subgraph from F .

Proof. Let G be a cograph. It is easy to see that a disconnected cograph G admits
a (2, 1)-partition if and only if each connected component of G admits a (2, 1)-
partition. Thus we may assume G is a connected cograph which does not contain
an induced subgraph from F , and proceed to prove it has a (2, 1)-partition.

For brevity, we shall say that a graph is F -free if it does not contain F as an
induced subgraph, and F-free, if it doesn’t contain any member of the family F
as an induced subgraph.

Since G is connected, there exist cographs G1 and G2 such that G = G1⊕G2.
If G1 and G2 are forests, then G trivially has a (2, 1)-partition. So, at least one
of G1, G2 must contain an induced cycle. Without loss of generality, assume that
at least G1 has an induced cycle; since G1 is a cograph, the only cycles possible
are C3 or C4.

1. Assume G1 is C3-free. In this case G1 has an induced C4; moreover,
G1 is a bipartite graph. We will take a concrete bipartition and refer to (X,Y)
as the parts. If G2 is a forest, then we have a trivial (2, 1)-partition with two
independent sets and a forest. Thus we may assume that G2 also has a cycle.
We have the following two subcases:

(a) Both G1 and G2 are C3 free. This implies that both cographs G1 and
G2 are bipartite, and each has an induced C4. Both G1 and G2 cannot have more
than one connected component with C4 because G is 2K2,2 ⊕ 2K2,2-free. Hence
without loss of generality we may assume that G2 has exactly one component,
say A, with a C4, and the other components are trees. Note that A must be a
complete bipartite graph since G2 has no induced P4. The graph G1 must also
contain at least one connected component, say B, which is a complete bipartite
graph. If G1 has other components with an induced C4, then one of the parts
of A in G2 has exactly two vertices, because G is 2K2,2 ⊕ K3,3-free. If the other
connected components of G1 are trees, then one of the subgraphs A or B has a
bipartition with one of the parts having exactly two vertices, since G is K3,3,3,3-
free. In either case, we can obtain a (2, 1)-partition of G as follows. Suppose the
connected component A of the graph G2 has a bipartition (X,Y), where X has
exactly two vertices. The first forest is obtained by taking one vertex from X,
the entire other part Y , and the remaining tree components of G2. Since graph
G1 is also bipartite, another forest can be obtained by taking one of the parts of

Partitioning Cographs into Two Forests and One Independent Set 21

G1 and the remaining vertex in X. The remaining vertices form an independent
set in G1.

(b) G1 is C3 free but G2 contains a C3. Since G1 contains a K2,2 and
since G is 2K3 ⊕ K2,2-free and (K2,2 + K3) ⊕ K2,2-free, there is exactly one
component of G2 with a C3, and the other components of G2 are forests. Let the
set (v1, v2, v3) induce a C3 in G2, and let B be the component of G2 containing it.
Since B is a connected cograph, we have B = B1 ⊕B2 for cographs B1, B2. The
component B cannot contain an induced K4 and hence none of the graphs B1

and B2 have a C3. So, we assume without loss of generality that v1, v2 ∈ V (B1),
and v3 ∈ V (B2); moreover, B2 must be an independent set since G is K6-free. If
B2 has at least two elements, then B1 must be a K2, since G is K2,2,2⊕K1,2-free
and K2,2,2,2 ⊕ K1-free. Hence either B1 is a K2 or B2 is a K1. We construct a
(2, 1)-partition in both the cases.

When B1 = K2, then taking one of the parts of the bipartite graph G1 along
with one vertex in B1 we obtain one first forest in our partition. To construct
the second forest we include B2 along with the remaining vertex in B1 and the
remaining tree components of G2. The remainder in G1 is the independent set
in the partition.

When B2 consists of a single vertex, then taking this vertex with one of
the parts of the bipartite graph G1 yields the first forest in the partition. The
remaining parts of G2 form a forest which becomes the second forest in the
partition. The remaining part of G1 is our independent set in the (2, 1)-partition.

This concludes the first case.
2. Assume that G1 contains C3. Without loss of generality we can assume

that G2 is a forest as otherwise we have a K6, or a situation symmetric to the
case 1(b). We consider several possible cases, noting that in all the cases where
G2 has at least one edge, G1 does not contain K4, since G is K6-free.

(a) Suppose first that G2 has at least three vertices and at least one
edge. Consider a copy of C3 on v1, v2, v3 in G1, and the component B of G1

containing it. Since B is a connected cograph, we have B = B1⊕B2 for cographs
B1, B2. Since B does not contain a K4, neither B1 nor B2 can contain a C3.
So, we assume without loss of generality that v1, v2 ∈ V (B1), and v3 ∈ V (B2);
moreover, B2 is an independent set. If B1 has an induced C4, then B2 will be just
a single vertex because G is K2,2,2 ⊕K1,2-free and K2,2,2,2 ⊕K1-free. (Note that
G2 contains a copy of K1,2 or K1,2.) In conclusion, each component B = B1⊕B2

of G1 which contains a C3 either has a single vertex in B2 and a bipartite B1,
or an independent set B2 and a forest B1. Each component of G1 without a C3

is bipartite.
We find a (2, 1)-partition of the graph G as follows. One forest will be formed

by the vertices in G2. We partition G1 into a forest and an independent set; it
suffices to partition each component B of G1 separately. A component B =
B1 ⊕ B2 with C3 which has a single vertex v in B2 yields a star centered at v
and using one part of the bipartition of B1, with the other part of the bipartition
yielding an independent set. In a component B = B1 ⊕ B2 with C3 where B2

is an independent set and B1 is a forest, we trivially have a desired partition.

22 P. Hell et al.

Finally, each remaining component B is bipartite and one part can be taken as
a forest and the other part as an independent set.

(b) Assume G2 has exactly two vertices, which are adjacent. Since
G1 does not contain K4, it is is three colourable. One of the colour classes along
with one vertex of G2 forms one forest of the partition. Another colour class with
the other vertex of G2 yields another forest. The remainder is a single colour
class which forms the independent set of the partition.

(c) Assume G2 has exactly two vertices, which are not adjacent. If
G1 does not contain an induced K4, we obtain a partition of G as in case 2(b); so
we assume that G1 has a K4. Note that we may take G2 for the independent set
of a (2, 1)-partition, and it remains to find a partition of G1 into two forests (a
(2, 0)-partition). Clearly, it suffices to find such a partition for each component
B of G1 separately.

Note that while at least one component of G1 has a K4, there could be
other components B of G1 without a K4. Such components B must have a
(2, 0)-partition because otherwise G1 contains a minimal cograph obstruction for
(2, 0)-partition from the family A2, and adding the independent set G2 would
yield a member of F . (This can be easily seen by comparing the two families.)

Now we consider components B = B1 ⊕ B2 of G1 which do contain a K4.
Suppose first that both B1, B2 are bipartite. Note that both B1 and B2

cannot contain an induced a C4 since G is K2,2,2,2 ⊕ K1-free. If both B1 and B2

are forests, then we have a trivial partition of B into two forests. Hence, say, B1

has a C4 and B2 is a forest. In fact, B2 must be just an edge, say uv, because G
is K2,2,2,2 ⊕ K1-free and K2,2,2 ⊕ K1,2-free. In this case a (2, 0)-partition of B is
formed by taking one star centered at u with one part of the bipartition of B1,
and one star centered at v with the other part of B1.

Thus we may assume that one of B1, B2, say B1, contains a C3. Since G
is K6-free, B is K5-free, and so B2 must an independent set. Now we further
consider each component D = D1 ⊕ D2 of B1. At least one such component D′

must contain a C3, but there could also be bipartite components D; all must be
K4-free.

If B2 has at least two vertices, then exactly one component, namely D′, of
B1 has a cycle (specifically a C3). Bipartite components D cannot have a cycle
(i.e., a C4), because G is (K3 + K2,2) ⊕ K2,2-free. Moreover no other component
D �= D′ can have a C3, because G is 2K3 ⊕ K2,2-free. Hence if B2 has at least
two vertices then all the components D of B1, other than D′, are forests.

Suppose that v1, v2, v3 form a C3 in D. Since D = D1 ⊕ D2 is K4-free,
neither of the graphs D1,D2 has a C3. So we may assume v1, v2 ∈ V (D1) and
v3 ∈ V (D2); moreover we may assume D1 is a bipartite graph and D2 is an
independent set.

If the bipartite graph D1 contains a C4, then both D2 and B2 must consist
of a single vertex because G is K2,2,2,2 ⊕ K1-free.

Partitioning Cographs into Two Forests and One Independent Set 23

If D1 is a forest with more than the two vertices v1, v2, then it contains an
induced K1,2 or K1,2, Therefore, at least one of D2, B2 must be a single vertex,
since G is K2,2,2,2 ⊕ K1-free and K2,2,2 ⊕ K1,2-free.

Otherwise D1 is just the edge v1v2.
Finally, if there is no C3 in D, i.e., D is bipartite, then D1 is an independent

set.
We now describe a (2, 0)-partition of B = B1 ∪ B2. Recall that B2 is an

independent set, and B1 consists of components D = D1 ⊕ D2 where each D2 is
an independent set and each D1 is bipartite, with the following four possibilities:
(i) D1 contains a C4, in which case D2, as well as B2, has a single vertex; (ii)
D1 is a forest of more than two vertices, in which case D2 or B2 has a single
vertex; (iii) D1 is an edge v1v2; or (iv) D1 is an independent set. Moreover, in
cases (ii–iv), if B2 has more than one vertex, then all but one component D of
B1 are forests.

We first describe a (2, 0)-partition of B = B1 ∪ B2 when B2 has at least two
vertices. In this case, there is one component D′ = D′

1 ⊕ D′
2 of B1 with D′

1 a
forest with one or more vertices (cases (ii, iii)), and all other components D of
B are forests themselves. We obtain a (2, 0)-partition of G1 as follows. If D′

1 is
just an edge, say xy, the first forest consists of a star centred at the vertex x
covering the independent set D′

2, along with the rest of the forest components
of B′

1. The second forest is a star centred at the remaining vertex v covering the
independent set B2. If D′

1 has at least two vertices, then D′
2 is a single vertex

u, and we can take D′
1 together with all other components D as one forest; the

other forest will be the star centered at u and covering B2.
Now consider a component B = B1 ∪ B2 of G1 when B2 has a single vertex,

say v. We put together one forest for a (2, 0)-partition of B from the following
forests in the various components D = D1 ⊕ D2 of B. From components D of
type (i) we take the star centered at the single vertex of D2 and covering one
part of the bipartition of D1; from components D of type (ii-iv) we take the
forests D1. The other forest for a (2, 0)-partition of B will be formed by a star
centered at v and covering all the remaining vertices. (These are the other parts
of all D1 for components of type (i), as well as all D2 for components of type
(ii-iv); note that this is an independent set of vertices.)

(d) Finally, we assume that G2 is just a single vertex, say v. The proof
here is similar to the case 2(c), except that in the case (i), when D1 contains an
induced C4, we can only claim that B2 or D2 is a single vertex, and in the case
(ii), when D1 is a forest with more than two vertices, we cannot claim anything
about the size of B2 or D2 (Fig. 2).

Nevertheless, there is a (2, 1)-partition of the entire G. (Since G2 is a single
vertex v, we may use v to form a star for the forests of the partition, and we no
longer use G2 as the independent set.) Before describing the partition, recall that
G consists of a vertex v adjacent to all other vertices, and G\v has components
B = B1⊕B2 of two kinds, either B2 is a single vertex, or B2 is an independent set
with at least two vertices. For components B′ = B′

1 ⊕B′
2 of the first kind (where

B′
2 is a single vertex w), we only note that B′

1 consists of bipartite components

24 P. Hell et al.

D. For the components B of the second kind (where B2 is a larger independent
set), we distinguish components D′ = D′

1 ⊕ D′
2 in which D′

2 consists of a single
vertex z, and other components D = D1 ⊕ D2 where D2 is a larger independent
set and D1 is a forest. We now describe the first forest of a (2, 1)-partition of
G. It is a star centered at v and covering the sets D2 of all components D of
B′

1 for the components B′ of the first kind (where B′
2 is a single vertex), as well

as the sets B2 of all components B of the second kind. The second forest of the
partition contains, for each component B′ of the first kind (where B′

2 is a single
vertex w), a star centered at w and covering all first parts of the bipartitions of
all D1 of the components D of B′

1. It also contains, for each component B of
the second kind, and each component D′ in which D′

2 consists of a single vertex
z, a star centered at z and covering the first part of the bipartition of D′

1, and
containing D1 for each component D in which D1 is a forest. The remaining
vertices are easily seen to form an independent set which we take for the desired
(2, 1)-partition of G.

2

G2

v

G
1

...

...

B’
2

B
2

...

...

...

...

z

w

B

B’

...

...

...

...

D1
...

D

Fig. 2. An illustration of the case 2(d): one forest is indicated by large filled circles,
the other forest by double circles, the remainder is independent

Partitioning Cographs into Two Forests and One Independent Set 25

4 Conclusions

Theorem 1 implies that any cograph that is not (2, 1)-partitionable must have
a member of F as an induced subgraph. In [8] there is a linear-time dynamic
programming algorithm to recognize (2, 1)-partitionable cographs. It computes
for each cograph G the set of all triples (p, q, r) such that p + q + r ≤ 3, p ≤
2, q ≤ 1, and G has a set R with r vertices such that G\R is (p, q)-partitionable.
The cograph G is (2, 1)-partitionable if and only if (2, 1, 0) is included in this
set of triples. To compute these triples is trivial when G has one vertex, and
explicit formulas are given for computing them when G = G1 + G2 and when
G = G1⊕G2. Thus a bottom-up calculation on the cotree of G (a data structure
that captures the description of the recursive construction of G) allows us to
compute the triples for G. If the triple (2, 1, 0) is not present, we can apply a
top-down process to actually recover a forbidden induced subgraph from the
family F . We can identify in the cotree a cograph G′, subgraph of G, which
does not have a (2, 1)-partition, but all of whose descendants have a (2, 1)-
partition. Clearly, this means that G′ was obtained by a join operation, and
we may assume G′ = G1 ⊕ G2. Reading the proof of Theorem 1, we see that
the relevant information we need includes whether or not G1, G2 contain an
induced C3 and where (or whether they are bipartite), and similarly for C4,
or K4; we would also like to keep track of how many vertices they contain.
Moreover, if G1 or G2 are themselves obtained by a disjoint union operation,
we need similar information about their descendants. It is easy to see all this
information can be computed during the construction of the cotree, so we assume
we have it available for G′ and its descendants. Then the proof of Theorem 1
directly specifies how to find a forbidden induced subgraph, since G′ is known
to not be (2, 1)-partitionable. For example, if G1 and G2 are both bipartite
and both are joins of two bipartite cographs each of which contains a C4, then
case 1(a) of the proof explains we can identify (from those C4’s) an induced
copy of 2K2,2 ⊕ 2K2,2. The remaining cases are similar, with the exception of
components B without K4 in case 2(c). In this case we rely on the corresponding
results of [8], which identify forbidden induced subgraphs for a (2, 0)-partition, to
which we need to add one or both vertices of G2. It is not difficult to implement
all this in linear time. A detailed implementation will be presented in the third
author’s M.Sc. thesis.

5 The Remaining Proofs for Lemma 1

For the graph G = K2,2,2 ⊕ K1,2, we note that any subgraph of G on at least
four vertices contains an induced cycle. Hence, one forest in the partition can
cover at most three vertices and two forest can cover at most six vertices, and
since G has no independent set of size three, K2,2,2 ⊕K1,2 is an obstruction. For
H = K1,2,2 ⊕ K1,2, one of the two forests will be K1,2, and removing another
forest on three vertices, the remainder is an independent set on two vertices,
yielding a required (2, 1)-partition. For H = K2,2,2 ⊕K2, take one of the vertices

26 P. Hell et al.

of K2 with one of the parts in K2,2,2 to obtain one forest. We obtain the other
forest in similar way and the remainder is just an independent set of size two.
Hence, K2,2,2 ⊕ K1,2 is a minimal obstruction.

To prove that G = K2,2,2,2 ⊕K1, is an obstruction, note that any forest must
be a tree and hence can have at most three vertices. Two forests can cover at
most six vertices, and the remaining three vertices will contain an edge, and
hence not be independent. To prove that G is indeed minimal, note that both
H1 = K2,2,2,2 and H2 = K1,2,2,2 ⊕K1 have a (2, 1)-partition in which each forest
is a tree on three vertices and the independent set has two vertices.

For G = 2K3 ⊕ K2,2, one of the two forests can cover at most four vertices
and the other forest can cover at most three vertices. Hence, two forests can
cover at most seven vertices and there is no independent set of size at least
three in G. Hence, G does not have a (2, 1)-partition. Now we will show that
H1 = (K2 + K3) + ⊕K2,2 and 2K3 ⊕ K1,2 have a (2, 1)-partition. For H1, the
partition consists of one forest that is 2K2 and has four vertices. The other
forest is a tree on three vertices and the remainder is just an independent set
on two vertices. In H2, the first forest consists of the middle vertex in K1,2

along with one vertex in the each of the K3. The other forest has four vertices
consisting of 2K2 each. The remainder is an independent set on two vertices.
Thus G = 2K3 ⊕ K2,2 is indeed minimal.

Similarly, for G = (K2,2+K3) ⊕ K2,2, one of the two forests in G can have at
most five vertices, and then the other forest can have at most three vertices. The
remainder will have at least 3 vertices. Since G does not have an independent
set of size three, G does not have a (2, 1)-partition. We will prove that all the
graphs obtained from deleting one vertex from G have a (2, 1)-partition. That is,
H1 = (K1,2+K3)⊕K2,2, H2 = (K2,2+K2)⊕K2,2 and H3 = (K2,2+K3)⊕K1,2,
each have a (2, 1)-partition. For the graph H1, the partition has one forest on five
vertices consisting of K1,2 and K2,, and the other forest is just a K1,2, leaving
an independent set on two vertices.

For G = 2K2,2 ⊕ K3,3, two forests can cover at most ten vertices. Either
there is only one forest on six vertices and the other forest then can have at
most four vertices, or one can obtain two forest on five vertices each. There
is no independent set on four vertices., so G does not admit a (2, 1)-partition.
To see that G is indeed minimal, note that both H1 = (K2,2 + K1,2) ⊕ K3,3

and H2 = 2K2,2 ⊕ K2,3 have a (2, 1)-partition. For H1 one such partition has
one forest consisting of two copies of K1,2 and other forest is a K1,3, leaving
an independent set of three vertices. For H2, a partition can be obtained with
two forests which are stars on five vertices each, and the remainder is just an
independent set on three vertices.

References

1. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Dis-
crete Appl. Math. 3, 163–174 (1981)

2. Demange, M., Ekim, T., de Werra, D.: Partitioning cographs into cliques and stable
sets. Discrete Optim. 2, 145–153 (2005)

Partitioning Cographs into Two Forests and One Independent Set 27

3. Damaschke, P.: Induced subgraphs and well-quasi-orderings. J. Graph Theory 14,
427–435 (1990)

4. Epple, D.D.A., Huang, J.: A note on the bichromatic numbers of graphs. J. Graph
Theory 65, 263–269 (2010)

5. Feder, T., Hell, P., Hochstättler, W.: Generalized colourings (matrix partitions)
of cographs. In: Graph Theory in Paris, Trends in Mathematics, pp. 149–167.
Birkhauser Verlag (2006)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

7. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

8. González Hermosillo de la Maza, S., Hell, P., Hernández-Cruz, C., Hosseini, S.A.,
Valadkhan, P.: Vertex arboricity of cographs. arXiv:1907.07286 [math.CO]

9. Hakimi, S.L., Schmeichel, E.F.: A note on the vertex arboricity of a graph. SIAM
J. Discrete Math. 2, 64–67 (1989)

10. de Souza Francisco, R., Klein, S., Nogueira, L.T.: Characterizing (k, �)-
partitionable cographs. Electron. Notes Discrete Math. 22, 277–280 (2005)

http://arxiv.org/abs/1907.07286

Monitoring the Edges of a Graph
Using Distances

Florent Foucaud1(B), Ralf Klasing1, Mirka Miller2,3, and Joe Ryan4

1 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, Talence, France
florent.foucaud@gmail.com, ralf.klasing@labri.fr

2 School of Mathematical and Physical Sciences, The University of Newcastle,
Callaghan, Australia

3 Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic
4 School of Electrical Engineering and Computing, The University of Newcastle,

Callaghan, Australia
joe.ryan@newcastle.edu.au

Abstract. We introduce a new graph-theoretic concept in the area of
network monitoring. A set M of vertices of a graph G is a distance-edge-
monitoring set if for every edge e of G, there is a vertex x of M and a
vertex y of G such that e belongs to all shortest paths between x and y.
We denote by dem(G) the smallest size of such a set in G. The vertices
of M represent distance probes in a network modeled by G; when the
edge e fails, the distance from x to y increases, and thus we are able to
detect the failure. It turns out that not only we can detect it, but we can
even correctly locate the failing edge.

In this paper, we initiate the study of this new concept. We show that
for a nontrivial connected graph G of order n, 1 ≤ dem(G) ≤ n− 1 with
dem(G) = 1 if and only if G is a tree, and dem(G) = n − 1 if and only
if it is a complete graph. We compute the exact value of dem for grids,
hypercubes, and complete bipartite graphs.

Then, we relate dem to other standard graph parameters. We show
that dem(G) is lower-bounded by the arboricity of the graph, and upper-
bounded by its vertex cover number. It is also upper-bounded by five
times its feedback edge set number.

Then, we show that determining dem(G) for an input graph G is an
NP-complete problem, even for apex graphs. There exists a polynomial-
time logarithmic-factor approximation algorithm, however it is NP-hard
to compute an asymptotically better approximation, even for bipartite
graphs of small diameter and for bipartite subcubic graphs. For such
instances, the problem is also unlikely to be fixed parameter tractable
when parameterized by the solution size.

This paper is dedicated to the memory of Mirka Miller, who sadly passed away in
January 2016. This research was started when Mirka Miller and Joe Ryan visited Ralf
Klasing at the LaBRI, University of Bordeaux, in April 2015.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 28–40, 2020.
https://doi.org/10.1007/978-3-030-39219-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_3

Monitoring the Edges of a Graph Using Distances 29

1 Introduction

The aim of this paper is to introduce a new concept of network monitoring using
distance probes, called distance-edge-monitoring. Our networks are naturally
modeled by finite undirected simple connected graphs, whose vertices represent
computers and whose edges represent connections between them. We wish to be
able to monitor the network in the sense that when a connection (an edge) fails,
we can detect this failure. We will select a (hopefully) small set of vertices of the
network, that will be called probes. At any given moment, a probe of the network
can measure its graph distance to any other vertex of the network. Our goal is
that, whenever some edge of the network fails, one of the measured distances
changes, and thus the probes are able to detect the failure of any edge.

Probes that measure distances in graphs are present in real-life networks, for
instance this is useful in the fundamental task of routing [6,11]. They are also
frequently used for problems concerning network verification [2–4].

We will now proceed with the formal definition of our main concept. In this
paper, by graphs we refer to connected simple graphs (without multiple edges
and loops). A graph with loops or multiple edges is called a multigraph.

We denote by dG(x, y) the distance between two vertices x and y in a graph
G. When there is no path connecting x and y in G, we let dG(x, y) = ∞. For an
edge e of G, we denote by G − e the graph obtained by deleting e from G.

Definition 1. For a set M of vertices and an edge e of a graph G, let P (M, e)
be the set of pairs (x, y) with x a vertex of M and y a vertex of V (G) such that
dG(x, y) �= dG−e(x, y). In other words, e belongs to all shortest paths between x
and y in G.

For a vertex x, let M(x) be the set of edges e such that there exists a vertex
v in G with (x, v) ∈ P ({x}, e). If e ∈ M(x), we say that e is monitored by x.

A set M of vertices of a graph G is distance-edge-monitoring if every edge
e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty.
Equivalently,

⋃
x∈M M(x) = E(G).

We note dem(G) the smallest size of a distance-edge-monitoring set of G.

Note that V (G) is always a distance-edge-monitoring set of G, so dem(G) is
always well-defined.

Consider a graph G modeling a network, and a set M of vertices of G, on
which we place probes that are able to measure their distances to all the other
vertices. If M is distance-edge-monitoring, if a failure occurs on any edge of
the network (in the sense that the communication between its two endpoints is
broken), then this failure is detected by the probes.

In fact, it turns out that not only the probes can detect a failing edge, but
they can also precisely locate it (the proof of the following is delayed to Sect. 2).

Proposition 2. Let M be a distance-edge-monitoring set of a graph G. Then,
for any two distinct edges e and e′ in G, we have P (M, e) �= P (M, e′).

30 F. Foucaud et al.

Thus, assume that we have placed probes on a distance-edge-monitoring set
M of a network G and initially computed all the sets P (M, e). In the case a
unique edge of the network has failed, Proposition 2 shows that by measuring
the set of pairs (x, y) with x ∈ M and y ∈ V (G) whose distance has changed,
we know exactly which is the edge that has failed.

We define the decision and optimization problem associated to distance-edge-
monitoring sets.

Related Notions. A weaker model is studied in [2,3] as a network discovery
problem, where we seek a set S of vertices such that for each edge e, there exists
a vertex x of S and a vertex y of G such that e belongs to some shortest path
from x to y.

Distance-edge-monitoring sets are related to resolving sets and edge-resolving
sets, that also model sets of sensors that can measure the distance to all other
vertices in a graph. A resolving set is a set R of vertices such that for any two
distinct vertices x and y in G, there is a vertex r in R such that dG(r, x) �=
dG(r, y). The smallest size of a resolving set in G is the metric dimension of
G [12,20]. If instead, the set R distinguishes the edges of G (that is, for any pair
e, e′ of edges of G, there is a vertex r ∈ R with dG(x, e) �= dG(x, e′), where for
e = uv, dG(x, e) = min{dG(x, u), dG(x, v)}), we have an edge-resolving set [15].

Another related concept is the one of strong resolving sets [18,19]: a set R of
vertices is strongly resolving if for any pair x, y of vertices, there exists a vertex
z of R such that either x is on a shortest path from z to y, or y is on a shortest
path from z to x. It is related to distance-edge-monitoring sets in the following
sense. Given a distance-edge-monitoring set M , for every pair x, y of adjacent
vertices, there is a vertex z of M such that either x is on every shortest path
from z to y, or y is on every shortest path from z to x.

Another related concept is the one of an (strong) edge-geodetic set. A set S of
vertices is an edge-geodetic set if for every edge e of G, there are two vertices x, y
of S such that e is on some shortest path from x to y. It is a strong edge-geodetic
set if to every pair x, y of S, we can assign a shortest x − y path to {x, y} such
that every edge of G belongs to one of these

(|S|
2

)
assigned shortest paths [16].

Our Results. We first derive a number of basic results about distance-edge-
monitoring sets in Sect. 2 (where we also give some useful definitions).

In Sect. 3, we study dem for some basic graph families (like trees and grids)
and relate this parameter to other standard graph parameters such as arboricity
arb, vertex cover number vc and feedback edge set number fes. We show that

Monitoring the Edges of a Graph Using Distances 31

dem(G) = 1 if and only if G is a tree. We show that for any graph G of order
n, dem(G) ≥ arb(G). Moreover, dem(G) ≤ vc(G) ≤ n − 1 (with equality if and
only if G is complete). We show that for some families of graphs G, dem(G) =
vc(G), for instance this is the case for complete bipartite graphs and hypercubes.
Then we show that dem(G) ≤ 5fes(G) − 5 when fes(G) ≥ 2 (when fes(G) ≤ 1,
dem(G) = fes(G) + 1).

In Sect. 4, we show that Distance-Edge-Monitoring Set is NP-complete,
even for apex graphs (graphs obtained from a planar graph by adding an extra
vertex). Then, we show that Min Distance-Edge-Monitoring Set can be
approximated in polynomial time within a factor of ln(|E(G)|+1) by a reduction
to the set cover problem. Finally, we show that no essentially better ratio can be
obtained (unless P = NP), even for graphs that are of diameter 4, bipartite and
of diameter 6, or bipartite and of maximum degree 3. For the same restrictions,
the problem is unlikely to be fixed parameter tractable when parameterized by
the solution size. These hardness results are obtained by reductions from the set
cover problem.

We conclude our paper in Sect. 5. Due to the given space constraints, some
proofs are not included.

2 Preliminaries

We now give some useful lemmas about basic properties of distance-edge-
monitoring sets. We start with the proof of Proposition 2.

Proof (Proof of Proposition 2). Suppose by contradiction that there are two
distinct edges e and e′ with P (M, e) = P (M, e′). Since by definition, P (M, e) �=
∅, we have (x, v) ∈ P (M, e) (and thus (x, v) ∈ P (M, e′)), where x ∈ M and
v ∈ V (G). Thus, all shortest paths between x and v contain both e and e′.
Assume that on these shortest paths, e is closer to x than e′, and let w be
the endpoint of e that is closest to v. Then, we have (x,w) ∈ P (M, e) but
(x,w) /∈ P (M, e′): a contradiction. �	

An edge e in a graph G is a bridge if G − e has more connected components
than G. We will now show that bridges are very easy to monitor.

Lemma 3. Let G be a connected graph and let e be a bridge of G. For any vertex
x of G, we have e ∈ M(x).

Proof. Assume that e = uv. Since e is a bridge, we have dG(x, u) �= dG(x, v).
If dG(x, u) < dG(x, v), then (x, v) ∈ P ({x}, e). Otherwise, we have (x, u) ∈
P ({x}, e). In both cases, e ∈ M(x). �	

Given a vertex x of a graph G and an integer i, we let Li(x) denote the set
of vertices at distance i of x in G.

Lemma 4. Let x be a vertex of a connected graph G. Then, an edge uv belongs
to M(x) if and only if u ∈ Li(x) and v is the only neighbour of u in Li−1(x).

32 F. Foucaud et al.

Proof. Let uv ∈ M(x). Then, there exists a vertex y such that all shortest paths
from y to x go through uv. Thus, one of u and v (say, u) is in a set Li(x) and
the other (v) is in a set Li−1(x), for some positive integer i. Moreover, v must
be the only neighbour of u in Li−1(x), since otherwise there would be a shortest
path from y to x going through u but avoiding uv.

Conversely, if u is a vertex in Li(x) with a unique neighbour v in Li−1(x),
then the edge uv belongs to M(x) since all shortest paths from u to x use it. �	

We obtain some immediate consequences of Lemma 4.

Lemma 5. For a vertex x of a graph G, the set of edges M(x) induces a forest.

Proof. Let Gx be the subgraph of G induced by the edges in M(x). By Lemma 4,
an edge e belongs to M(x) if and only if e = uv, u ∈ Li(x) and v is the only
neighbour of u in Li−1(x). In this case, we let v be the parent of u. Each vertex
in Gx has at most one parent in Gx, and each edge of Gx is an edge between a
vertex and its parent. Thus, Gx is a forest. �	
Lemma 6. Let G be a graph and x a vertex of G. Then, for any edge e incident
with x, we have e ∈ M(x).

Proof. For every vertex y of L1(x) (that is, every neighbour of x), x is the unique
neighbour of y in L0(x) = {x}. Thus, the claim follows from Lemma 4. �	

3 Basic Graph Families and Bounds

In this section, we study dem for standard graph classes, and its relation with
other standard graph parameters.

Theorem 7. Let G be a connected graph with at least one edge. We have
dem(G) = 1 if and only if G is a tree.

Proof. In a tree, every edge is a bridge. Thus, by Lemma3, if G is a tree, any
vertex x of G is a distance-edge-monitoring set and we have dem(G) ≤ 1 (and
of course as long as there is an edge in G, dem(G) ≥ 1).

For the converse, suppose that dem(G) = 1. Then, clearly, G must have at
least one edge. Moreover, since all edges of G must belong to M(x), by Lemma 5,
G must be a forest. Since G is connected, G is a tree. �	

Let Ga,b denote the grid of dimension a × b. By Theorem 7, we have
dem(G1,a) = 1. We can compute all other values.

Theorem 8. For any integers a, b ≥ 2, we have dem(Ga,b) = max{a, b}.
The arboricity arb(G) of a graph G is the smallest number of sets into which

E(G) can be partitioned and such that each set induces a forest. The clique
number ω(G) of G is the size of a largest clique in G.

Monitoring the Edges of a Graph Using Distances 33

Theorem 9. For any graph G of order n and size m, we have dem(G) ≥
arb(G), and thus dem(G) ≥ m

n−1 and dem(G) ≥ ω(G)
2 .

Proof. By Lemma 5, for each vertex x of a distance-edge-monitoring set M ,
M(x) induces a forest. Thus, to each edge e of G we can assign one of the forests
M(x) such that e ∈ M(x). This is a partition of G into |M | forests, and thus
arb(G) ≤ dem(G).

Moreover, it is not difficult to see that arb(G) ≥ m
n−1 (since a forest has

at most n − 1 edges) and arb(G) ≥ ω(G)
2 (since a clique of size k = ω(G) has

k(k − 1)/2 edges but a forest that is a subgraph of G can contain at most k − 1
of these edges). �	

We next see that distance-edge-monitoring sets are relaxations of vertex cov-
ers. A set C of vertices is a vertex cover of G if every edge of G has one of its
endpoints in C. The smallest size of a vertex cover of G is denoted by vc(G).

Theorem 10. In any graph G of order n, any vertex cover of G is a distance-
edge-monitoring set, and thus dem(G) ≤ vc(G) ≤ n − 1. Moreover, we have
dem(G) = n − 1 if and only if G is the complete graph of order n.

Proof. Let C be a vertex cover of G. By Lemma 6, for every edge e, there is a
vertex in x with e ∈ M(x), thus C is distance-edge-monitoring.

Moreover, any graph G of order n has a vertex cover of size n − 1: for any
vertex x, the set V (G) \ {x} is a vertex cover of G.

Finally, suppose that dem(G) = n − 1: then also vc(G) = n − 1. If G is not
connected, we have vc(G) ≤ n− 2 (starting with V (G) and removing any vertex
from each connected component of G yields a vertex cover), thus G is connected.
Suppose by contradiction that G is not a complete graph. Then, we have three
vertices x, y and z in G such that xy and yz are edges of G, but xz is not. Then,
V (G) \ {x, z} is a vertex cover of G, a contradiction.

This completes the proof. �	
In some graphs, any distance-edge-monitoring set is a vertex cover.

Observation 11. If, for every vertex x of a graph G, M(x) consists exactly of
the sets of edges incident with x, then a set M is a distance-edge-monitoring set
of G if and only if it is a vertex cover of G.

Note that Observation 11 does not provide a characterization of graphs with
dem(G) = vc(G). For example, as seen in Theorem 8, for the grid Ga,2, we have
dem(Ga,2) = vc(Ga,2) = a, but for any vertex x of Ga,2, M(x) consists of the
whole row and column of Ga,2.

Let Ka,b be the complete bipartite graph with parts of sizes a and b, and
let Hd denote the hypercube of dimension d. We can deduce the following from
Observation 11.

Corollary 12. We have dem(Ka,b) = vc(Ka,b) = min{a, b}, and dem(Hd) =
vc(Hd) = 2d−1.

34 F. Foucaud et al.

A feedback edge set of a graph G is a set of edges such that removing them
from G leaves a forest. The smallest size of a feedback edge set of G is denoted
by fes(G) (it is sometimes called the cyclomatic number of G).

Theorem 7 states that for any tree G (that is, a graph with feedback edge
set number 0), we have dem(G) = fes(G) + 1. We now show the same bound for
graphs G with fes(G) = 1, that is, unicyclic graphs (graphs with a unique cycle).

Proposition 13. If G is a unicyclic graph, then dem(G) = 2.

We will now give a weaker (but similar) bound for any value of fes(G). But
first, we need the following terminology and lemma from [9] about the structure
of graphs G with given feedback edge set number.

In a graph, a vertex is a core vertex if it has degree at least 3. The base graph
of a graph G is the graph obtained from G by iteratively removing vertices of
degree 1 (thus, the base graph of a forest is the empty graph).

The following lemma can be found in Sect. 5.3.1 of [9].

Lemma 14 ([9]). Let G be a graph with fes(G) = k ≥ 2. The base graph of G
has at most 2k − 2 core vertices, that are joined by at most 3k − 3 edge-disjoint
paths with internal vertices of degree 2 and whose endpoints are (not necessarily
distinct) core vertices.

In other words, Lemma 14 says that the base graph of a graph G with
fes(G) = k ≥ 2 can be obtained from a multigraph H of order at most 2k − 2
and size 3k − 3 by subdividing its edges an arbitrary number of times.

Theorem 15. Let G be a graph with fes(G) ≥ 2. Then, dem(G) ≤ 5fes(G) − 5.

Proof. Let fes(G) = k and Gb, the base graph of G. By Lemma 14, Gb contains
at most 2k − 2 core vertices, joined by at most 3k − 3 edge-disjoint paths
with internal vertices of degree 2 and whose endpoints are core vertices (both
endpoints can be the same vertex). Let {P1, . . . , Pt} be the set of these paths.

By Lemma 3, any non-empty distance-edge-monitoring set of Gb is also one
of G, since all edges of G not present in Gb are bridges. Thus, it is sufficient to
construct a distance-edge-monitoring set M of Gb of size at most 5k − 5. We
build M as follows: first of all, M contains all core vertices of Gb. Moreover, for
each path Pi of length at least 2 connecting two core vertices x and y of Gb, we
add to M an internal vertex z of Pi. If x �= y or Pi has length at most 3, we let
z be a neighbour of, say, x. Otherwise, x = y and Pi has length at least 4; we
choose z as a vertex at distance 2 of x on Pi. Thus, |M | ≤ 5k − 5.

Let us prove that M is distance-edge-monitoring in Gb. Let e be an edge of
Gb; necessarily, e belongs to some path Pi connecting two core vertices x and y.
If e is incident with x or y, by Lemma 6 e is monitored by M . Thus, suppose this
is not the case. So, Pi has length at least 3 and so there is an internal vertex z
of Pi in M . Again if e is incident with z we are done.

If x = y, Pi forms a cycle and for any vertex v, M(v) ∩ E(Pi) consists of
the two edges (if Pi has even length) or the unique edge (if Pi has odd length)

Monitoring the Edges of a Graph Using Distances 35

that are opposite to v on the cycle. Since x and z are non-adjacent, we have
e ∈ M(x) ∪ M(z) and so z is monitored.

If x �= y, assume that e = uv with u the vertex of e closest to x. Let dx

be the distance from x to u on Pi, and dy the distance from y to v on Pi. If
e ∈ M(x) ∪ M(y), we are done. Otherwise, there must exist a path from x
to y that is edge-disjoint with Pi (otherwise e would be a bridge and would be
monitored by x or y). Let p be the length of a shortest such path. Since e /∈ M(x),
there exists a shortest path from v to x avoiding e. This shortest path must go
through y, and then use a path of length p. Thus, we have dy + p ≤ dx + 1. By
a similar argument with u and x, we have dx + p ≤ dy + 1. We obtain from this
that dx = dy, |Pi| is odd, and p = 1. But then, the unique shortest path from v
to z goes through e, and we have e ∈ M(z). This completes the proof. �	

We do not believe that the bound of Theorem15 is tight. For the sake of
simplicity, we have not tried to optimize the bound of Theorem15, as we do
not believe that this method will provide a tight bound. There are examples of
graphs G where dem(G) = fes(G) + 1, for example this is the case for the grid
Ga,2: by Theorem 8, when a ≥ 2 we have dem(Ga,2) = a, and fes(Ga,2) = a − 1.

Note that Ga,b for a, b ≥ 2 provides examples of a family of graphs where for
increasing a, b the difference between fes(Ga,b) and dem(Ga,b) is unbounded by
a constant. Indeed by Theorem 8 we have dem(Ga,b) = max{a, b} but fes(Ga,b)
is linear in the order ab.

4 Complexity

A c-approximation algorithm for a given optimization problem is an algorithm
that returns a solution whose size is always at most c times the optimum. We
refer to the books [1,13] for more details. For a decision problem Π and for
some parameter p of the instance, an algorithm for Π is said to be fixed param-
eter tractable (fpt for short) if it runs in time f(p)nc, where f is a computable
function, n is the input size, and c is a constant. In this paper, we will always
consider the solution size k as the parameter. The class FPT contains the param-
eterized decisions problems solvable by an fpt algorithm. The classes W[i] (with
i ≥ 1) denote complexity classes with parameterized decision problems that are
believed not to be fpt. We refer to the books [8,17] for more details.

We will now use the connection to vertex covers hinted in Sect. 3 to derive an
NP-hardness result. For two graphs G, H, G �� H denotes the graph obtained
from disjoint copies of G and H with all possible edges between V (G) and V (H).
We denote by K1 the graph on one single vertex.

Theorem 16. For any graph G, we have vc(G) ≤ dem(G �� K1) ≤ vc(G) + 1.
Moreover, if G has radius at least 4, then vc(G) = dem(G �� K1).

We deduce the following from the second part of the statement of Theorem16
and the NP-hardness of Vertex Cover for planar subcubic graphs with radius
at least 4 [10].

36 F. Foucaud et al.

Corollary 17. Distance-Edge-Monitoring Set is NP-complete, even for
graphs obtained from a planar subcubic graph by attaching a universal vertex.

Given a hypergraph H = (X,S) with vertex set X and egde set S, a set cover
of H is a subset C ⊆ S of edges such that each vertex of X belongs to at least one
edge of C. We will provide reductions for Min Distance-Edge-Monitoring
Set to and from Set Cover and Min Set Cover.

It is known that Min Set Cover is approximable in polynomial time within
a factor of ln(|X|+1) [14], but, unless P = NP, not within a factor of (1−ε) ln |X|
(for every positive ε) [7]. Moreover, Set Cover is W[2]-hard (when parameter-
ized by k) and not solvable in time |X|o(k)|H|O(1) unless FPT = W[1] [5].

Theorem 18. Min Distance-Edge-Monitoring Set is approximable within
a factor of ln(|E(G)| + 1) in polynomial time.

Proof. Let G be a graph and consider the following hypergraph H = (X,S)
with X = E(G) and such that S contains, for each vertex x of G, the set
Sx = {e ∈ X | e ∈ M(x)}. Now, it is not difficult to see that there is a one-to-
one correspondence between set covers of H and distance-edge-monitoring sets
of G, where we associate to each vertex x of a distance-edge-monitoring set of
G, the set Sx in a set cover of H. Thus, the result follows from the ln(|X| + 1)-
approximation algorithm for Min Set Cover from [14]. �	
Theorem 19. Even for graphs G that are (a) of diameter 4, (b) bipartite and of
diameter 6, or (c) bipartite and of maximum degree 3, Min Distance-Edge-
Monitoring Set is not approximable within a factor of (1 − ε) ln |E(G)| in
polynomial time, unless P = NP . Moreover, for such instances, Distance-
Edge-Monitoring Set cannot be solved in time |G|o(k), unless FPT = W[1],
and it is W[2]-hard for parameter k.

Proof. For an instance (H, k) of Set Cover, we will construct in polynomial
time instances (G, k +2) or (G, k +1) of Distance-Edge-Monitoring Set so
that H has a set cover of size k if and only if G has a distance-edge-monitoring
set of size at most k + 2 or k + 1.

In our first reduction, the obtained instance has diameter 4, while in our
second reduction, the obtained instance is bipartite and has diameter 6, and in
our third reduction, the graph G is bipartite and has maximum degree 3. The
three constructions are similar.

Monitoring the Edges of a Graph Using Distances 37

The statement will follow from the hardness of approximating Min Set
Cover proved in [7], the parameterized hardness of Set Cover (parameterized
by solution size), and the lower bound on its running time [5].

First of all, we point out that we may assume that in an instance (H =
(X,S), k) of Set Cover, there is no vertex of X that belongs to a unique set
of S. Indeed, otherwise, we are forced to take S in any set cover of H; thus, by
removing S and all vertices in S, we obtain an equivalent instance (H ′, k − 1).
We can iterate until the instance satisfies this property.

We now describe the first reduction, in which the obtained instance has
diameter 4. Let (H, k) = ((X,S), k) be an instance of Set Cover, where
X = {x1, x2, . . . , x|X|}, S = {C1, C2, . . . , C|S|} and Ci = {ci,j | xj ∈ Ci}.
Construct the following instance (G, k + 2) = ((V,E), k + 2) of Distance-
Edge-Monitoring Set, where V = V1 ∪ V2 ∪ . . . ∪ V5 ∪ V ′

1 ∪ V ′
2 ∪ V ′

3 ∪ V ′
4 ,

E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E′
1 ∪ E′

2 ∪ E′
3 ∪ E′

4 ∪ E′
5 and

V1 = {u1, u2, u3}, V2 = {vi | 1 ≤ i ≤ |S|}, V3 = S, V4 = {ci,j | 1 ≤ i ≤
|S|, 1 ≤ j ≤ |X|, xj ∈ Ci}, V5 = X

V ′
1 = {u′

1, u
′
2, u

′
3}, V ′

2 = {v′
i | 1 ≤ i ≤ |S|}, V ′

3 = {c′
i,j | 1 ≤ i ≤ |S|, 1 ≤

j ≤ |X|, xj ∈ Ci}, V ′
4 = {w′

j | 1 ≤ j ≤ |X|}
E1 = {(u1, u2), (u1, u3), (u2, u

′
1), (u3, u

′
1)}, E2 = {(u1, vi), (vi, Ci) | 1 ≤

i ≤ |S|}, E3 = {(Ci, ci,j) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, xj ∈ Ci}, E4 =
{(ci,j , xj) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, xj ∈ Ci}

E′
1 = {(u′

1, u
′
2), (u

′
2, u

′
3), (u

′
3, u

′
1)}, E′

2 = {(u′
1, v

′
i), (v

′
i, Ci) | 1 ≤ i ≤

|S|}, E′
3 = {(u′

1, c
′
i,j), (c

′
i,j , ci,j) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, xj ∈ Ci}, E′

4 =
{(u′

1, w
′
j), (w

′
j , xj) | 1 ≤ j ≤ |X|}, E′

5 = {(u′
1, vi) | 1 ≤ i ≤ |S|}.

An example is given in Fig. 1.
To see that G has diameter 4, observe that every vertex of G has a path of

length at most 2 to the vertex u′
1.

Let C be a set cover of H of size k. Define M = C ∪ {u1, u
′
2}. Then, by

Lemma 4, u1 monitors (in particular) the edges (u1, u2), (u1, u3), (u′
1, u

′
3), and

all the edges in E2 ∪ E3. Similarly, u′
2 monitors the edges (u′

1, u
′
2), (u′

2, u
′
3),

(u3, u
′
1), (u2, u

′
1) and all the edges in E′

2 ∪E′
3 ∪E′

4 ∪E′
5. It thus remains to show

that all edges of E4 are monitored. Notice that among those edges, vertex Ci of
S monitors exactly all edges cj1,j2 with xj2 ∈ Ci. Thus, if e = (ci,j , xj), there is
i′ such that xj ∈ Ci′ and Ci′ ∈ C, and e is monitored by Ci′ (either i = i′ and
the only shortest path from xj to Ci contains e, or i �= i′ and the only shortest
path from ci,j to Ci′ contains e). Hence, M is a distance-edge-monitoring set of
G of size at most k + 2.

Conversely, let M be a distance-edge-monitoring set of G of size at most
k + 2. In order to monitor the edge (u′

2, u
′
3), either u′

2 ∈ M or u′
3 ∈ M . In

order to monitor the edges (u1, u3) and (u1, u2), there must be a vertex of M in
{u1, u2, u3}. We may replace M ∩ {u1, u2, u3} by u1 and M ∩ {u′

2, u
′
3} by u′

2, as
u1 monitors the same edges as {u1, u2, u3} (among those not already monitored
by u′

2) and u′
2 monitors the same edges as {u′

2, u
′
3} (among those not already

monitored by u1). As seen in the previous paragraph, all edges of E1, E′
1, E2,

E3, E′
2, E′

3, E′
4 and E′

5 are monitored by {u1, u
′
2}. However, no edge of E4 is

38 F. Foucaud et al.

u1

v1

v2

v3

C1

C2

C3

c1,1

c1,2

c3,1

c2,2

c2,3

c2,4

c3,3

c3,4

x1

x2

x3

x4

u1

u2 u3

u′
1

u′
2 u′

3

Fig. 1. First reduction from Set Cover to Distance-Edge-Monitoring Set
from the proof of Theorem19 applied to the hypergraph ({x1, x2, x3, x4}, {C1 =
{x1, x2}, C2 = {x2, x3, x4}, C3 = {x1, x3, x4}}). Vertices and edges of V ′

i and E′
i for

i = 2, 3, 4 are only suggested.

monitored by any vertex of V1∪V ′
1 . Thus, all remaining vertices of M are needed

precisely to monitor the edges of E4.
If vi ∈ M , let M = M \ {vi} ∪ {Ci}, and the set of monitored edges does

not decrease. If ci,j ∈ M , let M = M \ {ci,j} ∪ {Ci}, and the set of monitored
edges does not decrease. If xj ∈ M , let M = M \ {xj} ∪ {Ci0} where i0 =
min{i | xj ∈ Ci}, and the set of monitored edges does not decrease. If v′

i ∈ M ,
let M = M \ {v′

i} ∪ {Ci}, and the set of monitored edges does not decrease. If
c′
i,j ∈ M , let M = M \ {c′

i,j} ∪ {Ci}, and the set of monitored edges does not
decrease. If w′

j ∈ M , let M = M \{w′
j}∪{Ci0} where i0 = min{i | xj ∈ Ci}, and

the set of monitored edges does not decrease. Iterating this process, we finally
obtain a distance-edge-monitoring set M ′ of G with |M ′ ∩V1| = 1, |M ′ ∩V ′

1 | ≥ 1,
|M ′ ∩ V3| ≤ k, M ′ ∩ (V2 ∪ V4 ∪ V5 ∪ V ′

2 ∪ V ′
3 ∪ V ′

4) = ∅. Let C = M ′ ∩ V3. If C
is not a set cover of H, then there is xj ∈ X that is not covered by C. Recall
that we assumed that each vertex of X belongs to at least two edges of S. Then,
according to Lemma 4, any edge (ci,j , xj) is not monitored by any of the vertices
in M ′ = (M ′ ∩ V1) ∪ (M ′ ∩ V ′

1) ∪ C, a contradiction. Hence, C is a set cover of
H of size at most k.

Due to space constraints, we omit the two other reductions. They are very
similar to the above one. To obtain a bipartite graph, we remove the odd cycles
of the construction at the expense of a higher diameter. To obtain maximum
degree 3, we replace the set V2 by some suitably defined binary trees. �	

Monitoring the Edges of a Graph Using Distances 39

5 Conclusion

We have introduced a new graph parameter useful in the area of network moni-
toring. We have related it to other standard graph parameters by the means of
lower and upper bounds. It would be interesting to improve them. In particular,
is it true that dem(G) ≤ fes(G)+1? As we have seen, this bound would be tight.

It would also be interesting to determine graph classes where Distance-
Edge-Monitoring Set has a polynomial-time (or parameterized) exact or
constant-factor approximation algorithm.

Acknowledgements. The authors acknowledge the financial support from the ANR
project HOSIGRA (ANR-17-CE40-0022), the IFCAM project “Applications of graph
homomorphisms” (MA/IFCAM/18/39), and the Programme IdEx Bordeaux – Sys-
Num (ANR-10-IDEX-03-02).

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer, Heidelberg (1999). https://doi.
org/10.1007/978-3-642-58412-1

2. Bampas, E., Bilò, D., Drovandi, G., Gualà, L., Klasing, R., Proietti, G.: Network
verification via routing table queries. J. Comput. Syst. Sci. 81(1), 234–248 (2015)

3. Beerliova, Z., et al.: Network discovery and verification. IEEE J. Sel. Areas Com-
mun. 24(12), 2168–2181 (2006)

4. Bilò, D., Erlebach, T., Mihalák, M., Widmayer, P.: Discovery of network proper-
ties with all-shortest-paths queries. Theoret. Comput. Sci. 411(14–15), 1626–1637
(2010)

5. Chen, J., et al.: Tight lower bounds for certain parameterized NP-hard problems.
Inf. Comput. 201(2), 216–231 (2005)

6. Dall’Asta, L., Alvarez-Hamelin, J.I., Barrat, A., Vázquez, A., Vespignani, A.:
Exploring networks with traceroute-like probes: theory and simulations. Theoret.
Comput. Sci. 355(1), 6–24 (2006)

7. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of
the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014,
pp. 624–633 (2014)

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

9. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs:
hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

10. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977)

11. Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In: Pro-
ceedings of the 19th IEEE International Conference on Computer Communications,
INFOCOM 2000, pp. 1371–1380 (2000)

12. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–
195 (1976)

https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-1-4471-5559-1

40 F. Foucaud et al.

13. Hromkovič, J.: Algorithmics for Hard Problems: Introduction to Combinatorial
Optimization, Randomization, Approximation, and Heuristics. Texts in Theoret-
ical Computer Science. An EATCS Series, 2nd edn. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-05269-3

14. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

15. Kelenc, A., Tratnik, N., Yero, I.G.: Uniquely identifying the edges of a graph: the
edge metric dimension. Discrete Appl. Math. 251, 204–220 (2018)

16. Manuel, P., Klavžar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong edge geode-
tic problem in networks. Open Math. 15, 1225–1235 (2017)

17. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

18. Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and
digraphs. Discrete Appl. Math. 155, 356–364 (2007)

19. Sebő, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2),
383–393 (2004)

20. Slater, P.J.: Leaves of trees. Congr. Numerantium 14, 549–559 (1975)

https://doi.org/10.1007/978-3-662-05269-3

The Lexicographic Method
for the Threshold Cover Problem

Mathew C. Francis(B) and Dalu Jacob

Indian Statistical Institute, Chennai Centre, Chennai, India
{mathew,dalujacob}@isichennai.res.in

Abstract. The lexicographic method is a technique that was introduced
by Hell and Huang [Journal of Graph Theory, 20(3): 361–374, 1995] as
a way to simplify the problems of recognizing and obtaining represen-
tations of comparability graphs, proper circular-arc graphs and proper
interval graphs. This method gives rise to conceptually simple recogni-
tion algorithms and leads to much simpler proofs for some characteriza-
tion theorems for these classes. Threshold graphs are a class of graphs
that have many equivalent definitions and have applications in integer
programming and set packing problems. A graph is said to have a thresh-
old cover of size k if its edges can be covered using k threshold graphs.
Chvátal and Hammer conjectured in 1977 that given a graph G, a suit-
ably constructed auxiliary graph G′ has chromatic number equal to the
minimum size of a threshold cover of G. Although this conjecture was
shown to be false in the general case by Cozzens and Leibowitz, it was
shown to be true for graphs having a threshold cover of size 2 by Raschle
and Simon [Proceedings of the Twenty-seventh Annual ACM Symposium
on Theory of Computing, STOC ’95, pages 650–661, 1995]. That is, a
graph G has a threshold cover of size 2 if and only if G′ is bipartite—this
is the only known forbidden structure characterization of graphs having
a threshold cover of size 2. We show how the lexicographic method can be
used to obtain a completely new and much simpler proof for this result.
This method also gives rise to a simple new LexBFS-based algorithm for
recognizing graphs having a threshold cover of size 2. Although this algo-
rithm is not the fastest known, it is a certifying algorithm that matches
the time complexity of the fastest known certifying algorithm for this
problem. The algorithm can also be easily adapted to give a certifying
recognition algorithm for bipartite graphs that can be covered by two
chain subgraphs.

Keywords: Lexicographic method · Threshold cover · Chain graph
cover

1 Introduction

We consider only simple, undirected and finite graphs. A graph G is said to be
a threshold graph if it does not contain a pair of edges ab, cd such that ad, bc /∈
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 41–52, 2020.
https://doi.org/10.1007/978-3-030-39219-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_4&domain=pdf
http://orcid.org/0000-0002-0498-7856
https://doi.org/10.1007/978-3-030-39219-2_4

42 M. C. Francis and D. Jacob

E(G); or equivalently, G is (2K2, P4, C4)-free [1]. A graph G = (V,E) is said to
be covered by the graphs H1,H2, . . . , Hk if E(G) = E(H1)∪E(H2)∪· · ·∪E(Hk).
A graph G is said to have a threshold cover of size k if it can be covered by k
threshold graphs. The threshold dimension of a graph G is defined to be the
smallest integer k such that G has a threshold cover of size k. Mahadev and
Peled [12] give a comprehensive survey of threshold graphs and their applications.

Chvátal and Hammer [1] showed that the fact that a graph has a threshold
cover of size k is equivalent to the following: there exist k linear inequalities on
|V (G)| variables such that the characteristic vector of a set S ⊆ V (G) satisfies all
the inequalities if and only if S is an independent set of G (see [13] for details).
They further defined the auxiliary graph G′ (defined in Sect. 2) corresponding
to a graph G and showed that any threshold cover of G must have size at least
χ(G′). This gave rise to the question of whether there exist any graph G that
does not have a threshold cover of size χ(G′). Cozzens and Leibowitz [4] showed
the existence of such graphs. In particular, they showed that for every k ≥ 4,
there exists a graph G such that χ(G′) = k but G has no threshold cover of size k.
The question of whether such graphs exist for k = 2 seems to have been intensely
studied but remained open for a decade (see [11]). Ibaraki and Peled [7] showed
that if G is a split graph or if G′ contains at most two non-trivial components,
then χ(G′) = 2 if and only if G has a threshold cover of size 2. They further
conjectured that every graph G satisfying χ(G′) ≤ 2 has a threshold cover of size
2. Cozzens and Halsey [3] studied some properties of graphs having a threshold
cover of size 2 and show that it can be decided in polynomial time whether the
complement of a bipartite graph has a threshold cover of size 2. Finally, in 1995,
Raschle and Simon [13] settled the question by extending the methods of Ibaraki
and Peled: they showed that every graph G whose auxiliary graph G′ is bipartite
has a threshold cover of size 2. This proof is very technical and involves the use of
a number of complicated reductions and previously known results. In particular,
they construct a set of edges that have a “threshold completion” by finding a
2-colouring of G′ that is so-called “AC2l-free”, where l ≥ 2 (a colouring of G′ is
AC2l-free, if for each colour class S, there is no cyclical sequence v1, v2, . . . , v2l, v1
of vertices in G such that vivi+1 ∈ S if and only if i is odd). It is then shown
that this reduces to finding a 2-colouring of G′ which is AC6-free. This further
reduces to finding a so-called “AP6-free” 2-colouring of G′ which further reduces
to finding a so-called “double AP6-free 2-colouring” of G′. The most intricate
part is the proof of correctness of an algorithm that computes this particular
kind of 2-colouring of G′.

The paper of Raschle and Simon also gives an O(|E(G)|2) algorithm that
checks whether a graph G has a threshold cover of size 2 and outputs two thresh-
old graphs that cover G in case it has. If the input graph G does not have a
threshold cover of size 2, the algorithm detects an odd cycle in the auxiliary
graph G′. This odd cycle gives edges e1, e2, . . . , ek in G, where k is odd, such
that the edges ei, ei+1, for 1 ≤ i < k, and the edges ek, e1, can never both belong
to any threshold subgraph of G (because their endpoints induce a 2K2, P4 or
C4 in G). In this way, the algorithm provides an easily verifiable “certificate” for

The Lexicographic Method for the Threshold Cover Problem 43

the fact that there does not exist two threshold graphs that cover G. If G does
have a threshold cover of size 2, then the two threshold graphs returned by the
algorithm that cover G form an easily verifiable certificate for that fact. Such
algorithms are called certifying algorithms [8].

Since as noted above, an odd cycle in the auxiliary graph G′ corresponds to
a structure present in G that serves as an “obstruction” to it having a threshold
cover of size 2, the result of Raschle and Simon can also be seen as a “forbidden
structure characterization” of graphs having a threshold cover of size 2. That is,
a graph G has a threshold cover of size 2 if and only if the said obstruction is
not present in G. Such characterizations are known for many different classes of
graphs—for example, interval graphs [9] and circular-arc graphs [5].

In this paper, we propose a completely different and self-contained proof
for the theorem of Raschle and Simon that a graph G can be covered by two
threshold graphs if and only if G′ is bipartite. Our proof is short and direct, and
also gives rise to a simpler (although having the same asymptotic worst case
running time of O(|E(G)|2)) certifying recognition algorithm for graphs having
a threshold cover of size 2.

Note that faster algorithms for determining if a graph has a threshold cover
of size 2 are known. After the algorithm of Raschle and Simon [13], Sterbini
and Raschle [15] used some observations of Ma [10] to construct an O(|V (G)|3)
algorithm for the problem. But this algorithm is not a certifying algorithm in
the sense that if the input graph G does not have a threshold cover of size 2, it
does not produce an obstruction in G that prevents it from having a threshold
cover of size 2. Note that there is an obvious way to make this algorithm a
certifying algorithm: if the algorithm answers that the input graph G does not
have a threshold cover of size 2, run a secondary algorithm that constructs G′

and finds an odd cycle in it (this odd cycle can serve as a certificate). But a naive
implementation of the secondary algorithm will take time Ω(|E(G)|2), and it is
not clear if there is a way to run it in time o(|E(G)|2).

In the current work, we show that a graph G has a threshold cover of size
2 if and only if its auxiliary graph G′ is bipartite using a technique called the
lexicographic method which was introduced by Hell and Huang [6]. Hell and
Huang demonstrated how this method can lead to shorter proofs and simpler
recognition algorithms for certain problems that can be viewed as orienting the
edges of a graph satisfying certain conditions—for example, they showed how
this method can lead to simpler characterization proofs and recognition algo-
rithms for comparability graphs, proper interval graphs and proper circular-arc
graphs. The method starts by taking an arbitrary ordering of the vertices of the
graph. It then prescribes choosing the lexicographically smallest (with respect
to the given vertex ordering) edge to orient and then orienting it in one way
or the other, along with all the edges whose orientations are forced by it. Hell
and Huang showed that the lexicographic approach makes it easy to ensure that
the orientation so produced satisfies the necessary conditions, if such an orienta-
tion exists. We adapt this technique to the problem of generating two threshold
graphs that cover a given graph, if two such graphs exist. This shows that the

44 M. C. Francis and D. Jacob

applicability of the lexicographic method may not be limited to only problems
involving orientation of edges. However, it should be noted that in our proof,
we start with a Lex-BFS ordering of the vertices of the graph instead of an
arbitrary ordering. It is an ordering of the vertices that gives the order in which
a Lex-BFS, or Lexicographic Breadth First Search, a graph searching algorithm
that was introduced by Rose, Tarjan and Lueker [14], may visit the vertices of
the graph. A Lex-BFS ordering always gives an order in which a breadth-first
search can visit the vertices of the graph, but has some additional properties.
Lex-BFS can be implemented to run in time linear in the size of the input graph
and Rose, Tarjan and Lueker originally used this algorithm to construct a linear-
time algorithm for recognizing chordal graphs. Later, Lex-BFS based algorithms
were discovered for the recognition of many different graph classes (see [2] for a
survey).

2 Preliminaries

Let G = (V,E) be any graph. Two edges ab, cd are said to form a pair of cross
edges in G if ad, bc /∈ E(G). If ab, cd form a pair of cross edges in G, we say that
the set {a, b, c, d} is a crossing set in G (such a set is called an AC4 in [13]). It
is easy to see that threshold graphs are exactly the graphs that contain no pairs
of cross edges, or equivalently no crossing set.

For a graph G, the auxiliary graph G′ is defined to be the graph with V (G′) =
E(G) and E(G′) = {e1e2 : e1, e2 form a pair of cross edges in G}. We shall refer
to the vertex of G′ corresponding to an edge ab ∈ E(G) alternatively as {a, b}
or ab, depending upon the context. The following lemma is just a special case
of the observation of Chvátal and Hammer [1] that a graph G cannot have a
threshold cover of size less than χ(G′).

Lemma 1. If a graph G = (V,E) has a threshold cover of size two then G′ is
bipartite.

Proof. Let G be covered by two threshold graphs H1 and H2. By the definition
of G′, if {ab, cd} ∈ E(G′) then ad, bc /∈ E(G). The fact that H1 and H2 are
threshold subgraphs of G then implies that neither H1 nor H2 can contain both
the edges ab and cd. We therefore conclude that the sets E(H1) and E(H2) are
both independent sets in G′. Since G is covered by H1 and H2, we have that
V (G′) = E(H1) ∪ E(H2). Thus, {E(H1), E(H2) \ E(H1)} forms a bipartition of
G′ into two independent sets. This completes the proof. ��
Our goal is to provide a new proof for the following theorem of Raschle and
Simon [13].

Theorem 1. A graph G can be covered by two threshold graphs if and only if
G′ is bipartite.

By Lemma 1, it is enough to prove that if G′ is bipartite, then G can be covered
by two threshold graphs. In order to prove this, we find a specific 2-coloring of

The Lexicographic Method for the Threshold Cover Problem 45

the non-trivial components of G′ using the lexicographic method of Hell and
Huang [6].

Let < be an ordering of the vertices of G. Given two k-element subsets
S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} of V (G), where s1 < s2 < · · · < sk
and t1 < t2 < · · · < tk, S is said to be lexicographically smaller than T , denoted
by S < T , if sj < tj for some j ∈ {1, 2, . . . , k}, and si = ti for all 1 ≤ i < j ≤ k.
In the usual way, we let S ≤ T denote the fact that either S < T or S = T . For
a set S ⊆ V (G), we abbreviate min< S to just min S. Note that the relation <
(“is lexicographically smaller than”) that we have defined on k-element subsets
of V (G) is a total order. Therefore, given a collection of k-element subsets of
V (G), the lexicographically smallest one among them is well-defined.

3 Proof of Theorem1

Assume that G′ is bipartite. Let < denote a Lex-BFS ordering of the vertices
of G. The following observation states a well-known property of Lex-BFS order-
ings [2].

Observation 1. For a, b, c ∈ V (G), if a < b < c, ab /∈ E(G) and ac ∈ E(G),
then there exists x ∈ V (G) such that x < a < b < c, xb ∈ E(G) and xc /∈ E(G).

We shall now construct a partial 2-coloring of the vertices of G′ using the
colors {1, 2}. Notice that choosing a color for any vertex in a component of G′

fixes the colors of all the other vertices in that component. Recall that every
vertex of G′ is a two-element subset of V (G). For every non-trivial component
C of G′, perform the following operation: Choose the lexicographically smallest
vertex in C (with respect to the ordering <) and assign the color 1 to it. This
fixes the colors of all the other vertices in C. Note that after this procedure, every
vertex of G′ that is in a non-trivial component has been colored either 1 or 2.
For i ∈ {1, 2}, let Fi = {e ∈ V (G′) : e is colored i}. Further, let F0 denote the set
of all isolated vertices in G′. Clearly, F0 is exactly the set of uncolored vertices of
G′ and we have V (G′) = F0 ∪F1 ∪F2. Consider the subgraphs H1 = (V, F1 ∪F0)
and H2 = (V, F2 ∪ F0) of G. We claim that H1 and H2 are two threshold graphs
that cover G. Clearly E(G) = E(H1) ∪ E(H2); so it only remains to be proven
that both H1 and H2 are threshold graphs. Note that for any edge ab ∈ E(G),
ab /∈ E(H1) ⇒ ab ∈ F2 and ab /∈ E(H2) ⇒ ab ∈ F1.

Observation 2. If ab, cd form a pair of cross edges in G, then exactly one of
the following is true:

1. ab ∈ F1 and cd ∈ F2, or
2. ab ∈ F2 and cd ∈ F1.

Therefore, ab and cd cannot be present together in either H1 or H2.

Proof. As ab, cd form a pair of cross edges in G, the vertices ab and cd are
adjacent in G′. Therefore one of them will be colored 1 and the other 2 in the

46 M. C. Francis and D. Jacob

partial 2-coloring of G′. This implies that one of ab, cd belongs to F1 and the
other to F2. Since F1 = E(H1) \ E(H2) and F2 = E(H2) \ E(H1), ab and cd
cannot be both present in either E(H1) or E(H2). ��

For i ∈ {1, 2}, let Pi = {{x, y, z, w} : xy, zw ∈ E(Hi), xw /∈ E(G) and yz ∈
E(G)\E(Hi)} and Ci = {{x, y, z, w} : xy, zw ∈ E(Hi), xw, yz ∈ E(G)\E(Hi)}.
By Observation 2, it can be seen that the crossing sets in Hi are exactly the
elements of Pi ∪ Ci. Define P = P1 ∪ P2 and C = C1 ∪ C2. Notice that in order
to show that both H1 and H2 are threshold graphs, we only need to prove that
P ∪ C = ∅. We shall first show that P = ∅. Suppose not. Let {a, b, c, d} be the
lexicographically smallest element in P.

Lemma 2. {a, b, c, d} /∈ P1.

Proof. Suppose for the sake of contradiction that {a, b, c, d} ∈ P1. By definition
of P1, we can assume without loss of generality that ab, cd ∈ E(H1), ad /∈ E(G)
and bc ∈ E(G) \ E(H1). Since E(G) = E(H1) ∪ E(H2), we have that bc ∈
E(H2) \ E(H1), which implies that bc ∈ F2. By the definition of F2, we have
that bc belongs to a non-trivial component C of G′ and has been colored 2.
Therefore {b, c} is not the lexicographically smallest vertex in C. Let {bk, ck} be
the lexicographically smallest vertex in C (k is defined below). Then we have
{bk, ck} < {b, c} and by our construction the vertex {bk, ck} must have received
color 1. Let bc = b0c0, b1c1, . . . , bk−1ck−1, bkck be a path in C between {b, c} and
{bk, ck}, where for 0 ≤ i < k, bici+1, bi+1ci /∈ E(G). Note that k is odd, bici ∈ F2

for each even i and bici ∈ F1 for each odd i, where 0 ≤ i ≤ k.
We claim that abi, cid ∈ E(H1) for each even i and abi, cid ∈ E(H2) for

each odd i, where 0 ≤ i ≤ k. We prove this by induction on i. The case where
i = 0 is trivial as b0 = b and c0 = c. So let us assume that i > 0. Consider
the case where i is odd. As i − 1 is even, by the induction hypothesis we have,
abi−1, ci−1d ∈ E(H1). As abi−1, bici ∈ E(H1) and bi−1ci /∈ E(G), by Observa-
tion 2, we have that abi ∈ E(G). Now as abi, ci−1d form a pair of cross edges
in G and ci−1d ∈ E(H1) the same observation then implies that abi ∈ E(H2).
Similarly, as ci−1d, bici ∈ E(H1) and bici−1 /∈ E(G), we have cid ∈ E(G).
Again, as cid, abi−1 form a pair of cross edges in G and abi−1 ∈ E(H1) we have
cid ∈ E(H2). The case where i is even is also similar and hence the claim.

By the above claim, abk, ckd ∈ E(H2). Since bkck ∈ F1, bkck /∈ E(H2).
Recalling that ad /∈ E(G), we now have that {a, bk, ck, d} ∈ P2. Since {bk, ck} <
{b, c}, we have that {a, bk, ck, d} < {a, b, c, d}, which is a contradiction. ��
Lemma 3. {a, b, c, d} /∈ P2.

Proof. Suppose for the sake of contradiction that {a, b, c, d} ∈ P2. By definition
of P2, we can assume without loss of generality that ab, cd ∈ E(H2), ad /∈ E(G)
and bc /∈ E(H2). Recall that bc /∈ E(H2) ⇒ bc ∈ F1. As bc ∈ F1, the vertex bc
belongs to a non-trivial component of G′. Then there exists a neighbor b′c′ of
bc in G′ such that bc′, b′c /∈ E(G). By Observation 2, bc ∈ F1 implies b′c′ ∈ F2.
Further, ab, b′c′ ∈ E(H2) and bc′ /∈ E(G) implies that ab′ ∈ E(G). Now ab′, cd

The Lexicographic Method for the Threshold Cover Problem 47

form a pair of cross edges in G. Since cd ∈ E(H2), we now have by Observation 2
that cd ∈ F2 and ab′ ∈ F1. This implies that cd is in a non-trivial component C1

of G′. Similarly, as cd, b′c′ ∈ E(H2) and b′c /∈ E(G) we have that c′d ∈ E(G).
Now c′d, ab form a pair of cross edges in G. Since ab ∈ E(H2), we have by
Observation 2 that ab ∈ F2 and c′d ∈ F1. This implies that ab is in a non-trivial
component C2 of G′.

We now prove two claims using the fact that < is a Lex-BFS ordering of
V (G).

Claim 1. d < a < c is not possible.

Suppose not. Note that da /∈ E(G) and dc ∈ E(G). Then by Observation 1,
there exists x ∈ V (G) such that x < d < a < c, xa ∈ E(G) and xc /∈ E(G). Now
cd, xa form a pair of cross edges in G. By Observation 2, cd ∈ F2 implies that
xa ∈ F1. As bc ∈ F1, xc /∈ E(G) and ab /∈ E(H1) (recall that ab ∈ F2) we then
have that {x, a, b, c} ∈ P1. Further, x < d implies that {x, a, b, c} < {a, b, c, d}
which is a contradiction.

The next claim is symmetric to the claim above, but we give a proof for the
sake of completeness.

Claim 2. a < d < b is not possible.

Suppose not. Note that ad /∈ E(G) and ab ∈ E(G). Then by Observation 1,
there exists x ∈ V (G) such that x < a < d < b, xd ∈ E(G) and xb /∈ E(G). Now
ab, xd form a pair of cross edges in G. By Observation 2, ab ∈ F2 implies that
xd ∈ F1. As bc ∈ F1, xb /∈ E(G) and cd /∈ E(H1) (recall that cd ∈ F2) we then
have that {x, d, c, b} ∈ P1. Further, x < a implies that {x, d, c, b} < {a, b, c, d}
which is a contradiction.

As cd ∈ F2, cd must have received color 2 in the partial 2-coloring of G′.
This means that cd is not the lexicographically smallest vertex in the component
C1. Let {ck, dk} be the lexicographically smallest vertex in C1. Then we have
{ck, dk} < {c, d} and by our construction, the vertex {ck, dk} must have received
color 1. Let cd = c0d0, c1d1, . . . , ck−1dk−1, ckdk be a path in C1 between cd and
ckdk, where for 0 ≤ i < k, cidi+1, ci+1di /∈ E(G). Note that k is odd, cidi ∈ F2

for each even i and cidi ∈ F1 for each odd i, where 0 ≤ i ≤ k.

Claim 3. cib, c
′di ∈ F1 for each even i and cib, c

′di ∈ F2 for each odd i, where
0 ≤ i ≤ k.

We prove this by induction on i. The case i = 0 is trivial as c0 = c and d0 = d.
So let us assume that i > 0. Consider the case where i is odd. As i − 1 is even,
we have by the induction hypothesis that ci−1b, c

′di−1 ∈ F1. As cidi, ci−1b ∈ F1

and ci−1di /∈ E(G), by Observation 2, we have cib ∈ E(G). Now since cib, c
′di−1

form a pair of cross edges in G (recall that bc′ /∈ E(G)) and c′di−1 ∈ F1, the
same observation then implies that cib ∈ F2. Similarly, as cidi, c

′di−1 ∈ F1 and
cidi−1 /∈ E(G), we have that c′di ∈ E(G). Now since c′di, ci−1b form a pair of
cross edges in G and ci−1b ∈ F1, we can deduce as before that c′di ∈ F2. The
case where i is even can be proved in the same way. Hence the claim.

48 M. C. Francis and D. Jacob

Recall that ab ∈ F2, ab is in a non-trivial component C2 of G′, and it has
color 2 in the partial 2-coloring of G′. Therefore, there exists a lexicographically
smallest vertex {ak, bk} in C2 which has been colored 1. Clearly, {ak, bk} < {a, b}.
Let ab = a0b0, a1b1, . . . , ak−1bk−1, akbk, be a path in C2 between {ak, bk} and
{a, b}, where for 0 ≤ i < k, aibi+1, ai+1bi /∈ E(G). Note that k is odd, aibi ∈ F2

for each even i and aibi ∈ F1 for each odd i, where 0 ≤ i ≤ k. The following
claim is symmetric to Claim 3, but we give a proof for the sake of completeness.

Claim 4. aib
′, cbi ∈ F1 for each even i and aib

′, cbi ∈ F2 for each odd i, where
0 ≤ i ≤ k.

We prove this by induction on i. The case i = 0 is trivial as a0 = a and b0 = b.
Consider the case where i is odd. As i − 1 is even we have ai−1b

′, cbi−1 ∈ F1.
Now as aibi, ai−1b

′ ∈ F1 and ai−1bi /∈ E(G), by Observation 2, we have that
aib

′ ∈ E(G). Now aib
′, cbi−1 form a pair of cross edges (recall that b′c /∈ E(G))

and cbi−1 ∈ F1 the same observation then implies that aib
′ ∈ F2. Similarly, as

aibi, cbi−1 ∈ F1 and aibi−1 /∈ E(G), we have that cbi ∈ E(G). Now cbi, ai−1b
′

form a pair of cross edges and ai−1b
′ ∈ F1, implying that cbi ∈ F2. The case

where i is even can be proved in the same way. Hence the claim.
Recall that ckdk ∈ F1. By Claim 3, ck−1b ∈ F1 and ckb ∈ F2, implying that

ckb /∈ E(H1). As ck−1dk /∈ E(G) we then have {ck−1, b, ck, dk} ∈ P1. Similarly, as
akbk ∈ F1, akbk−1 /∈ E(G), and by Claim 4, we have cbk−1 ∈ F1 and cbk /∈ E(H1)
(as cbk ∈ F2), we have {ak, bk, c, bk−1} ∈ P1. We get the final contradiction from
the following claim.

Claim 5. Either {ak, bk, c, bk−1} < {a, b, c, d} or {ck−1, b, ck, dk} < {a, b, c, d}.

Suppose d > a. By Claim 2, we then have d > b. Now, since {ak, bk} <
{a, b}, we have {ak, bk, c, bk−1} < {a, b, c, d}, and we are done. So we shall
assume that d < a. By Claim 1, we now have that c < a, implying that
a > max{c, d}. If min{ck, dk} < min{c, d}, then we have min{ck, dk} < a, c, d,
which implies that {ck−1, b, ck, dk} < {a, b, c, d}, proving the claim. So we shall
assume that min{ck, dk} ≥ min{c, d}. Therefore, since {ck, dk} < {c, d}, we
have min{ck, dk} = min{c, d} and max{ck, dk} < max{c, d}. Thus we have
a > max{ck, dk}, implying that {ck−1, b, ck, dk} < {a, b, c, d}. ��

From Lemmas 2 and 3, it follows that P = ∅.

Lemma 4. C = ∅.
Proof. Suppose for the sake of contradiction that C �= ∅. Then there exists
i ∈ {1, 2} such that Ci �= ∅. Consider an element {a, b, c, d} ∈ Ci. We can assume
without loss of generality that ab, cd ∈ E(Hi), ad, bc ∈ E(G) \ E(Hi). As ad ∈
E(G)\E(Hi), it belongs to a non-trivial component of G′. Therefore there exists
a neighbor a′d′ of ad in G′ such that ad′, a′d /∈ E(G). Therefore by Observation 2,
we have that a′d′ ∈ E(Hi). As ab, a′d′ ∈ E(Hi), where ad′ /∈ E(G), by the same
observation we then have a′b ∈ E(G). Now if a′b ∈ E(Hi), then the fact that
cd ∈ E(Hi), bc ∈ E(G) \ E(Hi) and a′d /∈ E(G) implies that {a′, b, c, d} ∈
Pi which is a contradiction to our earlier observation that P = ∅. Therefore

The Lexicographic Method for the Threshold Cover Problem 49

a′b ∈ E(G) \ E(Hi). As ab, a′d′ ∈ E(Hi) and ad′ /∈ E(G), it then follows that
{a, b, a′, d′} ∈ Pi which again contradicts the fact that P = ∅. This completes
the proof. ��

We have now shown that P ∪ C = ∅, or in other words, there is no crossing
set in either H1 or H2. Thus H1 and H2 are two threshold graphs that cover G.
We have thus shown that if G′ is bipartite then G has a threshold cover of size
two. As we already have Lemma 1, this completes the proof of Theorem 1.

4 A Certifying Algorithm

Our proof of Theorem1 gives an algorithm which when given a graph G as input,
either constructs two threshold graphs that cover G, or produces an odd cycle
in G′ as a certificate that G cannot be covered by two threshold graphs.

Algorithm 2-Threshold-Cover

Input: A graph G.
Output: If G has a threshold cover of size 2, two threshold graphs H1,H2

such that they cover G, otherwise the auxiliary graph G′ and an
odd cycle in it.

1. Run the Lex-BFS algorithm on G (starting from an arbitrarily chosen vertex)
to produce a Lex-BFS ordering < of V (G).

2. Construct the auxiliary graph G′.
3. Initialize V (H1) = V (H2) = V (G) and E(H1) = E(H2) = {e ∈ V (G′) : e

belongs to a trivial component of G′}.
4. While there exist uncolored vertices in a non-trivial component C of G′, do

(i) Choose the lexicographically smallest vertex uv in C and assign the color
1 to it.

(ii) Complete the 2-coloring of C by doing a BFS starting from the vertex uv.
If an odd cycle is detected, return the cycle and exit. Otherwise update
E(H1) = E(H1)∪{e ∈ V (C) : e is colored 1 in G′}, E(H2) = E(H2)∪{e ∈
V (C) : e is colored 2 in G′}.

5. Output H1 and H2.

Correctness of the algorithm follows from the proof of Theorem 1. The Lex-
BFS on G can be done in O(|V (G)| + |E(G)|) time and the remaining steps in
O(|V (G′)| + |E(G′)|) time. As G′ contains at most |E(G)| vertices and at most
|E(G)|2 edges, the running time of this algorithm is O(|E(G)|2).

5 The Chain Subgraph Cover Problem

A bipartite graph G = (A,B,E) is called a chain graph if it does not contain a
pair of edges whose endpoints induce a 2K2 in G. A collection of chain graphs
{H1,H2, . . . , Hk} is said to be a k-chain subgraph cover of a bipartite graph G
if it is covered by H1,H2, . . . , Hk. The problem of deciding whether a bipartite

50 M. C. Francis and D. Jacob

graph G can be covered by k chain graphs, i.e. whether G has a k-chain subgraph
cover, is known as the k-chain subgraph cover (k-CSC) problem. He showed that
3-CSC is NP-complete and pointed out that using the results of Ibaraki and
Peled [7], the 2-CSC problem can be solved in polynomial time as it can be
reduced to the problem of determining whether a split graph can be covered by
two threshold graphs. Ma and Spinrad [11] note that a direct implementation
of this approach to the 2-CSC problem only gives an O(|V (G)|4) algorithm and
instead propose an O(|V (G)|2) algorithm for the problem. This algorithm works
by reducing the 2-CSC problem to the problem of deciding whether a partial
order has Dushnik-Miller dimension at most 2. Note that this algorithm does
not produce a directly verifiable certificate, such as a forbidden structure in the
graph, in case the input graph does not have a 2-chain subgraph cover. Our algo-
rithm can be easily modified to make it an O(|E(G)|2) certifying algorithm for
deciding if an input bipartite graph G has a 2-chain subgraph cover as explained
below. In fact, the only modification that is needed is to change the definition
of G′ so that two edges of G are adjacent in G′ if and only if they induce 2K2 in
G. As shown below, we can start with an arbitrary ordering of vertices in this
case, i.e. we do not need to run the Lex-BFS algorithm to produce a Lex-BFS
ordering of the input graph as the first step.

Let G = (A,B,E) be a bipartite graph. We now redefine the meaning of the
term “cross edges”. Two edges ab, cd ∈ E(G) are now said to be cross edges
if and only if a, c ∈ A, b, d ∈ B and ad, bc /∈ E(G). Note that the meaning
of the auxiliary graph G′ now changes, but our proof that χ(G′) ≤ 2 if and
only if there exists two graphs H1,H2, each containing no cross edges, such that
E(G) = E(H1)∪E(H2) still works verbatim. We could, however, let the ordering
< on V (G) be any arbitrary ordering. In that case, we cannot use Observation 1
and any argument that uses it. Note that Observation 1 is used only in the proof
of Lemma 3. We show how this proof can be modified so that Observation 1 is no
longer needed. Observation 1 is used only in Claims 1 and 2, which in turn are
used only in Claim 5. Remove Claims 1 and 2 and replace the proof of Claim 5
with the following proof.

Claim 5. Either {ak, bk, c, bk−1} < {a, b, c, d} or {ck−1, b, ck, dk} < {a, b, c, d}.

As ck−1b, c
′d ∈ F1 and c′b /∈ E(G), we have ck−1d ∈ E(G). From Claim 3,

we have c′dk−1 ∈ F1. Then, c′dk−1, cb ∈ F1 where c′b /∈ E(G) implies that
cdk−1 ∈ E(G). As ckdk−1, ck−1dk /∈ E(G), we can conclude that c �= ck and
d �= dk. Since c, ck ∈ A and d, dk ∈ B, we further have that c �= dk and d �= ck.
Therefore we get,

c, d > min{ck, dk} (as ckdk < cd) (1)

From Claim 4, we have ak−1b
′ ∈ F1. Now ak−1b

′, cb ∈ F1 where cb′ /∈ E(G)
implies that ak−1b ∈ E(G). Since cbk−1, ab′ ∈ F1 and cb′ /∈ E(G), we have
abk−1 ∈ E(G). As akbk−1, ak−1bk /∈ E(G) we can conclude that a �= ak and

The Lexicographic Method for the Threshold Cover Problem 51

b �= bk. Since a, ak ∈ A and b, bk ∈ B, we further have that a �= bk and b �= ak.
Therefore we get,

a, b > min{ak, bk} (as akbk < ab) (2)

If a ≤ min{ck, dk} and d ≤ min{ak, bk}, we get by (1) and (2) that a ≤
min{ck, dk} < d ≤ min{ak, bk} < a, which is a contradiction. Therefore, either
a > min{ck, dk} or d > min{ak, bk}. If a > min{ck, dk}, then by (1), we get
{ck−1, b, ck, dk} < {a, b, c, d}, and we are done. Similarly, if d > min{ak, bk},
then by (2), we have {ak, bk, c, bk−1} < {a, b, c, d}, again we are done. This
proves the claim.

Thus Algorithm 2-Threshold-Cover can be modified into a certifying recog-
nition algorithm for deciding if a bipartite graph has a 2-chain subgraph cover
by just changing the definition of G′. Moreover, this algorithm can choose any
arbitrary ordering of the vertices of the input graph to start with and hence does
not require the implementation of the Lex-BFS algorithm. Note that we do not
know the answer to the following question: Would Algorithm 2-Threshold-Cover
correctly decide whether the input graph G has a threshold cover of size 2 even
if it lets < be an arbitrary ordering of V (G)?

6 Conclusion

Chvátal and Hammer [1] showed that the problem of deciding whether an input
graph has a threshold cover of size at most k is NP-complete, when k is part
of the input. Yannakakis [16] observes that a bipartite graph G = (A,B,E) has
a k-chain subgraph cover if and only if the split graph H obtained from G by
making every pair of vertices in A adjacent to each other has a threshold cover
of size k. He notes that therefore, his proof of the NP-completeness of the 3-CSC
problem implies that the problem of deciding if an input graph has a threshold
cover of size at most 3 is also NP-complete.

We believe that our result demonstrates once again the power of the lexico-
graphic method in yielding short and elegant proofs for certain kinds of problems
that otherwise seem to need more complicated proofs. Further research could
establish the applicability of the method to a wider range of problems.

References

1. Chvátal, V., Hammer, P.L.: Aggregations of inequalities. In: Studies in Integer
Programming. Annals of Discrete Mathematics, vol. 1, pp. 145–162 (1977)

2. Corneil, D.G.: Lexicographic breadth first search – a survey. In: Hromkovič, J.,
Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 1–19. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0 1

3. Cozzens, M.B., Halsey, M.D.: The relationship between the threshold dimension
of split graphs and various dimensional parameters. Discrete Appl. Math. 30(2),
125–135 (1991)

https://doi.org/10.1007/978-3-540-30559-0_1

52 M. C. Francis and D. Jacob

4. Cozzens, M.B., Leibowitz, R.: Threshold dimension of graphs. SIAM J. Algebr.
Discrete Methods 5(4), 579–595 (1984)

5. Francis, M., Hell, P., Stacho, J.: Forbidden structure characterization of circular-
arc graphs and a certifying recognition algorithm. In: Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pp.
1708–1727 (2015)

6. Hell, P., Huang, J.: Lexicographic orientation and representation algorithms for
comparability graphs, proper circular arc graphs, and proper interval graphs. J.
Graph Theory 20(3), 361–374 (1995)

7. Ibaraki, T., Peled, U.N.: Sufficient conditions for graphs to have threshold num-
ber 2. In: Hansen, P. (ed.) Annals of Discrete Mathematics (11). North-Holland
Mathematics Studies, vol. 59, pp. 241–268. North-Holland, Amsterdam (1981)

8. Kratsch, D., McConnell, R., Mehlhorn, K., Spinrad, J.: Certifying algorithms for
recognizing interval graphs and permutation graphs. SIAM J. Comput. 36(2), 326–
353 (2006)

9. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of
intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)

10. Ma, T.H.: On the threshold dimension 2 graphs. Technical report. Institute of
Information Science, Academia Sinica, Nankang, Taipei, Republic of China (1993)

11. Ma, T.H., Spinrad, J.P.: On the 2-chain subgraph cover and related problems. J.
Algorithms 17(2), 251–268 (1994)

12. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics, vol. 56.
Elsevier, Amsterdam (1995)

13. Raschle, T., Simon, K.: Recognition of graphs with threshold dimension two. In:
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Com-
puting, STOC 1995, pp. 650–661 (1995)

14. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

15. Sterbini, A., Raschle, T.: An O(n3) time algorithm for recognizing threshold dimen-
sion 2 graphs. Inf. Process. Lett. 67(5), 255–259 (1998)

16. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J.
Algebr. Discrete Methods 3(3), 351–358 (1982)

Approximating Modular Decomposition
Is Hard

Michel Habib1,3(B), Lalla Mouatadid2, and Mengchuan Zou1,3

1 IRIF, UMR 8243 CNRS & Paris University, Paris, France
habib@irif.fr

2 Department of Computer Science, University of Toronto, Toronto, ON, Canada
3 Gang Project, Inria Paris, Paris, France

Abstract. In order to understand underlying structural regularities in
a graph, a basic and useful technique, known as modular decomposition,
looks for subsets of vertices that have the exact same neighbourhood
to the outside. These are known as modules and there exist linear-time
algorithms to find them. This notion however is too strict, especially
when dealing with graphs that arise from real world data. This is why it
is important to relax this condition by allowing some noise in the data.
However, generalizing modular decomposition is far from being obvious
since most of the proposals lose the algebraic properties of modules and
therefore most of the nice algorithmic consequences. In this paper we
introduce the notion of ε-module which seems to be a good compro-
mise that maintains some of the algebraic structure. Among the main
results in the paper, we show that minimal ε-modules can be computed in
polynomial time, on the other hand for maximal ε-modules it is already
NP-hard to compute if a graph admits an 1-parallel decomposition, i.e.
one step of decomposition of ε-module with ε = 1.

1 Introduction

Introduced by Gallai in [13] to analyze the structure of comparability graphs,
modular decomposition has been used and defined in many areas of discrete
mathematics, including for graphs, 2-structures, automaton, partial orders, set
systems, hypergraphs, clutters, matroids, boolean, and submodular functions
[8,9,11,15], see [22] for a survey on modular decomposition. Since they have
been rediscovered in many fields, modules appear under various names in the
literature, they have been called intervals, externally related sets, autonomous
sets, partitive sets, homogeneous sets, and clans. In most of the above examples
the family of modules yields a kind of partitive family [4,5], and therefore has a
unique modular decomposition tree that can be computed efficiently.

Roughly speaking, elements of the module behave exactly the same with
respect to the outside of the graph, and therefore a module can be contracted
to a single element without losing information. This technique has been used to

This work is supported by the ANR-France Project Hosigra (ANR-17-CE40-0022).

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 53–66, 2020.
https://doi.org/10.1007/978-3-030-39219-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_5

54 M. Habib et al.

solve many optimization problems and has led to a number of elegant graph algo-
rithms, see for instance [21]. On the other hand, direct applications of modular
decomposition in other areas include computational protein-protein interaction
networks [12] and graph drawing [25], to name a few. More recently, new appli-
cations have appeared in the study of networks in social sciences [29], where a
module is considered as a regularity or a community that has to be detected and
understood. Although it is well-known that almost all graphs have no non-trivial
modules, in some recent experiments [24] in real data, many non-trivial modules
were found in these graphs. How can we explain such a phenomena? It could be
that the way the data is produced can generate modules, but it could also be
because we reach some known regularities as predicted by Szemerédi’s regularity
lemma [30]. In fact for every ε > 0 Szemerédi’s lemma asserts that ∃n0 such that
all undirected graphs with more than n0 vertices admits a ε-regular partition of
the vertices. Such a partition is a kind of approximate modular decomposition.
For graphs we now have linear-time algorithms to compute a modular decom-
position tree, see [16]. In this paper we study a new generalization of modular
decomposition, relaxing the strict neighbourhood condition of modules with a
tolerance of some errors, i.e., some missing edges. The aims of this paper are
twofold: first a theoretical study of an approximation of modular decomposi-
tion, and secondly a practical application for the computation of overlapping
communities in bipartite graphs.

Organization of the Paper: We begin by giving necessary notations and a back-
ground on classical modular decomposition in Sect. 2, as well as illustrating some
applications of ε-modular decomposition on various areas, on data compres-
sion and exact encodings for instance as well as in approximation algorithms.
Section 3 introduces the notion of ε-modules and ε-modular decomposition, and
their first basic properties. In Sect. 4, we give algorithmic results, in particular
the computation of minimal ε-modules, as well as testing ε-primality. We then
focus on two classes of graphs, bipartite graphs and 1-cographs (to be defined
later) and conclude our discussion in the last section. In particular for bipartite
graphs we can compute in O(n2·ε(n + m)) a covering of the vertices using max-
imal ε-modules, in which two ε-modules can overlap on at most 2 · ε vertices.
This can be of great help for community detection in bipartite graphs.

2 Approximations of Modules

Let G be a simple, loop-free, undirected graph, with vertex set V (G) and edge
set E(G), n = |V (G)| and m = |E(G)| are the number of vertices and edges
of G respectively. For every X ⊆ V (G), we denote by G(X) the induced sub-
graph generated by X. N(v) denotes the neighbourhood of v and N(v) the
non-neighbourhood, this notation could also be generalized to set of vertices, i.e.
for X ⊆ V (G), N(X) = {x ∈ V (G)\X such that ∃y ∈ X and xy ∈ E(G)} (resp.
N(X) = {x ∈ V (G) \ X such that ∀y ∈ X and xy /∈ E(G)}). For x, y ∈ V , we
call false-twins if N(x) = N(y) and true-twins if N(x) ∪ {x} = N(y) ∪ {y}.

Approximating Modular Decomposition Is Hard 55

A Moore family on a set X is a collection of subsets S ⊂ X closed under
intersection, and the set X itself.

Formally for an undirected graph G, a module M ⊆ V (G) satisfies ∀x, y ∈ M ,
N(x) \ M = N(y) \ M . In other words, V (G) \ M is partitioned into X,Y such
that there is a complete bipartite between M and X, and no edge between M
and Y . For convenience let us denote X (resp. Y) by N(M) (resp. N(M)). It is
easy to see that all vertices within a module are at least false twins.

Fig. 1. Left, a graph with its maximal modules grouped. Right, its corresponding
modular decomposition tree.

A single vertex {v} and V are always modules, and called trivial modules.
A graph that only has trivial modules is called a prime graph. By the Modular
Decomposition Theorem [5,13], every graph admits a unique modular decom-
position tree, in which a graph is decomposed via three types of internal nodes
(operations): parallel (disjoint union) and series (connect every pair of nodes in
disjoint sets X and Y), and prime nodes. The leaves represent the vertices of
the graph, see Fig. 1.

A graph is a complement reducible graph if there is no prime node in
its decomposition tree [7]. Complement reducible graphs are also known as
cographs in the literature, or P4-free graphs [28]. Cographs form a well studied
graph class for which many classical NP -hard problems such as maximum clique,
minimum coloring, maximum independent set, Hamiltonicity become tractable,
see for instance [7].

Finding a non trivial tractable generalization of modules is not an easy task;
indeed in trying to do so, we are faced with two main difficulties. The first one
is to obtain a pseudo-generalization, for example if we change the definition of
a module into: ∀x, y ∈ M , Neighbour∗(x) \ M = Neighbour∗(y) \ M , where
Neighbour∗(x) means something like “vertices at distance at most k” or “joined
by an odd path”, etc. As it turns out, in many of these cases, the problem
transforms itself into the computation of precisely the modules of some auxiliary
graph built from the original one, some work in this direction avoiding this

56 M. Habib et al.

drawback can be found in [3]. The other one is NP-hardness. Consider the notion
of roles defined in sociology, where two vertices play the same role in the social
network if they have the same set of colours in the neighbourhood. If the colours
of the vertices are given the problem is polynomially solvable, otherwise, this
problem is a colouring one that is NP-hard to compute [10].

In this work, we will study two variations on the notion of modules both of
which try to avoid these difficulties. Some aspects of them are polynomial to
compute, and we believe they are worth studying further. We present the most
promising one. Before we do so, we motivate this notion of ε-modules further,
in two areas. The first one is in data compression and exact encodings, and the
latter is its usefulness in approximation algorithms.

Before formally defining ε-modules, we want the reader to think of them as a
subset of vertices that almost looks the same to the outside of the graph. Mean-
ing, for all x, y ∈ M , an ε-module, N(x)\M and N(y)\M are the same with
the exception of at most ε errors. Modular decomposition is often presented as
an efficient way to encode a given graph. This property transmits to ε-modules.
One can contract a non-trivial ε-module to a single vertex keeping almost the
entirety of the original graph, and then recurse on the decomposition. To this
end, let M be a non-trivial ε-module of G and X (resp. Y) be its neighbourhood
(resp. non-neighbourhood). If we want an exact encoding of G, we can contract
M to a unique vertex m connected to X, and not connected to Y , keep the sub-
graph G(M) and keep tract of the errors (i.e., the edges missing in the bipartite
(M,X) and the edges that appear in the bipartite (M,Y)). Thus, this new exact
encoding has at least |M | · (|X| − ε) − 1 edges fewer than the original encoding.

A second application of approximate modular decomposition is in approxima-
tion algorithms. Consider the classical colouring and independent set problems
on cographs. Both algorithms use modular decomposition to give optimal linear
time solutions to both problems. The way the algorithms work is by comput-
ing a modular decomposition tree – known as the cotree – and keeping track of
the series or parallel internal nodes by scanning the tree from the leaves to the
root. We later define extensions of a cograph and a cotree to an ε-cograph and
ε-cotree, and show in particular for ε = 1, we get a simple 2-approximation for
1-cographs for these two classical problems, just by summing over all ε errors.
In particular, when ε = 1, this means the neighbourhood of every pair x, y ∈ M
differs by at most one neighbour/non-neighbour with respect to the outside of
M .

2.1 Subset Families

Subset Families: Two sets A and B overlap if A ∩ B 	= ∅, A \ B 	= ∅, and
B \ A 	= ∅. Let F be a family of subsets of a ground set V . A set S ∈ F is
called strong if ∀S′ 	= S ∈ F : S does not overlap S′. Let Δ be the symmetric
difference operation.

Definition 1 [5]. A family of subsets F over a ground set V is partitive if
it satisfies the following properties: (i) ∅, V and all singletons {x} for x ∈ V
belong to F . (ii) ∀A,B ∈ F that overlap, A ∩ B,A ∪ B,A \ B and AΔB ∈ F .

Approximating Modular Decomposition Is Hard 57

Partitive families play fundamental roles in combinatorial decompositions [4,5].
Every partitive family admits a unique decomposition tree, with two types of
nodes: complete and prime. It is well known that the strong elements of F form a
tree ordered by the inclusion relation [5]. In this decomposition tree, every node
corresponds to a set of the elements of the ground set V of F , and the leaves of
the tree are single elements of V .

3 ε-Modules and Basic Properties

One first idea to accept some errors is to say that at most k edges, for some fixed
integer k, could be missing in the complete bipartite between M and N(M), and
symmetrically that at most k edges can exist between M and N(M). But doing
so we loose most of the nice algebraic properties of modules of graphs which yield
partitive families. Furthermore most algorithms for modular decomposition are
based on these algebraic properties [5].

Another natural idea is to relax the condition on the complete bipartite
between M and N(M), for example asking for a graph that does not contain
any 2K2. Unfortunately as shown in [27] to test whether a given graph admits
such a decomposition is NP-complete. In fact they studied a generalized join
decomposition solving a question asked in [18] studying perfection. This is why
the following generalization of module defined for any integer ε, seems to be a
good compromise1.

Definition 2. A subset M ⊆ V (G) is an ε-module if ∀x ∈ V (G) \ M , either
|M ∩ N(x)| ≤ ε or |M ∩ N(x)| ≥ |M | − ε.

In other words, we tolerate ε edges of errors per node outside the ε-module,
and not ε errors per module. It should be noticed that with ε = 0, we recover
the usual definition of modules [16], i.e., ∀x ∈ V (G) \ M , either M ∩ N(x) = ∅
or M ∩ N(x) = M . Necessarily we will only consider ε < |V (G)| − 1.

Let us consider the first simple properties yielded by this definition.

Proposition 1. If M is an ε-module for G, then

(a) M is an σ-module for G, for every ε ≤ σ.
(b) M is an ε-module for G.
(c) M is an ε-module for every induced subgraph H of G such that M ⊆ V (H).
(d) every ε-module of G(M) is an ε-module of G.

Definition 3. ε-neighbourhoods. For A ⊆ V (G), let us denote by Nε(A) (resp.
Nε(A)) the vertices of V (G) \ A, that are connected (resp. not connected) to
M except for at most ε vertices. Similarly Sε(A) = {x ∈ V (G) \ A such that
ε < |N(x) ∩ A| < |A| − ε}. Sε(A) is called the set of ε-splitters of A.

Equivalently a module can therefore be defined as a subset of vertices having
no ε-splitter.
1 We use ε to denote small error, despite being greater than 1.

58 M. Habib et al.

Lemma 1. Some easy facts, for A ⊆ V (G).

(i) If 2 · ε + 1 ≤ |A| then Nε(A) ∩ Nε(A) = ∅.
(ii) If |A| ≤ 2 · ε + 1 then Sε(A) = ∅.
(iii) If |A| = 2 · ε + 1 then Nε(A) and Nε(A) partition V (G) \ A.
(iv) If |A| < 2 · ε then Nε(A) = Nε(A).

So the subsets of vertices having size 2 · ε + 1 seem to be crucial to study
this new decomposition. If A is such a set, for every z /∈ A either z ∈ Nε(A) or
z ∈ Nε(A), but not both.

Lemma 2. If s is a ε-splitter for a set A, then s is also a ε-splitter for every
set B ⊇ A such that s /∈ B.

Proof. Since ε < |A ∩ N(x)| and N(x) ∩ A ⊆ N(x) ∩ B we have: ε < |B ∩ N(x)|.
|A∩N(x)| < |A|− ε is equivalent to |A\N(x)| > ε. But A\N(x) ⊆ B \N(x)

implies |B \ N(x)| > ε. So ε < |B ∩ N(x)| < |B| − ε. ��
Theorem 1. The family of ε-modules of a graph satisfies:

(i) V (G) is an ε-module and ∀A ⊆ V (G) such that |A| ≤ 2 ·ε+1 are ε-modules.
(ii) ∀A,B ⊆ V (G) ε-modules then, A ∩ B is an ε-module and for the subsets

A \ B and B \ A their ε-splitters can only belong to A ∩ B.

Proof. (i) By definition V (G) has no ε-splitter. Let A ⊆ V (G), such that |A| ≤
2 · ε + 1 and let x ∈ V (G) \ A.
Suppose |N(x) ∩ A| = k > ε but since |A| ≤ 2 · ε + 1, ε ≥ |A| − ε − 1
Therefore: |N(x) ∩ A| = k ≥ |A| − ε and A has no ε-splitter.

(ii) First we notice that if A,B ⊆ V (G) are 2 trivial modules, obviously A ∩ B,
A \ B and B \ A are trivial ε-modules.
Let A,B ⊆ V (G) be two non trivial ε-modules. If A ∩ B has an ε-splitter
outside of A ∪ B then using Lemma 2 also A,B would have an ε-splitter, a
contradiction. Suppose now that A∩B admits an ε-splitter in B\A but then
with the same Lemma we know that A would have an ε-splitter. Therefore
A ∩ B is an ε-module. Let us now consider A \ B, if admits an ε-splitter in
B \ A, using again Lemma 2, A would have a ε-splitter too. Similarly if the
ε-splitter is outside A ∪ B. Then the only potential ε-splitters for A \ B and
B \ A are in A ∩ B. ��

Corollary 1. A graph G with |V (G)| ≤ 2 · ε + 2 admits only trivial modules.

By convention we will call such a graph ε-degenerate in order to distinguish
with really ε-prime graphs.

Corollary 2. If A,B are overlapping minimal ε-modules then A∩B is a trivial
ε-module.

We know then the ε-modules generate a Moore family of subsets worth study-
ing. For usual modules as can be seen in [5,16], A ∪ B, B \ A and A \ B are also
modules. Unfortunately this does not always hold for ε-modules. Moreover we
cannot bound the error as can be seen the next proposition.

Approximating Modular Decomposition Is Hard 59

Proposition 2. Let A,B ⊆ V (G) be two non trivial ε-modules, then

1. there could be c = Ω(min(|A|, |B|)), s.t. A ∪ B is not an ε-module, ∀ ε ≤ c.
2. there could be c = Ω(n), s.t. A-B is not an ε-module, for all ε ≤ c.

In fact we can prove a weaker result.

Theorem 2. Let A,B ⊆ V (G) be two non trivial overlapping ε-modules, if
|A ∩ B| ≥ 2ε + 1 then A ∪ B, AΔB (i.e., symmetric difference) are 2ε-modules.

Proof. Let z ∈ V (G)\B. Since B is an ε-module then Sε(B) = ∅, since B is non
trivial, |B| ≥ 2 · ε + 2, therefore Nε(B) and ε-Nε(B) partition V (G) \ B, using
Lemma 1. Suppose z ∈ Nε(B), z has at most ε non neighbors in A∩B. Therefore
it has at least ε + 1 neighbors in A ∩ B, therefore z ∈ Nε(A). For A ∪ B in the
worst case z has at most ε non-neighbors in A \ B and at most ε non-neighbors
in B \ A. Therefore A ∪ B is a 2ε-module. For AΔB, the worst case is obtained
when a given vertex z ∈ A ∩ B has ε errors in A \ B and ε errors in B \ A.
Therefore AΔB is a 2ε-module. ��

Theorem 1 allows us to define a graph convexity. Since the family of ε-modules
is closed under intersection, it yields a graph convexity and we can compute the
minimal under inclusion ε-module M(A) that contains a given set A, with strictly
more that 2 · ε + 1 elements, computing a modular closure via ε-splitters.

3.1 A Symmetric Variation of ε-Modules

One could want to restrict the definition of the ε-modules in a symmetric way.
Here symmetric means that the condition is applied symmetrically on the vertices
of the ε-module M and on the vertices outside, i.e., V (G) \ M .

Definition 4. An ε-module M is symmetric if every x ∈ M is adjacent (resp.
non-adjacent) to all vertices in N(M) (resp. N(M)) except for at most ε vertices.

In other words for ε = 1, in the bipartite M,N(M) only a matching is missing. It
is a restriction of the ε-modules and all the previous results could be generated
similarly for symmetric ε-modules.

Proposition 3. If P = {V1, . . . Vk} is a partition of V (G) into ε-modules, then
the Vi’s are necessarily symmetric ε-modules.

With this definition in mind, we present extensions of the series and parallel
nodes in the classical setting, as well as introduce a new graph class we call
1-cographs, the definition of which we present below.

Using Proposition 1(d) and mimicking the case of modular decomposition we
may define an ε-tree decomposition as follows.

Definition 5. An ε-tree decomposition is a tree whose nodes are labelled with
ε-modules ordered by inclusion with 4 types of nodes ε-series, ε-parallel, ε-prime
and ε-degenerate. Each level of the tree corresponds to a partition of V (G), start-
ing with {V (G)} at the root and the leaves correspond to a partition of V (G)
into ε-degenerate nodes.

60 M. Habib et al.

For standard modular decomposition the notion of strong modules as modules
that do not overlap with any other is central. For ε-modular decomposition we
can observe that there are no strong modules other than V and {v}, v ∈ V that
are strong ε-modules. The reason is that, for ε ≥ 1, any subset of vertices of size
2 is a trivial ε-module, then assume there is a classical strong module V1 	= V ,
|V1| > 1, then take any vertex v ∈ V1 and any vertex u ∈ V \ V1, then {u, v} is
a ε-module and overlapping with V1.

3.2 ε-Series and ε-Parallel Operations

Definition 6. For a graph G with |V (G)| ≥ 2ε + 3, we say that G admits
an ε-series (resp. ε-parallel) decomposition if there exists a partition of V (G),
P = {V1, . . . Vk} such that: ∀i, 1 ≤ i ≤ k, |Vi| ≥ 2ε + 1 and ∀x ∈ Vi and for
every j 	= i, x is adjacent (resp. non-adjacent) to all vertices of Vj with perhaps
ε errors.

Using Proposition 3, all the Vi’s are necessarily symmetric ε-modules. Further-
more in such cases every union of V ′

i s are also symmetric ε-modules. Fortunately
with ε = 1 the problem of recognizing if a graph admits an 1-parallel decom-
position corresponds to a nice combinatorial problem first studied in [14]. The
complexity of this problem known as finding a matching cut-set is now well-
known [1,6,23] and therefore we have:

Theorem 3. Finding if a graph admits an 1-parallel decomposition is NP-hard.

Proof. Let G be a graph with minimum degree 3, and suppose that it admits
an 1-parallel decomposition into V1, . . . , Vk. Necessarily ∀i, |Vi| > 1, since there
is no pending vertex. Therefore {V1,∪1<i≤kVi} is a matching cut set of G. So
using [6], deciding if a graph admits 1-parallel decomposition is NP-complete. ��
Definition 7. An ε-cograph is a graph that is decomposable with respect to
ε-series, ε-parallel decompositions until we reach only degenerate subgraphs.

Using this definition above, it is clear that cographs are precisely the
0-cographs and let us call ε-cotree and ε-modular decomposition the correspond-
ing tree and decomposition of an ε-cograph.

Proposition 4. A graph is an ε-cograph iff it admits a ε-cotree using only
ε-series and ε-parallel internal nodes.

Proof. Suppose that G admits a ε-series composition with a partition P =
{V1, . . . Vk}. First we must notice that these two operations are exclusive. It
is the case since every part has at least 2 · ε + 1 vertices, we cannot have 2 parts
Vi, Vj both ε-connected and ε-disconnected. Therefore we start a ε-cotree start-
ing with a node labelled ε-series and recurse on all the subgraphs G(Vi) using
proposition d. ��

Approximating Modular Decomposition Is Hard 61

a b c d

e f

h g

1− series

degenerate

{a, b, c, d }
degenerate

{e, f, g, h}

Fig. 2. 1-MD(H): A 1-cotree of a 1-cograph graph H. Notice that H is not a cograph
since it contains 2 induced P ′

4s, namely H({a, b, c, d}) and H({e, f, g, h}).

a

b c

d

ef

x y

1− parallel

degenerate

{a, b, f, x }
degenerate

{c, d, e, y}

1− parallel

degenerate

{a, b, e, d }
degenerate

{e, f, x, y}

Fig. 3. This 1-cograph G admits 2 different 1-cotrees, the internal nodes have the same
label but the partitions of V (G) induced by the leaves are not the same.

Let us consider now the 2 examples described in Figs. 2 and 3. The first one
shows a 1-cograph H that admits a unique 1-cotree. The second one shows a 1-
cograph G that admits 2 different legitimate 1-cotrees. Moreover by substituting
in each vertex of G a graph isomorphic to G and if we repeat this process we
can build a 1-cograph which admit exponentially many different legitimate
1-cotrees. At this particular time regarding for a graph the existence of ε-tree
decomposition is not clear and as shown with ε-cographs we cannot ask for a
unique one if it exists.

Unfortunately, it turns out, as one might expect, that finding this matching
cutset is an NP-complete problem, as was shown by Chvátal in [6]. In the same
work, Chvátal showed in particular that the problem is NP-hard on graphs with
maximum degree four, and polynomial on graphs with maximum degree three.

Furthermore, it was shown that computing a matching cutsets in the follow-
ing graph classes is polynomial: for graphs with max degree three [6], for weakly
chordal graphs and line-graphs [23], for Series Parallel graphs [26], claw-free
graphs and graphs with bounded clique width, as well as graphs with bounded
treewidth [1], graphs with diameter 2 [2]. and for (K1,4,K1,4+e)-free graphs [20].

Therefore, to check if any of these graphs are 1-cographs, it suffices to run the
corresponding matching cutset algorithms on either the graph or its complement.

But we conjecture that even 1-cographs that can be decomposed into exactly
two cographs are hard to recognize in the general case.

62 M. Habib et al.

4 Computing the Minimal ε-Modules

Despite the negative results of the previous sections, we shall now examine how
to compute all minimal ε-modules in polynomial time. As seen previously non
trivial ε-module have strictly more than 2 · ε+1 elements. Since ε-module family
is closed under intersection, it yields a graph convexity and we can compute the
minimal under inclusion ε-module M(A) that contains a given set A, with strictly
more that 2·ε+1 elements, computing a modular closure via ε-splitters. In fact
we built a series of subsets Mi starting with M0 = A, and satisfying Mi ⊆ Mi+1.

Algorithm 1. Computing minimal ε-modules.
Input: a graph G and A ⊆ V (G) with |A| ≥ 2 · ε + 2 .
Output: M(A) the minimal ε-module that contains A

1 M0 ← A, i ← 0 ;
2 S ← {x ∈ V (G) \ M0 such that ε < |N(x) ∩ M0| < |M0| − ε};
3 while S 	= ∅ do
4 i ← i + 1;
5 Mi ← Mi−1 ∪ S;
6 S ← {x ∈ V (G) \ Mi such that ε < |N(x) ∩ Mi| < |Mi| − ε};
7 M(A) ← Mi;

Proposition 5. Algorithm1 computes the minimal ε-module that contains A.

Proof. If A is an ε-module, then at line 2, S = ∅, else all the elements of S have
to be added to A. In other words, using Lemma 2 there is no ε-module M such
that: A � M � A ∪ S. At the end of the While loop either Mi = V (G) or we
have found a non trivial ε-module. ��
Theorem 4. Algorithm1 can be implemented in O(m + n).

Proof. In fact we can implement it as a kind of graph search as follows.
At the end of this Algorithm2 the set M(A) contains a minimal ε-module

that contains A. At first glance this algorithm requires O(n2) operations, since
for each vertex we must consider all its neighbours and all its non neighbours.
But if we use a partition refinement technique as defined in [17], starting with a
partition of the vertices in {A, V (G)−A}, then we keep in the a same part B(i, j)
vertices x, y, such that edge(x) = edge(y) = i and nonedge(x) = nonedge(y) =
j. Then when visiting a vertex it suffices for each part B(i, j) of the current
partition to compute B′(i + 1, j) = B(i, j) ∩ N(z) and B′′(i, j + 1) = B(i, j) −
N(z), which can be done in O(|N(z)|). It should be noticed that the parts need
not to be sorted in the current partition and we may have different parts with
the same (edge, nonedge) values. Therefore can be implemented in O(m + n). ��
Theorem 5. Using Algorithm1, one can compute all minimal non-trivial
ε-modules in O(m · n2·ε+1).

Approximating Modular Decomposition Is Hard 63

Algorithm 2. Computing minimal ε-modules.
Input: a graph G and A ⊆ V (G) with |A| ≥ 2 · ε + 2 .
Output: M(A) the minimal ε-module that contains A

1 OPEN ← A;
2 M(A) ← ∅;
3 ∀u ∈ V (G), CLOSED(u) ← FALSE; edge(u) ← 0; nonedge(u) ← 0;
4 while OPEN �= ∅ do
5 z ← Choice(OPEN), Delete z from OPEN ;
6 Add z to M(A);
7 CLOSED(z) ← TRUE;
8 ∀ neighbours u of z
9 if CLOSED(u) = FALSE and u /∈ M(A) then

10 edge(u) ← edge(u) + 1;
11 if ε < edge(u) and ε < nonedge(u) then
12 Add u to OPEN

13 ∀ non neighbours v of z
14 if CLOSED(u) = FALSE and u /∈ M(A) then
15 nonedge(v) ← nonedge(v) + 1;
16 if ε < edge(u) and ε < nonedge(u) then
17 Add v to OPEN

Proof. It suffices to use Algorithm 1 starting from every subset with 2 · ε + 2
vertices. There exist O(n2·ε+2) such subsets. And therefore this yields an algo-
rithm in O(m ·n2·ε+2). But we can do all the partition refinements in the whole,
using the neighbourhood of one vertex only once. Since a vertex may belong to
at most n2·ε+1 parts, it yields an algorithm working in O(m · n2·ε+1). ��

If we consider the ε = 0 case, this gives an implementation of the algorithm
in [19] which also computes all minimal modules in O(m · n), to be compared to
the original one in O(n4).

Corollary 3. Using Theorem5, one can compute a covering of V (G) with an
overlapping family of minimal ε-modules in O(m ·n2·ε+1) and for any two mem-
bers of the covering their overlapping is bounded by 2 · ε + 1.

Proof. Using Theorem 5, we can compute an overlapping family of minimal ε-
modules in O(m·n2·ε+1). Perhaps it is not a covering of V (G), since some vertices
may not belong to any minimal non-trivial ε-module. To obtain a covering we
simply add as singletons the remaining vertices. ��
This could be very interesting if we are looking for overlapping communities in
social networks, the overlapping being bounded by 2 · ε + 1.

To go a step further we can use Theorem 2 and merge every pair A,B of
ε-modules such that |A ∩ B| ≥ 2 · ε + 1, either keeping A ∪ B as a 2 · ε-module
or compute M(A ∪ B) the minimal ε-module that contains A ∪ B. But this
depends on the structure of the maximal ε-modules, and unfortunately we do

64 M. Habib et al.

not know yet under what conditions there exists a unique partition into maximal
ε-modules.

Corollary 4. Checking if a graph is ε-prime can be done in O(m · n2·ε+1).

Proof. It suffices to test whether for every set with 2·ε+2 vertices if its closure is
equal to V (G). So either we find a non-trivial ε-module or the graph is ε-prime.
Since every non-trivial ε-module necessarily contains one of the sets with 2 · ε+2
vertices. ��
Corollary 5. Finding for a graph G the smallest ε such that G has an ε-module
can be done in O(logn · m · n2·ε+1).

Proof. To find such an ε we can use the above primality test in a dichotomic
way, just adding a logn factor to the complexity. ��

5 The Bipartite Case

Let us consider now a bipartite graph G = (X,Y,E(G)). Unfortunately the ε-
modules can be made up with vertices of both X,Y . But in some applications
we are forced to consider X and Y separately. As for example in the case where
X is a set of customers (resp. DNA sequences) and Y a set of products (resp.
organisms), usually one wants to find regularities on each side of the bipartite
graph. Let Fε(X) = {M | ε-module of G such that M ⊆ X}. It should be noticed
that X is not always an ε-module of G.

Proposition 6. ∀A,B ∈ Fε(X), A ∩ B,A \ B,B \ A ∈ Fε(X).

Proof. Using Theorem 1, the only ε-splitters of the sets A \ B and B \ A must
belong to A ∩ B. But since A,B ⊆ X, which is an independent set, it is
impossible. ��

As a consequence, using a notion of false ε-twins, we obtain.

Theorem 6. For a bipartite graph G = (X,Y,E(G)), the maximal elements of
Fε(X) can be computed in O(n2·ε(n + m)).

It should be noticed that these maximal elements of Fε(X) may overlap, but the
overlap is bounded by 2 · ε. Furthermore the experimentation on real data has
still to be done to evaluate the quality of the covering obtained.

5.1 Conclusions and Perspectives

The polynomial algorithms presented here have to be improved. Since it is hard
to compute from the minimal ε-modules some hierarchy of modules – because we
may have to consider an exponential number of unions of overlapping minimal
ones – perhaps a good way to analyze a graph is to compute the families of
minimal ones with ε = 1, 2, 3 . . . and consider a hierarchy of overlapping families.

Approximating Modular Decomposition Is Hard 65

This notion of ε-modules yields many interesting questions both theoretical
and practical. As for example for ε = 1 to characterize 1-cographs or graphs that
admits a 1-modular decomposition tree. The study of 1-primes is also worth to
be done. On the other hand are there many ε-modules in real data? A natural
consequence of this work is to extend the Courcelle’s cliquewidth parameter into
an ε-cliquewidth and similarly to define an ε-split operation in graphs.

Acknowledgments. The authors wish to thank anonymous reviewers for their helpful
comments.

References

1. Bonsma, P.: The complexity of the matching-cut problem for planar graphs and
other graph classes. JGT 62(2), 109–126 (2009)

2. Borowiecki, M., Jesse-Józefczyk, K.: Matching cutsets in graphs of diameter 2.
Theoret. Comput. Sci. 407(1–3), 574–582 (2008)

3. Bui-Xuan, B., Habib, M., Limouzy, V., de Montgolfier, F.: Algorithmic aspects of
a general modular decomposition theory. Discrete Appl. Math. 157(9), 1993–2009
(2009)

4. Bui-Xuan, B., Habib, M., Rao, M.: Tree-representation of set families and appli-
cations to combinatorial decompositions. Eur. J. Comb. 33(5), 688–711 (2012)

5. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1),
35–50 (1981)

6. Chvátal, V.: Recognizing decomposable graphs. JGT 8(1), 51–53 (1984)
7. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Dis-

crete Appl. Math. 3(3), 163–174 (1981)
8. Ehrenfeucht, A., Harju, T., Rozenberg, G.: Theory of 2-structures. In: Fülöp, Z.,

Gécseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 1–14. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60084-1 58

9. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part II: representation
through labeled tree families. Theor. Comput. Sci. 70(3), 305–342 (1990)

10. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment
problem. Theor. Comput. Sci. 349(1), 67–81 (2005)

11. Fujishige, S.: Submodular Functions and Optimization. North-Holland, Amster-
dam (1991)

12. Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of
protein-protein interaction networks. Genome Biol. 5(8), R57 (2004)

13. Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Academiae Scien-
tiarum Hungaricae 18, 25–66 (1967)

14. Graham, R.: On primitive graphs and optimal vertex assignments. Ann. N.Y. Acad.
Sci. 175, 170–186 (1970)

15. Habib, M., de Montgolfier, F., Mouatadid, L., Zou, M.: A general algorithmic
scheme for modular decompositions of hypergraphs and applications. In: Colbourn,
C.J., Grossi, R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol. 11638, pp. 251–264.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25005-8 21

16. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Comput. Sci. Rev. 4(1), 41–59 (2010)

17. Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: an interesting
algorithmic tool kit. Int. J. Found. Comput. Sci. 10(2), 147–170 (1999)

https://doi.org/10.1007/3-540-60084-1_58
https://doi.org/10.1007/978-3-030-25005-8_21

66 M. Habib et al.

18. Hsu, W.: Decomposition of perfect graphs. JCTB 43(1), 70–94 (1987)
19. James, L.O., Stanton, R.G., Cowan, D.D.: Graph decomposition for undirected

graphs. In: Proceedings of the 3rd Southeastern International Conference on Com-
binatorics, Graph Theory, and Computing, Florida Atlantic Univ., Boca Raton,
Flo., pp. 281–290 (1972)

20. Kratsch, D., Le, V.B.: Algorithms solving the matching cut problem. Theor. Com-
put. Sci. 609, 328–335 (2016)

21. Möhring, R.H.: Algorithmic aspects of the substitution decomposition in optimiza-
tion over relations, set systems and boolean functions. Ann. Oper. Res. 6, 195–225
(1985)

22. Möhring, R., Radermacher, F.: Substitution decomposition for discrete structures
and connections with combinatorial optimization. Ann. Discret. Math. 19, 257–356
(1984)

23. Moshi, A.M.: Matching cutsets in graphs. JGT 13(5), 527–536 (1989)
24. Nabti, C., Seba, H.: Querying massive graph data: a compress and search approach.

Future Gener. Comput. Syst. 74, 63–75 (2017)
25. Papadopoulos, C., Voglis, C.: Drawing graphs using modular decomposition. J.

Graph Algorithms Appl. 11(2), 481–511 (2007)
26. Patrignani, M., Pizzonia, M.: The complexity of the matching-cut problem. In:

Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 284–295. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2 26

27. Rusu, I., Spinrad, J.P.: Forbidden subgraph decomposition. Discrete Math. 247(1–
3), 159–168 (2002)

28. Seinsche, D.: On a property of the class of n-colorable graphs. JCTB 16, 191–193
(1974)

29. Serafino, P.: Speeding up graph clustering via modular decomposition based com-
pression. In: Proceedings of the 28th Annual ACM Symposium on Applied Com-
puting, SAC 2013, Coimbra, Portugal, 18–22 March 2013, pp. 156–163 (2013)

30. Szemerédi, E.: On sets of integers containing no k elements in arithmetic progres-
sion. Acta Arithmetica 27, 199–245 (1975)

https://doi.org/10.1007/3-540-45477-2_26

Vertex-Edge Domination in Unit
Disk Graphs

Sangram K. Jena and Gautam K. Das(B)

Indian Institute of Technology, Guwahati, Guwahati, India
{sangram,gkd}@iitg.ac.in

Abstract. Let G = (V,E) be a simple graph. A set D ∈ V is called a
vertex-edge dominating set of G if for each edge e = (u, v) ∈ E, either
u or v is in D or one vertex from their neighbor is in D. Simply, a
vertex v ∈ V , vertex-edge dominates every edge (u, v), as well as every
edge adjacent to these edges. The vertex-edge dominating problem is
to find a minimum vertex-edge dominating set of G. Herein, we study
the vertex-edge dominating set problem in unit disk graphs and prove
that this problem is NP-hard in that class of graphs. We also show that
the problem admits a polynomial time approximation scheme (PTAS) in
unit disk graphs.

Keywords: Dominating set · Vertex-edge dominating set · Unit disk
graph · Approximation algorithm · Approximation scheme

1 Introduction
Let G = (V, E) be a simple undirected graph. The open neighbourhood of a
vertex v ∈ V in G is the set NG(v) = {u ∈ V | (u, v) ∈ E} whereas the closed
neighbourhood is the set NG[v] = NG(v) ∪ {v}. A dominating set D of G is a
subset of V such that every vertex in V is in D or adjacent to at least one vertex
in D. A vertex v ∈ D dominates all its neighbors and itself. The dominating set
problem is to find a minimum cardinality subset D ⊆ V such that D dominates
all the vertices of G.

A vertex-edge dominating set (VEDs) of a simple undirected graph G =
(V, E) is a set D ⊆ V of G such that every edge of G is incident with a vertex
of D or a vertex adjacent to a vertex of D. The VEDs problem asks to find a
VEDs of minimum size in a given graph. A set D ⊆ V is a double vertex-edge
dominating set if every edge e ∈ E is vertex-edge dominated by at least two
vertices in D. A set D ⊆ V is called a total vertex-edge dominating set if every
edge e ∈ E is vertex-edge dominated by D and the graph induced by D has no
isolated vertices.

2 Releated Work
The vertex-edge dominating set problem was introduced by Peters [18] and then
studied further by different researchers. In particular, bounds on the vertex-edge
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 67–78, 2020.
https://doi.org/10.1007/978-3-030-39219-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_6

68 S. K. Jena and G. K. Das

domination number in several graph classes were studied in [3,14–16,20], vertex-
edge degrees and vertex-edge domination polynomials of different graphs were
discussed in [4,9,23,24], whereas the relations between some vertex-edge domi-
nation parameters were discussed in [3,5,12,15,16], several algorithmic aspects
were discussed in [15]. Some variants of vertex-edge domination problem were
studied in [2,6,11,13,19].

The minimum cardinality of a vertex-edge dominating set (double vertex-
edge dominating set, respectively) of G is termed the vertex-edge domination
number and denoted by γve(G) (the double vertex-edge domination number,
γdve(G), respectively). Krishnakumari et al. [14] proved that for every tree T

of order n ≥ 3 with � leaves and s support vertices, we have (n−�−s+3)
4 ≤

γve(T) ≤ n
3 . In [11], Krishnakumari et al. showed that determining γdve(G) for

bipartite graphs is NP-hard, whereas for every non-trivial connected graphs G,
γdve(G) ≥ γve(G) + 1, and for every tree T , we have γdve(T) = γve(T) + 2. They
also provided two lower bounds on the double vertex-edge domination number of
trees and unicycle graphs in terms of order n, the number of leaves and support
vertices, respectively.

Boutrig et al. [3] presented a new relationship between the vertex-edge dom-
ination and some other domination parameters, answering the four open ques-
tions posed by Lewis [15]. Then, for every non-trivial connected K1,k-free graph,
with k ≥ 3, they provided an upper bound for the independent vertex-edge
domination number in terms of the vertex-edge domination number and showed
that for every non-trivial tree the independent vertex-edge domination number
can be bounded by the domination number. For connected C5-free graphs, they
also established an upper bound on the vertex-edge domination number. Next
Boutrig and Chellali [2] studied the total vertex-edge domination. The mini-
mum cardinality of a total vertex-edge dominating set of graph G called the
total vertex-edge domination number and denoted by γt

ve(G). They showed that
determining γt

ve(G) for bipartite graphs is NP-hard, and in case of tree T differ-
ent from a star having order n, with � leaves and s support vertices, respectively,
we have γt

ve(GT) ≤ (n−�+s)
2 . In the same article, they established a necessary

condition for a graph G such to satisfy γt
ve(G) = 2γve(G) and for a tree T ,

γt
ve(T) = 2γve(T).

Later Venkatakrishnan and Kumar [22] proved that the minimum double
vertex-edge dominating set problem is NP-hard for chordal graphs and APX-
hard for bipartite graphs with maximum degree 5. They also proposed a linear-
time algorithm for finding a minimum double vertex-edge dominating set in
proper interval graphs. In addition, showed that the minimum double vertex-
edge dominating set problem can not be approximated the factor (1 − ε) ln |V |
for any ε ≥ 0 unless NP ⊂ DTIME(|V |O(ln ln |V |)). Finally, influence of edge
removal, edge addition and edge subdivision on the double vertex-edge domina-
tion number of a graph was investigated by Krishnakumari and Venkatakrishnan
[12]. Next, Horoldagva et al. [9] obtained some results on the regularity and irreg-
ularity of vertex-edge and edge-vertex degrees in graphs. Recently, Żyliński [25]
proved that for any connected graph G of order n ≥ 6, γve(G) ≤ ⌊

n
3

⌋
.

Vertex-Edge Domination in Unit Disk Graphs 69

3 Our Contribution

We study the VEDs problem in unit disk graphs. A unit disk graph (UDG)
is the intersection graph of equal-radii disks in the plane. Given a set S =
{d1, d2, . . . , dn} of n circular disks in the plane, each having diameter 1, the
corresponding UDG G = (V, E) is defined as follows: each vertex vi ∈ V corre-
sponds to the disk di ∈ S, and there is an edge between two vertices if and only
if the Euclidean distance between the relevant disk centers is at most 1.

We show that the decision version of the VEDs problem is NP-complete in
unit disk graphs (Sect. 4). We also propose a polynomial-time approximation
scheme for the problem (Sect. 5).

4 NP-Hardness

In this section, we show a polynomial-time reduction from the NP-hard vertex
cover problem in planar graphs [7] to the VEDs problem to prove that the latter
one is also NP-hard. The decision versions of both these problems are defined
below.

The VEDs problem on UDGs (Veds-Udg)
Instance: A unit disk graph G = (V, E) and a positive integer k.
Question: Does there exist a vertex-edge dominating set D of G such that

|D| ≤ k?

The vertex cover problem on planar graphs (Vc-Pla)
Instance: A planar graph G = (V, E) having maximum degree 3 and a positive

integer k.
Question: Does there exist a vertex cover C of G such that |C| ≤ k?

Lemma 1 ([21]). A planar graph G = (V, E) with maximum degree 4 can be
embedded in the plane using O(|V |2) area in such a way that its vertices are
at integer coordinates and its edges are drawn so that they are made up of line
segments of the form x = i or y = j, for some i and j.

This embedding is known as the orthogonal drawing of a graph. There is
a linear-time algorithm given by Biedl and Kant [1] that gives an orthogonal
drawing of a given graph with at most 2 bends along each edge (see Fig. 1).

Corollary 1. A planar graph G = (V, E) with maximum degree 3 and |V | ≥ 3
can be embedded in the plane with its vertices are at (4i, 4j) and its edges are
drawn as a sequence of consecutive line segments on the lines x = 4i or y = 4j,
for some i and j.

Lemma 2. Let G = (V, E) be an instance of Vc-Pla with |E| ≥ 2. An instance
G′ = (V ′, E′) of Veds-Udg can be constructed from G in polynomial-time.

70 S. K. Jena and G. K. Das

Fig. 1. (a) A planar graph G, (b) its embedding on a grid, and (c) a UDG construction
from the embedding.

Proof. Our construction of G′ from G is done in three steps.

Step 1: Embedding graph G into a grid of size 4n×4n. G can be embedded
in the plane using one of the algorithms [8,10] (see Lemma 1 and Corollary 1)
with each of its edges as a sequence of connected line segment(s) of length four
units. Let the total number of line segments used in the embedding is �. The
points {p1, p2, . . . , pn} are termed node points in the embedding correspond to
the vertex set V = {v1, v2, . . . , vn} (see Fig. 1(a) and (b)).

Vertex-Edge Domination in Unit Disk Graphs 71

Step 2: Adding extra points. For each edge (pi, pj) having length 4 units, (i)
we add two points α and β on the edge (pi, pj) such that α is 0.8 unit apart from
pi and β is 0.8 unit appart from pj , and (ii) add another three points between
α and β with distance 0.6 unit from each other, respectively (thus adding five
points in total, see edge (p4, p5) in Fig. 1(c)). For each edge of length greater
than 4 units, we also add points as follows: (i) add a point in the joining point
(grid point) of each line segments other than the node points and name it as a
joint point (see empty circular points in Fig. 1(c)), (ii) for one of the two line
segments whose one endpoint is associated with node point, we add five points
at distances 0.8, 1.4, 2, 2.6 and 3.2 units from the node point, and for other line
segments we add three points at distance 1 units from each other excluding the
joint points (see the edge (p3, p4) in Fig. 1(c)). We name the points added in this
step as added points.

Step 3: Construction step. For convenience, denote the set of node points by
N and set of added points by A, respectively, that is, N = {pi | vi ∈ V } and
A = {q1, q2, . . . , q4�+|E|}. We construct a UDG G′ = (V ′, E′), where V ′ = N ∪ A
and there is an edge between two points in V ′ if and only if the Euclidean distance
between the points is at most 1 (see Fig. 1(c)). Observe that |N | = |V |(= n) and
|A| = 4� + |E|, where � is the total number of line segments in the embedding
and |E| is the total number of edges in G. Since G is planar, |E| = O(n). It also
follows from Lemma 1 that � = O(n2). Therefore both |V ′| and |E′| are bounded
by O(n2), and hence G′ can be constructed in polynomial-time. �	
Theorem 1. Veds-Udg is NP-complete.

Proof. For any given set D ⊆ V and a positive integer k, we can verify in
polynomial-time whether D is a vertex-edge dominating set of size at most k by
checking whether each edge in E is vertex-edge dominated by a vertex in D or
not. Hence, Veds-Udg ∈ NP.

Now, we need to prove Veds-Udg ∈ NP-hard. For the hardness proof, we
show a polynomial time reduction from Vc-Pla to Veds-Udg. Let G = (V, E)
be an instance of Vc-Pla. Construct the instance G′ = (V ′, E′) of Veds-Udg
as discussed in Lemma 2. We have the following claim.

Claim. G has a vertex cover of size at most k if and only if G′ has a vertex-edge
dominating set of size at most k + �.

Necessity. Let C ⊆ V be a vertex cover of G such that |C| ≤ k. Let N ′ = {pi ∈
N | vi ∈ C}, i.e., N ′ is the set of vertices in G′ that correspond to the vertices
in C. The idea is to choose one vertex from each segment in the embedding such
that the chosen vertex set A′(⊆ A) together with N ′, i.e., N ′ ∪ A′ will form a
VEDs of cardinality k + � in G′. As C is a vertex cover in G, every edge in G
has at least one of its endpoints in C. Let (vi, vj) be an edge in G and assume
vi ∈ C (the same argument works for vj ∈ C or if both vi and vj ∈ C). It follows
from the construction of G′ that the edge (pi, pj) is represented as a sequence
of line segments in the graph G′, where pi and pj are nodes in G′ corresponding
to vertices vi and vj in G. Start traversing the segments from pi, and add each

72 S. K. Jena and G. K. Das

fourth vertex to A′ encountered from pi to pj in the traversal (see Fig. 2 for an
illustration, where both big circles and squares belong to A′ while traversing
from p1 to p2, p2 to p3, p1 to p3, p4 to p2, p4 to p5 and p4 to p3, respectively).

Fig. 2. (a) A vertex cover {v1, v2, v4} of G, and (b) the construction of A′ in G′

Apply the same process to each chain of line segments in G′ corresponding
to each edge in G. Observe that the cardinality of A′ is � as we have chosen one
vertex from each segment in the embedding. Let D = N ′ ∪ A′. Now, observe
that D is a vertex-edge dominating set in G′ as each edge in G′ is vertex-edge
dominated by at least one vertex in D and |D| = |N ′| + |A′| ≤ k + � as required.

Sufficiency. Let D ⊆ V ′ be a VEDs of size at most k + �. We argue that G
has a vertex cover of size at most k based upon the following claim: (i) at least
one vertex on each segment in the embedding must belongs to D and hence
|A ∩ D| ≥ �, where � is the total number of segments in the embedding. We shall
show that, by removing and/or replacing some vertices in D, a set of at most
k vertices from N can be chosen such that the corresponding vertices in G is a
vertex cover. Let C = {vi ∈ V | pi ∈ D ∩ N}. If any edge (vi, vj) in G has none
of its end vertices in C, then consider the points pi and pj corresponding to vi

and vj respectively.

Case (i): If pi is the only vertex that is connected with pj in G′, then the chain
of segments (say �′) in the path pi � pj in G′ has at least �′ + 1 vertices in D
(see Fig. 3(a) for example). In this case, we delete one point from the segment
containing two points in D and introduce pi in D.

Vertex-Edge Domination in Unit Disk Graphs 73

Fig. 3. (a) pi is connected with only pj , (b) pi is connected with pk and pj is connected
with p�.

Case (ii): If both pi and pj are connected with some points pk and p� respectively
in G′, then either the chain of segments (say �′) in the path pi � pj in G′ has
at least �′ + 1 vertices in D (see Case (i)) or the chain of segments (say �′) in
both the path pi � pk and (pj � p�) in G′ has at least �′ + 1 vertices in D (see
Fig. 3(b) for example). In this case, we choose the segment having two points
in D and remove one point of the segment from D and introduce pj in D if
pk ∈ D or p� is only connected with pj , otherwise introduce pi in D. Update C
and repeat the process till every edge has at least one of its end vertices in C.
Due to Claim (i), C is a vertex cover in G with |C| ≤ k. Therefore, Veds-Udg
is NP-hard.

As Veds-Udg is in NP as well as NP-hard, Veds-Udg is NP-complete. �	

5 Approximation Scheme

In this section, we propose a PTAS for the VEDs problem in UDGs. Let
G = (V, E) be a given UDG. Our PTAS is based on the concept of m-separated
collection of subsets of V for some integer m. Given a graph G, let d(u, v) denote
the number of edges on a shortest path between u and v. For V1, V2 ⊆ V , d(V1, V2)
is defined as d(V1, V2) = minu∈V1,v∈V2{d(u, v)}. We use notations V ED(A) and
V EDopt(A) to denote a vertex-edge dominating set of A (⊆ V) in G and an
optimal vertex-edge dominating set of A in G. We also define the closed neigh-
borhood of a set A ⊆ V as NG[A] =

⋃

v∈A

NG[v] and the r-th neighborhood of a

vertex v as Nr
G[v] = {u ∈ V | d(u, v) ≤ r} in G.

Let S = {S1, S2, . . . , Sk} be a collection of disjoint vertex subsets in G such
that each Si ⊂ V for i = 1, 2, . . . , k. S is refered as a m-separated collection of
vertices if d(Si, Sj) > m, for 1 ≤ i, j ≤ k and i �= j (see Fig. 4 for a 4-separated
collection). Nieberg and Hurink [17] considered 2-separated collection to propose
a PTAS for the minimum dominating set problem on unit disk graphs.

Lemma 3. If S = {S1, S2, . . . , Sk} is a m-separated collection in a graph G =

(V, E), then
k∑

i=1
|V EDopt(Si)| ≤ |V EDopt(V)| for each m ≥ 4.

74 S. K. Jena and G. K. Das

Proof. For each Si ∈ S, consider Pi = {u ∈ V | v ∈ Si and d(u, v) ≤ 2}, for
i = 1, 2, . . . , k. Since m ≥ 4, Pi ∩Pj = ∅ as d(Si, Sj) > m for i �= j. Observe that,
for each i = 1, 2, . . . , k, Si ⊆ Pi and Pi ∩V EDopt(V) is a vertex-edge dominating
set of Si. Therefore, (Pi ∩ V EDopt(V)) ∩ (Pj ∩ V EDopt(V)) = ∅, and hence, we

have
k∑

i=1
|(Pi∩V EDopt(V))| ≤ |V EDopt(V)|. As Pi∩V EDopt(V) is a vertex-edge

dominating set of Si, for i = 1, 2, . . . , k, and V EDopt(V) is a minimum vertex-

edge dominating set of the graph G, we obtain
k∑

i=1
|V EDopt(Si)| ≤

k∑

i=1
|(Pi ∩

V EDopt(V))| ≤ |V EDopt(V)|. �	

Fig. 4. A 4-separated collection S = {S1,S2,S3,S4,S5}

Lemma 4. Let S = {S1, S2, . . . , Sk} be an m-separated collection in a graph
G = (V, E), m ≥ 4, and let R1, R2, . . . , Rk be subsets of V with Si ⊆ Ri for all
i = 1, 2, . . . , k. If there exists ρ ≥ 1 such that |V EDopt(Ri)| ≤ ρ|V EDopt(Si)|
holds for all i = 1, 2, . . . , k, and if

k⋃

i=1
V EDopt(Ri) is a vertex-edge dominating

set in G, then
k∑

i=1
|V EDopt(Ri)| is at most ρ times the size of a minimum vertex-

edge dominating set in G.

Vertex-Edge Domination in Unit Disk Graphs 75

Proof.
k∑

i=1
|V EDopt(Si)| ≤ |V EDopt(V)| (from Lemma 3).

Hence,
k∑

i=1
|V EDopt(Ri)| ≤ ρ

k∑

i=1
|V EDopt(Si)| ≤ ρ|V EDopt(V)|. �	

5.1 Construction of Subsets

In this section, we discuss the process of constructing the desired 4-separated
collection of subsets S = {S1, S2, . . . , Sk} and the corresponding subsets
R1, R2, . . . , Rk of V such that Si ⊆ Ri for all i = 1, 2, . . . , k. The algorithm pro-
ceeds in an iterative manner. The basic idea of the algorithm is as follows: start
with an arbitrary vertex v ∈ Vi, where Vi is the vertex set in the i-th iteration of
the algorithm. Note that in the first iteration V1 = V and the algorithm computes
S1 and R1. More specifically, for r = 1, 2, . . ., we find the vertex-edge dominating
set of the graphs induced by the r-th neighborhood as well as the (r + 4)-th neigh-
borhood of the vertex v until |V ED(Nr+4

G [v])| > ρ|V ED(Nr
G[v])| holds. Here,

V ED(Nr+4
G [v]) and V ED(Nr

G[v]) are vertex-edge dominating sets of Nr+4
G [v]

and Nr
G[v], respectively, and ρ = 1 + ε (ε > 0). Let r̂ be the smallest r violating

the above condition. Set Si = N r̂
G[v], Ri = N r̂+4

G [v] and V ′
i = Vi \ N r̂+3

G [v]. Note
that removing N r̂+4

G [v] from Vi implies removing the relevant edges connecting
N r̂+4

G [v] to Vi\N r̂+4
G [v] for which vertex-edge domination may not be maintained.

Hence, removing N r̂+3
G [v] from Vi removes the edges for which V ED(N r̂+4

G [v])
is a vertex-edge dominating set. Let Ti be the set of vertices consisting of all
singleton vertices after removing N r̂+3

G [v] vertices from Vi in the i-th iteration of
the algorithm. Set Vi+1 = V ′

i \ Ti. The process stops while Vi+1 = ∅ and returns
the sets S = {S1, S2, . . . , Sk} and R = {R1, R2, . . . , Rk}. The collection of the
sets S is a 4-separated collection.

We compute the vertex-edge dominating set of the r-th neighborhood of a
vertex v, V ED(Nr

G[v]) with respect to G as follows. Find a maximal independent
set I for the graph induced by the vertices of Nr

G[v]. Observe that if we choose
each vertex vi ∈ I in V ED(Nr

G[v]), then it forms a vertex-edge dominating set
for Nr

G[v] (see Lemma 5).

Lemma 5. V ED(Nr
G[v]) is a VEDs of Nr

G[v] in G.

Proof. Suppose to the contrary, assume that V ED(Nr
G[v]) is not a VEDs of

the graph G′ = (V ′, E′) induced by Nr
G[v]. That means, there exist an edge

(u, v) ∈ E′ such that NG′ [u] /∈ V ED(Nr
G[v]) and NG′ [v] /∈ V ED(Nr

G[v]). It
contradicts the fact that I is a maximal independent set in G′. Thus, the
lemma. �	
Lemma 6. The worst case size of a vertex-edge dominating set of the r-th neigh-
borhood of a vertex v is bounded by (r + 2)2, i.e.,|V ED(Nr

G[v])| ≤ (r + 2)2.

Proof. We compute a maximal independent set I before computing a vertex-edge
dominating set in the graph G′ = (V ′, E′) induced by Nr

G[v]. The cardinality
of a maximal independent set in the UDG G′ is bounded by the number of

76 S. K. Jena and G. K. Das

non-intersecting unit disks packed in a disk of radius r + 2 centered at v. So,
|I| ≤ π(r+2)2

π(1)2 = (r + 2)2. From Lemma 5, in any graph, the cardinality of a
minimum vertex-edge dominating set is bounded by the cardinality of maximal
independent set. Therefore, |V ED(Nr

G[v])| ≤ (r + 2)2. �	
Lemma 7. For ρ = 1 + ε, there always exists an r violating the condition
|(V ED(Nr+4

G [v])| > ρ|V ED(Nr
G[v])|.

Proof. Suppose to the contrary that there exists a vertex v ∈ V such that
|(V ED(Nr+4

G [v])| > ρ|V ED(Nr
G[v])| for all r = 1, 2,

From Lemma 6, we have |(V ED(Nr+4
G [v])| ≤ (r + 6)2.

Therefore, if r is even,
(r + 6)2 ≥ |(V ED(Nr+4

G [v])| > ρ|V ED(Nr
G[v])| > · · · > ρ

r
2 |V ED(N2

G[v])| ≥ ρ
r
2 ,

and if r is odd,
(r + 6)2 ≥ |(V ED(Nr+4

G [v])| > ρ|V ED(Nr
G[v])| > · · · > ρ

r−1
2 |V ED(N1

G[v])| ≥
ρ

r−1
2 .
Hence,

(r + 6) >

{
(√ρ)r, if r is even
(√ρ)r−1, if r is odd

(1)

Observe that in the inequality (1), the right side is an exponential function where
as the left side is a polynomial function in r, which results in a contradiction. �	
Lemma 8. The smallest r violating inequality (1) is bounded by O(1

ε log 1
ε).

Proof. Let r̂ be the smallest r violating the inequalities (1). We prove r̂ ≤
O(1

ε log 1
ε) by using the inequality log(1 + ε) > ε

2 for 0 < ε < 1. For a fixed ε > 0,
consider the inequality (1+ε)x < x2. Let x = c

ε log 1
ε , for some constant c > 0. By

taking logarithm on the both sides of the inequality, we get log c + log log 1
ε > 0.

Note that we can always find ε′ such that log c + log log 1
ε > 0 for 0 < ε < ε′.

Therefore, (1 + ε)x < x2 < (x + 6)2 holds for sufficiently smaller ε values and
hence, r̂ ≤ O(1

ε log 1
ε). �	

Lemma 9. For a given v ∈ V , minimum vertex-edge dominating set
V EDopt(Ri) of Ri can be computed in polynomial time.

Proof. Let G′ = (V ′, E′) be a graph induced by Ri ⊆ Nr+4
G [v]. From Lemma 6,

the size of Nr+4
G [v] is bounded by O(r2), so we take every possible tuple of size at

most O(r2) and check whether the selected tuple is a vertex-edge dominating set
of the graph G′. This process takes O(

(
n
r2

)
) = O(nr2) time. Since r = O(1

ε log 1
ε)

by Lemma 8, V EDopt(Ri) can be computed in polynomial time. �	

Lemma 10. For the collection of subsets {R1, R2, . . . , Rk}, D =
k⋃

i=1
V ED(Ri)

is a vertex-edge dominating set in G = (V, E).

Vertex-Edge Domination in Unit Disk Graphs 77

Proof. To prove D is a vertex-edge dominating set of the graph G, we need to
prove for every edge (vi, vj) ∈ E, there exists at least one vertex from NG[vi]
or NG[vj] in D. It follows from our construction of the subsets R1, R2, . . . , Rk

(Sect. 5.1) that each edge (vi, vj) belongs to a particular subset Ri and V ED(Ri)
is a vertex-edge dominating set of the graph induced by the vertices of Ri. Thus
the lemma. �	

Corollary 2. D∗ =
k⋃

i=1
V EDopt(Ri) is a vertex-edge dominating set in G, for

the collection R = {R1, R2, . . . , Rk}.

Theorem 2. For a given UDG, G = (V, E), and an ε > 0, we can design a
(1 + ε)-factor approximation algorithm to find a VEDs in G with running time
nO(c2), where c = O(1

ε log 1
ε).

Proof. The proof of the theorem follows from Lemmas 4, 7, 9 and Corollary 2.�	

6 Conclusion

In this article, we studied the minimum vertex-edge dominating set problem
(VEDs) on unit disk graphs, and showed that the VEDs problem is NP-complete.
We also proposed a PTAS for the VEDs problem.

References

1. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159–180 (1998)

2. Boutrig, R., Chellali, M.: Total vertex-edge domination. Int. J. Comput. Math.
95(9), 1820–1828 (2018)

3. Boutrig, R., Chellali, M., Haynes, T.W., Hedetniemi, S.T.: Vertex-edge domination
in graphs. Aequationes Math. 90(2), 355–366 (2016)

4. Chellali, M., Haynes, T.W., Hedetniemi, S.T., Lewis, T.M.: On ve-degrees and
ev-degrees in graphs. Discrete Math. 340(2), 31–38 (2017)

5. Chen, X., Yin, K., Gao, T.: A note on independent vertex-edge domination in
graphs. Discrete Optim. 25, 1–5 (2017)

6. Chitra, S., Sattanathan, R.: Global vertex-edge domination sets in graph. Int. Math.
Forum 7, 233–240 (2012)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, Dallas (1979)

8. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM (JACM) 21(4), 549–
568 (1974)

9. Horoldagva, B., Das, K.C., Selenge, T.: On ve-degree and ev-degree of graphs.
Discrete Optim. 31, 1–7 (2019)

10. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM J. Comput. 11(4), 676–686 (1982)

11. Krishnakumari, B., Chellali, M., Venkatakrishnan, Y.B.: Double vertex-edge dom-
ination. Discrete Math. Algorithms Appl. 9(4), 1–11 (2017)

78 S. K. Jena and G. K. Das

12. Krishnakumari, B., Venkatakrishnan, Y.B.: Influence of the edge removal, edge
addition and edge subdivision on the double vertex-edge domination number of a
graph. Natl. Acad. Sci. Lett. 41(6), 391–393 (2018)

13. Krishnakumari, B., Venkatakrishnan, Y.B.: The outer-connected vertex edge dom-
ination number of a tree. Commun. Korean Math. Soc. 33(1), 361–369 (2018)

14. Krishnakumari, B., Venkatakrishnan, Y.B., Krzywkowski, M.: Bounds on the
vertex-edge domination number of a tree. C. R. Math. 352(5), 363–366 (2014)

15. Lewis, J.: Vertex-edge and edge-vertex parameters in graphs. Dissertation pre-
sented to Graduate School of Clemson University (2007)

16. Lewis, J., Hedetniemi, S.T., Haynes, T.W., Fricke, G.H.: Vertex-edge domination.
Utilitas Math. 81, 193–213 (2010)

17. Nieberg, T., Hurink, J.: A PTAS for the minimum dominating set problem in unit
disk graphs. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879,
pp. 296–306. Springer, Heidelberg (2006). https://doi.org/10.1007/11671411 23

18. Peters, K.: Theoretical and algorithmic results on domination and connectivity.
Dissertation presented to Graduate School of Clemson University (1987)

19. Siva Rama Raju, S., Nagaraja Rao, I.: Complementary nil vertex edge dominating
sets. Proyecciones (Antofagasta) 34(1), 1–13 (2015)

20. Thakkar, D., Jamvecha, N.P.: About ve-domination in graphs. Ann. Pure Appl.
Math. 14(2), 245–250 (2017)

21. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput.
100(2), 135–140 (1981)

22. Venkatakrishnan, Y.B., Naresh Kumar, H.: On the algorithmic complexity of dou-
ble vertex-edge domination in graphs. In: Das, G.K., Mandal, P.S., Mukhopad-
hyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp. 188–198.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10564-8 15

23. Vijayan, A., Nagarajan, T.: Vertex-edge dominating sets and vertex-edge domina-
tion polynomials of wheels. IOSR J. Math. 10(5), 14–21 (2014)

24. Vijayan, A., Nagarajan, T.: Vertex-edge domination polynomial of graphs. Int. J.
Math. Arch. 5(2), 281–292 (2014)

25. Żyliński, P.: Vertex-edge domination in graphs. Aequationes Math. 93(4), 735–742
(2019)

https://doi.org/10.1007/11671411_23
https://doi.org/10.1007/978-3-030-10564-8_15

Geometric Planar Networks
on Bichromatic Points

Sayan Bandyapadhyay1 , Aritra Banik2 , Sujoy Bhore3(B) ,
and Martin Nöllenburg3

1 Department of Informatics, University of Bergen, Bergen, Norway
2 School of Computer Sciences, NISER, Bhubaneswar, India

3 Algorithms and Complexity Group, Technische Universität Wien, Vienna, Austria
sujoy.bhore@gmail.com

Abstract. We study four classical graph problems – Hamiltonian path,
Traveling salesman, Minimum spanning tree, and Minimum perfect
matching on geometric graphs induced by bichromatic (red and blue)
points. These problems have been widely studied for points in the
Euclidean plane, and many of them are NP-hard. In this work, we con-
sider these problems in two restricted settings: (i) collinear points and
(ii) equidistant points on a circle. We show that almost all of these prob-
lems can be solved in linear time in these constrained, yet non-trivial
settings.

1 Introduction

In this article, we study four classical graph problems on geometric graphs
induced by bichromatic (red and blue) points. Suppose, we are given a set R
of n red points and a set B of m blue points in the Euclidean plane. Consider
the complete bipartite graph G(R,B,E) on R ∪ B, where the set E of edges
contains all bichromatic edges between the red points and the blue points. Also,
suppose the graph G(R,B,E) is embedded in the plane: the points are the ver-
tices and each edge is represented by the segment between the two corresponding
endpoints. We denote these edges as bichromatic segments, where each bichro-
matic segment connects a red point with a blue point. A subgraph of G(R,B,E)
(or equivalently a subset of edges of E) is called non-crossing (or planar) if no
pair of the edges of the subgraph cross each other. Next, we discuss the four
graph problems on the bipartite graph G(R,B,E) induced by R ∪ B.

In the Bichromatic Hamiltonian path problem, the objective is to find
a path in G(R,B,E) that spans all the red and blue points. Equivalently, one
would like to find a polygonal chain that connects all the red points and the
blue points alternately through bichromatic segments. It is not hard to see that
a Hamiltonian path exists in G(R,B,E) if and only if m − 1 ≤ n ≤ m +
1, and if there exists one, it can be computed efficiently, as G(R,B,E) is a

Research of Sujoy Bhore and Martin Nöllenburg is supported by the Austrian Science
Fund (FWF) grant P 31119.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 79–91, 2020.
https://doi.org/10.1007/978-3-030-39219-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_7&domain=pdf
http://orcid.org/0000-0001-8875-0102
http://orcid.org/0000-0002-7544-6125
http://orcid.org/0000-0003-0104-1659
http://orcid.org/0000-0003-0454-3937
https://doi.org/10.1007/978-3-030-39219-2_7

80 S. Bandyapadhyay et al.

(b)(a)

Fig. 1. Two instances without a non-crossing Hamiltonian path. Figure (a) is not in
general position, Figure (b) (borrowed from [14]) is in general position. (Color figure
online)

complete bipartite graph. A more interesting problem is the Non-crossing
bichromatic Hamiltonian path problem where the objective is to find a
non-crossing Hamiltonian path. Note that one can construct instances with m−
1 ≤ n ≤ m + 1, where it is not possible to find any non-crossing Hamiltonian
path. In Fig. 1, we demonstrate two such instances.1 Figure 1(a) has eight points
where four of them lie on a horizontal line L and the remaining four lie on a
line parallel to L. Notice that, there must be one red and one blue point with
degree 1. One can verify by enumerating all possible paths that there is no non-
crossing Hamiltonian path that spans these points. The example in Fig. 1(b) has
thirteen points in general position, i.e., no pair of the points are collinear, and
also does not admit a non-crossing Hamiltonian path. Indeed, if 2 ≤ n ≤ 12,
then for any given �n/2� red (resp. blue) points and �n/2� blue (resp. red)
points in general position, there exists a non-crossing Hamiltonian path [12].
Due to the uncertainty of the existence of non-crossing Hamiltonian paths in
the general case, researchers have also considered the problem of finding a non-
crossing alternating path of length as large as possible [13,16].

A related problem is the Bichromatic traveling salesman path
(Bichromatic TSP) problem where one would like to find a minimum weight
Hamiltonian path in G(R,B,E). The weight of each edge is the (Euclidean)
length of the corresponding segment. The weight of a path is the sum of the
weights of the edges along the path. For simplicity, we assume n = m. A straight-
forward reduction from the (monochromatic) Euclidean TSP [4] (replace each
point by a bichromatic pair that is small distance apart) shows that Bichro-
matic TSP is also NP-hard. One simple, but powerful fact is that an optimum
Euclidean TSP is always non-crossing. This helps to obtain a PTAS [4] for the
problem. However, an optimum Bichromatic TSP is not necessarily non-crossing
which makes its computation much harder compared to Euclidean TSP. The
best known approximation factor for the Bichromatic TSP problem is 2 due to
Frank et al. [11] who improved the 2.5-approximation of Anily et al. [3]. For a

1 In all the figures throughout the paper, we show red (resp. blue) points by squares
(resp. disks).

Geometric Planar Networks on Bichromatic Points 81

set of collinear points, Evans et al. [10] gave a quadratic time algorithm for com-
puting an optimum non-crossing TSP, every edge of which is a poly-line with at
most two bends.

Next, we consider the Bichromatic spanning tree problem where the
objective is to compute a minimum weight spanning tree of G(R,B,E). Note
that this problem can be solved efficiently by any standard minimum spanning
tree algorithm. A more interesting problem is the Non-crossing bichromatic
spanning tree problem where additionally the computed tree must be planar
(non-crossing). Borgelt et al. [9] showed that this problem is NP-hard. For points
in general position, they gave a near-linear time O(

√
n)-approximation. On the

other hand, for points in convex position, they gave an exact cubic-time algo-
rithm. Another line of work that received much attention is where the task is to
find a degree-bounded non-crossing spanning tree [8].

Finally, we consider the Bichromatic matching problem. Again assume
that n = m for simplicity. We would like to find a minimum weight perfect match-
ing in G(R,B,E). The weight of an edge is the Euclidean distance between its
corresponding points. It is a well-known fact that a minimum weight bichro-
matic matching (for points in general position) in the plane is always non-
crossing, which follows from the observation that the sum of the diagonals of
a convex quadrilateral is strictly larger than the sum of any pair of opposite
sides. This implies that using any standard bipartite matching algorithm one
can solve Bichromatic matching exactly. But, algorithms with better running
time have been designed by exploiting the underlying geometry of the plane.
Recently, Kaplan et al. [15] designed an O(n2poly(log n)) algorithm for the prob-
lem improving the O(n2+ε) algorithm due to Agarwal et al. [2], where poly(.) is
a polynomial function. Abu-Affash et al. [1] and Biniaz et al. [7] studied variants
of the bichromatic matching problem.

In this article, we consider the above mentioned problems in two restricted
settings: (i) for collinear points and (ii) for equidistant points on a circle. For
all problems, we assume that n = m for simplicity. We note that the case of
non-crossing graphs on collinear points is closely related to topological 1-page
or 2-page book embeddings [6], which have all vertices placed on a line (called
the spine) and the edges drawn without crossings in one or two of the halfplanes
(but not in both) defined by the spine (called the pages). In our case we assume
that the edges are drawn as (circular) arcs or 1-bend polylines either above or
below the spine. We assume that their weight is given by the Euclidean distance
of their endpoints. If the arcs are drawn infinitesimally close to the spine, these
weights correspond to the lengths of the arcs.

Our Results. The main results obtained in this work are the following.

➥ Non-crossing Hamiltonian path for collinear points – We prove
that for any collinear configuration of the points, there always exists a non-
crossing Hamiltonian path. We give a linear-time algorithm for computing
such a path (Sect. 2).

82 S. Bandyapadhyay et al.

➥ Minimum spanning tree for collinear points – We give a linear-time
algorithm for computing a minimum weight spanning tree, and a quadratic-
time algorithm for computing a minimum weight non-crossing spanning tree
for collinear points and edges on a single page (Sect. 3).

➥ Minimum non-crossing matching for collinear points – We give a
linear-time algorithm that computes a minimum-weight non-crossing perfect
matching for collinear points and edges on a single page (Sect. 4).

➥ TS tour for chunked points on a circle – We give a linear-time
algorithm for computing an optimum traveling salesman tour for equidis-
tant points on a circle that form alternately colored and equally sized chunks
(Sect. 5).

The linear-time algorithms assume that the points are given in some sorted order.
We note that even in this simple one-dimensional case these problems become
sufficiently challenging if one is constrained to use only linear (or near-linear)
time. Throughout the paper we assume that there are no collocated points. We
refer the reader to the full version [5] of our paper for missing proofs of lemmas
and theorems.

2 Non-crossing Hamiltonian Path for Collinear Points

If we would require for the collinear point set that each edge of a Hamiltonian
path is a straight-line segment the problem becomes trivial: an input instance
can have a non-crossing Hamiltonian path if and only if the colors of the points
alternate. Therefore, we consider the case where edges are represented by circular
arcs drawn in the halfplane either above or below the line.

Definition 1. Non-crossing Hamiltonian path for collinear points.
Given a set of n red points and a set of n blue points on the line H : y = 0,
find a non-crossing geometric path π in the plane such that π consists of circular
arcs above or below H, each of which connects a red and a blue point and π spans
all the input points.

Note that in the above definition if the path is allowed to use arcs only from
above (resp. below) H, then there might not exist such a Hamiltonian path (see
Fig. 2).

Fig. 2. Figure demonstrating a set of collinear points for which non-crossing Hamil-
tonian path does not exist if the arcs can be drawn only above the line. (Color figure
online)

Geometric Planar Networks on Bichromatic Points 83

First, we give a constructive proof for the existence of such a path for any
configuration of points. The construction itself takes polynomial time, hence giv-
ing a polynomial time algorithm for computation of such a path. In the following,
we describe the construction.

2.1 The Construction

To construct the path, we start with any bichromatic matching (not necessarily
crossing free) of the points. Note that each matched edge is a segment on H.
We will connect these edges to obtain a Hamiltonian path. First, we form a
hierarchical structure of these matched edges. Informally, the matched edges are
hierarchical if any two edges are either disjoint or one is contained within the
other.

Definition 2. A set of matched edges M are hierarchical if for any two edges
(u, v), (w, x) ∈ M with u < v, w < x and u < w, either u < v < w < x
((u, v), (w, x) are uncrossed) or u < w < x < v ((u, v) contains (w, x)).

Given any matching M for R ∪ B, we can change it to a hierarchical matching
in the following way. If there are two edges (u, v), (w, x) ∈ M with u < v, w < x,
u < w that are not disjoint and none of them contains the other, then it must
be the case that u < w < v < x. Now, there are two subcases, depending on
the colors of u and w. If u,w are red or u,w are blue, we replace the edges
(u, v), (w, x) by the two bichromatic edges (u, x), (w, v). Otherwise, either u is
red, w is blue or u is blue, w is red. In that case, we replace the edges (u, v), (w, x)
by the two bichromatic edges (u,w), (v, x). Note that in all the cases, the new
pair of edges do not violate the hierarchical structure. We repeat the process for
each pair of edges that violate the condition. Newly formed edges might violate
the condition with respect to other edges. However, it is easy to verify that if
an edge is removed, it is never added back, and thus the process will eventually
stop at some point when no pair of edges violate the condition.

Next, we associate levels with each matched edge of M in a recursive way.
In the base case, for each edge that does not span any other edge, set its level
to 1. Now, suppose we have defined edges of level j for each j ≤ i − 1 for i ≥ 2.
An edge (u, v) has level i, if it contains a level i − 1 edge, and for any level i − 1
edge (w, x) that it contains, there is no other edge that is contained in (u, v)
that also contains (w, x). Note that the level of each edge is unique. Let L be
the maximum level.

For any edge (u, v) of M with level j, call the points that lie between u and
v including u and v as a level j block. Thus, a level l block is a union of blocks
of levels at most l − 1 and two special points which are the first and last point
of the block. One can easily verify that a block contains the same number of
red and blue points. We compute the Hamiltonian path for all the blocks in a
bottom up manner. The path of a level 1 block is the matched edge itself which
defines the block. Additionally, for each block, we compute a path for the block
that satisfies the following two invariants.

84 S. Bandyapadhyay et al.

– The first point of the block is an endpoint of the path.
– If an endpoint p of the path is not an endpoint of the block, then the path

cannot contain two edges (u, v), (w, x) with u < v and w < x, such that (u, v)
lies above H, (w, x) lies below H, u < p < v, and w < p < x.

Informally, the second condition states that, the endpoint of the path that is
not an endpoint of the block should be available for connecting with an edge
at least from one side. Note that the paths for level 1 blocks trivially satisfy
the invariants. Now, assume that we have computed the paths for all the level
j blocks for j ≤ l − 1 and l ≥ 2 that satisfy the invariants. We show how to
compute the path for a level l block S that also satisfies the invariants. Let u, v
be the endpoints of the block. Also let S1, . . . , St be the blocks, sorted w.r.t the
index of the first point in increasing order, whose union with the set {u, v} forms
the block S. As Si has level at most l−1, we have already computed the path of
Si for all i. We show, by induction, how to construct the path T ′ for the points
in ∪i

j=1Sj for all 2 ≤ i ≤ t. Then, we show how to join the edge (u, v) with T ′ to
obtain the path for the block S. For simplicity, we also refer to the set of points
∪i

j=1Sj as a block. Now, we prove the following lemma.

Lemma 1. A non-crossing Hamiltonian path of ∪i
j=1Sj can be computed for all

1 ≤ i ≤ t that satisfies the two invariants.

The next lemma completes the induction step for showing the construction
of the path for the level l block.

Lemma 2. A non-crossing Hamiltonian path for the level l block S can be com-
puted that satisfies the two invariants.

To compute the path of all the points in R ∪ B one can note that R ∪ B is a
union of a set of blocks having levels at most the maximum level L. By Lemma 2,
we can compute the paths for all such blocks that satisfy the invariants. Then
we can merge those paths using the construction in Lemma 1 to get the path
for the points in R ∪ B. It is easy to verify that the overall construction can be
done in polynomial time. Thus, we get the following theorem.

Theorem 1. For any set R of red points and B of blue points on y = 0 with
|R| = |B|, there always exists a non-crossing Hamiltonian path whose edges are
circular arcs that lie above or below y = 0. Moreover, such a path can be computed
in polynomial time.

2.2 A Linear Time Algorithm for Non-crossing Hamiltonian Path

Recall that all the input points lie on H : y = 0. We assume that the points
are given in sorted order w.r.t their x coordinates. For a point p (except the
last one), let S(p) be the point which is the successor of p in this order. We
use the following algorithm to compute a non-crossing Hamiltonian path. The
algorithm processes the points from left to right and extends the Hamiltonian

Geometric Planar Networks on Bichromatic Points 85

path constructed so far by connecting the current point with an appropriately
chosen point. In particular, in every iteration, we consider a point p and connect
it by adding one or more edges. Initially, p is the leftmost point, and all points
are active. We store the constructed path in a set of edges Π, which is initially
empty.

– Let l(r) and l(b) be the rightmost (or last in the order) red and blue points,
respectively, which are active.

– If the color of p is different from the color of S(p), we simply add a small arc
(p, S(p)) to Π that lie above H. Make p inactive.

– Otherwise, there are two cases.
(i). If p is red, add two edges (p, l(b)) and (l(b), S(p)) to Π. These two edges

are drawn above H as circular arcs. Make p and l(b) inactive.
(ii). If p is blue, add two edges (p, l(r)) and (l(r), S(p)) to Π. These two edges

are drawn below H as circular arcs. Make p and l(r) inactive.
– If S(p) is active, assign S(p) to p (i.e., p ← S(p)) and repeat all the steps.

Otherwise, terminate the algorithm.

We discuss the correctness of the algorithm. First, we have the following
observation.

Observation 3. Consider any iteration of the algorithm. Then, any red point
on the right of l(r) (if any) is inactive and has degree 2. Similarly, any blue point
on the right of l(b) (if any) is inactive and has degree 2. Moreover, any point on
the left of p (if any) is inactive and except the first point all of them have degree
2.

Lemma 4. The algorithm correctly computes a bichromatic Hamiltonian path.

Proof. Note that when the algorithm terminates, S(p) is inactive. Thus, its
degree must be 2. If S(p) is red (resp. blue), then it had become l(r) (resp.
l(b)) at some point and its degree is 2. By Observation 3, all the points whose
colors are same as the color of S(p) and lie on the right of S(p) have degree 2.
Also, the degree of all the points on the left of p except the first point is 2. It is
easy to see that the degree of p and the first point is 1. As the number of red
and blue points are same, all the points that lie on the right of S(p) must have
degree 2. Thus, Π is a valid bichromatic Hamiltonian path. �

Next, we argue that the computed Hamiltonian path is non-crossing. It is
easy to see that the small arcs added in the second step do not cross any other
drawn edges. Also, the edges drawn above H do not cross any edges drawn below
H. Moreover, the edges (p, l(r)) and (l(r), S(p)) (or (p, l(b)) and (l(b), S(p)))
drawn in the same iteration do not cross each other. The following observation
completes the claim.

Observation 5. Consider two edges (u, v) and (u′, v′) which are drawn as cir-
cular arcs above (resp. below) H and added to Π in different iterations. Then,
either u, v lie in between u′ and v′, or u′, v′ lie in between u and v.

86 S. Bandyapadhyay et al.

The algorithm can be implemented to run in linear time. This is because,
one can use three pointers to keep track of p, l(r) and l(b), and these pointers
move in one direction – either from left to right or from right to left.

Theorem 2. For any set R of red points and B of blue points on y = 0 with
|R| = |B|, a non-crossing Hamiltonian path can be computed in linear time whose
edges are circular arcs that lie above or below y = 0.

3 Minimum Spanning Tree for Collinear Points

Definition 3. Spanning tree for collinear points. Given a set of n red
points and a set of n blue points all of which lie on the line y = 0, find a minimum
weight geometric tree T in the plane such that each edge of T is represented by a
circular arc that lies above y = 0, each arc connects a red and a blue point, and T
spans all the input points. The weight of an arc is given by the Euclidean distance
of its endpoints. In the non-crossing version of the problem, one would like to
compute such a tree so that the corresponding circular arcs are non-crossing.

The problem of computing an optimum, i.e., minimum-weight, spanning tree,
which potentially has crossings can be solved in linear time [5]. Next, we discuss
the algorithm for the non-crossing case.

Let P1, P2, . . . , Pm be the alternating monochromatic chunks of points
ordered from left to right for m ∈ [n]. Thus, the color of the points in Pi is
different from the color of the points in Pi+1 for all 1 ≤ i ≤ m−1. We start with
the following observation.

Observation 6. Consider a point p ∈ Pi. If an arc (p, q) is contained in a
minimum spanning tree, then either q ∈ Pi−1 or q ∈ Pi+1.

The observation follows from the idea that if a point is connected to a point that
belongs to a non-consecutive chunk, then one can find a cheaper spanning tree
by replacing the connecting arc with another arc having lower weight. As the
spanning tree we want to compute is non-crossing, by the above observation, it
follows that all the arcs between two consecutive chunks are nested.

Observation 7. Consider any two arcs (p1, q1) and (p2, q2) in a minimum non-
crossing spanning tree such that p1, p2 ∈ Pi and q1, q2 ∈ Pi+1. Then, either
p1 < p2 < q2 < q1 or p2 < p1 < q1 < q2.

The above observation implies that the outermost arcs between consecutive
chunks form a path (an umbrella) between the first and the last point and all the
other arcs lie inside this umbrella (see Fig. 3). Next, we give a simple algorithm
to compute an optimum spanning tree inside such an outermost arc. Suppose
p0, p1, . . . , pl, . . . , pk+1 be points in sorted order such that {p0, p1, . . . , pl} ⊆ Pi

and {pl+1, . . . , pk+1} ⊆ Pi+1. We would like to construct an optimum spanning
tree of the points p0, p1, . . . , pl, . . . , pk+1 which contains the arc (p0, pk+1). Our
algorithm is based on the following observation.

Geometric Planar Networks on Bichromatic Points 87

Fig. 3. Figure showing a spanning tree with the umbrella shown by dashed arcs. (Color
figure online)

Observation 8. Any optimum spanning tree that contains (p0, pk+1) must also
contain either (p0, pk) or (p1, pk+1) whichever has lower weight.

In our algorithm, we select the shorter arc among (p0, pk) and (p1, pk+1).
Then, we recursively solve the problem inside the selected arc by treating it as
an outermost arc. It is easy to see that this problem can be solved in linear time.
Next, we give an algorithm for deciding which outermost arcs to choose.

Let p1, p2, . . . be the input points. Our algorithm incrementally computes a
non-crossing spanning tree starting from the left and by connecting a new point
in each step. Let P1 = {p1, . . . , pl} and P2 = {pl+1, . . . , pk}. To initialize, for each
l+1 ≤ j ≤ k, we compute the cost of optimum spanning tree of {p1, . . . , pj} that
contains the outermost arc (p1, pj) using the above algorithm. Now, suppose we
want to connect a new point pi ∈ Pt+1 for t ≥ 2. We have already computed the
cost of an optimum spanning tree of {p1, . . . , pq} with any valid outermost arc
(r, s), where r ∈ Pt−1 and s ∈ Pt. In the new spanning tree, pi must be connected
to a point s of Pt. For each such s, we compute the cost of the spanning tree that
contains the arc (s, pi). In particular, the total cost is the sum of three costs:
(i) the cost of (s, pi), (ii) the cost of connecting the points inside (s, pi) and (iii)
the cost of the optimum spanning tree of p1, . . . , s that contains (r, s) for some
r ∈ Pt−1. We select the arc (r, s) in our spanning tree that minimizes the total
cost.

Note that each step of this dynamic programming based algorithm takes
linear time. Thus, the optimum spanning tree can be computed in quadratic
time.

Theorem 3. For any set R of red points and B of blue points on y = 0, an
optimum non-crossing spanning tree can be computed in quadratic time.

4 Minimum Non-crossing Matching for Collinear Points

Note that the fact that a minimum weight bichromatic matching for points in
general position is always non-crossing might not hold in the case of collinear
points. Indeed, there are point sets for which no non-crossing matching exists
if the edges are represented by segments. However, one can show that there is
always a non-crossing matching of collinear points such that each matched edge
is a circular arc drawn above the line. Again the weight of an arc is the Euclidean
distance between its endpoints.

Definition 4. Non-crossing matching for collinear points. Given a set
of n red points and a set of n blue points all of which lie on the line y = 0, find

88 S. Bandyapadhyay et al.

a set of n non-crossing circular arcs in the plane of minimum total weight such
that the arcs lie above y = 0, each arc connects a red and a blue point, and the
arcs span all the input points.

Using the bipartite matching algorithm due to Kaplan et al. [15] along with
a simple postprocessing (already described in the introduction), one can imme-
diately solve this problem in O(n2poly(log n)) time. Here we design a simple
algorithm with improved O(n) time complexity.

Let p1, p2, . . . , p2n be the input points sorted from left to right based on their
x coordinates. We assume that the points are given in this order. For any point
pi ∈ P , let col(pi) denote the color of pi. A subset of points Pi ⊆ P is called
color-balanced if it contains an equal number of red and blue points. We traverse
the points from left to right and seek for the first balanced subset (denoted by
P1). In order to obtain P1 we use a simple method. We start with the leftmost
point p1 and maintain a counter C which is used to find the balanced subset
and is initialized to 0 at the beginning. If col(p1) = red, we increase the value
of C by 1, and decrease by 1, otherwise. Observe that we will get a balanced
subset when the value of C becomes 0. Let P1 ⊆ P be the first balanced subset
containing 2m (for some m ∈ [n]) points. The remaining points P \P1 also form
a balanced subset since P contains exactly n red and n blue points. We prove
the following lemma.

Lemma 9. Let P1 ⊆ P be the first color-balanced subset of P and |P1| = 2m.
Then col(p1) �= col(p2m), and any minimum non-crossing perfect matching MP

of P contains the edge (p1, p2m).

Proof. The first part of the lemma is clearly true, otherwise the value of the
counter would not be 0 at p2m, which is the termination criteria to obtain the
first balanced subset. Now, let us assume that MP does not contain the edge
(p1, p2m). Then one of the following two situations can happen: (1) p1 and p2m

are matched with two intermediate points from P1; (2) one or both of p1 and
p2m are matched with points from P \ P1.

Case 1: p1 and p2m are matched with two intermediate points pk and p�, respec-
tively. Note � > k, otherwise the matched edges cross each other. We know that
{p1, . . . , pk} is not a balanced subset since P1 is the first balanced subset. There-
fore, there exists at least one point pr (where 1 < r < k) that is matched with
a point ps (where s > k). In that case, the edge (pr, ps) will intersect (p1, pk).
Hence, we get a contradiction.

Case 2: Suppose both of p1 and p2m are matched with points from P \P1 and no
other point from {p2, . . . , p2m−1} is matched with any point from P \P1. Then we
can construct a new matching by adding the edge (p1, p2m) and by matching the
two points in P \ P1. The new matching has lesser cost and is non-crossing; see
Fig. 4(a). If any other point in {p2, . . . , p2m−1} (say px) is also matched with a
point in P \P1, then we know it must be of opposite color of either p1 or p2m, since
col(p1) �= col(p2m). Hence, we can either give the edge (p1, px) or (px, p2m) and

Geometric Planar Networks on Bichromatic Points 89

this reduces the total cost; see Fig. 4(b). The new matching might not be non-
crossing. But, using similar argument one can remove all the crossings without
increasing the cost. Thus, at the end we get a cheaper non-crossing matching,
which contradicts the optimality of MP .

(a) (b)

P1 P1 P2mPxP2m

Fig. 4. Figure demonstrating the two situations in the case when both p1 and p2m are
matched with points from P \ P1. (Color figure online)

Now, if only one of p1 or p2m is matched (WLOG, assume it is p1) with a
point from P \ P1, then we know there must be at least one other point (say
px ∈ P1) that is also matched with a point from P \ P1, and col(p1) �= col(px).
We can apply similar arguments as above to get a contradiction, which concludes
the proof of the lemma. �

Now, we use Lemma 9 to proceed with the algorithm. First, we obtain the
balanced subset P1, and match the points p1 and p2m by an arc and include
the edge (p1, p2m) in MP . This edge partitions the point set into subsets, i.e.,
P2 = P \ P1 and P ′

1 = P1 \ {p1, p2m}. On each of these subsets we recursively
perform the same procedure. This process is repeated until each point of P is
matched.

Due to Lemma 9, we know that every edge we choose in our algorithm must
be part of the optimum solution, and no two edges cross each other. It is not
hard to see that all the balanced subsets can be computed in linear time in
advance, as they are corresponding to matched parentheses and are at most n
in number2. Thus, we conclude with the following theorem.

Theorem 4. For any set R of red points and B of blue points on y = 0 with
|R| = |B|, an optimum non-crossing matching can be computed in linear time.

5 TS Tour for Chunked Points on a Circle

Finally, we study the Traveling Salesman problem on the following special point
configuration on a circle.
2 This algorithm can be easily implemented in the following manner. Consider the

points in left to right order, and insert the leftmost point (p1) into a stack. Now,
if the next point p2 is of same color as p1 then insert p2 into the stack, otherwise
match p1, p2 and remove p1 from the stack. Repeat this process until all points are
considered.

90 S. Bandyapadhyay et al.

Definition 5. TS tour for chunked points on a circle. We are given a
set of n red points and a set of n blue points all of which lie on a fixed circle.
All points are distributed equidistantly on the circle. Further, the input points
are divided into alternately-colored chunks, where each chunk contains exactly
k consecutive points of the same color. The goal is to find a geometric (closed)
tour π in the plane of minimum total length such that π consists of segments
each of which connects a red and a blue point and π spans all the input points.

Note that by definition, n/k is an integer. The total number of chunks is
L = 2n/k of which n/k contain only red points and n/k contain only blue
points. For any arc between two points u and v on the circle C, we denote
the arc by c(uv) (resp. a(uv)) if it is the clock (resp. anticlock) -wise traversal
from u to v along C. As any two consecutive points are a fixed distance apart
we measure the length of any bichromatic edge (a straight line segment) uv by
the minimum of the number of points on the arcs c(uv) and a(uv), respectively
(including u and v). Next, we design an algorithm for computing a TS tour for
the input points. We consider two cases: (i) k is even and (ii) k is odd.

(i) k is Even. The algorithm in this case is as follows.

1. Let 2p = k. Partition each chunk into two subchunks each containing p con-
secutive points. Merge all consecutive subchunks of different colors to form
groups. Note that each group contains p red and p blue points. We still pre-
serve the geometry of the points of each group and identify the two peripheral
red and blue points of each group as special points. We first compute a bichro-
matic path between the two special points for each group and later connect
the special points of different groups to construct a TS tour for all the points.

2. For each group, we compute the TS tour in the following way. Consider the
ordering of the groups w.r.t clockwise traversal of the points and consider the
ith group in this order. WLOG, assume that the red points are visited before
the blue points while traversing the points of the group in clockwise order.
Let ri

1, r
i
2, . . . , r

i
p, b

i
p, b

i
p−1, . . . , b

i
1 be the points in this order. Join ri

p with bi
p

and bi
p−1 using two edges. For each p− 1 ≥ j ≥ 2, join ri

j with bi
j+1 and bi

j−1.
Finally, join ri

1 with bi
2. Note that each of the points in the group except ri

1

and bi
1 is connected to two points. ri

1 and bi
1 are connected to only one point.

3. Next, we connect the special points of different groups. Recall that L is the
total number of groups. Let for the first group the red points are visited before
the blue points while traversing the points of the group in clockwise order.
Note that the special points are r11, b

1
1, b

2
1, r

2
1, r

3
1, b

3
1, . . . , b

L
1 , rL

1 . For 1 ≤ i ≤
L − 1, we connect ri

1 to bi+1
1 . We also connect rL

1 to b11.

It is not hard to see that the set of selected edges form a valid traveling
salesman tour. This is because each of the points is connected to exactly two
other points of opposite color. Now, we give a bound on the length of the tour.

Lemma 10. The length of the computed tour is n(k + 2 + 2/k).

The case when k is odd is similar and the length of the computed tour is
n(k + 2 + 1/k).

Geometric Planar Networks on Bichromatic Points 91

5.1 Lower Bound

Lemma 11. The length of any bichromatic traveling salesman tour for the con-
figuration of the points on the circle is at least n(k + 2 + 2/k) if k is even and
at least n(k + 2 + 1/k) if k is odd.

Theorem 5. For any set R of red points and B of blue points on a circle with
|R| = |B|, an optimum non-crossing TS tour can be computed in linear time.

References

1. Karim Abu-Affash, A., Biniaz, A., Carmi, P., Maheshwari, A., Smid, M.H.M.:
Approximating the bottleneck plane perfect matching of a point set. Comput.
Geom. 48(9), 718–731 (2015)

2. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-
dimensional arrangements and its applications. SIAM J. Comput. 29(3), 912–953
(1999)

3. Anily, S., Hassin, R.: The swapping problem. Networks 22(4), 419–433 (1992)
4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling sales-

man and other geometric problems. J. ACM 45(5), 753–782 (1998)
5. Bandyapadhyay, S., Banik, A., Bhore, S., Nöllenburg, M.: Geometric planar net-

works on bichromatic points. CoRR, arXiv:1911.08924 (2019)
6. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser.

B 27(3), 320–331 (1979)
7. Biniaz, A., Bose, P., Maheshwari, A., Smid, M.H.M.: Plane geodesic spanning trees,

Hamiltonian cycles, and perfect matchings in a simple polygon. Comput. Geom.
57, 27–39 (2016)

8. Biniaz, A., Bose, P., Maheshwari, A., Smid, M.H.M.: Plane bichromatic trees of
low degree. Discrete Comput. Geom. 59(4), 864–885 (2018)

9. Borgelt, M.G., van Kreveld, M.J., Löffler, M., Luo, J., Merrick, D., Silveira, R.I.,
Vahedi, M.: Planar bichromatic minimum spanning trees. J. Discrete Algorithms
7(4), 469–478 (2009)

10. Evans, W.S., Liotta, G., Meijer, H., Wismath, S.K.: Alternating paths and cycles
of minimum length. Comput. Geom. 58, 124–135 (2016)

11. Frank, A., Triesch, E., Korte, B., Vygen, J.: On the bipartite travelling salesman
problem (1998)

12. Kaneko, A., Kano, M., Suzuki, K.: Balanced partitions and path covering of two
sets of points in the plane, preprint

13. Kaneko, A., Kano, M.: Straight-line embeddings of two rooted trees in the plane.
Discrete Comput. Geom. 21(4), 603–613 (1999)

14. Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane—
a survey—. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and
Computational Geometry, pp. 551–570. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-642-55566-4 25

15. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P., Sharir, M.: Dynamic planar
Voronoi diagrams for general distance functions and their algorithmic applications.
In: Symposium on Discrete Algorithms, SODA 2017, pp. 2495–2504 (2017)

16. Kyncl, J., Pach, J., Tóth, G.: Long alternating paths in bicolored point sets. Dis-
crete Math. 308(19), 4315–4321 (2008)

http://arxiv.org/abs/1911.08924
https://doi.org/10.1007/978-3-642-55566-4_25
https://doi.org/10.1007/978-3-642-55566-4_25

Hardness Results of Global Total
k-Domination Problem in Graphs

B. S. Panda(B) and Pooja Goyal

Computer Science and Application Group, Department of Mathematics,
Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

bspanda@maths.iitd.ac.in, poojaagoyal92@gmail.com

Abstract. A set D ⊆ VG of a graph G = (VG, EG) is called a global
total k-dominating set of G if D is a total k-dominating set of both G and
G, the complement of G. The Minimum Global Total k-Domination
problem is to find a global total k-dominating set of minimum cardinality
of the input graph G and Decide Global Total k-Domination prob-
lem is the decision version of Minimum Global Total k-Domination
problem. The Decide Global Total k-Domination problem is known
to be NP-complete for general graphs. In this paper, we study the com-
plexity of the Minimum Global Total k-Domination problem. We
show the Decide Global Total k-Domination problem remains NP-
complete for bipartite graphs and chordal graphs. Next, we show that the
Minimum Global Total k-Domination problem admits a constant
approximation algorithm for bounded degree graphs. Finally, we show
that the Minimum Global Total k-Domination problem is APX-
complete for bounded degree graphs.

1 Introduction

Let G = (VG, EG) be a finite, simple and undirected graph with vertex set VG

and edge set EG. A set D ⊆ VG is called a dominating set of G if every vertex
v ∈ VG \ D is adjacent to at least one vertex in D. The domination number of
G is the minimum cardinality among all dominating sets in G and it is denoted
by γ(G). The Minimum Domination problem is to find a dominating set of
minimum cardinality and Decide Domination problem is the decision version
of Minimum Domination problem. Domination in graphs has been studied
extensively and has several applications (see [4,5]).

A set D ⊆ VG is called a total dominating set of G if every vertex in VG is
adjacent to at least one vertex in D. The total domination number of G is the
minimum cardinality among all total dominating sets in G and it is denoted by
γt(G). The Minimum Total Domination problem is to find a total dominat-
ing set of minimum cardinality and Decide Total Domination problem is
the decision version of Minimum Total Domination problem. The Minimum
Total Domination problem is also a well studied problem in graph theory
(see [6,8]).

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 92–101, 2020.
https://doi.org/10.1007/978-3-030-39219-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_8

Hardness Results of Global Total k-Domination in Graphs 93

A total k-dominating set (TkD-set) of a graph G is a set D ⊆ VG such
that every vertex in VG is adjacent to at least k vertices in D. The minimum
cardinality of a TkD-set in a graph G is known as total k-domination number
of G and is denoted by γkt(G). The concept of total k-domination has been
introduced by Henning and Kazemi in [7]. The Minimum Total k-Domination
problem is to find a total k-dominating set of minimum cardinality and Decide
Total k-Domination problem is the decision version of Minimum Total k-
Domination problem. Pradhan [9] studied Minimum Total k-Domination
problem from algorithmic point of view.

A global total k-dominating set (GTkD-set) of a graph G = (VG, EG) is a
set D ⊆ VG such that every vertex in V is adjacent as well as non-adjacent to
at least k vertices in D. Equivalently, a set D ⊆ VG is a GTkD-set of a graph
G if D is a total k-dominating set of both G and G. The minimum cardinality
of a GTkD-set in a graph G is known as global total k-domination number of
G and is denoted by γg

kt(G). The necessary and sufficient condition, 1 ≤ k ≤
min{δ(G), |VG| − (Δ(G) + 1)}, to guarantee the existence of a GTkD set in a
graph G has been given by Bermudo et al. [2].

The minimum global total k-domination problem and its decision version are
defined as follows:

Minimum Global Total k-Domination problem (Min GTkD)

Instance: A graph G = (VG, EG).

Solution: A global total k-dominating set D of G.

Measure: Cardinality of the set D.

Decide Global Total k-Domination problem (Decide GTkD)

Instance: A graph G = (VG, EG) and a positive integer r.

Question: Deciding γg
kt(G) ≤ r?

Bermudo et al. [2] introduced this new variant of domination, namely global total
k-domination, and proved that the decision version of global total k-domination
(Decide GTkD) problem is NP-complete in general graphs. In this paper, we fur-
ther study the complexity of Minimum Global Total k-Domination prob-
lem.

The rest of the paper is organized as follows. In Sect. 2, we present some per-
tinent definitions and some preliminary results. In Sect. 3, we strengthen the NP-
completeness result of the Decide GTkD problem by showing that this problem
remains NP-complete for bipartite graphs and chordal graphs. In Sect. 4, we first
show that the Min GTkD problem for bounded degree graphs can be approxi-
mated within a constant factor. Finally, we show that Minimum Global Total

94 B. S. Panda and P. Goyal

k-Domination problem is APX-complete for bounded degree graphs. Finally,
in Sect. 5, we conclude the paper.

2 Preliminaries

Let G = (VG, EG) be a finite, simple and undirected graph with no isolated
vertex. The open neighborhood of a vertex v in G is NG(v) = {u ∈ VG | uv ∈ EG}
and the closed neighborhood is NG[v] = {v} ∪ NG(v). The degree of a vertex
v is |NG(v)| and is denoted by dG(v). If dG(v) = 1, then v is called a pendant
vertex. The minimum and maximum degree of graph G will be denoted by δ(G)
and Δ(G), respectively. For a non empty set D ⊆ VG, and a vertex v ∈ VG,
ND(v) denotes the set of neighbors of v in D and ND(v) denotes the set of non
neighbors of v in D. The degree of v in D will be denoted by δD(v) = |ND(v)|
and δD(v) = |ND(v)|. For D ⊆ VG, G[D] denote the subgraph induced by D.
For any C ⊆ VG, if G[C] is a complete subgraph of G then C is called a clique
of G. The complete graph on n vertices is denoted by Kn. A vertex v ∈ VG is
said to have a non-adjacent vertex in D ⊆ VG if there exists a vertex u ∈ D such
that uv /∈ EG. Let [n] denotes {1, 2, . . . , n}.

A bipartite graph is an undirected graph G = (X,Y,EG) whose vertices can
be partitioned into two disjoint sets X and Y such that every edge has one
end vertex in X and other in Y . A bipartite graph G = (X,Y,EG) is complete
bipartite if for every x ∈ X and y ∈ Y , there is an edge xy ∈ EG. A complete
bipartite graph with partitions of size |X| = m and |Y | = n, is denoted Km,n.

A graph G = (VG, EG) is said to be a chordal graph if every cycle of length
at least four has a chord i.e., an edge joining two non-consecutive vertices of
the cycle. A vertex v ∈ VG is a simplicial vertex of G if NG[v] is a clique of G.
An ordering σ = (v1, v2, . . . , vn) is a perfect elimination ordering (PEO) of G if
vi is a simplicial vertex of Gi = G[{vi, vi+1, . . . , vn}] for all i, 1 ≤ i ≤ n. It is
characterized that a graph G is chordal if and only if it has a PEO [3].

From approximation point of view, several variations of domination has been
studied by many authors over the years. For most of the approximation related
terminologies, we refer the reader to [1].

Observation 1 (see [2]). Let G = (VG, EG) be a graph, then γg
kt(G) ≥

max{γkt(G), γkt(G)}.
Observation 2 (see [2]). Let G = (VG, EG) be a graph and let D ⊆ VG. The set
D is a GTkD if and only if δD(v) ≥ k and δD(v) ≥ k, for every vertex v ∈ V .

Observation 3 (see [2]). Let k ∈ N and suppose G = (VG, EG) be a graph of

order n with minimum degree δ(G) ≥ k. Then γkt(G) ≥ kn

Δ(G)
and this bound

is sharp.

Hardness Results of Global Total k-Domination in Graphs 95

3 NP-completeness Results

Bermudo et al. [2] has shown that the Decide Global Total k-Domination
problem is NP-complete for general graphs. In this section, we strengthen this
NP-completeness result by showing that this problem remains NP-complete for
bipartite graphs and chordal graphs.

3.1 NP-completeness for Bipartite Graphs

Theorem 4. The Decide Global Total k-Domination problem is NP-
complete for bipartite graphs.

Proof. Given a subset S ⊆ VG of vertices of a bipartite graph G = (VG, EG),
it can be checked in polynomial time whether S is a Global Total k-
Dominating set of G. Hence, the Decide Global Total k-Domination
problem is in NP for bipartite graphs. To show the hardness, we give a polyno-
mial reduction from the Decide Total k-Domination problem for bipartite
graphs, which is already known to be NP-complete (see [9]). Let G = (VG, EG)
be a given bipartite graph, where VG = {v1, v2, . . . , vn} and k be a fixed positive
integer such that k ≤ δ(G). Now, we construct a graph H = (VH , EH) from the
given graph G in polynomial time. Before the construction of the graph H, we
define a subgraph W = (VW , EW) for some fixed k, which can be obtained from
k copies of Kk,k and a vertex t, by joining the vertex t to one vertex of each copy
Kk,k. Now, for the construction of graph H we take n copies of the subgraph
W , say W1,W2, . . . ,Wn. Finally, the graph H = (VH , EH) can be obtained from
the given graph G in polynomial time such that VH = VG ∪

(⋃n
i=1 VWi

)
and

EH = EG ∪
(⋃n

i=1 EWi

)
∪ {viti | vi ∈ VG, ti ∈ VWi

, 1 ≤ i ≤ n}. Figure 1
illustrates the construction of H from a bipartite graph for k = 2. Clearly, the
constructed graph H is a bipartite graph.

Now to complete the proof, we have to show that G has a TkD-set of car-
dinality at most r if and only if the graph H has a GTkD-set of cardinality at
most 2nk2 + r. For this, we have to prove the following claims:

Claim. γkt(H) = γkt(G) + 2nk2.

Proof. Let DG ⊆ VG be a minimum total k-dominating set (TkD-set) of G. Then
DH = DG ∪

(⋃n
i=1

(
VWi

\ {ti}
))

is a TkD-set of H of cardinality 2nk2 + |DG|.
Thus,

γkt(H) ≤ 2nk2 + γkt(G).

Now, assume that DH ⊆ VH is a minimum TkD-set of the graph H. For every
i ∈ {1, 2, . . . , n}, vertices of the set VWi

\{ti} must be totally k-dominated by the
set DH , so

⋃n
i=1

(
VWi

\ {ti}
)

⊂ DH . Thus
∣∣∣DH ∩

(⋃n
i=1

(
VWi

\ {ti}
))∣∣∣ = 2nk2.

96 B. S. Panda and P. Goyal

Fig. 1. An illustration of the construction of H from G in the proof of Theorem 4.

Since every vi ∈ VG ∩ VH is totally k-dominated by the set DH , so |NH(vi) ∩
DH | ≥ k. Now for some fixed j ∈ [n], if tj ∈ DH , then |NH(vj) ∩ DH | =
k, otherwise DH \ {tj} will also be a TkD-set of H, which is a contradiction
to the assumption that DH is the minimum cardinality TkD-set of H. Thus,
|(NH(vj) \ {tj}

) ∩ DH | = k − 1. Since δ(G) ≥ k, there always exists a vertex
u ∈ NG(vj)\DH such that (DH \{tj})∪{u} is again a TkD-set of the graph H.
Using the above process, we can construct a TkD-set of H containing no vertices
of the set {ti | 1 ≤ i ≤ n}. Hence, the set DH ∩VG will be a TkD-set of G. Thus,

γkt(H) = |DH | = |DH ∩ VG| +
∣∣∣DH ∩

(n⋃
i=1

VWi

)∣∣∣ ≥ γkt(G) + 2nk2.

This completes the proof of claim. 	

Claim. γg

kt(H) = γkt(H).

Proof. It can be easily observed that every vertex v of the graph H has at least
k non-adjacent vertices in the set DH . Therefore, using Observation 2, it follows
that DH is a GTkD-set of the graph H. So, |DH | = γkt(H) ≥ γg

kt(H). Thus using
Observation 1, we get γg

kt(H) ≥ γkt(H). This completes the proof of claim. 	

Hence, from the above claims we have γg

kt(H) = γkt(G)+2nk2. Thus, we can
conclude that γkt(G) ≤ r if and only if γg

kt(H) ≤ 2nk2 + r.
Therefore, the Decide Global Total k-Domination problem is NP-

complete for bipartite graphs. This completes the proof of theorem. 	

3.2 NP-completeness for Chordal Graphs

Theorem 5. The Decide Global Total k-Domination problem is NP-
complete for chordal graphs.

Hardness Results of Global Total k-Domination in Graphs 97

Proof. Clearly, the Decide Global Total k-Domination problem is in NP
for chordal graphs. To show the hardness, we give a polynomial reduction from
the Decide Total k-Domination problem for chordal graphs, which is already
known to be NP-complete (see [9]). Let G = (VG, EG) be a given chordal
graph, where VG = {v1, v2, . . . , vn} and k be a fixed positive integer such that
k ≤ δ(G). Now, we construct a graph H = (VH , EH) from the given graph G
in polynomial time. Before the construction of the graph H, we define a sub-
graph W = (VW , EW) for some fixed k, which can be obtained from k copies of
Kk+1 and a vertex t, by joining the vertex t to one vertex of each copy Kk+1.
Now, for the construction of graph H we take n copies of the subgraph W ,
say W1,W2, . . . ,Wn. Finally, the graph H = (VH , EH) can be obtained from
the given graph G in polynomial time such that VH = VG ∪

(⋃n
i=1 VWi

)
and

EH = EG ∪
(⋃n

i=1 EWi

)
∪ {viti | vi ∈ VG, ti ∈ VWi

, 1 ≤ i ≤ n}. Clearly, the
obtained graph H is a chordal graph as shown in Fig. 2, where k = 2.

Fig. 2. An illustration of the construction of H from G in the proof of Theorem 5.

Now to complete the proof, we have to prove the following claim.

Claim. G has a TkD-set of cardinality at most r if and only if the graph H has
a GTkD-set of cardinality at most nk(k + 1) + r.

Proof. Firstly, we will show that γkt(H) = γkt(G) + nk(k + 1).
Let DG ⊆ VG be a minimum total k-dominating set (TkD-set) of G. Then

DH = DG∪
(⋃n

i=1

(
VWi

\{ti}
))

is a TkD-set of H of cardinality nk(k+1)+|DG|.
Thus,

γkt(H) ≤ nk(k + 1) + γkt(G).

Next, assume that DH ⊆ VH is a minimum TkD-set of the graph H. As we
know that if degree of any vertex v in a graph is k, then every TkD-set of the
graph must consists of each neighbour of v. Thus,

⋃n
i=1

(
VWi

\ {ti}
)

⊂ DH and

98 B. S. Panda and P. Goyal

∣∣∣DH ∩
(⋃n

i=1

(
VWi

\ {ti}
))∣∣∣ = nk(k + 1). Now, every vi ∈ VG ∩ VH is totally

k-dominated by the set DH , so |NH(vi) ∩ DH | ≥ k. Now for some fixed j ∈ [n],
if tj ∈ DH , then |NH(vj) ∩ DH | = k, otherwise DH \ {tj} will also be a TkD-
set of H, which is a contradiction to the assumption that DH is the minimum
cardinality TkD-set of H. Thus, |(NH(vj)\{tj}

)∩DH | = k−1. Since δ(G) ≥ k,
there always exists a vertex u ∈ NG(vj) \ DH such that (DH \ {tj}) ∪ {u} is
again a TkD-set of the graph H. Using the above process, a TkD-set DH of H
can be constructed such that DH ∩{ti | 1 ≤ i ≤ n} = φ. Hence, the set DH ∩VG

will be a TkD-set of G. Thus,

γkt(H) = |DH | = |DH ∩ VG| +
∣∣∣DH ∩

(n⋃
i=1

VWi

)∣∣∣ ≥ γkt(G) + nk(k + 1).

Now, it can be easily observed that every vertex v of the graph H has at least k
non-adjacent vertices in the set DH . Therefore, using Observation 2, it follows
that DH is a GTkD-set of the graph H. So, |DH | = γkt(H) ≥ γg

kt(H). Thus
using Observation 1, we get γg

kt(H) ≥ γkt(H).
Hence, we have γg

kt(H) = γkt(G) + nk(k + 1). Thus, we can conclude that
γkt(G) ≤ r if and only if γg

kt(H) ≤ nk(k + 1) + r. 	

Therefore, the Decide Global Total k-Domination problem is NP-

complete for chordal graphs. This completes the proof of theorem. 	

4 APX-completeness for Bounded Degree Graphs

In this section, we show that the Minimum Global Total k-Domination
problem is APX-complete for bounded degree graphs. Note that the class APX
is the set of all optimization problems which admit a c-approximation algorithm,
where c is a constant. We first show that the Minimum Global Total k-
Domination problem for bounded degree graphs is in APX.

Let G be a graph of order n, maximum degree Δ(G) and k be any positive
integer such that k ≤ δ(G) then from Observations 1 and 3, we have γg

kt(G) ≥
γkt(G) ≥ kn

Δ(G)
≥ n

Δ(G)
. So, we immediately have the following observation.

Observation 6. For any graph G of order n with maximum degree Δ(G),

γg
kt(G) ≥ n

Δ(G)

Now for a given graph G = (VG, EG), we have a global total k-dominating
set of G, Dg

kt = VG such that |Dg
kt| = |VG| = n ≤ Δ(G) · γg

kt(G). Thus we have
the following theorem.

Theorem 7. Minimum Global Total k-Domination problem in any graph
G with maximum degree Δ(G) can be approximated within an approximation
ratio of Δ(G).

Hardness Results of Global Total k-Domination in Graphs 99

By Theorem 7, the Minimum Global Total k-Domination problem for
bounded degree graphs can be approximated within a constant ratio. Thus the
Minimum Global Total k-Domination problem for bounded degree graphs
is in APX.

Next, we show that the Minimum Global Total k-Domination problem
is APX-complete for graphs with maximum degree k + 3. For this purpose, we
recall the concept of L-reduction.

Definition 1. Given two NP optimization problems π1 and π2 and a polynomial
time transformation f from instances of π1 to instances of π2, we say that f is an
L-reduction if there are positive constants α and β such that for every instance
x of π1:

1. optπ2(f(x)) ≤ α · optπ1(x).
2. for every feasible solution y of f(x) with objective value mπ2(f(x), y) = c2,

we can find a solution y
′
of x in polynomial time with mπ1(x, y

′
) = c1 such

that |optπ1(x) − c1| ≤ β · |optπ2(f(x)) − c2|.
To show the APX-completeness of a problem π ∈ APX, it suffices to show

that there is an L-reduction from some APX-complete problem to π.

To show the APX-completeness of the Minimum Global Total
k-Domination problem, we give an L-reduction from the Minimum Total
k-Domination problem. For this the following theorem is required.

Theorem 8 [9]. The Minimum Total k-Domination problem is APX-
complete for graphs with maximum degree k + 2.

Now, we are ready to prove the following theorem.

Theorem 9. The Minimum Global Total k-Domination problem is APX-
complete for graphs with maximum degree k + 3.

Proof. Since by Theorem 8, Minimum Total k-Domination problem is APX-
complete for graphs with maximum degree k + 2. So, it is enough to construct
an L-reduction f from the instances of the Minimum Total k-Domination
problem for graphs with maximum degree k+2 to the instances of the Minimum
Global Total k-Domination problem. Given a graph G = (VG, EG), where
VG = {v1, v2, . . . , vn} and k ≤ δ(G) be any fixed positive integer. We construct
a graph H = (VH , EH) from the graph G in the following way:

1. Construct a subgraph W = (VW , EW) by adding k copies of Kk+1 and another
vertex, namely w, by joining the vertex w to one vertex of each copy Kk+1.

2. Take n copies of subgraph W , say W1,W2, . . . ,Wn.
3. Add edges between the vertex vi of the graph G and the vertex wi of the

ith-subgraph Wi.

Note that if maximum degree of G is k + 2 then maximum degree of H is k + 3.
Now, we first prove the following claim.

100 B. S. Panda and P. Goyal

Claim. γg
kt(H) = γkt(G) + nk(k + 1).

Proof. Firstly, we will show that γkt(H) = γkt(G) + nk(k + 1) and further, we
will prove that γg

kt(H) = γkt(H).
Let DG ⊆ VG be a minimum total k-dominating set (TkD-set) of G. Then

DH = DG ∪ (⋃n
i=1

(
VWi

\ {wi}
))

is a TkD-set of H. Thus,

γkt(H) ≤ nk(k + 1) + γkt(G).

On the other hand, assume that DH ⊆ VH be a minimum TkD-set of the graph
H. It can be easily checked that

⋃n
i=1

(
VWi

\ {wi}
) ⊂ DH . Since every vi ∈

VH ∩ VG is totally k-dominated by the set DH , so |NH(vi) ∩ DH | ≥ k. Now for
some fixed j ∈ [n], if wj ∈ DH , then |NH(vj) ∩ DH | = k, otherwise DH \ {wj}
will also be a TkD-set of H, which is a contradiction. Since δ(G) ≥ k, there
always exists a vertex u ∈ NG(vj) \ DH such that (DH \ {wj}) ∪ {u} is again a
TkD-set of the graph H. Using the above process, we can construct a TkD-set
of H containing no vertices in the set {wi | 1 ≤ i ≤ n}. Hence, the set DH ∩ VG

will be a TkD-set of G.

γkt(H) = |DH | = |DH ∩ VG| +
∣∣∣DH ∩ (n⋃

i=1

VWi

)∣∣∣ ≥ γkt(G) + nk(k + 1).

It can be easily observed that every vertex v of the graph H has at least k non-
adjacent vertices in the set DH . Therefore, using Observation 2, it follows that
DH is a GTkD-set of the graph H. So, |DH | = γkt(H) ≥ γg

kt(H). Thus, using
Observation 1, we get γg

kt(H) ≥ γkt(H) = γkt(G) + nk(k + 1). This completes
the proof of claim. 	

We now return to the proof of Theorem 9. Since the maximum degree of G
is k + 2. Therefore, from Observation 3, we note that γkt(G) ≥ kn

k+2 . Hence, we
have γg

kt(H) = γkt(G) + nk(k + 1) ≤ γkt(G) + (k + 1)(k + 2)γkt(G).
Again, γkt(G)−|DG| = γg

kt(H)−nk(k+1)−|DH |+nk(k+1) = γg
kt(H)−|DH |.

From these two inequalities, it is clear that the above reduction is an L-reduction
with α = 1 + (k + 1)(k + 2) and β = 1. Therefore, Minimum Global Total
k-Domination problem is APX-complete for graphs with maximum degree
k + 3. 	

5 Conclusion

In this paper, we have shown that Decide Global Total k-Domination
problem is NP-complete for bipartite graphs and chordal graphs. Apart from
these, we have shown that for any graph with maximum degree Δ, Minimum
Global Total k-Domination problem admits a Δ approximation algorithm.
We have also shown that Minimum Global Total k-Domination problem
is APX-complete for graphs with maximum degree k + 3. It would be inter-
esting to design better approximation algorithm for Minimum Global Total
k-Domination problem.

Hardness Results of Global Total k-Domination in Graphs 101

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and their Approximability Properties. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-58412-1

2. Bermudo, S., Mart́ınez, A.C., Mira, F.A.H., Sigarreta, J.M.: On the global total
k-domination number of graphs. Discrete Appl. Math. 263, 42–50 (2019)

3. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math.
15(3), 835–855 (1965)

4. Haynes, T., Hedetniemi, S., Slater, P.: Domination in Graphs: Advanced Topics.
Marcel Dekker Inc., New York (1998)

5. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
Marcel Dekker Inc., New York (1998)

6. Henning, M.A.: A survey of selected recent results on total domination in graphs.
Discrete Math. 309(1), 32–63 (2009)

7. Henning, M.A., Kazemi, A.P.: k-tuple total domination in graphs. Discrete Appl.
Math. 158(9), 1006–1011 (2010)

8. Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer, New York (2013).
https://doi.org/10.1007/978-1-4614-6525-6

9. Pradhan, D.: Algorithmic aspects of k-tuple total domination in graphs. Inf. Process.
Lett. 112(21), 816–822 (2012)

https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-1-4614-6525-6

Hardness and Approximation
for the Geodetic Set Problem in Some

Graph Classes

Dibyayan Chakraborty1, Florent Foucaud2, Harmender Gahlawat1(B),
Subir Kumar Ghosh3, and Bodhayan Roy4

1 Indian Statistical Institute, Kolkata, India
harmendergahlawat@gmail.com

2 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, 33400 Talence, France
3 Ramakrishna Mission Vivekananda Educational and Research Institute,

Kolkata, India
4 Indian Institute of Technology, Kharagpur, Kharagpur, India

Abstract. In this paper, we study the computational complexity of find-
ing the geodetic number of graphs. A set of vertices S of a graph G is a
geodetic set if any vertex of G lies in some shortest path between some
pair of vertices from S. The Minimum Geodetic Set (MGS) problem is
to find a geodetic set with minimum cardinality. In this paper, we prove
that solving MGS is NP-hard on planar graphs with a maximum degree
six and line graphs. We also show that unless P = NP , there is no poly-
nomial time algorithm to solve MGS with sublogarithmic approximation
factor (in terms of the number of vertices) even on graphs with diameter
2. On the positive side, we give an O (3

√
n log n)-approximation algorithm

for MGS on general graphs of order n. We also give a 3-approximation
algorithm for MGS on solid grid graphs which are planar.

1 Introduction and Results

Suppose there is a city-road network (i.e. a graph) and a bus company wants
to open bus terminals in some of the cities. The buses will go from one bus
terminal to another (i.e. from one city to another) following the shortest route
in the network. Finding the minimum number of bus terminals required so that
any city belongs to some shortest route between some pair of bus terminals is
equivalent to finding the geodetic number of the corresponding graph. Formally,
an undirected simple graph G has vertex set V (G) and edge set E(G). For two
vertices u, v ∈ V (G), let I(u, v) denote the set of all vertices in G that lie in
some shortest path between u and v. A set of vertices S is a geodetic set if
∪u,v∈SI(u, v) = V (G). The geodetic number, denoted as g(G), is the minimum
integer k such that G has a geodetic set of cardinality k. Given a graph G,
the Minimum Geodetic Set (MGS) problem is to compute a geodetic set of
G with minimum cardinality. In this paper, we shall study the computational
complexity of MGS in various graph classes.
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 102–115, 2020.
https://doi.org/10.1007/978-3-030-39219-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_9

Hardness and Approximation for the Geodetic Set Problem 103

The notion of geodetic sets and geodetic number was introduced by Harary
et al. [18]. The notion of geodetic number is closely related to convexity
and convex hulls in graphs, which have applications in game theory, facility
location, information retrieval, distributed computing and communication net-
works [2,10,15,19,22]. In 2002, Atici [1] proved that finding the geodetic num-
ber of arbitrary graphs is NP-hard. Later, Dourado et al. [8,9] strengthened the
above result to bipartite graphs, chordal graphs and chordal bipartite graphs.
Recently, Bueno et al. [3] proved that MGS remains NP-hard even for sub-
cubic graphs. On the positive side, polynomial time algorithms to solve MGS
are known for cographs [8], split graphs [8], ptolemaic graphs [12], outer planar
graphs [21] and proper interval graphs [11]. In this paper, we prove the following
theorem.

Theorem 1. MGS is NP-hard for planar graphs of maximum degree 6.

Then we focus on line graphs. Given a graph G, the line graph of G, denoted
by L(G), is a graph such that each vertex of L(G) represents an edge of G and
two vertices of L(G) are adjacent if and only if their corresponding edges share
a common endpoint in G. A graph H is a line graph if H ∼= L(G) for some G.
Some optimisation problems which are difficult to solve in general graphs admit
polynomial time algorithms when the input is a line graph [14,17]. We prove the
following theorem.

Theorem 2. MGS is NP-hard for line graphs.

From a result of Dourado et al. [8], it follows that solving MGS is NP-hard
even for graphs with diameter at most 4. On the other hand, solving MGS on
graphs with diameter 1 is trivial (since those are exactly complete graphs). In this
paper, we prove that unless P = NP, there is no polynomial time algorithm with
sublogarithmic approximation factor for MGS even on graphs with diameter at
most 2. A universal vertex of a graph is adjacent to all other vertices of the
graph. We shall prove the following stronger theorem.

Theorem 3. Unless P = NP, there is no polynomial time o(log n)-
approximation algorithm for MGS even on graphs that have a universal vertex,
where n is the number of vertices in the input graph.

On the positive side, we show that a reduction to the Minimum Rainbow
Subgraph of Multigraph problem (defined in Sect. 3.1) gives the first sub-
linear approximation algorithm for MGS on general graphs.

Theorem 4. Given a graph, there is a polynomial-time O(3
√
n log n)-

approximation algorithm for MGS where n is the number of vertices.

Then we focus on solid grid graphs, an interesting subclass of planar graphs.
A grid embedding of a graph is a collection of points with integer coordinates
such that each point in the collection represents a vertex of the graph and two
points are at a distance one if and only if the vertices they represent are adjacent

104 D. Chakraborty et al.

in the graph. A graph is a grid graph if it has a grid embedding. A graph is a
solid grid graph if it has a grid embedding such that all interior faces have
unit area. Approximation algorithms for optimisation problems like Longest
path, Longest Cycle, Node-Disjoint Path etc. on grid graphs and solid
grid graphs have been studied [4,6,20,23,25,27]. In this paper, we prove the
following theorem.

Theorem 5. Given a solid grid graph, there is an O(n) time 3-approximation
algorithm for MGS, even if the grid embedding is not given as part of the input.
Here n is the number of vertices in the input graph.

Note that recognising solid grid graphs is NP-complete [16].

Organisation of the Paper: In Sect. 2, we prove the hardness results for pla-
nar graphs, line graphs and graphs with diameter 2. In Sect. 3, we present our
approximation algorithms. Finally we draw our conclusions in Sect. 4.

2 Hardness Results

In Sect. 2.1, we prove that MGS is NP-hard for planar graphs with maximum
degree 6 (Theorem 1). Then in Sect. 2.2 we prove that MGS is NP-hard for line
graphs (Theorem 2). In Sect. 2.3 we prove the inapproximability result (Theo-
rem 3).

2.1 NP-hardness on Planar Graphs

Given a graph G, a subset S ⊆ V (G) is a dominating set of G if any vertex in
V (G)\S has a neighbour in S. The problem Minimum Dominating set (MDS)
consists in computing a dominating set of an input graph G with minimum
cardinality. To prove Theorem 1, we reduce the NP-complete MDS on subcubic
planar graphs [13] to MGS on planar graphs with maximum degree 6.

Let us describe the reduction. From a subcubic planar graph G with a given
planar embedding, we construct a graph f(G) as follows. Each vertex v of
G will be replaced by a vertex gadget Gv. This vertex gadget has vertex set
{cv, tv0, tv1, tv2} ∪ {xv

i,j , y
v
i,j , z

v
i,j | 0 ≤ i < j ≤ 2}. For simplicity we will consider

that xv
i,j and xv

j,i refers to the same vertex (the same holds for yvi,j and yvj,i,
and for zvi,j and zvj,i). There are no other vertices in f(G). For the edges within
Gv, vertex tvi (for 0 ≤ i ≤ 2) is adjacent to vertices cv, xv

i,i+1, yvi,i+1, xv
i−1,i,

yvi−1,i (indices taken modulo 3). Moreover, for each pair i, j with 0 ≤ i < j ≤ 2,
xv
i,j is adjacent to cv and yvi,j , and yvi,j is adjacent to zvi,j . We now describe

the edges outside of the vertex-gadgets. They will depend on the embedding of
G. We assume that the edges incident with any vertex v are labeled evi with
0 ≤ i < degG(v), in such a way that the numbering increases counterclockwise
around v with respect to the embedding (thus the edge vw will have two labels:
evi and ewj). Consider two vertices v and w that are adjacent in G, and let evi
and ewj be the two labels of edge vw in G. Then, tvi is adjacent to twj , yvi,i+1 is

Hardness and Approximation for the Geodetic Set Problem 105

adjacent to ywj−1,j and yvi−1,i is adjacent to ywj+1,j (indices are taken modulo the
degree of the original vertex of G). It is clear that a planar embedding of f(G)
can easily be obtained from the planar embedding of G. Thus f(G) is planar
and has maximum degree 6. The construction is depicted in Fig. 1, where v and
w are adjacent in G and the edge vw is labeled ev0 and ew0 .

We will show that G has a dominating set of size k if and only if f(G) has a
geodetic set of size 3|V (G)| + k.

Fig. 1. Illustration of the reduction used in the proof of Theorem 1. Here, two vertex
gadgets Gv, Gw are depicted, with v and w adjacent in G. Dashed lines represent
potential edges to other vertex-gadgets.

Assume first that G has a dominating set D of size k. We construct a geodetic
set S of f(G) of size 3|V (G)| + k as follows. For each vertex v in G, we add the
three vertices zvi,j (0 ≤ i < j ≤ 2) of Gv to S. If v is in D, we also add vertex cv

to S.
Let us show that S is indeed a geodetic set. First, we observe that, in any

vertex gadget Gv that is part of f(G), the unique shortest path between two
distinct vertices zvi,j , z

v
i′,j′ has length 4 and goes through vertices yvi,j , t

v
k and

yvi′,j′ (where {k} = {i, j} ∩ {i′, j′}). Thus, it only remains to show that vertices
cv and xv

i,j (0 ≤ i < j ≤ 2) belong to some shortest path of vertices of S. Assume
that v is a vertex of G in D. The shortest paths between cv and zvi,j have length 3
and one of them goes through vertex xv

i,j . Thus, all vertices of Gv belong to some
shortest path between vertices of S. Now, consider a vertex w of G adjacent to
v and let zwi,j be the vertex of Gw that is farthest from cv. The shortest paths
between cv and zwi,j have length 6; one of them goes through vertices cw and
xw
i,j ; two others go through the two other vertices xw

i′,j′ and xw
i′′,j′′ . Thus, S is a

geodetic set.
For the converse, assume we have a geodetic set S′ of f(G) of size 3|V (G)|+k.

We will show that G has a dominating set of size k. First of all, observe that all
the 3|V (G)| vertices of type zvi,j are necessarily in S′, since they have degree 1.
As observed earlier, the shortest paths between those vertices already go through
all vertices of type tvi and yvi,j . However, no other vertex lies on a shortest path
between two such vertices: these shortest paths always go through the boundary

106 D. Chakraborty et al.

b

a

c

d

(a) (b)

Fig. 2. (a) A triangle-free graph G and (b) the graph HG.

6-cycle of the vertex-gadgets. Let S′
0 be the set of the remaining k vertices of S′.

These vertices are there to cover the vertices of type cv and xv
i,j . We construct

a subset D′ of V (G) as follows: D′ contains those vertices v of G whose vertex-
gadget Gv contains a vertex of S′

0. We claim that D′ is a dominating set of G.
Suppose by contradiction that there is a vertex v of G such that neither Gv nor
any of Gw (with w adjacent to v in G) contains any vertex of S′

0. Here also, the
shortest paths between vertices of S always go through the boundary 6-cycle
of Gv and thus, they never include vertex cv, a contradiction. Thus, D′ is a
dominating set of size k, and we are done.

2.2 NP-hardness on Line Graphs

In this section, we prove that MGS remains NP-hard on line graphs. For a
graph G and edges e, e′ ∈ E(G), define d(e, e′) = 1 if e, e′ shares a vertex, and
d(e, e′) = i > 1 if e, e′ do not share a vertex and e′ shares a vertex with an edge
e′′ with d(e, e′′) = i − 1. A path between two edges e, e′ is defined in the usual
way.

Observation 1. A path between two edges e, e′ of a graph G corresponds to a
path between the vertices e and e′ in L(G).

Given a graph G, a set S ⊆ E(G) is a line geodetic set of G if every edge e ∈
E(G) \ S belongs to some shortest path between some pair of edges {e, e′} ⊆ S.
Observation 1 implies the following.

Observation 2. A graph G has a line geodetic set of cardinality k if and only
if L(G) has a geodetic set of size k.

We shall show (in Lemma 8) that finding a line geodetic set of a graph with
minimum cardinality is NP-hard. Then Observation 2 shall imply that solving
MGS on line graphs is NP-hard. For the above purpose we need the following
definition. Given a graph G, a set S ⊆ E(G) is a good edge set if for any edge
e ∈ E(G) \ S, there are two edges e′, e′′ ∈ S such that (i) e lies in some shortest
path between e′ and e′′, and (ii) d(e′, e′′) is 2 or 3.

Lemma 6. Computing a good edge set of a triangle-free graph with minimum
cardinality is NP-hard.

Hardness and Approximation for the Geodetic Set Problem 107

Proof. We shall reduce the NP-complete Edge Dominating set problem on
triangle-free graphs [26] to the problem of computing a good edge set of a graph
with minimum cardinality on triangle-free graphs. Given a graph G, a set S ⊆
E(G) is an edge dominating set of G if any edge e ∈ E(G) \ S shares a vertex
with some edge in S. The Edge Dominating Set problem is to compute an
edge dominating set of G with minimum cardinality.

Let G be a triangle-free graph. For each vertex v ∈ V (G), take a new edge
xvyv. Construct a graph G∗ whose vertex set is the union of V (G) and the set
{xv, yv}v∈V (G) and E(G∗) = E(G) ∪ {vxv}v∈V (G) ∪ {xvyv}v∈V (G). Notice that
G∗ is a triangle-free graph and we shall show that G has an edge dominating set
of cardinality k if and only if G∗ has a good edge set of cardinality k + n where
n = |V (G)|.

Let S be an edge dominating set of G. For each v ∈ G, let Hv be written as
xv, yv, zv. Notice that the set S ∪{xvyv}v∈V (G) forms a good edge set of G∗ and
has cardinality k+n. Let S′ be a good edge set of G∗ of size at most k+n. Notice
that for each v ∈ V (G), S′ must contain the edge xvyv. Hence, the cardinality
of the set S′ ∩ E(G) is at most k. Moreover, for each e ∈ E(G∗) ∩ E(G), there
is an edge e′ ∈ S′ which is at distance 2 from e. As S′ is a good edge set of G∗,
any edge in E(G) \ S′ shares a vertex with some edge of S′. Hence S′ ∩E(G) is
an edge dominating set of G of cardinality at most k. 	

For a triangle-free graph G, let HG be the graph with V (HG) = V (G) ∪
{a, b, c, d} and E(HG) = E(G) ∪ {ab, cd} ∪ E′ where E′ = {bv}v∈V (G) ∪
{cv}v∈V (G). See Fig. 2(a) and (b) for an example. We prove the following propo-
sition.

Lemma 7. For a triangle-free graph G, there is a line geodetic set Q of HG

with minimum cardinality such that Q ∩ E′ = ∅.
Proof. For a set S ⊆ E(HG), an edge f ∈ S covers an edge e ∈ E(HG), if there
is another edge f ′ ∈ S such that e lies in the shortest path between f and f ′.
Notice that the edges {ab, cd} lie in any line geodetic set of HG and all edges in
E′ are covered by ab and cd. First we prove the following claims.

Claim 1. Let Q be a line geodetic set of HG and e ∈ E′ ∩Q. If e does not cover
any edge of E(G), then Q \ {e} is a line geodetic set of HG.

The proof of the above claim follows from the fact that all edges in E′ ∪{ab, cd}
are covered by ab and cd.

Claim 2. Let Q be a line geodetic set of HG and e ∈ E′ ∩ Q. There is another
edge e′ ∈ E(G) \ Q such that (Q ∪ {e′}) \ {e} is a line geodetic set of HG.

To prove the claim above, first we define the ecentricity of an edge e ∈ E(HG) to
be the maximum shortest path distance between e and any other edge in E(HG).
Notice that the ecentricity of any edge in E′ is two and the ecentricity of any
edge of E(G) in HG is at most three. Now remove all edges from E′ ∩ Q which
do not cover any edge of E(G). By Claim 1, the resulting set, say Q′, is a line

108 D. Chakraborty et al.

geodetic set of HG. Let e be an edge Q′ ∩E′ and let {f1, f2, . . . , fk} ⊆ E(G)\Q′

be the set of edges covered by e. Since the ecentricity of e is two, there must
exist e1, e2, . . . , ek in Q′ such that fi has a common endpoint with both e and ei
for each i ∈ {1, 2, . . . , k}. Therefore the distance between e and ei is two for each
i ∈ {1, 2, . . . , k}. As G is triangle-free, ei �= ej for any i, j ∈ {1, 2, . . . , k}. Choose
any edge fj ∈ {f1, f2, . . . , fk}. Observe that the distance between fj and ei is
two when i �= j. Therefore, for each i ∈ {1, 2, . . . , j − 1, j + 1, . . . k}, the edge fi
lies in the shortest path between fj and ei. Therefore, (Q′ ∪ {fj}) \ {e} is a line
geodetic set of HG.

Given any line geodetic set P of HG, we can use the arguments used in
Claims 1 and 2 repeatedly on P to construct a line geodetic set Q of HG such
that |Q| ≤ |P | and Q ∩ E′ = ∅. Thus we have the proof. 	

Lemma 8. Computing a line geodetic set of a graph with minimum cardinality
is NP-hard.

Proof. We shall reduce the NP-complete problem of computing a good edge set of
a triangle-free graph with minimum cardinality (Lemma 6). Let G be a triangle-
free graph. Construct the graph HG as stated above (just before Lemma 7). The
set E′ is also defined as before. We shall show that a triangle-free graph G has
a good edge set of cardinality k if and only if HG has a line geodetic set of
cardinality k + 2.

Let P be a good edge set of G. Notice that, for each edge e ∈ E(G), there
are two edges e′, e′′ ∈ P such that e belongs to a shortest path between e′ and
e′′ in HG. Also any edge of E′ belongs to a shortest path between the edges ab
and cd in HG. Hence P ∪ {ab, cd} is a line geodetic set of HG with cardinality
k + 2.

Let Q be a line geodetic set of HG of size k+2. Notice that {ab, cd} ⊆ Q and
let Q′ = Q \ {ab, cd}. Due to Lemma 7, we can assume that Q′ does not contain
any edge of E′. Let e be an edge in E(G) \Q′ and let e′, e′′ ∈ Q′ such that e lies
in some shortest path between e′ and e′′ in HG. Since the distance between e′

and e′′ is at most three in HG, it follows that Q′ is a good edge set of G with
cardinality k. 	

2.3 Inapproximability on Graphs with Diameter 2

Given a graph G, a set S ⊆ V (G) is a 2-dominating set of G if any vertex
w ∈ V (G) \ S has at least two neighbours in S. The 2-MDS problem is to
compute a 2-dominating set of graphs with minimum cardinality. We shall use
the following result.

Theorem 9 ([5,7]). Unless P = NP , there is no polynomial time o(log n)-
approximation algorithm for the 2-MDS problem on triangle-free graphs.

Lemma 10. Let G be a triangle-free graph and G′ be the graph obtained by
adding an universal vertex v to G. A set S of vertices of G′ is a geodetic set if
and only if S \ {v} is a 2-dominating set of G.

Hardness and Approximation for the Geodetic Set Problem 109

Proof. Let S be a geodetic set of G′. Observe that for any vertex u ∈ V (G) \ S
there must exist vertices u1, u2 ∈ S \ {v} such that u ∈ I(u1, u2) and
u1u2 /∈ E(G). Hence, S is a 2-dominating set of G. Conversely, let S′ be any
2-dominating set of G. For any vertex u ∈ V (G) \ S′ there exist v, v′ ∈ S′ such
that uv, uv′ ∈ E(G). Since G is triangle-free, v and v′ are non-adjacent. Hence,
u ∈ I(v, v′) and S′ ∪ {v} is a geodetic set of G′. 	

The proof of Theorem 3 follows due to Lemma 10 and Theorem 9.

3 Approximation Algorithms

In Sects. 3.1 and 3.2 we present approximation algorithms for MGS on general
graphs and solid grid graphs, respectively.

3.1 General Graphs

We will reduce the Minimum Geodetic Set problem to the Minimum Rain-
bow Subgraph of Multigraph (MRSM) problem. A subgraph H of an edge
colored multigraph G is colorful if H contains at least one edge of each color.
Given an edge colored multigraph G, the MRSM problem is to find a colorful
subgraph of G of minimum cardinality. The following is a consequence of a result
due to Tirodkar and Vishwanathan [24].

Theorem 11 ([24]). Given an edge colored multigraph G, there is a polynomial
time O(3

√
n log n)-approximation algorithm to solve the MRSM problem where

n = |V (G)|.
We note that Tirodkar and Vishwanathan [24] proved the above theorem for

simple graphs only, but the proof works for multigraphs as well.
Given a graph G form an edge colored multigraph HG as follows. The vertex

set of HG is the same as G. For each triplet of not necessarily distinct vertices
(u, v, w) such that u lies in some shortest path between v and w, add an edge
in HG between v and w having the color u. Observe that, G has a geodetic set
of cardinality k if and only if HG has a colorful subgraph with k vertices. The
proof of Theorem 4 follows from Theorem 11.

3.2 Solid Grid Graphs

In this section, we shall give a linear time 3-approximation algorithm for MGS
on solid grid graphs. From now on G shall denote a solid grid graph and R is a
grid embedding of G where every interior face has unit area.

Let G be a solid grid graph. A path P of G is a corner path if (i) no vertex of
P is a cut vertex, (ii) both end-vertices of P have degree 2, and (iii) all vertices
except the end-vertices of P have degree 3. See Fig. 3(a) for an example. Observe
that for a corner path P , either the x-coordinates of all vertices of P are the
same or the y-coordinates of all vertices of P are the same. Moreover, all vertices
of a corner path lie in the outer face of G. The next observation follows from the
definition of corner path and the fact that G is a solid grid graph.

110 D. Chakraborty et al.

Observation 3. Let P be a corner path of G. Consider the set Q = {v ∈
V (G) : v /∈ V (P), N(v) ∩ P �= ∅}. Then Q induces a path in G. Moreover, if the
x-coordinates (resp. the y-coordinates) of all the vertices of P are the same, then
the x-coordinates (resp. the y-coordinates) of all vertices in Q are the same.

We shall use Observation 3 to prove a lower bound on the geodetic number of
G in terms of the number of corner paths of G.

Fig. 3. (a) The black and gray vertices are the vertices of the corner paths. The gray
vertices indicate the corner vertices. (b) The gray vertices are vertices of the red path.
Vertices in the shaded box form a rectangular block. (c) Example of a solid grid graph
whose number of corner vertices is exactly three times the geodetic number.

Lemma 12. Any geodetic set of G contains at least one vertex from each corner
path.

Proof. Without loss of generality, we assume the x-coordinates of all vertices
of P are the same. By Observation 3, the set {v ∈ V (G) : v /∈ V (P), N(v) ∩
P �= ∅} induces a path Q and the x-coordinates of all vertices in Q are the
same. Now consider any two vertices a, b ∈ V (G) \ V (P) and with a path P ′

between a and b that contains one of the end-vertices, say u, of P . Observe that
P ′ can be expressed as P ′ = a c1 c2 . . . ct d f1 f2 . . . ft′ u g h1 h2 . . . ht′′ b
such that {d, g} ⊆ V (Q) and {f1, f2, . . . , ft′} ⊆ V (P). Then there is a path
P ′′ = a c1 c2 . . . ct d f ′

2 . . . f
′
t′ g h1 h2 . . . ht′′ b where for 2 ≤ i ≤ t′, f ′

i is the
vertex in Q which is adjacent to fi in G. Observe that the length of P ′′ is strictly
less than that of P ′. Therefore u /∈ I(a, b) whenever a, b ∈ V (G) \ V (P). Hence
any geodetic set of G contains at least one vertex from P . 	

Any geodetic set of G contains all vertices of degree 1. Inspired by the above
fact and Lemma 12, we define the term corner vertex as follows. A vertex v of G
is a corner vertex if v has degree 1 or v is an end-vertex of some corner path. See
Fig. 3(a) for an example. Observe that two corner paths may have at most one
corner vertex in common. Moreover, a corner vertex cannot be in three corner
paths. Therefore it follows that the cardinality of the set of corner vertices is at
most 3 · g(G).

Hardness and Approximation for the Geodetic Set Problem 111

Remark 13. Note that there are solid grid graphs whose number of corner ver-
tices is exactly three times the geodetic number. See Fig. 3(c) for one such
example.

Now we prove that the set of all corner vertices of G is indeed a geodetic set
of G. We shall use the following proposition of Ekim and Erey [10].

Theorem 14 ([10]). Let F be a graph and F1, . . . , Fk its biconnected compo-
nents. Let C be the set of cut vertices of G. If Xi ⊆ V (Fi) is a minimum set
such that Xi ∪ (V (Fi) ∩ C) is a minimum geodetic set of Fi then ∪k

i=1Xi is a
minimum godetic set of F .

The next observation follows from Theorem 14.

Observation 4. Let C(G) be the set of corner vertices of G and S be the set of
cut vertices of G. Let {H1,H2, . . . , Ht} be the set of biconnected components of
G. The set C(G) is a geodetic set of G if and only if (C(G)∩V (Hi))∪(S∩V (Hi))
is a geodetic set of Hi for all 1 ≤ i ≤ t.

From now on, C(G) is the set of corner vertices of G and H1,H2, . . . , Ht are
the biconnected components of G. Due to Theorem 14 and Observation 4, it is
enough to show that for each 1 ≤ i ≤ t, the set (C(G) ∩ V (Hi)) ∪ (S ∩ V (Hi))
is a geodetic set of Hi. First, we introduce some more definitions below.

Let H be a biconnected component of G. Recall that each vertex of H is
a pair of integers and each edge is a line segment with unit length. An edge
e ∈ E(H) is an interior edge if all interior points of e lie in an interior face of
H. For a vertex v ∈ V (H), let Pv denote the maximal path such that all edges
of Pv are interior edges and each vertex in Pv has the same x-coordinate as v.
Similarly, let P ′

v denote the maximal path such that all edges of Pv are interior
edges and each vertex in P ′

v has the same y-coordinate as v. A path P of H is a
red path if (i) there exists a v ∈ V (H) such that P ∈ {Pv, P

′
v} and (ii) at least

one end-vertex of P is a cut-vertex or a vertex of degree 4. A vertex v of H is
red if v lies on some red path. See Fig. 3(b) for an example.

Definition 15. A subgraph F of H is a rectangular block if F satisfies the fol-
lowing properties.

1. For any two vertices (a1, b1), (a2, b2) of F , we have that any pair (a3, b3) with
a1 ≤ a3 ≤ a2 and b1 ≤ b3 ≤ b2 is a vertex of F .

2. Let a, a′ be the maximum and minimum x-coordinates of the vertices in F .
The x-coordinate of any red vertex of F must be equal to a or a′. Similarly,
let b, b′ be the maximum and minimum y-coordinates of the vertices in F . The
y-coordinate of any red vertex of F must be equal to b or b′.

Observe that H can be decomposed into rectangular blocks such that each
non-red vertex belongs to exactly one rectangular block. See Fig. 3(b) for an
example. Let B1, B2, . . . , Bk be a decomposition of H into rectangular blocks.
Recall that C(G) is the set of corner vertices of G and S is the set of cut vertices
of G. We have the following lemma.

112 D. Chakraborty et al.

Lemma 16. For each 1 ≤ i ≤ k, there are two vertices xi, yi ∈ (C(G)∩V (H))∪
(S ∩ V (H)) such that V (Bi) ⊆ I(xi, yi).

Proof. Let X ∈ {B1, B2, . . . , Bk} be an arbitrary rectangular block. A vertex v
of X is a northern vertex if the y-coordinate of v is maximum among all vertices
of X. Analogously, western vertices, eastern vertices and southern vertices are
defined. A vertex of X is a boundary vertex if it is either northern, western,
southern or an eastern vertex of X. Let nw(X) be the vertex of X which is both
a northern vertex and a western vertex. Similarly, ne(X) denotes the vertex
which is both northern vertex and eastern vertex, sw(X) denotes the vertex of
X which is both southern and western vertex and se(X) denotes the vertex of
X which is both southern and eastern vertex.

First we prove the lemma assuming that all boundary vertices of X are red
vertices. Let a (resp. b) denote the vertex with minimum y-coordinate such that
Pa (resp. Pb) contains sw(X) (resp. se(X)). Similarly, let c (resp. d) denote
the vertex with maximum y-coordinate such that Pc (resp. Pd) contains nw(X)
(resp. ne(X)). Let a′ (resp. c′) denote the vertex with minimum x-coordinate
such that P ′

a′ (resp. P ′
b′) contains sw(X) (resp. nw(X)). Let b′ (resp. d′) denote

the vertex with maximum x-coordinate such that P ′
b′ (resp. P ′

d′) contains se(X)
(resp. ne(X)). Observe that the vertices a′, a, b, b′, d′, d, c, c′ lie on the exterior
face of the embedding.

For two vertices i, j ∈ {a′, a, b, b′, d′, d, c, c′}, let Pij denote the path between
i, j that can be obtained by traversing the exterior face of the embedding in
the counter-clockwise direction starting from i. Observe that, if both Pa′a and
Pd′d (resp. Pbb′ and Pcc′) contain a corner or cut vertex each, say f, f ′, then
{sw(X), ne(X)} ⊆ I(f, f ′) (resp. {nw(X), se(X)} ⊆ I(f, f ′)) and therefore
V (X) ⊆ I(f, f ′). Now consider the case when at least one of the paths in
{Pa′a, Pd′d} does not contain any corner vertex or cut vertex and when at least
one of the paths in {Pb′b, Pcc′} does not contain any corner vertex or cut vertex.
Due to symmetry of rotation and reflection on grids, without loss of generality we
can assume that both Pa′a and Pbb′ have no corner vertex or cut vertex. Observe
that in this case there must be a corner vertex f in Pab whose x-coordinate is
the same as that of b and therefore of se(X). If Pcc′ contains a corner vertex
f ′, then {nw(X), se(X)} ⊆ I(f, f ′)) and therefore V (X) ⊆ I(f, f ′). Otherwise,
there must be a corner vertex f ′ in Pc′a′ whose y-coordinate is the same as that
of c′ and therefore of nw(X). Hence we have {nw(X), se(X)} ⊆ I(f, f ′) and
therefore V (X) ⊆ I(f, f ′) in this case also.

Now we consider the case when there are some non-red boundary vertices of
X. Let v be a non-red vertex of X. Without loss of generality, we can assume
that v is a western vertex of X. Now we redefine the vertices a, a′, b, b′, c, c′, d, d′

as follows. Let a′ = sw(X), c′ = nw(X) and a (resp. b) be the vertex with
minimum y-coordinate such that there is a path from a to sw(X) (resp. from
b to se(X)) containing vertices with the same x-coordinate as that of sw(X)
(resp. se(X)). Similarly, let c (resp. d) be the vertex with maximum y-coordinate
such that there is a path from c to nw(X) (resp. from d to ne(X)) con-
taining vertices with the same x-coordinate as that of nw(X) (resp. ne(X)).

Hardness and Approximation for the Geodetic Set Problem 113

Finally, let d′ (resp. b′) be the vertex with maximum x-coordinate such that
there is a path from d′ to ne(X) (resp. from b′ to se(X)) containing vertices
with the same y-coordinate as that of ne(X) (resp. se(X)). Using similar argu-
ments on the paths Pij with i, j ∈ {a′, a, b, b′, d′, d, c, c′} as before, we can show
that there exists corner vertices f, f ′ such that V (X) ⊆ I(f, f ′). So we have the
proof. 	

By Observation 4 and Lemma 16, C(G) is a geodetic set of G.

Time Complexity: If the grid embedding of G is given as part of the input, then
the set of corner vertices can be computed in O(|V (G)|) time by simply traversing
the exterior face of the embedding. Otherwise, the set of corner vertices can be
computed in O(|V (G)|) time as follows (we shall only describe the procedure
to find corner vertices of degree two as the other case is trivial). Let H be a
biconnected component of G, v be a vertex of H having degree 2 and u0, x0 be
its neighbours. If both u0 and x0 have degree 4, then v is not a corner vertex.
Moreover, if at least one of u0 and x0 have degree 2 then v is a corner vertex.
Otherwise, apply the following procedure. Assume u0 has degree 3 and denote v
as u−1 for technical reasons. Set i = 0. As H is a biconnected solid grid graph,
ui and xi must have exactly one common neighbour which is different from ui−1.
Denote this vertex as xi+1. Let ui+1 be the neighbour of ui different from both
xi+1 and ui−1. If degH(ui+1) = 4 or ui+1 is a cut vertex in G then terminate.
If degG(ui+1) = 2 then v is a corner vertex. Otherwise, set i = i + 1 and repeat
the above steps. Observe that, when the above procedure terminates either we
know that v is a corner vertex or there is no corner path that contains both u0

and v. Now swapping roles of u0 and x0 in the above procedure, we can decide
if v is a corner vertex. We can find all the corner vertices of H by applying
the above procedure to all vertices of degree 2 of H. Similarly by applying the
above procedure to all the biconnected components of G, we can find all corner
vertices. Notice that, the total running time of the algorithm remains linear in
the number of vertices of G.

This completes the proof of Theorem 5.

4 Conclusion

In this paper, we studied the computational complexity of MGS in various
graph classes. We proved that MGS remains NP-hard on planar graphs and
line graphs. We also gave an O (3

√
n log n)-approximation algorithm for MGS

on general graphs and proved that unless P = NP, there is no polynomial time
o(log n)-approximation algorithm for MGS even on graphs with diameter 2. This
motivates the following questions.

Question 1. Are there constant factor approximation algorithms for MGS on
planar graphs and line graphs?

Question 2. Is there a O(log n)-approximation algorithm for MGS on general
graphs ?

114 D. Chakraborty et al.

Acknowledgements. The authors acknowledge the financial support from the
IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39). Flo-
rent Foucaud is supported by the ANR project HOSIGRA (ANR-17-CE40-0022). We
thank Ajit Diwan for helpful discussions.

References

1. Atici, M.: Computational complexity of geodetic set. Int. J. Comput. Math. 79(5),
587–591 (2002)

2. Buckley, F., Harary, F.: Geodetic games for graphs. Quaestiones Math. 8(4), 321–
334 (1985)

3. Bueno, L.R., Penso, L.D., Protti, F., Ramos, V.R., Rautenbach, D., Souza, U.S.:
On the hardness of finding the geodetic number of a subcubic graph. Inf. Process.
Lett. 135, 22–27 (2018)

4. Călinescu, G., Dumitrescu, A., Pach, J.: Reconfigurations in graphs and grids.
SIAM J. Discrete Math. 22(1), 124–138 (2008)

5. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inf. Comput. 206(11), 1264–1275 (2008)

6. Chuzhoy, J., Kim, D.H.K.: On approximating node-disjoint paths in grids. In:
APPROX/RANDOM, pp. 187–211. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2015)

7. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC, pp.
624–633. ACM (2014)

8. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Some remarks on the
geodetic number of a graph. Discrete Math. 310(4), 832–837 (2010)

9. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: On the complexity of the geodetic
and convexity numbers of a graph. In: ICDM, vol. 7, pp. 101–108. Ramanujan
Mathematical Society (2008)

10. Ekim, T., Erey, A.: Block decomposition approach to compute a minimum geodetic
set. RAIRO-Oper. Res. 48(4), 497–507 (2014)

11. Ekim, T., Erey, A., Heggernes, P., van’t Hof, P., Meister, D.: Computing minimum
geodetic sets of proper interval graphs. In: Fernández-Baca, D. (ed.) LATIN 2012.
LNCS, vol. 7256, pp. 279–290. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29344-3 24

12. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Alge-
braic Discrete Methods 7(3), 433–444 (1986)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H.Freeman,
New York (2002)

14. Gerber, M.U., Lozin, V.V.: Robust algorithms for the stable set problem. Graphs
Comb. 19(3), 347–356 (2003)

15. Gerstel, O., Zaks, S.: A new characterization of tree medians with applications to
distributed sorting. Networks 24(1), 23–29 (1994)

16. Gregori, A.: Unit-length embedding of binary trees on a square grid. Inf. Process.
Lett. 31(4), 167–173 (1989)

17. Guruswami, V.: Maximum cut on line and total graphs. Discrete Appl. Math.
92(2–3), 217–221 (1999)

18. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math.
Comput. Modell. 17(11), 89–95 (1993)

19. Haynes, T.W., Henning, M., Tiller, C.A.: Geodetic achievement and avoidance
games for graphs. Quaestiones Math. 26(4), 389–397 (2003)

https://doi.org/10.1007/978-3-642-29344-3_24
https://doi.org/10.1007/978-3-642-29344-3_24

Hardness and Approximation for the Geodetic Set Problem 115

20. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM J. Comput. 11(4), 676–686 (1982)

21. Mezzini, M.: Polynomial time algorithm for computing a minimum geodetic set in
outerplanar graphs. Theoret. Comput. Sci. 745, 63–74 (2018)

22. Mitchell, S.L.: Another characterization of the centroid of a tree. Discrete Math.
24(3), 277–280 (1978)

23. Sardroud, A.A., Bagheri, A.: An approximation algorithm for the longest cycle
problem in solid grid graphs. Discrete Appl. Math. 204, 6–12 (2016)

24. Tirodkar, S., Vishwanathan, S.: On the approximability of the minimum rainbow
subgraph problem and other related problems. Algorithmica 79(3), 909–924 (2017)

25. Wu, B.Y.: A 7/6-approximation algorithm for the max-min connected bipartition
problem on grid graphs. In: Akiyama, J., Bo, J., Kano, M., Tan, X. (eds.) CGGA
2010. LNCS, vol. 7033, pp. 188–194. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24983-9 19

26. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math.
38(3), 364–372 (1980)

27. Zhang, W., Liu, Y.: Approximating the longest paths in grid graphs. Theoret.
Comput. Sci. 412(39), 5340–5350 (2011)

https://doi.org/10.1007/978-3-642-24983-9_19
https://doi.org/10.1007/978-3-642-24983-9_19

Maximum Weighted Edge Biclique
Problem on Bipartite Graphs

Arti Pandey1(B), Gopika Sharma1, and Nivedit Jain2

1 Department of Mathematics, Indian Institute Of Technology Ropar,
Rupnagar 140001, Punjab, India

{arti,2017maz0007}@iitrpr.ac.in
2 Department of Computer Science and Engineering,

Indian Institute of Technology Jodhpur, Karwar 342037,
Rajasthan, India

jain.22@iitj.ac.in

Abstract. For a graph G, a complete bipartite subgraph of G is called
a biclique of G. For a weighted graph G = (V, E, w), where each edge
e ∈ E has a weight w(e) ∈ R, the Maximum Weighted Edge Biclique
(MWEB) problem is to find a biclique H of G such that

∑
e∈E(H) w(e)

is maximum. The decision version of the MWEB problem is known to
be NP-complete for bipartite graphs. In this paper, we show that the
decision version of the MWEB problem remains NP-complete even if the
input graph is a complete bipartite graph. On the positive side, if the
weight of each edge is a positive real number in the input graph G, then
we show that the MWEB problem is O(n2)-time solvable for bipartite
permutation graphs, and O(m+n)-time solvable for chain graphs, which
is a subclass of bipartite permutation graphs.

Keywords: Maximum Weighted Edge Biclique · Bipartite
permutation graphs · Chain graphs · NP-completeness · Graph
algorithms

1 Introduction

Let G = (V,E) be a graph. A biclique of G is a complete bipartite subgraph of
G. The Maximum Vertex Biclique (MVB) problem is to find a biclique of
G with maximum number of vertices. The decision version of the MVB prob-
lem is NP-complete for general graphs [1], but the MVB problem is polynomial
time solvable for bipartite graphs [1]. The Maximum Edge Biclique (MEB)
problem is to find a biclique in G with maximum number of edges. The decision
version of the MEB problem is NP-complete for general graphs [1] and it also
remains NP-complete for bipartite graphs [2]. Many researchers have also stud-
ied some other variations of these problems, see [1,3–5]. The Maximum Edge
Biclique problem was first introduced in [1] and further studied in [2,6–9]. The
MEB problem has applications in biclustering analysis techniques, where one is
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 116–128, 2020.
https://doi.org/10.1007/978-3-030-39219-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_10

Maximum Weighted Edge Biclique Problem on Bipartite Graphs 117

interested to capture the relationship between genes and conditions. The goal of
biclustering algorithms is to find a subset of genes J and a subset of conditions
C such that the change in the expression level of each j ∈ J with respect to each
c ∈ C is significant. More details about the application of the MEB problem
can be found in [3,8]. Since the MEB problem is also hard to approximate in
bipartite graphs within nδ for some δ > 0 [10,11] under certain assumptions such
as random 4-SAT or 3-SAT hardness hypothesis, researchers have also studied
the problem for subclasses of bipartite graphs. The MEB problem is polynomial
time solvable for the following subclasses of bipartite graphs: chordal bipar-
tite graphs, convex bipartite graphs and bipartite permutation graphs [8,12–16].
Some other hardness results are also available for the MEB problem based on
some assumptions [6,9,17,18]. In this paper, we study the weighted version of
the MEB problem.

The weighted version of the MEB problem, namely Maximum Weighted
Edge Biclique (MWEB) problem is also studied in literature, see [3–5,7].
Given a weighted graph G = (V,E,w), where each edge e ∈ E has a weight
w(e) ∈ R, the MWEB problem is to find a biclique C of G such that the sum
of the weights of edges of C is maximum. Note that the Maximum Weighted
Edge Biclique problem is the generalized version of the Maximum Edge
Biclique problem. So, the hardness results for the Maximum Edge Biclique
problem are also valid for the Maximum Weighted Edge Biclique problem.
Given a graph G and an integer k > 0, the Weighted Edge Biclique Deci-
sion Problem (WEBDP) is to find a biclique C of G such that the sum of edge
weights of C is at least k. In this paper, we show that WEBDP is NP-complete
even for complete bipartite graphs.

There exists a restricted version of the MWEB problem, namely the S-
MWEB problem, where S is a subset of real numbers from which edge weights
are taken and the input graph is a bipartite graph. In 2008, Tan [7] proved that
for a wide range of choices of S, no polynomial time algorithm can approximate
the S-MWEB problem within a factor of nε for some ε > 0 unless RP=NP. He
also proved that the decision version of the S-MWEB problem is NP-complete
even for S = {−1, 0, 1}. In this paper, we show that this problem remains NP-
complete when S = {1,−M} (M > |E(G)|). On the positive side, we show
that for a set S of positive real numbers, the S-MWEB problem is quadratic
time solvable for bipartite permutation graphs and linear-time solvable for chain
graphs.

The rest of the paper is organized as follows. In Sect. 2, we give some per-
tinent definitions and notations used in the paper. In Sect. 3, we show that
the Weighted Edge Biclique Decision Problem is NP-complete even for
complete bipartite graphs. In Sect. 4, we show that the S-MWEB is O(n2)-time
solvable for bipartite permutation graphs if S is as set of positive real numbers.
In Sect. 5, we propose a linear-time algorithm to solve the S-MWEB problem in
O(m+n)-time for chain graphs (under the assumption that S is a set of positive
real numbers). Finally, Sect. 6 concludes the paper.

118 A. Pandey et al.

2 Preliminaries

We are considering undirected, simple and connected graphs throughout this
paper. A graph G is called a bipartite graph if its vertex set can be partitioned
into two sets, say V1 and V2 such that every edge of G has one end point in
V1 and other end point in V2. The set {V1, V2} is called a bipartition of G. We
denote such a bipartite graph by G = (V1, V2, E), where E is the edge set of G.
A biclique of G is a complete bipartite subgraph of G. A biclique of a bipartite
graph is called maximal if it is not a proper subgraph of any other biclique of
G. Weight of a biclique is defined as the sum of weights of all edges belonging
in it. For a complete bipartite graph with bipartition {X,Y } such that |X| = s
and |Y | = t, we use the notation Ks,t. For a vertex v of a graph G, d(v) denotes
degree of v and N(v) denotes the open neighborhood of v which is the set of
vertices adjacent to v in G. For a set S ⊆ V (G), N(S) denotes the union of open
neighborhooods of all vertices in S. Throughout this paper, n denotes order
(number of vertices) of the graph and m denotes the size (number of edges) of
the graph under consideration.

A binary relation that is reflexive, symmetric and transitive on the same set,
is called an equivalence relation. For an equivalence relation ∼ on a set S, the
equivalence class of x ∈ S is the set containing all elements which are related to
x by ∼. We denote equivalence class of an element x by [x]. Equivalence classes
of two elements are either disjoint or identical. Disjoint equivalence classes give
a partition of the set on which the relation was defined.

3 NP-completeness

In this section, we show that the Weighted Edge Biclique Decision Prob-
lem (WEBDP) is NP-complete for complete bipartite graphs which is a very
restricted subclass of bipartite graphs.

Theorem 1. WEBDP is NP-complete for complete bipartite graphs.

Proof. Clearly, WEBDP is in NP. To prove the NP-hardness of the WEBDP for
complete bipartite graph, we make a polynomial reduction from the unweighted
version of the same problem for bipartite graphs. So, we prove a construction of
a weighted complete bipartite graph from an unweighted bipartite graph.

Let G = (X,Y,E) be an unweighted bipartite graph with |X| = n1 and
|Y | = n2. We construct a new graph H which is nothing but Kn1,n2 . Now, for
an edge e in H, we define its weight to be 1 if e ∈ E and −M otherwise, where
M > m = |E|. So, H is a weighted complete bipartite graph with weights as
any real number. Figure 1 illustrates the construction of H from G. The dashed
edges in Fig. 1 are the edges with weight −M .

Now to complete the proof of the theorem, we only need to prove the following
claim.

Maximum Weighted Edge Biclique Problem on Bipartite Graphs 119

Fig. 1. An illustration to the construction of H from G.

Claim. G has a biclique of size at least k > 0 if and only if H has a biclique of
weight at least k > 0.

Proof. The proof is easy and hence is omitted. ��
Hence, the theorem is proved. ��

We have observed that the WEBDP is NP-complete even for complete bipar-
tite graphs. In next sections, we will discuss S-MWEB problem with S as the
set of positive real numbers, which will be the restricted version of the MWEB
problem. Throughout Sects. 4 and 5, by MWEB problem we mean S-MWEB
problem, where S = R

+.

4 Bipartite Permutation Graphs

A graph G = (V,E) is called a permutation graph if there exists a one-to-
one correspondence between its vertex set and a set of line segments between
two parallel lines such that two vertices of G are adjacent if and only if their
corresponding line segments intersect. A graph G = (V,E) is called a bipartite
permutation graph if it is both bipartite and permutation graph. We describe two
characterizations of bipartite permutation graphs. A strong ordering (<X , <Y)
of a bipartite graph G = (X,Y,E) consists of an ordering <X of X and an
ordering <Y of Y , such that for all edges ab, a′b′, with a, a′ ∈ X and b, b′ ∈ Y :
if a <X a′ and b′ <Y b, then ab′ and a′b are edges in G. An ordering <X of
X has the adjacency property if, for every vertex in Y , its neighbors in X are
consecutive in <X . The ordering <X has the enclosure property if, for every pair
of vertices y, y′ of Y with N(y) ⊆ N(y′), the vertices of N(y′) \ N(y) appear
consecutively in <X . Strong ordering, adjacency property and enclosure property
described above give rise to the following results which are already proven facts
[19] providing two characterizations of bipartite permutation graphs.

Theorem 2. [19] The following statements are equivalent for a graph G =
(X,Y,E).

120 A. Pandey et al.

1. G = (X,Y,E) is a bipartite permutation graph.
2. G has a strong ordering.
3. There exists an ordering of X which has the adjacency property and the enclo-

sure property.

For a connected graph, statements 2 and 3 of Theorem2 can be combined as
Lemma 1 which follows from the proof of Theorem1 in [19].

Lemma 1. [20] Let (<X , <Y) be a strong ordering of a connected bipartite per-
mutation graph G = (X,Y,E). Then both <X and <Y have the adjacency prop-
erty and the enclosure property.

Throughout this section, G = (X,Y,E) denotes a weighted bipartite permuta-
tion graph such that |X| = k and |Y | = k′. Weights on the edges are some
positive real numbers. We assume that the strong ordering (<X , <Y) of ver-
tices of G are already given for the input graph. This ordering is considered as
{x1, x2, . . . , xk} and {y1, y2, . . . , yk′} for X and Y respectively. We write u <X v
or u <Y v for vertices u, v of G if u appears before v in the strong ordering
of vertices of G. We write u < v when it is clear from the context that u, v
are coming from which side of the bipartition. For any edge xiyj , its weight is
denoted by wij .

Now, we define first and last neighbor of a vertex in G. Since both <X and
<Y satisfy adjacency property, for a vertex v of G, its neighbor set has some
consecutive vertices in <X or <Y . First neighbor of v is defined as the vertex
that appears first in the strong ordering of G in its neighbor set and last neighbor
of v is defined as the vertex that appears last in the strong ordering of G in its
neighbor set. For any vertex u of G, f(u) denotes the first neighbor of u and l(u)
denotes the last neighbor of u. For u in X, we denote f(u) by yαu

and l(u) by
yβu

where 1 ≤ αu ≤ βu ≤ k′. Combining above results, it can be observed that
for a bipartite permutation graph G with its strong ordering (<X , <Y), it has
the following properties which will be used in the further discussion (See [21]):

1. Given any vertex of G, its neighbor set consists of some consecutive vertices
in <X or <Y .

2. For a pair of vertices u, v from X or Y , if u < v then f(u) ≤ f(v) and
l(u) ≤ l(v).

Now, we will discuss about the structure of a maximal biclique of G which will
be used in getting a maximum biclique of G.

4.1 Maximal Bicliques

Let G′ = (X ′, Y ′, E′) denotes a maximal biclique of G with X ′ = {xi, xi+1, . . . ,
xj} and Y ′ = {yi′ , yi′+1, . . . , yj′} then edge xiyi′ is called the first edge of G′.
We call an edge uv of G as a safe edge if it is the first edge of some maximal
biclique of G. We will see that one safe edge corresponds to exactly one maximal
biclique of G and vice versa.

Maximum Weighted Edge Biclique Problem on Bipartite Graphs 121

Lemma 2. Let G′ = (X ′, Y ′, E′) be a biclique of G with X ′ = {xi, xi+1, . . . , xj}
and Y ′ = {yi′ , yi′+1, . . . , yj′}, then G′ is a maximal biclique of G if and only if
the following holds for the graph G.

(a) l(xi) = yj′

(b) f(xj) = yi′

(c) l(yi′) = xj

(d) f(yj′) = xi

Proof. First, let us assume that G′ is a maximal biclique. We need to show
that conditions (a), (b), (c) and (d) are true. For (a), it is clear that l(xi) ≥ yj′

since G′ is a biclique. If equality holds, we are done. So, let l(xi) > yj′ , say
l(xi) = yt(> yj′). Since vertices are ordered according to the strong ordering,
all vertices of X ′ are adjacent to the vertices yj′+1, yj′+2, . . . , yt in G implying
that G′ is not a maximal biclique of G. Now for (b), suppose that f(xj) < yi′ ,
say f(xj) = yp(< yi′). All vertices of X ′ are adjacent to yp, yp+1, . . . , yi′−1 in
G because of the strong ordering of the vertices of G, but G′ was maximal.
Similarly (c) and (d) can be proven.

Conversely, we assume that the conditions (a), (b), (c) and (d) are true. Let,
if possible, G′ is not maximal. Then there exists a vertex v in G for which one of
the following conditions must be satisfied: (i) v < xi and vyj′ ∈ E(G), (ii) v <
yi′ and vxj ∈ E(G), (iii) v > xj and vyi′ ∈ E(G), and (iv) v > yj′ and vxi ∈
E(G). But none of the edges vyj′ , vxj , vyi′ , vxi can be present in G because of our
assumption that (a), (b), (c) and (d) are true. So, G′ is a maximal biclique. ��

For any edge e = uv, the biclique corresponding to e, is the subgraph induced
by the vertices {u, ..., l(v), v, ..., l(u)}. From Lemma 2, it can be observed that
any maximal biclique of G can be identified from its first edge (safe edge). Given
any edge uv (u ∈ X and v ∈ Y) of G, one can easily check whether that is a safe
edge or not as follows: If first neighbor of last neighbor of v is equal to v and
first neighbor of last neighbor of u is equal to u, then uv qualifies as a safe edge.
We observe from Lemma 2 that this condition is both necessary and sufficient
for a biclique(corresponding to an edge uv) to be a maximal biclique. Hence,
we can say that number of safe edges in G is equal to the number of maximal
bicliques of G. We denote the maximal biclique corresponding to the safe edge e
by Ge. For every vertex u of G, we define an array called prefix sum array(psa)
of u of size d(u) as an array in which each value equals the sum of weights of
edges up to that position starting from f(u). The psa of xi(or yj) is denoted
by Ai[](or Bj []). Figure 2 represents a bipartite permutation graph. Next, we
illustrate all the terminologies defined in this section using Fig. 2.

In bipartite permutation graph shown in Fig. 2, x2y2 is a safe edge since
f(l(x2)) = f(y5) = x2 and f(l(y2)) = f(x4) = y2 but x4y4 is not as f(l(x4)) =
f(y5) = x2 	= x4. Prefix sum array of the vertex x6 is A6 = {27, 37, 48, 99},
where A6[1] = 27, A6[2] = 27 + 10 = 37, A6[3] = 27 + 10 + 11 = 48 and
A6[4] = 27 + 10 + 11 + 51 = 99.

122 A. Pandey et al.

Fig. 2. An example of bipartite permutation graph.

4.2 Our Algorithm

Our idea for finding a maximum biclique is to look at all possible maximal
bicliques of G and then return the one with the maximum weight. Since weights
are positive real numbers any maximum biclique is some maximal biclique of G.
The idea behind our algorithm is the following.

1. Find all safe edges of G.
2. Find psa of each vertex of G.
3. For each vertex u ∈ X,

for each v ∈ N(u) (choose vertex v in the given ordering)
if e = uv is a safe edge

find the maximal biclique Ge

find We, the weight of biclique Ge using psa of vertices.
4. Output the maximal biclique Ge∗ for which We∗ is maximum.

Note: we implement step 3 for each vertex in O(n)-time and hence overall com-
plexity of step 3 is O(n2). The detailed algorithm is given in Algorithm 1.

Theorem 3. Algorithm 1 outputs a maximum weighted edge biclique of the
bipartite permutation graph G.

Proof. The proof is omitted due to space constraints. ��

Theorem 4. Algorithm 1 runs in O(n2)-time.

Proof. For any edge e, it will take constant time to check whether an edge
qualifies as a safe edge or not by Lemma 2. So, preprocessing all safe edges take
O(m)-time as it scans all the edges one by one. For a vertex u of G, calculating
its psa will take d(u) amount of time. Hence, finding psa of each vertex will take
O(m)-time. For a vertex u ∈ X, step 3 can be implemented in O(n)-time. This
is possible because, for all the safe edges in which one of the end point is u, we
can find the weights of the corresponding bicliques in O(n)-time altogether. So,
overall step 3 takes O(n2)-time. Therefore, the algorithm returns a maximum
weighted edge biclique of G in O(m) + O(m) + O(n2) ≈ O(n2)-time. ��

Maximum Weighted Edge Biclique Problem on Bipartite Graphs 123

Algorithm 1. Algorithm for finding a maximum weighted edge biclique of a
bipartite permutation graph
Input: A bipartite permutation graph G = (X, Y, E) with the strong ordering of its

vertices
Output: A maximum weighted edge biclique of G
/* identifying safe edges */

for each edge e=uv in E do
if f(l(v))==v and f(l(u))==u then

mark e as a safe edge

/* finding prefix sum arrays of vertices of G */

/* If N(xi) = {ys1 , ys2 , . . . , ysd(xi)
}, Sxi denotes the set {1, 2, . . . , d(xi)} */

for each vertex xi from X do
for every j from Sxi do

Ai[j] = Ai[j − 1] + wisj

/* similarly we can find psa of vertices of Y */

max:=0
for each vertex x = xi from X do

sum:=0
/* S′

x denotes the set {ya1 , ya2 , . . . , yat} where a1 < a2 < . . . < at such

that xya1 , xya2 , . . . , xyat are safe edges */

for j = 1 to t do
/* finding maximal biclique corresponding to the safe edge e = xyaj

*/

Xe := {xi, xi+1, . . . , xp} // xp = l(yaj)
Ye := {yaj , yaj+1, . . . , yq} // yq = l(xi)
Ee := {uv|u ∈ Xe, v ∈ Ye}, Ge := (Xe, Ye, Ee)
if sum==0 then

for each vertex x′ = xb from Xe do
sum := sum + Ab[q − αx′ + 1] − Ab[aj − αx′]

We := sum

else
We := sum + W1 − W2, sum := We

/* W1 and W2 are the weights of the subgraphs

induced by the vertices {xc+1, . . . l(yaj), yaj , . . . , yq} and

{xi, . . . xc, yaj−1 , . . . , yaj−1} respectively, where xc = l(yaj−1).
W1 and W2 are obtained using psa of vertices */

if We > max then
max := We, e∗ := e

return Ge∗ and max

5 Chain Graphs

A bipartite graph G = (X,Y,E) is called a chain graph if there exists an
ordering of vertices of X = {x1, x2, . . . , xn1} and an ordering of vertices
of Y = {y1, y2, . . . , yn2} such that N(x1) ⊆ N(x2) ⊆ . . . ⊆ N(xn1) and

124 A. Pandey et al.

N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(yn2). Throughout this section, G = (X,Y,E) denotes
a weighted chain graph with |X| = n1 and |Y | = n2. Weights on the edges are
some positive real numbers. We assume that this ordering is given with the input
graph.

For u, v in G, we define u and v to be similar vertices if N(u) = N(v). For a
set S ⊆ V (G), we define S to be a similar neighborhood set if every two vertices
from S are similar.

Now, we define a relation ∼ on X as for u, v ∈ X, u ∼ v if and only if vertices
u and v are similar. One can easily observe that ∼ is an equivalence relation so
it provides a partition P of the set X. If we define the same relation on the set
Y , we will get a partition P ′ for the set Y . For any set S ∈ P , we keep the order
of the vertices in S as it was given in the input chain graph. Order of the sets
in P is also considered in such a way that taking union of all sets in that order
gives the actual ordering of the vertices. We write P = {X1,X2, . . . , Xk1} and
P ′ = {Y1, Y2, . . . , Yk2}, the partitions obtained for X and Y respectively from
the relation ∼. Recall that [x] denotes the equivalence class of the element x
from X.

Lemma 3. Let ∼ be the relation defined on X and Y as discussed above, then
partitions P and P ′ are of same size, i.e. |P | = |P ′|.
Proof. We have defined the relation in such a way that vertices in one set of
these partitions are similar to each other, so N(X1) ⊂ N(X2) ⊂ . . . ⊂ N(Xk1)
and N(Y1) ⊃ N(Y2) ⊃ . . . ⊃ N(Yk2) holds true. For any i < j, N(Xi) is a proper
subset of N(Xj), so, say, y ∈ N(Xj) such that y /∈ N(Xi). Since the graph is
connected, this give rise to atleast two sets in P ′. Hence, we get that k2 ≥ k1.
Similarly, N(Yi) ⊃ N(Yj) gives k1 ≥ k2 implying that |P | = k1 = k2 = |P ′|. ��

Now, we define the representative vertex for each set of P . For a set S ∈ P ,
a vertex from S is called the representative vetex of the set S, if it is the least
indexed vertex among all vertices of S. We denote representative vertex of a set
S by rS . Next we state some observations related to maximal bicliques of a chain
graph which leads to a maximum weighted edge biclique of G.

5.1 Maximal Bicliques

Lemma 4. Let G′ = (X ′, Y ′, E′) be a maximal biclique of G, then the following
holds:

(a) If x ∈ X ′, then [x] ⊆ X ′.
(b) If, y ∈ Y ′, then [y] ⊆ Y ′.

Proof. (a) Here, we will show that [x] ⊆ X ′ for any x ∈ X ′. Let x0 ∈ [x], as
x0 and x are similar vertices, N(x0) = N(x). Now, Y ′ ⊆ N(x) = N(x0) implies
that x0 is adjacent to all vertices of Y ′ in G. We must have these edges in G′ as
it is a maximal biclique. So, [x] ⊆ X ′ is true.

Proof of the part (b) is similar. ��

Maximum Weighted Edge Biclique Problem on Bipartite Graphs 125

Below, we give a result which describes the detailed structure of a maximal
biclique of a chain graph.

Lemma 5. Let G′ = (X ′, Y ′, E′) be a maximal biclique of G. Then there exists
an index 1 ≤ i ≤ k such that X ′ = Xi ∪ Xi+1 ∪ . . . ∪ Xk and Y ′ = N(rXi

).

Proof. We know that vertices of G have an ordering as {x1, x2, . . . , xn1} and
{y1, y2, . . . , yn2} for X and Y respectively. Let j be the minimum index from
{1, 2, . . . , n1} such that xj ∈ X ′ and there is some t such that xj ∈ Xt. Now
Lemma 4 tells that [xj] = Xt ⊆ X ′ implying that xj = rXt

. Since j is the smallest
index, we get that {X1∪X2∪ . . .∪Xt−1}∩X ′ = φ. Now, as Y ′ ⊆ N(xj) and G is
a chain graph, X ′ = Xt ∪Xt+1∪ . . .∪Xk. Hence, for i = t, one part of the lemma
holds. For the remaining part, it is enough to show that N(xj) ⊆ Y ′. So, let y be
a neighbor of xj , then y is adjacent to all vertices in the set {xj+1, xj+2, . . . , xn1}
implying that y ∈ Y ′. Hence, Y ′ = N(rXi

) and X ′ = Xi ∪ Xi+1 ∪ . . . ∪ Xk. ��
It can be identified from Lemma5 that a chain graph has exactly k maximal

bicliques, where k is the number of distinct equivalence classes corresponding to
the relation ∼. Now, we define an array called partition sum array (ptsa) of size
k for each y ∈ Y . In a partition sum array of a vertex y, each value contains
the sum of weights of the edges incident on the vertex y coming from one set
of P . We denote the ptsa of yi by Ai[]. Figure 3 represents a chain graph. We
illustrate all the terminologies defined in this section using Fig. 3.

Fig. 3. An example of chain graph.

In the chain graph shown in Fig. 3, the partition P = {X1,X2,X3,X4},
where X1 = {x1, x2},X2 = {x3, x4},X3 = {x5} and X4 = {x6}. Vertices x3, x4

are similar but x1, x3 are not and all the sets in P are similar neighborhood
sets. Partition sum array of the vertex y1 is A1 = {98, 43, 3, 36}, where A1[1] =
55 + 43 = 98, A1[2] = 19 + 24 = 43, A1[3] = 3 and A1[4] = 36.

From, Lemma 5, we know the structure of maximal bicliques of G. One can
easily see that each maximal biclique can be identified from the representative
vertex of one of the Xi’s from P . We use the notation Gx for the maximal
biclique corresponding to the representative vertex x and, Wx for the weight of
the maximal biclique Gx, where x is the representative vertex of some set in P .

126 A. Pandey et al.

5.2 Our Algorithm

Our basic idea for finding a maximum biclique in chain graphs is to find weight
of each maximal biclique of G and output the one with the maximum weight.
Since G has only k maximal bicliques, so, in order to get the desired biclique,
we need to find out the weights of these k bicliques. Since chain graph is a
subclass of bipartite permutation graph, we may also use Algorithm 1 to compute
a maximum weighted edge biclique of G. The ordering of vertices of G as given
in chain graph will also work for bipartite permutation graph. In this way, we
will get our desired output in O(n2)-time. Here, we propose an algorithm in
which we use a different method to find out the sum of each maximal biclique of
G which results in overall running time O(m + n). The difference here is to use
partition sum array instead of prefix sum array. The idea behind our algorithm
is the following.

Algorithm 2

1. Find the partitions P = {X1,X2, . . . , Xk} and P ′ = {Y1, Y2, . . . , Yk} from the
equivalence relation ∼, say R =< rXk

, rXk−1 , . . . , rX1 >.
2. Calculate the ptsa for each vertex of Y .
3. For each vertex u according to the order in which it appears in R,

find the maximal biclique Gu corresponding to the vertex u.
find Wu, the weight of biclique Gu using ptsa of vertices from Y ∩ V (Gu).

4. Output the maximal biclique Gu∗ for which Wu∗ is maximum.

Note that we implement step 3 for each vertex u ∈ R such that WrXj
is calculated

using ptsa of vertices of N(rXj
). The implementation details are omitted due to

space constraints. Proof of correctness of Algorithm 2 follows from the fact that
it considers weights of all maximal bicliques of G and any maximum biclique is
one of the maximal bicliques. So, we can directly state the following theorem.

Theorem 5. Algorithm 2 outputs a maximum weighted edge biclique of a chain
graph G.

To analyse the running time of Algorithm 2, we need to bring some notations
into consideration. We denote the cardinalities of sets in the partition P and P ′

by pi, qj for Xi, Yj respectively, i.e. |Xi| = pi and |Yj | = qj . Now, we give a result
which will be used in analyzing the running time of Algorithm 2.

Lemma 6. Let G be a chain graph with a partition obtained from the ∼ relation
defined on X as well as on Y . Then m ≥ kq1 + (k − 1)q2 + . . . + qk.

Proof. We know that the relation ∼ made the sets from the partitions P and P ′

to follow the strict inclusion as N(X1) ⊂ N(X2) ⊂ . . . ⊂ N(Xk) and N(Y1) ⊃
N(Y2) ⊃ . . . ⊃ N(Yk). Since Y1 ∪Y2 ∪ . . .∪Yk = Y and for i 	= j, Yi ∩Yj = φ, we

can write that m =
∑

y∈Y1

d(y)+
∑

y∈Y2

d(y)+ . . .+
∑

y∈Yk

d(y) = q1
k∑

i=1

pi + q2
k∑

i=2

pi +

. . . + qkpk ≥ kq1 + (k − 1)q2 + . . . + qk. The last inequality follows since |Xi| ≥ 1
for 1 ≤ i ≤ k. ��

Maximum Weighted Edge Biclique Problem on Bipartite Graphs 127

Theorem 6. Algorithm 2 runs in O(m + n)-time.

Proof. Step 1 will take O(n)-time as we have to go through all the vertices of G.
To find out the time taken by step 2, we see that we are doing some number of
additions during Algorithm 2. For each vertex y of Y , we are doing d(y) number
of additions, so overall step 2 takes

∑

y∈Y

d(y) = O(m) time. Now, to analyse step

3, we see that in our proposed algorithm, we are finding weights of maximal
bicliques in the order WrXk

,WrXk−1
, . . . ,WrX1

. For calculating WrXj
, we are

doing
j∑

i=1

qi+(j−1) number of additions, where j varies from k downto 1. Hence,

step 3 performs
k∑

i=1

qi +
k−1∑

i=1

qi + . . . + q1 + (k − 1) + (k − 2) + . . . + 2 + 1 + 0 ≤
kq1 + (k − 1)q2 + . . . + qk + k(k+1)

2 number of additions. Now we know that
m ≥ k(k+1)

2 since N(X1) ⊂ N(X2) ⊂ . . . ⊂ N(Xk1) and N(Y1) ⊃ N(Y2) ⊃
. . . ⊃ N(Yk2). Now using Lemma 6, we can say that step 3 will take O(m)-time
to execute. Clearly, choosing maximum among all the Wu’s will take O(k)-time.
Therefore, the Algorithm 2 returns a maximum weighted edge biclique of G in
O(n) + O(m) + O(m) + O(k) ≈ O(m + n) time. ��

6 Conclusion

Our paper deals with the Maximum Weighted Edge Biclique problem. In
this paper, we show that the decision version of the Maximum Weighted Edge
Biclique problem remains NP-complete even for complete bipartite graphs,
which is a subclass of bipartite graphs. On the positive side, we show that for
the input graph G, if the weight of each edge is a positive real number, then the
MWEB problem is O(n2)-time solvable for bipartite permutation graphs and
O(m+n)-time solvable for chain graphs. It will be interesting to try linear-time
algorithm for bipartite permutation graphs, as for the unweighted graph this
problem is linear-time solvable. One may also try linear-time algorithm for the
Maximum Edge Biclique problem in convex bipartite graphs.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness, pp. 641–650 (1979)

2. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Appl.
Math. 131(3), 651–654 (2003)

3. Dawande, M., Keskinocak, P., Tayur, S.: On the biclique problem in bipartite
graphs. Technical report, Carnegie-Mellon University (1997)

4. Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S.: On bipartite and
multipartite clique problems. J. Algorithms 41(2), 388–403 (2001)

5. Hochbaum, D.S.: Approximating clique and biclique problems. J. Algorithms
29(1), 174–200 (1998)

128 A. Pandey et al.

6. Manurangsi, P.: Inapproximability of maximum biclique problems, minimum k-cut
and densest at-least-k-subgraph from the small set expansion hypothesis. Algo-
rithms 11(1), 10 (2018)

7. Tan, J.: Inapproximability of maximum weighted edge biclique and its applications.
In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp.
282–293. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-
4 25

8. Nussbaum, D., Pu, S., Sack, J.R., Uno, T., Zarrabi-Zadeh, H.: Finding maximum
edge bicliques in convex bipartite graphs. Algorithmica 64(2), 311–325 (2012)

9. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for maximum
edge biclique, minimum linear arrangement, and sparsest cut. SIAM J. Comput.
40(2), 567–596 (2011)

10. Feige, U.: Relations between average case complexity and approximation complex-
ity. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of
Computing, pp. 534–543. ACM (2002)

11. Goerdt, A., Lanka, A.: An approximation hardness result for bipartite clique. Elec-
tronic Colloquium on Computational Complexity, Report vol. 48 (2004)

12. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consen-
sus algorithms for the generation of all maximal bicliques. Discrete Appl. Math.
145(1), 11–21 (2004)

13. Dias, V.M., De Figueiredo, C.M., Szwarcfiter, J.L.: Generating bicliques of a graph
in lexicographic order. Theoret. Comput. Sci. 337(1–3), 240–248 (2005)

14. Dias, V.M., de Figueiredo, C.M., Szwarcfiter, J.L.: On the generation of bicliques
of a graph. Discrete Appl. Math. 155(14), 1826–1832 (2007)

15. Gély, A., Nourine, L., Sadi, B.: Enumeration aspects of maximal cliques and
bicliques. Discrete Appl. Math. 157(7), 1447–1459 (2009)

16. Kloks, T., Kratsch, D.: Computing a perfect edge without vertex elimination order-
ing of a chordal bipartite graph. Inf. Process. Lett. 55(1), 11–16 (1995)

17. Feige, U., Kogan, S.: Hardness of approximation of the balanced complete bipartite
subgraph problem. Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel, Technical report MCS04-04 (2004)

18. Ambuhl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for sparsest
cut, optimal linear arrangement, and precedence constrained scheduling. In: 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp.
329–337. IEEE (2007)

19. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete
Appl. Math. 18(3), 279–292 (1987)

20. Heggernes, P., van’t Hof, P., Lokshtanov, D., Nederlof, J.: Computing the cutwidth
of bipartite permutation graphs in linear time. In: Thilikos, D.M. (ed.) WG 2010.
LNCS, vol. 6410, pp. 75–87. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-16926-7 9

21. Lai, T.H., Wei, S.S.: Bipartite permutation graphs with application to the mini-
mum buffer size problem. Discrete Appl. Math. 74(1), 33–55 (1997)

https://doi.org/10.1007/978-3-540-79228-4_25
https://doi.org/10.1007/978-3-540-79228-4_25
https://doi.org/10.1007/978-3-642-16926-7_9
https://doi.org/10.1007/978-3-642-16926-7_9

Graph Theory

Determining Number of Generalized
and Double Generalized Petersen Graph

Angsuman Das(B)

Department of Mathematics, Presidency University, Kolkata, India
angsuman.maths@presiuniv.ac.in

Abstract. The determining number of a graph G = (V, E) is the mini-
mum cardinality of a set S ⊆ V such that pointwise stabilizer of S under
the action of Aut(G) is trivial. In this paper, we determine the deter-
mining number of generalized Petersen graphs and double generalized
Petersen graphs.

Keywords: Automorphism groups · Fixing number

1 Introduction

The determining number of a graph G = (V,E) is the minimum cardinality of a
set S ⊆ V such that the automorphism group of the graph obtained from G by
fixing every vertex in S is trivial. For example, Aut(Cn) ∼= Dn and stabilizer of
any vertex is isomorphic to Z2. However, the pointwise stabilizer of any two non-
antopodal vertices is trivial. Thus, Det(Cn) = 2. It was introduced independently
by Boutin [2] and by Erwin and Harary (defined as fixing number) [6] in 2006
as a measure of destroying symmetry of a graph. Apart from proving general
bounds and other results on determining number, researchers have attempted to
find exact values of determing number of various families of graphs like Kneser
Graphs [4], Coprime graphs [11] etc. In this paper, we find the determining
numbers of generalized Petersen graphs and double generalized Petersen graphs.

For definitions and terms related to general graph theory, readers are referred
to the classic book by Godsil and Royle [9]. For terms related to automorphisms
of the above two families of graphs, readers are referred to [8] and [10] respec-
tively. In Sects. 2 and 3, we study the determining sets and determining numbers
of generalized Petersen graphs and double generalized Petersen graphs respec-
tively. In particular, we prove the following theorems.

Theorem 1. Let G(n, k) be the generalized Petersen graph. Then

Det(G(n, k)) =
{

2, if (n, k) �= (4, 1), (5, 2), (10, 3).
3, if (n, k) = (4, 1), (5, 2) or (10, 3).

��

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 131–140, 2020.
https://doi.org/10.1007/978-3-030-39219-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_11

132 A. Das

Theorem 2. Let DP (n, t) be the double generalized Petersen graph. Then

Det(DP (n, t)) =
{

4, if (n, t) = (4, 1).
2, otherwise.

��

2 Generalized Petersen Graphs

The generalized Petersen graph family was introduced by Coxeter [5] and was
given its name by Watkins in [12].

Definition 1 (Generalized Petersen Graphs). For integers n and k with
2 ≤ 2k < n, the Generalized Petersen graph G(n, k) is defined to have vertex-set

V (G(n, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

and edge-set E(G(n, k)) to consist of all edges of the form (ui, ui+1), (ui, vi) and
(vi, vi+k), where arithmetic of subscripts are to be done in modulo n.

The edges in E(G(n, k)) are called outer edges, spoke edges and inner edges
respectively. The automorphism groups A(n, k) of Generalized Petersen graphs
G(n, k) were studied by Frucht et al. [8]. Let B(n, k) denote the subgroup of
A(n, k) which fixes the spoke edges set-wise. Define permutations ρ and δ on
V (G(n, k)) by ρ(ui) = ui+1, ρ(vi) = vi+1 and δ(ui) = u−i, δ(vi) = v−i, for
i = 0, 1, . . . , n − 1. It was proved in [5], that 〈ρ, δ〉 ≤ B(n, k). Define α on
V (G(n, k)) by α(ui) = vki, α(vi) = uki, for i = 0, 1, . . . , n − 1. It was proved in
[8], that α ∈ A(n, k) if and only if k2 �≡ ±1 (mod n).

In particular, they proved the following theorems:

Theorem 3 [8].

1. If k2 �≡ ±1 (mod n), then B(n, k) = 〈ρ, δ : ρn = δ2 = 1; δρδ = ρ−1〉.
2. If k2 ≡ 1 (mod n), then

B(n, k) = 〈ρ, δ, α : ρn = δ2 = α2 = 1; δρδ = ρ−1, αδ = δα, αρα = ρk〉.

3. If k2 ≡ −1 (mod n), then B(n, k) = 〈ρ, α : ρn = α4 = 1;αρα−1 = ρk〉.
In Case 3, δ = α2 and hence δ is omitted as a generator.

Theorem 4 [8]. B(n, k) = A(n, k) if and only if the ordered pair (n, k) is not
one of (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5).

Proposition 1. If k2 �≡ ±1 (mod n) and (n, k) �= (10, 2), then
Det(G(n, k)) = 2.

Determining Number of Generalized and Double Generalized Petersen Graph 133

Proof : For such choice of n and k,

A(n, k) = 〈ρ, δ : ρn = δ2 = 1; δρδ = ρ−1〉 = {ρiδj : 0 ≤ i ≤ n − 1; 0 ≤ j ≤ 1}.

We claim that {u0, u1} is a determining set for G(n, k). Let ρiδj be an element
of A(n, k) which fixes u0 and u1, for some 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ 1.

If j = 1, then we have ρiδ(u0) = u0 and ρiδ(u1) = u1, i.e., ρi(u0) = u0 and
ρi(u−1) = u1. The first equality implies i = 0, whereas the second one implies
that i = 2, a contradiction. Thus j = 0. So, we have ρi(u0) = u0 and ρi(u1) = u1.
This implies i = 0.

Hence, Stab({u0, u1}) is trivial and {u0, u1} is a determining set for G(n, k).
It proves that Det(G(n, k)) ≤ 2.

If possible, let there exist a vertex whose stabilizer is trivial. Then by
orbit-stabilizer theorem, the size of the orbit of that vertex is equal to
|A(n, k)| = 2n = |V (G(n, k))|, i.e., G(n, k) is vertex-transitive. However,
it is shown in [8], that G(n, k) is vertex-transitive if and only if k2 ≡
±1 (mod n) or n = 10 and k = 2, which is a contradiction. Thus
Det(G(n, k)) = 2. ��
Proposition 2. If k2 ≡ 1 (mod n) and (n, k) is not one of (4, 1), (8, 3),
(12, 5), (24, 5), then Det(G(n, k)) = 2.

Proof : For such choice of n and k,

A(n, k) = 〈ρ, δ, α : ρn = δ2 = α2 = 1; δρδ = ρ−1, αδ = δα, αρα = ρk〉
= {ρiδjαl : 0 ≤ i ≤ n − 1; 0 ≤ j, l ≤ 1}.

We claim that {u0, u1} is a determining set for G(n, k). Let ρiδjαl be an element
of A(n, k) which fixes u0 and u1, for some 0 ≤ i ≤ n − 1 and 0 ≤ j, l ≤ 1.

If possible, let l = 1. Then ρiδjα(u0) = u0 and ρiδjα(u1) = u1, i.e.,
ρiδj(v0) = u0 and ρiδj(vk) = u1. However, as both ρ and δ maps outer vertices
to outer vertices and inner vertices to inner vertices, this leads to a contradiction.
Thus, l = 0. So, we have ρiδj(u0) = u0 and ρiδj(u1) = u1.

If possible, let j = 1. Then ρiδ(u0) = u0 and ρiδ(u1) = u1, i.e., ρi(u0) = u0

and ρi(u−1) = u1. The first equality implies i = 0, whereas the second one
implies that i = 2, a contradiction. Thus j = 0. So, we have ρi(u0) = u0 and
ρi(u1) = u1. This implies i = 0.

Hence, Stab({u0, u1}) is trivial and {u0, u1} is a determining set for G(n, k).
It proves that Det(G(n, k)) ≤ 2.

If possible, let there exist a vertex whose stabilizer is trivial. Then by
orbit-stabilizer theorem, the size of the orbit of that vertex is equal to
|A(n, k)| = 4n, which is greater than the order of G(n, k), a contradiction. Thus
Det(G(n, k)) = 2. ��
Proposition 3. If k2 ≡ −1 (mod n) and (n, k) �= (5, 2), (10, 3), then
Det(G(n, k)) = 2.

134 A. Das

Proof : For such choice of n and k,

A(n, k) = 〈ρ, α : ρn = α4 = 1;αρα−1 = ρk〉 = {ρiαj : 0 ≤ i ≤ n − 1; 0 ≤ j ≤ 3}.

We claim that {u0, u1} is a determining set for G(n, k). Let ρiαj be an element
of A(n, k) which fixes u0 and u1, for some 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ 3.

If j = 1 or 3, then αj swaps inner vertices and outer vertices and ρi maps
outer vertices to outer vertices and inner vertices to inner vertices. Thus, ρiαj

maps u0 to some inner vertex and hence it does not stabilize uo. Hence, j = 0
or 2.

If possible, let j = 2. Then we have ρiα2(u0) = u0 and ρiα2(u1) = u1,
i.e., ρi(u0) = u0 and ρi(u−1) = u1. The first equality implies i = 0, whereas
the second one implies that i = 2, a contradiction. Thus j = 0. So, we have
ρi(u0) = u0 and ρi(u1) = u1. This implies i = 0.

Hence, Stab({u0, u1}) is trivial and {u0, u1} is a determining set for G(n, k).
It proves that Det(G(n, k)) ≤ 2.

If possible, let there exist a vertex whose stabilizer is trivial. Then by
orbit-stabilizer theorem, the size of the orbit of that vertex is equal to
|A(n, k)| = 4n, which is greater than the order of G(n, k), a contradiction. Thus
Det(G(n, k)) = 2. ��
Proposition 4. Det(G(5, 2)) = Det(G(10, 3)) = Det(G(4, 1)) = 3.

Proof : G(5, 2) is the Petersen graph. It was shown in [2], that Det(G(5, 2)) = 3.
It was checked using Sage that {u0, u1, v2} is a determining set of G(10, 3),

i.e., Stab({u0, u1, v2}) is trivial. As G(10, 3) is vertex-transitive and |A(10, 3)| =
240, it follows that stabilizer of any vertex is of order 12. Hence, 1 <
Det(G(10, 3)) ≤ 3.

It is known that G(10, 3) is isomorphic to bipartite Kneser graph H(5, 2)
and Aut(H(5, 2)) = S5 ×Z2. The vertices of H(5, 2) consists of all 2-subsets and
3-subsets of {1, 2, 3, 4, 5} and two vertices are adjacent if one is a subset of the
other. We prove that no two vertices form a determing set for H(5, 2).

If both the vertices A and B are 3-subsets, then they must have either one
or two elements in their intersection. If |A ∩ B| = 1, then they are of the form
A = {a, b, c} and B = {c, d, e}. Consider σ = (a, b)(d, e) ∈ S5. σ is a non-identity
element which fixes both A and B. If |A ∩ B| = 2, then they are of the form
A = {a, b, c} and B = {b, c, d}. Then σ = (b, c) ∈ S5 is a non-identity element
which fixes both A and B.

If both the vertices A and B are 2-subsets, then they must have exactly one
element in their intersection, i.e., they are of the form A = {a, b} and B = {b, c}.
Then σ = (d, e) ∈ S5 is a non-identity element which fixes both A and B.

If A is a 3-subset and B is a 2-subset, then |A ∩ B| = 0, 1 or 2. Then
they are of the form A = {a, b, c};B = {d, e} or A = {a, b, c};B = {c, d} or
A = {a, b, c};B = {a, b}. In any case, σ = (a, b) ∈ S5 is a non-identity element
which fixes both A and B.

Thus Det(G(10, 3)) = 3.

Determining Number of Generalized and Double Generalized Petersen Graph 135

For G(4, 1), it was checked using Sage that {u0, u1, v0} is a determining set,
i.e., Det(G(4, 1)) ≤ 3. Now, let us recall a result from [3].

Let H be a connected graph that is prime with respect to the Cartesian product.
Then Det(Hk) ≥ max{Det(H), �(log k + log |Aut(H)|)/ log |V (H)|�}.

We note that G(4, 1) ∼= C4�P2
∼= P2�P2�P2 = (P2)3 and P2 is prime with

respect to the Cartesian product. Thus, we have

Det(G(4, 1)) = Det((P2)3) ≥ max
{

1,

⌈
log 3 + log 2

log 2

⌉}
=

log 6
log 2

� 2.59.

Thus, we have Det(G(4, 1)) = 3. ��
Proposition 5. Det(G(10, 2)) = 2.

Proof : G(10, 2) is the graph of the regular dodecahedron. Its automorphism
group has already been computed in [8] to be A(10, 2) = 〈ρ, λ : ρ10 = λ3 =
(λρ2)2 = ρ5λρ−5λ−1 = 1〉, where the cycle structure of λ is given by

λ = (u0, v2, v8)(u1, v4, u8)(u2, v6, u9)(u3, u6, v9)(u4, u7, v1)(u5, v7, v3).

Observe that δ = (ρλ)2ρλ−1ρ−2. A(10, 2) is isomorphic to the direct prod-
uct of the alternating group A5 with the symmetric group Z2. (See [7]) Thus
|A(10, 2)| = 60 × 2 = 120.

It was checked using Sage (see Appendix) that {u0, v1} is a determining set
of G(10, 2), i.e., Stab({u0, v1}) is trivial. As G(10, 2) is vertex-transitive and
|A(10, 2)| = 120, it follows that stabilizer of any vertex is of order 6. Hence,
Det(G(10, 2)) = 2. ��
Proposition 6. Det(G(8, 3)) = Det(G(12, 5)) = Det(G(24, 5)) = 2.

Proof : It was shown in [8], that for G(n, k), where (n, k) = (4, 1), (8, 3), (12, 5)
or (24, 5),

A(n, k) = 〈ρ, δ, σ : ρn = δ2 = σ3 = 1, δρδ = ρ−1, δσδ = σ−1, σρσ = ρ−1, σρ4 = ρ4σ〉,

and |A(n, k)| = 12n. Note that α is superfluous and is given by α = σ−1ρσ−1 in
A(8, 3) and α = δ−1ρσ−1 in other three cases.

It was checked using Sage that {u0, u2} is a determining set for each of
G(8, 3), G(12, 5) and G(24, 5), i.e., Stab({u0, u2}) is trivial. As each of them are
vertex-transitive and |A(n, k)| = 12n, it follows that stabilizer of any vertex is
of order 6. Hence,

Det(G(8, 3)) = Det(G(12, 5)) = Det(G(24, 5)) = 2.

��
From Propositions 1, 2, 3, 4, 5 and 6, we have Theorem 1.

136 A. Das

3 Double Generalized Petersen Graphs

Double Generalized Petersen Graphs DP (n, t) are a natural generalization of
Generalized Petersen graphs, first introduced in [13] as examples of vertex-
transitive non-Cayley graphs. They are defined as follows:

Definition 2 (Double Generalized Petersen Graphs). For integers n and
t with 2 ≤ 2t < n, the Double Generalized Petersen graph DP (n, t) is defined to
have vertex-set

V (DP (n, t)) = {x0, x1, . . . , xn−1, y0, y1, . . . , yn−1, u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

and edge-set E(DP (n, t)) to consist of all edges of the form: (xi, xi+1) and
(yi, yi+1) (the outer edges), (xi, ui) and (yi, vi) (the spoke edges) and (ui, vi+t)
and (vi, ui+t) (the inner edges), where arithmetic of subscripts are to be done in
modulo n.

The automorphism groups A(n, t) of Double Generalized Petersen graphs
DP (n, t) were studied by Kutnar and Petecki in [10]. In particular, they proved
the following result.

Theorem 5 (Corollary 3.11 [10]). The automorphism group A(n, t) of the dou-
ble generalized Petersen graph DP (n, t) is characterized as follows:

1. If n ≡ 0 (mod 2), 4t = n and (n, t) �= (4, 1), then A(n, t) = 〈α, β, γ, η〉.
2. If n ≡ 0 (mod 2), t2 ≡ ±1 (mod n) and (n, t) �= (10, 3), then A(n, t) =

〈α, β, γ, δ〉.
3. If n ≡ 2 (mod 4), t2 ≡ k ± 1 (mod n), where n = 2k and (n, t) �= (10, 2), then

A(n, t) = 〈α, β, γ, ψ〉.
4. If n ≡ 0 (mod 4), t2 ≡ k±1 (mod n), where n = 2k, then A(n, t) = 〈α, β, γ, φ〉.
5. A(4, 1) = 〈α, β, γ, δ, η〉. A(10, 3) = 〈α, δ, λ〉. A(10, 2) = 〈α,ψ, μ〉.
6. A(5, 2) is the automorphism group of the dodecahedron.
7. In all cases different from the above, A(n, t) = 〈α, β, γ〉,
where α, β, γ, δ, η, ψ, φ are given by
α : xi �→ xi+1, yi �→ yi+1, ui �→ ui+1, vi �→ vi+1: β : xi �→ yi, yi �→ xi, ui �→
vi, vi �→ ui

γ : xi �→ x−i, yi �→ y−i, ui �→ u−i, vi �→ v−i

δ : x2i �→ u2it, x2i+1 �→ v(2i+1)t, y2i �→ v2it, y2i+1 �→ u(2i+1)t

u2i �→ x2it, u2i+1 �→ y(2i+1)t, v2i �→ y2it, v2i+1 �→ x(2i+1)t

η : x2i �→ x2i+k, x2i+1 �→ x2i+1+k, y2i �→ y2i, y2i+1 �→ y2i+1

u2i �→ u2i+k, u2i+1 �→ u2i+1+k, v2i �→ v2i, v2i+1 �→ v2i+1, where n = 2k.
ψ : x2i �→ u2it, x2i+1 �→ v(2i+1)t, y2i �→ u2it+k, y2i+1 �→ v(2i+1)t+k

u2i �→ x2it, u2i+1 �→ y(2i+1)t, v2i �→ x2it+k, v2i+1 �→ y(2i+1)t+k, where n = 2k.
φ : x2i �→ u2it, x2i+1 �→ v(2i+1)t, y2i �→ v2it+k, y2i+1 �→ u(2i+1)t+k

u2i �→ x2it, u2i+1 �→ y(2i+1)t, v2i �→ y2it+k, v2i+1 �→ x(2i+1)t+k, where n = 2k.

For the definition of λ and μ, please refer to [10].

Determining Number of Generalized and Double Generalized Petersen Graph 137

Proposition 7. If n ≡ 0 (mod 2), 4t = n and (n, t) �= (4, 1), then
Det(DP (n, t)) = 2.

Proof : For such choice of n and t,

A(n, t) = 〈α, β, γ, η〉 = {αiβjγlηs : 0 ≤ i ≤ n − 1, 0 ≤ j, l, s ≤ 1}.

We claim that x0, y1 is a determining set for DP (n, t). Let αiβjγlηs be an
element of A(n, t) which fixes x0, y1.

Since, β flips xi’s and yi’s and all others among α, γ and η maps xi’s to xj ’s
and yi’s to yj ’s, we must have j = 0, i.e., it is enough to work with elements of
the form αiγlηs.

If s = 1, then we have αiγlη(x0) = x0 and αiγlη(y1) = y1, i.e., αiγl(xk) = x0

and αiγl(y1) = y1, where n = 2k. Now as α and γ has same effect on the indices
of x′

is as α and γ has on the indices of y′
is, we have a contradiction. Thus, s = 0

and it suffices to work with αiγl.
If l = 1, we have αiγ(x0) = x0 and αiγ(y1) = y1, i.e., αi(x0) = x0 and

αi(y−1) = y1. The first one implies i = 0 whereas second one implies i = 2, a
contradiction. Thus, l = 0 and as a result i = 0.

Hence, Stab({x0, y1}) is trivial and {x0, y1} is a determining set for DP (n, t).
It proves that Det(DP (n, t)) ≤ 2.

However, as Stab(xi) = Stab(ui) = 〈αkη, α2iγ〉 and Stab(yi) = Stab(vi) =
〈η, α2iγ〉, and each of the vertex stabilizers are isomorphic to Z2 × Z2, we have
Det(DP (n, t)) = 2. ��
Proposition 8. If n ≡ 0 (mod 2), t2 ≡ ±1 (mod n) and (n, t) �= (10, 3), then
Det(DP (n, t)) = 2.

Proof : For such choice of n and t,

A(n, t) = 〈α, β, γ, δ〉 = {αiβjγlδs : 0 ≤ i ≤ n − 1, 0 ≤ j, l, s ≤ 1}.

We claim that x0, x1 is a determining set for DP (n, t). Let αiβjγlδs be an
element of A(n, t) which fixes x0, x1.

We claim that s = 0. If not, let s = 1 and hence αiβjγlδ(x0) = αiβjγl(u0) =
up or vp. Hence x0 is not fixed. Thus s = 0 and it suffices to consider elements
of the form αiβjγl.

We claim that j = 0. Because if j = 1, αiβγl maps x0 to some yp, a contra-
diction and hence we consider only elements of the form αiγl.

Thus αiγl(x0) = x0 and αiγl(x1) = x1. If l = 1, we have αi(x0) = x0 and
αi(x−1) = x1. The first one implies i = 0 and the second one implies i = 2.
Hence l = 0 and i = 0.

Hence, Stab({x0, x1}) is trivial and {x0, x1} is a determining set for DP (n, t).
It proves that Det(DP (n, t)) ≤ 2.

If possible, let there exist a vertex whose stabilizer is trivial. Then by orbit-
stabilizer theorem, the size of the orbit of that vertex is equal to |A(n, t)| = 8n >
|V (DP (n, t))|, which is a contradiction. Thus Det(DP (n, t)) = 2. ��

138 A. Das

Proposition 9. If n ≡ 2 (mod 4), t2 ≡ k ± 1 (mod n), where n = 2k and
(n, t) �= (10, 2), then Det(DP (n, t)) = 2.

Proof : For such choice of n and t,

A(n, t) = 〈α, β, γ, ψ〉 = {αiβjγlψs : 0 ≤ i ≤ n − 1, 0 ≤ j, l, s ≤ 1}.

We claim that x0, x1 is a determining set for DP (n, t). Let αiβjγlψs be an
element of A(n, t) which fixes x0, x1.

We claim that s = 0. If not, let s = 1 and hence αiβjγlψ(x0) = αiβjγl(u0) =
up or vp. Hence x0 is not fixed. Thus s = 0 and it suffices to consider elements
of the form αiβjγl. The rest of the proof is similar to that as above. ��
Proposition 10. If n ≡ 0 (mod 4), t2 ≡ k ± 1 (mod n), where n = 2k, then
Det(DP (n, t)) = 2.

Proof : For such choice of n and t,

A(n, t) = 〈α, β, γ, φ〉 = {αiβjγlφs : 0 ≤ i ≤ n − 1, 0 ≤ j, l, s ≤ 1}.

We claim that x0, x1 is a determining set for DP (n, t). Let αiβjγlφs be an
element of A(n, t) which fixes x0, x1.

We claim that s = 0. If not, let s = 1 and hence αiβjγlφ(x0) = αiβjγl(u0) =
up or vp. Hence x0 is not fixed. Thus s = 0 and it suffices to consider elements
of the form αiβjγl. The rest of the proof is similar to that of Proposition 8. ��
Proposition 11. Det(DP (4, 1)) = 4.

Proof : From Theorem 5, we get that A(4, 1) = 〈α, β, γ, δ, η〉. It was
checked using Sage that {x0, x1, y0, y1} is a determining set for DP (4, 1). Thus
Det(DP (4, 1)) ≤ 4. We observe that

Stab(xi) = Stab(ui) = 〈α2iγ, α2η, βηβ〉 and Stab(yi) = Stab(vi) = 〈α2iγ, η, α2βηβ〉,

and each vertex stabilizer is isomorphic to Z2×Z2×Z2. It is clear that intersection
of any two vertex stabilizers is isomorphic to Z2 × Z2 and intersection of any
three vertex stabilizers is isomorphic to Z2. Thus Det(DP (4, 1)) = 4. ��
Proposition 12. Det(DP (10, 2)) = Det(DP (10, 3)) = Det(DP (5, 2)) = 2.

Proof : It was checked using Sage that |A(10, 2)| = 480 and {x0, v1} is a deter-
mining set for DP (10, 2), i.e., Stab({x0, v1}) is trivial. Hence Det(DP (10, 2)) ≤
2. As DP (10, 2) is vertex transitive, the order of stabilizer of any vertex is
480/40 = 12 and hence Det(DP (10, 2)) = 2.

As DP (10, 2) ∼= DP (10, 3), we have Det(DP (10, 2)) = Det(DP (10, 3)) = 2.
As DP (5, 2) ∼= G(10, 2), by Proposition 5, we have Det(DP (5, 2)) = 2. ��

Proposition 13. Let DP (n, t) be the double generalized Petersen graph, such
that the parameters n and t do not satisfy any of the conditions of Propositions
7, 8, 9, 10, 11, 12. Then Det(DP (n, t)) = 2.

Determining Number of Generalized and Double Generalized Petersen Graph 139

Proof : For such choice of n and t,

A(n, t) = 〈α, β, γ〉 = {αiβjγl : 0 ≤ i ≤ n − 1, 0 ≤ j, l ≤ 1}.

We claim that x0, x1 is a determining set for DP (n, t). Let αiβjγl be an element
of A(n, t) which fixes x0, x1. Mimicing the proof of Proposition 8, we can show
that Stab({x0, x1}) is trivial, i.e., Det(DP (n, t)) ≤ 2.

As |A(n, t)| = 4n and DP (n, t) is not vertex-transitive, the order of stabilizer
of any vertex should be greater than 4n/2n = 2. Hence, there does not exist any
determining set of size 1. Hence, Det(DP (n, t)) = 2. ��

From Propositions 7, 8, 9, 10, 11, 12, 13, we have Theorem 2.

Acknowledgement. The author is thankful to the anonymous referees for their fruit-
ful suggestions. The author also acknowledge the financial support received under the
FRPDF grant of Presidency University, Kolkata and DST-SERB-SRG/2019/000475.

Appendix

In this section, we provide two Sage code for confirming the determining sets of
generalized Petersen graphs and double generalized Petersen graphs. The codes
are given for G(10, 2) and DP (10, 2). Readers may check for determining sets
of other members of these two families by suitably editing the values of the
parameters (Fig. 1).

n=10

k=2

u = list(var(’u_%d’ % i) for i in range(n))

v = list(var(’v_%d’ % i) for i in range(n))

V=u+v

E=[]

G=Graph()

G.add_vertices(V)

for i in range(n):

E.append((u[i],u[mod(i+1,n)]))

E.append((u[i],v[i]))

E.append((v[i],v[mod(i+k,n)]))

G.add_edges(E)

H=G.automorphism_group()

count=0

for h in H:

if h(u[0])==u[0] and h(v[1])==v[1]:

count=count+1

print count

n=10

t=2

x = list(var(’x_%d’ % i) for i in range(n))

y = list(var(’y_%d’ % i) for i in range(n))

u = list(var(’u_%d’ % i) for i in range(n))

v = list(var(’v_%d’ % i) for i in range(n))

V=x+y+u+v

E=[]

G=Graph()

G.add_vertices(V)

for i in range(n):

E.append((x[i],x[mod(i+1,n)]))

E.append((y[i],y[mod(i+1,n)]))

E.append((x[i],u[i]))

E.append((y[i],v[i]))

E.append((u[i],v[mod(i+t,n)]))

E.append((v[i],u[mod(i+t,n)]))

G.add_edges(E)

H=G.automorphism_group()

count=0

for h in H:

if h(x[0])==x[0] and h(v[1])==v[1]:

count=count+1

print count

Fig. 1. Sage Code for finding a determining set for G(10, 2) (left) and DP (10, 2) (right)

140 A. Das

It is checked that {u0, v1} is a determining set for G(10, 2) and {x0, v1} is
a determining set for DP (10, 2). The output of both the codes are 1, showing
that there exists exactly one automorphism (namely, the identity automorphism)
which stabilizes both u0 and v1, and x0 and v1, respectively.

References

1. Alspach, B.R.: The classification of Hamiltonian generalized Petersen graphs. J.
Comb. Theory, Ser. B 34(3), 293–312 (1983)

2. Boutin, D.L.: Identifying graph automorphisms using determining sets. Electron.
J. Comb. 13(1), 78 (2006)

3. Boutin, D.L.: The determining number of a cartesian product. J. Graph Theory
61(2), 77–87 (2009)

4. Caceres, J., Garijo, D., Gonzalez, A., Marquez, A., Puertas, M.L.: The determining
number of Kneser graphs. Discrete Math. Theor. Comput. Sci. DMTCS 15(1), 1–14
(2013)

5. Coxeter, H.S.M.: Self-dual configurations and regular graphs. Bull. Am. Math. Soc.
56(5), 413–455 (1950)

6. Erwin, D., Harary, F.: Destroying automorphisms by fixing nodes. Discrete Math.
306, 3244–3252 (2006)

7. Frucht, R.: Die gruppe des Petersen’schen Graphen und der Kantensysteme der
regularen Polyeder. Commentarii Mathematici Helvetici 9(1), 217–223 (1936)

8. Frucht, R., Graver, J.E., Watkins, M.E.: The groups of the generalized Petersen
graphs. Proc. Camb. Philos. Soc. 70(2), 211–218 (1971)

9. Godsil, C., Royle, G.F.: Algebraic Graph Theory. Graduate Texts in Mathematics,
vol. 207. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0163-9

10. Kutnar, K., Petecki, P.: On automorphisms and structural properties of double
generalized Petersen graphs. Discrete Math. 339, 2861–2870 (2016)

11. Pan, J., Guo, X.: The full automorphism groups determining sets and resolving
sets of coprime graphs. Graphs Comb. 35(2), 485–501 (2019)

12. Watkins, M.E.: A theorem on tait colorings with an application to the generalized
petersen graphs. J. Comb. Theory 6(2), 152–164 (1969)

13. Zhou, J.-X., Feng, Y.-Q.: Cubic vertex-transitive non-Cayley graphs of order 8p.
Electron. J. Comb. 19, 53 (2012)

https://doi.org/10.1007/978-1-4613-0163-9

Self-centeredness of Generalized
Petersen Graphs

Priyanka Singh(B), Pratima Panigrahi, and Aakash Singh

Indian Institute of Technology Kharagpur, Kharagpur, India
priyankaiit22@gmail.com, pratima@maths.iitkgp.ernet.in,

aakash01iitkgp@gmail.com

Abstract. A connected graph is said to be self-centered if all its vertices
have the same eccentricity. The family of generalized Petersen graphs
P (n, k), introduced by Coxeter [6] and named by Watkins [18], is a family
of cubic graphs of order 2n defined by positive integral parameters n and
k, n ≥ 2k. Not all generalized Petersen graphs are self-centered. In this
paper, we prove self-centeredness of P (n, k) whenever k divides n and
k < n

2
, except the case when n is odd and k is even. We also prove non-

self-centeredness of generalized Petersen graphs P (n, k) when n even
with k = n

2
; n = 4m+2 with k = n

2
− 1 for some positive integer m ≥ 3;

n ≥ 9 is odd and k = 2 or k = n−1
2

; and n = m(4m + 1) ± (m + 1)
with k = 4m + 1 for any positive integer m ≥ 2. Finally, we make an
exhaustive computer search and get all possible values of n and k for
which P (n, k) is non-self-centered.

Keywords: Eccentricity · Center of graph · Self-centered graph ·
Generalized Petersen graphs

1 Introduction

Graph centrality plays a significant importance in facility location problem, and
has a great role in designing a communication network. In a locality, for the
efficient use of resources, we place them at central nodes. Because of this, self-
centered graphs are ideal as the facility can be placed (located) at any node or
vertex of the locality. In the paper, by a graph G = (V (G), E(G)) (or simply G)
we mean a simple finite graph with the vertex set V (G) and the edge set E(G).
The length of a shortest u–v path in a graph G gives the distance between
vertices u and v, which is denoted by dG(u, v) (or d(u, v)). The maximum of
distances from a vertex v to all other vertices in a graph G is known as the
eccentricity (denoted by e(v)) of the vertex v. The radius of G, denoted by
rad(G), is the minimum eccentricity of vertices in G. Similarly, the diameter of
G, denoted by diam(G), is the maximum eccentricity of vertices. Vertices with
minimum eccentricity are called central vertices and the subgraph induced on
these vertices is called the center C(G) of the graph G. A graph G is known
as a self-centered graph if C(G) = G. In other words, for a self-centered graph
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 141–155, 2020.
https://doi.org/10.1007/978-3-030-39219-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_12

142 P. Singh et al.

G, rad(G) is equal to diam(G). Further, if eccentricity of every vertex in a
self-centered graph is d then the graph is known as d-self-centered graph.

As a generalization of the well-known Petersen graph, the generalized
Petersen graph has attracted the attention of several researchers. For each pos-
itive integers n and k with n ≥ 2k, the generalized Petersen graph P (n, k) is
a graph with vertex set V (P (n, k)) = {u0, u1, u2, ..., un−1, v0, v1, v2, . . . , vn−1}
and the edge set E(P (n, k)) = {uiui+1, uivi, vivi+k : 0 ≤ i ≤ n − 1}, where
subscripts are addition modulo n. Throughout the paper, we refer this notation
for vertex set and edge set of P (n, k). For n = 5 and k = 2, P (5, 2) is the well
known Petersen graph.

The generalized Petersen graphs, named by Watkins [18] were defined by
Coxeter [6] but not with this name. The essence of the Petersen graph is a
remarkable configuration that serves as a counterexample to many optimistic
predictions and conjectures about what might be true for graphs in general. The
generalized Petersen graphs have been studied by several authors; for instance,
Tait coloring of generalized Petersen graphs have been studied and analysed in
[4], generalization of generalized Petersen graphs on the basis of symmetry prop-
erties have been discussed in [13]. A result on maximum number of vertices in
a generalized Petersen graph was given by authors in [1], where number of ver-
tices is treated as a function of diameter. A formula for number of isomorphism
classes of generalized Petersen graphs was presented by Steimle and Staton [17].
For works related to domination number in generalized Petersen graphs, one can
refer to [5,7], and [9]. However, there were no significant work done related to
self-centeredness of generalized Petersen graphs because of the complex structure
of these graphs. This motivated us to work on the self-centeredness property of
generalized Petersen graphs.

The theorem below gives a criteria for generalized Petersen graphs to be
isomorphic.

Theorem 1. [17] Let n > 3 and k, l relatively prime to n with kl ≡ 1 (mod n).
Then P (n, k) ∼= P (n, l).

The theorem stated below is useful in proving the self-centeredness of gener-
alized Petersen graph P (n, 1).

Theorem 2. [16] Let G = G1�G2 be the Cartesian product of graphs G1 and
G2. If G1 and G2 are l- and m-self centered graphs, respectively, then G is
(l + m)-self centered graph.

We note that P (n, 1) is the Cartesian product of the cycle Cn and the com-
plete graph K2. Since Cn is �n

2 �-self-centered graph and K2 is 1-self-centered
graph, by Theorem 2 we get the result below.

Theorem 3. For n ≥ 3, the generalized Petersen graph P (n, 1) is a d-self-
centered graph, where d = �n

2 � + 1.

Vertex transitive graphs are self-centered. In [8], the authors have proved
that P (n, k) is vertex transitive if and only if k2 ≡ ±1(mod n), or n = 10 and
k = 2. So, one get the following result.

Self-centeredness of Generalized Petersen Graphs 143

Theorem 4. For n ≥ 3, generalized Petersen graph P (n, k) is self-centered for
k2 ≡ ±1(mod n), or n = 10 and k = 2. Moreover, P (10, 2) is 5-self-centered
and the other P (n, k) are d-self-centered, where

d =

⎧
⎪⎨

⎪⎩

k + 1, if n = k2 − 1,
k + 1, if n = k2 + 1 and k is even, k �= 2,
k + 2, if n = k2 + 1 and k is odd.

Self-centered graphs were studied and surveyed by many authors in the
last few decades. For the same, we refer the articles [2], [3], and [10–12]. Self-
centeredness of different types of graph products are studied by the authors in
[14,15].

In the remaining of the paper, we assume k ≥ 2. The main technique followed
in this paper for verification of self-centeredness of P (n, k) is the determination
of eccentricities of u0 and v0, because P (n, k) is symmetric on outer vertices
u0, u1, u2, . . . , un−1 and also symmetric on inner vertices v0, v1, v2, . . . , vn−1. If
e(u0) = e(v0) then the generalized Petersen graph is self-centered, otherwise not.

The rest of the paper is organized as follows. In Sect. 2, we prove the non-
self-centeredness of generalized Petersen graphs P (n, k) when n even, k = n

2 or
n = 4m + 2 with k = n

2 − 1 for some positive integer m ≥ 3. Then we prove
self-centeredness of P (n, k) whenever n is even, k < n

2 and k divides n. In Sect. 3,
we study self-centeredness of generalized Petersen graphs P (n, k) for odd n. We
prove that P (n, k) is not self-centered for odd n ≥ 9 with k = 2 or k = n−1

2 . Then
we prove the self-centeredness of P (n, k) for odd n and odd k, k < n

2 , and k|n.
Also, we prove non-self-centeredness of P (n, k) when n = m(4m + 1) ± (m + 1)
with k = 4m+ 1 for any positive integer m ≥ 2. Finally, we make an exhaustive
computer search and get all possible values of n and k for which P (n, k) is
non-self-centered.

2 Self-centeredness of P (n, k) for an Even n

In the following result, we investigate the self-centeredness of P (n, k) for an even
n and k = n

2 .

Theorem 5. Let P (n, k) be a generalized Petersen graph such that n ≥ 4 is
even and k = n

2 . Then P (n, k) is not a self-centered graph.

Proof. To prove the result, it is sufficient to show that eccentricity of two vertices
in P (n, k) are not equal. We note that C : v0, u0, u1, u2, . . . , uk, vk, v0 induces a
cycle of length k + 3, see Fig. 1, where the cycle C is highlighted by thick lines.
We observe that d(u0, ui) = d(u0, un−i), for i ∈ {1, 2, 3, ..., n

2 }. Depending on
the parity of k, we distinguish following two cases.

Case 1. The integer k is even.
Since k = n

2 , in this case n will be a multiple of four. Consider vertices u0

and v0. Since u0 lies on C and C is of length k + 3,

max{d(u0, ui) : 1 ≤ i ≤ n

2
} = �k + 3

2
� =

k + 2
2

=
n + 4

4
=

n

4
+ 1. (1)

144 P. Singh et al.

Fig. 1. Generalized Petersen graph P (n, k) with n even and k = n
2

Next, we find d(u0, vi) for 1 ≤ i ≤ n
2 . First, let 1 ≤ i ≤ n

4 . For these values of
i, we get that d(u0, vi) = d(u0, ui) + 1. Now, max{d(u0, ui) : 1 ≤ i ≤ n

4 } = n
4

and so

max{d(u0, vi) : 1 ≤ i ≤ n

4
} = max{d(u0, ui) + 1 : 1 ≤ i ≤ n

4
} =

n

4
+ 1. (2)

For n
4 < i ≤ n

2 , a shortest vi–u0 path is given by Pi : vi, vi+k, ui+k, ui+(k+1),
ui+(k+2), . . . , u0, where l(Pi) = n − i − k + 2 = n

2 + 2 − i (since k = n
2). The

maximum length of Pi is for i = n
4 + 1, and hence

max{l(Pi) :
n

4
< i ≤ n

2
} =

n

4
+ 1. (3)

From Eqs. (1)−(3), we get that e(u0) = n
4 + 1.

Since v0 lies on C and n is a multiple of four,

max{d(v0, ui) : 1 ≤ i ≤ n

2
} = �k + 3

2
� =

n

4
+ 1. (4)

Next for n
4 ≤ i ≤ n

2 , we obtain d(v0, vi) = d(u0, vi) + 1, and this gives

max{d(v0, vi) :
n

4
≤ i ≤ n

2
} =

n

4
+ 1. (5)

Finally, for 1 ≤ i ≤ n
4 , a shortest vi–v0 path is given by P ′

i :
vi, vi+k, ui+k, ui+(k+1), . . . , u0, where l(P ′

i) = n − i − k + 3 = n
2 + 3 − i,

and the maximum length of P ′
i is for i = n

4 + 1, i.e.,

max{l(P ′
i) : 1 ≤ i ≤ n

4
} =

n

2
+ 3 − n

4
− 1 =

n

4
+ 2. (6)

Hence e(v0) = n
4 + 2. Thus, we get that e(u0) �= e(v0) and P (n, k) is not a

self-centered graph in this case.

Self-centeredness of Generalized Petersen Graphs 145

Case 2. The integer k is odd.
In this case n is not a multiple of four but cycle C is of an even length. Since
u0 and v0 lie on C, for 1 ≤ i ≤ n

2 , we have

max{d(u0, ui) : 1 ≤ i ≤ n

2
} =

k + 3
2

and, (7)

max{d(v0, ui) : 1 ≤ i ≤ n

2
} =

k + 3
2

. (8)

For 1 ≤ i ≤ �n
4 �+1, a shortest u0–vi path is given by Qi : u0, u1, u2, . . . , ui, vi,

where l(Qi) = i + 1 and maximum length of Qi is for i = �n
4 � + 1, i.e.,

max{l(Qi) : 1 ≤ i ≤ �n
4

� + 1} = �n
4

� + 1 + 1 = �k + 3
2

�. (9)

Again, for �n
4 �+2 ≤ i ≤ n

2 , a shortest u0–vi path is given by Q′
i : vi, vi+k, ui+k,

ui+(k+1), . . . , u0 and the length of Q′
i is n

2 +2−i. The path Q′
i has a maximum

length for i = �n
4 � + 2, i.e.,

max{l(Q′
i) : �n

4
� + 2 ≤ i ≤ n

2
} =

n

2
− �n

4
� =

k + 1
2

. (10)

From Eqs. (7), (9), and (10), we have e(u0) = k+3
2 .

Next, we consider the vertex v0. For 1 ≤ i ≤ �n
4 �+1, a shortest v0–vi path is

given by Ti : v0, u0, u1, u2, . . . , ui, vi. The length of the path Ti is i + 2. The
maximum length of Ti is for i = �n

4 � + 1, i.e.,

max{l(Ti) : 1 ≤ i ≤ �n
4

� + 1} = �n
4

� + 1 + 2 =
k + 5

2
. (11)

Finally, for �n
4 � + 2 ≤ i ≤ n

2 , a shortest v0–vi path is given by T ′
i :

vi, vi+k, ui+k, ui+(k+1), . . . , un = u0, v0, where l(T ′
i) = n

2 + 3 − i. We get
the maximum length of T ′

i for �n
4 � + 2, i.e.,

max{l(T ′
i) : �n

4
� + 2 ≤ i ≤ �n

2
�} =

k

2
+ 1. (12)

From Eqs. (8), (11), and (12), we have e(v0) = k+5
2 . This proves that e(u0) �=

e(v0). Hence, P (n, k) is not a self-centered graph in this case also.
�
In the following theorem we get some non-self-centered generalized Petersen

graphs P (n, k), where n is even but not divisible by k.

Theorem 6. Let P (n, k) be a generalized Petersen graph such that n = 4m+ 2
for some positive integer m ≥ 3 and k = n

2 −1. Then P (n, k) is not a self-centered
graph.

146 P. Singh et al.

Fig. 2. Generalized Petersen graph P (n, k) with n = 4m+ 2 and k = n
2

− 1

Proof. Here we obtain a cycle C : u0, u1, u2, . . . , un
2 −1, vn

2 −1, v0, u0 of length n+4
2

i.e. of length 2m + 3, see Fig. 2, where the cycle C is highlighted by thick lines.
Since u0 and v0 lie on C, we have

max{d(u0, ui) :1 ≤ i ≤ n

2
− 1} = max{d(v0, ui) :1 ≤ i ≤ n

2
− 1} = �2m+ 3

2
� = m+ 1.

(13)
We have d(u0, um+1) = d(u0, um+2) = m + 1 and d(v0, um) = d(v0, um+1) =

m + 1. Next, for every j ∈ {1, 2, . . . ,m} ∪ {m + 3,m + 4, . . . , 2m + 1}, we get
d(u0, vj) ≤ m + 1. Similarly, for every l ∈ {1, 2, . . . ,m − 1} ∪ {m + 2,m +
4, . . . , 2m+1}, d(v0, vl) ≤ m+1. Now for l = m+1 and m+2, a shortest u0–vi
paths P1 and P2 are given below.

P1 : un = u0, un−1, un−2, . . . , un−(m−1), vn−(m−1), vm+1 = vl, and
P2 : un = u0, un−1, un−2, . . . , un−(m−2), vn−(m−2), vm+2 = vl.

Also,
l(P1) = m + 1 and l(P2) = m. (14)

Further for l = m and m + 1, smallest v0–vi paths are as given below.

P3 : v0, u0, u1, u2, . . . , um, vl = vm, and

P4 : v0, u0, un−1, un−2, . . . , un−(m−1), vn−(m−1), vl = vm+1. We notice that

l(P3) = m + 2 and l(P4) = m + 2. (15)

From the above three equations, we conclude that e(u0) = m + 1 and e(v0) =
m + 2. Thus, e(u0) �= e(v0), and hence P (n, k) is not a self-centered graph.
�

Self-centeredness of Generalized Petersen Graphs 147

Theorem 7. Let P (n, k) be a generalized Petersen graph with n even, k < n
2

and n be divisible by k. If n = kq then P (n, k) is a d-self-centered graph, where

d =

{
q
2 + �k+3

2 �, if k divides n
2 ,

� q+1
2 � + �k

2 � + 1, otherwise.

Proof. To prove the result, we consider the following sets of vertices in P (n, k).

• R1 : {u0, v0, vk, uk, uk−1, uk−2, . . . , u3, u2, u1} and R′
1 : {v1, v2, . . . , vk−1}

• R2 : {uk, vk, v2k, u2k, u2k−1, u2k−2, . . . , uk+1} and R′
2 : {vk+1, vk+2, . . . , v2k−1}

...
• Rq : {u(q−1)k, v(q−1)k, vqk, uqk, uqk−1, uqk−2, . . . , uqk−k+1} and

R′
q : {vk(q

2 −1), vk(q
2 −1)+1, . . . , v kq

2 −1}
We see that vertices of each Ri, i ∈ {1, 2, . . . , q}, induces a cycle of length

k + 3, vertices of each R′
i induces independent set and

⋃q
i=1(Ri ∪ R′

i) =
V (P (n, k)). Next, we find distances from u0 and v0 to other vertices of P (n, k).
It is sufficient to find the distances from u0 and v0 to vertices u1, u2, . . . , un

2
,

v0, u0, v1, v2, . . . , vn
2
. Here, we have following two cases.

Case 1. When k divides n
2 .

Since vertices of R1 induces a cycle u0, v0, vk, uk, . . . , u2, u1, u0 of length k+3,
we have

max{d(u0, x) : x ∈ R1} = max{d(v0, x) : x ∈ R1} = �k + 3
2

�. (16)

max{d(u0, x) : x ∈ R′
1} = max{d(v0, x) : x ∈ R′

1} = �k + 3
2

� + 1. (17)

We see that for any vertex x ∈ R2, d(u0, x) = d(u0, v0) + d(v0, vk) + d(vk, x)
and thus, we have

max{d(u0, x) : x ∈ R2} = �k + 3
2

� + 2, and (18)

max{d(u0, x) : x ∈ R′
2} = �k + 3

2
� + 3, (19)

and,

max{d(v0, x) : x ∈ R2} = �k + 3
2

� + 1, and (20)

max{d(v0, x) : x ∈ R′
2} = �k + 3

2
� + 2. (21)

Similarly, we get

max{d(u0, x) : x ∈ Rq} = �k + 3
2

� +
q

2
, and (22)

148 P. Singh et al.

for the vertices vj ∈ R′
q for j �= k(q−1)

2 and k(q−1)
2 + 1 when k is even, then

max{d(u0, x) : x ∈ R′
q, x �= v k(q−1)

2
, v k(q−1)

2 +1
} = �k + 3

2
� +

q

2
. (23)

For j = k(q−1)
2 , a shortest u0–vj path is given by

P : u0, u1, . . . , u k
2
, v k

2
, v k

2+k, v k
2+2k, . . . , v k

2+
k(q−1)

2
and thus d(u0, uj) = k+q

2 .
Due to symmetric structure of the graph, the same can be obtained for j =
k(q−1)

2 + 1.
Finally, consider vertices vj ∈ R′

q for j �= q(k−1)
2 when k is odd. Then

max{d(u0, x) : x ∈ R′
q, x �= v q(k−1)

2
} = �k + 3

2
� +

q

2
, (24)

and for j = q(k−1)
2 a shortest u0–vj path is given by

P ′ : u0, u1, . . . , u k+1
2
, v k+1

2
, v k+1

2 +k, v k+1
2 +2k, . . . , v k+1

2 +k(q
2 −1) of length k+q+1

2

and thus d(u0, uj) = k+q+1
2 .

Now, for the vertex v0, we obtain

max{d(v0, x) : x ∈ Rq} = �k + 3
2

� +
q

2
− 1. (25)

max{d(v0, x) : x ∈ R′
q} = �k + 3

2
� +

q

2
. (26)

From Eqs. (16)–(26), we conclude that e(u0) = e(v0) = q
2 + �k+3

2 �.
Case 2. When k does not divide n

2 .
Given that n = kq and k does not divide n

2 , so q is an odd integer. This means
k must be even. In this case, the distance between the vertex u0 and a vertex
in R1∪. . .∪R q−1

2
is the same as obtained in the Case 1. That is, the maximum

distance between u0 and any vertex from R q−1
2

is � q−1
2 �+�k+3

2 �. Next consider
the vertices from the region R q+1

2
. Now, because of the symmetry of P (n, k)

for an even n, the vertex farthest from u0 (v0) lie in the region R q+1
2

. The
vertex farthest from u0 and v0 are the vertices un

2
and vn

2
, respectively, at a

distance � q+1
2 � + �k

2 � + 1, and hence the result.
�
Theorem 8. The generalized Petersen graph P (n, k) is not self-centered for
n = 4m(4m + 1) and k = 2m(4m − 1) for some positive integer m ≥ 1.

Proof. In this case, we find that vn
2

is the farthest vertex from both u0 and
v0 and have obtained that d(u0, vn

2
) = 4m + 2 and d(v0, vn

2
) = 4m + 1. So,

e(u0) = 4m + 2 and e(v0) = 4m + 1 and hence the given generalized Petersen
graphs are not self-centered in this case.
�

Self-centeredness of Generalized Petersen Graphs 149

3 Self-centeredness of P (n, k) for Odd n

In this section, we first investigate self-centeredness of P (n, k) for k = 2. First
of all, we prove that P (5, 2) and P (7, 2) are self-centered graphs.

Theorem 9. The generalized Petersen graph P (n, 2) is 2- or 3-self-centered
graphs for n = 5 or 7, respectively.

Proof. For n = 5, the graph P (n, 2) is the well known Petersen graph and we
know that radius and diameter of P (5, 2) is two. Thus, P (5, 2) is 2-self-centered
graph.

Let us consider the vertices u0 and v0 in P (7, 2). The shortest path from u0 to
u1, u2, or u3 is through the edges in cycle C : u0, u1, u2, u3, u4, u5, u6, u0. So we
get that d(u0, u1), d(u0, u2), and d(u0, u3) are equal to 1, 2, and 3, respectively. A
shortest u0–vi path for i = 0, 1, 2, and 3 is (u0, v0), (u0, u1, v1), (u0, v0, v2), and
(u0, u1, v1, v3) with lengths 1, 2, 2, and 3, respectively. Similarly, a shortest v0−ui

path for i = 0, 1, 2, and 3 is (v0, u0), (v0, u0, u1), (v0, v2, u2), (v0, v2, u2, u3) with
lengths 1, 2, 2, and 3, respectively. Further, a shortest v0–vi path for i = 1, 2, and
3 is (v0, u0, u1, v1), (v0, v2), and (v0, v5, v3) with lengths 3, 1, and 2 respectively.
From this we can say that e(u0) = e(v0) = 3. Hence P (7, 2) is a 3-self-centered
graph.
�
Theorem 10. The generalized Petersen graph P (n, 2) is not self-centered for
odd integers n ≥ 9.

Proof. We take n = 4m+ 1 or 4m+ 3 for some positive integer m ≥ 2. We shall
find d(u0, ui), d(u0, vi), d(v0, ui), and d(v0, vi) for i ∈ {1, 2, . . . , �n

2 �}. First, we
consider the vertex u0. We note that d(u0, ui) = i for i = 1, 2, 3, and 4.

For an even index i, 6 ≤ i ≤ 2m, a shortest u0–ui and u0–vi path is given
by Pi : u0, v0, v2, v4, . . . , vi, ui and P ′

i : u0, v0, v2, . . . , vi, where l(Pi) = i+4
2 and

l(P ′
i) = i+2

2 . Now,

max{l(Pi) : 6 ≤ i ≤ 2m, i even} = m + 2. (27)
max{l(P ′

i) : 6 ≤ i ≤ 2m, i even} = m + 1. (28)

For an odd index i, a shortest u0–ui and u0–vi path is given by Qi :
u0, v0, v2, v4, . . . , vi−1, ui−1, ui and Q′

i : u0, u1, v1, v3, . . . , vi, where l(Qi) = i+5
2

and l(Q′
i) = i+3

2 . If n = 4m + 1 then

max{l(Qi) : 5 ≤ i ≤ 2m − 1, i odd} = m + 2 (29)
max{l(Q′

i) : 5 ≤ i ≤ 2m − 1, i odd} = m + 1, (30)

and for n = 4m + 3, we get

max{l(Qi) : 5 ≤ i ≤ 2m + 1, i odd} = m + 3 (31)
max{l(Q′

i) : 5 ≤ i ≤ 2m + 1, i odd} = m + 2. (32)

150 P. Singh et al.

Next, we consider the vertex v0. For an even index i, 6 ≤ i ≤ 2m, a shortest
v0–ui and v0–vi path is given by Li : v0, v2, v4, . . . , vi, ui and L′

i : v0, v2, v4, . . . , vi,
where l(Li) = i+2

2 and l(L′
i) = i

2 .

max{l(Li) : 6 ≤ i ≤ 2m, i even} = m + 1. (33)
max{l(L′

i) : 6 ≤ i ≤ 2m, i even} = m. (34)

Next let i be an odd index. When n = 4m + 1, for 5 ≤ i < 2m − 1, a short-
est v0–vi path is given by Mi : v0, v2, v4, . . . , vi−1, ui−1, ui, vi and the length
of the path Mi is i+5

2 , and for i = 2m − 1, a shortest v0–vi path is M ′
i :

v0, v4m−1, v4m−3, . . . , v4m−(2m+1) with length m+ 1. When n = 4m+ 3, for 5 ≤
i < 2m + 1, a shortest v0–vi path is given by Ni : v0, v2, v4, . . . , vi−1, ui−1, ui, vi
and the length of the path Ni is i+5

2 , and for i = 2m + 1, a shortest v0–vi path
is N ′

i : v0, v4m+1, v4m−1, v4m−3, . . . , v4m−(2m−1) with length m + 1. Now, we get
the following.

max{l(Mi) : 5 ≤ i ≤ 2m − 3, i odd} = m + 1. (35)

max{l(Ni) : 5 ≤ i ≤ 2m − 1, i odd} = m + 2. (36)

From the Eqs. (27)–(36), we have

e(u0) =

{
m + 2, for n = 4m + 1
m + 3, for n = 4m + 3,

and

e(v0) =

{
m + 1, for n = 4m + 1
m + 2, for n = 4m + 3

Thus, e(u0) �= e(v0) and hence P (n, 2) is not self-centered graph.
�
Corollary 1. The generalized Petersen graph P (n, k) is not self-centered for
odd integers n ≥ 9 and k = n−1

2 .

Proof. By the structure of generalized Petersen graph, for an odd integer n
we get that P (n, n+1

2) and P (n, n−1
2) are isomorphic. Since n+1

2 is relatively
prime with n, and n is odd, by Theorem 1 we get P (n, 2) and P (n, n+1

2) are
isomorphic and thus P (n, 2) and P (n, n−1

2) are isomorphic. Since, P (n, 2) is not
a self-centered graph for n ≥ 9 with odd n, P (n, n−1

2) is also not a self-centered
graph and hence the result.
�

In the next theorem we prove that the generalized Petersen graph is a self-
centered graph when both n and k are odd, and n is divisible by k.

Theorem 11. Let P (n, k) be a generalized Petersen graph, where n and k are
both odd and k divides n. Then P (n, k) is a d-self-centered graph, where d =
q+k
2 + 1 and n = kq.

Self-centeredness of Generalized Petersen Graphs 151

Fig. 3. Generalized Petersen graph P (n, k) with both n and k odd, k divides n

Proof. Due to symmetric structure of P (n, k) we have d(u0, ui) = d(u0, un−i)
for i ∈ {1, 2, . . . , �n

2 �}. We consider the cycle C : u0, u1, u2, . . . , uk, vk, v0, u0 of
length k + 3, see Fig. 3, where C is highlighted by thick lines. Since u0, v0 ∈ C,
we have

max{d(u0, ui) : ui ∈ C} = max{d(v0, ui) : ui ∈ C} =
k + 3

2
. (37)

Next, we determine d(u0, ui), d(u0, vi), d(v0, ui), and d(v0, vi), where ui, vi /∈ C.
Let m = 1, 2, . . . , q−1

2 − 1, q−1
2 . We have following cases depending on the values

of i. In the first three cases, we consider m = 1, 2, . . . , q−1
2 − 1, and in the fourth

case we take m = q−1
2 .

Case 1. mk ≤ i < mk + k+1
2 , m = 1, 2, . . . , q−1

2 − 1.
Since mk ≤ i, we can write i = mk + j for j = 0, 1, 2, . . . , k−1

2 . Now, a
shortest u0–ui and v0–ui paths are given by the paths P1 and P2 respectively,
where

P1 : u0, v0, vk, v2k, . . . , vmk, umk, umk+1, . . . , umk+j

P2 : v0, vk, v2k, . . . , vmk, umk, umk+1, . . . , umk+j .

Moreover, l(P1) = m+ j+2 and l(P2) = m+ j+1. Both P1 and P2 obtain their
maximum length for m = q−1

2 − 1 and j = k−1
2 , i.e.

max{l(P1) : i < mk +
k + 1

2
} =

q + k

2
. (38)

max{l(P2) : i < mk +
k + 1

2
} =

q + k

2
− 1. (39)

Similarly, a shortest u0–vi and v0–vi paths are given by P3 and P4, respectively,
where

P3 : vi, vi−k, vi−2k, vi−3k, . . . , vi−mk, ui−mk, ui−mk−1, . . . , u0

P4 : v0, vk, v2k, . . . , vmk, umk, umk+1, . . . , umk+j , vmk+j

152 P. Singh et al.

Now, l(P3) = 1 + i − (k − 1)m and l(P4) = m + j + 2. Length of path P3 is
maximum for m = q−1

2 − 1 and corresponding value of i i.e. i = mk + k+1
2 − 1.

This gives

max{l(P3)} =
q + k

2
− 1. (40)

Also, the path P4 obtains its optimum length for m = q−1
2 −1 and j = k−1

2 , i.e.

max{l(P4)} =
q + k

2
. (41)

Case 2. mk + k+1
2 < i < mk + k, m = 1, 2, . . . , q−1

2 − 1.
Since mk+ k+1

2 < i < mk+k, we write i = mk+(k−x) for x = 1, 2, . . . , k−3
2 .

A shortest u0–ui and v0–ui paths are given below.

P5 : u0, v0, vk, v2k, . . . , vmk, vmk+k, umk+k, umk+(k−1), umk+(k−2), . . . , umk+(k−x)

P6 : v0, vk, v2k, . . . , vmk, vmk+k, umk+k, umk+(k−1), umk+(k−2), . . . , umk+(k−x)

We see that l(P5) = 3 +m+ x and l(P6) = 2 +m+ x. Now, maximum length of
the paths P5 and P6 are obtained when m = q−1

2 − 1 and x = k−3
2 , respectively.

Hence,

max{l(P5)} =
q + k

2
+ 1, and max{l(P6)} =

q + k

2
− 1. (42)

Further, shortest u0–vi and v0–vi paths are given by P7 and P8, respectively,
where

P7 : vi, vi−k, vi−2k, . . . , vi−mk, vn+i−mk−k, un+i−mk−k, un+i−mk−k−1, un+i−mk−k−2, . . . , u0

P8 : v0, vk, v2k, v3k, . . . , vmk, vmk+k, umk+k, umk+(k−1), umk+(k−2), . . . , umk+(k−x), vmk+(k−x)

Moreover, l(P7) = 2 + m + (m + 1)k − i and l(P8) = 3 + m + x, and so

max{l(P7)} =
q + k

2
− 1, and max{l(P8)} =

q + k

2
. (43)

Case 3. i = mk + k+1
2 , m = 1, 2, . . . , q−1

2 − 1.
In this case, a shortest u0–ui, v0–ui, u0–vi, and v0–vi paths are given by the

following paths P9, P10, P11, and P12, respectively, where

P9 : u0, v0, vk, v2k, . . . , vmk, umk, umk+1, umk+2, . . . , umk+ k+1
2

P10 : v0, vk, v2k, . . . , vmk, umk, umk+1, umk+2, . . . , umk+ k+1
2

P11 : vi, vi−k, vi−2k, . . . , vi−mk, ui−mk, ui−mk−1, ui−mk−2, . . . , u0

P12 : v0, vk, v2k, . . . , vmk, umk, umk+1, umk+2, . . . , umk+ k+1
2
, vmk+ k+1

2
.

Moreover, l(P9) = 2+m+ k+1
2 , l(P10) = 1+m+ k+1

2 , l(P11) = 1+i−(k−1)m, and
l(P12) = 2+m+ k+1

2 . These paths attain their maximum length for m = q−1
2 −1,

and hence we get

Self-centeredness of Generalized Petersen Graphs 153

max{l(P9)} =
q + k

2
+ 1,max{l(P10)} =

q + k

2
,max{l(P11)} =

q + k

2
,

and max{l(P12)} =
q + k

2
+ 1 (44)

Case 4. i = mk + l and m = q−1
2 , where l = 0, 1, 2, . . . , �k

2 �
Shortest u0–ui, v0–ui, and v0–vi paths are given by:

P13 : u0, v0, vk, v2k, . . . , v(m+1)k, u(m+1)k, u(m+1)k+1, . . . , u(m+1)k+l

P14 : v0, vk, v2k, . . . , v(m+1)k, u(m+1)k, u(m+1)k+1, . . . , u(m+1)k+l,

P15 : v0, vk, v2k, . . . , v(m+1)k, u(m+1)k, u(m+1)k+1, . . . , u(m+1)k+l, v(m+1)k+l.

We have l(P13) = 3 + m + l, l(P14) = 2 + m + l, and l(P15) = 3 + m + l,
respectively. Finally, the path P16 : vi, vi−k, vi−2k, . . . , vi−mk, ui−mk, ui−mk−1,
ui−mk−2, . . . , u0 gives a shortest u0–vi path and the length of the path P16 is
1 + m + i − mk. The path P16 attains its maximum length for m = q−1

2 and
i = mk + �k

2 �, i.e.

max{l(P16)} =
q + k

2
. (45)

From the Eqs. (38)–(45), we conclude that e(u0) = e(v0) = q+k
2 + 1. Thus,

generalized petersen graph is a d-self-centered graph, where d = q+k
2 + 1.
�

In the theorem given below, we investigate self-centeredness of P (n, k) for
n = m(4m + 1) ± (m + 1) and k = 4m + 1.

Theorem 12. For n = m(4m + 1) ± (m + 1), k = 4m + 1, and any positive
integer m ≥ 2, the generalized Petersen graph is not a self-centered graph.

Proof. We have following two cases here.

Case 1. k = 4m + 1 and n = m(4m + 1) + (m + 1) = 4m2 + 2m + 1 for any
m ≥ 2.
In this case, v k−1

2
and vn−(k−1

2) are equivalently most distant vertices from u0 as

well as v0 and their path lengths are k−1
2 and k−1

2 +1, respectively. This implies
that, e(u0) = k−1

2 and e(v0) = k−1
2 + 1 and they differ by one.

Case 2. k = 4m + 1 and n = m(4m + 1) − (m + 1) = 4m2 − 1 for any m ≥ 2.
In this case, v k+1

2
and vn−(k+1

2) are equivalently most distant vertices from u0 as

well as v0 and their path lengths are k+1
2 and k+1

2 +1, respectively. This implies
that, e(u0) = k+1

2 and e(v0) = k+1
2 + 1 and the eccentricities differ by one.

In both the above cases we get that e(u0) �= e(v0). Hence, the generalized
Petersen graph is not a self-centered.
�

154 P. Singh et al.

4 Computer Search and Concluding Remarks

We made an exhaustive computer search and found all possible values of n
and k for which P (n, k) are non self-centered. In this search, we have discarded
isomorphs of these generalized Petersen graphs using Theorem 1. We list all
non-isomorphic generalized Petersen graphs in Tables 1 and 2 and address their
theoretical proofs obtained in this paper.

Table 1. Non-self-centeredness of P (n, k), n odd

n k Theoretical support

n ≥ 9 k = 2 Theorem 9

n = m(4m+ 1) ± (m+ 1), m ≥ 2 k = 4m+ 1 Theorem 11

Table 2. Non-self-centeredness of P (n, k), n even

n k Theoretical support

n ≥ 4 k = n
2

Theorem 5

n = 4m+ 2, m is a positive integer k = n
2

− 1 Theorem 6

n = 4m(4m+ 1), m is a positive integer k = 2m(4m − 1) Theorem 8

For complete characterization, one has to prove theoretically that all gen-
eralized Petersen graphs P (n, k) other than those in Tables 1 and 2, and their
isomorphs are self-centered. Hence, we make the following conjecture.

Conjecture: The generalized Petersen graphs P (n, k) other than those in
Tables 1 and 2 and their isomorphs are self-centered.

Acknowledgement. We are thankful to the referees for their constructive and detail
comments and suggestions which improved the paper overall.

References

1. Beenker, G.F.M., Van Lint, J.H.: Optimal generalized Petersen graphs. Philips J.
Res. 43(2), 129–136 (1988)

2. Buckley, F.: Self-centered graphs. Ann. New York Acad. Sci. 576, 71–78 (1989)
3. Buckley, F., Miller, Z., Slater, P.J.: On graphs containing a given graph as center.

J. Graph Theory 5, 427–434 (1981)
4. Castagna, F., Prins, G.: Every generalized Petersen graph has a Tait coloring. Pac.

J. Math. 40(1), 53–58 (1972)
5. Chen, L., Ma, Y., Shi, Y., Zhao, Y.: On the [1,2]-domination number of generalized

Petersen graphs. Appl. Math. Comput. 327, 1–7 (2018)

Self-centeredness of Generalized Petersen Graphs 155

6. Coxeter, H.S.M.: Self-dual configurations and regular graphs. Bull. Am. Math. Soc.
56(5), 413–455 (1950)

7. Ebrahimi, B.J., Jahanbakht, N., Mahmoodian, E.S.: Vertex domination of gener-
alized Petersen graphs. Discrete Math. 309(13), 4355–4361 (2009)

8. Frucht, R., Graver, J.E., Watkins, M.E.: The groups of the generalized Petersen
graphs. Proc. Camb. Philos. Soc. 70(211), 211–218 (1971)

9. Fu, X., Yang, Y., Jianga, B.: On the domination number of generalized Petersen
graphs P (n, 2). Discrete Math. 309(8), 2445–2451 (2009)

10. Janakiraman, T.N.: On special classes of self-centered graphs. Discrete Math. 126,
411–414 (1994)

11. Janakiraman, T.N., Bhanumathi, M., Muthammai, S.: Self-centered super graph
of a graph and center number of a graph. Ars Comb. 87, 271–290 (2008)

12. Huilgol, M.I., Ramprakash, C.: Cyclic edge extensions- self-centered graphs. J.
Math. Comput. Sci. 10, 131–137 (2014)

13. Saražin, M.L., Pacco, W., Previtali, A.: Generalizing the generalized Petersen
graphs. Discrete Math. 307(3–5), 534–543 (2007)

14. Singh, P., Panigrahi, P.: On self-centeredness of product of graphs. Int. J. Comb.
2016, 1–4 (2016). https://doi.org/10.1155/2016/2508156

15. Singh, P., Panigrahi, P.: On self-centeredness of tensor product of some graphs.
Electron. Notes Discrete Math. 63, 333–342 (2017)

16. Stanic, Z.: Some notes on minimal self-centered graphs. AKCE Int. J. Graphs
Comb. 7, 97–102 (2010)

17. Steimle, A., Staton, W.: The isomorphism classes of the generalized Petersen
graphs. Discrete Math. 309(1), 231–237 (2009)

18. Watkins, M.E.: A theorem on Tait colorings with an application to the generalized
petersen graphs. J. Comb. Theory 6(2), 152–164 (1969)

https://doi.org/10.1155/2016/2508156

Weak Roman Bondage Number
of a Graph

P. Roushini Leely Pushpam and N. Srilakshmi(B)

Department of Mathematics, D.B. Jain College (Affiliated to University of Madras),
Chennai 600 097, Tamil Nadu, India

roushinip@yahoo.com, srilakshmi murali@yahoo.com

Abstract. A Roman dominating function (RDF) on a graph G is a
labelling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a
neighbor with label 2. A vertex u with f (u) = 0 is said to be undefended
with respect to f if it is not adjacent to a vertex v with the positive
weight. A function f : V (G) → {0, 1, 2} is a weak Roman dominating
function (WRDF) if each vertex u with f(u) = 0 is adjacent to a vertex
v with f(v) > 0 such that the function f ′ : V (G) → {0, 1, 2} defined by
f ′(u) = 1, f ′(v) = f(v) − 1 and f ′(w) = f(w) if w ∈ V − {u, v}, has
no undefended vertex. The Roman bondage number bR(G) of a graph
G with maximum degree at least two is the minimum cardinality of
all sets E′ ⊆ E(G) for which γR(G − E′) > γR(G). We extend this
concept to a weak Roman dominating function as follows: The weak
Roman bondage number br(G) of a graph G with maximum degree at
least two is the minimum cardinality of all sets E′ ⊆ E(G) for which
γr(G − E′) > γr(G). In this paper we determine the exact values of the
weak Roman bondage number for paths, cycles and complete bipartite
graphs. We obtain bounds for trees and unicyclic graphs and characterize
the extremal graphs.

Keywords: Weak Roman dominating function · Weak Roman
bondage number

1 Introduction

A subset S of vertices of G is a dominating set if N [S] = V . The domina-
tion number γ(G) is the minimum cardinality of a dominating set of G. The
bondage number b(G) of a nonempty graph G is the minimum cardinality among
all sets of edges E′ ⊆ E(G) for which γ(G−E′) > γ(G). This concept was intro-
duced by Bauer et al. [1]. To measure the vulnerability or the stability of the
domination in an interconnection network under edge failure, Fink et al. [3] also
proposed the concept of the bondage number in 1990. In [21] Xu has given an
elaborate survey on bondage number of graphs which includes variations and
generalizations of bondage numbers.

Cockayne et al. [2] defined a Roman dominating function (RDF) in a graph
G to be a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 156–166, 2020.
https://doi.org/10.1007/978-3-030-39219-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_13&domain=pdf
http://orcid.org/0000-0002-9372-9698
https://doi.org/10.1007/978-3-030-39219-2_13

Weak Roman Bondage Number of a Graph 157

u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2.
The weight of a Roman dominating function is the value w(f)=

∑
u∈V f (u). The

minimum weight of a Roman dominating function of a graph G is called the
Roman domination number of G and denoted by γR(G). Roman domination in
graphs has been studied in [7,8,10,15,16,18–20].

Henning et al. [6] defined a weak Roman dominating function as follows: For
a graph G, let f : V (G) → {0, 1, 2} be a function. A vertex u with f (u) = 0 is
said to be undefended with respect to f if it is not adjacent to a vertex v with
the positive weight. A function f : V (G) → {0, 1, 2} is said to be a weak Roman
dominationg function (WRDF) if each vertex u with f (u) = 0 is adjacent to
a vertex v with f(v) > 0 such that the function f ′: V (G) → {0, 1, 2} defined
by f ′(u) = 1, f ′(v) = f (v)− 1 and f ′(w) = f (w) if w ∈ V− {u, v}, has no
undefended vertex. We say that v defends u. The weight w(f) of f is defined
to be

∑
u∈V f (u). The minimum weight of a weak Roman dominating function

of a graph G is called the weak Roman domination number of G and denoted
by γr(G). A WRDF with weight γr(G) is called a γr(G)-function. This concept
of weak Roman domination as suggested by Henning et al. [6] is an attractive
alternative as it further reduces the weight of the Roman dominating function.
Weak Roman domination in graphs has been studied in [11–14,17]. A weak
Roman dominating function f can also be written as f = (V0, V1, V2) where
Vi = {v/f(v) = i}, i = 0, 1, 2. Notice that in a WRDF, every vertex in V0

is dominated by a vertex in V1 ∪ V2, while in an RDF every vertex in V0 is
dominated by at least one vertex in V2. Furthermore, in a WRDF every vertex
in V0 can be defended without creating an undefended vertex. Let v ∈ V1 ∪ V2.
We say a vertex w ∈ N(v) ∩ V0 is said to be in the dependent set of v, denoted
by DG(v) if w is defended by v alone.

Jafari Rad and Volkmann [9] defined Roman bondage number as follows: The
Roman bondage number bR(G) of a graph G with maximum degree at least two is
the minimum cardinality of all sets E′ ⊆ E(G) for which γR(G− E′) > γR(G).
We extend this concept to a weak Roman dominating function as follows: The
weak Roman bondage number br(G) of a graph G with maximum degree at least
two is the minimum cardinality of all sets E′ ⊆ E(G) for which γr(G − E′) >
γr(G). In this paper we initiate a study of this parameter.

2 Notation

For notation and graph theoretic terminology, we in general follow [4,5].
Throughout this paper, we consider only simple and connected graphs. Let G
be a graph with vertex set V = V (G) and edge set E = E(G). The order |V |
of G is denoted by n. For every vertex v ∈ V , the open neighborhood N(v) is
the set {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is the set
N [v] = N(v) ∪ {v}. The degree of a vertex v in a graph G is the number of
edges that are incident to the vertex v and is denoted by deg(v). The minimum
and maximum degree of a graph G are denoted by δ = δ(G) and Δ = Δ(G). A
vertex of degree zero is called an isolated vertex, while a vertex of degree one

158 P. R. L. Pushpam and N. Srilakshmi

is called a leaf vertex or a pendant vertex of G. An edge incident to a leaf is
called a pendant edge. A set S of vertices is called independent if no two vertices
in S are adjacent. A simple graph in which every pair of distinct vertices are
adjacent is called a complete graph. A clique of a simple graph G is a subset S
of V such that G[S] is complete. A connected graph having no cycles is called a
tree. A connected graph with exactly one cycle is called an unicyclic graph. A
support vertex is a vertex which is adjacent to at least one leaf vertex. A weak
support vertex is a vertex which is adjacent to exactly one leaf vertex. A strong
support vertex is a vertex which is adjacent to at least two leaf vertices. For
two positive integers m,n, the complete bipartite graph Km,n is the graph with
partition V (G) = V1 ∪ V2 such that |V1| = m, |V2| = n and such that G[Vi] has
no edges for i = 1, 2, and every two vertices belonging to different partition sets
are adjacent to each other. A complete bipartite graph of the form K1,n is called
a star graph. We call the vertex of deg n − 1, in a star graph as the head vertex.

3 Some Standard Graphs

In this section we determine the exact values for paths, cycles and complete
bipartite graphs. It is clear that for complete graphs Kn, br(G) = 1.

Theorem 1. For any graph G with n ≥ 3, δ(G) = 1 and Δ(G) = n − 1,
br(G) ≤ 2.

Proof. Let f = (V0, V1, V2) be a γr(G)-function. Let v ∈ V (G) such that deg(v)
= n − 1. If G = P3, then br(G) = 2. Suppose that G 	= P3 and v is adjacent to
at least two leaf vertices, then f(v) = 2 and γr(G − e) > γr(G), where e is a
pendant edge of G and therefore br(G) = 1.

Suppose that v is adjacent to exactly one leaf vertex, say u and (DG(v) \{u})
∪ {v} induces a clique. Consider an arbitrary edge e. If e is the pendant edge
incident with v, then G − e = Kn−1 ∪ K1. By assigning 1 to u and 1 to v we see
that γr(G − e) = 2. If e is any non pendant edge incident with v, then V (G − e)
can be partitioned in to two sets V1 and V2 such that V1 induces Kn−2 and V2

induces K2 in which case γr(G − e) = 2. If e is a non pendant edge not incident
with v, then degG−e(v) = n − 1 and hence γr(G − e) = 2. Therefore br(G) ≥
2. Now, γr(G − {e1, e2}) > γr(G) where e1 and e2 are the pendant and a non
pendant edge incident with v respectively. Hence br(G) = 2.

Suppose that (DG(v) \{u}) ∪ {v} does not induce a clique, then clearly for
any edge e which is incident with v, γr(G − e) > γr(G) and hence br(G) = 1.
�
Theorem 2. [6] For n ≥ 4, γr(Cn) = γr(Pn) = � 3n

7 .
Theorem 3. For paths Pn,

br(Pn) =

{
2, n = 3 and n ≡ 5 (mod 7)
1, otherwise.

Weak Roman Bondage Number of a Graph 159

Proof. Let Pn = (v1, v2, . . . , vn). One can easily verify that br(P2) = 1 and br(P3)
= br(P5) = 2 and γr(P4−v1v2) = 3 and therefore br(P4) = 1. Assume that n ≥ 6
and let e = v5v6. Now, we consider the following cases.

Case 1. n 	≡ 5 (mod 7)

γr(Pn − e) = γr(P5) + γr(Pn−5)

= 3 + �3(n − 5)
7

= 1 + �3n

7

> γr(Pn).

Thus, br(Pn) = 1.

Case 2. n ≡ 5 (mod 7).
We claim that br(Pn) = 2. For any arbitrary edge e, γr(Pn − e) = γr(Pk) +
γr(Pn−k), where k ≡ 0, 1, . . . , 6 (mod 7) and k = 1, 2, . . . , �n

2 .

γr(Pn − e) = γr(Pk) + γr(Pn−k)

= �3k

7
 + �3(n − k)

7

= �3n

7

= γr(Pn).

Therefore br(Pn) ≥ 2. Let e1 = v1v2 and e2 = v2v3.

γr(Pn − {e1, e2}) = 2 + γr(Pn−2)

= 2 + �3(n − 2)
7

= 2 +
3n + 5

7
> γr(Pn).

Therefore br(Pn) ≤ 2. Hence, br(Pn) = 2.
�
Theorem 4. For cycles Cn, n ≥ 4

br(Cn) =

{
3, n ≡ 5(mod 7)
2, otherwise.

Proof. Let Cn = (v1, v2, . . . , vnv1). If e is an arbitrary edge of Cn, then Cn −e =
Pn. Further γr(Cn − e) = γr(Pn) = � 3n

7 . Hence, br(Cn) ≥ 2. Now, the theorem
follows from Theorem 3.
�

160 P. R. L. Pushpam and N. Srilakshmi

Theorem 5. For complete bipartite graphs Km,n, 1 ≤ m ≤ n

br(Km,n) =

⎧
⎪⎨

⎪⎩

4, if m = n = 3,

7, if m = n = 4,

m, otherwise.

Proof. Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be the partite sets of
G = Km,n. When m = 1, G is a star and br(G) = 1 = m.

Next, assume that m = 2. If n = 2, then G = C4 and by Theorem 4,
br(G) = 2. If n ≥ 3, for any edge e of G, G − e is a graph which contains
a pendant edge. Without loss of generality, let e = x1y1. Now by assigning 1
to x1 and x2 and 0 elsewhere we see that x2 defends each vertex in Y \ {y1}
and x1 defends y1. Hence γr(G − e) = γr(G) = 2. Therefore br(G) ≥ 2. Now
γr(G − {e1, e2}) = 3 > γr(G) = 2, where e1, e2 are the two edges incident with
y1 and thus br(G) ≤ 2. Therefore br(G) = 2 = m.

When G = K3,3, γr(G) = 3. We claim that br(G) = 4. By assigning 1 to
each member of X and 0 to each member of Y , we see that the removal of any
edge will leave a graph G′ in which K2,3 is a subgraph and γr(G′)= 3. Suppose
that two edges are removed and G′ is the resulting graph. If the two edges are
incident. Then, clearly C4 ∪ K2 is a spanning subgraph of G′ for which γr(G′)
= 3. If the two edges are non incident, then clearly C6 is a spanning subgraph
of G′ for which γr(G′) = 3. Again, if three edges are removed to obtain a graph
G′, then the three edges form either a K1,3 or 3K2 or P3 ∪ K2 or P4. The graph
G′ in the respective cases are G′ = K1 ∪ K2,3, C6, P5, C4 ∪ K2. In all the cases,
we see that γr(G′) = 3. Hence, from the above arguments, br(G) ≥ 4. Now,
γr(G − {e1, e2, e3, e4}) > γr(G), where e1, e2, e3, e4 form a C4 in G. Therefore,
br(G) = 4.

When G = K4,4, let E be a subset of edges such that γr(G−E) > γr(G) = 4.
Assume that |E| < 7. It is evident that K4,4−E contains either of the subgraphs
K2,4 or 4K2 which implies that γr(G − E) = γr(G) = 4. Hence, |E| ≥ 7. Now
let E be the set of all edges incident with both x1 and y1. Then, γr(K4,4 −E) =
5 > γr(K4,4). Hence |E| ≤ 7 and thus br(G) = 7.

When m ≥ 3, n 	= 3, 4, γr(G) = 4. If E is the set of edges with |E| < m and
G1 = G−E, then there are two vertices x ∈ X and y ∈ Y such that NG1(x) = Y
and NG1(y) = X. It follows that γr(G1) = 4 = γr(G) and br(G) ≥ m. However,
if we remove all the edges incident with a vertex in Y , we obtain a graph G2

such that γr(G2) = 5. This shows that br(G) = m.
�

4 Trees

In this section we prove that for trees T , br(T) is bounded above by 3. Further
we characterize trees with br(T) = 3.

Theorem 6. For any tree T with n ≥ 3, br(T) ≤ 3.

Weak Roman Bondage Number of a Graph 161

Proof. Let T be a tree and let f = (V0, V1, V2) be a γr(T)-function. Let v be a
support vertex such that v has exactly one non leaf neighbor. If v is adjacent
to at least three leaf vertices, then clearly, γr(T − e) > γr(T), where e is the
pendant edge incident to v. Hence, br(T) = 1. If v is adjacent to exactly two
leaf vertices, then γr(T − {e1, e2, e3}) > γr(T), where e1 and e2 are the pendant
edges incident with v and e3 is the non-pendant edge incident with v. Therefore,
br(T) ≤ 3. If v is a weak support, let u,w be the leaf and non-leaf neighbors of v
respectively. Let e1 and e2 be the pendant and non-pendant edge incident to v.
If f(v) = 2, then u,w ∈ DT (v). If f(v) = 1, then u ∈ DT (v). If f(v) = 0, then
f(u) = 1 and v ∈ DT (u). In all the cases we see that γr(T − {e1, e2}) > γr(T),
which implies that br(T) ≤ 2 and the theorem is proved.
�

Now, we characterize trees for which br(T) = 3. To facilitate our discussion,
we define the following.

A tree T of order n ≥ 3 is said to be a galaxy if every non-leaf vertex is a
support and is adjacent to exactly two leaf vertices.

We define two families of trees � and �1 as follows. A tree T ∈ �1 if one of
the following holds.

(i) T contains a support vertex which is adjacent to at least three leaf vertices.
(ii) T contains a weak support vertex of degree two.
(iii) T contains two non support vertices x1 and x2 such that N(xi), i = 1, 2

contains exactly deg(xi) − 1 weak support vertices and a vertex z ∈ N(x1)
∩ N(x2) (Refer Fig. 1).

z

x2x1

Fig. 1. A Tree T ∈ �1

Now consider a tree T = T1 /∈ �1. Identify the non-leaf, non strong support
neighbors of strong support vertices and remove them from T1 to obtain a graph
T2. Again remove such vertices from T2 to obtain T3.

In general, let Ti, 1 ≤ i ≤ k be the graph obtained from Ti−1 by removing
such vertices from Ti−1. If Ti ∈ �1, then stop the process. Otherwise, repeat the
process until no such vertices remains.

162 P. R. L. Pushpam and N. Srilakshmi

Now, T ∈ � if the following conditions hold.

1. Each component of Tk is either a K1 or a galaxy.
2. Each vertex x removed in the process satisfies the following conditions.

(i) x is adjacent to at most two K1s.
(ii) At least three vertices in N(x) are in the set A∪B ∪C, where C = ∪K1,

A is the set of all vertices in a subgraph of T which is a galaxy, B is the
set of all removed vertices in T that are adjacent to exactly two K1s.

(iii) If a component of Tk is a P3, then at least one neighbor of its head vertex
is adjacent to two K1s.

Theorem 7. For any tree T ∈ �1, br(T) ≤ 2.

Proof. If either of the conditions (i) or (ii) of �1 are satisfied, then as discussed
in the proof of Theorem 6, br(T) ≤ 2. Suppose that T contains two non-support
vertices x1 and x2 such that N(xi), i = 1, 2 contains exactly deg(xi) − 1 weak
support vertices and a vertex z ∈ N(x1) ∩ N(x2). Then any γr-function f of T
will assign 1 to z and x1, x2 ∈ DT (z). Hence γr(T − zx1) > γr(T) which implies
br(T) = 1. Thus if T ∈ �1, br(T) ≤ 2.
�
Theorem 8. For any tree T with n ≥ 4, br(T) = 3 if and only if T ∈ �.

Proof. Let T be a tree and f = (V0, V1, V2) be a γr(T)-function with br(T) = 3.
We claim that T ∈ �.

Let T = T1. Suppose that T1 ∈ �1, then by Theorem 7, we get a contradic-
tion. Thus, T = T1 /∈ �1. If every non-leaf vertex of T is a strong support and
is adjacent to exactly two leaf vertices, then T is a galaxy and T ∈ �.

Otherwise, identify the non-leaf, non strong support neighbors of strong sup-
port vertices and remove them. Let T2 be the resulting graph. Let X1 be the
set of all vertices removed from T1 to obtain T2. Suppose that T2 ∈ �1, then
there exists a support vertex say v in T2 such that either v is adjacent to at
least three leaf vertices or degree of v is two or two non support vertices x1

and x2 exist satisfying condition (iii) of �1. Suppose that v is adjacent to at
least three leaves. Let v1, v2, v3 be the leaf neighbors of v in T2. If deg(v1) =
deg(v2) = 1 and deg(v3) > 1, then clearly N(v3)\{v} ⊆ X1. Hence, f(v) = 2
and f(vi) = 0, i = 1, 2, 3. Now, γr(T − vv1) > γr(T) which implies that br(T) =
1, a contradiction. If deg(v1) = 1, deg(v2), deg(v3) > 1, then as before γr(T −vv1)
> γr(T), a contradiction. If deg(vi) > 1, i = 1, 2, 3, then either f(v) = 2 or 1.
Suppose f(v) = 2, then f(vi) = 0, i = 1, 2, 3 and γr(T − vv1) > γr(T), a con-
tradiction. Suppose f(v) = 1. Then for each i = 1, 2, 3 there exists a zi such
that zi ∈ N(vi \ {v}), f(zi) = 1 and |DG(zi) | ≥ 1. Therefore, γr(T − vv1) >
γr(T), a contradiction. Suppose that deg(v) = 2. Let v1 be the leaf neighbor of
v and v2 be its non leaf neighbor. If deg(v1) > 1 and deg(v) > 2, then clearly
N(v1) \{v} ⊆ X1 and N(v) \{v1, v2} ⊆ X1. Now, γr(T − vv1, vv2) > γr(T).
This implies br(T) ≤ 2, a contradiction. If deg(v) > 2 and deg(v1) = 1, then
N(v) \{v1, v2} ⊆ X1. Now, γr(T − vv1, vv2) > γr(T). This implies br(T) ≤ 2,
a contradiction. A similar argument holds when deg(v) = 2 and deg(v1) > 1.

Weak Roman Bondage Number of a Graph 163

Suppose that two non support vertices x1 and x2 exist satisfying condition (iii) of
�1. Let z ∈ N(x1) ∩ N(x2), then by weighing all options we see that γr(T −zx1)
> γr(T), and br(T) = 1, contradiction. Hence if T2 ∈ �1, stop the process of
pruning. Otherwise we repeat the process until no such vertex remains. Let Tk

be the final graph. Let X = {x1, x2, . . . , xr} be the vertices removed from T in
the process of successive pruning.

We now prove the following claims.

Claim 1. Each component of Tk is either a K1 or a galaxy.

Suppose to the contrary that there is a component of Tk, say T∗ which is
neither a K1 nor a galaxy. Then T∗ is a K2 and γr(T −e) > γr(T), where e is the
edge of K2. Therefore, br(T) = 1, a contradiction. Now, consider a K1 = {w} in
Tk. It is clear that N(w) ⊆ X. Further each vertex x ∈ X is adjacent to a strong
support vertex in some Ti, 1 ≤ i ≤ k − 1 and hence f can be modified in such
a way that X ⊆ V0. Hence, w will receive the weight 1, under f . Therefore, we
conclude that each K1 receives the weight 1.

Claim 2. Each xi, 1 ≤ i ≤ r is adjacent to at most two K1s.

Suppose to the contrary that some xj is adjacent to at least three K1s. Now,
let g be a function from V → {0, 1, 2} such that g(xj) = 2, g(u) = 0 where u
forms a K1 in Tk and is adjacent to xj and g(x) = f(x) otherwise. However
γr(T − xjw) > γr(T) where w forms a K1 adjacent to xj . Hence br(T) = 1, a
contradiction. Thus, every xi is adjacent to at most two K1s.

Claim 3. At least three vertices in N(xi) for each i are in the set A ∪ B ∪ C.

Before proving the claim, we observe that any vertex in T which is not in
A ∪ B ∪ C is a member of X, which is adjacent to at most one K1. Hence, such
vertices will receive the weight 0 under f . Now, by default, at least one member
in N(xi) is a member of A, say y. Suppose to the contrary that no member other
than y in N(xi) 1 ≤ i ≤ r are members of A ∪ B ∪ C. Then clearly γr(T − e)
> γr(T), where e = xiy. Therefore, br(T) = 1, a contradiction. Also, if exactly
one member in N(xi) other than y is in A ∪ B ∪ C, γr(T − {e1, e2}) > γr(T)
where e1, e2 are the edges incident with xi and having other ends in A ∪ B ∪ C
Therefore br(T) ≤ 2, a contradiction.

Claim 4. If a component of Tk is a P3, then at least one neighbor of its head
vertex is adjacent to two K1s.

Suppose to the contrary that none of the neighbors of the head vertex a of P3

are adjacent to two K1s. Let e1 and e2 be the edges that are incident with a. Let
w be a neighbor of a. If w is adjacent to exactly one K1 = {b}, then N(w) \ {a, b}
⊂ A ∪ X. Now, γr(T − {e1, e2}) > γr(T). Therefore, br(T) = 2, a contradiction.
Also if every member in N(w) \{a} are strong supports, then clearly w ∈ X and
γr(T − {e1, e2}) > γr(T). Therefore, br(T) = 2, a contradiction.

Hence, from the above arguments T ∈ �.

164 P. R. L. Pushpam and N. Srilakshmi

Conversely, suppose that T ∈ �. Then, by the structure of T one can easily
observe that the removal of any single edge or two edges will not alter the value
of γr(T). Further the removal of the three edges incident with any end support
will increase the value of γr(T). Hence br(T) = 3 (Refer Fig. 2).
�

e1

e3e2

Fig. 2. A Tree T ∈ �, where γr(T − {e1, e2, e3}) > γr(T)

5 Unicyclic Graphs

In this section we prove that for unicyclic graphs G, br(G) is bounded above by
4. Further, we characterize unicyclic graphs which attain the upper bound.

Theorem 9. For any unicyclic graph G with Δ(G) ≥ 3, br(G) ≤ 4.

Proof. Let G be a unicyclic graph with cycle C and Δ(G) ≥ 3 and let f =
(V0, V1, V2) be a γr(G)-function. Suppose that G contains a vertex which is not
adjacent to any vertex in C. Let v be an end support vertex in G. Then, as in
Theorem 6, br(G) ≤ 3. Suppose that every vertex not in C is adjacent to some
vertex in C. That is every vertex not in C is of degree one. Then, there exists
at least one vertex in C say z such that z is a support vertex. If z is adjacent to
at least three leaf vertices, then γr(G − e) > γr(G), where e is a pendant edge
incident with z. Hence, br(G) = 1. If z is adjacent to exactly one leaf vertex
then, γr(G − {e1, e2, e3}) > γr(G), where e1 is the pendant edge incident with z
and e2, e3 are the non-pendant edges incident with z. Hence, br(G) ≤ 3. If z is
adjacent to exactly two leaf vertices, then γr(G−{e1, e2, e3, e4}) > γr(G), where
e1, e2 are the pendant edges incident with z and e3, e4 are the non-pendant edges
incident with z. Hence, br(G) ≤ 4.
�

Now we characterize unicyclic graphs with br(G) = 4.

Theorem 10. For any unicyclic graph G with cycle C and Δ(G) ≥ 3, br(G) =
4 if and only if every vertex on the cycle C is of degree 4 and every vertex not
in the cycle is of degree 1.

Proof. Let G be a unicyclic graph with Δ(G) ≥ 3 and let C be the unique cycle
in G. Let f = (V0, V1, V2) be a γr(G)-function. As in the proof of Theorem 9,
if G contains a vertex which is not adjacent to any vertex in C, then we see
that br(G) ≤ 3, a contradiction. Hence, every vertex not in C is of degree one.

Weak Roman Bondage Number of a Graph 165

Now, we claim that every vertex in C is of degree four. Since Δ(G) ≥ 3, choose a
vertex w in C such that deg(w) ≥ 4. If deg(w) ≥ 5, then clearly, γr(G−e) > γr(G)
where e is the pendant edge incident with w. Hence, br(G) = 1, a contradiction.
Suppose that deg(w) = 3, then γr(G−{e1, e2, e3}) > γr(G), where ei, i = 1, 2, 3
are the edges incident at w. Hence, br(G) ≤ 3, a contradiction. If deg(w) = 4
and at least one neighbor of w, say x in C is of degree two. Now, if f(x) = 1,
then |DG(x) | = 1. Therefore, γr(G − {e1, e2, e3}) > γr(G), where e1, e2, e3 are
the edges incident with w other than wx. Hence, br(G) ≤ 3, a contradiction. A
similar argument holds if f(x) = 0. Therefore, every vertex on the cycle C is of
degree 4 and every vertex not in the cycle is of degree 1 (Refer Fig. 3).

Converse is straightforward.
�

Fig. 3. A unicyclic graph G with br(G) = 4

Acknowledgement. The authors are thankful to the referees for their valuable sug-
gestions for the improvement of the paper.

References

1. Bauer, D., Harary, F., Nieminen, J., Suffel, C.L.: Domination alteration sets in
graphs. Discrete Math. 47, 153–161 (1983)

2. Cockayne, E.J., Dreyer, P.A., Hedetniemi, S.M.: Roman domination in graphs.
Discrete Math. 78, 11–22 (2004)

3. Fink, J.F., Jacobson, M.S., Kinch, L.F., Roberts, J.: The bondage number of a
graph. Discrete Math. 86, 47–57 (1990)

4. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Domination in Graphs.
Advanced Topics. Marcel Dekker, New York (1998)

5. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Fundamentals of Domination
in Graphs. Marcel Dekker, New York (1998)

6. Hedetniemi, S.T., Henning, M.A.: Defending the Roman Empire - A new strategy.
Discrete Math. 266, 239–251 (2003)

7. Henning, M.A.: A characterization of Roman trees. Discuss. Math. Graph Theory.
22, 325–334 (2002)

166 P. R. L. Pushpam and N. Srilakshmi

8. Henning, M.A.: Defending the Roman Empire from multiple attacks. Discrete
Math. 271, 101–115 (2003)

9. Jafari Rad, N., Volkmann, L.: Roman bondage in graphs. Discuss. Math. 31, 763–
773 (2011)

10. Revelle, C.S.: Can you protect the Roman Empire? John Hopkins Mag. 2, 70 (1997)
11. Pushpam, P.R.L., Kamalam, M.: Efficient weak Roman domination in graphs.

IJPAM 101(5), 701–710 (2015)
12. Pushpam, P.R.L., Kamalam, M.: Efficient weak Roman domination in Myscielski

graphs. Int. J. Pure Eng. Math. 3(2), 93–100 (2015)
13. Pushpam, P.R.L., Kamalam, M.: Stability of weak Roman domination upon vertex

deletion. Asian J. Math. Comput. Res. 25(2), 97–105 (2018)
14. Pushpam, P.R.L., Kamalam, M.: Effects of vertex deletion on the weak Roman

domination number of a graph. AKCE Int. J. Graphs Comb. 16(2), 204–212 (2019)
15. Pushpam, P.R.L., Mai, T.N.M.M.: On efficient Roman dominatable graphs. J.

Comb. Math. Comput. 67, 49–58 (2008)
16. Pushpam, P.R.L., Mai, T.N.M.M.: Edge Roman domination in graphs. J. Comb.

Math. Comput. 69, 175–182 (2009)
17. Pushpam, P.R.L., Mai, T.N.M.M.: Weak Roman domination in graphs. Discuss.

Math. Graph Theory. 31, 115–128 (2011)
18. Pushpam, P.R.L., Padmapriea, S.: Restrained Roman domination in graphs. Trans.

Comb. 4(1), 1–17 (2015)
19. Pushpam, P.R.L., Padmapriea, S.: Global Roman domination in graphs. Discrete

Appl. Math. 200, 176–185 (2016)
20. Stewart, I.: Defend the Roman Empire. Sci. Am. 281, 136–139 (1991)
21. Xu, J.-M.: On bondage numbers of graphs - a survey with some comments. Int. J.

Comb. 2013 (2013). 34 pages

On the Geodetic and Hull Numbers
of Shadow Graphs

S. V. Ullas Chandran1(B), Mitre C. Dourado2 , and Maya G. S. Thankachy3

1 Department of Mathematics, Mahatma Gandhi College,
Kesavadasapuram, Thiruvananthapuram 695004, India

svuc.math@gmail.com
2 Instituto de Matemtica, Universidade Federal do Rio de Janeiro,

Rio de Janeiro, Brazil
mitre@dcc.ufrj.br

3 Department of Mathematics, Mar Ivanios College, University of Kerala,
Thiruvananthapuram 695015, India

mayagsthankachy@gmail.com

Abstract. Given two vertices u, v in a graph G, a shortest (u, v)-path
in G is called an (u, v)-geodesic. Let IG[u, v] denote the set of all vertices
in G lying on some (u, v)-geodesic. Given a set T ⊆ V (G), let IG[T] =
∪u,v∈T IG[u, v]. If IG[T] = T , we call T a convex set. The convex hull,
denoted by 〈T 〉G, is the smallest convex set containing T . A subset T
of vertices of a graph G is a hull set if 〈T 〉G = V (G). Moreover, T is
a geodetic if IG[T] = V (G). The hull number h(G) of a graph G is
the minimum size of a hull set. The geodetic number g(G) of G is the
minimum size of a geodetic set. The shadow graph, denoted by S(G),
of a graph G is the graph obtained from G by adding a new vertex v′

for each vertex v of G and joining v′ to the neighbors of v in G. In
this paper, we study the geodetic and hull numbers of shadow graphs.
Bounds for the geodetic and hull numbers of shadow graphs are obtained
and for several classes exact values are determined. Graphs G for which
g(S(G)) ∈ {2, 3} are characterized.

Keywords: Convex set · Geodetic number · Hull number · Simplicial
vertex · Shadow graphs

AMS Subject Classification: 05C12 · 05C76

1 Introduction

Convexities in graphs are extensively studied due to their prominent role in
graph theory as well as their contributions to axiomatic convexity theory. Given

M. C. Dourado—Partially supported by Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico, Brazil.
M. G. S. Thankachy—Supported by the University of Kerala for providing University
JRF.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 167–177, 2020.
https://doi.org/10.1007/978-3-030-39219-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_14&domain=pdf
http://orcid.org/0000-0001-9485-1073
https://doi.org/10.1007/978-3-030-39219-2_14

168 S. V. Ullas Chandran et al.

a finite set X, a family C of subsets of X is a convexity on X if ∅ ∈ C,X ∈ C,
and C is closed under intersections [12,13,21]. A set T ⊆ X is said to be C-
convex if T ∈ C. The C-convex hull of T ⊆ X, 〈T 〉C , is the minimum C-convex
set containing T . The cardinality of minimum set whose convex hull is X is the
hull number of C.

The most studied graph convexities are convexities defined by a family of
paths P, in a way that a set T of vertices of G is convex if and only if each
vertex that lies on an (u, v)-path of P belongs to T . In this paper, we consider
the geodetic convexity in graphs. In this convexity, P is the family of geodesics
(shortest paths) of the graph.

One of the most studied numbers associated with graphs is the chromatic
number. The chromatic number χ(G) is the minimum number of colors that can
be assigned to the vertices of G so that adjacent vertices are colored differently.
It is clear that χ(G) ≥ ω(G), where ω(G) is the size of a largest clique in
G. However, a graph G may have arbitrarily large chromatic number without
triangles (ω(G) = 2). In 1955 Jan Mycielski used a fascinating construction
called the Mycielskian or Mycielski graph [9,16]. His construction preserves the
property of being triangle-free but increases the chromatic number. Applying the
construction repeatedly to a triangle-free starting graph, we obtain a triangle-
free graph with arbitrarily large chromatic number. A graph closely related to
this construction is called the shadow graph. The shadow graph S(G) of a graph
G is the graph obtained from G by adding a new vertex v′ for each vertex v of G
and joining v′ to the neighbors of v in G (the vertex v′ is called the shadow vertex
of v). The star shadow graph of a graph G is the graph obtained from the shadow
graph S(G) of G by adding a new vertex s∗(star vertex) and joining s∗ to all
shadow vertices. The Mycielski’s construction consists of repeatedly finding the
star shadow of the previous one beginning with the cycle C5. Particularly, s∗(C5)
is called the Grötzsch graph (a triangle-free graph) with chromatic number four.
The term shadow graph was coined in [9,11].

In this paper, we continue our investigation of hull and geodetic numbers on
shadow graphs. In Sect. 2, we fix the notation, terminologies and discuss some
preliminary results of the geodetic and hull numbers already available in the
literature.

2 Preliminaries

Let G be a connected graph and u, v ∈ V (G). The distance dG(u, v) between u
and v is the minimum number of edges on a (u, v)-path. The maximum distance
between all pairs of vertices of G is the diameter diam(G) of G. A (u, v)-path
of length dG(u, v) is called an (u, v)-geodesic. Then, the geodetic interval IG[u, v]
between vertices u and v of a graph G is the set of vertices x such that there exists
a (u, v)-geodesic which contains x. For T ⊆ V (G) we set IG[T] =

⋃
u,v∈T

IG[u, v].
The set T is a geodetic set if IG[T] = V (G). The geodetic number, denoted
by g(G), is the size of a minimum geodetic set. To simplify the writing, we
may omit the index G in the above notation provided that G is clear from the

On the Geodetic and Hull Numbers of Shadow Graphs 169

context. The geodetic number of a graph was introduced in [14] and [1,2,6–
8,17,18] contain numerous results and references concerning geodetic sets and
the geodetic number.

The set T is convex in G if IG[T] = T . The convex hull 〈T 〉G of T is the
smallest convex set that contains T , and T is a hull set of G if 〈T 〉G is the whole
vertex set of G. A smallest hull set is a minimum hull set of G, its cardinality
is the hull number h(G) of G. The convex hull 〈T 〉G can also be formed from
the sequence {IkG[T]}, k ≥ 0, where I0G[T] = T , I1G[T] = IG[T] and IkG[T] =
IG[Ik−1

G [T]] for k ≥ 2. From some term on, this sequence must be constant.
Let p be the smallest number such that IpG[T] = Ip+1

G [T]. Then IpG[T] is the
convex hull 〈T 〉G. The hull number of a graph was introduced by Everett and
Seidman in [15]. See [2,5,10,17] for recent developments on the hull sets and the
hull number of a graph. The hull number of composition, cartesian product, and
strong product of graphs were studied in [3,4] and [19], respectively. A vertex v
is called a simplicial vertex G if the subgraph induced by the neighbors of v is
complete. The set of all simplicial vertices in a graph G is denoted by simp(G)
and sp(G) = |simp(G)|. A graph is chordal if it contains no induced cycle of
length greater than three. A graph G is an extreme hull graph if the set of all
simplicial vertices forms a hull set. In this paper, we make use of the following
result.

Lemma 1. [2,10] In a connected graph G, each simplicial vertex belongs to
every hull set of G.

3 Hull Number of Shadow Graphs

In this section, we estimate the upper and lower bounds of the hull number of
shadow graphs and simplify the exact values for the shadows of complete graphs,
hyper-cubes, grids, cycles and complete bipartite graphs. We prove a formula for
the hull number of the shadow graph of a tree.

Lemma 2. For any non-trivial connected graph G, a vertex v in S(G) is a
simplicial vertex of S(G) if and only if v is a shadow of a simplicial vertex in G.

Proof. Since NS(G)(v′) = NG(v), it follows that v′ is a simplicial vertex in S(G)
for any simplicial vertex v in G. On the otherhand, let x be any simplicial vertex
of S(G). Then observe that x must be a shadow vertex, say x = v′, shadow of v.
Now, if v is non-simplicial, then there exist non-adjacent neighbors, say s and t
of v in G. This shows that s and t are also non-adjacent neighbors of v′ in S(G),
impossible. Thus v must be simplicial in G. �

Lemma 3. (i) Let x and y be non-adjacent vertices in G. Then
(1) dS(G)(x, y) = dG(x, y).
(2) dS(G)(x, y′) = dG(x, y).
(3) dS(G)(x′, y′) = dG(x, y).

(ii) Let x and y be adjacent vertices in G.Then
(1) dS(G)(x, y)= dG(x, y) = 1.

170 S. V. Ullas Chandran et al.

(2) dS(G)(x, y′) = dS(G)(x, y) = 1.

(3) dS(G)(x′, y′) =

{
2 if xy lies on an induced K3

3 otherwise

Proof. (i) First consider the case x and y are non-adjacent in G. Let dG(x, y) =
d ≥ 2 and let P : x = x0, x1, . . . , xd = y be a (x, y)-geodesic in G. This
shows that x′ is adjacent with x1 and y′ is adjacent with xd−1 in S(G). Hence
x′, x1, x2, . . . , xd−1, y

′ is an (x′, y′)-path of length d in S(G) and so dS(G)(x′, y′) ≤
d. Now, suppose that dS(G)(x′, y′) = k < d. Let Q : x′ = y0, y1, . . . , yk = y′ be
an (x′, y′)-geodesic of length k. Then it follows from the definition of S(G) that
y1, yk−1 ∈ V (G) and xy1, yyk−1 ∈ E(G). Now, suppose that the (y1, yk−1)-
subpath Q1 of Q in S(G) contains a shadow vertex u′ of u, say yi = u′. Then
2 ≤ i ≤ k−2 and yi−1, yi+1 ∈ V (G). Then it follows from the definition of S(G),
the vertex u is adjacent to both yi−1 and yi+1 in G. This shows that (y1, yi−1)-
subpath of Q1 together with the path yi−1, u, yi+1 and the (yi+1, yk−1)-subpath
of Q1 is a (y1, yk−1)-path which has the same length of Q1. Hence for each
shadow vertex in Q1, can be replaced with the corresponding vertex without
changing the length of Q1. Hence without loss of generality, we may assume that
Q1 has no shadow vertices and so Q1 is a path in G. Then Q1 together with the
edges xy1 and yk−1y is an (x, y)-walk of length k in G. Then dG(x, y) ≤ k < d,
a contradiction. Thus dS(G)(x′, y′) = dG(x, y). Proof for the remaining cases are
similar. �

Lemma 4. For every graph G, it holds h(S(G)) ≤ h(G) + sp(G).

Proof. Let T be a hull set of G and T ′ be the set of all vertices of S(G) formed
by the shadow vertices of T . We claim that T ′ ∪ simp(G) is a hull set of S(G).

Observe from Lemma 3 that V (G)\T is contained in the convex hull of T ′.
Next, let v ∈ T\simp(G) and let u,w ∈ NG(v) such that uw /∈ E(G). If u ∈ T ,
then u′ ∈ T ′, otherwise, u belongs to the convex hull of T ′. Therefore, V (G) is
contained in the convex hull of T ′ ∪ simp(G).

Now, by Lemma 2, every shadow vertex not in T ′ is not a simplicial vertex
of S(G), and then it has two non-adjacent neighbors in V (G). �

Theorem 1. For any non-trivial connected graph G of order n,

max{2, sp(G)} ≤ h(S(G)) ≤ min{n, h(G) + sp(G)}.

Proof. The left inequality is an immediate consequence of Lemmas 1 and 2. By
Lemma 4, it remains to prove that h(S(G)) ≤ n. Now, let V ′ be the set of shadow
vertices of V (G) in S(G). We claim that V ′ is a hull set in S(G). For, let v be
any vertex in G. First suppose that degG(v) ≥ 2. Let u and w be two distinct
neighbors of v in G. Then the shadow vertices u′ and w′ of u and w, respectively
are adjacent to v in S(G). This shows that v ∈ IS(G)[u′, w′] ⊆ 〈V ′〉S(G). So,
assume that v is a pendent vertex in G. Let u be the unique neighbor of v in G and
let v′ and u′ be the corresponding shadow vertices of v and u respectively. Then
it follows from Lemma 3 that dS(G)(u′, v′) = 3 and v ∈ IS(G)[u′, v′] ⊆ 〈V ′〉S(G).

On the Geodetic and Hull Numbers of Shadow Graphs 171

This shows that 〈V ′〉S(G) = V (S(G)) and so V ′ is a hull set of S(G). Hence
h(S(G)) ≤ |V ′| = n. �

Now, the following formulas that can be easily deduced from the Theorem 1.
The k-cube Qk has the vertex set {0, 1}k, two vertices being adjacent if they
differ in precisely one coordinate.

• h(S(Kn)) = h(Kn) = n, where n ≥ 2.
• h(S(Km,n)) = h(Km,n) = 2, where m,n ≥ 2.
• h(S(Qn)) = h(Qn) = 2, where n ≥ 2.

• h(S(Cn)) = h(Cn) =
{

2 if n is even
3 if n is odd

• h(S(Gn,m)) = h(Gn,m) = 2, where Gn,m(n,m ≥ 2) is the 2 dimensional grid
of order nm.

In view of Theorem 1, we also have the following result.

Theorem 2. Let G be a connected graph of order n. If h(S(G)) = n, then G is
a chordal graph of diameter at most three.

Proof. First suppose that h(S(G)) = n. Let V ′ denotes the set of all shadow
vertices of V (G) in S(G). We first claim that diam(G) ≤ 3. Assume the con-
trary that there is a shortest path, say u = u0, u1, u2, u3, u4 = v of length
four in G. For each i in the interval 0 ≤ i ≤ 4, let u′

i denote the shadow ver-
tices of ui. Then by Lemma 3, dS(G)(u′

0, u
′
4) = dG(u0, u4) = 4. We prove that

V ′\u2
′ is a hull set of S(G). Since V ′ is a hull set of S(G), it is enough to

prove that u2
′ ∈ IS(G)[V ′\u2

′]. Now, since P : u′
0, u1, u

′
2, u3, u

′
4 is a path of

length four and dS(G)(u′
0, u

′
4) = 4, we know that P is a (u′

0, u
′
4)-geodesic con-

taining the vertex u′
2. Hence u′

2 ∈ IS(G)[u′
0, u

′
4] ⊆ I[V ′\u′

2] and so V ′\u′
2 is a

hull set of S(G). This shows that h(S(G)) ≤ |V ′\u′
2| = n − 1, a contradic-

tion. Thus diam(G) ≤ 3. Now, suppose that G contains an induced cycle, say
C : u1, u2, . . . , un, u1 of length n ≥ 4. As above, we claim that V ′\u1

′ is a hull set
of S(G). Since 〈V ′〉S(G) = V (S(G)), it is enough to prove that u1

′ ∈ IS(G)[V ′\u′
1].

Now, since C is chordless, it follows from Lemma 3 that u1 ∈ IS(G)[u′
2, u

′
n], u3 ∈

IS(G)[u′
2, u

′
4] and un−1 ∈ IS(G)[u′

n−2, u
′
n]. Hence u2, un ∈ I2S(G)[V

′\u′
1]. Thus

u′
1 ∈ IS(G)[un, u2] ⊆ I3S(G)[V

′\u′
1]. This shows that u′

1 ∈ 〈V ′\u′
1〉S(G) and so

V ′ ⊆ 〈V ′\u′
1〉S(G). Hence 〈V ′\u′

1〉S(G) = 〈V ′〉S(G) = V (S(G)). This leads to the
fact that h(S(G)) ≤ |V ′\u′

1| = n − 1, a contradiction. This proves that G is a
chordal graph. �

The converse of Theorem 2 need not be true. Consider the chordal graph
of diameter 2 shown in the Fig. 1. The set T ′ = {v′

1, v
′
4, v

′
5} is the set of all

simplicial vertices of the shadow graph of G. Now, IS(G)[T ′] = T ′ ∪ {v2, v3} and
I2S(G)[T

′] = IS(G)[T ′] and so T ′ is not a hull set of S(G).
On the otherhand, since the set T ′ = {v′

1, v
′
4, v

′
5, v

′
3} is a hull set of S(G). It

follows that h(S(G)) = 4 < 5 = n. This example also shows that the inequalities
in Theorem 1 can be strict.

172 S. V. Ullas Chandran et al.

Fig. 1. G

In the following, we determine a formula for the hull number of shadow graph
of a tree. A vertex v in a tree T is a support vertex if it is adjacent to a pendant
vertex in T . A support vertex v is said to be a first order support vertex of T , if
T − v has atmost one non-trivial component.

Theorem 3. Let T be a tree with k end vertices and l first order support vertices.
Then h(S(T)) = k + l.

Proof. Let v1, v2, . . . , vk be the end vertices of T . Since each end vertex is a sim-
plicial vertex, it follows from Lemma 1 that h(S(T)) ≥ k. Let R be a hull set
of S(T). Then v′

1, v
′
2, . . . , v

′
k ∈ R. Let v be a first order support vertex of T.

Then T − v has at most one non-trivial component. This shows that if v lies on
a (u,w)-geodesic in T , then atleast one end, say u, must be an end vertex of T .
Now, suppose that the shadow vertex v′ of v lies only on a (x, y)-geodesic in S(T),
say P : x = x0, x1, . . . , xi = v′, . . . , xn = y. Then Q : x = x0, x1, . . . , xi =
v, . . . , xn = y is also an (x, y)-geodesic in S(T) containing the vertex v. Now, if Q
contains any shadow vertex, then we can replace each shadow vertex by the cor-
responding vertex in T . Hence we can assume without loss of generality that Q
is (x, y)-geodesic in T containing v. Thus x = u or y = u, say x = u. Also note
that the vertex u lies internally only on (v, v′)-geodesic in S(T). This shows that
either u ∈ R or v′ ∈ R and so |R| ≥ k+ l. Now , on the otherhand consider the set
R′ = {v′

1, v
′
2, . . . , v

′
k, w

′
1, w

′
2, . . . , w

′
l}, where w1, w2, . . . , wl are the first order sup-

port vertices of T . Then IS(G)[R′] = V (S(T)) − {vi}. Then I2S(G)[R
′] = V (S(T)),

implies that R′ is a hull set of S(T). Therefore, h(S(T)) = |R′| = k + l. �

The hull number of the shadow graph of a graph can be significantly small.
For instance, in the class of wheels W1,n(n ≥ 5), one can observe that h(W1,n) =⌊
n
2

⌋
. Whereas, one can easily check that the set T = {u, u′}(u is the vertex

with largest degree in W1,n) is a hull set of the shadow graph of W1,n. Thus
h(S(W1,n)) = 2. In general, if a graph G of order n has a vertex of degree n− 1,
then h(S(G)) = 2. In view of this observation, we leave the following problems
as open.

On the Geodetic and Hull Numbers of Shadow Graphs 173

Problem 1. Characterize graphs G for which h(S(G)) = 2.

Problem 2. Characterize graphs G for which h(S(G)) = 3.

4 Geodetic Number of Shadow Graphs

In this section, we estimate the upper and lower bounds of the geodetic number
of any shadow graph and for several classes of shadow graphs the exact values are
determined. We prove that K2 is the only connected graph in which g(S(G)) = 2;
and the graphs K3 and P3 are the only connected graphs in which g(S(G)) = 3.

Definition 1. For any set T ′ ⊆ V (S(G)), the set π(T ′) is defined as π(T ′) =
{v ∈ V (G) : v ∈ T ′ or v′ ∈ T ′}.
Lemma 5. If T ′ is a geodetic set of S(G), then π(T ′) is a geodetic set of G.

Proof. Let x be any vertex in G such that x /∈ π(T ′). Then x′ /∈ T ′. Since T ′ is a
geodetic set in S(G), there exist vertices u, v ∈ T ′ such that x′ ∈ IS(G)[u, v]. Let
P : u = u0, u1, . . . , ui = x′, . . . , un = v be a (u, v)-geodesic in S(G) containing
the vertex x′. Then ui−1, ui+1 ∈ V (G).
Case 1: Both u, v ∈ V (G). Since dG(u, v) ≥ 2, by Lemma 3, dG(u, v) =
dS(G)(u, v). Now, the path Q : u = u0, . . . , ui−1, x, ui+1, . . . , un = v is a (u, v)-
geodesic in S(G) containing the vertex x. Now, if Q contains any shadow vertex
y′ then we can replace y′ by the corresponding vertex y. Hence without loss of
generality, we may assume that Q has no shadow vertices and so Q is a (u, v)-
geodesic in G containing the vertex x. Thus x ∈ IG[u, v] ⊆ IG[π(T ′)].
Case 2: Both u and v are shadow vertices, say u = r′ and v = t′. Since
x′ ∈ IS(G)[r′, t′], it is clear that dS(G)(r′, t′) ≥ 4 and so dG(r, t) = dS(G)(r′, t′).
This shows that the path Q : r, u1, . . . , ui−1, x, ui+1, . . . , un−1, t is an (r, t)-
geodesic in S(G) containing the vertex x. Again without loss of generality, we
may assume that Q has no shadow vertices and so Q is a (r, t)-geodesic in G
containing the vertex x. Then x ∈ IG[r, t] ⊆ IG[π(T ′)].
Case 3: u = r′ and v ∈ V (G). Again, since x′ ∈ IS(G)[r′, v], we have that v 	= r
and dS(G)(r′, v) ≥ 3. Hence similar to the above cases, we have that the path
Q : r, u1, . . . , ui−1, x, ui+1, . . . , un = v is an (r, v)-geodesic in G containing the
vertex x. Again, we may assume that Q has no shadow vertex and so Q is a
(r, v)-geodesic in G containing the vertex x. Hence x ∈ IG[r, v] ⊆ IG[π(T ′)].
Thus in all cases π(T ′) is a geodetic set in G. �

A set T of vertices in a graph G is an open geodetic set if for each vertex v
in G, either (1) v is a simplicial vertex of G and v ∈ T or (2) v is an internal
vertex of an (x, y)-geodesic for some x, y ∈ T . The minimum size of an open
geodetic set is the open geodetic number og(G) of G. In the following, we obtain
an upper bound for the geodetic number of S(G) in terms of the open geodetic
number of G. The open geodetic number of a graph was introduced and studied
in [20].

174 S. V. Ullas Chandran et al.

Theorem 4. Let G be any connected graph of order n. Then

g(G) ≤ g(S(G)) ≤ min{n, og(G) + sp(G)}.

Proof. Let T ′ be a minimum geodetic set of S(G). Then by Lemma 5, π(T ′) is
a geodetic set of G. Thus g(G) ≤ |π(T ′)| ≤ |T ′| = g(S(G)). On the other hand,
let R be a minimum open geodetic set in G. We claim that T = R∪ simp(S(G))
is a geodetic set of S(G). Observe that V (G) ⊆ IG[R] ⊆ IS(G)[T]. Now let
v′ be any shadow vertex in S(G) corresponding to the vertex v of G. If v is
simplicial, then v′ ∈ T . So, assume that v is non-simplicial. Since R is an open
geodetic set, there exist x, y ∈ R such that v ∈ IG[x, y] with v 	= x and v 	= y.
Let P : x = u0, u1, . . . , ui = v, ui+1, . . . , vn = y with 1 ≤ i ≤ n − 1 be a
(x, y)-geodesic in G containing the vertex v internally. Then by Lemma 3, the
path P : x = u0, u1, . . . , vi−1, v

′, vi+1, . . . , vn = y is an (x, y)-geodesic in S(G)
containing the vertex v′. Hence v′ ∈ IS(G)[T]. This shows that T is a geodetic set
of S(G) and so g(S(G)) ≤ |T | = og(G) + sp(G). Now, as in the case of Theorem
1, one can easily verify that the set of all shadow vertices of V (G) is a geodetic
set of S(G). Thus g(S(G)) ≤ n. Hence the result follows. �

The following two observations are used to characterize graphs G in which
g(S(G)) ∈ {2, 3}.

Observation 5. Let u and v be two distinct vertices in G. Then u ∈ IS(G)[u′, v′]
if and only if u and v are adjacent vertices in G having no common neighbors.

Observation 6. Let u be any vertex in G. Then u′ /∈ IS(G)[u, x] for any x ∈
V (S(G)) distinct from u′.

Theorem 7. Let G be any connected graph. Then g(S(G)) = 2 if and only if
G = P2.

Proof. Let T = {x, y} be a geodetic set in S(G). If x ∈ V (G), then by Obser-
vation 6, x′ /∈ IS(G)[x, y]. Hence x must be a shadow vertex, say x = v′ for some
v ∈ V (G). Now, since T is a geodetic set of S(G), we have that v ∈ IS(G)[x, y].
But, in this case, one can easily observe that v ∈ IS(G)[x, y] if and only if y = u′

where u is adjacent to v in G. This is possible only when G = P2. Hence the
result follows. �

Theorem 8. Let G be any connected graph. Then g(S(G)) = 3 if and only if G
is either K3 or P3.

Proof. First, suppose that G = K3 or G = P3, then one can easily verify that
g(S(G)) = 3. Conversely, assume that g(S(G)) = 3. If G has only three vertices,
then G = K3 or G = P3. So, assume that G contains at least four vertices. Let
T be a geodetic set in S(G) of size three. We consider the following cases.
Case 1: T = {x′, y′, z}, where x′ and y′ are shadow vertices of x and y in
G and z ∈ V (G). First suppose that z = x or z = y, say z = x. Choose
w ∈ V (G) be such that w /∈ {x, y, z} (This is possible because G has at least

On the Geodetic and Hull Numbers of Shadow Graphs 175

four vertices). Now, since dS(G)(x′, x) = 2, it follows that w′ ∈ IS(G)[x′, y′].
This shows that dS(G)(x′, y′) ≥ 4 and hence by Lemma 3, x and y are non-
adjacent in G. This shows that y /∈ IS(G)[x, x′] and so y ∈ IS(G)[y′, x′],
a contradiction to Observation 5. Hence z 	= x and z 	= y. Now, it fol-
lows from Observation 6 that z′ ∈ IS(G)[x′, y′]. Thus dS(G)(x′, y′) ≥ 4. Let
x′ = x0, x1, . . . , xi−1, xi = z′, xi+1, . . . , xn = y′ be an (x′, y′)-geodesic in S(G)
containing the vertex z′. Then xi−1, xi+1 ∈ V (G) and so the path P : x′ =
x0, x1, xi−1, z, xi+1, . . . , xn = y′ is also an (x′, y′)-geodesic containing the ver-
tex z. This shows that z ∈ IS(G)[x′, y′] and so IS(G)[x′, z] ⊆ IS(G)[x′, y′] and
IS(G)[z, y′] ⊆ IS(G)[x′, y′]. This shows that the set U = {x′, y′} is a geodetic set
in S(G), a contradiction to the fact that g(S(G)) = 3.
Case 2: T = {x′, y, z}, where x′ is a shadow vertex of x in G and y, z ∈ V (G).
Now, if x = y or x = z, say x = y, then it follows from Observation 6 that
z′ ∈ IS(G)[y, y′]. This leads to the fact that dS(G)(y, y′) ≥ 3, a contradiction.
Hence x 	= y and x 	= z. Again by Observation 6, z′ ∈ IS(G)[x′, y]. Hence as in the
previous case, we can show that z ∈ IS(G)[x′, y]. Thus IS(G)[x′, z] ⊆ IS(G)[x′, y]
and IS(G)[z, y] ⊆ IS(G)[x′, y]. This leads to the fact that the set U = {x′, y} is a
geodetic set in S(G), a contradiction.
Case 3: T = {x, y, z} ⊆ V (G). By Observation 6, we have that y′ ∈ IS(G)[x, z].
Hence as in the previous cases, y ∈ IS(G)[x, z] and hence U = {x, z} is a geodetic
set in S(G), a contradiction.
Case 4: All the three vertices of T are shadow vertices, say T = {x′, y′, z′}.
Choose w ∈ V (G) be such that w /∈ {x, y, z}. Since T is a geodetic set,
we may assume that w′ ∈ IS(G)[x′, y′]. This shows that dS(G)(x′, y′) ≥ 4.
Hence by Lemma 3, the vertices x and y are non-adjacent in G. Moreover,
dG(x, y) = dS(G)(x′, y′) ≥ 4. Now, by Observation 5, it follows that both
x, y /∈ IS(G)[x′, y′]. Now, suppose that x ∈ IS(G)[x′, z′] and y ∈ IS(G)[y′, z′],
it follows from Observation 5 that both x and y must be adjacent with z in G.
Then dS(G)(x′, y′) = dG(x, y) = 2, a contradiction. Hence either x /∈ IS(G)[x′, z′]
or y /∈ IS(G)[y′, z′], say x /∈ IS(G)[x′, z′] . Now, since T is a geodetic set of
S(G), we have that x ∈ IS(G)[y′, z′]. Moreover, recall that dG(x, y) ≥ 4. This
shows that dS(G)(y′, z′) ≥ 4 and so by Lemma 3, dG(y, z) = dS(G)(y′, z′) ≥ 4.
Now, let P : y′ = u0, u1, . . . , ui−1, ui = x, ui+1, . . . , un = z′ be a (y′, z′)-geodesic
in S(G) containing the vertex x. Note that ui−1 	= y′ and ui+1 	= z′. Now
without loss of generality, we may assume that both ui−1 and ui+1 are ver-
tices in G. Otherwise, if they are shadow vertices, we can replace these ver-
tices by the corresponding vertices in G. This shows that the path P ′ : y′ =
u0, u1, . . . , ui−1, x

′, ui+1, . . . , un = z′ is a (y′, z′)-geodesic containing x′ and so
x′ ∈ IS(G)[y′, z′]. Hence as the previous cases, the set U = {y′, z′} must be a
geodetic set in S(G), a contradiction. Hence the result follows. �

The following result is an immediate consequence of Theorems 4, 7 and 8.

• g(S(Kn)) = g(Kn) = n, where n ≥ 2.
• g(S(Km,n)) = og(Km,n) = 4, where m,n ≥ 2.
• g(S(Qn)) = og(Qn) = 4, where n ≥ 2.
• g(S(Gn,m)) = og(Gn,m) = 4, where n,m ≥ 2.

176 S. V. Ullas Chandran et al.

Theorem 9. Let T be a tree with k end vertices and m support vertices. Then
g(S(T)) = k + m.

Proof. Let v1, v2, . . . , vk be end vertices of T , let u1, u2, . . . , um be the corre-
sponding support vertices and let M ′ be a geodetic set of S(T). Then by Lemma
2, v′

i ∈ M ′ for all i = 1, 2, . . . , k. For each i = 1, 2, . . . , k, if the vertex vi
in S(G) lies internally on an (x, y)-geodesic in S(T), then x = u′

i or y = u′
i,

where ui is the corresponding support vertices of vi. This shows that either
ui ∈ M ′ or vi ∈ M ′. Hence |M ′| ≥ k + m. On the other hand, consider the set
R′ = {v1, v2, . . . , vk} ∪ {u′

1, u
′
2, . . . , u

′
m}. Let x be any vertex of S(T) such that

x /∈ R′.
Case 1: x ∈ V (G). Then x lies on a (vi, vj)-geodesic in T , say
vi = y0, y1, . . . , yr = x, yr+1, . . . , yk = vj . Then by Lemma 3, the path
y′
0, y1, . . . , yr, x, yr+1, . . . , yk−1, y

′
k is an (y′

0, y
′
k)-geodesic in S(T) containing the

vertex x and so x ∈ IS(G)[R′].
Case 2: x = u′, a shadow vertex of u in T . If u is a support vertex, then u′ ∈ R′.
So, assume that u is not a support vertex. This shows that u lies on a (vi, vj)-
geodesic in R′, say vi = y0, y1, . . . , yr = u, yr+1, . . . , yl = vj . Since u is not a
support vertex of T , we have that 2 ≤ r ≤ l − 2.

This shows that by Lemma 3, the path v′
i = y0, y1, . . . , yr−1, u

′, yr+1, . . . , yl =
v′
j is a (v′

i, v
′
j)- geodesic in S(T) containing the vertex u′. Hence R′ is a geodetic

set of S(T) and so g(S(T)) = k + m. �

References

1. Bresar, B., Klavžar, S., Horvat, A.T.: On the geodetic number and related metric
sets in Cartesian product graphs. Discrete Math. 308, 5555–5561 (2008)

2. Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Redwood City (1990)
3. Cagaanan, G.B., Canoy Jr., S.R.: On the hull sets and hull number of the Com-

position graphs. Ars Combinatoria 75, 113–119 (2005)
4. Cagaanan, G.B., Canoy Jr., S.R.: On the hull sets and hull number of the Cartesian

product of graphs. Discrete Math. 287, 141–144 (2004)
5. Chartrand, G., Harary, F., Zhang, P.: On the hull number of a graph. Ars Combi-

natoria 57, 129–138 (2000)
6. Chartrand, G., Harary, F., Swart, H.C., Zhang, P.: Geodomination in graphs. Bull.

ICA 31, 51–59 (2001)
7. Chartrand, G., Zhang, P.: Extreme geodesic graphs. Czechoslovak Math. J.

52(127), 771–780 (2002)
8. Chartrand, G., Harary, F., Zhang, P.: On the geodetic number of a graph. Networks

39(1), 1–6 (2002)
9. Chartrand, G., Zhang, P.: Introduction to Graph Theory. Tata McGraw-Hill

Edition, New Delhi (2006)
10. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: On the hull number

of triangle-free graphs. SIAM J. Discrete Math. 23, 2163–2172 (2010)
11. Garza, G., Shinkel, N.: Which graphs have planar shadow graphs? Pi Mu Epsilon

J. 11(1), 11–20 (1999). Fall
12. Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geometriae Ded-

icata 19, 247–270 (1985)

On the Geodetic and Hull Numbers of Shadow Graphs 177

13. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Alge-
braic Discrete Methods 7, 433–444 (1986)

14. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math.
Comput. Model. 17(11), 89–95 (1993)

15. Everett, M.G., Seidman, S.B.: The hull number of a graph. Discrete Math. 57,
217–223 (1985)

16. Mycielski, J.: Sur le coloriage des graphes. Colloq. Math. 3, 161–162 (1955)
17. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer Briefs in Mathematics.

Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8699-2
18. Santhakumaran, A.P., Ullas Chandran, S.V.: The geodetic number of strong prod-

uct graphs. Discuss. Math. Graph Theory 30(4), 687–700 (2010)
19. Santhakumaran, A.P., Ullas Chandran, S.V.: The hull number of strong product

graphs. Discuss. Math. Graph Theory 31(3), 493–507 (2011)
20. Santhakumaran, A.P., Kumari Latha, T.: On the open geodetic number of a graph.

Scientia Ser. A Math. Sci. 19, 131–142 (2010)
21. Van de Vel, M.: Theory of Convex Structures. North-Holland, Amsterdam (1993)

https://doi.org/10.1007/978-1-4614-8699-2

Indicated Coloring of Complete
Expansion and Lexicographic

Product of Graphs

P. Francis1 , S. Francis Raj2(B) , and M. Gokulnath2

1 Department of Computer Science, Indian Institute of Technology,
Palakkad 678557, India
pfrancis@iitpkd.ac.in

2 Department of Mathematics, Pondicherry University, Puducherry 605014, India
francisraj s@yahoo.com, gokulnath.math@gmail.com

Abstract. Indicated coloring is a slight variant of the game coloring
which was introduced by Grzesik [6]. In this paper, we show that for any
graphs G and H, G[H] is k-indicated colorable for all k ≥ col(G)col(H).
Also, we show that for any graph G and for some classes of graphs
H with χ(H) = χi(H) = �, G[H] is k-indicated colorable if and
only if G[K�] is k-indicated colorable. As a consequence of this result

we show that if G ∈ G =
{
Chordal graphs, Cographs, {P5, C4}-free

graphs, Complete multipartite graphs
}
and H ∈ F =

{
Bipartite graphs,

Chordal graphs, Cographs, {P5, K3}-free graphs, {P5, Paw}-free graphs,
Complement of bipartite graphs, {P5, K4, Kite, Bull}-free graphs, con-
nected {P6, C5, P5, K1,3}-free graphs which contain an induced C6,
K[C5](m1, m2, . . . , m5), {P5, C4}-free graphs, connected {P5, P2 ∪ P3, P5,

Dart}-free graphs which contain an induced C5

}
, then G[H] is k-

indicated colorable for every k ≥ χ(G[H]). This serves as a partial answer
to one of the questions raised by Grzesik in [6].

Keywords: Game chromatic number · Indicated chromatic number ·
Lexicographic product of graphs

2000 AMS Subject Classification: 05C15

1 Introduction

All graphs considered in this paper are simple, finite and undirected. For a family
F of graphs, we say that a graph G is F-free if it contains no induced subgraph
which is isomorphic to a graph in F . The coloring number of a graph G (see [7]),
denoted by col(G), is defined as col(G) = 1 + max

H⊆G
δ(H), where H ⊆ G means

H is a subgraph of G.
The lexicographic product of two graphs G and H, denoted by G[H], is a

graph whose vertex set V (G) × V (H) = {(x, y) : x ∈ V (G) and y ∈ V (H)}
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 178–183, 2020.
https://doi.org/10.1007/978-3-030-39219-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_15&domain=pdf
http://orcid.org/0000-0003-2391-4625
http://orcid.org/0000-0001-5407-0520
http://orcid.org/0000-0002-8819-6102
https://doi.org/10.1007/978-3-030-39219-2_15

Indicated Coloring of Complete Expansion of Graphs 179

and two vertices (x1, y1) and (x2, y2) of G[H] are adjacent if and only if either
x1 = x2 and y1y2 ∈ E(H), or x1x2 ∈ E(G). For each u ∈ V (G), 〈u × V (H)〉 is
isomorphic to H and it is denoted by Hu and for each v ∈ V (H), 〈V (G) × v〉 is
isomorphic to G and it is denoted by Gv.

Let G be a graph on n vertices v1, v2, . . . , vn, and let H1,H2, . . . , Hn be n
vertex-disjoint graphs. An expansion G(H1,H2, . . . , Hn) of G (see [1]) is the
graph obtained from G by
(i) replacing each vi of G by Hi, i = 1, 2, . . . , n, and
(ii) by joining every vertex in Hi with every vertex in Hj whenever vi and vj

are adjacent in G.
For i ∈ {1, 2, . . . , n}, if Hi

∼= Kmi
, then G(H1,H2, . . . , Hn) is said to be

a complete expansion of G and is denoted by K[G](m1,m2, . . . ,mn) or K[G].
For i ∈ {1, 2, . . . , n}, if Hi

∼= Kmi
, then G(H1,H2, . . . , Hn) is said to be an

independent expansion of G and is denoted by I[G](m1,m2, . . . ,mn) or I[G]. It
can be noted that, if m1 = m2 = . . . = mn = m, then K[G](m1,m2, . . . ,mn) ∼=
G[Km] and I[G](m1,m2, . . . ,mn) ∼= G[Km].

The idea of indicated coloring was introduced by Grzesik in [6] as a slight
variant of the game coloring in the following way: in each round the first player
Ann selects a vertex and then the second player Ben colors it properly, using
a fixed set of colors ‘C’. The aim of Ann is to achieve a proper coloring of the
whole graph G, while Ben tries to “block” some vertex. A block vertex means
an uncolored vertex which has all colors from C on its neighbors. The smallest
number of colors required for Ann to win the game on a graph G is known as
the indicated chromatic number of G and is denoted by χi(G). Clearly from the
definition we see that ω(G) ≤ χ(G) ≤ χi(G) ≤ Δ(G) + 1. For a graph G, if
Ann has a winning strategy using k colors, then we say that G is k-indicated
colorable.

Grzesik in [6] has raised the following question: For a graph G, if G is k-
indicated colorable, will it imply that G is also (k + 1)-indicated colorable? One
can equivalently characterize all graphs G which are k-indicated colorable for all
k ≥ χi(G). There has been already some partial answers to this question. See for
instance, [2–4,8]. In this paper, we show that for any graphs G and H, G[H] is
k-indicated colorable for all k ≥ col(G)col(H). Also, we show that for any graph
G and for some special families of graphs H with χ(H) = χi(H) = �, we show
that G[H] is k-indicated colorable if and only if G[K�] is k-indicated colorable.
In addition, we prove that if the graph G ∼= K[H], where H ∈ G =

{
Chordal

graphs, Cographs, {P5, C4}-free graphs, Complete multipartite graphs
}

, then G

is k-indicated colorable for all k ≥ χ(G). As a consequence of these results, we
show that if G ∈ G and H ∈ F =

{
Bipartite graphs, Chordal graphs, Cographs,

{P5,K3}-free graphs, {P5, Paw}-free graphs, Complement of bipartite graphs,
{P5,K4,Kite,Bull}-free graphs, connected {P6, C5, P5,K1,3}-free graphs which
contain an induced C6, K[C5](m1,m2, . . . ,m5), {P5, C4}-free graphs, connected
{P5, P2 ∪ P3, P5,Dart}-free graphs which contain an induced C5

}
, then G[H] is

k-indicated colorable for every k ≥ χ(G[H]).

180 P. Francis et al.

Notations and terminologies not mentioned here are as in [9].

2 Indicated Coloring of Lexicographic Product of Graphs

Let us start Sect. 2 by recalling a result proved in [8].

Theorem 1 ([8]). Any graph G is k-indicated colorable for all k ≥ col(G).

Theorem 2, gives a relation between the indicated coloring of G[H] and the
coloring number of G and H.

Theorem 2. For any graphs G and H, G[H] is k-indicated colorable for all
k ≥ col(G)col(H).

By Theorem 1, we know that col(G[H]) is an upper bound for χi(G[H]).
Without much difficulty, one can show that col(G)col(H) is a better upper bound
for χi(G[H]), that is, col(G[H]) − col(G)col(H) can be arbitrarily large.

We now define a family H of graphs. A graph G belongs to H if Ann has a
winning strategy using χi(G) colors which she can follow until Ben uses χi(G)
colors for the vertices of G and for the remaining vertices she has a way of
extending this to a winning strategy using k colors, for any k ≥ χi(G).

Let us now consider the indicated coloring of the lexicographic product of
any graph G with a graph H ∈ H with χ(H) = χi(H).

Theorem 3. For any graph G and for any graph H ∈ H with χ(H) = χi(H) =
�, G[H] is k-indicated colorable if and only if G[K�] is k-indicated colorable. In
particular, χi(G[H]) = χi(G[K�]).

Proof. Let G be any graph and H ∈ H be a graph with χ(H) = χi(H) = � whose
vertices are u1, u2, . . . , un and v1, v2, . . . , vn′ respectively. Let us first assume that
G[K�] is k-indicated colorable and let stG[K�] denote a winning strategy of Ann
for G[K�] using k colors. Also, let stH be a winning strategy of Ann for H using
� colors. Corresponding to the strategy stH of H, for 1 ≤ i ≤ n, Ann can get a
winning strategy for Hui

, by presenting the vertex (ui, v) whenever v is presented
in the strategy stH . Let us call this winning strategy of Hui

as stHi
. Using the

strategies stG[K�] and stHi
, for 1 ≤ i ≤ n, we shall construct a winning strategy

for Ann for the graph G[H] using k colors as follows.
In stG[K�], if the first vertex presented by Ann belongs to K�ui

, for some
i, 1 ≤ i ≤ n, then let Ann present the first vertex from Hui

by following the
strategy stHi

of Hui
. If Ben colors it with a color, say c1, then we continue with

the strategy stG[K�] by assuming that the color c1 is given to the vertex which
was presented in K�ui

. If the second vertex presented by Ann in the strategy
stG[K�] belongs to K�uj

, for some j (not necessarily distinct from i), 1 ≤ j ≤ n,
then as per the strategy of stHj

, let Ann present the vertices of Huj
until a new

color is given by Ben to a vertex in Huj
, say c2. That is, if Ann presents the

vertices from the same Hui
, then Ann will continue presenting the vertices until

a vertex from a new color class in Hui
is presented. Instead, if Ann presents a

Indicated Coloring of Complete Expansion of Graphs 181

vertex from Huj
, i
= j and 1 ≤ j ≤ n, then that vertex will be a vertex from

a new color class in Huj
. This is because this is the first vertex presented from

Huj
. Then we continue with the strategy stG[K�] by assuming that the color c2 is

given to the vertex presented by Ann in K�uj
. In general, if the vertex presented

by Ann in stG[K�] belongs to K�ur
, for some r, 1 ≤ r ≤ n, then in G[H], let

Ann present the vertices in Hur
by continuing with the strategy stHr

, until a
new color is given by Ben to a vertex in Hur

, say cr. Now we shall continue
with the strategy stG[K�] by assuming that the color cr is given to the vertex
presented by Ann in K�ur

. Repeat this process until all the vertices in G[K�]
have been presented using the strategy stG[K�]. While following this strategy in
G[H], suppose for some p, q, 1 ≤ p ≤ n, 1 ≤ q ≤ n′, Ben creates a block vertex
(up, vq) in G[H]. Then (up, vq) must be adjacent to all the k colors. According
to the Ann strategy for G[H], if a vertex of G[H] in Hup

is adjacent with a
color, then there exists a vertex of G[K�] in K�up

which is adjacent with the
same color. Thereby, there exists an uncolored vertex of G[K�] in K�up

which is
a block vertex, a contradiction to stG[K�] being a winning strategy of G[K�]. So,
Ben cannot create a block vertex in G[H] when Ann follows this strategy.

At this stage, that is, when all the vertices in G[K�] have been presented
using the strategy stG[K�] as shown above, we see that the number of colors
used in Hui

, for 1 ≤ i ≤ n, will be exactly �. Also there maybe some uncolored
vertices left in G[H]. For 1 ≤ i, j ≤ n, the colors given to the vertices of Hui

cannot be given to the vertices of Huj
, for any uj such that uiuj ∈ E(G). Thus

Ben has at least � colors available to color the remaining uncolored vertices of
Hui

. Also by our assumption that H ∈ H, even if the number of colors available
for Ben is �′ ≥ �, Ann will still have a winning strategy to present the remaining
uncolored vertices of Hui

using �′ colors. Hence G[H] is k-indicated colorable.
Next, if G[H] is k-indicated colorable, by using similar technique one can

show that G[K�] is k-indicated colorable.

3 Consequences of Theorem 3

Let us recall some of the results shown in [3,6] and [8].

Theorem 4 ([8]). Let G = G1 ∪ G2. If G1 is k1-indicated colorable for every
k1 ≥ χi(G1) and G2 is k2-indicated colorable for every k2 ≥ χi(G2), then
χi(G) = max{χi(G1), χi(G2)} and G is k-indicated colorable for every k ≥
χi(G).

Theorem 5 ([3,6,8]). Let F =
{
Bipartite graphs, Chordal graphs, Cographs,

{P5,K3}-free graphs, {P5, Paw}-free graphs, Complement of bipartite graphs,
{P5,K4,Kite,Bull}-free graphs, connected {P6, C5, P5,K1,3}-free graphs which
contain an induced C6, K[C5](m1,m2, . . . ,m5), {P5, C4}-free graphs, connected
{P5, P2 ∪ P3, P5,Dart}-free graphs which contain an induced C5

}
. If G ∈ F ,

then G is k-indicated colorable for all k ≥ χ(G).

182 P. Francis et al.

In [3,6,8], if one closely observes the proofs of the families of graphs in F
while showing that they are k-indicated colorable for every k ≥ χ(G), we can see
that the winning strategy of Ann will be independent of the choice of k. Hence
any graph in F is also a graph in H.

Proposition 1 shows that complete expansion of tree-free graphs or cycle-free
graphs is again tree-free or cycle-free respectively.

Proposition 1. Let T be a tree on at least 3 vertices and let G be a T -free graph
or a C�-free graph, � ≥ 4. Then the graph K[G] is also either T -free or C�-free
respectively.

As a consequence of Theorem 5 and Proposition 1, we obtain Corollary 1.

Corollary 1. If G is a chordal graph or a cograph (or) a {P5, C4}-free graph,
then K[G] is k-indicated colorable for all k ≥ χ(K[G]).

Without much difficulty, one can observe that the complete expansion of the
independent expansion of any graph G is k indicated colorable whenever K[G]
is k-indicated colorable. As a consequence, we have Theorem 6.

Theorem 6. Let G be a complete multipartite graph. Then K[G] is k-indicated
colorable for all k ≥ χ(K[G]).

4 Conclusion

For G ∈ {chordal graph, cograph, {P5, C4}-free graph, complete multipartite
graph} and H ∈ F , G[H] is k-indicated colorable for all k ≥ χ(G[H]).

Acknowledgment. For the first author, this research was supported by Post
Doctoral Fellowship, Indian Institute of Technology, Palakkad. And for the sec-
ond author, this research was supported by SERB DST, Government of India,
File no: EMR/2016/007339. Also, for the third author, this research was sup-
ported by the UGC-Basic Scientific Research, Government of India, Student id:
gokulnath.res@pondiuni.edu.in.

References

1. Choudum, S.A., Karthick, T.: Maximal cliques in {P2∪P3, C4}-free graphs. Discrete
Math. 310, 3398–3403 (2010)

2. Francis, P., Francis Raj, S.: Indicated coloring of Cartesian product of some families
of graphs. (to appear in Ars Combinatoria)

3. Francis, P., Francis Raj, S., Gokulnath, M.: On indicated coloring of some classes
of graphs. Graphs and Combinatorics 35(5), 1105–1127 (2019)

4. Francis Raj, S., Pandiya Raj, R., Patil, H.P.: On indicated chromatic number of
graphs. Graphs and Combinatorics 33, 203–219 (2017)

5. Geller, D.P., Stahl, S.: The chromatic number and other functions of the lexico-
graphic product. J. Comb. Theor. Ser. B 19, 87–95 (1975)

6. Grzesik, A.: Indicated coloring of graphs. Discrete Math. 312, 3467–3472 (2012)

Indicated Coloring of Complete Expansion of Graphs 183

7. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, New York (1995)
8. Pandiya Raj, R., Francis Raj, S., Patil, H.P.: On indicated coloring of graphs.

Graphs and Combinatorics 31, 2357–2367 (2015)
9. West, D.B.: Introduction to Graph Theory. Prentice-Hall of India Private Limited,

Upper Saddle River (2005)

Smallest C2l+1-Critical Graphs
of Odd-Girth 2k + 1

Laurent Beaudou1, Florent Foucaud2, and Reza Naserasr3(B)

1 National Research University, Higher School of Economics,
3 Kochnovsky Proezd, Moscow, Russia

lbeaudou@hse.ru
2 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, 33400 Talence, France

florent.foucaud@gmail.com
3 Université de Paris, IRIF, CNRS, 75013 Paris, France

reza@irif.fr

Abstract. Given a graph H, a graph G is called H-critical if G does
not admit a homomorphism to H, but any proper subgraph of G
does. Observe that Kk−1-critical graphs are the classic k-(colour)-critical
graphs. This work is a first step towards extending questions of extremal
nature from k-critical graphs to H-critical graphs. Besides complete
graphs, the next classic case is odd cycles. Thus, given integers l ≥ k
we ask: what is the smallest order η(k, l) of a C2l+1-critical graph of
odd-girth at least 2k + 1? Denoting this value by η(k, l), we show that
η(k, l) = 4k for l ≤ k ≤ 3l+i−3

2
(2k = i mod 3) and that η(3, 2) = 15.

The latter is to say that a smallest graph of odd-girth 7 not admitting a
homomorphism to the 5-cycle is of order 15 (there are at least 10 such
graphs on 15 vertices).

1 Introduction

A k-critical graph is a graph which is k-chromatic but any proper subgraph of
it is (k − 1)-colourable. Extremal questions on critical graphs are a rich source
of research in graph theory. Many well-known results and conjectures are about
this subject, see for example [4,6–8,15]. Typical questions are for example:

Problem 1. What is the smallest possible order of a k-critical graph having a
certain property, such as low clique number, high girth or high odd-girth?

For example, Erdős’ proof of existence of graphs of high girth and high
chromatic number [5] is a starting point for Problem 1. This fact implies that
each of the above questions have a finite answer. The specific question of the
smallest 4-critical graph without a triangle has received considerable attention:
Grötzsch built a graph on 11 vertices which is triangle-free and not 3-colourable.

This work is supported by the IFCAM project Applications of graph homomorphisms
(MA/IFCAM/18/39) and by the ANR project HOSIGRA (ANR-17-CE40-0022).

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 184–196, 2020.
https://doi.org/10.1007/978-3-030-39219-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_16

Smallest C2l+1-Critical Graphs of Odd-Girth 2k + 1 185

Harary [11] showed that any such graph must have at least 11 vertices, and
Chvátal [3] showed that the Grötzsch graph is the only one with 11 vertices.

Every graph with no odd cycle being 2-colourable, in the context of colour-
ing, it is of interest to consider the odd-girth, the size of a smallest odd-cycle
of a graph (rather than the girth). Extending construction of Grötzsch’s graph,
Mycielski [14] introduced the construction, now knows as the Mycielski construc-
tion, to increase the chromatic number without increasing the clique number. A
generalization of this construction is used to build 4-critical graphs of high odd-
girth, more precisely every generalized Mycielski construction on C2k+1, denoted
Mk(C2k+1) is a 4-critical graph. The graph M2(C5) is simply the classic Myciel-
ski construction for C5, that is, the Grötzsch graph. Mk(C2k+1) has odd-girth
2k+1, and several authors (starting with Payan [18]) showed that Mk(C2k+1) is
4-chromatic for any k ≥ 1 and in fact 4-critical, thus providing an upper bound
of 2k2 + k + 1 for the minimum order of a 4-critical graph of odd-girth at least
2k + 1. We refer to [10,16,19,20] for several other proofs. Among these authors,
Ngoc and Tuza [16] asked whether this upper bound of 2k2 + k + 1 is essen-
tially optimal. The best known lower bound is due to Jiang [13], who proved the
bound of (k −1)2 +2, which establishes the correct order of magnitude at Θ(k2)
(see [17] for an earlier but weaker lower bound).

The current work is a first step towards generalizing these extremal questions
for k-critical graphs to H-critical graphs, defined using the terminology of homo-
morphisms. A homomorphism of a graph G to a graph H is a vertex-mapping
that preserves adjacency, i.e., a mapping ψ : V (G) → V (H) such that if x and
y are adjacent in G, then ψ(x) and ψ(y) are adjacent in H. If there exists a
homomorphism of G to H, we may write G → H and we may say that G is
H-colourable. In the study of homomorphisms, it is usual to work with the core
of a graph, that is, a minimal subgraph which admits a homomorphism from the
graph itself. It is not difficult to show that a core of any graph is unique up to
isomorphism. A graph is said to be a core if it admits no homomorphism to a
proper subgraph. We refer to the book [12] for a reference on these notions.

It is a classic fact that homomorphisms generalize proper vertex-colourings.
Indeed a homomorphism of G to Kk is equivalent to a k-colouring of G. However,
the extension of the notion of colour-criticality to a homomorphism-based one
has been almost forgotten. As defined by Catlin [2], for a graph H, (we may
assume H is a core), a graph G is said to be H-critical if G does not have a
homomorphism to H but any proper subgraph of G does. Thus:

Observation 2. A graph G is k-critical if and only if it is Kk−1-critical.

This gives a large number of interesting extremal questions. By Observa-
tion 2, these questions are well-studied when H is a complete graph. The next
most important family to be considered is when H is an odd cycle. This is the
goal of this work. More precisely we ask:

Problem 3. Given positive integers k, l, what is the smallest order η(k, l) of a
C2l+1-critical graph of odd-girth at least 2k + 1?

186 L. Beaudou et al.

In this work, we study Problem 3 when l ≥ 2. As we discuss in Sect. 2, it
follows from a theorem of Gerards [9] that η(k, l) ≥ 4k whenever l ≤ k, and
η(k, k) = 4k. We prove (in Sect. 3) that, surprisingly, η(k, l) = 4k whenever l ≤
k ≤ 3l+i−3

2 (with 2k = i mod 3). We then prove (in Sect. 4) that η(3, 2) = 15. We
conclude with further research questions in the last section. Table 1 summarizes
the known bounds for Problem 3 and small values of k and l.

Note that the value of η(3, 2) indeed was the initial motivation of this work.
In [1], we use the fact that η(3, 2) = 15 to prove that if a graph B of odd-
girth 7 has the property that any series-parallel graph of odd-girth 7 admits a
homomorphism to B, then B has at least 15 vertices.

Table 1. Known values/bounds on the smallest order of a not C2l+1-colourable graph
of odd-girth 2k + 1. Bold values are proved in this paper.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

l = 1 4 11[11] 15–22

[Th. 12]–[18]

17–37

[Co. 13]–[18]

20–56

[Co. 8]–[18]

27–79

[13]–[18]

38–106

[13]–[18]

51–137

[13]–[18]

l = 2 3 8 [Co. 6] 15 [Th. 12] 17–37

[Co. 13]–[18]

20–56

[Co. 8]–[18]

24–79

[Co. 8]–[18]

28–106

[Co. 8]–[18]

32–137

[Co. 8]–[18]

l = 3 3 5 12 [Co. 6] 16 [Th. 10] 20–56

[Co. 8]–[18]

24–79

[Co. 8]–[18]

28–106

[Co. 8]–[18]

32–137

[Co. 8]–[18]

l = 4 3 5 7 16 [Co. 6] 20 [Th. 10] 24–79

[Co. 8]–[18]

28–106

[Co. 8]–[18]

32–137

[Co. 8]–[18]

l = 5 3 5 7 9 20 [Co. 6] 24 [Th. 10] 28 [Th. 10] 32–137

[Co. 8]–[18]

l = 6 3 5 7 9 11 24 [Co. 6] 28 [Th. 10] 32 [Th. 10]

l = 7 3 5 7 9 11 13 28 [Co. 6] 32 [Th. 10]

l = 8 3 5 7 9 11 13 15 32 [Co. 6]

2 Preliminaries

This section is devoted to introduce useful preliminary notions and results.

Circular chromatic number. We recall some basic notions related to circular
colourings. For a survey on the matter, consult [21]. Given two integers p and
q with gcd(p, q) = 1, the circular clique C(p, q) is the graph on vertex set
{0, . . . , p − 1} with i adjacent to j if and only if q ≤ |i − j| ≤ p − q. A homo-
morphism of a graph G to C(p, q) is called a (p, q)-colouring, and the circu-
lar chromatic number of G, denoted χc(G), is the smallest rational p/q such
that G has a (p, q)-colouring. Since C(p, 1) is the complete graph Kp, we have
χc(G) ≤ χ(G). On the other hand C(2l + 1, l) is the cycle C2l+1. Thus C2l+1-
colourability is about deciding whether χc(G) ≤ 2 + 1

l . It is a well-known fact
that C(p, q) → C(r, s) if and only if p

q ≤ r
s (e.g. see [21]), in particular we will

use the fact that C(12, 5) → C5.

Odd-K4’s and a theorem of Gerards. The following notion will be central in our
proofs. An odd-K4 is a subdivision of the complete graph K4 where each of

Smallest C2l+1-Critical Graphs of Odd-Girth 2k + 1 187

the four triangles of K4 has become an odd-cycle [9]. Furthermore, we call it a
(2k + 1)-odd-K4 if each such cycle has length exactly 2k + 1. Since subdivided
triangles are the only odd-cycles of an odd-K4, the odd-girth of a (2k + 1)-odd-
K4 is 2k + 1. The following is an easy fact about odd-K4’s whose proof we leave
as an exercise.

Proposition 4. Let K be an odd-K4 of odd-girth at least 2k + 1. Then, K has
order at least 4k, with equality if and only if K is a (2k+1)-odd-K4. Furthermore,
in the latter case any two disjoint edges of K4 are subdivided the same number
of times when constructing K.

A (2k + 1)-odd-K4 is, more precisely, referred to as an (a, b, c)-odd-K4 if
three edges of a triangle of K4 are subdivided into paths of length a, b and c
respectively (by Proposition 4 this is true for all four triangles). Note that while
the terms “odd-K4” or “(2k +1)-odd-K4” refer to many non-isomorphic graphs,
an (a, b, c)-odd-K4 (a + b + c = 2k + 1) is unique up to a relabeling of vertices.

An odd -K2
3 is a graph obtained from three disjoint odd-cycles and three

disjoint paths (possibly of length 0) joining each pair of cycles [9]. Thus, in such
graph, any two of the three cycles have at most one vertex in common (if the
path joining them has length 0). Hence, an odd-K2

3 of odd-girth at least 2k + 1
has order at least 6k.

Theorem 5. (Gerards [9]). If G has neither an odd-K4 nor an odd-K2
3 as a

subgraph, then it admits a homomorphism to its shortest odd-cycle.

Corollary 6. For any positive integer k, we have η(k, k) = 4k.

Proof. Consider a C2k+1-critical graph G of odd-girth 2k + 1. It follows from
Theorem 5 that G contains either an odd-K4, or an odd-K2

3 . If it contains the
latter, then G has at least 6k vertices. Otherwise, G must contain an odd-K4 of
odd-girth at least 2k + 1, and then by Proposition 4, G has at least 4k vertices.
This shows that η(k, k) ≥ 4k.

Moreover, any (2k + 1)-odd-K4 has order 4k (by Proposition 4) and admits
no homomorphism to C2k+1, showing that η(k, k) ≤ 4k. ��

Since C2l+3 maps to C2l+1 and by transitivity of homomorphisms, a graph
with no homomorphism to C2l+1 also has no homomorphism to C2l+3. Thus:

Observation 7. Let k, l be two positive integers. We have η(k, l) ≥ η(k, l + 1).

We obtain this immediate consequence of Corollary 6 and Observation 7:

Corollary 8. For any two integers k, l with k ≥ l ≥ 1, we have η(k, l) ≥ 4k.

188 L. Beaudou et al.

3 Rows of Table 1

In this section, we study the behavior of η(k, l) when l is a fixed value, that is,
the behavior of each row of Table 1. Note again that whenever l ≥ k+1, η(k, l) =
2k +1. As mentioned before, the first row (i.e. l = 1) is about the smallest order
of a 4-critical graph of odd-girth 2k + 1 and we know η(k, 1) = Θ(k2) [17].

It is not difficult to observe that for k ≥ l, the function η(k, l) is strictly
increasing, in fact with a little bit of effort we can even show the following.

Proposition 9. For k ≥ l, we have η(k + 1, l) ≥ η(k, l) + 2.

Proof. Let G be a C2l+1-critical graph of odd-girth 2k + 3 and order η(k + 1, l).
Consider any (2k + 3)-cycle v0 · · · v2k+2 of G, and build a smaller graph by
identifying v0 with v2 and v1 with v3. It is not difficult to check that the resulting
graph has odd-girth exactly 2k + 1 and does not map to C2l+1 (otherwise, G
would), proving the claim. ��

While we expect that for a fixed l, η(k, l) grows quadratically in terms of k,
we show, somewhat surprisingly, that at least just after the threshold of k = l,
the function η(k, l) only increases by 4 when l increases by 1, implying that
Proposition 9 cannot be improved much in this formulation. More precisely, we
have the following theorem.

Theorem 10. For any k, l ≥ 3 and l ≤ k ≤ 3l+i−3
2 (where 2k = i mod 3), we

have η(k, l) = 4k.

To prove this theorem, we give a family of C2l+1-critical odd-K4’s which are
of odd-girth 2k+1. This is done in the next theorem, after which we give a proof
of Theorem 10.

Given a graph G, a thread of G is a path in G where the internal vertices
have degree 2 in G. When G is clear from the context, we simply use the term
thread.

Theorem 11. Let p ≥ 3 be an integer. If p is odd, any (a, b, c)-odd-K4 with
(a, b, c) ∈ {(p − 1, p − 1, p), (p, p, p)} has no homomorphism to C2p+1. If p is
even, any (p − 1, p, p)-odd-K4 has no homomorphism to C2p+1.

Proof. Let (a, b, c) ∈ {(p − 1, p − 1, p), (p, p, p), (p − 1, p, p)} and let K be an
(a, b, c)-odd-K4. Let t, u, v, w be the vertices of degree 3 in K with the tu-
thread of length a, the uv-thread of length b and the tv-thread of length c. We
now distinguish two cases depending on the parity of p and the values of (a, b, c).

Case 1. Assume that p is odd and (a, b, c) ∈ {(p − 1, p − 1, p), (p, p, p)}. By
contradiction, we assume that there is a homomorphism h of K to C2p+1. Then,
the cycle Ctvw formed by the union of the tv-thread, the vw-thread and the
tw-thread is an odd-cycle of length a + b + c. Therefore, its mapping by h to
C2p+1 must be onto. Thus, u has the same image by h as some vertex u′ of Ctvw.
Note that u′ is not one of t, v or w, indeed by identifying u with any of these

Smallest C2l+1-Critical Graphs of Odd-Girth 2k + 1 189

vertices we obtain a graph containing an odd-cycle of length p or 2p−1; thus, this
identification cannot be extended to a homomorphism to C2p+1. Therefore, u′ is
an internal vertex of one of the three maximal threads in Ctvw. Let Cu be the
odd-cycle of length a + b + c containing u and u′. After identifying u and u′, Cu

is transformed into two cycles, one of them being odd. If (a, b, c) = (p, p, p), then
Cu has length 3p. Then, the two newly created cycles have length at least p + 1,
and thus at most 2p − 1. If (a, b, c) = (p − 1, p− 1, p), then Cu has length 3p − 2,
and the two cycles have length at least p and at most 2p − 2. In both cases, we
have created an odd-cycle of length at most 2p − 1. Hence, this identification
cannot be extended to a homomorphism to C2p+1, a contradiction.

Case 2. Assume that p is even and (a, b, c) = (p − 1, p, p), and that h is a
homomorphism of K to C2p+1. Again, the image of Ctvw by h is onto, and u
has the same image as some vertex u′ of Ctvw. If u′ = t, identifying u and u′

produces an odd (p − 1)-cycle, a contradiction. If u′ ∈ {v, w}, then we get a
(2p − 1)-cycle, a contradiction. Thus, u′ is an internal vertex of one of the three
maximal threads in Ctvw. Let Cu be the odd-cycle of length 3p − 1 containing
u and u′. As in Case 1, after identifying u and u′, Cu is transformed into two
cycles, each of length at least p and at most 2p − 1; one of them is odd, a
contradiction. ��

We note that Theorem 11 is tight, in the sense that if p is odd and (a, b, c) ∈
{(p − 1, p − 1, p), (p, p, p)} or if p is even and (a, b, c) = (p − 1, p, p), any (a, b, c)-
odd-K4 has a homomorphism to C2p−1.

We can now prove Theorem 10.

Proof (Proof of Theorem 10). By Corollary 8, we know that η(k, l) ≥ 4k. We now
prove the upper bound. Recall that η(k, l) ≤ η(k, l − 1). If 2k = 0 mod 3, then
p = 2k+3

3 is an odd integer, and p ≤ l. By Theorem 11, a (p−1, p−1, p)-odd-K4,
which has order 6p−6 = 4k, has no homomorphism to C2p+1, and thus η(k, l) ≤
η(k, p) ≤ 4k. Similarly, if 2k = 1 mod 3, then p = 2k+2

3 is an even integer, and
p ≤ l. By Theorem 11, a (p − 1, p, p)-odd-K4, which has order 6p − 4 = 4k,
has no homomorphism to C2p+1, and thus η(k, l) ≤ η(k, p) ≤ 4k. Finally, if
2k = 2 mod 3, then p = 2k+1

3 is an odd integer, and p ≤ l. By Theorem 11, a
(p, p, p)-odd-K4, which has order 6p − 2 = 4k, has no homomorphism to C2p+1,
and thus η(k, l) ≤ η(k, p) ≤ 4k. ��

4 The Value of η(3, 2)

We now determine η(3, 2), which is not covered by Theorem 11. By Corollary 8,
we know that η(3, 2) ≥ 12. In fact, we will show that η(3, 2) = 15. Using a
computer search, Gordon Royle (private communication, 2016) has found that
there are at least ten graphs of order 15 and odd-girth 7 that do not admit a
homomorphism to C5. For example, see the three graphs of Fig. 1. Thus, η(3, 2) ≤
15. Next, we prove that this upper bound is tight.

190 L. Beaudou et al.

Theorem 12. Any graph G of order at most 14 and odd-girth at least 7 admits
a homomorphism to C5, and thus η(3, 2) = 15.

Proof. We consider a C5 on the vertex set {0, 1, 2, 3, 4} where vertex i is adjacent
to vertices i+1 and i−1 (modulo 5). Thus, in the following, to give a C5-colouring
we will give a colouring using elements of {0, 1, 2, 3, 4} where adjacent pairs are
mapped into (cyclically) consecutive elements of this set.

Fig. 1. Three C5-critical graphs of order 15 and odd-girth 7.

Given a graph G and a vertex v of it, we partition V (G) into four sets
{v}, N1(v), N2(v) and N3+(v) where N1(v) (respectively N2(v)) designates the
set of vertices at distance exactly 1 (respectively 2) of v, and N3+(v) the vertices
at distance 3 or more of v. A proper 3-colouring of G[N3+(v)] using colours c1, c2
and c3 is said to be v-special if:

(i) each vertex with colour c3 is an isolated vertex of G[N3+(v)],
(ii) no vertex from N2(v) sees both colours c1 and c2.

A key observation is the following: given any graph G, if for some vertex
v of G, there exists a v-special colouring of G[N3+(v)], then G maps to C5.
Such a homomorphism is given by mapping c1-vertices to 0, c2-vertices to 1 and
c3-vertices to 3, and then extending as follows:

– for any vertex u in N2(v), if u has a c1-neighbour, map it to 4; otherwise,
map it to 2,

– all vertices of N1(v) are mapped to 3,
– vertex v is mapped to 2 or 4.

Now, let G be a minimal counterexample to Theorem 12. We first collect a
few properties of G. The previous paragraph allows us to state our first claim.

Claim 12.A. For no vertex v of G there is a v-special colouring of G[N3+(v)].

Since G is a minimal counterexample, it cannot map to a subgraph of itself
(which would be a smaller counterexample):

Claim 12.B. Graph G is a core. In particular, for any two vertices u and v of
G, N(u) �⊆ N(v).

Smallest C2l+1-Critical Graphs of Odd-Girth 2k + 1 191

Recall that a walk between two vertices u and v is a sequence of (not neces-
sarily distinct) vertices starting with u and ending with v, where two consecutive
vertices in the sequence are adjacent. A walk between u and v is an uv-walk,
and a k-walk is a walk with k + 1 vertices.

Claim 12.C. For any two distinct vertices u and v of G, there is a uv-walk of
length 5.

Proof of claim. If not, identifying u and v would result in a smaller graph of yet
odd-girth 7 which does not map to C5, contradicting the minimality of G. (�)

Claim 12.D. Graph G has no thread of length 4 or more.

Proof of claim. Once again, by minimality of G, if we remove a thread of length 4,
the resulting graph maps to C5. But since there is a walk of length 4 between
any two vertices of C5, this mapping could easily be extended to G. (�)

Now we can state a more difficult claim.

Claim 12.E. There is no vertex of G of degree 4 or more, nor a vertex of degree
exactly 3 with a second neighbourhood of size 5 or more.

Proof of claim. For a contradiction, suppose that a vertex v has degree 4 or
more, or has degree 3 and a second neighbourhood of size 5 or more.

By Claim 12.B, the neighbours of v should have pairwise distinct neighbour-
hoods, so that even if v has degree 4 or more, we must have |N2(v)| ≥ 4. Thus,
by a counting argument (recall that G has at most 14 vertices), N3+(v) has size
at most 5. Since G has odd-girth 7, this means G[N3+(v)] is bipartite.

Suppose G[N3+(v)] has only one non-trivial connected component. Consider
any proper 3-colouring of G[N3+(v)] such that colours c1 and c2 are used for
the non-trivial connected component, and colour c3 is used for isolated vertices.
Then, no vertex of N2(v) can see both colours c1 and c2, as this would result
in a short odd-cycle in G. Thus, any such colouring is v-special. Such colouring
clearly exists, hence by Claim 12.A, we derive that G[N3+(v)] has at least two
non-trivial components. Since it has order at most 5, it must have exactly two.

Assume now that both non-trivial connected components are isomorphic to
K2. Consider all proper 3-colourings of G[N3+(v)] such that colours c1 and c2
are used for the copies of K2 (the potentially remaining vertex being coloured
with c3). One may check that since by Claim 12.A, none of them is v-special,
and hence there is a short odd-cycle in G, which is a contradiction.

Hence, G[N3+(v)] is isomorphic to the disjoint union of K2 and K2,1. Let u1

and u2 be the vertices of K2, and u3, u4 and u5 be the vertices of K2,1 such that
u4 is the central vertex.

Let ϕ1 and ϕ2 be two proper 2-colourings of G[N3+(v)] as follows: ϕ1(u1) =
ϕ1(u3) = ϕ1(u5) = c1 and ϕ1(u2) = ϕ1(u4) = c2, ϕ2(u2) = ϕ2(u3) = ϕ2(u5) =
c1 and ϕ2(u1) = ϕ2(u4) = c2. Since ϕ1 is not v-special, there is either a vertex t1
adjacent to u2 and u3 (by considering the symmetry of u3 and u5), or a vertex
t′1 adjacent to u1 and u4. Similarly, since ϕ2 is not v-special, either there is a

192 L. Beaudou et al.

vertex t2 adjacent to u1 and one to u3 and u5, or there is a vertex t′2 adjacent to
u2 and u4. The existence of some t′i (for i = 1 or 2), together with any of these
three remaining vertices would result in a short odd-cycle in G. Thus, t1 and t2
must exist and more precisely, t2 has to be a neighbour of u5.

Next, we show that u4 has degree at least 3. Suppose not, then it has degree
exactly 2. Let ϕ3 be a partial C5-colouring of G defined as follows: ϕ3(u1) =
ϕ3(u5) = 0, ϕ3(u2) = 1, ϕ3(u3) = 3 and ϕ3(u4) = 4. Then, no vertex in N2(v)
sees both 0 and 1 (by odd-girth arguments). Thus, we can extend ϕ3 to N2(v)
using only colours 2 and 4 on these vertices. Then, all vertices of N1(v) can be
mapped to 3 and v can be mapped to 2 and G → C5, a contradiction.

Hence, there exists a vertex t3 in N2(v) which is adjacent to u4. Note that,
by the odd-girth condition, t3 has no other neighbour in G[N3+(v)] and, in
particular, it must be distinct from t1 and t2. Vertices t1, t2 and t3 are in N2(v),
so there are vertices s1, s2 and s3 in N1(v) such that si is adjacent to ti for
i between 1 and 3. Moreover, vertices t1, t2 and t3 are pairwise connected by
a path of length 3. Therefore, their neighbourhoods cannot intersect, so that
vertices s1, s2 and s3 are distinct.

Now, consider the partial C5-colouring ϕ3 again. We may extend ϕ3 to N2(v)
by assigning colour 0 to neighbours of u4, colour 4 to neighbours of u1 and u5,
and colour 2 to the rest. If no vertex of N1(v) sees both colours 0 and 4 in N2(v),
we may colour N1(v) with 1 and 3 and colour v with 2, which is a contradiction.
Thus, there exists some vertex x in N1(v) seeing both colours 0 and 4 in N2(v).
The only vertices with colour 0 in N2(v) are neighbours of u4 so that x must be
at distance 2 from u4. Since there is no short odd-cycle in G, vertex x cannot
be at distance 2 from u5. Thus, it is at distance 2 from u1. Let t4 be the middle
vertex of this path from x to u1. Now t4 is a neighbour of u1 which is distinct
from t1, t2 and t3. By the symmetry between u1 and u2, there must be a fifth
vertex t5 in N2(v) which is a neighbour of u2 and distinct from t1, t2, t3 and t4.
Moreover, t5 has a neighbour y in N1(v) that is at distance 2 from u4. We can
readily check that y is distinct from x, s1 and s2. Thus, N1(v) has size at least 4
and N2(v) has size at least 5, which is a contradiction with the order of G (which
should be at most 14). This concludes the proof of Claim 12.E. (�)

Claim 12.F. G contains no 6-cycle.

Proof of claim. Suppose, by contradiction, that G contains a 6-cycle C :
v0, . . . , v5. For a pair vi and vi+2 (addition in indices are done modulo 6) of
vertices of C, the 5-walk connecting them (see Claim 12.C) is necessarily a 5-
path, which we denote by P i. Furthermore, at most one inner-vertex of P i may
belong to C, and if it does, it must be a neighbour of vi or vi+2 (one can check
that otherwise, there is a short odd-cycle in G).

Assume first that none of the six paths P i (0 ≤ i ≤ 5) has any inner-vertex
on C. In this case and by Claim 12.E, we observe that the neighbours of vi in P i

and P i+4 (additions in superscript are modulo 6) are the same. Let v′
i be this

neighbour of vi.
Vertices v′

i , i = 0, 1, . . . , 5 are all distinct, as otherwise we have a short odd-
cycle in G. Let x and y by two internal vertices of P 1 distinct from v′

0 and v′
2.

Smallest C2l+1-Critical Graphs of Odd-Girth 2k + 1 193

By our assumption, x and y are distinct from vertices of C. We claim that they
are also distinct from v′

i, i = 0, . . . , 5. Vertex x is indeed distinct from v′
0 and

v′
2 by the choice of P 0. It is distinct from v′

1, v
′
3 and v′

4 as otherwise there will
be a short odd-cycle. Similarly, y is distinct from v′

0, v
′
1, v

′
2, v

′
4, v

′
5. For the same

reason, we cannot simultaneously have x = v′
5 and y = v′

3. Finally, if we have
x = v′

5 then {v′
0, v1, y, v3, v

′
4} ⊆ N2(x) and d(x) ≥ 3, contradicting Claim 12.E.

As a result, since |V (G)| ≤ 14, x and y are internal vertices of all P i’s. But then
it easy to find a short odd-cycle.

Hence, we may assume, without loss of generality, that P 1 has one inner-
vertex on C, say v′

1 = v0. Let v0x1x2x3v3 be the 4-path connecting v0 and v3
(recall that xi /∈ C for i = 1, 2, 3). We next assume that P 5 does not have any
inner-vertex in C. Then, no vertex of P 5 is a vertex from {x1, x2, x3}, for oth-
erwise we have a short odd-cycle in G. But then, v0 violates Claim 12.E. There-
fore, an inner-vertex of P 5 lies on C, say it is v2 and we have P 5 : v5y1y2y3v2v1.
Then, P 1 and P 5 are vertex-disjoint, for otherwise we have a short odd-cycle in
G. Remark that C together with the union of the paths P i, i = 0, . . . , 5, forms
a (2k + 1)-odd K4, in fact it is a (1, 2, 4)-odd-K4 (a subgraph of C(12, 5)). Now,
because of the odd-girth of G, and by Claim 12.E, the only third neighbour of
v1, if any, is v4 (and vice-versa). Furthermore, the set {x1, x2, x3, y1, y2, y3} of
vertices induces a subgraph matching the xiyi with i = 1, 2, 3. If there is no
additional vertex in G, then G has order 12 and it is a subgraph of C(12, 5).
But then, the circular chromatic number of G is at most 12/5, implying that
G has a homomorphism to C5, a contradiction. Thus, G has order at least 13.
Again by Claim 12.E, any of the two last potentially existing vertices of G can
be adjacent only to x2 or y2. Without loss of generality (considering the sym-
metries of the graph), assume that x2 has an additional neighbour, v. Then,
either v is also adjacent to y2 (then G has order 13), or v and y2 have a common
neighbour, say w. If v is adjacent to both x2 and y2, then there is no edge in
the set {x1, x2, x3, y1, y2, y3} (otherwise we have a short odd-cycle). But then,
we exhibit a homomorphism of G to C5: map x3, y1, v to 0; x2, y2 to 1; v1, x1,
y3 to 2; v0, v2, v4 to 3; v3 and v5 to 4. This is a contradiction. Thus, v and y2
have a common neighbour w, and both v and w are of degree 2. We now create
a homomorphic image of G by identifying v with y2 and w with x2. Then, this
image of G is a subgraph of C(12, 5), and thus the circular chromatic number of
G is at most 12/5, implying that G has a homomorphism to C5, a contradiction.
This completes the proof of Claim 12.F. (�)

Claim 12.G. G contains no 4-cycle.

Proof of claim. Assume by contradiction that G contains a 4-cycle C : tuvw.
As in the proof of Claim 12.F, there must be two 5-paths Ptv : ta1a2a3a4v and
Puw : ub1b2b3b4w connecting t with v and u with w, respectively. Moreover,
these two paths must be vertex-disjoint because of the odd-girth of G. Thus,
the union of C, Ptv and Puw forms a (1, 1, 5)-odd-K4, K. By assumption on the
odd-girth of G, any additional edge inside V (K) must connect an internal vertex
of Ptv to an internal vertex of Puw. But any such edge would either create a

194 L. Beaudou et al.

short odd-cycle or a 6-cycle in G, the latter contradicting Claim 12.F. Thus, the
only edges in V (K) are those of K. If there is no additional vertex in G, we
have two 5-threads in G, contradicting Claim 12.D; thus there is at least one
additional vertex in G, say x, and perhaps a last vertex, y. Note that t, u, v
and w are already, in K, degree 3-vertices with a second neighbourhood of size
4, thus by Claim 12.E none of t, u, v, w, a1, a4, b1 and b4 are adjacent to any
vertex not in K. Thus N(x), N(y) ⊆ {a2, a3, b2, b3, x, y}.

Assume that some vertex not in K (say x) is adjacent to two vertices of
K. Then, these two vertices must be a vertex on the tu-path of K (a2 or a3,
without loss of generality it is a2) and a vertex on the vw-path of K (b2 or
b3). By the automorphism of K that swaps v and w and reverses the vw-path,
without loss of generality we can assume that the second neighbour of x in K
is b3. Then, we claim that G has no further vertex. Indeed, if there is a last
vertex y, since a2 and b3 have already three neighbours, y must be adjacent to
at least two vertices among {a3, b2, x}. If it is adjacent to both a3 and b2, we
have a 6-cycle, contradicting Claim 12.F; otherwise, y is of degree 2 but part of a
4-cycle, implying that G is not a core, a contradiction. Thus, G has order 13 and
no further edge. We create a homomorphic image of G by identifying x and a3.
The obtained graph is a subgraph of C(12, 5). Hence, G has circular chromatic
number at most 12/5 and a homomorphism to C5, a contradiction.

Thus, any vertex not in K has at most one neighbour in K. Since G has no
4-thread, one vertex not in K (say x) is adjacent to one of a2 or a3 (without loss
of generality, say a2), and the last vertex, y, is adjacent to one of b2 and b3 (as
before, by the symmetries of K we can assume it is b2). Moreover, x and y must
be adjacent, otherwise they both have degree 1. Also there is no further edge
in G. But then, as before, we create a homomorphic image of G by identifying
x with b2 and y with a2. The resulting graph is a subgraph of C(12, 5), which
again gives a contradiction. This completes the proof of Claim 12.G. (�)

To complete the proof, we note that since G has no homomorphism to C5, it
also has no homomorphism to C7. Thus, by Theorem 5, G must contain either
an odd-K2

3 or an odd-K4 of odd-girth at least 7. Since such an odd-K2
3 must

have at least 18 vertices, G contains an odd-K4. Let H be such an odd-K4 of
G. Since its girth is at least 7, by Proposition 4 it has at least 12 vertices. We
consider three cases, depending on the order of H. Due to the space limit, the
proofs of these three cases are omitted but can be found in the full version of
the paper. ��

We now deduce the following consequence of Theorem 12 and Proposition 9,
that improves the known lower bounds on η(4, 2) and η(4, 1) (noting that for
larger values of k, the bound of Corollary 8 is already stronger).

Corollary 13. We have η(4, 1) ≥ η(4, 2) ≥ 17.

5 Concluding Remarks

In this work, we have started investigating the smallest order of a C2l+1-critical
graph of odd-girth 2k+1. We have determined a number of previously unknown

Smallest C2l+1-Critical Graphs of Odd-Girth 2k + 1 195

values, in particular we showed that a smallest C5-critical graph of odd-girth 7 is
of order 15. In contrast to the result of Chvátal on the uniqueness of the smallest
triangle-free 4-chromatic graph [3], we have found more than one such graph:
Gordon Royle showed computationally, that there are at least 10 such graphs
(private communication, 2016).

Regarding Table 1, we do not know the growth rate in each row of the table.
Perhaps it is quadratic; that would be to say that for a fixed l, η(k, l) = Θ(k2).
This is indeed true for l = 1, as proved by Nilli [17].

Our last remark is about Theorem 10. We think that for any given k, Theo-
rem 10 covers all values of k for which η(k, l) = 4k.

References

1. Beaudou, L., Foucaud, F., Naserasr, R.: Homomorphism bounds and edge-
colourings of K4-minor-free graphs. J. Comb. Theor. Ser. B 124, 128–164 (2017)

2. Catlin, P.A.: Graph homomorphisms into the five-cycle. J. Comb. Theor. Ser. B
45, 199–211 (1988)

3. Chvátal, V.: The minimality of the mycielski graph. In: Bari, R.A., Harary, F.
(eds.) Graphs and Combinatorics. LNM, vol. 406, pp. 243–246. Springer, Heidel-
berg (1974). https://doi.org/10.1007/BFb0066446

4. Dirac, G.A.: A property of 4-chromatic graphs and remarks on critical graphs. J.
London Math. Soc. 27, 85–92 (1952)

5. Erdős, P.: Graph theory and probability. Can. J. Math. 11, 34–38 (1959)
6. Exoo, G., Goedgebeur, J.: Bounds for the smallest k-chromatic graphs of given

girth. Discrete Math. Theor. Comput. Sci. 21(3), 9 (2019)
7. Gallai, T.: Kritische Graphen I. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8,

165–192 (1963)
8. Gallai, T.: Kritische Graphen II. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8,

373–395 (1963)
9. Gerards, A.M.H.: Homomorphisms of graphs into odd cycles. J. Graph Theor.

12(1), 73–83 (1988)
10. Gyárfás, A., Jensen, T., Stiebitz, M.: On graphs with strongly independent colour

classes. J. Graph Theor. 46(1), 1–14 (2004)
11. Harary, F.: Graph Theory, p. 149. Addison-Wesley, Reading (1969). Exercise 12.19
12. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Lecture Series in Math-

ematics and Its Applications. Oxford University Press, Oxford (2004)
13. Jiang, T.: Small odd cycles in 4-chromatic graphs. J. Graph Theor. 37(2), 115–117

(2001)
14. Mycielski, J.: Sur le coloriage des graphes. Colloq. Math. 3, 161–162 (1955)
15. Năstase, E., Rödl, V., Siggers, M.: Note on robust critical graphs with large odd

girth. Discrete Math. 310(3), 499–504 (2010)
16. Ngoc, N.V., Tuza, Z.: 4-chromatic graphs with large odd girth. Discrete Math.

138(1–3), 387–392 (1995)
17. Nilli, A.: Short odd cycles in 4-chromatic graphs. J. Graph Theor. 31(2), 145–147

(1999)
18. Payan, C.: On the chromatic number of cube-like graphs. Discrete Math. 103(3),

271–277 (1992)
19. Tardif, C.: The fractional chromatic numbers of cones over graphs. J. Graph Theor.

38(2), 87–94 (2001)

https://doi.org/10.1007/BFb0066446

196 L. Beaudou et al.

20. Youngs, D.A.: 4-chromatic projective graphs. J. Graph Theor. 21(2), 219–227
(1996)

21. Zhu, X.: Circular chromatic number, a survey. Discrete Math. 229(1–3), 371–410
(2001)

Ramsey Numbers for Line Graphs

Huzaifa Abbasi, Manu Basavaraju(B), Eeshwar Gurushankar, Yash Jivani,
and Deepak Srikanth

National Institute of Technology Karnataka Surathkal, Mangalore, India
huzaifabbasi@hotmail.com, {manub,yashbalvantbhai.183cs001}@nitk.edu.in,

eeshwarg13@gmail.com, deepak.s@gatech.edu

Abstract. Given a graph, the classical Ramsey number R(k, l) is the
least number of vertices that need to be in the graph for the existence of a
clique of size k or an independent set of size l. Finding R(k, l) exactly has
been a notoriously hard problem. Even R(k, 3) has not been determined
for all values of k. Hence finding the Ramsey number for subclasses
of graphs is an interesting question. It is known that even for claw-
free graphs, finding Ramsey number is as hard as for general graphs for
infinite number of cases. Line graphs are an important subclass of claw-
free graphs. The question with respect to line graph L(G) is equivalent to
the minimum number of edges the underlying graph G needs to have for
the existence of a vertex with degree k or a matching of size l. Chvátal and
Hanson determined this exactly for line graphs of simple graphs. Later
Balachandran and Khare gave the same bounds with a different proof.
In this paper we find Ramsey numbers for line graph of multi graphs
thereby extending the results of Chvátal and Hanson. Here we determine
the maximum number of edges that a multigraph can have, when its
matching number, multiplicity, and maximum degree are bounded, and
characterize such graphs.

Keywords: Ramsey numbers · Extremal graph theory · Edge
extremal graphs · Line graphs

1 Introduction

Extremal graph theory is a branch of graph theory which deals with maximiza-
tion or minimization of some graph parameters like cardinality of the edge set,
the cardinality of the vertex set, the girth of the graph, subject to some con-
straints on the properties of the graph. Here, we look at the specific problem in
extremal graph theory where the number of edges in the graph is the parame-
ter to be maximized with some constraints on other parameters of the graph.
Chvátal and Hanson [4] gave the maximum number of edges possible when the
maximum degree and matching number are bounded. Subsequently Balachan-
dran and Khare [2] obtained the same values with a different proof. In particular,
they proved that the maximum number of edges is (d−1)(m−1)+

⌊
d−1
2

⌋ � m−1
� d−1

2 ��,
where the degree of any vertex is less than d and the matching size is less than m.
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 197–208, 2020.
https://doi.org/10.1007/978-3-030-39219-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_17

198 H. Abbasi et al.

The problem of edge extremality with these constraints has been solved for spe-
cific cases such as for claw-free graphs [5], split graphs [6], unit interval graphs
[6], fuzzy circular interval graphs [3].

This problem is related to Ramsey numbers of graphs. Given a graph, the
classical Ramsey number on graphs, R(k, l) is the least number of vertices that
need to be in the graph for the existence of a clique of size k or an independent
set of size l. It is known that even for claw-free graphs, finding Ramsey number is
as hard as for general graphs for infinite number of cases [7]. Line graphs are an
important subclass of claw-free graphs. The question with respect to line graph
L(G) is equivalent to the minimum number of edges the underlying graph G
needs to have for the existence of a vertex with degree k or a matching of size l.

Let e(d − 1,m − 1) denote the maximum number of edges in a graph with
maximum degree at most d − 1 and matching number at most m − 1. It is easy
to see that R(d,m) = e(d − 1,m − 1) + 1 for line graphs. Chvátal and Hanson
determined this exactly for line graphs of simple graphs. Later Balachadran
and Khare gave the same bounds with a different proof. In this paper we find
Ramsey numbers for line graph of multigraphs thereby extending the results of
Chvátal and Hanson. Here we determine the maximum number of edges that
a multigraph can have, when its matching number, multiplicity, and maximum
degree are bounded, and characterize such graphs.

2 Preliminaries

The graphs that we deal with in this paper are undirected loop-less multigraphs.
The maximum number of edges that can be incident on any vertex in a graph
G is called the maximum degree - denoted by Δ(G) - of the graph. The size
of the maximum matching of a graph G is its matching number - denoted by
ν(G). Since we have multigraphs, the maximum number of edges that can exist
between a pair of vertices is called the multiplicity - denoted by μ(G) - of a
graph G.

We define a family of graphs F(d,m, l) to be the set of all graphs G which
satisfy the properties that Δ(G) < d, ν(G) < m and μ(G) < l. Given any
family of graphs, an edge extremal graph G belonging to that family is a graph
such that any graph H with more edges than G violates at least one of the three
bounds. We define Fe(d,m, l) to be the set of edge extremal graphs in F(d,m, l).
Note that by definition, the number of edges in all the graphs in Fe(d,m, l) is
the same.

A k-star is defined as the bipartite graph K1,k. A graph is said to be factor
critical if the removal of any vertex v yields a perfect matching i.e. (G − v) has
a perfect matching for all vertices v ∈ V (G). A Shannon multigraph Sh(k) is a
multigraph of three vertices with the three possible pairs of vertices having �k

2 �,
�k
2 � and �k+1

2 � edges between them. Note that the number of edges in the graph
Sh(k) is � 3k

2 �.
Let a factor critical component C have r matching edges. We know from

the definition of a factor critical graph that the number of vertices in such a

Ramsey Numbers for Line Graphs 199

component is 2r+1. Let us denote a factor critical component with matching size
r containing the maximum possible number of edges subject to the constraints
of the problem as FCC(r).

In this paper, we prove the following theorem:

Theorem 1. Let s =
⌈

d−1
2(l−1)

⌉
and k =

⌊
1
2

(
d−1
l−1 − 1

)⌋
+1. Then G ∈ Fe(d,m, l)

if G is one of the following:

(1) l − 1 ≥ 5(d − 1)/12 :

G = (m − 1) · Sh(max{d − 1, 2(l − 1)}).

(2) (d − 1)/3 < l − 1 < 5(d − 1)/12 :

G =
⌊m − 1

2

⌋
· FCC(2) +

(⌈m − 1
2

⌉
−

⌊m − 1
2

⌋)
· Sh(2(l − 1)).

(3) l − 1 ≤ (d − 1)/3 :
(3.1) If s = k + 1, m − 1 ≥ s(s − 1) and (d − 1) < 2s(2s−1)(l−1)

2s+1 and (d − 1) <
2s(2s−1)(l−1)−1

2s+1 for even and odd value of d − 1 respectively:
G = a · FCC(s − 1) + b · FCC(s), where a and b are integers such that
m − 1 = a(s − 1) + bs and b < s − 1.

(3.2) If s = k + 1, m − 1 = a(s − 1) + bs with a, b ≥ 0 and a < s and
(d − 1) < 2a(s−1)(2s−1)(l−1)

a(2s−1)−1 and (d − 1) < 2a(s−1)(2s−1)(l−1)+(a−1)
a(2s−1)−1 for

even and odd value of d − 1 respectively:

G = a · FCC(s − 1) + b · FCC(s).

(3.3) Otherwise:
G = b · FCC(s) + a · K1,d−1 such that m − 1 = a + bs with a, b ≥ 0 and
a < s.

3 Proof of Theorem

In this section, we find the number of edges that a graph in Fe(d,m, l) has. We
also provide the structure of one of the graphs having this maximum number of
edges for given d,m and l.

We call a component of a graph trivial if the matching number of that com-
ponent is 1. Any component with greater matching number is called non-trivial.

The number of edges in a factor critical component can be restricted by
either the maximum degree or by the multiplicity of edges. We have the following
lemma:

Lemma 1. Let C be a factor critical component having ν(C) = r, Δ ≤ d − 1
and μ ≤ l − 1. Then, the maximum number of edges in C is equal to

200 H. Abbasi et al.

1. (2r + 1)r(l − 1), if l − 1 < d−1
2r

2.
⌊
(2r+1)(d−1)

2

⌋
, if l − 1 ≥ d−1

2r

Proof. 1. In this case, the maximum degree possible for any vertex is 2r(l − 1).
Thus component C can have at most (2r + 1)r(l − 1) edges. We can realize
this by taking a complete multigraph on 2r+1 vertices with each edge having
multiplicity (l − 1).

2. The maximum degree possible is (d − 1). Now we realize maximum edges
in such component C as follows: We start with an independent set of 2r + 1
vertices. As shown by Walecki [1], a complete graph on an odd number 2r+1 of
vertices can be decomposed into r Hamiltonian cycles. We arbitrarily order
these Hamiltonian cycles from 1 to r. Since each vertex in a Hamiltonian
cycle has, degree 2, adding a Hamiltonian cycle increases the degree of each
vertex by 2. We keep doing this till the degree condition is reached. If the
Hamiltonian cycles get exhausted, we take another set of same Hamiltonian
cycles and keep adding them by adding multiedges between vertices. If d − 1
is even, then we add (d − 1)/2 Hamiltonian cycles to get the required degree
for each vertex, which implies that the number of edges in the component is
(2r+1)(d−1)

2 .
Otherwise, once we reach the degree of

⌊
d−1
2

⌋
, every vertex has degree d − 2.

Then we take the next Hamiltonian cycle and add only the alternate edges to
the graph. That is we are taking a matching of r edges and adding them to the
graph. Thus, all except one vertex will have degree d − 1, and the remaining
vertex will have degree d − 2. The number of edges in the component now is

|E(C)| =
(2r)(d − 1) + (d − 2)

2

=
(2r + 1)(d − 1) − 1

2
.

As |E(C)| must be a whole number, we have |E(C)| =
⌊
(2r+1)(d−1)

2

⌋
. Thus

we get that the factor critical component we created always has
⌊
(2r+1)(d−1)

2

⌋

edges.

Next we give some structural properties about Fe(d,m, l) which aid us in the
proof of the theorem. The first part of the lemma was proved in [2].

Lemma 2. There exists a graph in Fe(d,m, l) in which:

1. all the non-trivial components are factor critical.
2. the matching number of no factor critical component exceeds s =

⌈
d−1

2(l−1)

⌉
.

3. the matching number of no factor critical component is below k =⌊
1
2

(
d−1
l−1 − 1

)⌋
+ 1.

Ramsey Numbers for Line Graphs 201

Proof. 1. Let G ∈ Fe(d,m, l) be a graph which contains a non-trivial component
which is not factor critical. Gallai’s lemma [8] states that a graph is factor
critical if and only if removing any vertex does not reduce the matching
number of the graph. As G is not factor critical, we know that there exists a
vertex v where ν(G\v) < ν(G). Let us define G′ as G′ = G\v ∪ K1,d−1. Then
ν(G′) ≤ ν(G) and since removing v can remove at most d−1 edges |E(G′)| ≥
|E(G)|. Thus G′ ∈ F(d,m, l) contains at least as many edges as G. Thus,
as long as there exists a non-trivial, non-factor critical component, it can be
replaced with the union of a K1,d−1 and a component of smaller matching
number without reducing the number of edges in the graph. This process can
be repeated until either there are no remaining non-trivial components, or all
non-trivial components are factor critical components.

2. Let Ffc(d,m, l) = {G : G ∈ Fe(d,m, l) and all the non-trivial components of
G are factor critical }. For any graph G ∈ Ffc(d,m, l), let νmax(G) indicate
the maximum size of matching in any component of G. Suppose there exists a
G ∈ Ffc(d,m, l) such that νmax(G) ≤

⌈
d−1

2(l−1)

⌉
, then we are done. Otherwise,

let G ∈ Ffc(d,m, l) be a graph such that νmax(G) is as small as possible. Let
C be the set of components in G that have a matching of size r = νmax(G). Let
C ′ be an edge extremal factor critical graph such that ν(C ′) = νmax(G) − 1.
Let C′ be a graph that is |C| copies of C ′ and let G′ = G\C ∪ C′ ∪ |C| · K1,d−1.
That is G′ is a graph obtained by removing all the components in C from G
and adding |C| copies of C ′ as well and |C| copies of K1,d−1 into it. We claim
that G′ ∈ Ffc(d,m, l). It is easy to note that all the non-trivial components
of G′ are factor critical. We know that l − 1 ≥ d−1

2r , where the components in
C have a matching of size r. By using Lemma 1, we have

|E(G′)| − |E(G)| = |C|
(

(d − 1) +
⌊

(2r − 1)(d − 1)
2

⌋
−

⌊
(2r + 1)(d − 1)

2

⌋)

or

|E(G′)| − |E(G)| = |C|((d − 1) − (d − 1)) = 0.

This implies that G′ is edge extremal with matching size ν(G′) = ν(G). We
infer that G′ ∈ Ffc(d,m, l). But this is a contradiction to our choice of G.
Thus our assumption that there exists no graph G ∈ Ffc(d,m, l) such that

νmax(G) ≤
⌈

d−1
2(l−1)

⌉
is not correct. Hence we have proved part (2) of the

Lemma.
3. Let F ′

fc(d,m, l) = {G : G ∈ Ffc(d,m, l) and the matching size of any factor

critical component in G is at most
⌈

d−1
2(l−1)

⌉
, non-trivial components of G

are factor critical }. Let νmin(G) denote the minimum size of a matching of
any non-trivial component in G ∈ F ′

fc(d,m, l). If there exists a G such that
νmin(G) ≥ k, then we are done. Otherwise, G has a factor critical component
C of matching size r < k. Since r ≤ d−1

2(l−1) − 1, the number of edges in

202 H. Abbasi et al.

C is (2r + 1)r(l − 1), but r stars will have r(d − 1) edges. Since d − 1 ≥
2(r + 1)(l − 1), we have r(d − 1) > (2r + 1)(l − 1)r. Thus G is not edge
extremal, a contradiction. Hence we have proved part (3) of the Lemma.

When ν(C) = 1, then the component C is either a triangle or a star. In the
case of a star, adding a parallel edge is equivalent to adding an edge between a
new vertex and the central vertex. In the case of a triangle, parallel edges are
added till either the multiplicity bound or the degree bound is reached. This
splits into 3 cases and enumerating each case gives us the following observation:

Observation 1. When ν = 1, the edge extremal multigraphs are,⎧
⎪⎨

⎪⎩

K1,d−1 when (l − 1) ≤ (d − 1)/3
Sh(2(l − 1)) when (d − 1)/3 < (l − 1) < (d − 1)/2
Sh(d − 1) when (l − 1) ≥ (d − 1)/2

We now come to our main result which enumerates the number of edges in
a graph G ∈ Fe(d,m, l). We consider different cases depending on the relation
between d and l.

Case 1: (l − 1) ≥ 5(d−1)
12 .

Claim 1. If G ∈ Fe(d,m, l) and (l−1) ≥ 5(d−1)
12 then G contains only Shannon

multigraphs Sh(max{d − 1, 2(l − 1)}).

Proof. From Observation 1 and Lemma 2, we have that the graph G can contain
only factor critical components of matching size at most 2 and Shannon multi-
graphs Sh(max{d − 1, 2(l − 1)}) in this range of (l − 1). Let G′ ∈ Fe(d,m, l)
and it has factor critical component C of matching size 2. Let G = G′ \ C ∪ 2 ·
Sh(max{d − 1, 2(l − 1)}). The graph G is obtained by removing factor critical
component C and adding 2 Shannon multigraphs Sh(max{d − 1, 2(l − 1)}) in
graph G′. By using Lemma 1, we have

|E(G)| − |E(G′)| = 2 · max
(⌊

3(d − 1)
2

⌋
, 3(l − 1)

)
−

⌊
5(d − 1)

2

⌋
. (1)

Here |E(G)| − |E(G′)| > 0 for all possible value of (l − 1) in this range, which
means that G′ /∈ Fe(d,m, l), a contradiction. Therefore we infer that G does not
contain any non-trivial factor critical components. This proves the claim.

Case 2: (d − 1)/3 < (l − 1) < 5(d − 1)/12.

Claim 2. If G ∈ Fe(d,m, l) and (d− 1)/3 < (l − 1) < 5(d− 1)/12 then graph G
contains at most one Shannon multigraph Sh(2(l − 1)) and all the other compo-
nents are factor critical components of matching size 2.

Proof. From Observation 1 and Lemma 2, we have that the graph G can con-
tain only factor critical components of matching size at most 2 and Shan-
non multigraphs Sh(2(l − 1)) in this range of (l − 1). Let G′ ∈ Fe(d,m, l)

Ramsey Numbers for Line Graphs 203

be a graph with more than 1 Shannon multigraphs Sh(2(l − 1)). Let graph
G = G′ \2 ·Sh(2(l−1))∪C. That is, the graph G which is obtained by removing
2 Shannon multigraphs Sh(2(l − 1)) and adding 1 factor critical component C
of matching size 2 in G′. By using Lemma 1, we have

|E(G)| − |E(G′)| =
⌊

5(d − 1)
2

⌋
− 2(3(l − 1)). (2)

Here |E(G)| − |E(G′)| > 0 for all possible value of (l − 1) in this range, which
means G′ �∈ Fe(d,m, l), a contradiction. Hence we infer that G contains at most
one Shannon multigraph Sh(2(l − 1)) and all the other components are factor
critical components of matching size 2.

Case 3: (l − 1) ≤ (d − 1)/3.
Note that in this case s ≥ 3 and k ≥ 2, where k and s are same as in

statement of Lemma 2. We stat with an interesting observation.

Proposition 1. Let s = k +1 and let G ∈ Fe(d,m, l). Then G does not contain
both a factor critical component of matching size k and a component K1,d−1 in
it.

Proof. Suppose not. Then G contains a factor critical component of matching
size k and a component K1,d−1 in it. We obtain a graph G′ from G by deleting a
component of matching size k and a component K1,d−1 and adding a component
of matching size k + 1. Notice that ν(G) = ν(G′). Now we compare edges of G
and G′: If (d − 1) is even:

|E(G′)| − |E(G)| =
(2s + 1)(d − 1)

2
− (2s − 1)(s − 1)(l − 1) − (d − 1).

Since d − 1 > 2(s − 1)(l − 1) and s ≥ 3, we have that,

|E(G′)| − |E(G)| =
(2s − 1)

2
((d − 1) − 2(s − 1)(l − 1)) ≥ 1.

If (d − 1) is odd:

|E(G′)| − |E(G)| =
(2s + 1)(d − 1) − 1

2
− (2s − 1)(s − 1)(l − 1) − (d − 1).

Since d − 1 > 2(s − 1)(l − 1) and s ≥ 3, we have that,

|E(G′)| − |E(G)| =
(2s − 1)

2
((d − 1) − 2(s − 1)(l − 1)) − 1

2
≥ 1.

This is a contradiction to our assumption that G is edge extremal. Therefore
we infer that G does not contain both a factor critical component of matching
size k and a component K1,d−1 in it.

204 H. Abbasi et al.

From Lemma 2, Observation 1 and Proposition 1, we can infer that graph
G will either contain factor critical components of matching size s and stars
or factor critical components of matching size s and s − 1. Let Ns(G) denote
the number of factor critical components of matching size s in G and Ns−1(G)
denote the number of factor critical components of matching size s− 1 in G. We
leave out G, when the graph considered is clear from the context. Let F ′

e(d,m, l)
be a set of all possible edge extremal graphs which contains only factor critical
components of size s or s − 1. We have the following lemma:

Lemma 3. If F ′
e(d,m, l) �= ∅, then there exist a graph G ∈ F ′

e(d,m, l) such that
either Ns(G) < s − 1 or Ns−1(G) < s.

Proof. If there exist G ∈ F ′
e(d,m, l) which satisfies either Ns(G) < s − 1 or

Ns−1(G) < s, then we are done. If not, then all the graphs G ∈ F ′
e(d,m, l) will

have Ns(G) ≥ s − 1 and Ns−1(G) ≥ s. Suppose (d − 1) is even, then let

(d − 1) <
2s(2s − 1)(l − 1)

2s + 1
, (3)

and if (d − 1) is odd, then let

(d − 1) <
2s(2s − 1)(l − 1) − 1

2s + 1
. (4)

Let G′ be a graph obtained by removing s − 1 factor critical components
of matching size s from graph G and adding s factor critical components of
matching size s − 1. We claim that G′ ∈ F ′

e(d,m, l). To prove this claim we will
compare the number of edges in G and G′.
If (d − 1) is even:

|E(G′)| − |E(G)| =
s(2s − 1)(2s − 1)(l − 1)

2
− (s − 1)(2s + 1)(d − 1)

2

=
s − 1

2
(2s(2s − 1)(l − 1) − (2s + 1)(d − 1)). (5)

If (d − 1) is odd:

|E(G′)| − |E(G)| =
s(2s − 1)(2s − 1)(l − 1)

2
− (s − 1)(2s + 1)(d − 1) − 1

2

=
s − 1

2
(2s(2s − 1)(l − 1) − (2s + 1)(d − 1) − 1). (6)

For the given values of d−1, we have that |E(G′)|− |E(G)| > 0, a contradic-
tion since G is edge extremal. This implies that for the given degree conditions,
there exists a graph G ∈ F ′

e(d,m, l) such that Ns(G) < s − 1 or Ns−1(G) < s.
On the other hand, if Eqs. 3 and 4 does not satisfy, then for even value of

(d − 1) we have:

(d − 1) ≥ 2s(2s − 1)(l − 1)
2s + 1

, (7)

Ramsey Numbers for Line Graphs 205

and for odd value of (d − 1) we have:

(d − 1) ≥ 2s(2s − 1)(l − 1) − 1
2s + 1

. (8)

Let G be an edge extremal graph that has Ns(G) ≥ s − 1 and Ns−1(G) ≥ s
with Ns−1(G) as small as possible. Let G′ be a graph obtained by removing s
factor critical components of matching size s− 1 from graph G and adding s− 1
factor critical components of matching size s. We claim that G′ ∈ F ′

e(d,m, l).
To prove this claim we will compare the number of edges in G and G′.
if (d − 1) is even:

|E(G′)| − |E(G)| =
(s − 1)(2s + 1)(d − 1)

2
− s(2s − 1)(2s − 1)(l − 1)

2

=
s − 1

2
((2s + 1)(d − 1) − 2s(2s − 1)(l − 1)). (9)

If (d − 1) is odd:

|E(G′)| − |E(G)| =
(s − 1)(2s + 1)(d − 1) − 1

2
− s(2s − 1)(2s − 1)(l − 1)

2

=
s − 1

2
((2s + 1)(d − 1) + 2s(2s − 1)(l − 1) + 1). (10)

For the given values of d − 1, we have that |E(G′)| − |E(G)| ≥ 0, which
implies that G′ is edge extremal. Also, we have that Ns−1(G′) < Ns−1(G), a
contradiction to the choice of G. This implies that for the given degree conditions,
there exists a graph G ∈ F ′

e(d,m, l) such that Ns(G) < s − 1 or Ns−1(G) < s.
This proves the lemma.

Claim 3. Let m − 1 ≥ s(s − 1), k = s − 1 and (d − 1) obeys Eqs. 3 or 4 of
Lemma 3. Then F ′

e(d,m, l) �= ∅.
Proof. Suppose F ′

e(d,m, l) = ∅. Then by Lemma 1, we have that there exists
a graph G′ ∈ Fe(d,m, l) which is a disjoint union of stars and factor critical
components of matching size s. From Lemma 2 graph G′ contains at most (s−1)
stars and Ns(G′) ≥ (s − 1). Let G be a graph obtained by removing s − 1
factor critical components of matching size s from G′ and adding s factor critical
component of matching size s − 1. Here G has more edges then G′ according to
Lemma 3 and Eqs. 3 or 4. This implies that the graph G′ is not edge extremal,
a contradiction. Hence we have that F ′

e(d,m, l) �= ∅.

Claim 4. Let k = s − 1 and (m − 1) be an integer that can be written as
m − 1 = a(s − 1) + bs with a, b ≥ 0 and a < s. Also if (d − 1) is even, let

(d − 1) <
2a(s − 1)(2s − 1)(l − 1)

a(2s − 1) − 1
. (11)

If (d − 1) is odd, let

(d − 1) <
2a(s − 1)(2s − 1)(l − 1) + (a − 1)

a(2s − 1) − 1
. (12)

206 H. Abbasi et al.

Then F ′
e(d,m, l) �= ∅.

Proof. Suppose F ′
e(d,m, l) = ∅. Then by Lemma 2, we have that there exists

a graph G′ ∈ Fe(d,m, l) which is a disjoint union of stars and factor critical
components of matching size s. Let t denote the number of stars in graph G′ and
r = s−t. Let G be a graph obtained by removing all stars and r−1 factor critical
components of matching size s from G′ and adding r factor critical components
of matching size s−1. Here we can see that r = Ns−1(G). Now we try to compare
the number of edges in graph G and G′. If (d − 1) is even

|E(G)| − |E(G′)| =
r(2s − 1)(s2 − 2)(l − 1)

2
− (s − r)(d − 1)

− (r − 1)(2s + 1)(d − 1)
2

=
r(2s − 1)(2s − 2)(l − 1)

2
− (d − 1)(r(2s − 1) − 1)

2
.

(13)

If (d − 1) is odd

|E(G)| − |E(G′)| =
r(2s − 1)(s2 − 2)(l − 1)

2
− (s − r)(d − 1)

− (r − 1)((2s + 1)(d − 1) − 1)
2

=
r(2s − 1)(2s − 2)(l − 1)

2
− (d − 1)(r(2s − 1) − 1)

2
− (r − 1).

(14)

Equations. 13 and 14 will have positive values for any possible value of (d − 1)
as in Eqs. 11 and 12. This implies that the graph G′ is not edge extremal, a
contradiction. Hence we have that F ′

e(d,m, l) �= ∅.

Notice that if a graph G ∈ F ′
e(d,m, l), then the conditions given in Claim 3

and 4 have to be true. Otherwise, the edge extremal graph contains only stars
and factor critical components of size s. Hence we get G with a stars and b
factor critical components of matching size s, where a, b ≥ 0 and a < s, such
that m − 1 = a + bs. This along with Claim 1, Claim 2, Claim 3 and Claim 4
proves Theorem 1.

We also give the number of edges corresponding to the graphs we have
described in Theorem 1, below:

Theorem 2. Let F(d,m, l) be the set of all edge extremal graphs G which satisfy
the properties that Δ(G) < d, ν(G) < m and μ(G) < l. Also, let s =

⌈
d−1

2(l−1)

⌉

and k =
⌊
1
2

(
d−1
l−1 − 1

)⌋
+1. Then the number of edges in a graph G ∈ F(d,m, l)

is given below:

(1) l − 1 ≥ 5(d − 1)/12 :

|E| = (m − 1) · max
(⌊

3(d − 1)
2

⌋
, 3(l − 1)

)
.

Ramsey Numbers for Line Graphs 207

(2) (d − 1)/3 < l − 1 < 5(d − 1)/12 :

|E| =
⌊

m − 1
2

⌋
·
⌊

5(d − 1)
2

⌋
+

(⌈
m − 1

2

⌉
−

⌊
m − 1

2

⌋)
· 3(l − 1).

(3) l − 1 ≤ (d − 1)/3 :
(3.1) If s = k + 1, m − 1 ≥ s(s − 1) and (d − 1) < 2s(2s−1)(l−1)

2s+1 and (d − 1) <
2s(2s−1)(l−1)−1

2s+1 for even and odd value of d − 1 respectively:

|E| =

(
s
⌊
m−1
s−1

⌋
− (m − 1)

)
(2s − 1)(2s − 2)(l − 1)

2

+
(

m − 1 − (s − 1)
⌊

m − 1
s − 1

⌋)⌊
(2s + 1)(d − 1)

2

⌋
.

(3.2) If s = k + 1, m − 1 = a(s − 1) + bs with a, b ≥ 0 and a < s and
(d − 1) < 2a(s−1)(2s−1)(l−1)

a(2s−1)−1 and (d − 1) < 2a(s−1)(2s−1)(l−1)+(a−1)
a(2s−1)−1 for

even and odd value of d − 1 respectively:

|E| =

(
s − m + 1 + s

⌊
m−1
s

⌋)
(2s − 1)(2s − 2)(l − 1)

2

+
(⌊

m − 1
s

⌋
(1 − s) − s + m

) ⌊
(2s + 1)(d − 1)

2

⌋
.

(3.3) Otherwise:

|E| =
(

m − 1 − s

⌊
m − 1

s

⌋)
(d − 1) +

(⌊
m − 1

s

⌋) ⌊
(2s + 1)(d − 1)

2

⌋
.

4 Conclusion

The main result of this paper has been summarized by Theorem 2. It gives
the maximum number of edges in a graph bounded by degree, matching and
multiplicity. This result is a generalization of the result obtained by [2,4]. Setting
l = 2 matches the result given by [2,4]. Here we have k = s when setting l = 2
and also the graph does not contain Shannon multigraphs. Hence this comes in
case 3.3 of our result and can be derived as below:

1. If (d − 1) is even

|E| =
⌊

m − 1
s

⌋(
(2s + 1)(d − 1)

2

)
+

(
(m − 1) − s

⌊
m − 1

s

⌋)
(d − 1). (15)

After putting value of s,

|E| = (m − 1)(d − 1) +
(

d − 1
2

)⌊
2(m − 1)

d − 1

⌋
. (16)

208 H. Abbasi et al.

2. If (d − 1) is odd

|E| =
⌊

m − 1
s

⌋(
(2s + 1)(d − 1) − 1

2

)
+

(
(m − 1) − s

⌊
m − 1

s

⌋)
(d − 1).

(17)
After putting value of s,

|E| = (d − 1)(m − 1) +
⌊

d − 1
2

⌋ ⌊
m − 1
⌈
d−1
2

⌉

⌋

. (18)

References

1. Alspach, B.: The wonderful walecki construction. Bull. Inst. Comb. Appl. 52, 7–20
(2008)

2. Balachandran, N., Khare, N.: Graphs with restricted valency and matching number.
Discrete Math. 309(12), 4176–4180 (2009)

3. Belmonte, R., Heggernes, P., van’t Hof, P., Rafiey, A., Saei, R.: Graph classes and
ramsey numbers. Discrete Appl. Math. 173, 16–27 (2014)

4. Chvátal, V., Hanson, D.: Degrees and matchings. J. Comb. Theor. Ser. B 20(2),
128–138 (1976)

5. Dibek, C., Ekim, T., Heggernes, P.: Maximum number of edges in claw-free graphs
whose maximum degree and matching number are bounded. Discrete Math. 340(5),
927–934 (2017)

6. Maland, E.K.: Maximum number of edges in graph classes under degree and match-
ing constraints. Master’s thesis, University of Bergen, Norway (2015)

7. Matthews, M.M., Sumner, D.P.: Longest paths and cycles in k1,3-free graphs. J.
Graph Theor. 9(2), 269–277 (1985)

8. West, D.B.: Introduction to Graph Theory, vol. 2. Prentice hall, Upper Saddle River
(2001)

Δ-Convexity Number and Δ-Number
of Graphs and Graph Products

Bijo S. Anand1(B), Prasanth G. Narasimha-Shenoi2 , and Sabeer Sain Ramla3

1 Department of Mathematics, Sree Narayana College, Punalur,
Kollam 691305, Kerala, India

bijos anand@yahoo.com
2 Department of Mathematics, Government College, Chittur,

Palakkad 678104, Kerala, India
prasanthgns@gmail.com

3 Department of Mathematics, Mar Ivanios College, University of Kerala,
Thiruvananthapuram 695015, India

sabeersainr@gmail.com

Abstract. The Δ-interval of u, v ∈ V (G), IΔ(u, v), is the set formed by
u, v and every w in V (G) such that {u, v, w} is a triangle (K3) of G. A set
S of vertices such that IΔ(S) = V (G) is called a Δ-set. Δ-number is the
minimum cardinality of a Δ-set. Δ-graph is a graph with all the vertices
lie on some triangles. If a block graph is a Δ-graph, then we say that
it is a block Δ-graph. A set S ⊆ V (G) is Δ-convex if there is no vertex
u ∈ V (G) \ S forming a triangle with two vertices of S. The convexity
number of a graph G with respect to the Δ-convexity is the maximum
cardinality of a proper convex subset of G. We have given an exact value
for the convexity number of block Δ-graphs with diameter ≤3, block Δ-
graphs with diameter >3 and the two standard graph products (Strong,
Lexicographic products), a bound for Cartesian product. Also discussed
some bounds for Δ-number and a realization is done for the Δ-number
and the hull number.

Keywords: Δ-convexity · Δ-convexity number · Δ-number · Graph
products

AMS Subject Classification: 05C38 · 05C76 · 05C99 · 52A01

1 Introduction

Axiomatic convexity and convexity spaces are studied in different branches
of mathematics. The graph convexity has also been studied since 50 years.

P. G. Narasimha-Shenoi—Supported by Science and Engineering Research Board,
a statutory body of Government of India under their MATRICS Scheme No.
MTR/2018/000012.
R. Sabeer Sain—Supported by the University of Kerala for providing University JRF.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 209–218, 2020.
https://doi.org/10.1007/978-3-030-39219-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_18&domain=pdf
http://orcid.org/0000-0002-5850-5410
https://doi.org/10.1007/978-3-030-39219-2_18

210 B. S. Anand et al.

Various types of graph convexities are studied, see van de Vel [8]. One of the
important problems in graph convexities is related to determining convexity
parameters in different families of graphs. Some of the convexity parameters
that are studied in the literature are the Carathéodory, Helly and Radon num-
ber and its relationships. For more see [21].

In graphs, a family of paths are said to be a feasible path family if the graph
contains at least one path between any pair of vertices. Some of the important
feasible paths are “shortest paths”, “the induced paths”, “the all paths”, and
“triangle paths” where each of these concepts give rise to a convexity on the
vertices of the graph G. To mention a few see [9,13,19] for geodesic convexity,
[6,12,16] for induced path convexity and [5,7,10] for triangle path convexity.

Another interesting notions are some invariant properties of convexities
defined on graphs. Duchet in his paper [11] computed Carathéodory, Helly and
Radon type numbers for the minimal path convexity. In [5] Changat et al. con-
sidered the invariants when triangle paths are under consideration. For geodesic
convexity we refer [14]. For more on these invariants and related structures see
[2–4]. The concepts which have been recently studied with respect to the feasible
path families are the exchange number, hull number, pre-hull number and the
convexity number, for details see [3,9,15,20].

We consider finite, simple, connected and undirected graphs. Given a graph
G, the Δ-interval of u, v ∈ V (G), IΔ(u, v), is the set formed by u, v and every
w in V (G) such that {u, v, w} is a triangle (K3) of G. For U ⊆ V (G), IΔ(U)
denote the set of all vertices that belong to some IΔ(u, v), u, v ∈ U . A set
S of vertices such that IΔ(S) = V (G) is called a Δ-set. The Δ-number of a
graph G is the minimum cardinality of a Δ-set and is denoted by Δ(G). A set
S ⊆ V (G) is Δ-convex if there is no vertex u ∈ V (G) \ S forming a triangle
with two vertices of S, or equivalently, if N(u) ∩ S is an independent set for
every u ∈ V (G) \ S. The Δ-convex hull 〈S〉 of a set S is the minimum Δ-convex
set containing S. Convexity number of a graph G, denoted by CΔ(G) is the
maximum cardinality of a proper convex subset of G. The hull number of G in
Δ-convexity is the minimum cardinality of a set S such that 〈S〉 = V (G) and is
denoted by hn(G). The Δ-interval function and the associated Δ-convexity were
introduced by Mulder in [18]. In [17], the Δ-convex sets, where they were called
Δ-closed sets played an essential role in the characterization of quasi-median
graphs. In [1], the authors studied the complexity of Δ-hull number of a graph
and given an upper bound for the hull number. In this article, we study the Δ-
convexity number and Δ-number of graphs and graph products. Denote C(G) as
the set of all cut vertices of G. A block graph is a graph where every 2-connected
component is a complete graph.

For the three graph products (Cartesian, strong, lexicographic) of G and H,
the vertex set is V (G) × V (H). Their edge sets are defined as follows. In the
Cartesian product G � H two vertices are adjacent if they are adjacent in one
coordinate and equal in the other. Two distinct vertices (g1, h1) and (g2, h2) are
adjacent with respect to the strong product if (a) g1 = g2 and h1h2 ∈ E(H), or
(b) h1 = h2 and g1g2 ∈ E(G) or (c) g1g2 ∈ E(G) and h1h2 ∈ E(H). Finally, two

Δ-Convexity 211

vertices (g, h) and (g′, h′) are adjacent in the lexicographic product G ◦ H (also
G[H]) either if gg′ ∈ E(G) or if g = g′ and hh′ ∈ E(H). For ∗ ∈ {�, �, ◦} we
call the product G∗H nontrivial if both G and H have at least two vertices. For
h ∈ V (H), g ∈ V (G), and ∗ ∈ {�, �, ◦}, call Gh = {(g, h) ∈ G ∗ H : g ∈ V (G)}
a G layer in G ∗ H, and call gH = {(g, h) ∈ G ∗ H : h ∈ V (H)} an H layer in
G ∗ H. Note that the subgraph of G ∗ H induced on Gh is isomorphic to G and
the subgraph of G ∗H induced on gH is isomorphic to H for ∗ ∈ {�, �, ◦}. The
map pG : V (G ∗ H) → V (G) defined with pG((g, h)) = g is called a projection
map on to G for ∗ ∈ {�, �, ◦}. Similarly we can define the projection map on
to H. We will also use for a graph G the standard notations NG(g) for the
open neighbourhood {g′ : gg′ ∈ E(G)}, NG[g] for the closed neighbourhood
NG(g) ∪ {g}.

2 Convexity Number of Block Graphs

If a graph G has a vertex x which is not in any K3 of G, then G \ {x} will be
a convex set in G and in that case CΔ(G) = |V (G)| − 1. So we are interested
in graphs with all the vertices lie on some triangles. Such graphs are called a
Δ-graph. If a block graph is a Δ-graph, then we say that it is a block Δ-graph.

Theorem 1. Let G be a block Δ-graph with diam(G) ≤ 3. Then the convexity
number CΔ(G) = | V (G) \ V (Bp) | + 1, where Bp is the smallest pendant block
in G.

Proof. By the definition of block graph, for each pendant block B of G, the
convex hull of (V (G)\V (B)) ∪ C(B) is a proper convex set in G. For any inter-
mediate block B′ of G, (V (G) \ V (B′)) ∪ C(B′) contains at least two elements
of C(B′) and its convex hull contains the entire block B′. Hence for any inter-
mediate block B′ of G, (V (G) \ V (B′)) ∪ C(B′) will not be a proper convex
set in G. Since diam(G) ≤ 3, then G has only one intermediate block and from
the above argument its removal (not removing its cut vertices) does not form a
proper convex set in G. Intermediate block itself is a proper convex set, but it
has at least two neighbouring blocks, so if we add one more block to it then it
will also be a proper convex set. Hence the intermediate block itself will not be a
maximum proper convex set in G. If there are only two blocks, then the largest
block will be the maximum one. Assume G has at least three blocks. For getting
a maximum proper convex set we have to add pendant blocks to the intermediate
block and we have to remove at least one pendant block (except the cut vertex)
to get a proper maximum convex set of G. That will be maximum only when the
removing pendant block (except the cut vertex) of G is a minimum one. So for
getting a maximum proper convex set we have to remove the smallest pendant
block Bp of G and add the cut vertex of Bp. i.e., (V (G)\V (Bp)) ∪ C(Bp) is the
maximum proper convex set of G. Hence CΔ(G) = | V (G) \ V (Bp) | + 1. �

A cut vertex x is said to be an intermediate cut of a block graph G, if x is
not in a pendant block. A minimum intermediate cut of a block graph G (each

212 B. S. Anand et al.

block of G contains at most two cut vertices) is an intermediate cut a of G with
minimum |NG(a)|.
Theorem 2. Let G be a block Δ-graph with diam(G) > 3 and each block con-
tains at most two cut vertices. Then the convexity number CΔ(G) = max{|
V (G) \ V (Bp) | + 1, | (V (G) \ NG[x]) ∪ (NG(x) ∩ C(G)) |}, where Bp is the
smallest pendant block, x is the minimum intermediate cut of G and C(G) is the
set of all cut vertices of G.

Proof. For any intermediate block B of G, (V (G) \ V (B)) ∪ C(B) contains at
least two elements of C(B) and its convex hull contains the entire block B.
Hence for any intermediate block B of G, (V (G) \ V (B)) ∪ C(B) will not be
a proper convex set in G. So if we remove a cut vertex x from an intermediate
block, then we have to remove all the blocks which contains x, otherwise its
first iteration produce V (G). Now we have to find the minimum of {|NG(x)| :
x ∈ C(G), x is not a cut vertex of a pendant block}. So assume x is a minimum
intermediate cut, then the induced subgraph of (V (G) \ NG[x]) ∪ (NG(x) ∩
C(G)) will be a proper convex set in G, since no edge in the induced graph of
(V (G) \ NG[x]) ∪ (NG(x) ∩ C(G)) form a triangle with a vertex in NG[x] \
C(G) and viceversa. If we remove a vertex x from an intermediate block of G
other than a cut vertex, then the induced graph of V (G) \ {x} will be a proper
convex set only when we choose at most one vertex from the neighbouring blocks,
otherwise the first iteration cover the entire blocks. So in this way we cannot get
a maximum proper convex sets. From the proof of Theorem 1, for any pendant
block B∗ of G, the induced graph of (V (G) \ V (B∗)) ∪ C(B∗) is a proper
convex set in G. These two convex sets have the chance to attain a maximum
proper convex set. So the maximum proper convex set will be the maximum
of (V (G) \ NG[x]) ∪ (NG(x) ∩ C(G)), where x is a minimum intermediate cut
and (V (G) \ V (Bp)) ∪ C(Bp). Now we can conclude that CΔ(G) = max{|
V (G) \ V (Bp) | +1, | (V (G) \ NG[x]) ∪ (NG(x) ∩ C(G)) |}. �

If a graph G has hull number 2, then the proper convex sets in G are the set
of pairwise nonadjacent vertices. i.e, the maximum independent sets in G will
be the maximum proper convex sets. Therefore its convexity number is α(G),
the independent number of G.

3 Convexity Number in Graph Products

If a graph G contains a vertex x which is not a part of any triangles in G, then
the induced graph of V (G)\{x} will be a proper convex set in G. If such a vertex
does not exist in G, then the convexity number will be less than |V (G)|− 1. i.e.,
CΔ(G) = |V (G)| − 1 if and only if there exists a vertex in G which is not a
part of any K3 in G. If G or H contains a vertex which does not lie on any K3,
then CΔ(G � H) = |V (G � H)| − 1 = |V (G)||V (H)| − 1. But in the case of
strong and lexicographic product, all the vertices are on some triangles, hence
CΔ(G ∗ H) < |V (G ∗ H)| − 1, ∗ ∈ {�, ◦}.

Δ-Convexity 213

Theorem 3. Let G and H be two connected Δ-graphs with orders m and n
respectively, then CΔ(G � H) = max{(n − 1)m + CΔ(G), (m − 1)n + CΔ(H)}.
Proof. By the definition of Cartesian product of graphs for any two vertices
g1, g2 ∈ V (G), there does not exist a K3 with one vertex in g1H and the others
in g2H. This is true for all G-layers. So IΔ(V (gH)) = V (gH) and IΔ(V (Gh)) =
V (Gh). Thus the two possibilities for getting a maximum proper convex set are
the following:

1. Take n − 1 complete G-layers and add in the remaining layer, the vertices of
a maximum Δ-convex set S ⊆ V (G), which brings additional |S| = CΔ(G)
vertices.

2. Take m− 1 complete H-layers and add in the remaining layer, the vertices of
a maximum Δ-convex set S ⊆ V (H), which brings additional |S| = CΔ(H)
vertices.

Therefore CΔ(G � H) = max{(n − 1)m + CΔ(G), (m − 1)n + CΔ(H)}. �
Theorem 4. Let G and H be two connected non-trivial graphs. Then the convex
hull of any two vertices of an edge in G ∗ H, ∗ ∈ {�, ◦} is V (G ∗ H).

Proof. First take an edge from an H layer, say gH. Let (g, h1)(g, h2) ∈ E(G ∗
H), ∗ ∈ {�, ◦}. Then IΔ((g, h1)(g, h2)) contains g′ ×{h1, h2}, where g′ ∈ NG(g),
since gg′ ∈ E(G) and h1h2 ∈ V (H). The second iteration contains NG(g′) ×
{h1, h2}. After a finite steps of iterations we get all the vertices of Gh

1 and Gh
2 .

Now by continuing the iteration with the edges of Gh
1 and Gh

2 all the H- layers
are produced and we get V (G∗H), ∗ ∈ {�, ◦}. The same thing will happen when
we take an edge from any of the G-layers. Now let (g1, h1)(g2, h2) ∈ E(G ∗ H),
∗ ∈ {�, ◦}, where g1 �= g2 and h1 �= h2. Then IΔ(g1, h1)(g2, h2) produce (g1, h2)
and (g2, h1). Now we get two edges from the G-layer and from the first part, after
a finite number of iterations we will get the whole vertices of G ∗ H, ∗ ∈ {�, ◦}.

�
From Theorem 4 the possible proper convex sets of G ∗ H, ∗ ∈ {�, ◦} are

the sets of pairwise non-adjacent vertices. Hence the proper convex sets in G∗H
are the independent sets. We mention this as the following corollary.

Corollary 1. Let G and H be two nontrivial graphs, then

(a) CΔ(G � H) = α(G � H).
(b) CΔ(G ◦ H) = α(G ◦ H).

4 Realizing Δ-Number and Hull Number of Graphs

To understand the basic terminologies of Δ-number and hull number, in this
section we illustrate some graphs. Also the following argument gives us a clear
view of the inequality hn(G) ≤ Δ(G) for an arbitrary graph G. A vertex u of a
graph G is said to be a simplicial vertex if the subgraph induced by u and its
neighbours induce a complete subgraph called an extreme subgraph denoted by
Ext(G).

214 B. S. Anand et al.

Theorem 5. For every pair (a, b) of integers 2 ≤ a ≤ b, there exists a graph G
such that hn(G) = a and Δ(G) = b.

Proof. Case 1: a = b.
The triangle free graphs on ‘a′ vertices has the desired property.
Case 2: a < b.
We construct a graph as follows. Let m = b−a and � = a−2. Let H be a discon-
nected graph containing two paths P1 and P2 which are on m + 2 vertices say
V (P1) = {u1, u2, . . . , um+2} and m + 1 vertices say V (P2) = {v2, v3, . . . , vm+2}.
Now make vi adjacent to ui−1 and on ui for 2 ≤ i ≤ m + 2. Also add another
� + 1 vertices say {v1, w1, w2, . . . , w�}. Make v1 adjacent to u1 and u2. Also add
edges between wi and v1 for 1 ≤ i ≤ �. The resulting graph G is given in the
Fig. 1.

Fig. 1. Graph G with hn(G) = a and Δ(G) = b.

Now 〈{u1, v1}〉 = V (G) \ {w1, w2, . . . w�}. Hence we can see that the mini-
mum hull set should contain {w1, w2, . . . w�} and any two adjacent vertices from
V (P1) ∪ V (P2) ∪ {v1}. Hence hn(G) = � + 2 = a. Now the first iteration of
the set S = {u1, u2, . . . , um+2} is {u1, u2, . . . , um+2, v1, v2, . . . vm+2}. Hence we
can see that these S together with {w1, w2, . . . , w�} is a minimum Δ-set of the
graph. So Δ(G) = m + 2 + � = b − a + 2 + a − 2 = b. �
Theorem 6. For every pair (a, b) of integers and a, b ≥ 2 there exists a graph
G such that |Ext(G)| = a and Δ(G) = b = hn(G).

Proof. Take Ka and a path Pb−2 = u1u2 . . . ub−2, a path on b− 2 vertices. Let u
be any vertex in Ka. Let G be a new graph obtained from Ka and Pb−2 by joining
an edge between u and u1. We can see that G has exactly ‘a′ number of simplicial
vertices namely Ka \ {u} and ub−2. Also u1u2 . . . ub−2 together with u and any
other vertex from Ka will constitute a Δ-set of G, so that Δ(G) = b − 2 + 2 = b.
Hence the theorem. �

Δ-Convexity 215

Theorem 7. For integers (n, d,Δ) such that n ≥ 4, 2 ≤ d ≤ n − 2, 2 ≤ Δ ≤ n
and d ≤ Δ, there exists a graph G of order n, diameter d and Δ-number Δ with
Δ = hn(G).

Proof. We first construct the graph as follows. First choose K2, the com-
plete graph on 2 vertices and label the vertices as a, b. Add n − d vertices
say, v1, v2, . . . vn−d. Now make the vertices v1, v2, . . . , vn−Δ adjacent to both
a and b, and vn−Δ+1, vn−Δ+2, . . . vn−d adjacent to either a or b. Now con-
sider a path on d − 2 vertices, say, u2, u3, . . . ud−1 and make u2 adjacent to
vn−Δ. The resulting graph is given in the Fig. 2. Now we can see that it has
diameter d, since the path v1avn−Δu2 . . . ud−1 is of length d − 2 + 2 = d.
The set S = {a, b, u2, u3, . . . ud−1, vn−Δ+1, vn−Δ+2, . . ., vn−d} is a hull set and
IΔ(S) = V (G). Now |S| = n − d − (n − Δ) + d − 2 + 2 = Δ, which completes
the proof. �

Fig. 2. Graph G with order n, diameter d and Δ-number Δ = hn.

Theorem 8. Let G be a block graph. Then Δ(G) ≤ nc + np, where nc is the
number of cut vertices and np is the number of pendant blocks of G.

Proof. Since G is a block graph, every intermediate block has at least two cut
vertices and every pendant block has exactly one cut vertex. Then IΔ(C(G))
will cover all the vertices of the intermediate blocks. Since each pendant block
shares a cut vertex to an intermediate block, we need only one more vertex from
each pendant blocks (except the cut vertices) to generate all the vertices of the
pendant blocks. If we take such vertices with C(G), then its first iteration will

216 B. S. Anand et al.

cover all the vertices of G. Hence Δ(G) ≤ |C(G)|+ number of pendant blocks,
i.e, Δ(G) ≤ nc + np. �

5 Delta Number in Graph Products

Theorem 9. Let G and H be two nontrivial graphs with orders m and n
respectively. If m∗ and n∗ are the number of vertices which is not a part of
any K3 in G and H respectively, Then Δ(G � H) ≤ min{n(Δ(G) − m∗) +
m∗Δ(H), m(Δ(H) − n∗) + n∗Δ(G)}.
Proof. Assume S ⊆ V (G) and IΔ(S) = V (G) with |S| = Δ(G). Let
g1, g2, . . . , gm∗ be the vertices of G which are not in any K3 in G. We
get 〈S \ {g1, g2, . . . , gm∗}〉 = V (G) \ {g1, g2, . . . , gm∗}. Then the convex hull
of (S \ {g1, g2, . . . , gm∗}) × V (H) will cover all the vertices of V (G � H)
except the H-layers giH, i = 1, 2, . . . ,m∗. Now let R ⊆ V (H) and |R| =
Δ(H) with IΔ(R) = V (H). Then the convex hull of {g1, g2, . . . , gm∗} × R
will cover all the vertices of the H-layers giH, i = 1, 2, . . . ,m∗. Therefore
〈(S \ {g1, g2, . . . , gm∗}) × V (H) ∪ {g1, g2, . . . , gm∗} × R〉 = V (G � H). Simi-
larly if h1, h2, . . . , hn∗ is the set of vertices which are not in any K3 of H, then
〈V (G) × (S \ {h1, h2, . . . , hm∗}) ∪ S × {v1, v2, . . . , vm∗}〉 = V (G � H). Hence
Δ(G � H) ≤ min{n(Δ(G) − m∗) + m∗Δ(H),m(Δ(H) − n∗) + n∗Δ(G)}.

A subset U ⊆ V (G) is called a Steiner-Δ set of G if U have the following
three properties:

1. |U | = Δ(G).
2. IΔ(U) = V (G).
3. For any W ⊆ V (G) with |W | = Δ(G) and IΔ(W) = V (G), we have dS(U) ≤

dS(W), where dS is the Steiner distance. (The smallest tree that contains all
vertices of a subset W of V (G) is called a Steiner tree and the number of
edges of such a tree is the Steiner distance of W).

Let U be any Steiner-Δ set of G and M = {x ∈ V (G)|NG[x] ∩ U = {x}},
then we define nS(G) = |M |.
Theorem 10. Let G be a nontrivial graph and H a complete graph, then Δ(G◦
H) = Δ(G � H) = Δ(G) + nS(G).

Proof. Let U ⊆ V (G � H) with |U | = Δ(G � H). Then IΔ(pG(U)) = V (G).
If not, IΔ(U) will not cover V (G � H) (Since U is the minimum set which has
the said properties).
Case 1: M = φ in G.

M = φ in G means there exists some S ⊆ V (G) with |S| = Δ(G), IΔ(S) =
V (G) and dS(S) = |S| − 1. Here ns(G) = 0. Take S as {g1, g2, . . . , gr}. Then
for any h ∈ V (H), IΔ(S × {h}) = V (G � H), because if g ∈ IΔ(gi, gj) for
gi, gj ∈ S, then V (gH) ⊆ IΔ((gi, h), (gj , h)). If gkgl ∈ E(G) and gk, gl ∈ S, then
all the vertices of gkH and glH form triangles with (gk, h)(gl, h) in G � H, i.e.,

Δ-Convexity 217

gkH ∪ glH ⊆ IΔ((gk, h), (gl, h)) ⊆ IΔ(S × {h}). Hence IΔ(S × h) = V (G � H).
Therefore in this case Δ(G ◦ H) = Δ(G � H) = Δ(G).
Case 2: M �= φ in G.

If two vertices g1, g2 of S are adjacent, then from the proof of above case we
can say that g1H ∪ g2H ⊆ IΔ(S ×{h}) also for any g ∈ IΔ(gi, gj) and gi, gj ∈ S,
we have V (gH) ⊆ IΔ((gi, h), (gj , h)) ⊆ IΔ(S × {h}). Here IΔ(S × {h}) cover
IΔ(S)×V (H). So it remains to add vertices of the H-layers gH with NG(g)∩S =
{g} and the number of such vertices will be minimum when S is a Steiner-Δ set.
We have denoted such vertex set as M and its cardinality is ns(G). Now let S
be a Steiner-Δ set in G. If g ∈ M ∩ S, then the layer gH will cover IΔ(S) only
when S contains a vertex of gH other than (g, h), since H is complete. So we
have to add such vertices to S, hence Δ(G ◦ H) = Δ(G � H) = Δ(G) + ns(G).

�
Theorem 11. Let G and H be two non-complete graphs. Then Δ(G � H) ≤
min{α(G)Δ(H),Δ(G)α(H)}.
Proof. Let S = {g1, g2, . . . , gr} ⊆ V (G) with IΔ(S) = V (G) and r = Δ(G).
If g ∈ IΔ(gi, gj) for some i, j = 1, 2, . . . , r. Then for any h′ ∈ NH(h′),
(g, h′) ∈ IΔ((gi, h), (gj , h)), since gig, gjg ∈ E(G) and hh′ ∈ E(H). There-
fore IΔ((gi, h), (gj , h)) contains IΔ(gi, gj) × {h} and {g} × N(h). This is true
for any gi, gj ∈ S. Then IΔ((g1, h), (g2, h), . . . , (gr, h)) = IΔ(g1, g2, . . . , gr) ×
{h} ∪ V (G) × N(h). Hence for any h ∈ V (H), IΔ(S × {h}) contains all the
neighbouring H-layers. So if h1, h2, . . . , hs be any independent set of H, then
IΔ(S × {h1, h2, . . . , hs}) cover all the vertices of G � H. i.e., Δ(G � H) ≤
{Δ(G)α(H)}. Similarly we can prove that Δ(G � H) ≤ {α(G)Δ(H)}. Hence
Δ(G � H) ≤ min{α(G)Δ(H),Δ(G)α(H)}. �
Theorem 12. If G is a Δ-graph and H a non-complete graphs, then Δ(G◦H) ≤
2Δ(G).

Proof. Let S = {g1, g2, . . . , gr} ⊆ V (G) such that IΔ(S) = V (G) and r = Δ(G).
Let h1h2 ∈ E(H). Consider the set S′ = {(g1, h1), (g2, h1), . . . , (gr, h1), (g1, h2),
(g2, h2), . . . , (gr, h2)}. Our aim is to prove IΔ(S′) = V (G ◦ H). If gl ∈ IΔ(gi, gj),
for some gi, gj ∈ S in G, then V (glH) ⊆ IΔ((gi, h1), (gj , h1)) ⊆ IΔ(S′). Hence for
any g ∈ V (G) \ S, V (gH) ⊆ IΔ(S′). So it remains to prove V (giH) ⊆ IΔ(S′) for
all gi ∈ S. Since G is a Δ-graph, for any gi ∈ S, there exists some gj ∈ S such that
gigj ∈ E(G). Since h1h2 ∈ E(H), (gi, h1)(gi, h2), (gj , h1)(gj , h2) ∈ E(G◦H). By
the definition of lexicographic product both (gi, h1) and (gi, h2) are adjacent
to {gj} × V (H) = V (gjH), since gigj ∈ E(G). Then IΔ((gi, h1), (gi, h2)) will
contain {gj} × V (H) = V (gjH), because (gi, h1)(gi, h2) ∈ E(G ◦ H). Therefore
IΔ(S′) = V (G ◦ H) and |S′| = 2r = 2Δ(G). �

Acknowledgements. We are grateful to the anonymous referees for their numerous
valuable comments.

218 B. S. Anand et al.

References

1. Anand, B.S., Anil, A., Changat, M., Dourado, M.C., Sain R.,S.: Computing the
hull number in Δ-convexity (2018, submitted)

2. Anand, B.S., Changat, M., Klavžar, S., Peterin, I.: Convex sets in lexicographic
products of graphs. Graphs Comb. 28(1), 77–84 (2012)

3. Anand, B.S., Changat, M., Narasimha-Shenoi, P.G.: Helly and exchange numbers
of geodesic and Steiner convexities in lexicographic product of graphs. Discrete
Math. Algorithms Appl. 7(04), 1550049 (2015)

4. Anand, B.S., Changat, M., Peterin, I., Narasimha-Shenoi, P.G.: Some Steiner con-
cepts on lexicographic products of graphs. Discrete Math. Algorithms Appl. 6(04),
1450060 (2014)

5. Changat, M., Mathew, J.: On triangle path convexity in graphs. Discrete Math.
206(1–3), 91–95 (1999)

6. Changat, M., Mathew, J.: Induced path transit function, monotone and peano
axioms. Discrete Math. 286(3), 185–194 (2004)

7. Changat, M., Mulder, H.M., Sierksma, G.: Convexities related to path properties
on graphs. Discrete Math. 290(2–3), 117–131 (2005)

8. van De Vel, M.L.: Theory of Convex Structures, vol. 50. Elsevier, Burlington (1993)
9. Dourado, M.C., Penso, L.D., Rautenbach, D.: On the geodetic hull number of

Pk-free graphs. Theoret. Comput. Sci. 640, 52–60 (2016)
10. Dourado, M.C., Sampaio, R.M.: Complexity aspects of the triangle path convexity.

Discrete Appl. Math. 206, 39–47 (2016)
11. Duchet, P.: Convexity in combinatorial structures. In: Proceedings of the 14th

Winter School on Abstract Analysis, pp. 261–293. Circolo Matematico di Palermo
(1987)

12. Duchet, P.: Convex sets in graphs, II. Minimal path convexity. J. Comb. Theor.
Ser. B 44(3), 307–316 (1988)

13. Farber, M.: Bridged graphs and geodesic convexity. Discrete Math. 66(3), 249–257
(1987)

14. Jiang, T., Pelayo, I., Pritikin, D.: Geodesic convexity and Cartesian products in
graphs. Graphs Comb. (2004, submitted)

15. Kannan, B., Changat, M.: Hull numbers of path convexities on graphs. In: Pro-
ceedings of the International Instructional Workshop on Convexity in Discrete
Structures, vol. 5, pp. 11–23 (2008)

16. Morgana, M.A., Mulder, H.M.: The induced path convexity, betweenness, and
svelte graphs. Discrete Math. 254(1–3), 349–370 (2002)

17. Mulder, H.M.: The Interval Function of a Graph. MC Tracts. Mathematisch Cen-
trum, Amsterdam (1980)

18. Mulder, M.H.: Transit functions on graphs (and posets). Technical report (2007)
19. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer, New York (2013). https://

doi.org/10.1007/978-1-4614-8699-2
20. Polat, N., Sabidussi, G.: On the geodesic pre-hull number of a graph. Eur. J. Comb.

30(5), 1205–1220 (2009)
21. Sierksma, G.: Convexity on unions of sets. Compositio Mathematica 42(3), 391–

400 (1980)

https://doi.org/10.1007/978-1-4614-8699-2
https://doi.org/10.1007/978-1-4614-8699-2

On Cartesian Products of Signed Graphs

Dimitri Lajou(B)

Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, 33400 Talence, France
dimitri.lajou@gmail.com

Abstract. In this paper, we study the Cartesian product of signed
graphs as defined by Germina, Hameed and Zaslavsky (2011). Here we
focus on its algebraic properties and look at the chromatic number of
some products. One of our main result is the unicity of the prime factor
decomposition of signed graphs. This leads us to present an algorithm
to compute this decomposition in quasi-linear time. Both these results
use their counterparts for ordinary graphs as building blocks. We also
study the signed chromatic number of graphs with underlying graph of
the form Pn � Pm, of products of signed paths, of products of signed
complete graphs and of products of signed cycles, that is the minimum
order of a signed graph to which they admit a homomorphism.

1 Introduction

Signed graphs were introduced by Harary in [8]. Later, the notion of homomor-
phism of signed graphs was introduced by Guenin [7], and latter studied by
Naserasr, Rollová and Sopena [14] and gave rise to a notion of signed chromatic
number χs(G, σ) of a signed graph (G, σ) defined as the smallest order of a
signed graph (H,π) to which (G, σ) admits a homomorphism.

In this paper, we are interested in the study of the Cartesian product of
signed graphs, defined by Germina, Hameed and Zaslavsky in [6]. They mainly
study the spectral properties of the Cartesian product.

The Cartesian product of two ordinary graphs G and H, noted G � H,
has been extensively studied. In 1957, Sabidussi [15] showed that χ(G � H) =
max(χ(G), χ(H)) where χ(G) is the chromatic number of the graph G. Another
notable article on the subject by Sabidussi [16] shows that every connected graph
G admits a unique prime decomposition, i.e., there is a unique way to write a
graph G as a product of some graphs up to isomorphism of the factors. This result
was also independently discovered by Vizing in [17]. Another algebraic property,
the cancellation property, which states that if A � B = A � C, then B = C,
was proved by Imrich and Klavžar [10] using a technique of Fernández, Leighton
and López-Presa [5]. On the complexity side, the main question associated with
the Cartesian product is to be able to decompose a graph with the best possible
complexity. The complexity of this problem has been improved successively in
[1,3,4,18] to finally reach an optimal complexity of O(m) in [11] where m is the
number of edges of the graph.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 219–234, 2020.
https://doi.org/10.1007/978-3-030-39219-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_19

220 D. Lajou

Our study of the Cartesian product of signed graphs is divided in several
sections. First in Sect. 2, we present general definitions of graph theory and
set our notation. In Sect. 3, we present some useful results on signed graphs
and on the Cartesian product of graphs. In Sect. 4, we present the definition of
the Cartesian product of signed graphs and give some first properties and easy
consequences of the definition. We also prove the prime decomposition theorem
for signed graphs and give an algorithm to decompose a signed product into its
factors. We study the signed chromatic number of products of complete graphs
in Sect. 5 and products of cycles in Sect. 6. Finally we present some concluding
remarks in Sect. 7.

2 Definitions and Notation

All graphs we consider are undirected, simple and loopless. For classical graph
definitions, we refer the reader to [2].

A homomorphism from G to H is a function ϕ from V (G) to V (H) such
that for all x, y ∈ V (G), xy ∈ E(G) implies ϕ(x)ϕ(y) ∈ E(H). In this case, we
note G → H. Note that χ(G), the chromatic number of G (see [2]), can also be
defined as the smallest order of a graph H such that G → H. An isomorphism
from G to H is a bijection ϕ from V (G) to V (H) such that for all x, y ∈ V (G),
xy ∈ E(G) if and only if ϕ(x)ϕ(y) ∈ E(H). In this case, we note G = H.

A walk in a graph G is a sequence s0, . . . , sn of vertices of G such that
sisi+1 ∈ E(G). Its starting vertex is s0 and its end vertex is sn. A closed walk is a
walk where its starting vertex s0 and its end vertex sn are identified (i.e.s0 = sn).
If all elements of a walk are pairwise distinct, then the walk is a path. A closed
walk where all elements are pairwise distinct (except s0 and sn) is a cycle.
Suppose W is a walk s0, . . . , sn, we define the length of W by its number of
edges n (taken with multiplicity) and the order of W by its number of vertices
(again taken with multiplicity). Note that a walk has order n + 1 while a closed
walk has order n since we consider that s0 and sn to count for only one vertex.

A graph is connected if for all pairs of vertices u, v ∈ V (G), there is a path
between u and v. If X ⊆ V (G), then the graph G[X] is the subgraph of G
induced by X. We say that G[X] is an induced subgraph of G. The complete
graph Kp is the graph of order p such that for all pair of distinct vertices of G,
u and v, uv is an edge of Kp.

A signed graph (G, σ) is a graph G along with a function σ : E(G) →
{+1,−1} called its signature and σ(e) is the sign of the edge e ∈ E(G). The edges
in σ−1(+1) are the positive edges and the edges in σ−1(−1) are the negative edges
of (G, σ). We often write a signed graph (G, σ) as (G,Σ) in place of (G, σ) where
Σ is the set of negative edges σ−1(−1). These two ways to represent a signed
graph are equivalent and will be used interchangeably. We note K+

p (resp. K−
p)

the complete graph (Kp, ∅) (resp. (Kp, E(Kp))) of order p with only positive
(resp. negative) edges.

On Cartesian Products of Signed Graphs 221

Suppose that (G, σ) is a signed graph and W is a walk s0, . . . , sn in G. We say
that W is a balanced walk if σ(W) = σ(s0s1)σ(s1s2) . . . σ(sisi+1) . . . σ(sn−1sn) =
1 and an unbalanced walk otherwise. Similarly, this notion can be extended to
closed walks, paths and cycles. We note an unbalanced path (resp. balanced
path) of order k by UPk (resp. BPk) and an unbalanced cycle (resp. balanced
cycle) of order k by UCk (resp. BCk). Similarly, we can define an unbalanced
(resp. balanced) path UPk (resp. BPk) of order k. A signed graph where all closed
walks are balanced (resp. unbalanced) is said to be balanced (resp. antibalanced).
Generally, for the same ordinary graph G, there are several signatures σ such
that (G, σ) is balanced. In particular it is the case for all signatures of a forest.
These notions of balanced and antibalanced where introduced by Harary in [8].

This led Zaslavsky in [19] to define the notion of equivalent signed graphs.
Two signed graphs (G, σ1) and (G, σ2) on the same underlying graph are equiv-
alent if they have the same set of balanced closed walks. Note that this is
equivalent to having the same set of balanced cycles. In this case we note
(G, σ1) ≡ (G, σ2). We also say that the two signatures σ1 and σ2 (resp. Σ1

and Σ2) are equivalent and we note σ1 ≡ σ2 (resp. Σ1 ≡ Σ2).
Let (G, σ) be a signed graph and v be a vertex of G. Switching (G, σ) at

v creates the signed graph (G, σ′) where σ′(e) = −σ(e) if e incident to v and
σ′(e) = σ(e) otherwise. One can check that the switch operation does not modify
the set of balanced closed walks as switching at a vertex of a closed walk does not
change the sign of this walk. Moreover, two signed graphs are equivalent if and
only if one can be obtained from the other by a sequence of switches [19]. This
means that we can work with the balance of closed walks or with the switches
depending on which notion is the easiest to use.

A homomorphism of a signed graph (G, σ) to a signed graph (H,π) is a homo-
morphism ϕ from G to H which maps balanced (resp. unbalanced) closed walks
of (G, σ) to balanced (resp. unbalanced) closed walks of (H,π). Alternatively,
a homomorphism from (G, σ) to (H,π) is a homomorphism from G to H such
that there exists a signature σ′ of G with σ′ ≡ σ, such that if e is an edge of
G, then π(ϕ(e)) = σ′(e). When there is a homomorphism from (G, σ) to (H,π),
we note (G, σ) −→s (H,π) and say that (G, σ) maps to (H,π). Here (H,π) is
the target graph of the homomorphism. When constructing a homomorphism,
we can always fix a given signature of the target graph as proven in [14].

The signed chromatic number χs(G, σ) of a signed graph (G, σ) is the smallest
k for which (G, σ) admits a homomorphism to a signed graph (H,π) of order k.
Alternatively, a signed graph (G, σ) admits a k-(vertex)-colouring if there exists
σ′ ≡ σ such that (G, σ′) admits a proper vertex colouring θ : V (G) → �k�
verifying that for every i, j ∈ �k�, all edges uv with θ(u) = i and θ(v) = j have
the same sign in (G, σ′). Then χs(G, σ) is the smallest k such that (G, σ) admits
a k-vertex-colouring. The two definitions are equivalent, as with any colouring
of a signed graph, we can associate a signed homomorphism which identifies the
vertices with the same colour. The homomorphism is well defined as long as the
target graph is simple, which is the case here by definition of a k-vertex-colouring.

222 D. Lajou

Suppose that G and H are two ordinary graphs. The Cartesian product of G
and H is the graph G � H whose vertex set is V (G) × V (H) and where (x, y)
and (x′, y′) are adjacent if and only if x = x′ and y is adjacent to y′ in H or
y = y′ and x is adjacent to x′ in G.

A graph G is prime if there are no graphs A and B on at least two ver-
tices for which G = A � B. A decomposition D of a graph G is a multi-set
{G1, . . . , Gk} such that the Gi’s are graphs containing at least one edge and
G = G1 � · · · � Gk. A decomposition is prime if all the Gi’s are prime. The
Gi’s are called factors of G. A decomposition D is finer than another decompo-
sition D′ if D′ = {G1, . . . , Gk} and for each i there exists a decomposition Di of
Gi such that D =

⋃
i Di. Note that by definition, every decomposition is finer

than itself.
Suppose that G is a graph and D = {G1, . . . , Gk} is a decomposition of G

such that G = G1 � . . . � Gk. A coordinate system for G under decomposition
D is a bijection θ : V (G) → ∏k

i=1 V (Gi) verifying that for each vertex v of G,
the set of vertices which differ from v by the ith coordinate induces a graph
noted Gv

i called a Gi-layer which is isomorphic to Gi by the projection on the
ith coordinate. We say that a subgraph X of G is a copy of Gi if X is a Gi-layer
of G. An edge uv of G is a copy of an edge ab of Gi if θ(u) and θ(v) differ only
in their ith coordinate with ui = a and vi = b.

3 Preliminary Results

The goal of this section is to present useful results on signed graphs and on the
Cartesian product.

In [19], Zaslavsky gave a way to determine if two signed graphs are equivalent
in linear time. In particular, all signed forests with the same underlying graph
are equivalent. This theorem comes from the following observation.

Lemma 1 (Zaslavsky [19]). If C is a cycle of a graph G, then the parity of the
number of negative edges of C in (G, σ) is the same in all (G, σ′) with σ′ ≡ σ.

This implies that we can separate the set of all cycles into four families
BCeven, BCodd, UCeven and UCodd, depending on the parity of the number of
negative edges (even for BCeven and BCodd and odd for UCeven and UCodd)
and the parity of the length of the cycle (even for BCeven and UCeven and odd
for BCodd and UCodd).

Theorem 1. If (C, σ) is a signed cycle with (C, σ) ∈ BCeven, then χs(C, σ) = 2.
If (C, σ) ∈ BCodd ∪ UCodd, then χs(C, σ) = 3. Finally, if (C, σ) ∈ UCeven, then
χs(C, σ) = 4.

Proof. By [13], we already have the upper bounds. A homomorphism of signed
graphs is also a homomorphism of graphs thus χ(C) ≤ χs(C, σ). If (C, σ) ≡ UC2q

suppose its signed chromatic number is less than 3. Then (C, σ) −→s (H,π)
where (H,π) is a triangle or a path. In each case, (H,π) can be switched to

On Cartesian Products of Signed Graphs 223

be all positive or all negative. This means that (C, σ) can be switched to be all
positive or all negative, which is not the case, a contradiction. We get the desired
lower bounds in each case. �	

One of the first results on Cartesian products is a result from Sabidussi on
the chromatic number of the product of two graphs.

Theorem 2 (Sabidussi [15]). If G and H are two graphs, then χ(G � H) =
max(χ(G), χ(H)).

Following this paper, Sabidussi proved one of the most important results
on the Cartesian product: the unicity of the prime decomposition of connected
graphs. This result was also proved by Vizing.

Theorem 3 (Sabidussi [16] and Vizing [17]). Every connected graph G
admits a unique prime decomposition up to the order and isomorphisms of the
factors.

Using some arguments of [5] and the previous theorem, Imrich and Klavžar
proved the following theorem.

Theorem 4 (Imrich and Klavžar in [9] and [10]). If A, B and C are three
ordinary graphs such that A � B = A � C, then B = C.

The unicity of the prime decomposition raises the question of the complexity
of finding such a decomposition. The complexity of decomposing algorithms has
been extensively studied. The first algorithm, by Feigenbaum et al. [4], had a
complexity of O(n4.5) where n is the order of the graph (its size is denoted by
m). In [18], Winkler proposed a different algorithm improving the complexity to
O(n4). Then Feder [3] gave an algorithm in O(mn) time and O(m) space. The
same year, Aurenhammer et al. [1] gave an algorithm in O(m log n) time and
O(m) space. The latest result is this time optimal algorithm.

Theorem 5 (Imrich and Peterin [11]). The prime factorization of connected
graphs can be found in O(m) time and space. Additionally a coordinate system
can be computed in O(m) time and space.

4 Cartesian Products of Signed Graphs

We recall the definition of the signed Cartesian product.

Definition 1 ([6]). Let (G, σ) and (H,π) two signed graphs. We define the
signed Cartesian product of (G, σ) and (H,π), and note (G, σ) � (H,π), the
signed graph with vertex set V (G) × V (H). It has for positive (resp. negative)
edges the pairs {(u1, v1), (u2, v2)} such that u1 = u2 and v1v2 is a positive (resp.
negative) edge of (H,π) or such that v1 = v2 and u1u2 is a positive (resp. neg-
ative) edge of (G, σ). The underlying graph of (G, σ) � (H,π) is the ordinary
graph G � H.

224 D. Lajou

Using this definition, we can derive that this product is associative and com-
mutative.

The following result shows that it is compatible with the homomorphism of
signed graphs and in particular with the switching operation.

Theorem 6. If (G, σ), (G′, σ′), (H,π), (H ′, π′) are four signed graphs such that
(G, σ) −→s (G′, σ′) and (H,π) −→s (H ′, π′), then:

(G, σ) � (H,π) −→s (G′, σ′) � (H ′, π′).

Proof. By commutativity of the Cartesian product and composition of signed
homomorphisms, it suffices to show that (G, σ) � (H,π) −→s (G′, σ′) � (H,π).
Since (G, σ) −→s (G′, σ′), there exists a set S of switched vertices and a homo-
morphism ϕ from G to G′ such that if (G, σS) is the signed graph obtained from
(G, σ) by switching at the vertices of S, then σ′(ϕ(e)) = σS(e) for every edge e
of G. We note P = (G, σ) � (H,π) and X = {(g, h) ∈ V (G � H) | g ∈ S}. Let
P ′ be the signed graph obtained from P by switching at the vertices in X.

If (g, h)(g, h′) is an edge of P , then in P ′ this edge was either switched twice
if g ∈ S or not switched if g /∈ S. In both cases its sign did not change. If
(g, h)(g′, h) is an edge of P , then in P ′ this edge was switched twice if g, g′ ∈ S,
switched once if g ∈ S, g′ /∈ S or g /∈ S, g′ ∈ S, and not switched if g, g′ /∈ S.
In each case its new sign is σS(gg′). Thus P ′ = (G, σS) � (H,π). Now define
ϕP (g, h) = (ϕ(g), h). It is a homomorphism from G � H to G′ � H by definition.
By construction, the target graph of ϕP is (G′, σ′) � (H,π) as the edges of H
do not change and the target graph of ϕ is (G′, σ′). �	

As mentioned, we can derive the following corollary from Theorem 6.

Corollary 1. If (G, σ), (G, σ′), (H,π), (H,π′) are four signed graph such that
σ ≡ σ′ and π ≡ π′, then:

(G, σ) � (H,π) ≡ (G, σ′) � (H,π′).

One first observation is that we can apply Theorem 6 to the case of forests.

Corollary 2. If (G, σ) is a signed graph and (F, π) is a signed forest with at
least one edge, then:

χs((G, σ) � (F, π)) = χs((G, σ) � K2).

In particular, for n,m ≥ 2, χs((Pn, σ1) � (Pm, σ2)) = 2.

Note that there is a difference between considering the chromatic number of
a signed product and the chromatic number of a signed graph with the product
graph as underlying graph. For example, BC4 = K2 � K2 but χs(UC4) �=
χs(BC4). Another example: χs(Pn � Pm) = 2, for any n,m ∈ N but the following
theorem shows that not all signed grids have chromatic number 2.

On Cartesian Products of Signed Graphs 225

Theorem 7. If n,m are two integers and (G, σ) is a signed grid with G =
Pn � Pm, then χs(G) ≤ 6. If n or m is less than 4, then χs(G) ≤ 5. Moreover
there exist grids with signed chromatic number 5.

Due to page constraints, we do not include the proof of this result. Nonethe-
less, the proof is available in the full version of this paper which you can find on
the author’s web page. Note that we are not aware of a signed grid with signed
chromatic number six.

Question 1. What is the maximal value of χs(G, σ) when (G, σ) is a signed grid?
Is it 5 or 6?

Our goal is now to prove that each connected signed graph has a unique
prime s-decomposition. Let us start with some definitions.

Definition 2. A signed graph (G, σ) is said to be s-prime if and only if
there do not exist two signed graphs (A, πA) and (B, πB) such that (G, σ) ≡
(A, πA) � (B, πB). An s-decomposition D of a signed connected graph (G, σ) is
a multi-set {(G1, π1), . . . , (Gk, πk)} such that:

1. the (Gi, πi)’s are signed graphs containing at least one edge and
2. (G, π) ≡ (G1, π1) � · · · � (Gk, πk).

An s-decomposition D is prime if all the (Gi, πi)’s are s-prime. The (Gi, πi)’s are
called factors of D. An s-decomposition D is finer than another s-decomposition
D′ if D′ = {(G1, π1), . . . , (Gk, πk)} and for each i ∈ �1, k� there exists an s-
decomposition Di of (Gi, πi) such that D =

⋃
i Di. Recall that, if D is finer than

D′, then we may have D = D′.
Suppose D = {G1, . . . , Gk} is a decomposition of a graph G. We say that two

copies X1 and X2 of Gi are adjacent by Gj if and only if there exists an edge ab
of Gj such that for all u ∈ V (Gi) and u1,u2 its corresponding vertices in X1 and
X2, u1u2 is a copy of ab. In other words, the subgraph induced by the vertices of
X1 and X2 is isomorphic to Gi � K2 where the edge K2 corresponds to a copy
of an edge of Gj.

Note that if G = A � B, then it is not always true that (G, σ) is the product
of two signed graphs. For example, for (G, σ) ≡ UC4, it is s-prime but C4 is not
a prime graph as C4 = K2 � K2.

We now present a useful tool to show that a signed graph is a product.

Lemma 2. If (G, σ), (A, πA) and (B, πB) are three connected signed graphs with
G = A � B, then we have (G, σ) ≡ (A, πA) � (B, πB) if and only if:

1. all copies of A are equivalent to (A, πA),
2. one copy of B is equivalent to (B, πB) and
3. for each edge e of A, for each pair of distinct copies e1,e2 of e, if these two

edges belong to the same square, then it is a BC4.

226 D. Lajou

Proof. (⇒) This follows from the definition of the Cartesian product.
(⇐) We will do the following switches: switch all copies of A to have the

same signature πA.
Now we claim that all copies of B have the same signature π′

B equivalent to
πB . Indeed take one edge xy of B and two copies of this edge x1y1 and x2y2
in G. Take a shortest path from x1 to x2 in the first copy of A. Now if u1, u2

are two consecutive vertices along the path and v1 and v2 are their copy in the
second copy of A, then u1u2v2v1 is a BC4 by the third hypothesis.

As u1u2 and v1v2 have the same sign by the previous switches, it must be
that u1v1 and u2v2 have the same sign. Thus all copies of an edge of B have the
same sign.

Thus (G, σ) ≡ (A, πA) � (B, π′
B) ≡ (A, πA) � (B, πB) by Theorem 6. �	

One of our main results is the prime decompositions theorem.

Theorem 8. If (G, σ) is a connected signed graph and D is the prime decom-
position of G, then (G, σ) admits a unique (up to isomorphism of the factors)
prime s-decomposition Ds. Moreover if we see Ds as a decomposition, then D is
finer than Ds.

For its proof, we need the following lemma.

Lemma 3. If (G, σ) is a connected signed graph that admits two prime s-
decomposition D1 and D2, then there is a signed graph (X,πX) such that
(G, σ) ≡ (X,πX) � (Y, πY) with D1 = {(X,πX)}∪D′

1 and D2 = {(X,πX)}∪D′
2

where D′
1 and D′

2 are two decompositions of (Y, πY).

Proof. Suppose there exists a signed graph (G, σ) that admits two s-
decompositions D1 and D2. Fix an edge e, e belongs to some factor Z of the
prime decomposition of G. The edge e belongs to some copy of some signed
graph (A, πA) in D1 and to some copy of (B, πB) in D2. The graph Z is a factor
of A and B by unicity of the prime factor decomposition of G. Let X be the
greatest common divisor of A and B, we have e ∈ E(X) as e ∈ E(Z). Now
G = X � Y for some graph Y . Let us show that (G, σ) ≡ (X,πX) � (Y, πY)
for some signature πX and πY of X and Y . We can suppose that Y �= K1, as
otherwise the result is trivial.

First we want to show that all copies of X have equivalent signatures. Take
two adjacent copies of X, if they are in different copies of A, then they are
equivalent since they represent the same part of (A, πA). If they are in the same
copy of A, then they are in different copies of B since X is the greatest common
divisor of A and B. The same argument works in this case. Thus two adjacent
copies of X are two equivalent copies of some signed graph (X,πX), and since
there is only one connected component in Y , all copies of X have equivalent
signatures.

Let πY be the signature of one copy of Y . Fix e an edge of X and X1 and
X2 two copies of X. Now consider the square containing the two copies of this
edge (if exists), if X1 and X2 are in different copies of A, then this is a BC4 by
Lemma 2 in G, otherwise it is a BC4 as they are in different copies of B.

On Cartesian Products of Signed Graphs 227

By Lemma 2, we can conclude that (G, σ) ≡ (X,πX) � (Y, πY).
Now suppose that A = X � W , then we can use Lemma 2 to show (A, πX) ≡

(X,πX) � (W,πW) as all copies of X have equivalent signatures by (G, σ) ≡
(X,πX) � (Y, πY) and all C4 between two copies of an edge are BC4 by the
same argument. As (A, πA) is s-prime this is absurd, so (X,πX) ≡ (A, πA).
Thus (X,πX) ≡ (A, πA) ≡ (B, πB) and this proves the lemma. �	

Proof of Theorem 8. Any signed graph has a prime s-decomposition by tak-
ing an s-decomposition of (G, σ) that cannot be refined. If we take a prime
s-decomposition Ds of (G, σ), then it is a decomposition of G thus the prime
decomposition of G is finer than Ds.

It is left to show that the prime s-decomposition of (G, σ) is unique. Suppose,
to the contrary, that (G, σ) is a minimal counterexample to the unicity. Thus
(G, σ) has two prime s-decompositions D1 and D2 and by Lemma 3, (G, σ) ≡
(X,πX) � (Y, πY) with D1 = {(X,πX)} ∪ D′

1 and D2 = {(X,πX)} ∪ D′
2 where

D′
1 and D′

2 are two decompositions of (Y, πY). By minimality of (G, σ), D′
1 = D′

2

in Y . Thus D1 = D2, a contradiction. �	
Note that Theorem 8 implies the following result.

Theorem 9. If (A, πA), (B, πB) and (C, πC) are three signed graphs with
(A, πA) � (B, πB) ≡ (A, πA) � (C, πC), then (B, πB) ≡ (C, πC).

The proof of this result is exactly the same as the proof for ordinary graphs
presented in [10]. Indeed, we have all the necessary tools for the proof. The first
one is Theorem 8, the other one is the semi-ring structure of signed graphs (quo-
tiented by the equivalence relation) with the disjoint union and the Cartesian
product which follows from the definition. See [10] for more details.

In the last part of this section, we propose an algorithm to decompose con-
nected signed graphs. Decomposing a graph can be interpreted in multiple ways:
finding a decomposition, identifying which edge of G belongs to which factor, or
even better getting a coordinate system that is compatible with the decomposi-
tion. In [11], Imrich and Peterin gave an O(m) time and space (m is the number
of edges of G) algorithm for these three questions for ordinary graphs.

Our goal is to give an algorithm that does as much for signed graphs based
on their algorithm. Due to size constraints, we do not give all the details of the
algorithm but only the key ideas. Nonetheless, the proof is available in the full
version of this paper which you can find on the author’s web page.

A coordinate system for an s-decomposition D of (G, σ) is a coordinate sys-
tem for D seen as an ordinary decomposition such that there exists a fixed
equivalent signed graph (G, σ′) of (G, σ) in which all layers have the same signa-
ture. This definition is very similar to the definition of a coordinate system for
ordinary graphs but differ by the fact that we can switch our graph in order to
have a fixed signature for which all isomorphisms are tested.

The idea of the algorithm is to start by partitioning (G, σ) with the prime
decomposition of G and to merge some factors in order to get the prime

228 D. Lajou

s-decomposition of (G, σ). If at one point of the algorithm we get an s-
decomposition, then we can stop as all factors must be prime by the merg-
ing rules. As we remarked before, UC4’s are s-prime graphs thus in an s-
decomposition of a signed graph, the UC4 are included in the prime factors,
this means that finding a UC4 in (G, σ) between two distinct factors of our cur-
rent decomposition implies that these two factors (of the ordinary graph) belong
to the same s-prime factor of the signed graph.

Another reason to merge is when one factor X has two copies that do not
represent the same signed graph. Then we need to find two adjacent copies X1

and X2 of X adjacent by factor Y , and we must merge the factor X with the
factor Y . This can be tested efficiently in O(m). Note that the proof of this fact
amounts to finding a UC4 between the two factors but it is faster to keep this
remark as a separate rule. Note that it might be possible to use technics of
[12] to improve the time complexity to an optimal O(m) by avoiding to use the
second merging rule.

With these two merging rules we can prove that once no merging is needed
to be done, we get the prime s-decomposition of (G, σ).

Theorem 10. Let (G, σ) be a connected signed graph of order n and size m. If
k is the number of factors in the prime decomposition of G, then we can find in
time O(mk) = O(m log n) and space O(m) the prime s-decomposition of (G, σ)
and a coordinate system for this decomposition.

5 Signed Chromatic Number of Cartesian Products
of Complete Graphs

In this section, we show a simple upper bound on the signed chromatic number
of a product and compute the signed chromatic number of some special complete
graphs. We start by defining a useful tool on signed graphs.

In what follows we define the notion of an s-redundant set in a signed graph.
Informally, it is a set of vertices such that removing them does not remove any
distance two constraint between the pairs of vertices left in the graph.

Definition 3. Let (G, σ) be a signed graph and S ⊆ V (G). We say that the set
S is s-redundant if and only if, for every x, y ∈ V (G) − S such that xy /∈ E(G),
for every z ∈ S and for all signatures σ′ with σ′ ≡ σ, in the signed graph (G, σ′),
xzy = UP3 implies that there exists w ∈ V (G) − S such that xwy = UP3.

The following proposition is an alternative formulation of the definition which
is useful in order to prove that a set is an s-redundant set.

Proposition 1. If (G, σ) is a signed graph and S ⊆ V (G), then S is s-redundant
if and only if for every z ∈ S, and every x, y ∈ N(z) \ S with xy /∈ E(G), there
exists w ∈ V (G) \ S such that xwyz is a BC4.

On Cartesian Products of Signed Graphs 229

Proof. Take x, y ∈ V (G) − S such that xy /∈ E(G) and z ∈ S. If xzy = UP3 in
a signature σ′ ≡ σ, then x, y ∈ N(z). Now if S is a redundant set, then with the
notation of the definition xzyw is a BC4 in (G, σ′) and thus in (G, σ). If xzyw
is a BC4 and xzy is a UP3 in a given signature σ′, then xwy is also a UP3 as
xzyw is balanced. This proves the equivalence between the two statements. �	

The next theorem is the reason why we defined this notion. It allows us to
compute an upper bound of the chromatic number of a graph given the chromatic
number of one of its subgraphs. One example of utilisation of this notion is given
by the proof of Theorem 12.

Theorem 11. If (G, σ) is a signed graph and S is an s-redundant set of (G, σ),
then:

χs(G, σ) ≤ |S| + χs((G, σ) − S).

Proof. Let ϕ be a homomorphism from (G, σ) − S to a signed graph (H,π) of
order χs((G, σ) − S). We construct a homomorphism ϕ′ of (G, σ) as follows:

ϕ′(v) =
{

ϕ(v) if v /∈ S,
v otherwise.

This homomorphism is well defined. To show this we need to prove that the
image of ϕ′ has no loops and no UC2 (i.e.is simple). It does not create loops
as ϕ does not. As ϕ is well defined, if there was a UC2, it would come from
identification of two vertices x and y in (G, σ) − S and z ∈ S such that xzy is a
UP3. By definition of S, if so, there would be a UC2 in (G, σ)−S, which cannot
be.

Thus ϕ is a well defined homomorphism. Thus χs(G, σ) ≤ |S| + χs((G, σ) −
S).

�	
This result does not hold for any set S. For example, if (G, σ) = UC4 and

S = {v} is a single vertex of G, then χs(G, σ) = 4 but χs((G, σ) − v) ≤ 3.
As a direct corollary of Theorem 6, we get the following upper bound on the

chromatic number of a product of signed graphs.

Corollary 3. If (G1, σ1), . . . , (Gk, σk) are k signed graphs, then:

χs((G1, σ1) � · · · � (Gk, σk)) ≤
∏

1≤i≤k

χs(Gi, σi).

We study the product of balanced and antibalanced complete graphs in our
next result. Recall that K+

p (resp. K−
q) is the complete graph with only positive

edges (resp. negative edges).

Theorem 12. For every two integers p, q with p, q ≥ 2, we have

χs(K+
p � K−

q) =
⌈pq

2

⌉
.

230 D. Lajou

Proof. Let us note (P, π) = K+
p � K−

q . First let us show that χs(P, π) ≥ ⌈
pq
2

⌉
.

Suppose it is not the case. By the pigeon hole principle, there exist x, y and
z three vertices of the product that were identified. These vertices cannot be in
the same lines or columns as these induce cliques. Consider the subgraph (H,σ)
of the product composed of vertices which are in the same line as one of x, y, z
and in the same column as one of x, y and z. We have (H,σ) = K+

3 � K−
3 (see

Fig. 1).
By assumption x, y and z of (H,σ) are identified. By the pigeon hole princi-

ple, two of x, y and z have been switched the same way. Without loss of generality
suppose they are x and y. Then if a is one of their common neighbours in H, the
edges xa and ya are of different signs, thus x and y cannot be identified. This is
a contradiction.

Fig. 1. The graph (H, σ) of the proof of the Theorem 12. The big squared vertices have
been switched.

Now let us show that χs(P, π) ≤ ⌈
pq
2

⌉
. By symmetry suppose that p ≥ q.

We will prove this statement by induction. If p = 2, then (P, π) ≡ BC4 and
χ(P, π) = 2 ≤ 2. If p = 3 and q = 2, then (P, π) ≡ BC3 � K2 whose chromatic
number is 3 ≤ 3. If p = 3 and q = 3, then (P, π) ≡ (H,σ) from the previous part
of the proof. We have χs(P, π) = 5, indeed Fig. 1 gives a 5-colouring of (P, π).

Now we can assume that p ≥ 4. Suppose the vertices of P are labelled v(i,j)
for 1 ≤ i ≤ p and 1 ≤ j ≤ q such that the labelling corresponds to the product.
Now switch all vertices in

{
v(i,j)

∣
∣ i = 1

}
. Now identify v(1,j) with v(2,j+1) (which

are non adjacent) where the indices are taken modulo q to get the graph (P ′, π′).
Let S be the set of identified vertices in (P ′, π′). We want to show that S is s-
redundant to use the induction hypothesis. Take z ∈ S and x, y ∈ N(z) \ S such
that xy /∈ E(P). If xzy is an unbalanced path of length 2, then x is some v(i,j)
and y is some v(k,j+1) with i, k ≥ 3. For a = v(i,j+1), xayz is a BC4.

By Proposition 1, S is s-redundant thus χs(P, π) ≤ χs(P ′, π′) ≤ |S| +
χs((P ′, π′) − S) by Theorem 11. By induction hypothesis, as (P ′, π′) − S =
K+

p−2 � K−
q , we get χs((P ′, π′)−S) ≤

⌈
(p−2)q

2

⌉
. Thus χs(P, π) ≤ q +

⌈
pq
2

⌉−q ≤
⌈
pq
2

⌉
. �	

On Cartesian Products of Signed Graphs 231

For this product the upper bound of Corollary 3 is pq. We thus have an
example where the chromatic number is greater than half the simple upper
bound.

Question 2. What is the supremum of the set of λ ∈ [12 , 1] such that
there exist arbitrarily big signed graphs (G1, σ1) and (G2, σ2) such that
χs((G1, σ1) � (G2, σ2)) ≥ λ · χs(G1, σ1) · χs(G2, σ2)?

Table 1. The signed chromatic number for each type of products of two cycles.

(G, σ) � (H, π) BCeven BCodd UCeven UCodd

BCeven 2 3 4 3

BCodd 3 3 5 5

UCeven 4 5 4 5

UCodd 3 5 5 3

6 Signed Chromatic Number of Cartesian Products
of Cycles

The goal of this section is to determine the chromatic number of the product
of two cycles. As there are four kind of cycles (balanced/unbalanced and of
even/odd length), we have a number of cases to analyse. In most cases some
simple observations are sufficient to conclude. For the other cases, we need the
following lemma.

Lemma 4. For every two integers p,q ∈ N:

χs(UCq � BC2p+1) > 4.

Due to size constraints we do not include the proof of Lemma4. Nonetheless,
the proof is available in the full version of this paper which you can find on the
author’s web page. With this lemma, we can state this section’s main result.

Theorem 13. If (G, σ) and (H,π) are two signed cycles, then the signed chro-
matic number of (P, ρ) = (G, σ) � (H,π) is given by Table 1.

Proof. If G is a cycle of type BCeven (resp. BCodd, UCeven, UCodd), then G −→s

BC2 = K2 (resp. BC3, UC4, UC3). By computing the signed chromatic numbers
of the products of (G, σ) and (H,π) when they belong to {K2, BC3, UC4, UC3},
we get an upper bound for each of the product type equal to the corresponding
value in the table. These cases are represented in Fig. 2. Note that to color some
graphs, we switched at some vertices.

For the lower bound, we can see that χs((G, σ) � (H,π)) ≥ max(χs(G, σ),
χs(H,π)). Note that χs(BCeven) = 2, χs(BCodd) = 3, χs(UCeven) = 4 and
χs(UCodd) = 3 by Theorem 1. Lemma 4 allows us to conclude for the remaining
cases as χs(UCq � BC2p+1) = χs(UCq � UC2p+1) by symmetry between the
two edge types. �	

232 D. Lajou

Fig. 2. All the cases for the product of cycles up to symmetry positive/negative. The
large squared vertices have been switched from the product signature.

One further question would be to compute the signed chromatic num-
ber of an arbitrary number of signed cycles. An interesting remark is that
BC3 � BC3 −→s BC3. This is also true for K2, UC3 and UC4. Thus if we
suppose that the length of the cycles does not impact the result outside of
their parity, the only interesting case for upper bounds would be to compute
χs(BC3 � UC3 � UC4).

We now give the idea of the proof of Lemma 4. The proof is by contradiction.
If χs(UCq � BC2p+1) > 4, then (P, ρ) = UCq � BC2p+1 −→s (T, θ) where
(T, θ) is a complete graph of order 4. By looking at which (T, θ) are suitable
targets, we get that (T, θ) must be the graph K4 where only one edge is negative.
(P, ρ) must be switched into another signed graph (P, ρ′) which maps to (T, θ)

On Cartesian Products of Signed Graphs 233

without switches. By counting the negative edges in (P, ρ′) in different ways we
get our contradiction.

In particular, we use topological arguments on (P, ρ′) seen as a toroidal grid.
We look at connected components of the negative edges and create a set of closed
walks “surrounding” them. These closed walks are bipartite, this fact gives us
constraints on how they can wrap around the torus. These constraints allows us
to count the negative edges one way. The other way to count is directly given
by the definition of the product.

7 Conclusion

To conclude, in this paper, we showed a number of results on Cartesian products
of signed graphs. We proved a number of algebraic properties: Theorems 6, 8 and
9. We also presented an algorithm to decompose a signed graph into its factors
in time O(m log n). This complexity is theoretically not optimal, thus we can
ask the question: can we decompose a signed graph in linear time?

Finally, we computed the chromatic number of products: products of any
graphs by a signed forest, products of signed paths, signed graphs with under-
lying graph Pn � Pm, products of some signed complete graphs and products
of signed cycles. We also presented a tool called a s-redundant set that helped
us compute chromatic number of signed graphs. It would be interesting to know
how close to the simple upper bound can be the chromatic number of the prod-
uct of two signed graphs. It is not clear if there is a sequence of signed graphs
approaching this bound or if there is a constant λ < 1 such that for all signed
graphs (G,Σ) and (H,Π), χs((G,Σ) � (H,Π)) ≤ λ max(χs(G,Σ), χs(H,Π)).
It would also be interesting to compute the chromatic number of more products.

Acknowledgements. We would like to thank Hervé Hocquard and Éric Sopena for
their helpful comments through the making of this paper. We would also like to thank
the reviewers for their comments and especially Reviewer 2 for pointing us to the
techniques of [12] which could improve our algorithm.

References

1. Aurenhammer, F., Hagauer, J., Imrich, W.: Cartesian graph factorization at loga-
rithmic cost per edge. Comput. Complex. 2(4), 331–349 (1992)

2. Bondy, J.A., Murty, U.S.R.: Graph Theory, 1st edn. Springer, Dordrecht (2008).
https://doi.org/10.1007/978-1-4020-6754-9

3. Feder, T.: Product graph representations. J. Graph Theory 16(5), 467–488 (1992)
4. Feigenbaum, J., Hershberger, J., Schäffer, A.A.: A polynomial time algorithm for

finding the prime factors of cartesian-product graphs. Discrete Appl. Math. 12(2),
123–138 (1985)

5. Fernández, A., Leighton, T., López-Presa, J.L.: Containment properties of product
and power graphs. Discrete Appl. Math. 155(3), 300–311 (2007)

6. Germina, K.A., Hameed K, S., Zaslavsky, T.: On products and line graphs of
signed graphs, their eigenvalues and energy. Linear Algebra Appl. 435(10), 2432–
2450 (2011). Special Issue in Honor of Dragos Cvetkovic

https://doi.org/10.1007/978-1-4020-6754-9

234 D. Lajou

7. Guenin, B.: Packing odd circuit covers: a conjecture. Manuscript (2005)
8. Harary, F.: On the notion of balance of a signed graph. Michigan Math. J. 2(2),

143–146 (1953)
9. Imrich, W., Klavžar, S.: Product Graphs, Structure and Recognition, January 2000

10. Imrich, W., Klavžar, S., Rall, D.F.: Cancellation properties of products of graphs.
Discrete Appl. Math. 155(17), 2362–2364 (2007)

11. Imrich, W., Peterin, I.: Recognizing cartesian products in linear time. Discrete
Math. 307(3), 472–483 (2007). Algebraic and Topological Methods in Graph
Theory

12. Imrich, W., Peterin, I.: Cartesian products of directed graphs with loops. Discrete
Math. 341(5), 1336–1343 (2018)

13. Jacques, F., Montassier, M., Pinlou, A.: The chromatic number and switching chro-
matic number of 2-edge-colored graphs of bounded degree. Private communication

14. Naserasr, R., Rollová, E., Sopena, É.: Homomorphisms of signed graphs. J. Graph
Theory 79(3), 178–212 (2015)

15. Sabidussi, G.: Graphs with given group and given graph theoretical properties.
Canad. J. Math 9, 515–525 (1957)

16. Sabidussi, G.: Graph multiplication. Mathematische Zeitschrift 72, 446–457
(1959/60)

17. Vizing, V.G.: The cartesian product of graphs (russian). Vycisl. Sistemy 9, 30–43
(1963)

18. Winkler, P.: Factoring a graph in polynomial time. Eur. J. Comb. 8(2), 209–212
(1987)

19. Zaslavsky, T.: Signed graphs. Discrete Appl. Math. 4(1), 47–74 (1982)

List Distinguishing Number of pth Power
of Hypercube and Cartesian Powers

of a Graph

L. Sunil Chandran1, Sajith Padinhatteeri2(B) , and Karthik Ravi Shankar3

1 Department of CSA, Indian Institute of Science, Bangalore, India
sunil@iisc.ac.in

2 Department of ECE, Indian Institute of Science, Bangalore, India
sajithp@iisc.ac.in

3 Department of ES, Indian Institute of Technology Hyderabad, Hyderabad, India
es16btech11014@iith.ac.in

Abstract. A graph G is said to be k-distinguishable if every vertex of
the graph can be colored from a set of k colors such that no non-trivial
automorphism fixes every color class. The distinguishing number D(G) is
the least integer k for which G is k-distinguishable. If for each v ∈ V (G)
we have a list L(v) of colors, and we stipulate that the color assigned to
vertex v comes from its list L(v) then G is said to be L-distinguishable
where L = {L(v)}v∈V (G). The list distinguishing number of a graph,
denoted Dl(G), is the minimum integer k such that every collection of
lists L with |L(v)| = k admits an L-distinguishing coloring. In this paper,
we prove that
– when a connected graph G is prime with respect to the Cartesian

product then Dl(G
r) = D(Gr) for r ≥ 3 where Gr is the Cartesian

product of the graph G taken r times.
– The pth power of a graph (Some authors use Gp to denote the pth

power of G, to avoid confusion with the notation of Cartesian power
of graph G we use G[p] for the pth power of G.) G is the graph G[p],
whose vertex set is V (G) and in which two vertices are adjacent when

they have distance less than or equal to p. We determine Dl(Q
[p]
n) for

all n ≥ 7, p ≥ 1, where Qn = Kn
2 is the hypercube of dimension n.

Keywords: List distinguishing number · Cartesian power ·
Hypercube · Hypercube power

AMS Subject Classification (2010): 05C15 · 05C25 · 05C76 · 05C80

1 Introduction

Let G be a graph and Aut(G) be the automorphism group of G. We denote
the set {1, 2, . . . , n} by [n] and the symmetric group defined over [n] by Sn. A

Second author is supported by grant PDF/2017/002518, Science and Engineering
Research Board, India.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 235–247, 2020.
https://doi.org/10.1007/978-3-030-39219-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_20&domain=pdf
http://orcid.org/0000-0002-1365-3997
https://doi.org/10.1007/978-3-030-39219-2_20

236 L. S. Chandran et al.

r-vertex coloring of G is a map f : V (G) → {1, 2, . . . , r}, and the sets f−1(i) for
i ∈ {1, 2 . . . , r} shall be referred to as the color classes of f . An automorphism
σ ∈ Aut(G) is said to fix a color class C of f if σ(C) = C, where σ(C) = {σ(v) :
v ∈ C}. A vertex coloring 1 of the graph G with the property that no non-trivial2

automorphism of G fixes all the color classes is called a distinguishing coloring
of the graph G.

Albertson and Collins [2] defined the distinguishing number of graph G,
denoted D(G), as the minimum r such that G admits a distinguishing r-
vertex coloring. An interesting variant of the distinguishing number of a graph,
due to Ferrara, Flesch, and Gethner [8] goes as follows. Given an assignment
L = {L(v)}v∈V (G) of lists of available colors to vertices of G, we say that G is L-
distinguishable if there is a distinguishing coloring f of G such that f(v) ∈ L(v)
for all v. The list distinguishing number of G, denoted Dl(G), is the minimum
positive integer k such that G is L-distinguishable for any list assignment L with
|L(v)| = k for all v.

For example consider the graph C4. One can do a proper coloring of this
graph using two colors but any of the two colorings of C4 is not a distinguishing
coloring. This is because there exists a nontrivial automorphism of the graph
which swaps the vertices in the same color class and hence preserve the color
classes. It is shown in [2] that D(C4) = 3. Usually, distinguishing coloring is done
by keeping the vertices of a suitable subgraph in a single color class. But in list
coloring this possibility is rare. Therefore in practice, finding a list distinguishing
coloring of a graph is difficult than having a distinguishing coloring.

The list distinguishing number of cycles of size at least 6, Cartesian products
of cycles, and for graphs whose automorphism group is a dihedral group D2n is
determined in [8]. The list distinguishing number of Trees [9], Interval graphs
[11] and Kneser graphs [5] is also known. In all these cases the list distinguishing
number of the graph is equal to the distinguishing number. In [8] authors raised
the following question ‘Is Dl(G) = D(G) for all graphs G?’ This question is still
open and our results shows that Dl(G) = D(G) holds for certain families of
graphs. A necessary and sufficient condition for a graph G such that Dl(G) =
D(G) is given in [3].

Note that Dl(G) ≥ D(G), since in the special case where the assigned lists of
size D(G) for all the vertices are the same then the list distinguishing coloring
turns out to be a distinguishing coloring of the graph.

In this article we deal with the list distinguishing number of Cartesian powers
of a graph G and that of p th power of hypercube.

First, we recall some definitions and results which are necessary to understand
the ensuing discussion. We follow [10] for the concepts related to the Cartesian
product of graphs.

1 Here the vertex coloring may not be a proper coloring always.
2 The identity automorphism of a graph G is called as the trivial automorphism of G.

LDN of pth Power of Hypercube and Cartesian Powers 237

Definition 1. The Cartesian product of graphs G and H is a graph G�H with
vertex set V (G) × V (H). Two vertices (u, v) and (u′, v′) are adjacent in G × H
if and only if u = u′ and vv′ ∈ E(H) or uu′ ∈ E(G) and v = v′. The r th
Cartesian power of a graph G, denoted by Gr, is the Cartesian product of G
with itself taken r times. That is Gr = G�G� . . . �G, r times.

The graphs G and H are called factors of the product G�H. A graph G is
prime with respect to the Cartesian product if it is nontrivial and cannot be
represented as the product of two nontrivial graphs3. The automorphism group
of a connected graph is generated by automorphism of the factor graphs and the
transpositions of the isomorphic prime factors.

Theorem 2. Let φ be a automorphism of a connected graph G with prime fac-
tor decomposition G = G1�G2� . . . �Gk. Then there is a permutation π of
{1, 2, . . . , k} and isomorphism φi : Gπ(i) → Gi for which

φ(x1, x2, . . . , xk) = (φ1(xπ(1)), φ2(xπ(2)), . . . φk(xπ(k)))

The following remark is a special cases of this theorem.

Remark 11. Let G be a connected prime graph. Then Gk, being a connected
graph, has a unique representation as a products of prime graphs. By our assump-
tion the graph G is a prime graph and therefore the unique representation of Gk

is G�G� . . . �G, k times, itself. This implies that for each i ∈ [k], φi in The-
orem2 is an element of Aut(G). Therefore π in Theorem2 has k! choices and
each φi has |Aut(G)| choices to form an automorphism of Gk. That is, we have
|Aut(Gk)| = k!|Aut(G)|k.

A hyper cube Qd of dimension d is the graph Kd
2 , the dth Cartesian power

of the complete graph K2. It is shown in [6] that the distinguishing number of
the hypercube Qd is two when d ≥ 4 and D(Qd) = 3 if d ∈ {2, 3}. Later, in [1],
Albertson has shown that when G is a connected prime graph then D(Gr) = 2
when r ≥ 4. In the same article it is conjectured that the prime case is not
necessary and for sufficiently large r = R(G) the distinguishing number of Gr

when G is a connected graph is two. This conjecture has been proved in [13] and
a complete description of D(Gr) for any graph G is given in [12].

The pth power of a graph G is the graph G[p], whose vertex set is V (G) and
in which two vertices are adjacent if the distance between them in the graph G

is at most p. In [6] it is shown that D(Q[2]
n) = 2 for n ≥ 4, D(Q[2]

d) = 4 when
d ∈ {2, 3}, D(Q[n]

n) = 2n and D(Q[n−1]
n) is the minimum integer x such that(

x
2

) ≥ 2d−1. Later, M. Chan has determined the remaining cases in [7]. Chan has
shown that D(Q[p]

n) = 2 for all 2 < p < n − 1.

3 A trivial graph is the single vertex complete graph K1.

238 L. S. Chandran et al.

In this article we discuss the list version of the distinguishing coloring of
the Cartesian powers of connected prime graphs and that of the pth power of a
hypercube. We show that in this case the list distinguishing number is equal to
the distinguishing number. This also strengthens the belief that Dl(G) = D(G)
for all graphs. Moreover every connected graph has a unique representation as a
product of prime graphs, up to isomorphism and the order of factors. Therefore
to check the validity of the question, Is Dl(G) = D(G), Cartesian powers of
graphs is a suitable starting point.

The main results in this article are as follows:

Theorem 3. Let G be a connected prime graph then

– If |G| �= 2,then Dl(Gr) = 2 for r ≥ 3.
– If |G| = 2 then Dl(Gr) = 2 for r ≥ 4 and Dl(Gr) = 3 when r ∈ {2, 3}.
and

Theorem 4. Let Qn be the hypercube of dimension n then Dl(Q
[p]
n) = D(Q[p]

n)
for all p ≥ 1, n ≥ 7.

In Sect. 2 we compute the list distinguishing number of hyper cubes. Section 3
discusses the list distinguishing number of Cartesian powers of an arbitrary con-
nected prime graph. We determine the list distinguishing number of pth power
of hypercube in Sect. 4.

2 List Distinguishing Number of the Hypercube

We shall show that Dl(Qd) = D(Qd) for all d ≥ 2. It is shown in [6] that
the distinguishing number of the hypercube D(Qd) = 2 for d ≥ 4 and is 3 for
d ∈ {2, 3}. We shall show that the same is true for the list distinguishing number
Dl(Qd) as well. We use a probabilistic argument to prove the case of d ≥ 6, a
more careful probabilistic argument for d = 5 and a combinatorial argument for
d ≤ 4.

Lemma 5. Dl(Q2) = Dl(Q3) = 3.

Proof. We consider the following cases:
Case d = 2: Recall that D(Q2) = 3. Therefore Dl(Q2) ≥ D(Q2) = 3. For
each v ∈ V (Q2) let l(v) be a given color list of size 3. If | ∪v∈V (Q2) lv| = 3
then all the given lists are the same and in this case any valid 3 distinguishing
coloring of the graph is a 3 list distinguishing coloring also. Therefore we assume
| ∪v∈V (Q2) lv| ≥ 4 and color the vertices in V (Q2) as follows: assign different
colors say a, b, c to vertices say v1, v2 and v3 respectively. If the given list of the
fourth vertex v4 of the graph is {a, b, c} then there is a color d /∈ {a, b, c} in
the list of some vertex because of | ∪v∈V (Q2) lv| ≥ 4. Without loss of generality
let d ∈ l(v2). Then recolor v2 with color d and assign the color b to v4. Since
|V (Q2)| = 4, Observe that such a coloring is always distinguishing.

LDN of pth Power of Hypercube and Cartesian Powers 239

Case d = 3: By following the similar arguments of the above case we can assume
that |∪v∈V (Q3) lv| ≥ 4. That is, since all the lists are not the same, there are two
adjacent vertices, say u and v, which have different lists. Then we can ensure
that the four vertices in u ∪ N(u) get different colors. This is done as follows:
let a ∈ l(u) be a color that not present in l(v) and b ∈ l(v) be the color not
present in l(u). Then assign a to u and b to v. Avoid the colors a and b from
the third neighbor of u and give a color c. If the list of the fourth neighbor of
u is exactly {a, b, c}, then assign a to this vertex and change the color of u to
d �= a, b, c. We color the remaining vertices arbitrarily by avoiding the color given
to u. We show this to be a distinguishing coloring. Let φ be a color preserving
nontrivial automorphism. Then φ must fix u, and cannot permute the neighbors
of u as they have different colors. Without loss of generality let u = (0, 0, 0) and
N(u) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Since φ(0, 0, 0) = (0, 0, 0) by Theorem 2 each
φi = I for i ∈ [3]4. Now observe that since φ(1, 0, 0) = (1, 0, 0) the permutation
π fixes 1. By similar argument π(2) = 2 and π(3) = 3. Therefore φ is the identity
automorphism.

Lemma 6. Dl(Q4) = 2.

Proof. Observe that Q4 is the Cartesian product C4�C4, and it is shown in
theorem 4 of [8] that Dl(Cn�Cm) = D(Cn�Cm) ∀n,m ≥ 3. Therefore, since
D(Q4) = 2, we have Dl(Q4) = 2.

Before the next lemma we introduce some notations and explain the prob-
abilistic techniques used in [5] to calculate the list distinguishing number of a
graph. This is a reformulation of the motion lemma (See [1,13,15]) suitable for
calculating the list distinguishing number of graphs discussed in this article.

Let G be a graph of order n with L = ∪i∈[n]L(vi), where L(vi) is the list of two
different colors assigned for the vertex vi. We choose randomly (uniformly) and
independently for each vertex v, a color from its list L(v). We call this coloring
as random coloring and denote it by μ. Observe that the probability P (μ is not
distinguishing) < 1 implies its complement P (μ is distinguishing) > 0, that is,
there exists a distinguishing coloring of the graph G. Let G := Aut(G)\ I, where
I is the identity automorphism of the graph. Given an automorphism φ of G,
for a vertex v ∈ G let Oφ

v := {v, φ(v), . . . φt(v)} with φt+1(v) = v denote the
orbit of φ containing v and Oφ denote the class of all distinct orbits. Observe
that Oφ is a partition of V (G) and let the elements of Oφ be denoted by Oφ

i .
The number of distinct orbits for a given φ is denoted by θφ and θ := max

φ∈G
θφ.

Observe that μ is not distinguishing if and only if there exists a φ ∈ G
such that ∀v ∈ V (G) we have μ(φ(v)) = μ(v). This implies there exists φ ∈ G
such that |μ(Oφ

i)| = 1∀i ∈ [θφ]. That is all the orbits of the automorphism, are

4 This is because each φi is an automorphism of K2 (since Qd = Kd
2) and φi(0) = 0

implies φi(1) = 1.

240 L. S. Chandran et al.

monochromatic. We now bound the probability of occurrence of monochromatic
orbits:

P (μ is not distinguishing) = P (∃φ ∈ G such that φ is color preserving wrt μ)

≤
∑

φ∈G
P (φ is color preserving wrt μ)

=
∑

φ∈G

θφ∏

i=1

P (Oφ
i is monochromatic)

Since each of the lists in L has two colors, for a fixed automorphism φ ∈ G,
we have,

P (Oφ
i is monochromatic}) ≤ 21−|Oφ

i |.

Observe that this probability is equal to zero if there is no common color in the
given lists of vertices in Oφ

i .
Therefore

P (μ is not distinguishing) ≤
∑

φ∈G

θφ∏

i=1

21−|Oi|

=
∑

φ∈G
2θφ−n

≤ |Aut(G)|
2n−θ

(1)

where n = |G| and θ = max
φ∈G

θφ as defined above. That is, if we know the value

(or an upper bound) of θ then we can apply the above technique to check for
the existence of a two list distinguishing coloring of the graph. A usual idea
to bound θ is to determine the maximum number of fixed points that any non
trivial automorphism can have.

Let Fφ := {v ∈ V (G) such that φ(v) = v} where Fφ is the set of all fixed
point of φ. Let fφ := |Fφ| and f := max

φ∈G
fφ. Now observe that the fixed points

of φ form orbits of φ of size one, and all other orbits of φ have size at least two.
Therefore θ ≤ n−f

2 + f = n+f
2 . Again observe that θ − n ≤ n+f

2 − n = f−n
2 .

Therefore by (1) we have

P (μ is not distinguishing) ≤ |Aut(G)|
2

n−f
2

(2)

However this may not always give a good upper bound on the probability. If
we have better information about the automorphisms and their orbits the bound
in (1) could be improved. That is if we know the maximum number of orbits of
size k ≥ 1 and the number of automorphisms that make orbits of size k, then
we could fine-tune (2) and get better bound for the probability (See Lemma9).

LDN of pth Power of Hypercube and Cartesian Powers 241

Using these techniques we determine the list distinguishing number of Qd for
d ≥ 5. Before the proof, we discuss the following lemma which gives an upper
bound of the maximum number of fixed points f in the graph Qd.

Lemma 7. The maximum number of fixed points, f in the graph Qd is at most
2d−1.

Proof. Let S be the set of fixed points under a given nontrivial automorphism φ.
Since φ is not the identity, there must be a u such that φ(u) = v, v �= u. Now for
each x ∈ S we see that the distance d(x, u) = d(φ(x), φ(u)) = d(x, v), because
distances are preserved under automorphisms. Since u �= v they must differ in
some coordinate, let them differ on the ith coordinate. Then we claim that the
vertex x̄ obtained by flipping the ith coordinate of x is not in S. This follows
because d(x̄, u) �= d(x̄, v) since one side must be d(x, u)+1 while the other must
be d(x, u) − 1. As for each x ∈ S there is a unique x̄ /∈ S, S can have at most
2d−1 elements.

Lemma 8. For every d ≥ 6, Dl(Qd) = 2.

Proof. We use the probabilistic argument discussed above to show that given
any assignment of lists of size 2 to the vertices of Qd, we can always find a
distinguishing coloring.

Since Qd is isomorphic to Kd
2 , from Remark 11 we have |Aut(Qd)| = 2dd!. By

Lemma 7 we have f ≤ 2d−1. Then by substituting in (2) and noting that d! <

2(2
(d−2)−d) holds for all d ≥ 6 we have P (μ is not distinguishing) < 1 for d ≥ 6.

This implies P (μ is distinguishing) > 0 and there exists a list distinguishing
coloring for the graph.

Observe that when d = 5 the bound given in (2) is bigger than one and hence
the probabilistic argument fails to provide a list distinguishing coloring of Q5.
The following lemma uses a more careful bound on θ and this allows the same
technique to be used for d = 5 as well.

Lemma 9. Dl(Q5) = 2.

Proof. From Theorem 2, we observe that an easy way to characterize the auto-
morphisms of Qd is by saying that for x = (x1, x2, . . . , xd) ∈ {0, 1}d and σ ∈ Sd

we get a unique φ ∈ Aut(Qd) which takes

v = (v1, v2..., vd) ∈ V (Qd) to φ(v) = x ⊕ (vσ(1), vσ(2)..., vσ(d))

where ⊕ stands for the XOR of the two d length vectors, and all the φ ∈ Aut(Qd)
are characterized precisely in this manner. Now we calculate the number of
automorphisms with f = 2d−1. To see this, given a φ ∈ Aut(Qd) represent it
by (x, σ) for some x ∈ {0, 1}d and σ ∈ Sd. Let C1C2 . . . Ct be the disjoint cycle
decomposition of σ. Since x and the cycles of σ are fixed, if v = (v1, v2..., vd) is
a fixed point of φ then we have

φ(v1, v2..., vd) = (v1, v2..., vd) ⇐⇒ x ⊕ (vσ(1), vσ(2)..., vσ(d)) = (v1, v2..., vd)

242 L. S. Chandran et al.

Without loss of generality, let C1 = (i1, i2 . . . , ik) where k ≥ 1. That is
σ(i1) = i2, σ(i2) = i3, . . . , σ(ik) = i1. For a fixed point v = (v1, v2, . . . , vk) we
need that vk = [φ(v)]ik

= xk + vik−1 for all k. From this it is clear that if we
assign 0 or 1 to vk, then the value of vk−1, vk−2, . . . , v1 are fixed accordingly. Then
(vi1 , vi2 , . . . , vik

) have only two possible values in any fixed vertex v. The same
is true in the cases of other cycles C2, C3, . . . Ct also. It follows that the number
of fixed vertices with respect to φ is at most 2#cycles(φ), where #cycles(φ) is the
number of cycles in the disjoint cycle decomposition of σ in the representation of
φ. Then if an automorphism φ has 2d−1 fixed points means 2#cycles(φ) = 2d−1.
That is #cycles(φ) = d − 1. This occurs only if σ is a transposition. Let σ be
(ij), then x will be forced to take xk = 0∀k /∈ {i, j} and xi = xj since for v to be
a fixed point under π, vi = vj ⊕xi and vj = vi ⊕xj , and this implies xi ⊕xj = 0.
That is (xi, xj) should be either (1, 1) or (0, 0).

Therefore it follows that there are
(
d
2

)∗2 automorphisms which fix 2d−1 points
and the rest must fix at most 2d−2 points. We look next, at those automorphisms
which do not fix any vertices. In fact if S is a subset of [d] such that σ|S is the
identity, then it must be the case that ∀i ∈ S xi = 0, if there are fixed points.
Therefore at least !(d−|S|) ∗ (2|S|−1) ∗ 2d−|S| automorphisms will not have any
fixed points, where the first term comes from taking derangements of remaining
d − |S| coordinates, the second term from preventing xi from being 0 for i ∈ S,
and the third term, from freely choosing the remaining values of x.

For each S let AS be the automorphisms given above, which do not fix any
points. Then for S �= S′, AS ∩ AS′ = φ. Hence summing over all subsets of
[d] we shall get a lower bound on the number of automorphisms which have no
fixed points as follows:

∑

S⊂[d]

|AS | =
d∑

m=1

(
d

m

)
!(d − m) ∗ (2m − 1) ∗ 2d−m

For the case of d = 5, solving the above sum gives us a value of 1511. Therefore
at least 1511 out 3840(= |Aut(Q5)|) automorphisms have no fixed points. Now
we try to bound (1) better by splitting it up.

∑

π∈Aut(Q5)

2−(25−θπ) ≤ 1511
224−0

+
20

224− 24
2

+
3840 − 1511 − 20

224− 23
2

= 0.665 < 1

This proves P (μ is not distinguishing) < 1 in this case as well.

By Lemmas 8, 5, 6, 9 we have proved the main result of the section, stated below.

Theorem 10. Dl(Qd) = D(Qd) ∀d ≥ 2.

3 List Distinguishing Number of Products of Arbitrary
Graphs

Let G be a connected prime graph with |G| = n. Then we show that Dl(Gr) =
D(Gr) for all r ≥ 3. The proof is based on the methods used in [1] and [13].

LDN of pth Power of Hypercube and Cartesian Powers 243

Albertson [1] uses the motion lemma [15] to prove the existence of a distin-
guishing two coloring for Gr when r ≥ 4. He also shows that when |G| ≥ 5 we
have D(Gr) = 2 for r ≥ 3. The missing cases other than r = 2 have been solved
in [13] again by using a refinement of the motion lemma provided |G| ≥ 3. In
both the cases they assign a color, uniformly and independently for each vertex
and show that the probability that a nontrivial automorphism fixing all the color
classes is strictly less than one.

In our case, the only difference is that we are provided with a list of colors for
each vertex. For each vertex v, if we choose uniformly and independently a color
from the corresponding lists, the probability bound discussed in (1) is same as
that in [1] and [13]. Therefore one can use the probabilistic technique used in [1]
and [13] in the list distinguishing coloring also. Therefore we have

Theorem 11. Let G be a connected prime graph then Dl(Gr) = D(Gr) for all
r ≥ 3.

Proof. It is shown that(Corollary 1.2 in [1]) when G is a connected prime graph
of order n then D(Gr) ≤ D(Kr

n). This is because every automorphism of G is an
automorphism of Kn and by Theorem 2 it follows that Aut(Gr) ⊆ Aut(Kr

n).
Therefore any coloring that destroys every automorphism of Kr

n must also
destroys every automorphism of Gr. Observe that this is true in the list case
also. Hence we have Dl(Gr) ≤ Dl(Kr

n).
Since Qd is isomorphic to Kd

2 , by Theorem 10 we have Dl(Gr) = D(Gr)
for a connected prime graphs with n = 2. When r ≥ 4 or n ≥ 5 and r = 3,
calculations similar to [1] (Theorem 4, Theorem 5 and proof of Theorem 2 in
[1]) proves Dl(Gr) = D(Gr). For the remaining cases similar arguments to those
in Corollary 3.2 of [13] proves Dl(Gr) = D(Gr) when r, n ≥ 3. (See Appendix
for details).

4 List Distinguishing Number for pth Power of the
Hypercube

The pth power of a graph G is the graph G[p], whose vertex set is V (G) and
in which two vertices are adjacent if the distance between them in the graph
G is at most p. In [14], the automorphism group of Q

[p]
d is shown to be the

same as Aut(Q[p mod 2]
d), when 2 ≤ p < d − 1 with Q

[0]
d taken to be Q

[2]
d . Note

that for graphs G, H with V (G) = V (H) and Aut(G) ⊆ Aut(H), we have
Dl(G) ≤ Dl(H). This is because a coloring which destroys all the automorphism
of H also destroys the automorphisms of G. Therefore Dl(Q

[t]
d) = Dl(Qd) for

any odd number t and we have already determined Dl(Qd) in Sect. 2. Therefore
it remains only to calculate Dl(Q

[2]
d). Moreover we have Dl(Q

[t]
d) = Dl(Q

[2]
d) for

all even number t.

244 L. S. Chandran et al.

To understand the structure of the automorphisms of Q
[p]
d , we restate the

result from [14] which characterize the automorphism group of hyper cubes.

Theorem 12. 1. For n ≥ 2, the automorphism group Aut(Q[n−1]
n) is isomor-

phic to a semi-direct product of Z2n−1

2 with S2n−1 , of order 22
n−1

(2n−1)!.
2. For n ≥ 4 the automorphism group Aut(Q[2]

n) is isomorphic to a semi-direct
product of Zn

2 with Sn+1 of order 2n(n + 1)!.
3. For 2 ≤ k < n − 1, we have

Aut(Q[k]
n) =

{
Aut(Q[2]

n), if k is even
Aut(Qn), if k is odd

Moreover the same article describes the action of π ∈ Aut(Q[2]
n) in the following

way: For x ∈ Q
[2]
n let φk(x) = x + ek with ek ∈ Q

[2]
n consisting entirely of

zeros except for a single one in the k-th coordinate position. Let N be the
group generated by {φk : 1 ≤ k ≤ n}. Let G

[2]
0 be the group generated by the

permutation group Sn and τ1 where

τ1(x) =

⎧
⎪⎨

⎪⎩

x + e1, if d(0, x) is even and one in the first coordinate position of x

x + e1, if d(0, x) is odd and zero in the first coordinate position of x

x, otherwise

with d(0, x) as the hamming weight of the vertex x. In short for π ∈ Aut(Q[2]
n)

there exists a unique φ ∈ N and α ∈ G2
0 such that π(x) = φα(x).

The following lemma shows that any nontrivial automorphism of the graph
Q

[2]
d can have at most 2d−1 fixed points.

Lemma 13. The maximum number of fixed points, f , that any nontrivial auto-
morphism can have in the graph Q

[2]
d is at most 2d−1.

Proof. We observed that an automorphism π of Q
[2]
d could be represented as φα

where φ ∈ N and α ∈ G
[2]
0 . Moreover, α can be represented as σ or τ1σ or στ1

for some σ ∈ Sd

Case 1: τ1 is identity, that is α ∈ Sd:
In this case the automorphism π is φσ and that has the same structure as an
automorphism of the hypercube Qn. By similar arguments as in the proof of
Lemma 9, we have the number of fixed vertices with respect to π to be at most
2d−1.
Case 2: α has the form στ1:
Denote the union of vertices of the form (1, a2, . . . , an) with even parity and
vertices of the form (0, a2, . . . , an) with odd parity as Class I and the remaining
vertices as Class II.

LDN of pth Power of Hypercube and Cartesian Powers 245

Note that τ1 acts as identity for Class II vertices and toggles the first position
for vertices in Class I. Let S be the set of fixed vectors under the action of
π = φστ1. Let S1 = S∩ Class I and S2 = S∩ Class II. We consider the following
sub cases:
Sub case 2(1): σ fixes the first position, that is σ(1) = 1.

Suppose [φ]1 = 1. Then φ toggles the first bit of v = (v1, v2, . . . , vd). When
v is fixed point then we have [φστ1(v)]1 = v1. Since σ(1) = 1, we have v ∈ S
implies τ1 is changing the first bit. Since τ1 act as identity for the vertices in
Class II, in this case a fixed point should be in Class I. That is we have S ⊆ Class
I and |S| ≤ |Class I| = 2d−1. Now suppose [φ]1 = 0. Then τ1 should not toggle
the first bit of any v ∈ S. Therefore in this case S ⊆Class II and |S| ≤ |Class
II| = 2d−1 Sub case 2(2): σ(1) �= 1 :
Without loss o generality, let C1 be a cycle containing 1 in the cycle decomposi-
tion of the permutation σ. Let C1 = (1, i2, i3, . . . ik) with k ≥ 2 and ir ∈ [d]. We
claim that |S∩ Class I| ≤ 2d−2 and |S∩ Class II| ≤ 2d−2.

To see this let v ∈ S∩ Class I. Then the choice of v1 fixes the values of
vi2 , vi3 , . . . , vik

. That is (v1, vi2 , . . . , vik
) has two choices depending on the choice

of v1. The choices of remaining bits vt, t ∈ [d]\{1, i2, . . . , ik} depends on the par-
ity of (v1, vi2 , . . . , vik

) and the choice of v1. That is if v1 = 0 and (0, vi2 , . . . , vik
)

has odd parity then to make v ∈ Class I the parity of the remaining entries
vt, t ∈ [d]\{1, i2, . . . , ik} in v should be of even parity. Similarly if (1, vi2 , . . . , vik

)
has odd parity the remaining entries in v should have odd parity to make v an
element of Class I. We have 2d−k possible patterns of the remaining entries of
which 2d−k−1 are of odd parity and 2d−k−1 are of even parity. This implies that
the total number of choices that v can make is at most 2 ∗ 2d−k−1 = 2d−k. Since
k ≥ 2 we have |S∩ Class I| ≤ 2d−2. Similarly we have |S∩ Class II| ≤ 2d−2.
Therefore |S| ≤ 2 ∗ 2d−2 = 2d−1.
Case 3: α has the form στ1:
By the similar arguments as in Case 2 an automorphism π of this form can fix
at most 2d−1 vertices.

Theorem 14. Dl(Q
[p]
d) = D(Q[p]

d) for all p ≥ 1 and n ≥ 7.

Proof. By Theorem 10 in Sect. 2 we have Dl(Qd) = D(Qd). By Theorem 12 and
the discussions in the beginning of this section, we haveDl(Q

[t]
d) = Dl(Qd) and

D(Q[t]
d) = D(Qd) for 2 ≤ t < d−1. Therefore it follows that Dl(Q

[t]
d) = Dl(Qd) =

D(Qd) = D(Qt
d) for all odd t. For the case when t is even, we prove Dl(Q

[2]
n) =

D(Q[2]
n) using the probabilistic arguments discussed in (2). It is shown that

|Aut(Q[2]
d)| = (d + 1)!2d in [14]. By the above lemma (Lemma 13) we have f ≤

2d−1. Substituting these values in (2), we have
P (μ is not distinguishing) ≤ (d+1)!2d

22d−2 . To get P (μ is not distinguishing) < 1,

we need to show that (d+1)!2d

22d−2 < 1. That is (d + 1)! < 22
d−2−d. This holds for

d ≥ 7 and hence there exists a list distinguishing coloring of the graph when
n ≥ 7.

246 L. S. Chandran et al.

For Q
[n]
n , it being a K2n , we get Dl(Q

[n]
n) = D(Q[n]

n) = 2n. For Q
[n−1]
n , its

complement being a perfect matching, we observe that each edge in the matching
can either get swapped (That is for uv ∈ E(G) u maps to v and v maps to u) or
get assigned to another edge or any combination of the two. Therefore whenever
u, v ∈ V (G) are adjacent, they should get different colors, and for every two
edges uv and xy, the set of colors assigned to uv should differ from that assigned
to xy. Therefore when there are m (= 2n−1) edges, l colors are necessary, where
l is the smallest integer satisfying

(
l
2

) ≥ m. Clearly if we have lists of size l, a
coloring satisfying the previous criteria can be chosen from it.

Appendix

Details of the proof of Theorem11

There is a slight difference between the motion lemma discussed in this article
(in [5] also) and that uses in [1] and [13]. Here we bound the number of orbits by
bounding maximum number of fixed points that any non trivial automorphism
could have. But in [1] and [13] they use the minimum number of vertices that any
non trivial automorphism could move to bound the maximum number of orbits
θ (See Sect. 2). Observe that the minimum number of moving points, denoted
by m or m(G), is equal to |G|− the maximum number of fixed points. Therefore
2

n−f
2 in (2) becomes 2

m
2 in [1] and [13]. That is, the bounds for m in their

discussions are bounds for n − f in our discussions.
Keeping this in mind we discuss the details of the proof of Theorem11. In [1],

Theorem 4 calculates |Aut(Kr
n)| and Theorem 5 in the same paper determines

m(Kr
n), the minimum number of vertices that any non trivial automorphism

must move. By substituting these values in (2), we have

P (μ is not distinguishing) ≤ r!(n!)r

2nr−1 .

Again, in the proof of Theorem 2 of [1], it is shown that r!(n!)r < 2nr−1
when

r ≥ 4 or n ≥ 5, r = 3. Similarly the bounds and the refinement of motion lemma
given in [13] could be used to prove the list version of the distinguishing coloring
also.

Lemma 3.1 in [13] is a refinement of the motion lemma which states that.

Lemma 15 ([13]). Let G be a graph with |G| = n. Suppose Aut(G) acting on
V (G) has k orbits and d ≥ 2 is an integer. If n − m(G) ≥ 3 and

(
|Aut(G)| − kAut(G) − n

n − m(G)
− 1

)
d−n/2 +

kAut(G) − n

n − m(G)
d−m(G)/2 < 1

then D(G) ≤ d

The proof of this lemma is based on the calculation of the probability that a
non trivial automorphism fixes all the color classes in a random d coloring of the
vertices. We could use the same method in list coloring also. That is this lemma
is valid in our case as well. The next result, Corollary 3.2 in [13] states that

LDN of pth Power of Hypercube and Cartesian Powers 247

Corollary 16 ([13]). Suppose G is a vertex transitive graph with n vertices and
with n − m(G) ≥ 3. If d ≥ 2 is an integer and

|Aut(G)| ≤ (n − m(G))dm(G)/2

(n − m(G))d(m(G)−n)/2 + 1

then D(G) ≤ d.

The proof of this Corollary depends on the previous lemma and vertex transitive
property of the graph. Both are independent of the list and non list version of
the vertex coloring. Now, the values of m(Kr

n) and |Aut(Kr
n)| given in [1] and

the above corollary gives the desired result.

References

1. Albertson, M.O.: Distinguishing Cartesian powers of graphs. Electron. J. Combin.
12, #N17 (2005)

2. Albertson, M.O., Collins, K.L.: Symmetry breaking in graphs. Electron. J. Comb.
3, #R18 (1996)

3. Alikhani, S., Soltani, S.: Characterization of graphs with distinguishing number
equal list distinguishing number. https://arxiv.org/abs/1711.08887

4. Balachandran, N., Padinhatteeri, S.: χD(G), |Aut(G)| and a variant of the Motion
Lemma. Ars Math. Contemp. 12(1), 89–109 (2016)

5. Balachandran, N., Padinhatteeri, S.: The list distinguishing number of Kneser
graphs. Discrete Appl. Math. 236, 30–41 (2018)

6. Bogstad, B., Cowen, L.: The distinguishing number of the hypercube. Discrete
Math. 283, 29–35 (2004)

7. Chan, M.: The distinguishing number of the augmented cube and hypercube pow-
ers. Discrete Math. 308(11), 2330–2336 (2008)

8. Ferrara, M., Flesch, B., Gethner, E.: List-distinguishing coloring of graphs. Elec-
tron. J. Comb. 18, #P161 (2011)

9. Ferrara, M., Gethner, E., Hartke, S., Stolee, D., Wenger, P.: List distinguishing
parameters of trees. Discrete Appl. Math. 161, 864–869 (2013)

10. Hammack, R., Imrich, W.: Sandi Klavžar: Handbook of Product Graphs. Discrete
Mathematics and its Applications, 2nd edn. Taylor & Francis Group, LLC, Boca
Raton (2011)

11. Immel, P., Wenger, P.S.: The list distinguishing number equals the distinguishing
number for interval graphs. Discussiones Mathematicae Graph Theory 37(1), 165–
174 (2017). http://arxiv.org/abs/1509.04327v1

12. Imrich, W., Klavžar, S.: Distinguishing Cartesian powers of graphs. J. Graph The-
ory 53(3), 250–260 (2006)

13. Klavz̆ar, S., Zhu, X.: Cartesian powers of graphs can be distinguished by two labels.
Eur. J. Comb. 28, 303–310 (2007)

14. Miller, Z., Perkel, M.: A stability theorem for the automorphism groups of powers
of the n-cube. Australas. J. Comb. 10, 17–28 (1994)

15. Russell, A., Sundaram, R.: A Note on the asymptotics and computational com-
plexity of graph distinguishability. Electron. J. Comb. 5, #R23 (1998)

https://arxiv.org/abs/1711.08887

On Algebraic Expressions
of Two-Terminal Directed Acyclic Graphs

Mark Korenblit1(B) and Vadim E. Levit2

1 Holon Institute of Technology, Holon, Israel
korenblit@hit.ac.il

2 Ariel University, Ariel, Israel
levitv@ariel.ac.il

Abstract. The paper investigates relationship between algebraic
expressions and graphs. Our intent is to simplify graph expressions and
eventually find their shortest representations. We describe the decom-
position method for generating expressions of complete st-dags (two-
terminal directed acyclic graphs) and estimate the corresponding expres-

sion complexities. Using these findings, we present an 2O(log2 n) upper
bound of a length of the shortest expression for every st-dag of order n.

1 Introduction

A graph G consists of a vertex set V (G) and an edge set E (G), where each
edge corresponds to a pair (v, w) of vertices. If the edges are ordered pairs of
vertices (i.e., the pair (v, w) is different from the pair (w, v)), then we call the
graph directed or digraph; otherwise, we call it undirected. If (v, w) is an edge
in a digraph, we say that (v, w) leaves vertex v and enters vertex w. A vertex
in a digraph is a source if no edges enter it, and a target if no edges leave it.
A path from vertex v0 to vertex vk in a graph G is a sequence of its vertices
[v0, v1, v2, . . . , vk−1, vk] such that (vi−1, vi) ∈ E (G) for 1 ≤ i ≤ k. G is an
acyclic graph if there is no closed path [v0, v1, v2, . . . , vk, v0] in G. A two-terminal
directed acyclic graph (st-dag) has only one source s and only one target t. In
an st-dag, every vertex lies on some path from s to t.

A graph G′ is a subgraph of G if V (G′) ⊆ V (G) and E (G′) ⊆ E (G). A
graph G is homeomorphic to a graph G′ if G can be obtained by subdividing
edges of G′ with new vertices.

Given a graph G, an edge labeling is a function E(G) −→ R, where R is a
ring equipped with two binary operations + (addition or disjoint union) and ·
(multiplication or concatenation, also denoted by juxtaposition when no ambi-
guity arises). In what follows, elements of R are called labels, and a labeled graph
refers to an edge-labeled graph with all labels distinct.

A path between the source and the target of an st-dag is called spanning.
We define the sum of edge label products corresponding to all possible spanning
paths of an st-dag G as the canonical expression of G. The label order in every
product (from the left to the right) is identical to the order of corresponding edges
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 248–259, 2020.
https://doi.org/10.1007/978-3-030-39219-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_21&domain=pdf
http://orcid.org/0000-0002-2894-2521
http://orcid.org/0000-0002-4190-7050
https://doi.org/10.1007/978-3-030-39219-2_21

On Algebraic Expressions of Two-Terminal Directed Acyclic Graphs 249

in the path (from the source to the target). An algebraic expression is called an
st-dag expression (a factoring of an st-dag in [2]) if it is algebraically equivalent to
the canonical expression of an st-dag. An st-dag expression consists of labels, the
two ring operators + and ·, and parentheses. For example, clearly, the algebraic
expression ab + bc is not an st-dag expression. We denote an expression of an
st-dag G by Ex(G).

We define the total number of labels in an algebraic expression as its complex-
ity. An optimal representation of the algebraic expression F is an expression of
minimum complexity algebraically equivalent to F . Our intention is to simplify
an st-dag expression to its optimal representation or, at least, to the expression
with polynomial complexity in relation to the st-dag’s order.

A series-parallel graph is defined recursively so that a single edge is a series-
parallel graph and a graph obtained by a parallel or a series composition of
series-parallel graphs is series-parallel. A series-parallel graph expression has a
representation in which each label appears only once [2,13] (a read-once for-
mula [7] in which Boolean operations are replaced by their arithmetic coun-
terparts). This representation is an optimal representation of the series-parallel
graph expression. For example, the canonical expression of the series-parallel
graph presented in Fig. 1 is abd+abe+acd+ace+fe+fd and it can be reduced
to (a(b + c) + f)(d + e).

a

b

c

d

e

f

Fig. 1. A series-parallel graph.

As shown in [3], an st-dag is series-parallel if and only if it does not con-
tain a subgraph homeomorphic to the forbidden graph illustrated in Fig. 2.
Possible optimal representations of its expression are a1 (a2a3 + b2) + b1a3 or
(a1a2 + b1) a3+a1b2. For this reason, an expression of a non-series-parallel st-dag
cannot be represented as a read-once formula. However, generating the optimum
factored form for expressions which cannot be reduced to read-once formulae is
NP-complete [23].

Problems related to computations on graphs whose edges are associated with
additional data have applications in various areas. Specifically, some flow [22],
scheduling [6], reliability [20], economical [19] problems are either intractable
or have complicated solutions, in general, while they have efficient solutions
for series-parallel graphs. Optimization problems on vertex-labeled graphs are
considered in [5].

250 M. Korenblit and V. E. Levit

Fig. 2. The forbidden graph.

Interrelations between graphs and expressions are discussed in [1,2,4,8,10,
12,13,15–19,21], and other works. In particular, some algorithms developed in
order to obtain good factored forms are described in [8,15]. In [13] we presented
an algorithm, which generates the expression of O

(
n2

)
complexity for an n-

vertex Fibonacci graph [9] that gives a generic example of non-series-parallel
graphs. More complicated, rhomboidal graphs are considered in [12]. The total
numbers of labels in expressions derived for these n-vertex graphs are O

(
nlog2 6

)
.

This paper is devoted to a more general problem. We estimate an upper
bound of the optimal representation’s complexity of the expression for each n-
vertex st-dag.

To this end, we investigate a complete st-dag that has vertices {1, 2, 3, . . . , n}
and edges {(v, w) | v = 1, 2, . . . , n − 1 | w > v} (see the example in Fig. 3).
Edge (v, v + l) in the graph is labeled by e

(l)
v and is called an edge of level l. An

n-vertex complete st-dag has n(n−1)/2 edges: n−1 edges of level 1, n−2 edges
of level 2, ..., 1 edge of level n − 1. In the first step, our intent is to generate
and to simplify the expressions of complete st-dags. The sketch of the relevant
study along with preliminary results appears in [11]. This paper contains exact
formulae and proofs.

Fig. 3. A 7-vertex complete st-dag.

On Algebraic Expressions of Two-Terminal Directed Acyclic Graphs 251

2 Generating Expressions for Complete St-Dags

For constructing expressions of complete st-dags we use a decomposition method.
This method is based on recursive revealing subgraphs in the initial graph.
The resulting expression is produced by a special composition of subexpressions
describing these subgraphs.

Consider an n-vertex complete st-dag. Denote by F (p, q) a subexpression
related to its subgraph (which is a complete st-dag as well) having a source
p (1 ≤ p ≤ n) and a target q (1 ≤ q ≤ n, q ≥ p). If q − p ≥ 2, then we
choose a decomposition vertex i in the middle of a subgraph (i is m or m, where
m =

⌊
q+p
2

⌋
, m =

⌈
q+p
2

⌉
), and, in effect, split it at this vertex (vertex 4 in Fig. 3).

Otherwise, we assign final values to F (p, q). As follows from the structure of
a complete st-dag, any path from vertex p to vertex q passes through vertex
i or avoids it via an edge of level l (l = 2, 3, ..., n − 1) that connects revealed
subgraphs (connecting edge). Therefore, F (p, q) is generated by the following
recursive procedure (decomposition procedure):

1. F (p, p) ← 1
2. F (p, p + 1) ← e

(1)
p

3. F (p, q) ← F (p, i)F (i, q) + F (p, i − 1)e(2)i−1F (i + 1, q)

+F (p, i − 2)e(3)i−2F (i + 1, q) + F (p, i − 1)e(3)i−1F (i + 2, q)
+

+F (p, i − m + p) e
(m−p+1)
i−m+p F (i + 1, q)

F (p, i − m + p + 1) e
(m−p+1)
i−m+p+1F (i + 2, q)

+... + F (p, i − 1)e(m−p+1)
i−1 F (i + m − p, q)

+F (p, p) e
(m−p+2)
p F (m + 2, q)

+F (p, p + 1) e
(m−p+2)
p+1 F (m + 3, q)

+ ... + F (p,m − 2) e
(m−p+2)
m−2 F (q, q)

+

+F (p, p)e(q−p−1)
p F (q − 1, q) + F (p, p + 1)e(q−p−1)

p+1 F (q, q)
+F (p, p)e(q−p)

p F (q, q)

Lines 1 and 2 contain conditions of exit from the recursion. The special case
when a subgraph consists of a single vertex is considered in line 1. It is clear
that such a subgraph can be connected to other subgraphs only serially. For this
reason, it is accepted that its subexpression is 1, so that when it is multiplied
by another subexpression, the final result is not influenced. Line 2 describes a
subgraph consisting of a single edge. The corresponding subexpression consists
of a single label. The general case is processed in line 3. Subgraphs described
by subexpressions F (p, i) and F (i, q) include all paths from vertex p to vertex q
passing through vertex i. Subgraphs described by other subexpressions include
all paths from vertex p to vertex q passing through corresponding connecting
edges.

252 M. Korenblit and V. E. Levit

The decomposition procedure is initially invoked by substituting parameters
1 and n instead of p and q, respectively.

Denote the number of connecting edges of level l by El. One can see
that E2 = 1. In an n-vertex complete st-dag, for odd n, El = El−1 + 1(
l = 3, 4, ...,

⌈
n
2

⌉)
and El = El−1 − 1

(
l =

⌈
n
2

⌉
+ 1,

⌈
n
2

⌉
+ 2, ..., n − 1

)
. For

even n, El = El−1 + 1
(
l = 3, 4, ..., n

2

)
, En

2 +1 = En
2
, and El = El−1 − 1(

l = n
2 + 2, n

2 + 3, ..., n − 1
)
. Therefore, for odd and even n, all edges of level

l
(
l =

⌈
n+1
2

⌉
,
⌈

n+1
2

⌉
+ 1, ..., n − 1

)
are connecting edges.

For example, the expression of the 7-vertex complete st-dag (Fig. 3) derived
in accordance with the decomposition procedure is
(
e
(1)
1

(
e
(1)
2 e

(1)
3 + e

(2)
2

)
+ e

(2)
1 e

(1)
3 + e

(3)
1

)(
e
(1)
4

(
e
(1)
5 e

(1)
6 + e

(2)
5

)
+ e

(2)
4 e

(1)
6 + e

(3)
4

)

+
(
e
(1)
1 e

(1)
2 + e

(2)
1

)
e
(2)
3

(
e
(1)
5 e

(1)
6 + e

(2)
5

)

+ e
(1)
1 e

(3)
2

(
e
(1)
5 e

(1)
6 + e

(2)
5

)
+

(
e
(1)
1 e

(1)
2 + e

(2)
1

)
e
(3)
3 e

(1)
6 (1)

+ e
(4)
1

(
e
(1)
5 e

(1)
6 + e

(2)
5

)
+ e

(1)
1 e

(4)
2 e

(1)
6 +

(
e
(1)
1 e

(1)
2 + e

(2)
1

)
e
(4)
3

+ e
(5)
1 e

(1)
6 + e

(1)
1 e

(5)
2 + e

(6)
1 .

It contains 47 labels.
The expression in step 3 of the decomposition procedure can be simplified by

putting repeated subexpressions outside the brackets. Specifically, putting out-
side the brackets subexpressions F (p, i − 1), F (p, i − 2), ..., F (p, i − m + p + 1)
and F (p, p), F (p, p + 1), ..., F (p,m − 3) gives the following statement:

F (p, q) ← F (p, i)F (i, q) (2)

+F (p, i − 1)
(
e
(2)
i−1F (i + 1, q) + e

(3)
i−1F (i + 2, q)

+ ... + e
(m−p+1)
i−1 F (i + m − p, q)

)

+F (p, i − 2)
(
e
(3)
i−2F (i + 1, q) + e

(4)
i−2F (i + 2, q)

+ ... + e
(m−p+1)
i−2 F (i + m − p − 1, q)

)

+

+F (p, i − m + p + 1)
(
e
(m−p)
i−m+p+1F (i + 1, q)

+ e
(m−p+1)
i−m+p+1F (i + 2, q)

)

+ F (p, i − m + p) e
(m−p+1)
i−m+p F (i + 1, q)

+ F (p, p)
(
e(m−p+2)
p F (m + 2, q) + e(m−p+3)

p F (m + 3, q)

On Algebraic Expressions of Two-Terminal Directed Acyclic Graphs 253

+ ... + e(q−p−1)
p F (q − 1, q) + e(q−p)

p F (q, q)
)

+ F (p, p + 1)
(
e
(m−p+2)
p+1 F (m + 3, q) + e

(m−p+3)
p+1 F (m + 4, q)

+ ... + e
(q−p−2)
p+1 F (q − 1, q) + e

(q−p−1)
p+1 F (q, q)

)

+

+F (p,m − 3)
(
e
(m−p+2)
m−3 F (q − 1, q) + e

(m−p+3)
m−3 F (q, q)

)

+F (p,m − 2) e
(m−p+2)
m−2 F (q, q).

Remark 1. In a similar manner, right repeated subexpressions instead of left
ones can be put outside the brackets.

Actually, there are identical subexpressions in (2). For example,
F (p, i − m + p) is equal to F (p, p) for i = m. Given this fact, (2) may be addi-
tionally simplified as follows:

F (p, q) ← F (p, p)
(
e(i−p+1)
p F (i + 1, q) + e(i−p+2)

p F (i + 2, q) (3)

+ ... + e(q−p−1)
p F (q − 1, q) + e(q−p)

p F (q, q)
)

+F (p, p + 1)
(
e
(i−p)
p+1 F (i + 1, q) + e

(i−p+1)
p+1 F (i + 2, q)

+ ... + e
(q−p−2)
p+1 F (q − 1, q) + e

(q−p−1)
p+1 F (q, q)

)

+

+F (p, i − 2)
(
e
(3)
i−2F (i + 1, q) + e

(4)
i−2F (i + 2, q)

+ ... + e
(i−p+1+Δ)
i−2 F (q − 1, q) + e

(i−p+2+Δ)
i−2 F (q, q)

)

+F (p, i − 1)
(
e
(2)
i−1F (i + 1, q) + e

(3)
i−1F (i + 2, q)

+ ... + e
(i−p+1+Δ)
i−1 F (q, q)

)

+F (p, i)F (i, q),

where Δ = 0 for odd p − q + 1 (number of vertices in a subgraph), Δ = 1 for
even p − q + 1 and i = m, Δ = −1 for even p − q + 1 and i = m.

Specifically, expression (1) after this simplification looks as follows:

e
(4)
1

(
e
(1)
5 e

(1)
6 + e

(2)
5

)
+ e

(5)
1 e

(1)
6 + e

(6)
1

+e
(1)
1

(
e
(3)
2

(
e
(1)
5 e

(1)
6 + e

(2)
5

)
+ e

(4)
2 e

(1)
6 + e

(5)
2

)

+
(
e
(1)
1 e

(1)
2 + e

(2)
1

) (
e
(2)
3

(
e
(1)
5 e

(1)
6 + e

(2)
5

)
+ e

(3)
3 e

(1)
6 + e

(4)
3

)

+
(
e
(1)
1

(
e
(1)
2 e

(1)
3 + e

(2)
2

)
+ e

(2)
1 e

(1)
3 + e

(3)
1

) (
e
(1)
4

(
e
(1)
5 e

(1)
6 + e

(2)
5

)
+ e

(2)
4 e

(1)
6 + e

(3)
4

)
.

The new representation contains 39 labels.

254 M. Korenblit and V. E. Levit

Proposition 1. For an n-vertex complete st-dag Gc, the total number of labels
L(n) in the expression Ex(Gc) derived in accordance with (3) may be evaluated
as follows:

L(1) = 0, L(2) = 1

L(n) < L
(⌈n

2

⌉
+ 1

)
+ L

(⌈n

2

⌉)
+

(⌊n

2

⌋
+ 1

) �n
2 	∑

j=2

L(j) +
⌊n

2

⌋2

(n > 2).

Proof. Initial statements for L(1), L(2) follow directly from steps 1, 2 of
the decomposition procedure. Left subexpressions F (p, p), F (p, p + 1), ...,
F (p, i − 1) have L(1), L(2), ..., L

(⌊
n
2

⌋)
labels, respectively, for odd n. For even

n, these subexpressions contain L(1), L(2), ..., L
(

n
2 − 1

)
labels if i = m or L(1),

L(2), ..., L
(

n
2

)
labels if i = m. Each of sums multiplied by one of the left subex-

pressions has the same number (
⌊

n
2

⌋
or

⌊
n
2

⌋−1) of addends each of which includes
a label of a connecting edge and a right subexpression (F (i+1, q), F (i+2, q), ...,
F (q, q)). These right subexpressions have L

(⌊
n
2

⌋)
, L

(⌊
n
2

⌋ − 1
)
, ..., L (1) labels,

respectively, for odd n. For even n, they contain L
(

n
2

)
, L

(
n
2 − 1

)
, ..., L (1) labels

if i = m or L
(

n
2 − 1

)
, L

(
n
2 − 2

)
, ..., L (1) if i = m. Subexpressions F (p, i) and

F (i, q) of the last product consist both of
⌈

n
2

⌉
labels for odd n. For even n, the

number of labels is n
2 in one of the subexpressions and n

2 + 1 in another one.
Taking into consideration that L(1) = 0, we obtain

L(n) < L(1) +
�n

2 	∑

j=1

L(j) +
⌊n

2

⌋
+ L(2) +

�n
2 	∑

j=1

L(j) +
⌊n

2

⌋

+ ... + L
(⌊n

2

⌋)
+

�n
2 	∑

j=1

L(j) +
⌊n

2

⌋

+L
(⌈n

2

⌉)
+ L

(⌈n

2

⌉
+ 1

)

=
⌊n

2

⌋ �n
2 	∑

j=2

L(j) +
�n

2 	∑

j=2

L(j) + L
(⌈n

2

⌉)
+ L

(⌈n

2

⌉
+ 1

)
+

⌊n

2

⌋2

= L
(⌈n

2

⌉
+ 1

)
+ L

(⌈n

2

⌉)
+

(⌊n

2

⌋
+ 1

) �n
2 	∑

j=2

L(j) +
⌊n

2

⌋2

.

�

On Algebraic Expressions of Two-Terminal Directed Acyclic Graphs 255

It may be easily shown by induction on n that asymptotically L
(⌈

n
2

⌉
+ 1

)
<

2L
(⌈

n
2

⌉)
. Thus

L
(⌈n

2

⌉
+ 1

)
+ L

(⌈n

2

⌉)
+

(⌊n

2

⌋
+ 1

) �n
2 	∑

j=2

L(j) +
⌊n

2

⌋2

< 2L
(⌈n

2

⌉)
+ L

(⌈n

2

⌉)
+

(⌊n

2

⌋
+ 1

) �n
2 	∑

j=2

L(j) +
⌊n

2

⌋2

< 3L
(⌈n

2

⌉)
+

(⌊n

2

⌋
+ 1

) (⌊n

2

⌋
− 1

)
L

(⌈n

2

⌉)
+

⌊n

2

⌋2

=
(⌊n

2

⌋2

+ 2
)

L
(⌈n

2

⌉)
+

⌊n

2

⌋2

≤
(⌊

n2

4

⌋
+ 2

)
L

(⌈n

2

⌉)
+

⌊n

2

⌋2

.

We interpret n
2 as either

⌊
n
2

⌋
or

⌈
n
2

⌉
, and thus the upper bound of L (n) can

be estimated asymptotically as follows:

L (n) =
n2

4
L

(n

2

)
+ Θ

(
n2

)
. (4)

Proposition 2. The explicit solution of recurrence (4) is

L (n) = O
(
2�log2 n�2−�log2 n�

)
.

Proof. Denote k = �log2 n. Iterating (4) yields

L (n) =
n2

4
L

(n

2

)
+ n2

=
n2

4

(
(n/2)2

4
L

(n

4

)
+

(n

2

)2
)

+ n2

=

(
n2

)2

42 · 22
L

(n

4

)
+

(
n2

)2

4 · 22
+ n2

=

(
n2

)2

42 · 22

(
(n/4)2

4
L

(n

8

)
+

(n

4

)2
)

+

(
n2

)2

4 · 22
+ n2

=

(
n2

)3

43 · 22+4
L

(n

8

)
+

(
n2

)3

42 · 22+4
+

(
n2

)2

4 · 22
+ n2

=

(
n2

)3

43 · 22+4

(
(n/8)2

4
L

(n

16

)
+

(n

8

)2
)

+

(
n2

)3

42 · 22+4
+

(
n2

)2

4 · 22
+ n2

=

(
n2

)4

44 · 22+4+6
L

(n

16

)
+

(
n2

)4

43 · 22+4+6
+

(
n2

)3

42 · 22+4
+

(
n2

)2

4 · 22
+ n2

.

256 M. Korenblit and V. E. Levit

=

(
n2

)k−1

4k−1 · 22(1+2+3+...+k−2)
L

(n

2k−1

)
+

(
n2

)k−1

4k−2 · 22(1+2+3+...+k−2)

+

(
n2

)k−2

4k−3 · 22(1+2+3+...+k−3)
+ ... +

(
n2

)3

42 · 22(1+2)
+

(
n2

)2

4 · 22
+ n2

=

(
n2

)k−1

4k−1 · 2(k−2)(k−1)
L (2) +

(
n2

)k−1

4k−2 · 2(k−2)(k−1)
+

(
n2

)k−2

4k−3 · 2(k−3)(k−2)

+... +

(
n2

)3

42 · 22·3 +

(
n2

)2

4 · 22
+ n2

=
n2(k−1)

2k(k−1)
+

k−2∑

j=0

n2(k−j−1)

2(k−j−2)(k−j+1)
.

We need to estimate the asymptotic bound of the derived function.

n2(k−1)

2k(k−1)
=

n2(�log2 n�−1)

2�log2 n�(�log2 n�−1)
≤

(
2�log2 n�)2(�log2 n�−1)

2�log2 n�(�log2 n�−1)
=

(
2�log2 n�

)�log2 n�−1

.

n2(k−j−1)

2(k−j−2)(k−j+1)
=

n2(�log2 n�−j−1)

2(�log2 n�−j−2)(�log2 n�−j+1)
≤

(
2�log2 n�)2(�log2 n�−j−1)

2(�log2 n�−j−2)(�log2 n�−j+1)

=

(
2�log2 n�)2(�log2 n�−j−1)

2�log2 n�2−j�log2 n�−2�log2 n�−j�log2 n�+j2+2j+�log2 n�−j−2

=

(
2�log2 n�)2(�log2 n�−j−1)

(
2�log2 n�)�log2 n� · 2−(2j+1)�log2 n� · 2j2+j−2

=

(
2�log2 n�)2(�log2 n�−j−1)−�log2 n�+2j+1

2j2+j−2
=

(
2�log2 n�)�log2 n�−1

2j2+j−2
.

Therefore,

L (n) ≤
(
2�log2 n�

)�log2 n�−1

+
k−2∑

j=0

(
2�log2 n�)�log2 n�−1

2j2+j−2

=

⎛

⎝1 +
k−2∑

j=0

1
2j2+j−2

⎞

⎠
(
2�log2 n�

)�log2 n�−1

=

⎛

⎝1 + 4 + 1 +
k−2∑

j=2

1
2j2+j−2

⎞

⎠ 2�log2 n�2−�log2 n�

< 7 · 2�log2 n�2−�log2 n� = O
(
2�log2 n�2−�log2 n�

)
.

�

On Algebraic Expressions of Two-Terminal Directed Acyclic Graphs 257

Corollary 1. When n is power of two (n = 2k for some positive integer k ≥ 1),
the explicit solution of recurrence (4) is

L (n) = O
(
nlog2 n−1

)
.

Proof. By Proposition 2, when n = 2k

L (n) = O

((
2�log2 n�

)�log2 n�−1
)

= O
((

2log2 n
)log2 n−1

)
= O

(
nlog2 n−1

)
.

�
Thus the expression of an n-vertex complete st-dag has a representation

with complexity that may be estimated as O
(
2�log2 n�2−�log2 n�

)
(specifically,

O
(
nlog2 n−1

)
for n that is power of two).

2.1 Complexities of St-Dag Expressions

Recall that Rpopt(G) denotes the optimal representation of the algebraic expres-
sion describing a graph G and denote the complexity of the algebraic expression
F by L(F).

The following statement (so called Monotonicity Lemma) is proved in [14].

Lemma 1. If an st-dag G2 is a subgraph of an st-dag G1, then L (Rpopt(G2)) ≤
L (Rpopt(G1)).

It is clear that each n-vertex st-dag is a subgraph of an n-vertex complete
st-dag. Hence, by Lemma 1, for every n-vertex st-dag G and an n-vertex com-
plete st-dag Gc, L (Rpopt(G)) ≤ L (Rpopt(Gc)). Together with Proposition 2, it
concludes with the following.

Theorem 1. For each n-vertex st-dag G the upper bound of L (Rpopt(G)) is

O
(
2�log2 n�2−�log2 n�

)
.

3 Conclusions

We have described the decomposition method for generating expressions of com-
plete st-dags and have estimated the corresponding expression complexities in
a quasi-polynomial manner. Based on the above, it has been shown that the
expression Ex(G) of an n-vertex st-dag G has a representation with complexity
bounded by O

(
2�log2 n�2−�log2 n�

)
. The question left is whether the decompo-

sition method provides the optimal representation of Ex(Gc) for an n-vertex
complete st-dag Gc and, generally, what is a tight bound for the optimal repre-
sentation of Ex(Gc). The answer to this question will help to understand whether
it is possible to improve the obtained 2O(log2 n) upper bound for n-vertex st-dags.

258 M. Korenblit and V. E. Levit

References

1. Anderson, D.F., Levy, R., Shapiro, J.: Zero-divisor graphs, von Neumann regular
rings, and Boolean algebras. J. Pure Appl. Algebra 180, 221–241 (2003)

2. Bein, W.W., Kamburowski, J., Stallmann, M.F.M.: Optimal reduction of two-
terminal directed acyclic graphs. SIAM J. Comput. 21(6), 1112–1129 (1992)

3. Duffin, R.J.: Topology of series-parallel networks. J. Math. Anal. Appl. 10, 303–318
(1965)

4. Fernau, H.: Algorithms for learning regular expressions from positive data. Inf.
Comput. 207, 521–541 (2009)

5. Fernau, H., Ryan, J.F., Sugeng, K.A.: A sum labelling for the generalised friendship
graph. Discrete Math. 308, 734–740 (2008)

6. Finta, L., Liu, Z., Milis, I., Bampis, E.: Scheduling UET-UCT series-parallel graphs
on two processors. Theoret. Comput. Sci. 162(2), 323–340 (1996)

7. Golumbic, M.C., Gurvich, V.: Read-once functions. In: Crama, Y., Hammer, P.L.
(eds.) Boolean Functions: Theory, Algorithms and Applications, pp. 519–560. Cam-
bridge University Press, New York (2011)

8. Golumbic, M.C., Mintz, A., Rotics, U.: Factoring and recognition of read-once
functions using cographs and normality and the readability of functions associated
with partial k-trees. Discrete Appl. Math. 154(10), 1465–1477 (2006)

9. Golumbic, M.C., Perl, Y.: Generalized Fibonacci maximum path graphs. Discrete
Math. 28, 237–245 (1979)

10. Gulan, S.: Series parallel digraphs with loops. Graphs encoded by regular expres-
sion. Theory Comput. Syst. 53, 126–158 (2013)

11. Korenblit, M.: Efficient computations on networks. Ph.D. Thesis, Bar-Ilan Univer-
sity, Israel (2004)

12. Korenblit, M.: Decomposition methods for generating algebraic expressions of full
square rhomboids and other graphs. Discrete Appl. Math. 228, 60–72 (2017)

13. Korenblit, M., Levit, V.E.: On algebraic expressions of series-parallel and Fibonacci
graphs. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003.
LNCS, vol. 2731, pp. 215–224. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-45066-1 17

14. Korenblit, M., Levit, V.E.: Estimation of expressions’ complexities for two-terminal
directed acyclic graphs. Electron. Not. Discrete Math. 63, 109–116 (2017)

15. Mintz, A., Golumbic, M.C.: Factoring Boolean functions using graph partitioning.
Discrete Appl. Math. 149(1–3), 131–153 (2005)

16. Mundici, D.: Functions computed by monotone boolean formulas with no repeated
variables. Theoret. Comput. Sci. 66, 113–114 (1989)

17. Mundici, D.: Solution of Rota’s problem on the order of series-parallel networks.
Adv. Appl. Math. 12, 455–463 (1991)

18. Naumann, V.: Measuring the distance to series-parallelity by path expressions.
In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp.
269–281. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 54

19. Oikawa, M.K., Ferreira, J.E., Malkowski, S., Pu, C.: Towards algorithmic gener-
ation of business processes: from business step dependencies to process algebra
expressions. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009.
LNCS, vol. 5701, pp. 80–96. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03848-8 7

20. Satyanarayana, A., Wood, R.K.: A linear time algorithm for computing k-terminal
reliability in series-parallel networks. SIAM J. Comput. 14(4), 818–832 (1985)

https://doi.org/10.1007/3-540-45066-1_17
https://doi.org/10.1007/3-540-45066-1_17
https://doi.org/10.1007/3-540-59071-4_54
https://doi.org/10.1007/978-3-642-03848-8_7
https://doi.org/10.1007/978-3-642-03848-8_7

On Algebraic Expressions of Two-Terminal Directed Acyclic Graphs 259

21. Savicky, P., Woods, A.R.: The number of boolean functions computed by formulas
of a given size. Random Struct. Algorithms 13, 349–382 (1998)

22. Tamir, A.: A strongly polynomial algorithm for minimum convex separable
quadratic cost flow problems on two-terminal series-parallel networks. Math. Pro-
gram. 59, 117–132 (1993)

23. Wang, A.R.R.: Algorithms for multilevel logic optimization. Ph.D. Thesis, Univer-
sity of California, Berkeley (1989)

The Relative Oriented Clique Number
of Triangle-Free Planar Graphs Is 10

Soura Sena Das1, Soumen Nandi2(B), and Sagnik Sen3

1 Indian Statistical Institute, Kolkata, India
2 Institue of Engineering and Management, Kolkata, India

soumen2004@gmail.com
3 Indian Institute of Technology, Dharwad, India

Abstract. A vertex subset R of an oriented graph
−→
G is a relative ori-

ented clique if each pair of non-adjacent vertices of R is connected by

a directed 2-path. The relative oriented clique number ωro(
−→
G) of

−→
G is

the maximum value of |R| where R is a relative oriented clique of
−→
G .

Given a family F of oriented graphs, the relative oriented clique num-

ber is ωro(F) = max{ωro(
−→
G)|−→G ∈ F}. For the family P4 of oriented

triangle-free planar graphs, it was conjectured that ωro(P4) = 10. In this
article, we prove the conjecture.

Keywords: Oriented graph · Relative clique number · Triangle-free
planar graph

1 Introduction and Main Result

Oriented colroing and chromatic number was introduced by Courcelle [1] in 1994
and then, following the works of Raspaud and Sopena [7], the decipline gained
popularity [4–6,9–11].

Recently two parameters, namely, relative oriented clique number and abso-
lute oriented clique number, associated to the notions of oriented coloring is
being studied. Our focus is the former which was introduced by Nandy, Sopena
and Sen [6].

A vertex subset R of an oriented graph
−→
G is a relative oriented clique if each

pair of non-adjacent vertices of R is connected by a directed 2-path (an oriented
2-path uvw having arcs uv and vw) in

−→
G . The relative oriented clique number

ωro(
−→
G) of

−→
G is the maximum value of |R| where R is a relative oriented clique

of
−→
G . Given a family F of oriented graphs, the relative oriented clique number

is given by ωro(F) = max{ωro(
−→
G)|−→G ∈ F}.

Finding the value of ωro(P4), where P4 is the family of triangle-free ori-
ented planar graphs, was mentioned as an open problem in the recent survey on

This work is partially supported by the IFCAM project “Applications of graph homo-
morphisms” (MA/IFCAM/18/39) and ANR project HOSIGRA (ANR-17-CE40-0022).

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 260–266, 2020.
https://doi.org/10.1007/978-3-030-39219-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_22

The Relative Oriented Clique Number of Triangle-Free Planar Graphs Is 10 261

oriented coloring by Sopena [9]. Furthermore, the value ωro(P4) = 10 was con-
jectured by Sen [8]. The best known result on this topic is 10 ≤ ωro(P4) ≤ 15 [2].
In this article, we close the open problem by proving the conjecture.

Theorem 1. For the family P4 of triangle-free planar graphs, ωro(P4) = 10.

The proof of the above result is presented in the following section.

2 Proof of Theorem 1

The proof implies from the observations and lemmata proved in the following.
Let

−→
H be a minimal counter example of Theorem 1, with respect to lexi-

cographic ordering of (|V (H)|, |E(H)|). Let R be a maximum relative oriented
clique of

−→
H . Thus |R| ≥ 11. Also let S = V (H) \ R. The vertices of R are

good vertices while that of S are helpers. Moreover, assume a particular planar
embedding of

−→
H for the rest of this section unless otherwise stated.

The set S of vertices is an independent set, as otherwise we can remove an
edge with both end points in S in order to obtain a smaller counter example
contradicting the minimality of

−→
H . We need some terminologies and notations

before going further.
The set of vertices and arcs of an oriented graph

−→
H is denoted by V (

−→
H)

and A(
−→
H), respectively. The underlying simple graph of

−→
H is H. The set of

neighbors N(v) of a vertex v is the set of all adjacent vertices of v. Given an
arc uv ∈ A(

−→
G), u is an in-neighbor of v and v is an out-neighbor of u. The

set of all in-neighbors and out-neighbors of v is denoted by N−(v) and N+(v),
respectively. Moreover the degree, in-degree and out-degree of a vertex v is given
by d(v) = |N(v)|, d−(v) = |N−(v)| and d+(v) = |N+(v)|, respectively.

Two vertices u, v agree on a third vertex w if w ∈ Nα(u) ∩ Nα(v) for some
α ∈ {+,−}. Also u, v disagree on w if w ∈ Nα(u) ∩ Nβ(v) for some {α, β} =
{+,−}1.

We want to show that any helper h in
−→
H has d(h) = 2. To begin with, note

that
−→
H is connected due to its minimality. Moreover if d(h) = 1, then even after

deleting the vertex h the set R remains a relative oriented clique. Thus d(h) ≥ 2.
Furthermore, given a planar graph and its embedding we will denote the

region of the plane corresponding to a face f of the graph by Rf . The notation
is unambiguous always but for some exceptions. In those exceptional cases, we
will use a different way to describe a face/region. Thus there is no scope of
ambiguity.

To begin with, we will improve the above result. We will need some nomen-
clatures for the proof. A vertex v sees a vertex u if they are adjacent or they are
connected by a directed 2-path. If u, v are connected by a directed 2-path with
the thrid vertex of the directed 2-path being w, we say that u sees v via w.
1 We use this notation frequently to denote α, ᾱ ∈ {+, −} and α �= ᾱ. Our notation is
a set theoretic equation whose solutions are the values that α, ᾱ may take.

262 S. S. Das et al.

The proof of the following result was implicit inside the proof of Theorem 11
in the paper by Klostermeyer and MacGillivray [3]. However, we reprove it for
the sake of completeness.

Lemma 1. Five good vertices v1, v2, · · · , v5 cannot agree on a vertex v.

Proof. As H is triangle-free, v1, v2, · · · , v5 are independent vertices. Assume that
v1, v2, · · · , v5 are arranged in a clockwise order around v in the planar embedding
of H and that the five vertices agree with each other on v.

Note that v2 must see v4 via some vertex h1. Therefore, v3 is forced to see
v1 and v5 via h1. This implies that either v1 does not see v4 or v2 does not see
v5. ��

Using triangle-freeness of the planar graph, we can do a bit better than above.

Lemma 2. Four good vertices v1, v2, v3, v4 cannot agree with each other on a
vertex v.

Proof. Assume that v1, v2, v3, v4 are arranged in a clockwise order around v in
the planar embedding of H and that they are out-neighbors of v.

Note that v2 must see v4 via some h1 as H is triangle-free. Therefore, v1 is
forced to see v3 via h1. Without loss of generality we may assume that v1, v2 ∈
N−(h1) and that v3, v4 ∈ N+(h1).

Observe that v1 must see v2 via some h2 and v3 must see v4 via some h3. As
h2 cannot see v4, h2 is a helper. Similarly, as h3 cannot see v2, h2 is a helper.

Any good vertex containing in Rv1h2v2h1v1 or in Rv3h3v4h1v3 cannot see v. On
the other hand, for similar reasons, any good vertex contained in Rvv1h2v2v or
in Rvv3h3v4v is an in-neighbor of v in order for seeing v3 or v2 via v. However, if
each of Rvv1h2v2v and Rvv3h3v4v contains at least one good vertex, they cannot
see each other. Therefore, without loss of generality Rvv3h3v4v does not contain
any good vertex.

Any good vertex contained in Rvv2h1v3v or in Rvv1h1v4v cannot, respectively,
see v1, v4 or v2, v3 via h1 alone. Thus they must see some of them via v. Hence
any good vertex contained in Rvv2h1v3v or in Rvv1h1v4v is also an in-neighbor of
v. As |R \ (N(v) ∪ {v, h1})| ≥ 5, we have at least five good vertices agreeing on
v. This contradicts Lemma 1. ��

Using the above result, we prove the following.

Lemma 3. It is not possible to have three good vertices v1, v2, v3 disagree with
a fourth good vertex v4 on a vertex v.

Proof. Assume that v1, v2, v3, v4 are arranged in a clockwise order around v in
the planar embedding of H and that v1, v2, v3 ∈ N−(v) while v4 ∈ N+(v).

Note that v1 must see v3 via some h1. Without loss of generality assume that
v1 ∈ N−(h1) and v3 ∈ N+(h1).

Let the face vv1h1v3v divides the plane into two connected regions: A is the
one containing v2 and B is the one containing v4. Assume that each of A and B

The Relative Oriented Clique Number of Triangle-Free Planar Graphs Is 10 263

contains a good vertex. Suppose a good vertex w1 is contained in A and another
good vertex w2 is contained in B.

Observe that w1 cannot see w2 via v, as otherwise four vertices will agree on
v contradicting Lemma 2. Therefore, w1 must see w2 via h1. Thus each vertex of
R\(N(v)∪{v, h1}) must be adjacent to h1. However as |R\(N(v)∪{v, h1})| ≥ 5,
the vertex h1 has at least seven good neighbors. Hence by pigeonhole principle
at least four good vertices agree on h1, a contradiction to Lemma 2.

Therefore, all the vertices of R \ (N(v) ∪ {v, h1}) must be contained either
in A or in B.

If they are all inside A, then they have to see v4. The only options are via v
or h1. If one of them sees v4 via v, then v agrees on at least four good vertices
contradicting Lemma 2. Thus all the vertices of R \ (N(v) ∪ {v, h1}) sees v4 via
h1, again contradicting Lemma 2 as |R \ (N(v) ∪ {v, h1})| ≥ 5.

On the other hand, if they are all inside B, then they have to see v2. The
only options are via v or h1. If three of them sees v2 via v, then v agrees on
at least four good vertices contradicting Lemma 2. Thus at most two of the
vertices can see v2 via v. As |R \ (N(v) ∪ {v, h1})| ≥ 5, at least three vertices of
R \ (N(v) ∪ {v, h1}) sees v2 via h1, yet again contradicting Lemma 2. ��

Now we focus on proving that a vertex v cannot have two good in-neighbors
and two good out-neighbors. The proof is divided into two cases. The first case
follows.

Lemma 4. Let v1, v2, v3, v4 be good neighbors of a vertex v arranged in a clock-
wise order around v. It is not possible to have v1, v3 ∈ N+(v) and v2, v4 ∈ N−(v).

Proof. Assume that v1 sees v3 via some h1. Then v2 is forced to see v4 via h1 as
well. Let w1 be a good vertex contained inside Rvvih1vi+1v, where i ∈ {1, 2, 3, 4}
and + operation is taken modulo 4. Note that w1 have to see vi+2 (+ is taken
modulo 4) via v or h1. In either case, v (or h1) becomes adjacent to four good
vertices among which three disagree with the fourth one on v or (h1). This is a
contradiction to Lemma 3. ��

Now we present the second case.

Lemma 5. Let v1, v2, v3, v4 be good neighbors of a vertex v arranged in a clock-
wise order around v. It is not possible to have v1, v2 ∈ N+(v) and v3, v4 ∈ N−(v).

Proof. Assume that v1 sees v2 via some h1. Also suppose that v3 sees v4 via
the same h1. Let w1 be a good vertex contained inside Rvvih1vi+1v, where i ∈
{1, 2, 3, 4} and + operation is taken modulo 4. Note that w1 have to see vi+2

(+ is taken modulo 4) via v or h1. In either case, v (or h1) becomes adjacent to
four good vertices among which three disagree with the fourth one on v or (h1).
This is a contradiction to Lemma 3.

Thus v3 must see v4 via a different vertex h2. If the region Rvv1h1v2v contain
a vertex w, then w must see v3, v4 via h1 contradicting Lemma 3. Thus Rvv1h1v2v

does not contain a good vertex. Similarly, Rvv3h1v4v also does not contain a good
vertex.

264 S. S. Das et al.

Let W = R\{v1, v2, v3, v4, v, h1, h2} = {w1, w2, · · · , wt}. Thus |W | ≥ 4. Note
that a wi must be contained in Rvv1h1v2vv3h2v4v and can see at most two of the
four good vertices v1, v2, v3, v4 via a particular vertex due to Lemma 3. Now let
us consider some cases.

– If w1 sees v1, v2 via h3 and v3, v4 via h4, then both w2 and w3 (irrespective of
their placement) is forced to see v1 or v2 via h3 and v3 or v4 via h4 creating
a vertex with three good neighbor disagreeing on it with a fourth one. This
is a contradiction to Lemma 3.

– If w1 sees v1, v3 via h3 and v2, v4 via h4, then both w2 and w3 (irrespective of
their placement) is forced to see v1 or v3 via h3 and v2 or v4 via h4 creating
a vertex with three good neighbor disagreeing on it with a fourth one. This
is a contradiction to Lemma 3.

– If w1 sees v1, v2 via h3 and v3 via h4 (or by being adjacent to it) and v4 via
h5 (or by being adjacent to it), then w2 is not able to see at least one of
v1, v2, v3, v4 irrespective of its placement.

– If w1 sees v1 via h3 (or by being adjacent to it) and v2 via h4 (or by being
adjacent to it) and v3 via h5 (or by being adjacent to it) and v4 via h6 (or by
being adjacent to it), then w2 is not able to see at least two of v1, v2, v3, v4
irrespective of its placement.

Thus we are done. ��
Therefore, we can conclude that the graph

−→
H does not have any vertex v

with at least four good neighbors. However, we want to improve this and show
that |N(v) ∩ R| ≤ 2 for any v ∈ V (

−→
H). Indeed, the previous results will be used

to prove so.

Lemma 6. Three good vertices v1, v2, v3 cannot agree with each other on a ver-
tex v.

Proof. Let v1 see v2 via some h1. Let v3 also see v2 via h1.
Let w1 be a good vertex contained inside Rvvih1vi+1v, where i ∈ {1, 2, 3}

and + operation is taken modulo 3. Note that w1 have to see vi+2 (+ is taken
modulo 3) via v or h1. In either case, v (or h1) becomes adjacent to four good
vertices among which three disagree with the fourth one on v or (h1). This is a
contradiction to Lemma 3.

Hence v2 must see v3 via h2 and v3 must see v1 via h3. Let w1 be a good
vertex contained inside Rvvihivi+1v, where i ∈ {1, 2, 3} and + operation is taken
modulo 3. Note that w1 have to see vi+2 (+ is taken modulo 3) via v or hi. In
either case, v (or hi) becomes adjacent to four good vertices among which three
disagree with the fourth one on v or (hi). This is a contradiction to Lemma 3.

Therefore, every vertex of W = R\{v, v1, v2, v3, h1, h2, h3} must be contained
in Rv1h1v2h2v3h3v1 and |W | ≥ 4.

Note that a wi must be contained in Rv1h1v2h2v3h3v1 and can see at most two
of the three good vertices v1, v2, v3 via a particular vertex due to Lemma 3. Now
let us consider some cases.

The Relative Oriented Clique Number of Triangle-Free Planar Graphs Is 10 265

– If w1 sees v1, v2 via h4 and v3 via h5, then w2 (irrespective of their placement)
is forced to see v1 or v2 via h4 creating a vertex with four good neighbors, a
contradiction.

– If w1 sees v1 via h4 (or by being adjacent to it) and v2 via h5 (or by being
adjacent to it) and v3 via h6 (or by being adjacent to it), then w2 is not able
to see at least one of v1, v2, v3 irrespective of its placement.

Thus we are done. ��
The final lemma in the similar direction follows.

Lemma 7. It is not possible to have two good vertices v1, v2 disagree with a
third good vertex v3 on a vertex v.

Proof. Let v1 see v2 via some h1. The cycle vv1h1v2v divides the plane into two
connected regions: A containing v3 and B not containing v3.

Let w1 be a good vertex contained inside B. Note that w1 have to see v3 via
v or h1. In either case, v (or h1) becomes adjacent to four good vertices among
which three disagree with the fourth one on v or (h1). This is a contradiction to
Lemma 3.

Therefore, every vertex of W = R \ {v, v1, v2, v3, h1} must be contained in to
A. Thus |W | ≥ 6.

Note that a wi must be contained in A and can see at most two of the three
good vertices v1, v2, v3 via a particular vertex. Now let us consider some cases.

– If w1 sees v1, v2 via h2 and v3 via h3, then w2 (irrespective of their placement)
is forced to see v1 or v2 via h2 creating a vertex with four good neighbors, a
contradiction.

– If w1 sees v1 via h4 (or by being adjacent to it) and v2 via h5 (or by being
adjacent to it) and v3 via h6 (or by being adjacent to it), then w2 is not able
to see at least one of v1, v2, v3 irrespective of its placement.

Thus we are done. ��
This implies that the graph

−→
H does not have any vertex v with at least three

good neighbors.

Lemma 8. It is not possible for a vertex to have at least three good neighbors.

Proof. Follows directly from Lemma 6 and 7. ��
In particular, for any helper h we have d(h) ≤ 2. Thus, using our earlier

observation that the degree of h is at least 2, we can conclude that d(h) = 2.
Observe that two helpers h1 and h2 cannot have N(h1) = N(h2) = {u, v}.

The reason is, both h1 and h2 contributes in u seeing v. Therefore, even if we
delete h2, the set R still remains a relative oriented clique contradicting the
minimality of

−→
H .

266 S. S. Das et al.

Now construct a graph H∗ from H as follows: delete each helper and add an
edge between its neighbors. Observe that H∗ is planar, not neccesarily triangle-
free, with V (H∗) being the set of good neighbors of

−→
H . Also the degree of a

vertex v in H∗ is greater than equal to the degree of v in H. As H∗ is a planar
graph, it must have a vertex x with degree at most five. Therefore, we can say
that there exists a good vertex x in

−→
H having degree at most five. We fix the

name of this vertex x for the rest of this section.

Proof of Theorem 1. Let x be a good vertex of
−→
H having degree at most five

whose existance follows from the above paragraph. Let X = R \ (N(x) ∪ {x}).
We know due to Lemma 8 that |R ∩ N(x)| ≤ 2.

As |R| ≥ 11, we have |X| ≥ 8. Note that each vertex of X must see x via one
of its neighbors. Therefore, by pigeonhole principle at least one of the neighbors
x1 (say) of x will have two good neighbors from X. Thus x1 has three good
neighbors, contradicting Lemma 8. ��

References

1. Courcelle, B.: The monadic second order logic of graphs VI: on several represen-
tations of graphs by relational structures. Discrete Appl. Math. 54(2), 117–149
(1994)

2. Das, S., Prabhu, S., Sen, S.: A study on oriented relative clique number. Discrete
Math. 341(7), 2049–2057 (2018)

3. Klostermeyer, W.F., MacGillivray, G.: Analogues of cliques for oriented coloring.
Discussiones Mathematicae Graph Theory 24(3), 373–388 (2004)

4. Kostochka, A.V., Sopena, É., Zhu, X.: Acyclic and oriented chromatic numbers of
graphs. J. Graph Theory 24(4), 331–340 (1997)

5. Marshall, T.H.: Homomorphism bounds for oriented planar graphs. J. Graph The-
ory 55, 175–190 (2007)

6. Nandy, A., Sen, S., Sopena, É.: Outerplanar and planar oriented cliques. J. Graph
Theory 82(2), 165–193 (2016)

7. Raspaud, A., Sopena, É.: Good and semi-strong colorings of oriented planar graphs.
Inf. Process. Lett. 51(4), 171–174 (1994)

8. Sen, S.: A contribution to the theory of graph homomorphisms and colorings. Ph.D.
thesis, Bordeaux University, France (2014)

9. Sopena, É.: Homomorphisms and colourings of oriented graphs: an updated survey.
Discrete Math. 339(7), 1993–2005 (2016)

10. Sopena, É.: The chromatic number of oriented graphs. J. Graph Theory 25, 191–
205 (1997)

11. Sopena, É.: Oriented graph coloring. Discrete Math. 229(1–3), 359–369 (2001)

Combinatorial Optimization

On the Minimum Satisfiability Problem

Umair Arif2, Robert Benkoczi2, Daya Ram Gaur2(B),
and Ramesh Krishnamurti1

1 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
ramesh@sfu.ca

2 Department of Math and Computer Science, University of Lethbridge,
Lethbridge, AB, Canada

umair.arif@alumni.uleth.ca, {benkoczi,gaur}@cs.uleth.ca

Abstract. We characterize the optimal solution to the LP relaxation of
the standard formulation for the minimum satisfiability problem. Based
on the characterization, we give a O(nm2) combinatorial algorithm to
solve the fractional version of the minimum satisfiability problem opti-
mally where n(m) is the number of variables (clauses). As a by-product,
we obtain a 2(1 − 1/2k) approximation algorithm for the minimum sat-
isfiability problem where k is the maximum number of literals in any
clause. We also give a simple linear time 2 approximation algorithm.

Keywords: Primal-dual algorithm · Minimum satisfiability ·
Approximation algorithm

1 Introduction

Since the decision version of the satisfiability problem was shown to be the first
NP-complete problem (Cook 1971), the satisfiability problem has been studied
extensively. Here we consider weighted Minsat, a satisfiability problem in which
each clause has a non-negative weight, and the goal is to obtain a truth assign-
ment that minimizes the total weight of the satisfied clauses. Minsat was first
studied by Kohli et al. (1994), who showed that the problem is NP-complete
even when every clause has at most two literals. They also showed that a greedy
algorithm, similar to one given by Johnson (1974) for MAXSAT, has a perfor-
mance ratio of k, where k is the maximum number of literals in a clause. Kohli
et al. (1994) also provide a probabilistic greedy algorithm with a performance
ratio of 2.

Bertsimas et al. (1999) provide a randomized approximation algorithm with
a performance ratio of 2 − 1/2k−1, where k is the number of literals in any
clause. The algorithm is based on rounding the LP solution using a technique
called dependent rounding. Marathe and Ravi (1996) provide an approximation
preserving reduction and show that approximating vertex cover with maximum
degree Δ is equivalent to approximating Minsat with at most Δ literals in each
clause. Berman and Fujito (1999) and Halperin (2002) studied the vertex cover
problem with a maximum degree of Δ.
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 269–281, 2020.
https://doi.org/10.1007/978-3-030-39219-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_23

270 U. Arif et al.

Bar-Yehuda and Even (1981, 1985), Hochbaum (1982, 1983), and Monien
and Speckenmeyer (1985) provide 2 factor approximation algorithms for the
vertex cover problem, the best known so far. Dinur and Safra (2005) show that
it is NP-hard to approximate vertex cover within a factor of 1.3606. On the flip
side, several algorithms with approximation ratios better than 1/2 are known for
MAXSAT. Approximation algorithms with performance ratio 3/4 for MAXSAT
are due to Yannakakis (1992) and Goemans and Williamson (1994). Currently,
the best known, the 0.878 factor approximation for MAXSAT due to Goemans
and Williamson (1994) is based on rounding solutions to a semidefinite program.

Minsat, therefore, seems to be harder than MAXSAT in the sense of approx-
imations, given the reduction in (Marathe and Ravi 1996). Given an instance of
Minsat, all the clauses are falsified by some assignment if and only if all the
variables occur either as positive or only as negative literals (Marathe and Ravi
1996). Marathe and Ravi (1996) gave the following reduction from Minsat to
vertex cover. Given an instance of Minsat, they construct a graph called an
auxiliary graph. In the auxiliary graph, there is a node for each clause and an
edge between nodes vi and vj (corresponding to clauses ci and cj) if and only
if there is a variable which occurs as a positive (negative) literal in ci and as a
negative (positive) literal in cj . The edge in the auxiliary graph implies that no
assignment can simultaneously falsify both the clauses. This inturn implies that
given an assignment that satisfies k clauses, we can find a vertex cover of size
k in the auxiliary graph and vice-versa. One can now compute a 2-approximate
vertex cover using the well known primal-dual algorithm for vertex cover (Bar-
Yehuda and Even 1981). In the unweighted case, the dual solution corresponds
to a maximal matching in the auxiliary graph, and the primal solution corre-
sponds to selecting all the matched nodes (both the endpoints of each edge in
the matching). It is generally believed that vertex cover is hard to approximation
with a constant better than 2.

There is a conditional result which states that it might not be possible to
approximate vertex cover within a factor of 2 − ε. The LP formulation that
Bertsimas et al. (1999) use for their dependent rounding has at most 2 variables
in each constraint, and can be solved using Tardos’s algorithm (Tardos 1986) in
O(n5) time. The dependent rounding step is randomized, and a de-randomization
is not given in their paper.

Hochbaum (1998) show that the optimal solution to the LP relaxation is
half-integral, can be computed in time O(m2n2 log (m + n)) and can be rounded
deterministically to obtain a 2 approximation for Minsat. This is achieved by
rewriting the constraints and solving the resulting LP problem using flow or cut
algorithms.

To obtain a faster, deterministic and combinatorial approximation algorithm
for Minsat, we characterize the optimal solution to the LP relaxation. Our proof
is nonconstructive. Such characterizations are known for the maximum matching
problem (Edmonds 1965), the vertex cover problem (Bourjolly and Pulleyblank
1989), the maximum charge problem (Krishnamurti et al. 2006), and the linear
ordering problem (Iranmanesh 2016) to name a few. We show that the absence

On the Minimum Satisfiability Problem 271

of appropriately defined structures (called augmenting paths and augmenting
lassos) in the bipartite graph associated with a dual solution implies that the
current dual solution is optimal.

Using our characterization, we give a combinatorial algorithm with running
time O(nm2) to solve the LP relaxation of the minimum satisfiability problem
where n is the number of variables, and m is the number of clauses. The run-
ning time for k-Minsat is O(km2). We also show that there exists an optimal
solution to the LP relaxation that is half-integral. Using the fact that we have a
half-integral solution, we give a simple randomized rounding scheme with perfor-
mance ratio 2(1− 1/2k) for k-Minsat. The scheme can be de-randomized using
the method of conditional expectation. We also give a simple O(nm) primal-dual
approximation algorithm with a performance ratio of 2.

1.1 Our Contributions

In Theorem 1 we give a simple, primal-dual approximation algorithm for the
Minsat problem with a performance ratio of 2. Our primal-dual scheme for
Minsat is also an alternative proof of the result that the size of an optimal
vertex cover is at most twice the size of a maximal matching (Bar-Yehuda and
Even 1981).

In Theorem 4, we characterize the optimal solution to the LP relaxation of
the minimum satisfiability problem and show that it is half-integral. This char-
acterization gives us a O(nm2) combinatorial algorithm for solving the LP (see
Theorem 2). We then give a simple randomized rounding scheme with perfor-
mance ratio 2(1 − 1/2k) for Minsat with at most k literals in each clause (see
Theorem 3). Our rounding scheme can be de-randomized easily. This gives us
a faster O(km2) deterministic approximation algorithm compared to the one
due to Hochbaum (1998) with the same performance ratio for approximating
k-Minsat. Our approximation algorithm for Minsat is faster in the following
sense (i) our algorithm does not require doubling of the number of variables and
the constraints as in (Hochbaum 1998) (ii) the faster O(m2n + mn2) algorithm
needed in (Hochbaum 1998) to solve the max flow problem (due to (Orlin 2013))
has an extra time O(mn2) term. We give a O(m2n) algorithm which should be
faster in practice.

Given the conditional results of Khot and Regev (2008) and the relationship
of Minsat with vertex cover (Marathe and Ravi 1996), any improvement over a
bound of 2(1−1/2k) looks improbable. Therefore the best that one can hope for is
a faster deterministic combinatorial algorithm, which is the main contribution in
this paper. Our algorithm has a running time of O(nm2) compared to previous
ones O(m2n2 log (m + n)) in (Hochbaum 1998) and O(m2n + n2m) if we use
the recent max flow algorithm (Orlin 2013). We also give a simpler and much
faster O(mn) (O(mk) for k-Minsat) 2-factor approximation algorithm using
the primal-dual schema. The nonconstructive proof technique used in Theorem
4. to characterize the structure of the optimal solution to the LP relaxation
might be of independent interest.

272 U. Arif et al.

2 A Primal-Dual Approximation

We begin by describing a simple, primal-dual approximation algorithm. We use
the integer linear program (ILP) formulation due to Bertsimas et al. (1999) for
the Minsat problem as the starting point. We assume that no clauses contains
x and the negation of x for some variable x. Associated with each clause, ci is
an indicator variable zi. The indicator variable is 1 if the clause is satisfied and
0 otherwise. The clauses are indexed by i, and the variables are indexed by j. V
is the set of variables and C is the set of clauses. Pi is the set of positive literals
in clause i. Similarly, Ni is the set of negative literals in clause i.

The integer linear program (ILP) for Minsat and the LP dual are given
below.

ILP : min
n∑

i=1

wizi

zi ≥ xj ,∀j ∈ Pi

zi ≥ 1 − xj ,∀j ∈ Ni

zi, xj ∈ {0, 1}, i ∈ C, j ∈ V

Dual : max
∑

i∈C,j∈Ni

yij

∑

j∈Pi∪Ni

yij ≤ wi, i ∈ C

−
∑

i | j∈Pi

yij +
∑

i | j∈Ni

yij ≤ 0, j ∈ V

yij ≥ 0, i ∈ C, j ∈ V

We will describe a procedure Dual that will compute a feasible solution to
the dual. Furthermore, if the dual feasible solution has value k, then we construct
a primal solution to the ILP, which is feasible and has value at most 2k.

Theorem 1. There exists a O(nm) primal dual algorithm for the minimum
satisfiability problem with performance ratio 2.

Proof. A bipartite graph can be associated with the dual in the following way:
the variables and the clauses are the vertices. There is an edge (v, c) if variable
v occurs in clause c. We further classify this edge as a positive edge if v occurs
as a positive literal in c. If v occurs as a negative literal in c, then the edge is
classified as a negative edge.

Given a dual solution y, a clause i is saturated if
∑

i∈Pi∪Ni
yij = wi. For

each clause i, define slack si = wi − ∑
i∈Pi∪Ni

yij . Slack si = 0 for saturated
clauses and si > 0 for unsaturated clauses given any dual feasible solution.
Define P (v) =

∑
i|v∈Pi

si (N(v) =
∑

i|v∈Ni
si) as the sum of the slack on the

On the Minimum Satisfiability Problem 273

clauses that contain v as a positive (negative) literal. assume without loss of
generality that P (v) ≥ N(v). If P (v) < N(v) then we can rename v with ū. If φ
is the original formula and φu is the formula in which v is replaced with ū then
any clause that is satisfied in φ with v set to True, is satisfied in φu with u
set to False. Similarly, any clause that is falsified in φ with v set to False, is
still falsified in φu with u set to True. This relabeling may be needed in every
iteration.

Dual:

1. Let the set U of unsaturated clauses be C. Set V = φ.
2. If there exists a variable v �∈ V such that P (v) ≥ N(v) = S > 0

(a) Pick all the k negative edges in N(v) and assign each edge incident on
clause i a value of si where i is the unsaturated clause that contains v as
a negative literal (yvi = yvi + si). Note that we always saturate each of
these clauses in this case.

(b) Next, pick a subset of positive edges such that the total slack on the
positive edges is more than S. Assign an additional total value of S on
the positive edges, without violating the capacity constraints on the edges.
This can be done in a greedy manner.

3. Update the slack on each clause and remove the edges that are incident on
any saturated clause.

4. If for all variables v �∈ V , N(v) ≤ 0 then stop, else GOTO Step 2.

Upon termination, (i) there are only positive edges incident on clauses that
are not saturated, (ii) the total weight of the saturated clauses is at most twice
the weight of the dual solution (the negative edges picked). The unsaturated
clauses can all be falsified by setting the variables to False.

Note that the values on the edges are a feasible solution to the dual. We
use the following procedure to construct an assignment for the primal problem.
Variables that are picked in Step 2 are assigned a value of False. The clauses
that contain v̄ where v ∈ V are satisfied under this assignment. Clauses that
contain v ∈ V have at least one literal set to False under this assignment. We
show that the set of remaining clauses in U can be falsified. Take any clause
c ∈ U upon termination of the procedure Dual. This clause has only positive
edges incident on it from variables not in V (the set of variables not picked
in Step 2). If there is a negative edge from some variable not in V , then the
procedure would not terminate. If there was a negative edge incident from one
of the variables in V , then the clause would be saturated and removed from U . All
the positive edges set some literal to False. Therefore c has a subset of literals
set to False, and the rest of the literals are unassigned. In fact, for each clause
in U , the set of unassigned literals are all positive. We can falsify every clause in
U by setting all the variables not in V to False. The weight of satisfied clauses
is at most twice the weight of negative edges picked in Step 2 of the Dual
procedure. The weight of negative edges picked is the value of the objective
function in the dual. Therefore procedure dual is a 2-approximation algorithm.
The running time of the procedure Dual is proportional to the number of edges

274 U. Arif et al.

in the bipartite graph, which is O(nm) (O(mk) for k-Minsat) where n is the
number of variables, and m is the number of clauses in the minimum satisfiability
instance.

Next, we give an example that shows that the analysis is tight. Consider the
three clauses, c1 = (ā, b), c2 = (b̄, c), c3 = (c̄, a). The vertices in the bipartite graph
are a, b, c, c1, c2, c3 and the edges are (a, c1), (a, c3), (b, c2), (b, c1), (c, c3), (c, c2).
The negative edges are (a, c1), (b, c2), (c, c3) and the rest are positive edges. The
Dual procedure first considers variable c and picks edges (c, c3), (c, c2). This sat-
urates the two clauses c2, c3. The next variable considered is a, and since P (a) <
N(a), a is replaced with ā. Now the unsaturated clause c1 has only positive edges
incident on it. The clause c1 can be falsified by setting ā to False, thereby setting
a to True, and b, c to False. There are two satisfied clauses and the value of the
feasible dual solution is 1. Therefore the analysis of an upper bound of 2 on the
approximation ratio is tight.

3 A Combinatorial Algorithm for Solving the Dual

In this section, we give a primal-dual algorithm to compute an optimal solution to
the LP relaxation of Minsat. For background on the primal-dual method, please
refer to the book by Papadimitriou and Steiglitz (1982) or (Arif 2017) (pages
19–24). In fact, we will solve the dual optimally and recover the primal optimal
solution using complementary slackness conditions. We begin our presentation
by defining the structures that are used to augment the current dual solution.
We then give an efficient algorithm to find such structures. We also prove that
if no augmenting structures exist, then the current dual solution is optimal.
Our characterization also implies that there is an optimal solution to the LP
relaxation that is half-integral.

We assume that (i) each variable occurs as a positive and as a negated literal
in some clause, (ii) each clause contains at least two literals. We first describe the
dual of the restricted primal (DRP). We then give a method based on breadth-
first search (BFS) that computes a solution with a non-zero value to the DRP
(if one exists). The method increases the value of the dual solution by at least
1/2 in each iteration for the unweighted case. The total number of calls to the
method to solve the DRP is linear in the number of clauses, and each invocation
of the method is linear in the number of edges in the bipartite graph. Therefore,
the method takes O(nm2) time, where n is the number of variables and m, is
the number of clauses (O(km2) for k-Minsat). We also comment on why the
running time is O(nm2) for the weighted Minsat as well.

Given y′, a feasible solution to the dual, we say an edge (i, j) is saturated if
y′
ij = 0, a clause i is saturated if

∑
j∈Ni,Pi

y′
ij = wi, and a variable j is saturated

if
∑

i:i∈Ni
y′
ij =

∑
i:i∈Pi

y′
ij . Let E∗, C∗, V ∗ be sets of saturated edges, clauses,

vertices respectively. Given y′, we now state the dual of the restricted primal,

On the Minimum Satisfiability Problem 275

DRP : max
∑

i∈C,j∈Ni

yij

st
∑

j∈Ni,Pi

yij ≤ 0,∀i ∈ C∗

∑

i:j∈Ni

yij −
∑

i:j∈Pi

yij ≤ 0,∀j ∈ V ∗

yij ≥ 0,∀(i, j) ∈ E∗

yij ≤ 1,∀(i, j) ∈ E

For a detailed derivation of the DRP, please see (Arif 2017) (pages 31–35).
We start with a feasible dual solution, y = 0. At the start, all the variables and
the edges are saturated, and none of the clauses is saturated. In each iteration,
we find a feasible solution to the DRP using the procedure below, and augment
the current dual solution. The update is such that the variable vertices remain
saturated. The structure that we find using modified BFS is either a path that
starts and ends at two different unsaturated clauses and the number of negative
edges is odd, or an even cycle with a path hanging off the cycle. All the inter-
mediate vertices are saturated. The start of the path is an unsaturated clause
vertex. In both cases, the number of negative edges (counting the multiplici-
ties) is odd. The structure of the first type is called an augmenting path, and
the structure of the second type is called an augmenting lasso. The first vertex
happens to be the last vertex in an augmenting lasso.

Examples of the two types of structures are shown in Fig. 1. The clauses are
labelled 1, 2, 3, 4 and the variables are 5, 6, 7. The negative edges are dashed;
the positive edges are solid. The unsaturated clause vertices are shown in solid
black. The augmenting path is 1, 5, 2, 6, 3, 7, 4, and the augmenting lasso is
1, 5, 3, 6, 4, 7, 2, 5, 1. The dual solution is shown in brackets. The values on the
edges correspond to a feasible solution to the DRP with a non-zero value. In the
lasso, the label +1 occurs twice on edge 1,5 as it is traversed twice. A feasible
solution to the DRP for the lasso can be obtained by halving all the values. In
both the examples, the objective function value is 1/2.

Now that we have sufficient intuition let us define the augmenting structures.
A walk W is a sequence of vertices c1, v1, c2, v2, . . . , vk, ck where vi is variable and
cj is a clause. A walk in which no vertex is repeated is called a path. Two edges
are said to be of the same type if both are positive edges or both are negative
edges; otherwise, they are of a different type. We label the edges in the increasing
order of distance from the source as follows: the first edge is labelled +1, at every
variable vertex if the incoming and the outgoing edges are of different types then
they have the same label, else the label on the outgoing edge is negative of the
label on the incoming edge. At every clause vertex, if the incoming edge has
label a then the outgoing edge has label −a.

276 U. Arif et al.

Fig. 1. Augmenting path and lasso

A labelling is called consistent wrt to a dual solution y if every edge that gets
a label of −1 is not saturated in the dual solution y, i. e. ye > 0. The labelling l
is a feasible solution to the DRP, and y′ +θl for θ ∈ {1/2, 1} is a feasible solution
to the dual with a larger value.

– A walk is augmenting, if the following conditions hold: (i) the first and the last
vertices (clauses) are unsaturated and every intermediate vertex is saturated,
(ii) the number of negative edges is odd (iii) and the labelling l (as defined
above) is consistent.

– An augmenting walk in which there is no repeated vertex is called an aug-
menting path.

– An augmenting walk, which can be decomposed into a path incident on a
cycle is called an augmenting lasso. In a lasso, the edges on the path are
visited twice, and the edges on the cycles are visited once. The first and the
last vertex is the same clause vertex unsaturated by negative edges.

Figure 1 illustrates the two types of augmenting walks. The example above
does not illustrate the case when the edges incident on some variable vertex are
of the same type.

Theorem 2. An augmenting path or an augmenting lasso can be discovered in
O(nm) time if one exists, where n is the number of variables and m is the number
of clauses. The running time of the algorithm for k-Minsat is O(km).

Proof. We show how to find an augmenting path or an augmenting lasso in the
bipartite graph, if one exists using a variant of BFS, given a dual solution y.
Let us first describe the case of augmenting paths. We start at an unsaturated
clause vertex, and use the following strategy (dependent on the node) to select
the next outgoing edge;

On the Minimum Satisfiability Problem 277

1. at a variable vertex: If the incoming negative edge has a label a ∈ {+1,−1}
then all the positive edges with label a, and all the negative edges with label
−a are the candidate edges. An edge with label −1 cannot be saturated.
Therefore if the outgoing edge is to have a label −1 then the candidate edge
has to be unsaturated. Similarly, if the incoming edge is a positive edge with
label a then all the negative edges with label a, and the positive edges with
label −a are candidates. Only the candidates that lead to consistent labelling
are to be considered, and only the un-visited edges are possible candidates.

2. at a clause vertex: If the incoming edge has label +1, then the possible can-
didates are un-visited unsaturated edges with label −1. If the incoming edge
has label −1 then the possible candidates are un-visited edges with label +1.
Note that if the clause vertex is the first vertex then there is an outgoing edge
with label +1 and we use the same.

BFS terminates when an unsaturated clause vertex is encountered, and the
number of negative edges is odd. To discover an augmenting lasso, we modify
the termination criteria and the candidate criteria slightly. An un-visited edge
(incident on a variable or a clause) is a not a candidate if it leads to a visited
vertex and the total number of negative edges is even (counting the multiplic-
ities). We terminate the search when a vertex is revisited, and the number of
negative edges in the walk, counting the multiplicities is odd. The total time to
discover an augmenting path/lasso is linear in the number of edges.

Given the definition of augmenting walk, we know that the number of neg-
ative edges is odd, and the first negative edge has a label of +1. The labels on
the negative edges alternate in sign. Therefore, the sum of labels on the negative
edges >0. We also note that the dual solution is half-integral, the solution to
the DRP is in {0,+1,−1}, and θ ∈ {1/2, 1}, so after the update, the new dual
solution is still half-integral. The dual objective has increased by at least 1/2 in
value in the unweighted case.

We use the algorithm above to repeatedly increase the objective function
value of the dual until no improvement is possible and recover the primal solution
using complementary slackness conditions. The following theorem gives a simple
randomized rounding scheme to compute an approximate solution.

Theorem 3. If z∗, x∗ is a half integral optimal solution to the primal then there
exists a deterministic rounding scheme with performance ratio 2(1 − 1/2k).

Proof. Given a dual optimal solution y∗, we compute zi using the complementary
slackness conditions as follows: if the ith constraint has a slack then zi = 0, if
yij > 0 then zi = xj if j ∈ Pi else zi = 1 − xj if j ∈ Ni. This gives us n + m
equation in n + m unknowns. For all i such that zi = 0 we set xj as 0 or 1
depending on the equation above. Finally, we are left with equations of the type
zi = xj or zi = 1 − xj , which are satisfied by setting all the remaining zi and
xj to 1/2. Complementary slackness guarantees that such a feasible solution to
the primal exists and it is half-integral. This procedure is linear in the number
of edges.

278 U. Arif et al.

We use the values of the literals in the primal solution for rounding. We set
literal xj to 1 with probability x∗

j where x∗
j is the optimal primal solution. The

probability that a clause zi with k literals is unsatisfied is 1/2k. So each clause
i with z∗

i = 1/2 is satisfied with probability at most (1 − 1/2k). Let z1 be the
number of clauses satisfied (zi = 1) in the optimal solution to the LP, and z1/2
be the number of clauses with zi = 1/2 in the optimal solution. The expected
number of satisfied clauses is z1 + z1/2(1 − 1/2k) and the optimal solution has
value z1 + z1/2. Therefore, the performance ratio is

z1 + z1/2(1 − 1/2k)
z1 + (1/2)z1/2

≤ 2(1 − 1/2k).

The rounding scheme can be de-randomized using the method of conditional
expectation.

We need to show that if there are no augmenting paths or lassos, then the
dual solution is optimal. We will show the contrapositive that if the dual solution
is not optimal, then there exists an augmenting path or a lasso. The following
argument is based on the idea in (Krishnamurti et al. 2006).

Theorem 4. Let y be a dual solution such that all the variable vertices are
saturated. Let y∗ be an optimal solution to the dual such that

∑
e∈E |y∗

e − ye|
is the minimum possible, and all the variable vertices are saturated. If y is not
an optimal solution to the dual, then there exists an augmenting path or an
augmenting lasso.

Proof. Let P (v)(N(v)) be the set of positive (negative) edges incident on a node
v. Let us assign the label to the edge (i, j) in the graph as sgn(y∗

ij−yij)×1 where
sgn returns the sign of the argument. Edges for which yij = y∗

ij are assigned a
label of 0, edges for which yij < y∗

ij are assigned a label of +1, the rest of the
edges are assigned a label of −1.

Since y is not an optimal solution to the dual,
∑

c∈C

∑
e∈N(c) ye <∑

c∈C

∑
e∈N(c) y∗

e . Furthermore, because every variable node is saturated,∑
c∈C

∑
e∈N(c) ye =

∑
c∈C

∑
e∈P (c) ye. From the inequality

∑
c∈C

∑
e∈N(c) ye <∑

c∈C

∑
e∈N(c) y∗

e <=
∑

c∈C

∑
e∈P (c) y∗

e , it follows that
∑

c∈C

∑
e∈P (c) ye <∑

c∈C

∑
e∈P (c) y∗

e . Therefore, it follows that
∑

c∈C

∑
e∈N(c),P (c) ye <

∑
c∈C∑

e∈N(c),P (c) y∗
e . Thus, there is a clause c such that

∑
e∈N(c),P (c) ye <∑

e∈N(c),P (c) y∗
e . This implies there is either a positive or negative edge e = (v, c)

incident on c such that y∗
e − ye > 0 with label +1. We start a walk at c, pick the

edge (c, v) with label +1. The next outgoing edge (among the edges not used so
far) is chosen according to the following rules:

(i) at a variable node: if the incoming edge is a negative (positive) edge with
label a ∈ {+1,−1} then the outgoing edge is a positive (negative) edge with
label a. If no positive (negative) edge with label a exists then select a negative
(positive) edge with label −a. We will show later that such a positive (negative)
edge always exists. In other words, if the outgoing edge and the incoming edge

On the Minimum Satisfiability Problem 279

are of the same type, then the label is different. If the outgoing and the incoming
edges are of different types, then the labels are the same. We need to show that
an appropriate outgoing edge always exists. Suppose we are at a variable node,
and the incoming edge is negative with label +1, and every positive edge in P (v)
has a label −1 or 0 then ∑

e∈P (v)

(y∗
e − ye) ≤ 0.

Furthermore, if every negative edge in N(v) has a label of +1 or 0 then,
∑

e∈N(v)

(y∗
e − ye) > 0.

This implies that
∑

e∈N(v)

ye <
∑

e∈N(v)

y∗
e ≤

∑

c∈P (v)

y∗
e ≤

∑

c∈P (v)

ye.

But we know that v is saturated in y, implying
∑

e∈N(v) ye =
∑

e∈P (v) ye,
leading to a contradiction. Therefore, either there is a positive edge with label
+1 or there is a negative edge with label −1. Similarly, if the incoming edge is
negative with label −1, either there is a positive edge with label −1 or there is
a negative edge with label +1. The case when the incoming edge is positive is
similar.

(ii) at a clause node: if the incoming edge has a label a then select any
un-visited edge with label −a.

We stop when either we revisit a vertex, or visit a clause vertex c for which∑
e∈N(c),P (c) ye <

∑
e∈N(c),P (c) y∗

e .
Let us now consider the case when the incoming edge has label +1, and we

are at a clause c. As the label is +1, y∗
e > ye on this edge. If y∗

e ≥ ye on the rest
of the edges (except the incoming edge) then

∑
e∈N(c),P (c) y∗

e >
∑

e∈N(c),P (c) ye,
and we stop. Otherwise, for some edge y∗

e < ye, and we continue.
Suppose, the label on the incoming edge is −1, then y∗

e < ye for the incoming
edge incident on clause c. If for all other edges e incident on c, y∗

e ≤ ye, we stop
the search. We need to show that this case cannot happen. We rely on perturbing
the optimal solution to obtain a contradiction, as shown in this paragraph. We
note that in any walk, the labels on the negative edges alternate in sign. Suppose
the incoming edge is negative then clearly the number of negative edges is even.
If the incoming edge is positive with label −1 then the last negative edge also
has a label −1. Once again, the number of negative edges is even. This means
that the number of negative edges in the walk is even. For every edge e with
label −1 we add ε to y∗

e , and for every edge with label +1 we subtract ε from
the edge, where ε = mine∈E{|(y∗

e − ye)|} over all the edges e in the walk. It can
be verified that this perturbation does not violate the constraints in the dual.
This modification to y∗ gives another optimal solution y′ (with the same value)
such that

∑
e∈E |y′

e − ye| is smaller. Therefore the search terminates only at a
clause c for which

∑
e∈N(c),P (c) ye <

∑
e∈N(c),P (c) y∗

e .

280 U. Arif et al.

We need to show that there are an odd number of negative edges in the
walk. Suppose there are an even number of negative edges in the walk, then
perturbing the optimal solution y∗ as above leads to another optimal solution
with a smaller value of

∑
e∈E |y′′

e − ye|, therefore the number of negative edges
have to be odd. It can be verified that no two negative edges that are consecutive
in the subsequence both have a label of −1. Therefore, the value of y + θw is
strictly larger than the value of y. This is a nonconstructive proof to show the
existence of an augmenting path or lasso. We use modified BFS to discover
augmenting structures if one exists.

For an instance of Minsat in which all the clauses have uniform weight w,
the progress of the primal-dual method can be measured by an increase in the
value of any single variable. We can bound the number of iterations needed as
follows: the optimal is at most mw and in each iteration the value of the dual
increases by w/2, so the total number of iterations is m. However, if the weights
are non-uniform, then we need a different measure of progress. It is sufficient
to note that when we augment the dual solution along a path or a lasso, the
clauses that are saturated remain saturated after augmentation. Additionally,
at least one additional clause is saturated. Upon termination, at every clause∑

e∈N(c),P (c) ye ≥ ∑
e∈N(c),P (c) y∗

e . Therefore the total number of iterations is
bounded by m, and each iteration of modified breadth-first search takes O(nm)
time. This gives us a running time of O(nm2) for weighted Minsat as well. For
weighted , k-Minsat, the running time of the algorithm is O(km2).

4 Conclusions

We give a combinatorial algorithm for determining a half-integral solution to the
LP relaxation of the minimum satisfiability problem. This along with a simple
rounding scheme implies a deterministic approximation algorithm with perfor-
mance ratio 2(1 − 1/2k) for Minsat with at most k literals in each clause. Our
results improve the running time of the previously best-known approximation
algorithm. We also give a simple linear time approximation algorithm with a
performance ratio of 2. The proof technique used to characterize the structure
of the optimal solution to the LP relaxation might be of independent interest.

Acknowledgments. Robert Benkoczi, Daya Gaur, Ramesh Krishnamurti would like
to acknowledge the support from NSERC in the form of individual discovery grants.
The authors would like thank the reviewers for the comments.

References

Arif, U.M.: On primal-dual schema for the minimum satisfiability problem. Master’s
thesis, University of Lethbridge, Canada (2017)

Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms 2(2), 198–203 (1981). ISSN 0196–6774

On the Minimum Satisfiability Problem 281

Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex
cover problem. North-Holland Math. Stud. 109, 27–45 (1985)

Berman, P., Fujito, T.: On approximation properties of the independent set problem
for low degree graphs. Theory Comput. Syst. 32(2), 115–132 (1999)

Bertsimas, D., Teo, C., Vohra, R.: On dependent randomized rounding algorithms.
Oper. Res. Lett. 24(3), 105–114 (1999)

Bourjolly, J.-M., Pulleyblank, W.R.: König-Everváry graphs, 2-bicritical graphs and
fractional matchings. Discrete Appl. Math. 24(1–3), 63–82 (1989)

Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–
158, New York, NY, USA. ACM (1971)

Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.
Math. 162, 439–485 (2005)

Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)
Goemans, M.X., Williamson, D.P.: New 3

4
-approximation algorithms for the maximum

satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)
Halperin, E.: Improved approximation algorithms for the vertex cover problem in

graphs and hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002)
Hochbaum, D.S.: Instant recognition of half integrality and 2-approximations. In:

Jansen, K., Rolim, J. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 99–110. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0053967

Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover prob-
lems. SIAM J. Comput. 11(3), 555–556 (1982)

Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Appl. Math. 6(3), 243–254 (1983)

Iranmanesh, E.: Algorithms for Problems in Voting and Scheduling. Ph.D. thesis, Simon
Fraser University (2016)

Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst.
Sci. 9(3), 256–278 (1974)

Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. J.
Comput. Syst. Sci. 74(3), 335–349 (2008)

Kohli, R., Krishnamurti, R., Mirchandani, P.: The minimum satisfiability problem.
SIAM J. Discret. Math. 7(2), 275–283 (1994)

Krishnamurti, R., Gaur, D.R., Ghosh, S.K., Sachs, H.: Berge’s theorem for the maxi-
mum charge problem. Discrete Optim. 3(2), 174–178 (2006)

Marathe, M., Ravi, S.: On approximation algorithms for the minimum satisfiability
problem. Inf. Process. Lett. 58(1), 23–29 (1996)

Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for
the vertex cover problem. Acta Informatica 22(1), 115–123 (1985)

Orlin, J.B.: Max flows in O(nm) time, or better. In: Proceedings of the Forty-Fifth
Annual ACM Symposium on Theory of Computing, pp. 765–774. ACM (2013)

Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Com-
plexity. Courier Corporation, North Chelmsford (1982)

Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear programs.
Oper. Res. 34(2), 250–256 (1986)

Yannakakis, M.: On the approximation of maximum satisfiability. In: Proceedings of
the Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1992, pp.
1–9, Philadelphia, PA, USA (1992). ISBN 0-89791-466-X

https://doi.org/10.1007/BFb0053967

Waiting for Trains: Complexity Results

Bjoern Tauer1,2(B) , Dennis Fischer1(B) , Janosch Fuchs1(B) ,
Laura Vargas Koch2(B) , and Stephan Zieger3(B)

1 Department of Computer Science, RWTH Aachen University, Aachen, Germany
{tauer,fischer,fuchs}@algo.rwth-aachen.de

2 Department of Business and Economics, RWTH Aachen University,
Aachen, Germany

{tauer,laura.vargas}@oms.rwth-aachen.de
3 Institute of Transport Science, RWTH Aachen University, Aachen, Germany

zieger@via.rwth-aachen.de

Abstract. We introduce a model for train routing on railway systems.
Trains route through a network over time from a start to an end depot.
They occupy consecutive nodes and edges corresponding to their length
and block each other. We study the case where the depots are part of
the network (internal) and the case where the depots are not part of the
network (external).

The problem is a generalization of packet routing without buffers. We
consider two different kinds of optimization problems. In the first, trains
are only allowed to wait on predefined paths and in the second, trains
are additionally allowed to shunt, i.e., change direction. In both cases,
we are interested in minimizing the overall makespan.

For waiting instances, we find NP-hardness results even on unidi-
rectional paths. We also show W [1]-hardness and lower bounds on the
running time using the Exponential Time Hypothesis. For shunting
instances, we show PSPACE-completeness results on honeycomb graphs
and transfer the previously shown NP-hardness results. We present a
polynomial time algorithm for a special subclass of unidirectional paths.

Keywords: Train scheduling · Wormhole routing · Packet routing ·
Parameterized complexity

1 Introduction

Transportation issues are one of the crucial challenges of our time. Consequently,
to perform efficient routing of goods, persons or data messages various models
are studied intensively. The model approach has to fit the specific needs of the
transportation system depending on the considered asset.

We want to thank the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – UnRAVeL-Research Training Group 2236/1 funding this research and
connecting the involved authors from the Department of Computer Science, the School
of Business and Economics as well as the Faculty of Civil Engineering.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 282–303, 2020.
https://doi.org/10.1007/978-3-030-39219-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_24&domain=pdf
http://orcid.org/0000-0002-0579-5178
http://orcid.org/0000-0002-7844-2904
http://orcid.org/0000-0003-3993-222X
http://orcid.org/0000-0002-7499-5958
http://orcid.org/0000-0003-4936-0018
https://doi.org/10.1007/978-3-030-39219-2_24

Waiting for Trains: Complexity Results 283

Store and Forward Packet Routing. In case of a single item, e.g., an item
that can be represented by a packet, one extensively studied approach is the store
and forward packet routing (see e.g., Leightons survey [13]). Store and forward
packet routing can be solved efficiently if all packets share the same initial and
target position (single commodity instance) by calculation of a maximum flow
over time [14]. If the locations differ, the problem becomes NP-hard [5]. In a
game theoretic variant the hardness landscape behaves accordingly. Here, trains
represented as packets route selfishly through the network. If capacity conflicts
between two packets occur various mechanism schemes are analyzed [6,9,10].

Message Routing. In message routing each message consists of a certain
amount of packets of unit size. A message is sent packet per packet along an
edge. One packet is allowed to traverse an edge per time step until the whole
message reached the end of the edge. After all packets are collected the next
edge can be entered. In the special case where every message contains only one
packet, this problem reduces to store and forward packet routing mentioned
above, and thus the hardness results can be transferred. However, for arbitrary
message sizes, the problem is NP-hard even on a directed path [14].

Wormhole Routing. A non-preemptive version of message routing is wormhole
routing where data is sent as worms through the network. The body of the worm
consists of a sequence of fixed sized units called flits, trailed after its head unit.
During traversing the network, a contiguous sequence of edges along a certain
path is blocked where every flit occupies one edge. One fundamental aspect of
wormhole routing is the detection of deadlocks [4].

Train Routing. We modify the wormhole routing approach such that it is
applicable to train networks. Doing so requires some subtle model modifications
that have a huge impact on the behavior of the model while some known results
can be adapted easily. Similar to the worms, trains are not allowed to be split.
Furthermore, no two trains can traverse the same node at the same time, i.e.,
not only edge capacities are considered; additionally, node capacities have to be
taken into account (see Fig. 8 in Appendix A of the full version for an example).

Moreover, trains are permanently present in the network, so they are not just
injected when needed and deleted as soon as they arrived at their target location.
Thus, the total number of wagons in the network is constant and occupies a
certain amount of nodes and edges of the graph which could cause additional
difficulties.

Our Contributions
We study hardness of train routing on different variations of the problem as well
as on selected graph classes. In a waiting instance, the paths of the trains are
already completely defined. The optimization problem is to determine waiting
times that minimize the arrival time of the last train. Whereas, in a shunting
instance subpaths are given, but trains can be routed along other edges, too,
to let other trains pass and improve the total latest arrival time. Moreover, we
distinguish the case where trains are equipped with external individual depots
in contrast to internal start and end links which can be used by all other trains.

284 B. Tauer et al.

We show that the waiting and shunting problem with external depots is
already NP-complete on unidirectional paths. Moreover, if all trains have length
one, the waiting problem is also NP-hard on degree-three-bounded planar
graphs. For general graphs the waiting problem becomes W [1]-hard parameter-
ized in the number of trains. Shunting problems are already PSPACE-complete
on honeycomb graphs.

On the positive side, we give an FPT-algorithm on trees with external depots
for which the number of trains is the parameter. Although trees are a simple
graph class, for train scheduling this instance is highly relevant. At least from a
local point of view with fixed track orientation, railway networks can be assumed
to possess a tree-structure. Due to the hardness results, a global optimal solution
for the train problem is unlikely to be found and thus it is relevant to search for
solutions that are locally optimal.

Furthermore, we give a polynomial time algorithm minimizing the makespan
on a unidirectional path with non-nested depots, where at least one node is
traversed by every train. Our complexity results are condensed in Table 1.

Table 1. Overview of complexity results for train routing on various graph classes.
Extern/Intern refers to external and internal depots.

Instance Directed path Tree Max. degree ≤ 3 General

Non-nested

shared node

General Honey-comb Planar,

length 1

Equal train

length

Waiting

(extern)

P

Theorem 6

NP

Theorem 1

NP

Theorem 1

NP

Theorem 1

NP

Theorem 2

W [1]

Theorem 4

FPT

Theorem 3

FPT

Theorem 3

Shunting

(intern)

P

Proposition 2

P

Proposition 2

NP

Corollary 1

PSPACE

Theorem 5

PSPACE

Theorem 5

Shunting

(extern)

NP

Corollary 2

NP

Corollary 2

NP Corollary 2 NP

Corollary 3

W [1]

Corollary 4

2 Preliminaries

As a first relevant simplification of a real train setting, undirected graphs are
considered. In Figs. 1, 2 and 3 the abstraction from a real track layout towards
a graph model is presented. A track layout has certain restrictions on the move-
ment of the trains, e.g., at a real crossing a train is unable to switch from a
horizontal direction to a vertical one and vice versa. Furthermore, at a switch
not all combinations of incoming and outgoing edges are possible. We overcome
this gap between the graph model and the track layout by introducing black-
lists to forbid illegal movements. To increase readability we only draw angles for
switches, e.g., for node v1 in Fig. 3.

In Sect. 2.1, we formalize the input and the problem, with respect to the
above mentioned restrictions. Moreover, we distinguish four different variations

Waiting for Trains: Complexity Results 285

Fig. 1. Switch and cross-
ing that do not allow arbi-
trary directions.

Fig. 2. Slicing the track
into a graph with unit
edge length.

Fig. 3. A train may tra-
verse from e2 to e6 or e4 to
e7 without a blacklist.

of our model: Waiting/Shunting instances with internal/external depots. As in
reality, in our model deadlocks impose a challenging task. Hence, we discuss how
our model can cope with this.

2.1 Model

In a train routing problem, we are given an undirected graph G which consists
of a finite set of nodes V and a finite set of edges E ⊆ V × V . We assume that
every edge has unit length and unit capacity and nodes have unit capacity. In
our model, time is discretized and each train is allowed to move up to one node
and edge per time step.

Due to railway system properties, every node is equipped with a list of infea-
sible edge combinations a train cannot traverse consecutively, i.e., node v has
the so called blacklist bv = {{ei, ej}, {·, ·}, . . .} for ei ∩ ej ∩ v �= ∅. If {ei, ej} ∈ bv

it means that trains cannot traverse v by coming from ei and going to ej and
vice versa. Further, there is a finite set of trains N = {1, . . . , n} = [n] where each
train i ∈ N is associated with an initial position Esi

⊂ E and target position
Eti ⊂ E.

We denote Ei := Esi
∪ Eti and the union over all initial and target positions

with E =
⋃

i∈N Ei. For a feasible instance it holds that Esi
∩ Esj

= ∅ and
Eti ∩ Etj = ∅ for all i, j ∈ N , i �= j. If other trains are allowed to enter edges
in Ei for all i ∈ N we denote it as an instance with internal depots. If Ei is
reserved only for train i we call it an instance with external depots. For external
depots, the graph we consider as input is formally G \ E . If it is oblivious, we
denote the initial or target position just by the node where the depot is adjacent
to instead of the edge set itself. Additionally, each train has a certain weight
wi ∈ N≥1 which corresponds to its length (and thus wi = |Esi

| = |Eti |). Since
trains do not vanish, at each point in time a train i blocks wi edges and wi − 1
nodes.

Further, we distinguish instances with respect to the ground set of feasible
solutions. In a waiting instance we are additionally given a path Pi for every
train i ∈ N and we optimize over possible waiting times θv at intermediate
nodes v ∈ Pi of the path, i.e., waiting times before entering an edge of the path.

286 B. Tauer et al.

Hence, an instance of waiting can be formalized as a tuple (G,N, E , P) and the
corresponding solution as (θ1, . . . , θ|Pi|)i∈N .

In an instance of shunting, a path Pi for every train i ∈ N is given as well, but
there is more flexibility in constructing a solution. The trains need to traverse
the edges given by the paths, but now they are allowed to shunt along theses
edges. Additionally, an edge set Si ⊆ E is provided, which also can be used
for shunting. Further waiting time for every intermediate node of the chosen
path can be defined, i.e., a solution to the instance is a path P ′

i for every train
i ∈ N , such that Pi ⊆ P ′

i ⊆ Pi ∪ Si and additionally a vector of waiting times
(θi, . . . , θ|P ′

i |) for every train i ∈ N .

2.2 Feasible Train Movement

Throughout the paper, we use the head of a train to describe the position of the
complete train, since the distance of a specific wagon to the head is constant.
The movement of a train is completely described by a path through the network
from its start to its target depot. There are three different actions a train is able
to perform in every time step. Either it keeps its current position, it is forwarded
to the next edge of the path or there is a change in direction κ in the path, which
means that instead of the currently first wagon, the currently last wagon is the
new head. To describe this formally, we extend the classical path definition such
that a path can contain the action κ additionally to traversing edges. Further-
more, we introduce a function Wi for every train i such that Wi(j, θ) returns the
position of the jth wagon of train i (counted from the head onwards) at time θ.

In a feasible path, for two consecutive edges ek, ek+1, it classically needs to
hold that ek ∩ ek+1 �= ∅. Moreover, it is necessary that no edge combination
which is forbidden by the blacklist is chosen. If two edges are separated by a
κ, i.e., (ek, κ, ek+2) the situation is slightly more complicated. At time θ the
current engine enters edge ek and the last wagon is at position Wi(wi, θ), since
this wagon enters an adjacent edge in the next step Wi(wi, θ) ∩ ek+2 �= ∅. For
example, in Fig. 3 the only valid path from s to t regarding the original train
track includes a change in direction κ after traversing node v1. We denote the
corresponding path by P = (e5, e6, e3, e4, κ, e2, e1). For two consecutive edges
(ek, ek+1) of a path it needs to hold that {ek, ek+1} �∈ bek∩ek+1 and for two edges
separated by a directional change (ek, κ, ek+2) it needs to hold, if ek is entered
at θ, that {Wi(wi, θ), ek+2} /∈ bWi(wi,θ)∩ek+2 .

The possibilities we get from shunting enable us to find feasible solutions (see
deadlock handling of Fig. 4 in Appendix B of the full version), or, if a waiting
instance already had a feasible solution, to reach a smaller makespan for it. The
example given in Appendix C of the full version proves the following proposition.

Proposition 1. There are instances of the train routing problem in which the
optimal shunting solution is lower than the optimal waiting solution.

Waiting for Trains: Complexity Results 287

2.3 Deadlock

Given a feasible path for every train, we get a solution P . Such a solution is
called feasible if every edge and every node is used only by one wagon of a train
per time unit and if all chosen times can be satisfied. If this is not the case we
call the situation a deadlock. There are instances in which there is no feasible
solution at all and there are instances where only some solutions end up with a
deadlock. In Fig. 4 we can see an example where there is no feasible solution for
trains of length one, i.e. the trains always end up in a deadlock situation; see
Example 1 in Appendix D of the full version. On contrary, if an instance contains
a subgraph as depicted in Fig. 5, it might happen that a deadlock occurs if both
trains start at the same time, but there are also deadlock free solutions, like in
Example 2 in Appendix D of the full version.

Fig. 4. Two unit length trains
with Es1 = Et2 = e1 and mir-
rored Es2 = Et1 = e3. No train
can circumvent the other train.

Fig. 5. The blue train wants to travel to
v0 and the red one to v5. The red train can
only leave edge e1 if it enters e2 simulta-
neously while the blue one has to enter e1
to free e2. (Color figure online)

To overcome this trivial blocking, we want to investigate a special variant of
the problem, where each train has an individual start depot and target depot.
The assumption relates to injection buffer and delivery buffers used for example
in [2]. Each depot is a path of wi consecutive edges, such that in the initial con-
figuration the trains head is pointing to its original node. Example 3 in Appendix
D of the full version showcases the transformation of the situation depicted in
Fig. 4 into a solvable instance.

If the graph contains an individual depot tuple for every train, a sorting
algorithm guarantees a deadlock-free feasible solution. Sort the trains according
to their name and delay every train until all trains preceding in the ordering
reached their destination depot completely. Thus, there is always only one train
traveling through the network and every choice of a feasible path is conflict-
free. This gives a polynomial worst-case solution and thus the corresponding
optimization problem with external depots is contained in NP.

Obviously, this approach is not efficient since only a small fraction of edges
is used at every point in time. For a well-defined problem it is necessary that
we can check if a given solution is feasible. This is possible for a solution of
our problem, since we can embed the trains along their paths according to their
waiting times and check if an edge or a node is used by two or more trains at the
same time. This is possible by embedding the trains time step per time step (and

288 B. Tauer et al.

update only if some train moves at the respective time). By using this procedure
we can also determine the arrival time of the last train, i.e., the makespan.

Before we start presenting complexity results, we first want to reconsider
classic packet routing classifications. Often single commodity instances are ana-
lyzed. In those special cases easier solutions exist. Due to the node capacity,
this classification is not helpful for the train routing problem as only one train
at a time can traverse the shared first node and thus no further interaction
takes place. In the remaining part of this paper, we consider multi commodity
instances only.

3 Complexity Results

This section gives an overview of the complexity landscape of the waiting and the
shunting problem. Table 1 summarizes all results. As stated in Sect. 2.3, external
depots ensure a feasible schedule. Note, that every instance with external depots
can be transformed into an instance with internal depots by considering G ∪ E
as input graph. Thus, for waiting instances, we restrict ourselves to external
depots.

3.1 Waiting

Unexpectedly, the problem turned out to be very hard. Even the task to com-
pute an optimal schedule with minimal makespan on a unidirectional path is
NP-complete. In a unidirectional path, w.l.o.g. the target depots are always
positioned to the right hand side of the starting depots. This means, that all
trains travel from left to right.

Theorem 1. In a waiting instance on a unidirectional path it is NP-complete
to decide if a schedule with makespan of at most k exists.

Proof. We will show hardness by a reduction to unary 3-Partition [7]. Consider
an instance of 3-partition of 3z integers A = (a1, a2, . . . , a3z) encoded in unary
such that

∑
k∈A ai = zB and B

4 < ak < B
2 for all k ∈ [3z]. We construct z + 1

trains of unit length bk for k ∈ 0, . . . , z which represent the boundaries of each
set. Moreover, we add one train for each integer ak of weight wak

= ak, so there
are n = 4z+1 trains in total. The graph G is a path of 2z(B +1)+1 consecutive
edges and both, edges and nodes, are numbered ascending. We arrange the depots
for the trains bk as follows: The start depot of train bk is located at vk(B+1) and
its target depot is located at v(z+k)(B+1)+1. All start depots of the integer trains
are located at vz(B+1) and the target depots at vz(B+1)+1, see also Fig. 6 for a
visualization. Each set train bk needs at least z(B + 1) + 2 time units to reach
its destination. On the other hand, edge ez(B+1) is traversed by z + 1 set trains
and 3z integer trains of total length zB. So, z(b + 1) + 2 is a lower bound on
the makespan again. To reach this makespan all set trains have to start at time
zero and traverse their complete path without being delayed at all. Due to the
congestion on edge ezB+1 this edge has to be used for every time step, thus the

Waiting for Trains: Complexity Results 289

Fig. 6. Reduction to unidirectional path of total length 2zB′ + 1 where B′ := (B + 1).
B is the sum of the elements in each set. There are z + 1 unit length trains (red) to
symbolize the set boundaries and 3z trains with identical depots and length according
to the size of the corresponding integers (blue). (Color figure online)

gaps between the set trains have to be filled exactly by the integer trains. Thus,
there exists a schedule with makespan z(B + 1) + 2 if and only if there exist a
3-partition of A into z sets of size B.

After showing hardness for the simple case of unidirectional paths, we con-
sider the case where the trains have all minimal length, i.e., one. To show hard-
ness, the graph class becomes slightly more complicated.

Theorem 2. In a waiting instance on planar graphs with degree bounded by
three it is NP-complete to decide if a schedule with makespan of at most k exists
– even for trains of size one.

The proof is a reduction to Simple Planar 4-bounded exactly 3–SAT contained
in Appendix E of the full version.

We showed that the problem is NP-hard on a unidirectional path as well
as for trains of length 1. Thus, we consider fixed parameter tractability of the
problem on trees. The idea is to identify a set of fixed parameters in which the
algorithm is allowed to have superpolynomial running time. This means, for a
fixed parameter n a problem is in FPT if there is an algorithm with running
time O(f(n) · poly(input)) [1].

Theorem 3. Computing an optimal solution for a waiting instance on trees,
parameterized by the total number of trains n, is possible with running time
O(n! · n · |E|). Thus, the problem is in FPT.

Proof. First, we construct a conflict graph H = (N,E(H)) such that there exist
one node for every train i ∈ N . Consider the nodes of the original graph G and
add an edge (i, j), i, j ∈ N to E(H) if and only if Pi ∩ Pj �= ∅. Since G does not
contain any cycles a priority list of all trains is sufficient to handle all potentially
occurring conflicts. Observe that an acyclic orientation of H corresponds to a
priority list. Here, every train i is prioritized over j if there is a directed path
from j to i. Thus, to identify the optimal priority list it is sufficient to check all

290 B. Tauer et al.

acyclic orientations of H. The number of acyclic orientations is maximized if H
is a clique and is n! in this case.

To have an FPT algorithm in n it remains to see that given a priority list
the corresponding embedding can be done in polynomial time. The first train in
the topological order of H is first in every conflict and can thus be routed first
without intermediate waiting times. After this train is embedded, the same is
true for the next train in the topological ordering of H.

The crucial property used in the proof above is that trains interact at most
once. This is the reason why an optimal priority order, automatically corresponds
to an optimal schedule. As soon as the graph contains a cycle this is not true
anymore as we can see in Example 4 in Appendix F of the full version. Indeed, it
turns out that the makespan minimization problem is W [1] hard on these graph
classes which means it is most likely not in FPT parameterized in the number
of trains.

Theorem 4. It is W [1]-hard to compute the optimal solution of a waiting
instance parameterized by the number of trains n. Thus, there is no algorithm
that solves the problem in f(n) |E|o(n/ log n) time for some function f unless the
ETH fails.

Proof. We reduce our problem from the Multi Way Number Partition problem
[3] like presented in Fig. 7.

For every bin j ∈ [n] we introduce a train with external depots. We generate
n× (k +1) nodes, where k is the number of objects. Additionally, we add a path
with al nodes in front of vl

1 for all l ∈ [k]. We connect each node vl−1
j with the

first node of the path in front of vl
1 and vl

j , for all j ∈ [n]. The starting depot
of train j is adjacent to node v0

j . Since the depot is defined as path, we add
an additional node per final depot of a train and connect those with all vk

j for
j ∈ [n]. Each train has a length of wj = A + k where A :=

∑
j∈[k] aj and thus

A ≥ k.
Then, the Multi Way Number Partition is solvable if a schedule exists such

that the makespan is C∗ = A(1 + 1
n) + 2k + 1. Note that all trains have the

same length and the shortest path of each train has length k + 1. The only way
to realize the makespan C∗ is that no train is be delayed. This implies by the
construction of the graph and the train length that every train traverses exactly
one node vl

j for all l ∈ [k]. The train that traverses vj
1 also traverses the path

of length aj in front of it. Thus, to minimize the makespan an optimal schedule
divides the additional path length equally between the trains. This results in
an additional A

n travel time for each train. Summarizing, an optimal schedule
corresponds to a solution of the Multi Way Number Partition Problem and vice
versa.

Waiting for Trains: Complexity Results 291

Fig. 7. The graph constructed from an instance of Multi Way Number Partition with
k objects and n bins, corresponding to trains, each one with length wj = k +

∑
ak.

All thick paths between vi−1 and vi consist out of ai + 1 edges for all i ∈ [k]. The
pathwidth is bounded by pw(G) ≤ n+1. Each node has two switches, one for all edges
from the left and one for all edges on the right.

3.2 Shunting

For shunting, we distinguish between internal and external depots.

Internal Depots. For trees, we can use our results from Theorem 1. The basic
idea is to consider the path and add the external depots into the graph. This,
obviously, results in a tree. In this modified instance, the result from Theorem 1
still holds. Since, one edge is permanently used and there are trains that do not
wait, shunting cannot reduce the makespan.

Corollary 1. In a shunting instance on a tree with internal depots it is NP-
complete to decide if a schedule with makespan of at most k exists.

If the graph class becomes more complex, we can enhance the hardness result
to PSPACE-completeness. The graph we consider is the honeycomb graph which
is a subgraph of a grid. Note that the maximum degree of honeycomb graphs is
three.

Theorem 5. Finding a feasible schedule for a shunting instance with internal
depots on a honeycomb graph is PSPACE-complete – even if all trains have
equal length.

We reduce our problem from Rush Hour Puzzle. The proof can be found in
Appendix G of the full version.

External Depots. Note that, in all the reductions in Sect. 3.1 shunting never
helps to improve the makespan. Thus, the optimal solution for waiting corre-
sponds to the optimal solution for shunting in these instances and therefore the
hardness results transfer to shunting problems.

292 B. Tauer et al.

Corollary 2. In a shunting instance on a unidirectional path with external
depots it is NP-complete to decide if a schedule with makespan of at most k
exists.

Corollary 3. In a shunting instance on planar graphs with bounded degree of
three and external depots it is NP-complete to decide if a schedule with makespan
of at most k exists – even for trains of size one.

Corollary 4. It is W [1]-hard to compute the optimal solution of a shunting
instance with external depots parameterized by the number of trains n. Moreover,
there is no algorithm that solves the problem in f(n) |E|o(n/ log n) time for some
function f unless the ETH fails.

4 Polynomial Time Algorithms for Paths

On a path with internal depots, the trains cannot overtake each other since
they are permanently present. Thus, it is necessary that the order in which they
start is equal to the ordering of the target depots. Moreover, in this case no train
needs to wait for another one. Thus, an algorithm checks the order of the starting
depots and compares it to the order of the target depots. If they are equal, the
makespan is the longest distance between start and target depot, otherwise there
is no feasible schedule.

Proposition 2. In a shunting or waiting instance with internal depots on a path
there is a linear time algorithm that computes the optimal makespan.

So, in the following we focus on external depots. The problem of optimiz-
ing a waiting problem turned out to be hard already on a unidirectional path.
Therefore, we present a polynomial time algorithm for waiting instances on a
special subclass of unidirectional paths.

We characterize an instance as non-nested if the start-destination intervals of
trains are not included in each other. To illustrate the definition, assume that all
trains move from left to right and are numbered according to their start nodes.
Then, the destination nodes appear in the same ordering, i.e. for si < sj it holds
that ti < tj .

Observe that for i < j the only possibility of train i to traverse a shared
edge before train j is that train j waits in its depot until train i traversed sj .
Furthermore, train i will be in front of j on every shared edge afterwards. In
Appendix H of the full version, we present two examples. One in which it is
necessary to delay a train such that a preceding train can pass and another in
which the preceding train moves first. Both variants demonstrate that the delay-
ing decision does not only depend on the position of the depots (see Example 5
in Appendix H of the full version).

A class for which we can optimize the waiting time is a non-nested instance
on a unidirectional path where all trains share one node, i.e.,

⋂
i∈N P (si, ti) �= ∅.

The idea of the algorithm is starting with the rightmost train. Then, we always

Waiting for Trains: Complexity Results 293

start the next train to the left such that it can directly follow the preceding train.
If the distance between two subsequent trains is large enough, we can safely start
the train at the left start node at time 0 without interfering, too, and repeat the
same procedure for all trains to the left of it. The pseudo code of the algorithm
can be found in Appendix I of the full version, Algorithm1.

Theorem 6. Consider a waiting instance on a unidirectional path where all
depots are non-nested and fulfill

⋂
i∈N P (si, ti) �= ∅. Algorithm1 (Rightmost-

Train-First – RTF) computes a schedule minimizing the makespan.

Algorithm 1 does not return the optimal solution as soon as the instance does
not fulfill ∩i∈NP (si, ti) = ∅ – even if trains have the same length. Moreover, the
Farthest-Destination-First Algorithm (FDF), which is optimal for a non-nested
instance in the message routing problem [12], does not solve the train routing
problem to optimally as shown in Appendix J of the full version.

Lemma 1. If at least one node v on a non-nested unidirectional path exists
that is contained in the path of every train, then there exists an optimal schedule
where the first train traverses v last.

Proof. Assume for contradiction that no such schedule exists. Consider an opti-
mal schedule where train one traverses the shared node latest among all optimal
schedules. Then, there exists a train j that directly follows train one, because
otherwise train one can wait for one time unit. At some point in time t train
one traverses sj and from this point onward train j follows train one. Together
they block wj + w1 consecutive edges. So at point t train j can leave the depot
and train one follows train j. Since all trains use shared edges after sj , this does
not further delay later trains and the makespan does not get worse because the
remaining distance for train one is shorter than the remaining distance for train
j. This is a contradiction.

Proof. (Theorem 6) With use of Lemma 1, we can compute an optimal schedule
recursively by finding an optimal schedule for trains two to n and then scheduling
train one last, but as early as possible. This is exactly the way Algorithm1 works.

5 Conclusion

In this work, we introduced a model for train routing problems on railway net-
works. Unfortunately, problems get hard very fast in this model – even for trains
of length one and on paths. Thus, it is an interesting challenge finding good
heuristics and approximation algorithms. In classical packet routing problems,
randomization is a powerful tool, but in this case due to the possibility of dead-
locks it is not easy to use.

A Difference Between Wormhole and Train Routing

In Fig. 8, one elemental difference between wormhole and train routing is
depicted. In contrast to classical wormhole routing, in train routing node capac-
ities and blacklists exist. Both constraints restrict the solution space.

294 B. Tauer et al.

Fig. 8. Two track intersections for the train routing with two trains/worms of length 2
(train 1 red, train 2 blue) are shown. In train routing only one train is allowed to traverse
c at a time, while in whormhole routing both worms could traverse c simultaneously.
Moreover, trains are only allowed to enter and leave c along pahts that are not forbidden
by the blacklist bl(c). (Color figure online)

B Difference Between Waiting and Shunting Instance

In Fig. 4 a deadlock instance is presented. Adding edge e4 (see Fig. 9) and allow-
ing at least on train to shunt along this edge resolves the deadlock situation. For
example, the optimal solution for the instance with N = {red, blue},

Pred = (e2, e3), Pblue = (e2, e1) and Sblue = {e4} is

P ′
red = (e2, e3) with θred = (0, 0) and P ′

blue = (e4, e2, e1) with θblue = (0, 1, 0).

Fig. 9. The instance is only feasible if one allows at least on train to shunt.

C Proof of Proposition 1

Proposition 1. There are instances of the train routing problem in which the
optimal shunting solution is lower than the optimal waiting solution.

Proof. Consider the network depicted in Fig. 10 with trains of weight vector
w = (2, 1, 1). The number on the connection of two nodes denotes the number
of edges in the path connecting the two nodes. In the shunting problem as well
as in the waiting time problem the given paths for the trains are the unique
shortest paths and no further edges are offered, thus Si = ∅ for all i ∈ [3].

The optimal makespan of this instance as a shunting problem is 43. The
strategy for train 1 is to pass node v2 such that train 2 can leave the depot.
After train 2 traversed v2 train 1 is shunted back to let train 3 enter into depot
t3. Only afterwards train 1 continues to t1. If train 1 cannot shunt, there are
three routing possibilities. If train 1 is allowed to traverse v2 and v3 first, train
3 arrives at time 58. If train 1 only traverse v2 first and waits for train 3, train
2 arrives at time 45. On contrary, if train 2 is in front of train 1 it only arrives
at time 52 and thus no waiting solution attains the optimal shunting makespan.

Waiting for Trains: Complexity Results 295

Fig. 10. The optimal shunting solution is lower than the optimal waiting solution.

D Deadlock Examples

Example 1. Even for a simple path with only two trains of unit length, no feasible
solution exists if the start edge of train 1 (red) is the target edge of train 2 (blue)
and vice versa as depicted in Fig. 4. There is no track that allows one train to
traverse the other, regardless of any possible intermediate waiting or multiple
use of edges.

Example 2. In Fig. 5, there are two trains of length three. The blue one is starting
at node v5 and a red one starting at node v0, both in external depots. The path of
the blue train is Pblue = {{v5, v4}, {v4, v3}, {v3, v1}, {v1, v0}} and the path of the
red train is Pred = {{v0, v1}, {v1, v2}, {v2, v4}, {v4, v5}}. When both trains start
at the same time and proceed without waiting they are on the first three edges
of their path, blocking each other such that no train can continue, as depicted
in Fig. 5. Thus, if they are not allowed to shunt this is a deadlock situation. If
one of the trains waits for five time units, the other train reached its depot and
the train can travel without waiting at intermediate nodes.

Example 3. The setup depicted in Fig. 4 is transformed to a solvable instance
presented in Fig. 11. We introduce two depots for each train. Edges and nodes
that are related to only one train are colored in the train specific color while the
trains are initially orientated towards G.

Fig. 11. A two-train instance with s1 = v2 and t1 = v3 and thus Ered
s1 = {e4}, Ered

t1 =
{e7} as well as s2 = v3 and t2 = v2 and thus Eblue

s2 = {e5}, Eblue
t2 = {e6}. While one

train is parking in one of its depots the other train can travel from one of its depots
to the other. (Color figure online)

296 B. Tauer et al.

E Proof of Theorem 2

Theorem 2. In a waiting instance on planar graphs with degree bounded by
three it is NP-complete to decide if a schedule with makespan of at most k exists
– even for trains of size one.

Fig. 12. A variable component.Either the trains from s5, s6, s7 are delayed by s1 or
the trains from s8, s9, s10 are delayed by s2.

Proof. The proof uses a reduction to Simple Planar 4-bounded exactly 3–SAT
[11] with 22 trains per variable and one train per clause. Note that in Simple
Planar 4-bounded exactly 3–SAT, a variable occurs at most four times and at
least once negated and non-negated.

Figure 12 shows a component that replaces one variable xi. The trains, start-
ing at s1 and s2, are in conflict at their first edge. The choice of the first moving
train represents the decision to set xi to true or false. If we priories s1 it will
delay the trains from sxi

. Additionally, the trains from sx̄i
will not be delayed.

Each train from sxi
represents one occurrence of xi in a clause. Vice versa, each

train from sx̄i
represents one occurrence of x̄i in a clause. Delaying the trains

from sxi
means setting xi to false. Thus, if the train from s2 is prioritized xi is

set to true.
The distance from s1 and s2 to their depot is 23. At least one of these trains

is delayed and a second delay increases the makespan to 25 which is not optimal
if the 3-SAT formula is satisfiable. A delayed train is in conflict with the train
from s3 or s4. Because these trains have also a distance of 23 to their depot,

Waiting for Trains: Complexity Results 297

they are allowed to be delayed at most once, too. Moreover, they are in conflict
with each other. Thus, at most one of them is allowed to be delayed. Therefore,
only one of the trains from s1 and s2 is allowed to be delayed once.

The dashed edges from Fig. 12 labeled with 8, 9 are continued in Fig. 13.
The label represents the possible arrival times for the trains from Fig. 12. The
presented construction ensures that delayed trains are delayed two more times.
The trains s11 and s12 have a distance of 24 to their depots. Thus, if they are
delayed once and the 3-SAT formula is satisfiable it increases the makespan.

Figure 14 shows a component that replaces one clause c. The clause train from
sc to tc is delayed three times if all of the three crossing trains were delayed.
In this case, it arrives at tc in time step 25. So, if one of the crossing trains
is early, the clause train arrives earlier and the clause train arrives in a time
step smaller than 25. If in each clause construction at least one variable train
is early (true), the makespan is less than 25. The crossing variable trains have
a remaining distance of 9 to their depots and cannot be delayed if they were
already delayed.

Fig. 13. A delay component that delays a train that was delayed once in the variable
component.

Fig. 14. A component that represents a clause (x1 ∨ x2 ∨ x̄3) where each variable
appears for the first time.

298 B. Tauer et al.

F Counter-Example: FPT Approach Cannot Be
Generalized

In the following example, we show that the approach presented in Theorem 3
can not be generalized to a broader class of graphs. As soon as there are cycles
present a global priority order is not enough to find the optimal makespan.

Example 4. Consider Fig. 15. To achieve the optimal makespan of C∗ = 8 train
1 has to traverse v1 in front of train 2. Due to the congestion at node v3 it is
optimal to route train 1 via the longer horizontal path. During this time train
2 can traverse v1, use the idle time between train 4 and train 3 to traverse v3
and finally traverse v2 in front of train 1. This is the only schedule where none
of the trains is directly delayed. Since the shortest path of train 2, 3 and 4 are
6 their paths are fixed. Train 1 can not deviate without delaying at least one
other train thus no other schedule is optimal. Conclusively, the priority between
train 1 and 2 has to be changed to achieve the optimal solution.

Fig. 15. An instance that contains a circle with four trains of length two. The priority
between the red and the blue train has to change in the optimal solution. (Color figure
online)

G Proof of Theorem 5

Theorem 5. Finding a feasible schedule for a shunting instance with internal
depots on a honeycomb graph is PSPACE-complete – even if all trains have equal
length.

Proof. We reduce the problem from Rush-Hour puzzle, by the construction
described below. Even though the Rush-Hour puzzle itself is PSPACE-complete
[8], we use the restricted version where all blocks are of size 1 × 2, which is still
PSPACE-complete.

Given an instance of Rush-Hour puzzle (see Fig. 16a), we transform the puzzle
into a honeycomb graph. Therefore, we introduce an edge for every field of the
puzzle. We connect each two horizontal field neighbors as well as each vertical
field neighbors with an edge such that honeycombs are created as depicted in
Fig. 16c. Moreover, we introduce one additional node for every horizontal block

Waiting for Trains: Complexity Results 299

Fig. 16. Transformation of a Rush Hour puzzle into a grid track instance.

as well as one node for every vertical block and connect them to the neighboring
block via an edge.

We introduce a train of length four for every block of the puzzle. Therefore,
every train is located on the two edges that represent the fields of the puzzle.
Additionally, one unit is placed on the edge that connects both of them. The
fourth edge which is occupied by the train is the one attached at the right hand
side or on top, depending if it is a horizontal or vertical one (see Fig. 16d).

300 B. Tauer et al.

Every train starts at the position corresponding to its initial position in the
puzzle like constructed above. We attach a path of length four at the winning
position of Rush Hour and connect it with the corresponding position of our
construction (depicted by t). This path is the final depot of the particular block
of interest and its path is the horizontal connection of its depots. The final
position of all remaining trains corresponds to their initial position and their
paths are their start depots.

Moreover, Si of every vertical train i corresponds to all vertical edges attached
to its path (Fig. 17a). Correspondingly, Sj of every horizontal j corresponds to
all horizontal edges (Fig. 17b). Thus, every train can either move horizontally or
vertically depending on the position of their initial depot.

A feasible shunting solution of the honeycomb graph correspondence to a
winning strategy of Rush Hour, where every move of every block is reversed
after the particular block of interest has reached its target depot and thus left
the game. This is always possible by undoing all movements of all trains in the
exact reversed order, which is not part of the classical game itself but is already
contained in its winning strategy.

(a) Horizontal paths of pink train. Dashed
edges correspond to Spink and magenta
edges are Espink = Etpink .

(b) Vertical path of orange train. Dashed
edges correspond to Sorange and orange
edges are Esorange = Etorange .

Fig. 17. Subpaths along trains can be routed. Each zig-zag path corresponds to the
horizontal or vertical movement of the blocks in the puzzle.

H Delaying on a Path

Example 5. It might be necessary to delay a train until a train that starts on
the left hand side has passed. Figure 18a shows an instance in which it is optimal
to delay train 2 in its depot until the first train has passed. Observe that the

Waiting for Trains: Complexity Results 301

location of the depots alone is not sufficient to decide which train goes first. This
can be seen in Fig. 18b, which extends the previous instance by several copies of
the second train. Now the optimal order of the first two trains is reversed.

×�

s1

t1

s2

t2

(a) Handle conflicts only if train heads in-
teract is not optimal. Delay train 2 without
immediate conflict is necessary to achieve
the optimal makespan of C∗ = 6 + l.

e2

×�

s1

t1

s2

t2

s3

t3

sn

tn. . .

. . .

(b) Due to the increased congestion on
edge e2 it is optimal to delay the first train
one time unit such that train 2 traverses e2
immediately and avoids idle time on e2.

Fig. 18. Delaying does not only depend on the position of the depots.

I Algorithm to Compute Waiting Times on an Uni-
directional Path on Which All Trains Share One Node

Algorithm 1. Rightmost Train First - (RTF)
Input: Path P and a set N of n trains with weight wi and external non-nested

depots, adjacent to si (start depot) and ti (target depot) such that⋂
i∈N P (si, ti) �= ∅.

Output: Arrival time of every train in a solution minimizing the makespan.
1 τ ← 0; k ← n;
2 for i = n to 1 do
3 dist(i) ← |P (si, sk)|;
4 if τ − dist(i) ≥ 0 then
5 start(i) ← τ − dist(i);
6 τ ← τ + wi;

7 else
8 k ← i; start(i) ← 0; τ ← wi;
9 end

10 Ci ← start(i) + |P (si, ti)| + wi;

11 end
12 return (Ci)i∈N

302 B. Tauer et al.

J Counter-Example: RTF-Algorithm Cannot be
Generalized if Trains do not Share a Node

Example 6. In Fig. 19 we present an example where trains travel on a unidi-
rectional path and are non-nested but they do not share one node. Since the
RTF-Algorithm does not compute an optimal solution in this example, it is a
necessary property of an instance that all trains share one node for the RTF-
Algorithm to work.

v0 v1 v2 v3 v4 v5 v6

s1

t1

s2

t2

s3

t3

Fig. 19. Non-nested instance with three trains of length five. Its optimal to start the
second train first to achieve a minimal makespan of 13 even though the last train has
the longer remaining path P (v4, v7) in contrast to train 2.

References

1. Cygan, M., et al.: Parameterized Algorithms, 1st edn. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-21275-3

2. Cypher, R., Meyer auf der Heide, F., Scheideler, C., Vöcking, B.: Universal algo-
rithms for store-and-forward and wormhole routing. In: Miller, G.L. (ed.) Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 356–365. ACM (1996)

3. Dreier, J., et al.: The complexity of packing edge-disjoint paths. CoRR
abs/1910.00440 (2019). http://arxiv.org/abs/1910.00440

4. Duato, J.: A necessary and sufficient condition for deadlock-free adaptive routing
in wormhole networks. IEEE Trans. Parallel Distrib. Syst. 6(10), 1055–1067 (1995).
https://doi.org/10.1109/71.473515

5. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: efficient algo-
rithms and complexity. Theor. Comput. Sci. 379(3), 387–404 (2007)

6. Harks, T., Peis, B., Schmand, D., Tauer, B., Koch, L.V.: Competitive packet rout-
ing with priority lists. ACM Trans. Econ. Comput. 6(1), 4:1–4:26 (2018)

7. Hartmanis, J.: Computers and intractability: a guide to the theory of NP-
completeness (michael r. garey and david s. johnson). SIAM Rev. 24(1), 90 (1982)

8. Hearn, R.A., Demaine, E.D.: Pspace-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of compu-
tation. Theor. Comput. Sci. 343(1–2), 72–96 (2005)

9. Hoefer, M., Mirrokni, V.S., Röglin, H., Teng, S.: Competitive routing over time.
Theor. Comput. Sci. 412(39), 5420–5432 (2011)

https://doi.org/10.1007/978-3-319-21275-3
http://arxiv.org/abs/1910.00440
https://doi.org/10.1109/71.473515

Waiting for Trains: Complexity Results 303

10. Ismaili, A.: Routing games over time with FIFO policy. In: Devanur, N.R., Lu,
P. (eds.) WINE 2017. LNCS, vol. 10660, pp. 266–280. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71924-5 19

11. Jansen, K., Müller, H.: The minimum broadcast time problem for several processor
networks. Theor. Comput. Sci. 147(1–2), 69–85 (1995)

12. Koch, R., Peis, B., Skutella, M., Wiese, A.: Real-time message routing and schedul-
ing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM -2009.
LNCS, vol. 5687, pp. 217–230. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03685-9 17

13. Leighton, F.T.: Methods for message routing in parallel machines. In: Kosaraju,
S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) Proceedings of the 24th Annual
ACM Symposium on Theory of Computing, 4–6 May 1992, Victoria, British
Columbia, Canada, pp. 77–96. ACM (1992)

14. Leung, J.Y., Tam, T.W., Wong, C.S., Young, G.H.: Routing messages with release
time and deadline constraint. J. Parallel Distrib. Comput. 31(1), 65–76 (1995)

https://doi.org/10.1007/978-3-319-71924-5_19
https://doi.org/10.1007/978-3-642-03685-9_17
https://doi.org/10.1007/978-3-642-03685-9_17

Distributed Algorithms

Oriented Diameter of Star Graphs

K. S. Ajish Kumar1(B) , Deepak Rajendraprasad2 , and K. S. Sudeep3

1 Department of Electronics and Communication Engineering, National Institute of
Technology Calicut, Kozhikode, India

ajishsreerangathu@gmail.com
2 Department of Computer Science and Engineering, Indian Institute of Technology

Palakkad, Palakkad, India
3 Department of Computer Science and Engineering, National Institute of

Technology Calicut, Kozhikode, India

Abstract. An orientation of an undirected graph G is an assignment of
exactly one direction to each edge of G. Converting two-way traffic net-
works to one-way traffic networks and bidirectional communication net-
works to unidirectional communication networks are practical instances
of graph orientations. In these contexts minimising the diameter of the
resulting oriented graph is of prime interest.

The n-star network topology was proposed as an alternative to the
hypercube network topology for multiprocessor systems by Akers and
Krishnamurthy [IEEE Trans. on Computers (1989)]. The n-star graph
Sn consists of n! vertices, each labelled with a distinct permutation of
[n]. Two vertices are adjacent if their labels differ exactly in the first
and one other position. Sn is an (n − 1)-regular, vertex-transitive graph
with diameter �3(n−1)/2�. Orientations of Sn, called unidirectional star
graphs and distributed routing protocols over them were studied by Day
and Tripathi [Information Processing Letters (1993)] and Fujita [The
First International Symposium on Computing and Networking (CAN-
DAR 2013)]. Fujita showed that the (directed) diameter of this unidirec-

tional star graph
−→
Sn is at most �5n/2� + 2.

In this paper, we propose a new distributed routing algorithm for the

same
−→
Sn analysed by Fujita, which routes a packet from any node s to any

node t at an undirected distance d from s using at most min{4d+4, 2n+4}
hops. This shows that the (directed) diameter of

−→
Sn is at most 2n + 4.

We also show that the diameter of
−→
Sn is at least 2n when n ≥ 7, thereby

showing that our upper bound is tight up to an additive factor.

Keywords: Strong orientation · Oriented diameter · Star graphs

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E.
An orientation

−→
G of G is a directed graph obtained by assigning exactly

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 307–317, 2020.
https://doi.org/10.1007/978-3-030-39219-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_25&domain=pdf
http://orcid.org/0000-0002-3490-6033
http://orcid.org/0000-0001-9101-8967
http://orcid.org/0000-0002-0146-6262
https://doi.org/10.1007/978-3-030-39219-2_25

308 K. S. Ajish Kumar et al.

one direction to each edge of G. An orientation is called a strong orienta-
tion if the resulting directed graph is strongly connected. A directed graph−→
G is said to be strongly connected, if there exists at least one directed path
from every vertex of

−→
G to every other vertex. There can be many strong

orientations for G. The smallest diameter among all possible strong orienta-
tions of G is called the oriented diameter of G, denoted by

−−−→
diam(G). That is,−−−→

diam(G) = min{diam(
−→
G)| −→

G is a strong orientation of G}.
The research on strong orientations dates back to 1939 with Robbins [2],

solving the One Way Street problem. Given the road network of city, the One
Way Street problem poses the following question: Is it possible to implement
one way traffic in every street without compromising the accessibility of any of
the junctions of the network? Robbins proved that the necessary and sufficient
condition for the existence of a strong orientation of a graph G is the 2-edge
connectivity of G. A 2-edge connected graph is one that cannot be disconnected
by removal of a single edge. The research on orientations that minimise the
resulting distances was initiated by Chvátal and Thomassen in 1978 [3]. They
proved that, for every undirected graph G there exists an orientation

−→
G such that

for every edge (u, v) which belongs to a cycle of length k, either (u, v) or (v, u)
belong to a cycle of length h(k) in

−→
G , where h(k) = (k−2)2� (k−1)

2 �+2. They also
showed that every 2-edge connected undirected graph of diameter d will possess
an orientation with diameter at most 2d2 + 2d. Further, they proved that it is
NP-hard to decide whether an undirected graph possesses an orientation with
diameter at most 2.

Fomin et al. [9] continues the algorithmic study on oriented diameter on
chordal graphs. They show that every chordal graph G has an oriented diameter
at most 2 diam(G) + 1. This result proves that the oriented diameter problem is
(2, 1)-approximable for chordal graphs. A polynomial time algorithm for finding
the oriented diameter of planar graphs was given by Eggemann [5]. Fomin et al.
[10] have proved that the oriented diameter of every AT-free bridgeless connected
graph G is at most 2 diam(G) + 11 and for every interval graph G, it is at most
5
4 diam(G) + 29

2 . Dankelmann et al., [8] proved that every n-vertex bridgeless
graph with maximum degree Δ has oriented diameter at most n − Δ + 3. For
balanced bipartite graphs (a bipartite graph with equal number of vertices on
both halves of the bipartition), they prove a better bound of n − 2Δ + 7. The
problems of finding strong orientations that minimize the parameters such as
diameter, distance between pairs of vertices etc., have been investigated for other
restricted subclasses of graphs like n-dimensional hypercube [11], torus [6], star
graph [4,13], and (n,k)-star graph [7].

Oriented diameter problem finds a significant application in parallel comput-
ing. In interconnection networks of parallel processing systems, the processing
elements are connected together using fibre optic links that support high band-
width, high speed and long distance data communication. However, the optical
transmission medium suffers from the drawback that the links are inherently
unidirectional [11]. In the case of optical links, a naive strategy to achieve bidi-
rectional communication is to use two separate optical links between every pair

Oriented Diameter of Star Graphs 309

of communication entities. But, such a naive approach increases the hardware
complexity and cost of the network. On the other hand, unidirectional commu-
nication links are simple and cost effective but require more number of inter-
mediate communication hops to establish bidirectional communication. Thus,
the average interprocessor communication delay is generally more in the case
of unidirectional interconnection networks. However, unidirectional interconnec-
tion networks might be the best choice if we can trade off communication delay
with cost and hardware complexity of the network.

1.1 The n-star Graph (Sn)

In [1], Akers and Murthy presented a group theoretic model called Cayley Graph
Model for designing symmetric interconnection networks. In parallel comput-
ing the interconnection networks provide an efficient communication mechanism
among the processors and the associated memory. For a finite group Γ and a
set S of generators of Γ , the Cayley Graph D = D(Γ, S) is the directed graph
defined as follows. The vertex-set of D is Γ . There is an arc from a vertex u to
a vertex v in D, if and only if there exist a generator g in S such that ug = v.
Further, if the inverse of every element in S is also in S, the two directed edges
between u and v are replaced by a single undirected edge, resulting in an undi-
rected graph. In [12], Akers and Murthy proposed a new symmetric graph, called
Star Graph, Sn. Let G be a group with elements being all permutations of the
set {1, 2, . . . , n} and group operation being composition. The star graph Sn is
a Cayley graph on G with generator set S = {g2, g3, . . . , gn}, where gi is the
permutation obtained by swapping the first and ith value of the identity permu-
tation. It is easy to see that, Sn has degree n − 1, and it has been shown that
the diameter of Sn is �3(n−1)/2� [12]. The star graph has many desirable prop-
erties of a good interconnection network such as symmetry (vertex transitivity),
small diameter, small degree and large connectivity. A symmetric interconnec-
tion network allows the use of same routing algorithm for every node, while a
small degree reduces the cost of the network. Further, a small diameter reduces
overall communication delay and large connectivity offers good fault tolerance.

Two different strong orientation schemes have been proposed for Sn. The
first one was by Day and Tripathi [4]. They showed that the diameter of their
orientation is at most 5(n− 2)+1. The second orientation scheme was proposed
by Fujita [13]. The diameter of this orientation scheme was shown to be at most
�5n/2� + 2. We observe that these two orientation schemes are essentially the
same. Both the schemes partition the set of generators into nearly equal halves.
The edges due to first set of generators are oriented from the odd permutation to
the even permutation and those due to the second set of generators are oriented
in the opposite direction. The difference between the two orientation schemes
lies in the way by which the two schemes partition the set of generators. The
Day-Tripathi scheme splits the set of generators based on the parity of i of a
generator gi, i.e., generators with odd parity for i belong to the first set and even
parity for i belong to the second set. In the case of Fujita’s orientation, the first
partition consists of generators from g2 to gk, k = �(n − 1)/2� + 1, whereas, the

310 K. S. Ajish Kumar et al.

second partition consists of generators from gk+1 to gn. The details of the two
orientation schemes described above are depicted in Fig. 1, for two nodes with
labels 12345 and 21345, and their neighbours in S5.

12345

52341

42315

32145

21345

51342

41325

31245

5

4

3
2

5

4

3

Fujita’s orientation

Day and Tripathi orientation

Even Signed Node

Odd Signed Node

Fig. 1. Day-Tripathi and Fujita orientation schemes for S5

In this paper, we propose a new distributed routing algorithm for the same−→
Sn analysed by Fujita. We show that the proposed algorithm routes a packet
in

−→
Sn from any node s to any other node t using at most min{4d + 4, 2n + 4}

hops, where d is the distance between s and t in Sn. In particular, this shows
that the (directed) diameter of

−→
Sn is at most 2n + 4, which is an improvement

over Fujita’s upper bound. We also show that the diameter of
−→
Sn is at least 2n

when n ≥ 7, thereby showing that our upper bound is tight up to an additive
factor. We do not believe that either of the above orientations of Sn are optimal
in terms of achieving the minimum (directed) diameter. In fact, we believe that
the oriented diameter of Sn is 3n/2 + O(1).

2 Preliminaries

2.1 Graph Terminology

Some of the basic definitions in graph theory which are required to understand
the details of this work are explained in this section. Let G = (V,E) be any
undirected graph with vertex-set V and edge-set E. Two vertices of G are called
neighbours when they are connected by an edge. The degree of a vertex u is
the number of neighbours of u. If all the vertices of G have the same degree, G
is called regular. The distance between two nodes u and v, denoted by d(u, v),
is the number of edges along a shortest path between u and v. The diameter
of G, denoted by diam(G), is the maximum of d(u, v) among all u, v ∈ V . An
automorphism of G is a permutation π of V such that for every pair of vertices
u, v ∈ V , {u, v} is an edge in E, if and only if {π(u), π(v)} is an edge in E. Two
vertices u and v of G are said to be similar if there is an automorphism π of G
with π(u) = v. G is vertex-transitive when every pair of vertices in G are similar.

Let D = (V,E) be any directed graph with vertex-set V and edge-set E.
If (u, v) is an edge (arc) in E, then u is called an in-neighbour of v and v is

Oriented Diameter of Star Graphs 311

called an out-neighbour of u. The in-degree and out-degree of a vertex u are,
respectively, the number of in-neighbours and out-neighbours of u. The distance
from a node u to a node v, denoted by

−→
d (u, v), is the number of edges along

a shortest directed path from u to v. The diameter of D (diam(D)), is the
maximum of

−→
d (u, v) among all u, v ∈ V . Automorphism and Vertex-transitivity

among directed graphs are defined similar to that of undirected graphs.

2.2 Cycle Structure of Permutations

Let π be a permutation of {1, . . . , n}. The sign of π, denoted by Sign(π), is
defined as the parity of the number of inversions in π, that is x, y ∈ {1, . . . , n},
such that x < y and π(x) > π(y). A cycle (a0, . . . , ak−1) is a permutation
π of {a0, . . . , ak−1} such that π(ai) = ai+1 where addition is modulo k. Two
cycles are disjoint if they do not have common elements. Every permutation of
[n] has a unique decomposition into a product of disjoint cycles. The sign of a
permutation turns out to be the parity of the number of even-length cycles in
that permutation.

One hop in an n-star graph corresponds to moving from a permutation σ
to another permutation π, by exchanging the value σ(1) with a value σ(k),
k ∈ {2, . . . n}. We would like to make some observations about the cycle structure
of π and σ. In the case when 1 and k belong to the same cycle of σ, this cycle
gets broken into two disjoint cycles in π (Fig. 2). Notice that, if σ(1) = k, then
one of the resulting cycles is a singleton. In the case when 1 and k belong to
different cycles of σ, these two cycles merge and form a single cycle in π (Fig. 3).

k

σ(k)

σ(1)

1

k

σ(k)

σ(1)

1

Fig. 2. The change in the cycle structure of σ, when σ(1) is swapped with σ(k), when
1 and k belong to the same cycle.

Given two permutations π and t, we call the cycles of π ◦ t−1 as the cycles
of π relative to t. The above observations about the cycle structure of two per-
mutations π and σ which differ by a single swap between 1 and k will apply in
this case to the relative cycle structure of π and σ with respect to t.

312 K. S. Ajish Kumar et al.

2.3 Routing in Undirected Star Graph

In this section, we describe the routing algorithm for the undirected star graph
Sn presented in [1]. Assume that a node labelled c forwards a packet P from a
source s to a destination t. The destination label t is available in the packet. Upon
receiving the packet, c accepts P if c is same as t. Otherwise, when c(1)
= t(1),
the node c forwards P through the link labelled i, where i is the position of c(1)
in t. We call such a move a settling move. A value is called settled if it is in the
same location in c and t, and unsettled otherwise. When c(1) = t(1) (but c
= t),
the node c forwards P through a link i, where i is the position of an unsettled
value. We call such move a seeding move. Notice that, during the course of
routing P from s to t, the number of seeding moves is same as the number of
non-singleton cycles in s relative to t. Also, no move disturbs an already settled
value. Therefore, we can observe that the total number of steps required to settle
all unsettled values in s, denoted by d, is at most m(s, t) + c(s, t), where m(s, t)
is the number of mismatched values (i.e., values that are not in their correct
position with respect to t) and c(s, t) is the number of non-singleton cycles in s
relative to t. More closer analysis yield [1] the following result.

d =

{
m(s, t) + c(s, t), if s(1) = t(1)
m(s, t) + c(s, t) − 2, otherwise.

(1)

1

σ(1)

+

σ(k)

k

1

σ(1)

σ(k)

k

Fig. 3. The change in the cycle structure of σ when σ(1) is swapped with σ(k), when
1 and k belong to different cycle.

It is not difficult to argue that the above routing algorithm is optimal and hence
d is the distance between s and t in Sn.

3 The Proposed Routing Algorithm

There are two different ways in which one can describe and analyse a routing
algorithm on a star graph. In the first view, which we call the “network view”,
we consider each vertex of Sn as a communication node whose address is the
permutation labelling that vertex. Depending on the sign of the address of a
node, we classify it as an even node or an odd node. We consider each arc of

−→
Sn

as a unidirectional communication link and label it by the unique position in
{2, . . . , n}, where the addresses of the endpoints of the arc differ. Hence every

Oriented Diameter of Star Graphs 313

node has n − 1 links attached to it with unique labels from {2, . . . , n}. For an
even node, the links labelled 2 to �(n − 1)/2� + 1 are outgoing links and the
remaining are incoming. The situation is reversed for odd nodes. Every packet
that is to be routed along the network will have the destination address in its
header. We describe the algorithm by which a node, on receiving a packet not
destined for itself, selects the outgoing link along which to relay that packet.
This selection is based on the address of the current node and the destination
address.

In the second view, which we call the “sorting view”, we consider each vertex
of Sn as a permutation of [n]. Thus a routing is viewed as a step-by-step proce-
dure to sort the permutation labelling the source to the permutation labelling
the destination. Each step in this sorting is restricted to be a transposition
(1, i), where i ∈ {2, . . . , �(n− 1)/2�+1}, if the current permutation is even, and
i ∈ {�(n − 1)/2� + 2, . . . , n}, if the current permutation is odd. Hence a directed
path in

−→
Sn will correspond to an alternating sequence of right half and left half

transpositions. This is the view with which we will analyse our routing algorithm
in Sect. 4.

In a given permutation, let us call the positions 2 to �(n−1)/2�+1 as the left
half, and the positions �(n−1)/2�+2 to n as the right half. First, we analyse the
case of sorting a permutation π in which all the left values are in a derangement
in the left half itself, and all the right values are in a derangement in the right
half itself. For every n ≥ 5, an example for π is the permutation obtained by
cyclically shifting the left-half and right-half by one position each. That is, the
cycle decomposition of π is (1)(2, . . . , k)(k+1, . . . , n), where k = �(n−1)/2�+1.
This analysis serves two purposes. Firstly, it establishes a lower bound on the
diameter of

−→
Sn. Secondly, it illustrates a typical run of our proposed algorithm

to be described later. Let π = π0, . . . , πl = id be the nodes of a shortest directed
path from π to id in

−→
Sn. Notice that, in π, every value except 1 is not in its

“correct” position (with respect to the identity permutation) and hence needs
to be moved. This requires a transposition a = (1, π−1(i)) to remove i from its
present position and a transposition b = (1, i) to place i in its final position.
Let α and β be, respectively, the permutations in {π1, . . . , πl} which appear
immediately after the transposition a and immediately before the transposition
b. Notice that α(1) = β(1) = i. The key observation is that α and β cannot
be the same permutation. This is because, for every i ∈ {2, . . . , n}, both π−1(i)
and i are in the same half and the directions in

−→
Sn constraints one to alternate

between left half and right half transpositions. Hence for every i ∈ {2, . . . , n},
there exists at least two distinct permutations in {π0, . . . , πl} which has i in the
first position. Moreover π0(1) = πl(1) = 1 (i.e., the value 1 appears in the first
position for at least two permutations). Thus l +1 ≥ 2n and hence the length of
the path is at least 2n−1. If π was an even permutation, we could have improved
the lower bound by 1, since the distance between two even permutations has to
be even. This is indeed the case when n is odd. When n is even and n ≥ 8
(and thereby k ≥ 5, we can choose π to be (1)(2, 3)(4, . . . , k)(k + 1, . . . , n). This

314 K. S. Ajish Kumar et al.

improvement does not work for n = 6, and it is indeed established by computer
simulation that diam

−→
Sn = 2n − 1 when n = 6 [4]. Hence we conclude

Theorem 1. For every n ≥ 5 the diameter of
−→
Sn is at least 2n − 1. Further if

n
= 6, the diameter of
−→
Sn is at least 2n.

Now let us see a way to sort the permutation π = (1)(2, . . . , k)(k + 1, . . . , n)
for an odd n ≥ 5 and k = �(n−1)/2�+1. We do not attempt to rigorously justify
the claims made in the following discussion as they are proved in more generality
in Sect. 4. We do the sorting in two phases. In the first phase (the crossing phase),
we obtain a permutation γ in which all the values in {2, . . . , k} (the small values)
are in the right half and all the values in {k+1, . . . , n} (the big values) are in the
left half. This can be done in n + 1 steps; the first step places 1 in the left half
(seeding move) and all the subsequent steps either places a small value in the
right half or a large value in the left half (crossing moves). Only thing one has to
be careful about is to remove 1 from the left half only in the last transposition.
For example, one can attack the positions 2, k +1, 3, k +2, . . . , k − 1, n, 2 in that
order to arrive at γ = (1)(2, k + 1)(3, k + 2) · · · (n − 1, n). In the second phase
(the settling phase), when a value i, i
= 1 appears in the first position for the
first time, in the very next step we will settle it, i.e., place it in position i. This
will be possible since, γ−1(i) and i are in different halves for all i ∈ 2,n. This
phase could have been completed in n steps provided the elements {2, . . . , n}
formed a singe cycle in γ. Otherwise, after placing all the elements in a cycle of
γ to their correct positions, 1 will return to the first position. This results in one
extra move (a seeding move) per non-singleton cycle of γ. An extreme example of
this can be seen by analysing the case when γ is as above, wherein one requires
�n/2� − 1 seeding moves. Hence the number of moves in the settling phase is
n − 1 + c(γ) where c(γ) is the number of non-singleton cycles in γ. Since the
number of non-singleton cycles in any permutation of [n] is at most �n/2�, one
quickly sees that π can be sorted in a total of �5n/2� steps. One can then easily
extend this analysis to an arbitrary permutation in place of π and show that the
diameter of

−→
Sn is at most 5n/2 + O(1), reproving the bound of Fujita [13]. But

we show that we have enough freedom while building γ to ensure that γ consists
of at most two non-singleton cycles. This is done by showing that during all but
the final two transpositions of the crossing phase, we can select the swaps so as
not to complete a new cycle among the crossed values. This is what helps us in
achieving the bound of 2n + O(1) on the diameter of

−→
Sn.

One drawback of the above method is that, even if the source permuta-
tion π is very close to the identity permutation in terms of distance in Sn like
π = (1)(2, 3)(4)(5) · · · (n), this method may take 2n steps. Hence, we modify
the above method by making sure that, if π has m small values and m large
values which are already in their correct positions, then those 2m values are not
disturbed during the sorting. We then analyse this strategy to show that any
permutation π can be sorted in at most 4d + 4 steps, where d is the distance
between π and id in Sn.

Oriented Diameter of Star Graphs 315

These attempts to reduce the number of cycles in γ and to disturb as few
settled values in π as possible is what makes the crossing phase of the routing
algorithm slightly complex. Moreover, when π(1)
= 1, we have two possibilities.
If π is even and π(1) is a large value, we continue as if we are in the crossing
phase. We do the same when π is odd and π(1) is a small value. In the other two
cases (π even, π(1) small and π odd, π(1) large), we start by settling π(1) and
continue in the settling phase till either 1 appears in the first position or one
of the two cases mentioned above occurs. Then we go into the crossing phase,
complete it, and enter the settling phase for a second time. Hence one cycle of
the settling phase can happen before the crossing phase. With this high-level
idea, we formally state our proposed routing algorithm.

Definition 2. For a permutation s of [n], we call L(s) = {s(i) : 2 ≤ i ≤
�(n − 1)/2� + 1} and R(s) = {s(i) : �(n − 1)/2� + 2 ≤ i ≤ n} as the sets of left
values and right values of s, respectively.

Given two permutations s and t of [n] for some n, we define S(s, t) = {s(i) :
s(i) = t(i), 1 ≤ i ≤ n}, and U(s, t) = [n] \ S(s, t) respectively, as the sets of
settled and unsettled values between s and t. We partition U(s, t) \ {s(1), t(1)}
into four sets

ULL(s, t) = U(s, t) ∩ L(s) ∩ L(t),
URR(s, t) = U(s, t) ∩ R(s) ∩ R(t),
ULR(s, t) = U(s, t) ∩ L(s) ∩ R(t),
URL(s, t) = U(s, t) ∩ R(s) ∩ L(t).

We also partition S(s, t) into two sets

SL(s, t) = S(s, t) ∩ L(t), SR(s, t) = S(s, t) ∩ R(t).

Let us call X(s, t) = ULR(s, t)∪URL(s, t) as the set of crossed values between s
and t. A cycle of s relative to t is called alternating if it has size at least two, and
the successive elements of the cycle alternate between L(s) and R(s). Finally,
χ(s, t) will denote the number of alternating cycles of s with respect to t.

The processing done by an even node is given in Algorithm 1. The processing
done by an odd node is similar (the roles of “left” and “right” are reversed) and
hence omitted. In every move, c(1) is exchanged with c(i) for some i ∈ {2, . . . , n}.
We classify these moves into three types. If c(1) = t(1), the move is called
a seeding move. If c(1)
= t(1) and c(1) = t(i), i.e., c(1) moves to its correct
location in t, it is called a settling move. If c(1) ∈ L(t) and it moves to the right
half or if c(1) ∈ R(t) and it moves to the left half, the move is called a crossing
move.

4 Analysis of the Proposed Routing Algorithm

In this section, we are going to prove the following upper bound on the number
of hops that Algorithm 1 uses to reach from a node s to a node t based on the

316 K. S. Ajish Kumar et al.

Algorithm 1. Processing done by an even node labelled c upon receiving a
packet P destined for a node labelled t.
1: procedure RouteEven(Packet P)
2: Receive packet P , extract the destination address t.
3: If the address of the current node c is the same as t, accept P and return.
4: Let Lt = L(t), Rt = R(t), ULL = ULL(c, t), URR = URR(c, t), SL = SL(c, t),

URL = URL(c, t).
5: Case 1 (Settling Move): c(1) ∈ Lt.
6: Let i be the position of c(1) in the permutation t.
7: Case 2 (Crossing/Seeding Move): c(1) 	∈ Lt and |ULL| + |URR| > 0.

(Crossing when c(1) ∈ Rt, Seeding when c(1) = t(1))
8: The forwarding link i is selected based on the cycle structure of c with respect

to t.
9: Case 2.1: When ULL contains a value that is not part of the cycle containing

c(1).
10: Pick i as the c-index of that value.
11: Case 2.2: When all values in ULL are part of the cycle containing c(1).
12: Pick i as the c-index of the value in ULL that comes first on traversing

this cycle backward from c(1).
13: Case 2.3:When ULL is empty
14: Pick i as the c-index of any value from SL.
15: Case 3(Crossing Move): c(1) ∈ Rt and |ULL| + |URR| = 0.
16: Case 3.1(Final Crossing Move): When |ULR| > 0
17: Pick i as the c-index of a value from ULR. If possible, select i from an

alternating cycle in c.
18: Case 3.2(Final/Pre-Final Crossing Move): When |ULR| = 0

(Final Crossing Move when t(1) is picked, Pre-Final Crossing Move when a
settled value is picked)

19: Pick i as the c-index of t(1) if possible, otherwise pick a settled value.
20: Case 4 (Seeding Move): c(1) = t(1) and |ULL| + |URR| = 0.
21: Pick i as the c-index of a value from ULR.
22: Send P along the edge labelled i and terminate.
23: end procedure

relative structure of the permutations that label s and t. The proofs are omitted
due to constraints on space and are available in the full version of the paper [14].

Theorem 3. Let s and t be the permutations labelling any two nodes of the
oriented star graph

−→
Sn. Then, Algorithm 1 will send a packet from s to t in at

most
|X(s, t)| + max{6, y}

steps, where

y = 4max{|ULL(s, t)|, |URR(s, t)|} + χ(s, t) + 4.

Corollary 1. Let d be the distance between any two nodes s and t in the unori-
ented star graph Sn. Then

−→
d , the distance between s and t in the oriented star

Oriented Diameter of Star Graphs 317

graph
−→
Sn oriented using scheme in [13] is upper bounded as,

−→
d ≤ 4d + 4 (2)

Corollary 2. The diameter of the oriented star graph
−→
Sn,

diam(
−→
Sn) ≤

{
2n + 2, when n is odd,
2n + 4, otherwise.

(3)

Day and Tripathi have numerically computed the diameter of
−→
Sn for n in the

range 3 to 9 [4]. Our bounds on the diameter of
−→
Sn agrees with their computation

when n ≤ 8. For n = 9 our upper bound is 20 while their computation reports
24.

References

1. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric intercon-
nection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)

2. Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic
control. Am. Math. Monthly 46(5), 281–283 (1939)

3. Chvátal, V., Thomassen, C.: Distances in orientations of graphs. J. Comb. Theory
Ser. B 24(1), 61–75 (1978)

4. Day, K., Tripathi, A.: Unidirectional star graphs. Inf. Process. Lett. 45(3), 123–129
(1993)

5. Eggemann, N., Noble, S.D.: Minimizing the oriented diameter of a planar graph.
Electron. Notes Discrete Math. 34, 267–271 (2009)

6. Konig, J.-C., Krumme, D.W., Lazard, E.: Diameter-preserving orientations of the
torus. Networks 32(1), 1–11 (1998)

7. Cheng, E., Lipman, M.J.: Unidirectional (n, k)-star graphs. J. Interconnect. Netw.
3(01n02), 19–34 (2002)

8. Dankelmann, P., Guo, Y., Surmacs, M.: Oriented diameter of graphs with given
maximum degree. J. Graph Theory 88(1), 5–17 (2018)

9. Fomin, F.V., Matamala, M., Rapaport, I.: Complexity of approximating the ori-
ented diameter of chordal graphs. J. Graph Theory 45(4), 255–269 (2004)

10. Fomin, F.V., Matamala, M., Prisner, E., Rapaport, I.: AT-free graphs: linear
bounds for the oriented diameter. Discrete Appl. Math. 141(1–3), 135–148 (2004)

11. Chou, C.-H., Du, D.H.C.: Uni-directional hypercubes. In: Proceedings of Super-
computing 1990, pp. 254–263. IEEE (1990). https://doi.org/10.1109/SUPERC.
1990.130028

12. Akers, S.B.: The star graph: an attractive alternative to the n-cube. In: Proceedings
of International Conference on Parallel Processing (1987)

13. Fujita, S.: On oriented diameter of star graphs. In: 2013 First International Sym-
posium on Computing And Networking (CANDAR), pp. 48–56. IEEE (2013).
https://doi.org/10.1109/CANDAR.2013.16

14. Ajish Kumar, K.S., Rajendraprasad, D., Sudeep, K.S.: Oriented diameter of star
graphs, arXiv preprint arXiv:1911.10340

https://doi.org/10.1109/SUPERC.1990.130028
https://doi.org/10.1109/SUPERC.1990.130028
https://doi.org/10.1109/CANDAR.2013.16
http://arxiv.org/abs/1911.10340

Gathering over Meeting Nodes
in Infinite Grid

Subhash Bhagat, Abhinav Chakraborty, Bibhuti Das(B),
and Krishnendu Mukhopadhyaya

ACM Unit, Indian Statistical Institute, Kolkata, India
subhash.bhagat.math@gmail.com, abhinav.chakraborty06@gmail.com,
dasbibhuti905@gmail.com, krishnendu.mukhopadhyaya@gmail.com

Abstract. The gathering on meeting points problem requires the robots
to gather at one of the pre-defined meeting points. This paper investi-
gates a discrete version of the problem where the robots and meeting
nodes are deployed on the nodes of an anonymous infinite square grid.
The robots are identical, autonomous, anonymous, and oblivious. They
operate under an asynchronous scheduler. Robots do not have any agree-
ment on a global coordinate system. Initial configurations, for which
the problem is unsolvable, have been characterized. A deterministic dis-
tributed algorithm has been proposed to solve the problem, for the rest
of the configurations.

Keywords: Swarm robotics · Asynchronous · Oblivious · Gathering ·
Infinite grid · Meeting nodes

1 Introduction

Swarm robotics in the discrete domain is an emerging field of research. A swarm
of robots is a multi-robot system, consisting of small and inexpensive robots
working together in a cooperative environment to achieve some goal. Robots are
autonomous, anonymous, homogeneous, and oblivious. Robots are deployed on
the nodes of an anonymous graph in the discrete domain. Robots do not have
any explicit means of communication. They do not have any agreement on a
global coordinate system.

Gathering problem by a swarm of robots is one of the essential tasks in the
field of distributed computing. The gathering problem requires a set of n robots,
initially placed at different locations to gather at some location, not known a
priori, within finite time. When a robot becomes active, it operates according to
Look-Compute-Move (LCM) cycle. In the look phase, a robot takes a snapshot
of the current configuration. In the compute phase, it computes a destination
point, which may be its current node also. It moves towards its destination point
in the move phase. The movement of a robot is instantaneous, i.e., during the
look phase robots are always detected on the nodes of the input graph. Cycles are
performed asynchronously for each robot. We have considered infinite grid graph
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 318–330, 2020.
https://doi.org/10.1007/978-3-030-39219-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_26

Gathering over Meeting Nodes in Infinite Grid 319

with robots placed at distinct nodes initially. In addition, we have also considered
some pre-defined nodes referred to as meeting nodes [1]. These meeting nodes
are visible to every robot. We assume that robots have global weak multiplicity
detection capability, by which a robot can detect whether a node is occupied by
more than one robots.

Gathering over meeting nodes problem in an infinite grid requires the robots
to gather at one of the meeting nodes. This is a variant of the gathering on
meeting points problem [1], where the robots are deployed on the Euclidean
plane.

2 Earlier Works

Gathering is one of the most active research topics in the domain of the multi-
robot systems. Gathering has been extensively studied in the continuous domain
[2]. In the discrete domain, the robots are deployed on the nodes of the input
graph. The problem has been largely studied on ring topologies by Klasing et al.
in [3,4] and Angelo et al. in [5,6]. In [3], Klasing et al. proved that gathering in the
ring is impossible without any multiplicity detection capability. With the weak
multiplicity detection capability, they solved the problem for all configurations
with an odd number of robots and all the asymmetric configurations with an
even number of robots. Klasing et al. studied symmetric configurations with
an even number of robots, and the problem was solved for more than eighteen
robots [4]. Kamei et al. studied the problem using local multiplicity detection
capability [7,8].

In [9], Angelo et al. studied gathering on trees and finite grids. It was shown
that even with global-strong multiplicity detection capability a configuration
remains ungatherable, if it is periodic or symmetric with the line of symmetry
passing through the edges of the grid. The problem was solved for all other
remaining configurations without assuming any multiplicity detection capability.
In [10], Stefano et al. studied the basic results for the optimal gathering of robots
in graphs. They have considered gathering on finite graphs with respect to both
its feasibility and the minimum number of asynchronous moves performed by
robots. In [11], Stefano et al. studied the gathering problem on infinite grids.
This problem has been studied by introducing optimal algorithms in terms of
the total number of moves. In [12], Bose et al. studied the gathering problem
in hypercubes. Their proposed algorithm is optimal with respect to the total
number of moves executed by the robots.

In [1], Cicerone et al. studied a variant of the gathering problem, where robots
require to gather at one of the pre-determined points, referred to as meeting
nodes. They solved the gathering on meeting points problem with respect to two
objective functions, by minimizing the total distance travelled by all robots and
by minimizing the maximum distance travelled by a single robot.

320 S. Bhagat et al.

3 Our Contributions

This paper considers the gathering on meeting points problem on an infinite grid
by asynchronous oblivious mobile robots. The infinite grid is a natural discretiza-
tion of the plane. It has been shown that even with the global weak-multiplicity
detection, some configurations remain ungatherable. If the configuration is sym-
metric w.r.t. a single line of symmetry and the line of symmetry does not contain
any robot or meeting node, then the problem is unsolvable. The configuration
is ungatherable even if the configuration admits a rotational symmetry without
having any robot or meeting nodes on the center of rotation. For the rest of the
configurations, a deterministic distributed algorithm has been proposed for the
gathering of robots on meeting nodes.

4 Model and Definitions

Robots are assumed to be dimensionless, autonomous, anonymous, homoge-
neous, and oblivious. They do not have any explicit means of communication.
They have unlimited visibility range, i.e., they can sense the entire grid. The
robots do not have any agreement on a global coordinate system and chirality.
Robots are either in an active state or in an inactive state. They execute Look-
Compute-Move (LCM) cycle under asynchronous scheduler when they become
active. Initially, robots are assumed to be on distinct nodes of the input grid, and
no robots are deployed on the meeting nodes. Robots are equipped with global-
weak multiplicity detection capability. A robot can move to one of its adjacent
nodes along the grid lines. We assume that the movement is instantaneous, i.e.,
the robot can be seen only on nodes. We use some of the notions as defined in
[11].

– System Configuration: Let P = (Z, E′) denote the infinite path graph
where E′ = {i, i + 1 : i ∈ Z}. Consider the cartesian product P × P as
an input grid graph. Let d(u, v) denote the Manhattan distance between
nodes u and v. R = {r1, r2, . . . , rn} is the set of robots deployed on the
nodes of the grid. Suppose ri(t) denotes the position of the robot ri at time
t. R(t) = {r1(t), r2(t), ..., rn(t)} is the set of robot positions at time t. Let
M = {m1,m2, . . . , mr} be the set of meeting nodes. Let C(t) = (R(t),M)
denote the configuration at time t. In an initial configuration, all the robots
occupy distinct nodes of the grid, and no robot is deployed on any meeting
node. We call a configuration final if all the robots are on a single meeting
node.

– Symmetry: An automorphism of a graph G = (V,E) is a bijection φ: V → V
such that u and v are adjacent iff φ(u) and φ(v) are adjacent. Automorphism
of graphs can be extended similarly to define automorphism of configurations.

Gathering over Meeting Nodes in Infinite Grid 321

Let l : V → {0, 1, 2, 3, 4, 5} be a function, where

l(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 v is an empty node
1 v is a meeting node
2 v is a robot position on a meeting node
3 v is a robot position
4 v is a robot multiplicity
5 v is a robot multiplicity on a meeting node

An automorphism of a configuration (C(t), l) is an automorphism φ such that
l(v) = l(φ(v)) for all v ∈ V . The set of all automorphisms for a configuration
forms a group which is denoted by Aut(C(t), l). Next, we define symmetry in
terms of an automorphism of a configuration. If |Aut(C(t), l)| = 1, then the
configuration is asymmetric. Otherwise, the configuration is symmetric. We
assume that the grid is embedded in the Cartesian plane. The grid can have
only three types of symmetry, namely, translation, reflection, and rotation.
Since the number of robots and meeting node is only finite in number, trans-
lational symmetry is not possible. In case the configuration has reflectional
symmetry, only horizontal, vertical, or diagonal is considered. The axis of
symmetry can pass through nodes or edges. In the case of rotational symme-
try, the angle of rotation can be 90◦ or 180◦. The center of rotation can be a
node or center of an edge or center of a unit square [11].

r1

r2

r3

r4
r5

r6m1

m2

m3

m4

A B

CD

r7

(a)

r3

r4

r5

m1

m2 m4
r2

m3

A B

CD

r6r1

(b)

Fig. 1. In this figure, cross represents meeting node and black circles repre-
sent robot positions. The lexicographic smallest string in this figure is sDA =
0313000003030100000000303311. (a) I1-configuration. (b) I2-configuration.

– Configuration view: Let MER = ABCD denote the minimum enclosing
rectangle of R∪M . Let the dimension of MER be n×m where |AB| = n and
|AD| = m. We first assume that MER is a rectangle with n > m. We asso-
ciate a senary string of length mn to each corner of MER. The two strings
associated with corner A will be denoted by sAD and sAB . Since MER is
a non-square rectangle, we associate the string sAD or sAB for corner A, in
the direction of the smallest side. We have defined the string sAD as follows:
Starting from the corner A, we proceed in the direction parallel to AD and
scan the grid from A to D and sequentially consider all grid lines parallel to
AD. The direction parallel to AD is considered as the string direction from
corner A. We associate 0 for empty nodes, 1 for meeting nodes, 2 for robot
positions on meeting nodes, 3 for robot positions, 4 for a robot multiplicity

322 S. Bhagat et al.

node and 5 for a robot multiplicity on a meeting node. Similarly, we associate
strings for each other corners. In case of a square grid, between the two strings
associated with a corner, we select the string which is lexicographically mini-
mum. Note that both the strings associated with a corner are equal if MER
is symmetric with respect to the diagonal passing through that corner. In this
case, we select any one of the strings. If the configuration is asymmetric, then
we would always get a unique smallest lexicographic string (Fig. 1). Without
loss of generality, let sAD be the smallest lexicographic string. Then we refer
A as the key corner. The configuration view of a node is defined as the tuple
(d′, x) where d′ denotes the distance of a node from the key corner in its string
direction and x ∈ {f,m, a, r, s, w} whether the node is free, a meeting node, a
robot position on a meeting node, a robot position, a robot multiplicity node
or a robot multiplicity on a meeting node, respectively. We have used the idea
proposed in [11].

– Partitioning of the initial configurations: All the configurations can be
partitioned into the following disjoint classes:
1. I1− All configurations for which M is asymmetric (Fig. 1(a)).
2. I2− All configurations for which M is symmetric and R∪M is asymmetric

(Fig. 1(b)).
3. I3− All configurations for which M is symmetric with a single line of

symmetry, and R ∪ M is symmetric w.r.t. the line of symmetry for M .
This can be further partitioned into:

Ia
3− There exists at least one meeting node or robot position on the

line of symmetry (Fig. 2(a) and (b)).
Ib
3− There does not exist any meeting node or robot position on the

line of symmetry (Fig. 2(c)).
4. I4−: All configurations for which M has rotational symmetry. Also, R ∪

M has rotational symmetry without any line of symmetry. This can be
further partitioned into:

Ia
4− There exists a meeting node or robot position on the center of

rotational symmetry (Fig. 3(a) and (b)).
Ib
4− There does not exist any meeting node or robot position on the

center of rotational symmetry (Fig. 3(c)).
5. I5−: All configurations for which M has rotational symmetry. Also, R∪M

has rotational symmetry with multiple lines of symmetry.
Ia
5− There exists a meeting node or robot position on the center of

rotational symmetry (Fig. 4(a) and (b)).
Ib
5− There does not exist any meeting nodes or robot positions on the

center of rotational symmetry (Fig. 4(c)).
– In case M admits a single line of symmetry, let L be the line of symmetry.

Note that L can be a horizontal, vertical, or diagonal line of symmetry. Let c
be the center of rotation, in case M admits rotational symmetry.

– Problem Definition: Given a configuration C(t) = (R(t),M), the gathering
over meeting nodes problem requires the robots to gather on one of the meeting
nodes within finite time.

Gathering over Meeting Nodes in Infinite Grid 323

r1

r2

r3

r4

r5

r6

m1

m2 m3

m4

A B

CD

(a)

r1

r2

r3 r4

r5

r6

m1

m2 m3

m4

A B

CD m5

m6

r7

(b)

r1

r2

r3 r4

r5

r6

m1

m2 m3

m4

A B

CD m5 m6

(c)

Fig. 2. (a) Ia
3 -configuration without meeting nodes on L. (b) Ia

3 -configuration with
meeting nodes on L. (c) Ib

3-configuration with no robots and meeting nodes on L.

r1

r2

r3 r4 r5 r6

r7

m1 m2

m3 m4
A B

CD

(a)

r1

r2

r3 r5 r6

m1 m2

m3 m4
A B

CD

r4

m5

(b)

r1

r2

r3 r5 r6

m1 m2

m3 m4
A B

CD

r4

(c)

Fig. 3. (a) Ia
4 -configuration with a robot on c. (b) Ia

4 -configuration with a meeting
nodes on c. (c) Ia

4 -configuration without robot or meeting node on c.

r1

r2 r3

r4

r5r6

r7

m3

m4

m1

m2
A B

CD

(a)

r1

r2 r3r4

r5r6

r7

m3

m4

m1

m2
A B

CD

m5m5

r8

(b)

r1

r2

r5r6

m3

m4

m1

m2

A B

CD

r4

r3

(c)

Fig. 4. (a) Ia
5 -configuration with a robot on c. (b) Ia

5 -configuration with a meeting
node on c. (c) Ib

5-configuration without robot or meeting node on c.

5 Impossibility Results

Observation 1. If the initial configuration is either asymmetric or admits a
single line of symmetry, then initially, all the robots can have an agreement on
the same north-south direction.

Theorem 1. If C(0) ∈ Ib
3 ∪ Ib

4 ∪ Ib
5, then the gathering over meeting nodes

problem is unsolvable.

Proof. If possible, let algorithm A solve the gathering problem. Let γ(r) denote
the orbit of r [11]. Consider the scheduler to be semi-synchronous. We assume
that all the robots of γ(r) are activated at the same time. We also assume that
the distance travelled by each robot in γ(r) is the same. Under this setup, the
configuration symmetry is preserved. Since the problem requires the robots to

324 S. Bhagat et al.

gather at one of the meeting nodes, the target meeting node should lie on c or L,
depending on the configuration. As the configuration C(0) ∈ Ib

3 ∪ Ib
4 ∪ Ib

5, the
gathering over meeting nodes problem is unsolvable. ��

6 Algorithm

In this section, we propose a deterministic distributed algorithm Gathering()
for solving the gathering over meeting nodes problem in an infinite grid. Our
proposed algorithm solves the problem for configurations having at least six
robots. It mainly consists of the following phases:

r1

r2

r3

r4

r5

r6

m1

m2 m3

m4

A B

CD

(a)

r1

r2

r3
r4

r5 r6

r7

m1 m2

m3 m4
A B

CD

(b)

r1

r2 r3
r4

r5r6

r7

m3

m4

m1

m2

A B

CD

(c)

Fig. 5. (a) Transformation of Ia
3 -configuration (Fig. 2(a)) into I2-configuration

by movement of r3. (b) Transformation of Ia
4 -configuration (Fig. 3(a)) into I2-

configuration by movement of r4. (c) Transformation of Ia
5 -configuration (Fig. 4(a))

into Ia
3 -configuration by movement of r4.

1. Symmetry Breaking: In this phase, the symmetric configurations which
can be transformed into asymmetric configurations are considered. It includes
the configurations C(t) ∈ Ia

3 without having any meeting nodes on the line of
symmetry and C(t) ∈ Ia

4 ∪Ia
5 without having any meeting nodes on the center

of rotational symmetry. First, consider the case when C(t) ∈ Ia
3 without

having any meeting nodes on the line of symmetry. Let L be the line of
symmetry for R∪M and r be the northernmost robot on L (Robots agree on
north-south directions). Robot r is moved to one of the adjacent nodes away
from L (Fig. 5(a)). Next, consider the case when the configuration C(t) ∈ Ia

4 ∪
Ia
5 without having any meeting nodes on the center of rotational symmetry.

Let c be the center of symmetry for R ∪ M and r be the robot on c. Robot r
is moved to one of the adjacent nodes away from c (Fig. 5(b) and (c)).

2. Guard Selection and Placement: Robots execute GuardSelection() pro-
cedure to select some robot positions as guards. First, we consider the case
when R ∪M is asymmetric (i.e., C(t) ∈ I1 ∪I2), and the key corner contains
a robot position. Let r be the robot on the key corner. We move r to the
adjacent node in the string direction. Robot r and the robots on the other
three corners are selected as guards. Next, consider the case when R ∪ M is
asymmetric, and the key corner does not contain a robot position (Figs. 6(a)
and 7(a)). Let r be the first robot position along the string direction from the

Gathering over Meeting Nodes in Infinite Grid 325

key corner. Robot r is selected as one of the guards. For each of the other
three corners, the first robot along the string direction (Note that the first
robot for key corner is not considered) is moved to their corners, respectively.
All three robots on other corners are also selected as guards. In case, a sin-
gle robot is the first robot along the string direction for two corners, then
the corner opposite to the key corner is given preference. If the configura-
tion C(t) ∈ Ia

3 having only meeting nodes on the line of symmetry (Fig. 8(a))
and C(t) ∈ Ia

4 having meeting node on the center of rotational symmetry
(Fig. 9(a)), then we will have two key corners. Without loss of generality, let
A and B be the key corners. In this case, if the key corners contain robot
positions, then the robots on the key corners, are moved to their adjacent
nodes respectively (The adjacent node for movement is selected such that the
minimum enclosing rectangle MER remains invariant). The first robot along
the string direction from key corner, along with the robots on the non-key
corners, are selected as guards. Next, consider the case when the key corners
do not contain robot positions. Let rA and rB be the first robots along the
string directions from key corners A and B, respectively. The first robot along
the string directions from the non-key corners are moved to their respective
corners. Robots rA and rB along with the two robots on the non-key corners
are selected as guards. In case the configuration C(t) ∈ Ia

5 having a meeting
node on the center of rotational symmetry (Fig. 10(a)) without robot posi-
tions, then we will have four key corners. In this case, for each corner, the
first robot along the string directions, is selected as a guard.

Fig. 6. (a) I1-configuration (Fig. 1(a)). D is the key corner. Guards placement and
selection of m3 as target meeting node. (b) Gathering of all robots other than guards
on m3. (c) Finalization of gathering by moving guards towards m3. Square represents
robot r6 on m3. The empty circle represents multiplicity.

Fig. 7. (a) I2-configuration (Fig. 1(b)). A is the key corner. Guards placement and
selection of m3 as target meeting node. (b) Creating multiplicity on m3. (b) Finalization
of gathering by moving guards towards m3.

326 S. Bhagat et al.

3. Creating Multiplicity on Target Meeting Node: In this phase, robots
move to create a unique multiplicity point at a meeting node by executing
MakeMultiplicity(). First, consider the case when R ∪ M is asymmetric. Let
m be the last meeting node while traversing MER from the key corner along
the string direction. In case the configuration C(t) ∈ Ia

3 and has meeting
nodes on the line of symmetry, m is the northernmost meeting node. Let m
be the meeting node on c, when C(t) ∈ Ia

4 ∪ Ia
5 and has a meeting node on

the center of rotational symmetry. In each case, m is selected as the target
meeting node. All robots other than guards move towards the target meeting
node (Figs. 6(b), 7(b), 8(b), 9(b) and 10(b)). Since the guards do not move
during this movement, the key corner remains invariant. As a result the target
meeting node remains uniquely identifiable during this movement. Note that
the robots may create multiplicity on a meeting node other than the target
meeting node during this movement. Since the target meeting node is uniquely
identifiable, eventually all robots other than guards create a multiplicity on
it.

Fig. 8. (a) Ia
3 -configuration with meeting nodes on L. A and B are the key corners.

Guard placement and selection of m5 as target meeting node. (b) Creating multiplicity
on m5. (c) Finalization of gathering by moving guards towards m5.

Fig. 9. (a) Ia
4 -configuration with meeting node on c. A and C are the key corners.

(b) Guards placement and multiplicity on m5. (c) Finalization of gathering by moving
guards towards m5.

4. Finalization of Gathering: In this phase, the robots on the guard posi-
tions move to the final gathering point m by executing GuardMovement()

Gathering over Meeting Nodes in Infinite Grid 327

procedure. The robots on the guard positions start moving only when the
configuration contains at most five distinct robot positions (Figs. 6(c), 7(c),
8(c), 9(c) and 10(c)). Since the robots have multiplicity detection capability
and the target gathering point m is the unique meeting point with multiple
robots on it, the robots can easily indentify the final gathering point. Note
that during this phase there can be at most six distinct robots which does
not lie on the target meeting node m. Let S denote the set of robots which
are not on m and not on a robot multiplicity point. If r ∈ S, it starts moving
towards m. When S is empty, robots on a multiplicity point start moving
towards m. During their movement, they do not create any multiplicity on
a meeting node other than m. To ensure this, each robot selects a shortest
path towards m, which does not contain meeting node other than m. By the
choice of m there always exists one half-line from m in the grid which does
not contain meeting nodes. Note that during this movement, robots identify
m as the unique meeting node containing robot multiplicity. Eventually, they
finalize the gathering on m.

Fig. 10. (a) Ia
5 -configuration with meeting nodes on c. A, B, C, and D are the key

corners. (b) Multiplicity on meeting node m5. (c) Finalization of gathering by moving
the guards towards m5.

7 Correctness

Lemma 1. If C(t) ∈ I1 ∪ I2 or C(t) ∈ Ia
3 with meeting nodes on L, then during

the execution of GuardSelection(), the key corner remains invariant.

Proof. First we consider the case when configuration C(t) ∈ I1 ∪ I2. We have
the following cases:

Case 1. MER = ABCD is not a square. Without loss of generality, let sAD =
a1a2 . . . amn be the smallest lexicographic string. Consider the smallest string
attached to the corner λ ∈ {B,C,D} as sλ = λ1λ2 . . . λmn. Since sAD < sλ,
assume k to be the first position where ak < λk. Let i be the first robot position
in sλ. We have the following subcases:

328 S. Bhagat et al.

Subcase 1. Corner A contains a robot position i.e., a1 = 3. We have λ1 = 3 for all
the other three corners. During the execution of the algorithm GuardSelection(),
the robot on A is moved to the adjacent node along the string direction. Due to
this movement, we have a1 < λ1 = 3. This implies that sAD < sλ, i.e., corner A
remains the key corner. If the configuration is in Ia

3 without any robot position
on the line of symmetry, we have two key corners. The robots on the key corners
are moved to adjacent nodes such that MER remains invariant. Note that in
this case also we have a1 < λ1 = 3.

Subcase 2. Corner A does not contain robot position. Suppose the robot on
ith position in sλ is moved to jth position in sλ during the execution of the
algorithm GuardSelection(). Note that j < i, since robot moves towards the
corner. Next, we consider different cases for this robot’s movement. If i < k then
(i) if aj = λj = 0 initially we have λj = 3 > aj or (ii) if aj = λj = 1 initially
we have λj = 2 > aj . This implies that sAD < sλ. If i > k and j > k then A
remains the key corner as ak < λk. Otherwise, if i > k and j ≤ k then (i) if
aj = λj = 0 initially, we have λj = 3 > aj or (ii) if aj = λj = 1 initially, we
have λj = 2 > aj . This implies that sAD < sλ. Hence corner A remains the key
corner.

Case 2. MER = ABCD is a square. The proof is similar to the case of rectangle
(Case 1). In this case, the key corner remains invariant, but the string direction
of the key corner may change.

Next we consider the case when the configuration C(t) ∈ Ia
3 with meeting nodes

on L. In this case, there will be two key corners. If guards move symmetrically,
then the configuration remains symmetric, and the key corners remain invariant.
The proof is similar to the I1 ∪ I2 case (Case 1). Otherwise, if the configuration
becomes asymmetric, then there will be a unique key corner similar to as in
Case 1. ��
Observation 2. If C(t) ∈ I1∪I2, then the target meeting node remains invari-
ant during the execution of MakeMultiplicity().

Observation 3. If C(t) ∈ Ia
4 ∪ Ia

5 with a meeting node on c, then the target
meeting node remains invariant during the execution of MakeMultiplicity().

Lemma 2. If C(t) ∈ Ia
3 with meeting nodes on L, the target meeting node

remains invariant during the execution of the algorithm MakeMultiplicity().

Proof. Since the configuration is symmetric about L, there are two key corners
which are symmetric w.r.t. L. Let m be the northernmost meeting node on L,
which is selected as the target meeting node. During the execution of algorithm
MakeMultiplicity(), even if R∪M becomes asymmetric, robots can identify L as
the line of symmetry for M and all the meeting nodes on L. We need to show that
robots can identify m as the northernmost meeting node among all the meeting
node on L. Since, during the execution of MakeMultiplicity(), guards do not
move, the key corners remain invariant. As the northernmost meeting node on

Gathering over Meeting Nodes in Infinite Grid 329

L is decided by the position of key corners, m remains the target meeting node.
Hence, during the execution of the algorithm MakeMultiplicity(), the target
meeting node remains invariant. ��

Let m be the target meeting node, selected after guards placement at time t.
Let d(t) =

∑
ri∈R(t) d(ri(t),m).

Theorem 2. Execution of Algorithm Gathering() eventually solves the gather-
ing over meeting nodes problem.

Proof. First, we consider the execution of algorithm MakeMultiplicity(). Let
t′ be an arbitrary point of time after guards selection and placement. We also
assume that at t′ time at least one robot which is not a guard has completed
its LCM cycle. We have d(t′) =

∑
ri∈R(t′) d(ri(t′),m). If there are at most six

robots which are not on m at time t′, then execution of GuardMovement() is
started. Otherwise, let r be the robot which has computed its LCM cycle at time
t′. Since r has moved at least one node closer to m, we have d(t′) < d(t). This
implies that eventually, all the non-guard robots will reach m and execution of
GuardMovement() will be started when there are at most six robots which are
not on m.

Next, we consider the execution of algorithm GuardMovement(). In this
phase each robot selects the shortest path, which does not contain any meeting
nodes among all the shortest paths during their movement. Since in each LCM
cycle, robots not on m move at least one node towards m along the selected path,
within a finite amount of time, they will reach m. This implies that eventually,
robots will finalize gathering on m.

Hence, execution of algorithm Gathering() eventually solves the gathering
over meeting nodes problem within finite time. ��

8 Conclusion

In this work, we have studied the gathering over meeting nodes problem in infi-
nite grids with global-weak multiplicity detection. We have proved some con-
figurations to be ungatherable, and for the rest of the configurations, we have
proposed a deterministic distributed algorithm for the gathering of robots over
meeting nodes. The future interest would be to consider randomized algorithm
for breaking the symmetry when there are no robots or meeting nodes on the
line of symmetry and the center of rotation. Another direction of future interest
would be to consider the optimal algorithms in terms of the number of moves
for gathering.

References

1. Cicerone, S., Stefano, G.D., Navarra, A.: Gathering of robots on meeting-points:
feasibility and optimal resolution algorithms. Distrib. Comput. 31(1), 1–50 (2018)

330 S. Bhagat et al.

2. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities, Current Research in Moving and Computing. LNCS, vol. 11340. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11072-7

3. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoret. Comput. Sci. 390(1), 27–39 (2008)

4. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering
of many asynchronous oblivious robots on a ring. Theoret. Comput. Sci. 411(34–
36), 3235–3246 (2010)

5. D’Angelo, G., Stefano, G.D., Navarra, A.: Gathering six oblivious robots on anony-
mous symmetric rings. J. Discrete Algorithms 26, 16–27 (2014)

6. D’Angelo, G., Stefano, G.D., Navarra, A.: Gathering on rings under the look-
compute-move model. Distrib. Comput. 27(4), 255–285 (2014)

7. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algo-
rithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13284-1 9

8. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of
robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2 48

9. D’Angelo, G., Stefano, G.D., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids and trees without multiplicity detection. Theoret. Comput. Sci.
610, 158–168 (2016)

10. Stefano, G.D., Navarra, A.: Optimal gathering of oblivious robots in anonymous
graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017)

11. Stefano, G.D., Navarra, A.: Gathering of oblivious robots on infinite grids with
minimum traveled distance. Inf. Comput. 254, 377–391 (2017)

12. Bose, K., Kundu, M.K., Adhikary, R., Sau, B.: Optimal gathering by asynchronous
oblivious robots in hypercubes. In: Gilbert, S., Hughes, D., Krishnamachari, B.
(eds.) ALGOSENSORS 2018. LNCS, vol. 11410, pp. 102–117. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-14094-6 7

https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-642-13284-1_9
https://doi.org/10.1007/978-3-642-32589-2_48
https://doi.org/10.1007/978-3-030-14094-6_7

0-1 Timed Matching in Bipartite
Temporal Graphs

Subhrangsu Mandal(B) and Arobinda Gupta

Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
{subhrangsum,agupta}@cse.iitkgp.ac.in

Abstract. Temporal graphs are introduced to model dynamic networks
where the set of edges and/or nodes can change with time. In this paper,
we define 0-1 timed matching for temporal graphs, and address the prob-
lem of finding the maximum 0-1 timed matching for bipartite temporal
graphs. We show that the problem is NP-Complete for bipartite tem-
poral graphs even when each edge is associated with exactly one time
interval. We also show that the problem is NP-Complete for rooted tem-
poral trees even when each edge is associated with at most three time
intervals. Finally, we propose an O(n3) time algorithm for the problem
on a rooted temporal tree with n nodes when each edge is associated
with exactly one time interval.

Keywords: 0-1 timed matching · Temporal matching · Temporal
graph

1 Introduction

Temporal graphs [14] have been used to model dynamic network topologies where
the edge set and/or node set vary with time. Some examples of such dynamic
networks in practice include delay tolerant networks, vehicular ad-hoc networks,
social networks etc. For many graph related problems, the usual definitions and
algorithms for the problem on static graphs do not apply directly to dynamic
graphs. Several works have addressed graph related problems such as finding
paths and trees [7,13], computing dominating sets [15], traveling salesman prob-
lem [17] etc. on temporal graphs.

Finding maximum matching for a bipartite graph [12] is a well-studied prob-
lem in static graphs due to its wide application. In this paper, we investigate the
problem of matching in bipartite temporal graphs. In particular, we define a type
of matching called the 0-1 timed matching for a temporal graph, and investi-
gate the complexity and algorithms for finding maximum 0-1 timed matching for
bipartite temporal graphs and trees. Note that an edge in a temporal graph may
not exist for the lifetime of the graph, and thus can be represented by labelling
it with discrete time intervals for which the edge exists. We first show that the
problem of finding a maximum 0-1 timed matching in a bipartite temporal graph
is NP-Complete even when each edge is labelled with exactly one interval. We
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 331–346, 2020.
https://doi.org/10.1007/978-3-030-39219-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_27

332 S. Mandal and A. Gupta

next show that the problem is NP-Complete for rooted temporal trees, a spe-
cial case of bipartite temporal graphs, even when each edge is labelled with at
most three time intervals. Finally, we present a O(n3) time algorithm for finding
a maximum 0-1 timed matching in a rooted temporal tree with n nodes when
each edge is labelled with exactly one time interval.

The rest of this paper is organised as follows. Section 2 describes some related
work in the area. Section 3 describes the system model. Section 4 formally defines
the problem. Section 5 presents the NP-completeness results. Section 6 describes
the algorithm for finding a maximum 0-1 timed matching for a rooted temporal
tree. Finally Sect. 7 concludes the paper.

2 Related Work

The problem of finding a maximum matching for a static graph has been exten-
sively studied for both general graphs and different special classes of graphs [8–
10,12,16,18]. Many algorithms have also been proposed to maintain an already
computed maximum matching for a graph under addition and/or deletion of
edges and/or nodes [3,5,6,19]. However, none of these works address the prob-
lem of computing any type of matching for temporal graphs.

There have been a few recent works addressing the problem of matching in
temporal graphs. Given a temporal graph, Michail et al. [17] consider the decision
problem of finding if there exists a maximum matching M in the underlying
graph (the static graph formed from the temporal graph by considering all edges
that exist for at least one timestep) which can be made temporal by assigning
a single distinct timestep to each edge of M such that the edge exists in the
temporal graph at the timestep assigned to it. They show that the problem is NP-
Hard. In [2], Baste et al. have defined another version of temporal matching called
γ-matching. γ-edges are defined as edges which exist for at least γ consecutive
timesteps. The maximum γ-matching is defined as a maximum cardinality subset
of γ-edges such that no two γ-edges in the subset share any node at any timestep.
They proved that the problem of finding the maximum γ-matching is NP-Hard
when γ > 1, and propose a 2-approximation algorithm to address the problem.

In this paper we propose another version of matching on temporal graph
called 0-1 timed matching. To the best of our knowledge, there is no prior work
which have addressed this problem for temporal graphs.

3 System Model

We represent a temporal graph by the evolving graphs [11] model. In this model,
a temporal graph is represented as a finite sequence of static graphs, each static
graph being an undirected graph representing the graph at a discrete timestep.
The total number of timesteps is called the lifetime of the temporal graph.
In this paper, we assume that the node set of the temporal graph remains
unchanged throughout the lifetime of the temporal graph; only the edge set
changes with time. All the changes in the edge set are known a priori. Also,

0-1 Timed Matching in Bipartite Temporal Graphs 333

a

c d

g f

(0, 2)

(1, 2)

(0, 6)

(4,6)

(1, 2)

b

Fig. 1. A bipartite temporal graph

there are no self-loops and at most one edge exists between any two nodes at any
timestep. Thus, a temporal graph is denoted by G(V, E) = {G0(V, E0), G1(V, E1),
· · · , GT −1(V, ET −1)} where V is the node set, E =

⋃T −1
i=0 Ei is the edge set and

T is the lifetime of the temporal graph. Each Gi denotes the static graph at
timestep i with node set V and set of edges Ei that exist at timestep i. As only the
edge set changes with time, each edge in E of a temporal graph G can be equiv-
alently represented by specifying the time intervals for which the edge exists.
Thus an edge e ∈ E between nodes u and v can be represented as e(u, v, (s1, f1),
(s2, f2), · · · , (sk, fk)), where u, v ∈ V, u �= v, fk ≤ T and a pair (si, fi) indicates
that the edge exists for the time interval [si, fi), where 0 ≤ si < fi ≤ T (and
hence the edge exists in all the static graphs Gsi , Gsi+1, · · · , Gfi−1). Also, if an
edge e has two such pairs (si, fi) and (sj , fj), si �= sj and if si < sj then fi < sj .
Thus the maximum number of time intervals for an edge can be �T

2 �. An edge
at a single timestep is called an instance of that edge. For simplicity, we also
denote the edge e between nodes u, v ∈ V by euv when the exact time intervals
for which e exists are not important. The corresponding instance of euv at time
t is represented as etuv.

4 0-1 Timed Matching

In this section, we formally define the 0-1 timed matching problem on temporal
graphs. For a given temporal graph G(V, E) with lifetime T , the underlying graph
of G is defined as GU (V, EU), where EU = {(u, v) | ∃t such that etuv is an instance
of euv ∈ E}. A temporal graph G(V, E) is said to be a bipartite temporal graph
if the underlying graph of G is a bipartite graph. Similarly, a temporal graph
G(V, E) is said to be a temporal tree if the underlying graph of G is a tree. A
rooted temporal tree G(V, E) rooted at node r is a temporal tree with one node
r ∈ V chosen as root of the tree.

Note that the underlying graph of a rooted temporal tree is also a rooted
tree. For any node v, let P (v) denote the parent node of v and child(v) denote
the set of children nodes of v in the underlying graph of the rooted temporal
tree. For the root node r, P (r) = φ. Depth of a node v in a rooted temporal tree
G rooted at r is the path length from r to v in GU . Height of a rooted temporal
tree G is the maximum depth of any node in G.

334 S. Mandal and A. Gupta

Definition 1. Overlapping Edge: Any edge evw ∈ E is said to be overlapping
with another edge euv if there exists a timestep t such that both etvw and etuv
exist.

Note that if euv is overlapping with edge evw, then evw is also overlapping
with euv. We refer to such pair of edges as edges overlapping with each other.

In Fig. 1, egd is an overlapping edge with egf because both edges are incident
on g and both e1gd and e1gf exist. On the other hand, edges eab and ead are
incident on the same node a, but there is no timestep t when both etab and etad
exist. Thus eab and ead are non-overlapping with each other. For any two sets
of edges E1, E2, if E1 ⊆ E2 and no two edges in E1 are overlapping with each
other, then E1 is called a non-overlapping subset of E2.

Definition 2. 0-1 Timed Matching: A 0-1 timed matching M for a given
temporal graph G(V, E) is a non-overlapping subset of E.

Definition 3. Maximum 0-1 Timed Matching (MAX-0-1-TM): The
maximum 0-1 timed matching for a given temporal graph is the 0-1 timed match-
ing with the maximum cardinality.

For the bipartite temporal graph shown in Fig. 1, the maximum 0-1 timed
matching M is {eab, ead, ecd, efg}. Note that the edges in a 0-1 timed matching
for a given temporal graph may not be a matching for its underlying graph.
In the next section, we investigate the hardness of the problem of finding the
maximum 0-1 timed matching for bipartite temporal graphs.

5 Complexity of Finding Maximum 0-1 Timed Matching
in Bipartite Temporal Graphs

In this section, we first show that the problem of finding a maximum 0-1 timed
matching in a bipartite temporal graph even when each edge is associated with
a single time interval (referred to as the MAX-0-1-TMB-1 problem) is NP-
Complete. We next show that the problem is NP-Complete for rooted temporal
trees even when there are at most three time intervals associated with any edge
(referred to as the MAX-0-1-TMT-3 problem).

5.1 NP-Completeness of MAX-0-1-TMB-1

We define the decision version of the MAX-0-1-TMB-1 problem (referred to as
D-MAX-0-1-TMB-1) as follows:

Definition 4. D-MAX-0-1-TMB-1: Given a bipartite temporal graph
G(V, E) with lifetime T where each edge in E is associated with a single time
interval, and a positive integer r, does there exist a 0-1 timed matching M for
G such that |M | = r?

0-1 Timed Matching in Bipartite Temporal Graphs 335

We prove NP-Completeness of the D-MAX-0-1-TMB-1 problem by show-
ing that there exists a polynomial time reduction from the decision version of
the scheduling jobs with fixed start and end times on non-identical machines
problem (referred to as the D-SJFSETNM problem) [1], which is known to be
NP-Complete. The D-SJFSETNM problem is defined as follows.

Definition 5. D-SJFSETNM: Let J := {J1, J2, · · · , Jm} be a set of m jobs
such that each job Ji ∈ J has start time si and end time ti. Let P := {P1, P2, · · · ,
Pk} be a set of k non-identical machines, and S be a set of job-machine mappings
between J and P , where each job Ji ∈ J is mapped with one or more machines
in P . In the mapping S, each machine Pj ∈ P can be mapped with zero or more
jobs in J . The D-SJFSETNM problem is to find whether there exists a subset
C ⊆ S, |C| = m such that all m jobs in J are executed once and no machine
executes more than one job at the same time.

Theorem 1. The D-MAX-0-1-TMB-1 problem is NP-Complete.

Proof. We first show that the D-MAX-0-1-TMB-1 problem is in NP. Consider a
certificate 〈〈G(V, E), r〉,M〉, where G is a bipartite temporal graph with lifetime
T and each edge is associated with a single time interval, r is a given integer
and M is a given set of edges. We consider each edge euv ∈ M at a time and
compare associated time interval of euv with associated time intervals of all the
other edges in M to find any edges overlapping with each other. This can be
done in O(|E|2) time. Checking |M | = r and M ⊆ E can also be done in O(|E|)
time. Hence the D-MAX-0-1-TMB-1 problem is in NP.

Next, we prove that there exists a polynomial time reduction from the
D-SJFSETNM problem to the D-MAX-0-1-TMB-1 problem. Consider an instance
〈J, P, S〉 of the D-SJFSETNM problem where J := {J1, J2, · · · , Jm} is a set
of m jobs such that each job Ji ∈ J has start time si and end time ti. P :=
{P1, P2, · · · , Pk}, k is a set of non-identical machines. S ⊆ J × P (here ×
denotes the cartesian product) is a set of job-machine mappings between J and
P , where each job Ji ∈ J is mapped to one or more machines in P . Each machine
Pj ∈ P can be mapped to zero or more jobs in J . Given this instance of the D-
SJFSETNM problem, we construct an instance of the D-MAX-0-1-TMB-1 prob-
lem as follows. We define the bipartite temporal graph G(V, E) with the node set
V := A ∪ B, where A := {Ji |Ji ∈ J} and B := {Pi |Pi ∈ P}, and the edge
set E := {e(Ji, Pj , (si, ti)) | (Ji, Pj) ∈ S}. The lifetime T is set to tmax, where
tmax := max{ti | 1 ≤ i ≤ m}. The positive integer r is set to m. Hence the bipar-
tite temporal graph G(V, E) has m + k nodes. Figure 2 shows an example of the
construction of the bipartite temporal graph.

We prove that if there is a solution for the instance of the D-MAX-0-1-TMB-1
problem for G, there is a solution for the instance of the D-SJFSETNM problem.
For a 0-1 timed matching M , |M | = r, for G, we construct a job-machine mapping
C ⊆ S as follows. Consider the job-machine mapping C = {(Ji, Pj) | eJiPj

∈ M}.
As |M | = r and r = m, |C| = m. We prove that C is a job-machine mapping
such that each job in J gets executed once by following C and no machine in P
executes two jobs at the same timestep. At first, we prove that following C, all

336 S. Mandal and A. Gupta

J1

J2

J3

J5

P1

P2

P3

(s1, t1)
(s1, t1)

(s2, t2)

(s3, t3)

J = {J1,J2,J3,J4,J5}

P = {P1,P2,P3}

S = {(J1,P1), (J1,P3),

(J2,P1), (J2,P2),

(J2,P3), (J3,P1),

J4

(s2, t2)
(s2, t2)

(s4, t4)

(s5, t5)

(J4,P2), (J5,P3)}

Fig. 2. Construction of a bipartite temporal graph from an instance of SJFETNM

the jobs in J gets executed once. Assume that, this is not true and there is one
job Jk ∈ J which is not executed. As |C| = m, then by pigeon hole principle,
there is a job Ji ∈ J which gets executed at least twice. This implies that there
are two edges in M , incident on the same node Ji. According to the construction,
each edge incident on Ji in G exists at the same time interval (si, ti). Thus M
is not a 0-1 timed matching for G, which is a contradiction. Next, we show that
no machine in P executes two different jobs at the same timestep. Let there be
a timestep tk and a machine Pj ∈ P such that Pj executes two different jobs
Jh, Ji ∈ J at tk. This implies that there exists two edges eJhPj

, eJiPj
in M ,

which are overlapping with each other. This also contradicts the fact that M is
a 0-1 timed matching for G.

Next, we show that, if there is no solution for the instance of the D-MAX-0-1-
TMB-1 problem, then there is no solution for the instance of the D-SJFSETNM
problem. To show this, we prove that if there is a solution for the instance of
the D-SJFSETNM problem, then there is a solution for the instance of the D-
MAX-0-1-TMB-1 problem. For a solution C, |C| = m for the instance of the
D-SJFSETNM problem, we construct a 0-1 timed matching M for G as follows.
Consider the set M = {eJiPj

| (Ji, Pj) ∈ C}. As |C| = m and m = r, hence
|M | = r. Next, we prove that M is a 0-1 timed matching for G. Assume that, M
is not a 0-1 timed matching. This implies that, there are at least two edges in
M , which are overlapping with each other. Following C each job is executed only
once. Thus, only one edge incident on each node in A is selected in M . Thus,
those two overlapping edges eJhPj

, eJiPj
are incident on the same node Pj ∈ B.

This implies that there exists a machine Pj which executes two or more jobs at
the same timestep, which is a contradiction.

Hence, the D-MAX-0-1-TMB-1 problem is NP-Complete. �

5.2 NP-Completeness of MAX-0-1-TMT-3

We define the decision version of MAX-0-1-TMT-3 (referred to as the D-MAX-
0-1-TMT-3 problem) as follows.

Definition 6. D-MAX-0-1-TMT-3: Given a rooted temporal tree G(V, E)
with lifetime T , where each edge in E is associated with at most 3 time intervals

0-1 Timed Matching in Bipartite Temporal Graphs 337

and a positive integer p, does there exist a 0-1 timed matching M for G such
that |M | ≥ p?

We show that there is a polynomial time reduction from the decision version
of the problem of finding the maximum independent set when the degree of each
node of the input graph is bounded by 3 (referred to as the D-MAX-IS-3 problem)
[4] to the D-MAX-0-1-TMT-3 problem. The D-MAX-IS-3 problem is known to
be NP-Complete [4]. In this subsection, we refer to a graph G such that the
degree of each node of G is bounded by 3 as BDG-3. The D-MAX-IS-3 problem
is defined as follows.

Definition 7. D-MAX-IS-3: Given a BDG-3 G(V,E) and a positive integer
k, does there exist a set I ⊆ V such that no two nodes in I are connected by an
edge in E and |I| ≥ k?

Theorem 2. The D-MAX-0-1-TMT-3 problem is NP-Complete.

Proof. We first show that the problem is in NP. Consider a certificate 〈〈G(V, E),
p〉,M〉, where G is a rooted temporal tree with lifetime T with each edge asso-
ciated with at most 3 time intervals, p is a given integer and M is a given set
of edges. We consider each edge euv ∈ M at a time and compare associated
time intervals of euv with associated time intervals of all the other edges in
M to find any edges overlapping with each other. This can be done in O(|E|2)
time. Checking |M | ≥ p and M ⊆ E can be done in O(|E|) time. Hence the
D-MAX-0-1-TMT-3 problem is in NP.

Next, we prove that there exists a polynomial time reduction from the D-
MAX-IS-3 problem to the D-MAX-0-1-TMT-3 problem. Consider an instance
〈G(V,E), k〉 of the D-MAX-IS-3 problem where G(V,E) is a BDG-3 with |V | =
n, and |E| = m, and k is a positive integer. For our reduction, we assume that
each edge in E is labelled with a distinct integer from 0 to m−1. We also assume
that the set V0 ⊆ V of nodes with degree 0 is given, and |V0| = n0. If V0 is not
given, it can be easily computed in polynomial time.

From the given instance of the D-MAX-IS-3 problem, we construct an
instance of the MAX-0-1-TMT-3 problem as follows. We construct the tem-
poral graph G(V, E) with node set V := (V \ V0) ∪ {r}, where r /∈ V and
E = {e(v, r, (a0

v, a
0
v + 1), · · · , (al

v, a
l
v + 1)) | v ∈ (V \ V0), ai

v is the label of the ith

edge incident on v, l ≤ 2}. The lifetime T is set to m and p is set to k − n0.
Thus, the temporal graph G has n−n0+1 nodes and n−n0 edges. As the degree
of each node in V is bounded by 3, the number of intervals associated with each
evr ∈ E is at most 3. As the degree of each node in V \ V0 is at least 1, there is
an edge between each node in V \ {r} and r. Thus G is a temporal tree rooted
at r. Figure 3 shows the construction of G from a given BDG-3.

We first show that, if there is a solution for the instance of the D-MAX-0-
1-TMT-3 problem, then there is a solution for the instance of the D-MAX-IS-3
problem. For a solution M , |M | ≥ p, for the D-MAX-0-1-TMT-3 problem on
G, we construct a solution I, |I| ≥ k for the D-MAX-IS-3 problem on G as
follows. Consider the set of nodes I = {v | erv ∈ M} ∪ V0. We show that I is

338 S. Mandal and A. Gupta

a

b

c

d

f
0

2 5
4

13
a b c df

r

(0,1)(2,3)(4,5) (1,2)(4,5)(5,6)

(1,2)(3,4)
(2,3)(3,4) (0,1)(5,6)

(i) (ii)

Fig. 3. (i) A BDG-3 with edges labelled by integers, (ii) Corresponding temporal tree

an independent set for G and |I| ≥ k. As |M | ≥ p and |V0| = n0, then |I| ≥ k.
Assume that I is not an independent set for G. This implies that there are at
least two nodes u, v ∈ I such that (u, v) ∈ E. As u, v ∈ I and degree of each
node in V0 is 0, then eur and evr both are in M . Each edge in E is labelled with
an integer. Let ai

v be the integer associated with the edge (u, v). Thus, the time
interval (ai

v, a
i
v +1) is associated with both eur and evr, and both are incident on

r. This implies that M is not a 0-1 timed matching for G. This is a contradiction.
We next show that, if there is no solution for the instance of the D-MAX-0-

1-TMT-3 problem, then there is no solution for the instance of the D-MAX-IS-3
problem. To show this, we prove that if we have a solution for the instance of the
D-MAX-IS-3 problem, then we have a solution for the instance of the D-MAX-0-
1-TMT-3 problem. For a solution I, |I| ≥ k, for the instance of the D-MAX-IS-3
problem on G, we construct a solution M for the instance of the D-MAX-0-1-
TMT-3 on G as follows. Consider the set M = {evr | v ∈ (I \ V0)}. We prove
that M is a 0-1 timed matching for G and |M | ≥ p. As |I| ≥ k, |V0| = n0 and
for all nodes in I \ V0 we add an edge to M , |M | ≥ p. Assume that M is not
a 0-1 timed matching for G. This implies that there are at least two edges eur
and evr such that both are incident on r and there is a time interval (ai

v, a
i
v +1)

when both of them exist. This implies that there is an edge (u, v) ∈ E which is
labelled with ai

v and u, v ∈ I. This implies that I is not an independent set for
G. This is a contradiction.

Hence, the D-MAX-0-1-TMT-3 problem is NP-Complete. �

6 Finding Maximum 0-1 Timed Matching for Rooted
Temporal Tree with Single Time Interval Per Edge

In this section, we present a dynamic programming based algorithm for finding
the maximum 0-1 timed matching for a rooted temporal tree G(V, E) with root
r ∈ V where each edge of G is associated with a single time interval. In the rest
of this paper, Tv denotes the temporal subtree rooted at a node v ∈ V and Mv

denotes the maximum 0-1 timed matching for Tv.
The algorithm orders the nodes in non-increasing order of depths, and then

computes the maximum 0-1 timed matching for the subtrees rooted at each node
in this order. For any leaf node ui, Tui

has no edges, and hence Mui
= ∅. To

compute Mv for Tv where v is a non-leaf node, two cases are possible: (i) no

0-1 Timed Matching in Bipartite Temporal Graphs 339

r

a b

c d
g h

i j k l q

(0,1)
(2,4) (0,3)

(0,3)

(0,2)
(2,3)

(1,3) (0,2) (1,5)

(0,2) (2,4)

Fig. 4. A temporal tree rooted at r

edge incident on v in Tv is included in Mv, or (ii) one or more edges incident on
v in Tv are included in Mv. Let TM1[v] and TM2[v] denote the maximum 0-1
timed matching for Tv which does not include any edge incident on v (Case (i)),
and which includes at least one edge incident on v (Case (ii)) respectively. Note
that for a leaf node, TM1[v] = ∅ and TM2[v] = ∅. Then, it is easy to see that

Mv := cardMax(TM1[v], TM2[v]) (1)

where the function cardMax(X,Y) returns the maximum cardinality set among
two sets X and Y .

We first describe the method for computing TM1[v] for Tv when for all
ui ∈ child(v), Mui

for Tui
are already computed. As TM1[v] does not include

any edge evui
for any ui ∈ child(v),

TM1[v] :=
⋃

∀ui∈child(v)

Mui
(2)

For example, in Fig. 4, while computing Ma, Mc = {eci, ecj} and Md =
{edl, edq} where c and d are two child nodes of a. Thus by Eq. 2, TM1[a] =
{eci, ecj , edl, edq}.

Next, we describe the method to compute TM2[v] for Tv when for all ui ∈
child(v), Mui

for Tui
are already computed. We first define the following sets.

Definition 8. Maximum Allowable Set for Tv: The maximum allowable set
for Tv, denoted by Av, is a maximum cardinality set of edges incident on v, such
that Av ∪ (

⋃
∀ui∈child(v) Mui

) is a 0-1 timed matching for Tv.

Note that there can be more than one possible maximum allowable sets for Tv.
We give preference to a particular type of these sets, as defined below.

Definition 9. Maximum Feasible Set for Tv: The maximum feasible set for
Tv, denoted by Fv, is a maximum allowable set such that Fv ∪ {evP (v)} is a 0-1
timed matching for TP (v). If there is no such maximum allowable set (i.e, for
any maximum allowable set Av, Av ∪ {evP (v)} is not a 0-1 timed matching for
TP (v)), then Fv is set to an arbitrary maximum allowable set.

340 S. Mandal and A. Gupta

Assuming that Fv’s are computed for all Tv, TM2[v] is computed as follows.
If Fv = ∅, then we set TM2[v] := ∅. If Fv �= ∅, then

TM2[v] := Fv ∪ (
⋃

∀ui∈child(v)

Mui
) (3)

We illustrate the computation of TM2[v] using the graph shown in Fig. 4.
While computing Ma, Mc = {eci, ecj} and Md = {edl, edq}. Note that if edge
eac is included in a 0-1 timed matching for Ta, we need to remove both eci and
ecj to maintain the properties of 0-1 timed matching. Similarly, ead cannot be
included along with edl and edq in any 0-1 timed matching for Ta. Thus for Ta,
both Aa and Fa are ∅. Again while computing Mb, {ebg} and {ebh} both are
Ab. But only {ebg} ∪ {erb} is a 0-1 timed matching for Tr. Thus Fb = {ebg}. It
can be observed that Ma ∪ {era} and Mb ∪ {erb} are both 0-1 timed matching
for Tr, and era, erb are non-overlapping with each other and P (r) = φ. Thus,
Fr = {era, erb}. As Fa = ∅ for Ta, hence TM2[a] = ∅. Again, as Fr = {era, erb}
for Tr, then TM2[r] = {era, erb, eci, ecj , edl, edq, ebg}.

In Fig. 4, as illustrated above, TM1[a] = {eci, ecj , edl, edq} and TM2[a] = ∅,
hence Ma = {eci, ecj , edl, edq}. Similarly, TM1[r] = {eci, ecj , edl, edq, ebg} and
TM2[r] = {era, erb, eci, ecj , edl, edq, ebg}. Hence Mr = {era, erb, eci, ecj , edl, edq,
ebg}.

Algorithm 1 describes the pseudocode of the proposed algorithm. The algo-
rithm calls a function createLevelList to put all the nodes in G in different lists,
with two nodes put in the same list if their depth in G are the same. After that,
for all leaf nodes ui, it assigns TM1[ui] := ∅ and TM2[ui] := ∅. Then it processes
rooted temporal subtrees according to the non-increasing order of the depths of
their root node in G, starting from the temporal subtree rooted at the node with
the maximum depth. For each non-leaf node v, the algorithm computes TM1[v],
TM2[v] and Mv following Eqs. 2, 3 and 1 respectively. Fv is computed using the
function computeFeasibleSet.

We next describe how to compute Fv for all Tv using the function compute-
FeasibleSet when, for all ui ∈ child(v), Mui

is already computed. For computing
Fv, we first define the following.

Definition 10. Minimum Removal Set for evui
on Mui

: The minimum
removal set for evui

on Mui
, denoted as RMui

(evui
), is a minimum cardinality set

of edges that needs to be removed from Mui
such that {evui

} ∪ (Mui
\RMui

(evui
))

is a 0-1 timed matching for Tv, where ui ∈ child(v).

In Fig. 4, for eac on Ta, RMc
(eac) = {eci, ecj}. Here Mc = {eci, ecj} and we

need to remove {eci, ecj} from Mc such that {eac} ∪ (Mc \ RMc
(eac)) is a 0-1

timed matching for Ta.
To compute Fv, we first compute RMui

(evui
) for each edge evui

incident
on v. Let R̃0(v) be the set of edges incident on v in Tv such that for any
edge evui

∈ R̃0(v), RMui
(evui

) = ∅. Let R̃P
0 (v) = R̃0(v) ∪ {evP (v)}. Note

that for the root r, R̃0(r) = R̃P
0 (r) as it has no parent. Then the algo-

rithm computes MaxNOS(R̃0(v)) and MaxNOS(R̃P
0 (v)), where MaxNOS(S)

0-1 Timed Matching in Bipartite Temporal Graphs 341

Algorithm 1. dp0-1TimedMatching
Input: G(V, E), root node r
Output: M ⊆ E , the maximum 0-1 timed matching

1: if r = NULL or child(r) = ∅ then
2: M := ∅; return(M)

3: for all leaf nodes ui do
4: TM1[ui] := ∅; TM2[ui] := ∅
5: nList := createLevelList(r)
6: for level = max depth → 0 do � max depth = maximum depth of a node
7: while (v := nList[level].extractNode())! = ∅ do
8: TM1[v] :=

⋃
ui∈child(v) Mui ; TM2[v] := ∅

9: Fv := computeFeasibleSet(v, child(v), ∀ui ∈ child(v)Mui)
10: if Fv �= ∅ then
11: TM2[v] := (

⋃
ui∈child(v) Mui) ∪ Fv

12: Mv = cardMax(TM1[v], TM2[v])

13: return(Mr)

denotes the maximum cardinality non-overlapping subset of any set of tem-
poral edges S. If |MaxNOS(R̃P

0 (v))| > |MaxNOS(R̃0(v))| then Fv is set to
MaxNOS(R̃P

0 (v)) \ {evP (v)}, else Fv is set to MaxNOS(R̃0(v)) as Fv.
As an illustration, in Fig. 4, while computing Fb, both Mg and Mh

are ∅. As both RMg
(ebg) and RMh

(ebh) are ∅, R̃0(b) = {ebg, ebh} and
R̃P

0 (b) = {ebg, ebh, erb}. Therefore MaxNOS(R̃0(b)) can be both {ebh}
and {ebg}, but MaxNOS(R̃P

0 (b)) = {ebg, erb}. Since |MaxNOS(R̃P
0 (b))| >

|MaxNOS(R̃0(b))|, therefore Fb = {ebg}. Similarly, while computing Fc,
R̃0(c) = {eci, ecj , eck} and R̃P

0 (c) = {eac, eci, ecj , eck}. In this case
MaxNOS(R̃0(c)) and MaxNOS(R̃P

0 (c)) are both equal to {eci, ecj}. Thus,
Fc = {eci, ecj}.

Algorithm 2 describes the details of computing Fv. Algorithm 2 internally
invokes the functions maxNonOverlap(S) which returns the maximum cardi-
nality non-overlapping subset of edges from a set of temporal edges S and
interSect(evui

, S) which returns the number of edges overlapping with evui
in

S. Both of these functions are easy to implement in polynomial time.

6.1 Proof of Correctness

Lemma 1. Suppose that for each ui ∈ child(v), Mui
is already computed

and there is no 0-1 timed matching M ′
ui

for Tui
such that |M ′

ui
| = |Mui

|
and |RM ′

ui
(evui

)| = 0 but |RMui
(evui

)| > 0. Then for Tv, if Fv = ∅, then

|TM1[v]| ≥ |M̃v| where M̃v is the maximum 0-1 timed matching for Tv which
includes at least one edge incident on v.

Proof. We prove this lemma by contradiction. Assume that for each ui ∈
child(v), Mui

is already computed and there is no 0-1 timed matching M ′
ui

342 S. Mandal and A. Gupta

Algorithm 2. computeFeasibleSet(v, child(v), ∀ui ∈ child(v) Mui
)

Input: v, child(v), ∀ui ∈ child(v) Mui

Output: Fv

1: for all ui ∈ child(v) do
2: RMui

(evui) := interSect(evui , Mui)

3: for all ui ∈ child(v) do
4: if |RMui

(evui)| = 0 then

5: R̃0(v) := R̃0(v) ∪ {evui}
6: if R̃0(v) �= ∅ then
7: if P (v)! = φ then
8: R̃P

0 (v) = R̃0(v) ∪ {evP (v)}
9: if |maxNonOverlap(R̃0(v))| < |maxNonOverlap(R̃P

0 (v))| then
10: Fv := maxNonOverlap(R̃P

0 (v)) \ {evP (v)}
11: else
12: Fv := maxNonOverlap(R̃0(v))

13: else
14: Fv := maxNonOverlap(R̃0(v))

15: else
16: Fv := ∅
17: return(Fv)

for Tui
such that |M ′

ui
| = |Mui

| and |RM ′
ui

(evui
)| = 0 but |RMui

(evui
)| > 0. In

such condition, we assume that there exists a 0-1 timed matching M̃v for Tv such
that M̃v includes at least one edge incident on v and |M̃v| > |TM1[v]|, when
Fv = ∅. As Fv = ∅, then for all edges evui

incident on v, |RMui
(evui

)| > 0. As
TM1[v] =

⋃
∀ui∈child(v) Mui

, |M̃v| > |TM1[v]| is possible if any of the following
conditions hold.

– Mui
is not the maximum 0-1 timed matching for Tui

, but this contradicts our
assumption about each already computed Mui

.
– There is at least one edge evui

for which |{evui
} ∪ (Mui

\RMui
(evui

))| > |Mui
|

when |RMui
(evui

)| > 0. This is impossible.
– There exists another 0-1 timed matching M ′

ui
for Tui

such that |M ′
ui

| = |Mui
|

and |RM ′
ui

(evui
)| = 0 but |RMui

(evui
)| > 0. According to our assumption

about each already computed Mui
, this is also impossible. �

Lemma 2. Suppose that for each ui ∈ child(v), Mui
is already computed and

there is no 0-1 timed matching M ′
ui

for Tui
such that |M ′

ui
| = |Mui

| and
|RM ′

ui
(evui

)| = 0 but |RMui
(evui

)| > 0. Then if Fv �= ∅, Eq. 3 correctly com-
putes TM2[v] for Tv.

Proof. We prove this lemma by contradiction. Assume that for each ui ∈
child(v), Mui

is already computed and there is no 0-1 timed matching M ′
ui

for Tui
such that |M ′

ui
| = |Mui

| and |RM ′
ui

(evui
)| = 0 but |RMui

(evui
)| > 0.

In such condition, we assume that there exists another 0-1 timed matching M∗
v

0-1 Timed Matching in Bipartite Temporal Graphs 343

which includes edges incident on v, such that |TM2[v]| < |M∗
v | when Fv �= ∅.

According to Eq. 3, TM2[v] includes all edges in Mui
where ui ∈ child(v). As

each Mui
is the maximum 0-1 timed matching for Tui

, the cardinality of the
edges in M∗

v which are not incident on v are smaller than or equal to such edges
in TM2[v]. Thus |TM2[v]| < |M∗

v | is possible in three cases:

– There exists another set of edges F ∗
v incident on v, such that |F ∗

v | > |Fv|
and F ∗

v ∪ (
⋃

∀ui∈child(v) Mui
) is also a 0-1 timed matching for Tv. But this

contradicts the definition of Fv.
– There exists at least one edge evui

∈ Sv (Sv ⊂ M∗
v is the set of edges incident

on v) for which |RMui
(evui

)| > 0, but |(Mui
\RMui

(evui
)) ∪ {evui

}| > |Mui
|.

This is impossible.
– There is at least one child ui of v such that there exists another 0-1 timed

matching M ′
ui

for ui such that |Mui
| = |M ′

ui
|, and |RM ′

ui
(evui

)| = 0 but
|RMui

(evui
)| > 0. This contradicts our assumption about computed Mui

. �

Lemma 3. Algorithm 2 correctly computes Fv for Tv.

Proof. Algorithm 1 invokes Algorithm 2 for computing Fv. Algorithm 1 processes
each rooted temporal subtree according to the non-increasing order of the depth
of its root node in G, starting from a temporal subtree rooted at a node with
the maximum depth (max depth). Here max depth is the maximum depth of a
node in G. We use induction on the height of the rooted temporal tree for which
Fv is computed.

Base Case: Height of the rooted temporal subtree is 0: For the temporal subtrees
with height 0 rooted on any leaf node x, the computed value Fx is ∅1. As there
are no edges in Tx, the computed Fx is correct and it satisfies the condition that
Fx ∪ {exP (x)} is a 0-1 timed matching for TP (x).

Inductive Step: Let this lemma hold for the rooted temporal subtrees with
height up to l. We have to show that this lemma holds for rooted temporal
subtrees with height l + 1 also. Before processing a temporal subtree Tv rooted
at v where the depth of v in G is max depth−(l+1), Mwi

and Fwi
for every Twi

,
where the depth of wi is greater than max depth − (l + 1) in G, are computed
by Algorithms 1 and 2. Note that, the height of each Twi

is at most l. As the
height of each Tui

, where ui ∈ child(v), is at most l, already computed Fui
using

Algorithm 2 for each Tui
is correct.

Let the computed Fv for Tv by Algorithm 2 be incorrect. Let there
exist another set of edges F ′

v incident on v, such that |F ′
v| > |Fv| and

(
⋃

ui∈child(v) Mui
) ∪ F ′

v is also a 0-1 timed matching for Tv. This is possible
if at least one of the following cases is true.

1. The function maxNonOverlap, returns a non-maximum set of non-
overlapping edges. But this is not true.

1 This step is not shown explicitly in Algorithm 1.

344 S. Mandal and A. Gupta

2. Algorithm 2 only considers the edges evui
for which |RMui

(evui
)| = 0. Thus

F ′
v can exist if it includes some edge evui

incident on v for which there exists
another 0-1 timed matching M ′

ui
such that |M ′

ui
| = |Mui

| and |RMui
(evui

)| >
0 but |RM ′

ui
(evui

)| = 0. As only the edges in Fui
can be overlapping with edge

evui
, existence of such edge contradicts the fact that already computed Fui

for Tui
is correct.

Lines 7 to 13 of Algorithm 2 ensures that when P (v) �= φ, if possible, the
algorithm returns Fv such that Fv ∪ {evP (v)} is a 0-1 timed matching for TP (v).
Thus, Fv is correctly computed for Tv with height l+1. This proves the inductive
step. �

Theorem 3. Algorithm 1 correctly computes the maximum 0-1 timed matching
for a given rooted temporal tree G(V, E).

Proof. We prove this theorem by induction on the height of the rooted temporal
subtree for which we are computing the maximum 0-1 timed matching. We prove
that at each step the algorithm correctly computes Mv and if P (v) �= φ, then
there is no other 0-1 timed matching M ′

v for Tv, such that |M ′
v| = |Mv| and

|RM ′
v
(evP (v)) = 0| but |RMv

(evP (v))| > 0.

Base Case: Height of the rooted temporal subtree is 0: Algorithm 1, in Line 4,
assigns TM1 and TM2 values for any temporal subtrees with height 0 rooted
at any leaf node x to ∅. As Tx has no edges, computed Mx is correct and
|RMx

(exP (x))| = 0.

Inductive Step: Let this theorem hold for the rooted temporal subtrees with
height up to l. We need to prove that it also holds for the rooted temporal
subtrees with height l + 1. Algorithm 1 processes each rooted temporal subtree
according to the non-increasing order of the depth of its root node in G, starting
from a temporal subtree rooted at a node with the maximum depth (max depth).
Thus, while processing Tv where the depth of v in G is max depth− (l+1), each
Mwi

is correctly computed for each Twi
with height at most l, where the depth

of wi in G is at least max depth− l. It can be noted that, for each Tui
, the depth

of ui ∈ child(v) in G is max depth − l and the height of each Tui
is at most l.

Hence each Mui
is correct and there is no other 0-1 timed matching M ′

ui
for Tui

such that |M ′
ui

| = |Mui
| and |RM ′

ui
(evui

)| = 0 but |RMui
(evui

)| > 0.
In Line 8, Algorithm 1 computes TM1[v] using Eq. 2. As TM1[v] does not

include any edge incident on v, the computed TM1[v] is a 0-1 timed matching
for Tv. As each Mui

is correct, where ui ∈ child(v), the cardinality of TM1[v]
is the maximum among all such 0-1 timed matchings for Tv, which does not
include any edge incident on v.

When Fv = ∅, Algorithm 1 returns TM1[v] as Mv. Lemma 1 proves that
when Fv = ∅, |TM1[v]| ≥ |M̃v| where M̃v is the maximum 0-1 timed matching
for Tv which includes at least one edge incident on v. Thus, TM1[v] is Mv

when Fv = ∅. As TM1[v] does not include any edge incident on v, in this
case |RMv

(evP (v))| = 0. Thus, Algorithm 1 correctly computes Mv for Tv when
Fv = ∅.

0-1 Timed Matching in Bipartite Temporal Graphs 345

In Line 11, Algorithm 1 computes TM2[v] using Eq. 3. Lemma 3 proves that the
computed Fv by Algorithm 2 is correct. As for each ui ∈ child(v), Mui

is already
computed and there is no 0-1 timed matching M ′

ui
for Tui

such that |M ′
ui

| = |Mui
|

and |RM ′
ui

(evui
)| = 0 but |RMui

(evui
)| > 0. Thus, from Lemma 2, the computed

TM2[v] is correct when Fv �= ∅ and TM2[v] is Mv.
It can be observed that, while including evP (v) in a 0-1 timed matching for

TP (v) only the edges in Fv can get removed. Thus, there can exist another 0-
1 timed matching M ′

v for Tv such that |Mv| = |M ′
v| and |RM ′

v
(evP (v))| = 0

but |RMv
(evP (v))| > 0 only when computed Fv is incorrect. This contradicts

Lemma 3. This proves the inductive step. �

Theorem 4. Time complexity of Algorithm 1 is O(n3).

Proof. Algorithm 1 stores the nodes in the rooted temporal tree G, in different
lists according to their depth in G. This can be done in O(n) time. For any node
v, to compute Mv when information about each Mui

where ui ∈ child(v) is
available, we need to compute Fv. Algorithm 1 calls Algorithm 2 to compute Fv.
At Line 2, Algorithm 2 finds the number of overlapping edges in Mui

with edge
evui

where ui ∈ child(v). As each edge is associated with one interval, function
interSect does this in O(n) time (number of edges in Mui

is O(n)). Hence, the
overall running time of this step is O(n2). The formation of R̃0(v) at Lines 3
to 5 takes O(n) time. Finding maximum non-overlapping set from R̃0(v) and
R̃P

0 (v) takes O(n log n) time using function maxNonOverlap. Thus the overall
running time of Algorithm 2 is O(n2). Hence, the computation of Mv for any
node v takes O(n2) time. Hence, the overall running time of the algorithm is
O(n3). �

The following theorem follows from Theorems 3 and 4.

Theorem 5. Algorithm 1 correctly computes the maximum 0-1 timed matching
for a given rooted temporal tree G(V, E) in O(n3) time, where n = |V |.

7 Conclusion

In this paper, we have defined 0-1 timed matching for a given temporal graph.
We have shown that the problem of finding a maximum 0-1 timed matching is
NP-Complete both for a bipartite temporal graph with a single time interval
associated with each edge, and a rooted temporal tree with at most three time
intervals associated with each edge. We have also given a O(n3) time algorithm
for the problem for a rooted temporal tree with a single time interval associated
with each edge, where n is the number of nodes.

References

1. Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times.
Discrete Appl. Math. 18(1), 1–8 (1987)

346 S. Mandal and A. Gupta

2. Baste, J., Bui-Xuan, B.M., Roux, A.: Temporal matching. Theor. Comput. Sci.
(2019)

3. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O (log n)
update time. In: Symposium on Foundations of Computer Science FOCS, pp. 383–
392 (2011)

4. Berman, P., Fujito, T.: On approximation properties of the independent set prob-
lem for low degree graphs. Theor. Comput. Syst. 32(2), 115–132 (1999)

5. Bernstein, A., Stein, C.: Fully dynamic matching in bipartite graphs. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9134, pp. 167–179. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47672-7 14

6. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Deterministic fully dynamic data
structures for vertex cover and matching. In: ACM-SIAM Symposium on Discrete
Algorithms SODA, pp. 785–804 (2015)

7. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

8. Cheriyan, J.: Randomized õ(m(|v|)) algorithms for problems in matching theory.
SIAM J. Comput. 26(6), 1635–1669 (1997)

9. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
10. Even, S., Kariv, O.: An o(n 2̂.5) algorithm for maximum matching in general

graphs. In: Symposium on Foundations of Computer Science FOCS, pp. 100–112
(1975)

11. Ferreira, A.: On models and algorithms for dynamic communication networks: the
case for evolving graphs. In: 4e rencontres francophones sur les Aspects Algorith-
miques des Telecommunications (ALGOTEL), pp. 155–161 (2002)

12. Hopcroft, J.E., Karp, R.M.: A n 5̂/2 algorithm for maximum matchings in bipartite
graphs. In: Symposium on Switching and Automata Theory SWAT, pp. 122–125
(1971)

13. Huang, S., Fu, A.W., Liu, R.: Minimum spanning trees in temporal graphs. In:
ACM SIGMOD International Conference on Management of Data, pp. 419–430
(2015)

14. Kostakos, V.: Temporal graphs. Phys. A 388(6), 1007–1023 (2009)
15. Mandal, S., Gupta, A.: Approximation algorithms for permanent dominating set

problem on dynamic networks. In: Negi, A., Bhatnagar, R., Parida, L. (eds.) ICD-
CIT 2018. LNCS, vol. 10722, pp. 265–279. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-72344-0 22

16. Micali, S., Vazirani, V.V.: An o(sqrt(|v|) |e|) algorithm for finding maximummatch-
ing in general graphs. In: Symposium on Foundations of Computer Science FOCS,
pp. 17–27 (1980)

17. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. The-
oret. Comput. Sci. 634, 1–23 (2016)

18. Mucha, M., Sankowski, P.: Maximum matchings in planar graphs via Gaussian
elimination. Algorithmica 45(1), 3–20 (2006)

19. Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover.
In: ACM Symposium on Theory of Computing STOC, pp. 457–464 (2010)

https://doi.org/10.1007/978-3-662-47672-7_14
https://doi.org/10.1007/978-3-662-47672-7_14
https://doi.org/10.1007/978-3-319-72344-0_22
https://doi.org/10.1007/978-3-319-72344-0_22

Arbitrary Pattern Formation by Opaque
Fat Robots with Lights

Kaustav Bose1(B) , Ranendu Adhikary1 , Manash Kumar Kundu2 ,
and Buddhadeb Sau1

1 Department of Mathematics, Jadavpur University, Kolkata, India
{kaustavbose.rs,ranenduadhikary.rs,manashkrkundu.rs,

buddhadeb.sau}@jadavpuruniversity.in
2 Gayeshpur Government Polytechnic, Kalyani, India

Abstract. Arbitrary Pattern Formation is a widely studied prob-
lem in autonomous robot systems. The problem asks to design a dis-
tributed algorithm that moves a team of autonomous, anonymous and
identical mobile robots to form any arbitrary pattern given as input. The
majority of the existing literature investigates this problem for robots
with unobstructed visibility. In a few recent works, the problem has been
studied in the obstructed visibility model, where the view of a robot can
be obstructed by the presence of other robots. However, in these works,
the robots have been modelled as dimensionless points in the plane. In
this paper, we have considered the problem in the more realistic setting
where the robots have a physical extent. In particular, the robots are
modelled as opaque disks. Furthermore, the robots operate under a fully
asynchronous scheduler. They do not have access to any global coordi-
nate system, but agree on the direction and orientation of one coordinate
axis. Each robot is equipped with an externally visible light which can
assume a constant number of predefined colors. In this setting, we have
given a complete characterization of initial configurations from where
any arbitrary pattern can be formed by a deterministic distributed algo-
rithm.

Keywords: Distributed algorithm · Arbitrary Pattern Formation ·
Leader election · Opaque fat robots · Luminous robots · Asynchronous
scheduler

1 Introduction

Arbitrary Pattern Formation or APF is a fundamental coordination prob-
lem for distributed multi-robot systems. Given a team of autonomous mobile
robots, the goal is to design a distributed algorithm that guides the robots to
form any specific but arbitrary geometric pattern given to the robots as input.
Arbitrary Pattern Formation is closely related to the Leader Election
problem where a unique robot from the team is to be elected as the leader.
In the traditional framework of theoretical studies, the robots are modelled as
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 347–359, 2020.
https://doi.org/10.1007/978-3-030-39219-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_28&domain=pdf
http://orcid.org/0000-0003-3579-1941
http://orcid.org/0000-0002-9473-2645
http://orcid.org/0000-0003-4179-8293
http://orcid.org/0000-0001-7008-6135
https://doi.org/10.1007/978-3-030-39219-2_28

348 K. Bose et al.

autonomous (there is no central control), homogeneous (they execute the same
distributed algorithm), anonymous (they have no unique identifiers) and identi-
cal (they are indistinguishable by their appearance) computational entities that
can freely move in the plane. Each robot is equipped with sensor capabilities
to perceive the positions of other robots. The robots do not have access to
any global coordinate system. The robots operate in Look-Compute-Move
(LCM) cycles: upon becoming active, a robot takes a snapshot of the positions
of the other robots (Look), then computes a destination based on the snap-
shot (Compute), and then moves towards the destination along a straight line
(Move).

The Arbitrary Pattern Formation problem has been extensively stud-
ied in the literature in various settings (See [2,5,6,8–10,12,14–16] and references
therein). Until recently, the problem had only been studied for robots with unob-
structed visibility. In [13], the problem was first considered in the opaque robots
or obstructed visibility model which assumes that the visibility of a robot can
be obstructed by the presence of other robots. This is a more realistic model
for robots equipped with camera sensors. They also assumed that the robots
are equipped with persistent visible lights that can assume a constant number
of predefined colors. This is known as the luminous robot model, introduced by
Peleg [11], where the lights serve both as a medium of weak explicit communi-
cation and also as a form of memory. In [13], the robots are first brought to a
configuration in which each robot can see all other robots, and then Leader
Election is solved by a randomized algorithm. The first fully deterministic
solutions for Leader Election and Arbitrary Pattern Formation were
given in [4] for robots whose local coordinate systems agree on the direction
and orientation of one coordinate axis. However, in both [4,13], the robots were
modelled as dimensionless points in the plane. This assumption is obviously
unrealistic, as real robots have a physical extent. In this work, we extend the
results of [4] to the more realistic opaque fat robots model [1,7]. Furthermore,
our algorithm also works for robots with non-rigid movements (a robot may
stop before it reaches its computed destination), whereas the algorithm of [4]
requires robots to have rigid movements (a robot reaches its computed desti-
nation without any interruption). Also, the total number of moves executed by
the robots in our algorithm is asymptotically optimal. The contribution of this
paper is summarized in Table 1.

Table 1. Comparison of this work with previous ones.

Robots Agreement in
coordinate
system

Scheduler No. of colors
used

Movement Total no. of
moves

[4] Point One-axis
agreement

Async 6 Rigid O(n2)

This paper Fat One-axis
agreement

Async 10 Non-rigid Θ(n)

Arbitrary Pattern Formation by Opaque Fat Robots with Lights 349

2 Model and Definitions

In this section, we shall formally describe the robot model and also present the
necessary definitions and notations that will be used in the rest of the paper.

Robots. We consider a set of n ≥ 3 autonomous, anonymous, homogeneous and
identical fat robots. Each robot is modelled as a disk of diameter equal to 1 unit.
The robots do not have access to any global coordinate system, but their local
coordinate systems agree on the direction and orientation of the X-axis. They
also agree on the unit of length as the diameter of the robots are same and taken
as 1 unit.

Lights. Each robot is equipped with an externally visible light which can assume
a constant number of colors. Our algorithm will require in total ten colors,
namely off, terminal, interior, failed, symmetry, ready, move, switch off,
leader and done. Initially all robots have their lights set to off.

Visibility. The visibility range of a robot is unlimited, but can be obstructed
by the presence of other robots. Formally, a point p in the plane is visible to a
robot ri if and only if there exists a point xi on the boundary of ri such that
the line segment joining p and xi does not contain any point of any other robot.
This implies that a robot ri can see another robot rj if and only if there is at
least one point on the boundary of rj that is visible to ri. Also, if ri can see
any portion of the boundary of rj , then we assume that it can determine the
position of (the center of) rj .

Look-Compute-Move Cycles. The robots, when active, operate according to
the so-called Look-Compute-Move (LCM) cycle. In each cycle, a previously
idle robot wakes up and executes the following steps. In Look, a robot takes
the snapshot of the positions of the robots visible to it (represented in its own
coordinate system), along with their respective colors. Then in Compute, based
on the perceived configuration, the robot performs computations according to
a deterministic algorithm to decide a destination point and a color. Finally in
Move, it sets its light to the decided color and moves towards the destination
point. When a robot transitions from one LCM cycle to the next, all of its local
memory (past computations and snapshots) are erased, except for the color of
the light.

Scheduler. We assume that the robots are controlled by a fully asynchronous
adversarial scheduler. The robots are activated independently and each robot
executes its cycles independently. The amount of time spent in Look, Com-
pute, Move and inactive states is finite but unbounded, unpredictable and not
same for different robots. As a result, a robot can be seen while moving, and
hence, computations can be made based on obsolete information about positions.

Movement. We assume that the robots have non-rigid movements. This means
that a robot may stop before it reaches its destination. However, there is a fixed
δ > 0 so that each robot traverses at least the distance δ unless its destination is
closer than δ. The value of δ, however, is not known to the robots. The existence

350 K. Bose et al.

of a fixed δ is necessary, because otherwise, a robot may stop after moving
distances 1

2 , 1
4 , 1

8 , . . . and thus, not allowing any robot to traverse a distance of
more than 1.

Definitions and Notations. We shall denote the set of robots by R =
{r1, r2, . . . , rn}, n ≥ 3. When we say that a robot is at a point p on the plane, we
shall mean that its center is at p. For any time t, the configuration of the robots
at time t, denoted by C(t) or simply C, is a sequence (p1(t), p2(t), . . . , pn(t)) of
n points on the plane, where pi(t) is the position of (the center of) the robot ri
at t. At any time t, r(t).light or simply r.light will denote the color of the light
of r at t. With respect to the local coordinate system of a robot, positive and
negative directions of the X-axis will be referred to as right and left respectively,
and the positive and negative directions of the Y -axis will be referred to as up
and down respectively. Since the robots agree on the X-axis, they agree on hor-
izontal and vertical. They also agree on left and right, but not on up and down.
For a robot r, LV (r) and LH(r) are respectively the vertical and horizontal lines
passing through the center of r. We denote by HO

U (r) (resp. HC
U (r)) and HO

B(r)
(resp. HC

B(r)) the upper and bottom open (resp. closed) half-planes delimited
by LH(r) respectively. Similarly, HO

L (r) (resp. HC
L (r)) and HO

R(r) (resp. HC
R(r))

are the left and right open (resp. closed) half-planes delimited by LV (r) respec-
tively. For a configuration C, a subset of robots that are on the same vertical
line will be called a batch. Thus, any configuration C can be partitioned into
batches B1, . . . , Bk, ordered from left to right. The vertical line passing through
the centers of the robots of a batch will be called the central axis of that batch.
When we say ‘the distance between a batch Bi and a robot r (resp. another
batch Bj)’, we shall mean the horizontal distance between the central axis of
Bi and the center of r (resp. central axis of Bj). A robot r belonging to batch
Bi will be called non-terminal if it lies between two other robots of Bi, and
otherwise it will be called terminal. Consider any batch Bj whose central axis is
S and a horizontal line T . Let H1 and H2 be the closed half-planes delimited by
T . For each Hi, i = 1, 2, consider the distances of the robots on S ∩ Hi from T
arranged in increasing order. The string of real numbers thus obtained is denoted
by λi. To make the lengths of the strings λ1 and λ2 equal, null elements Φ may
be appended to the shorter string. Now the two strings are different if and only
if the robots of Bj are not in symmetric positions with respect to T . In that
case, Hi will be called the dominant half with respect to T and Bj if λi is the
lexicographically smaller sequence (setting x < Φ for any x ∈ R).

Problem Definition. Consider an initial configuration of n fat opaque robots
in the Euclidean plane, all having their lights set to off. Each robot is given as
input, a pattern P, which is a list of n distinct elements from R

2
≥0 = {(a, b) ∈

R
2|a, b ≥ 0}. The Arbitrary Pattern Formation requires to design a dis-

tributed algorithm that guides the robots to a configuration that is similar to P

with respect to translation, reflection, rotation and uniform scaling.

Arbitrary Pattern Formation by Opaque Fat Robots with Lights 351

3 The Algorithm

The main result of the paper is Theorem 1. The proof of the ‘only if’ part is the
same as in case for point robots, proved in [4]. The ‘if’ part will follow from the
algorithm presented in this section.

Theorem 1. For a set of opaque luminous fat robots with non-rigid movements
and having one axis agreement, APF is deterministically solvable if and only if
the initial configuration is not symmetric with respect to a line K which (1) is
parallel to the agreed axis and (2) does not pass through the center of any robot.

For the rest of the paper, we shall assume that the initial configuration C(0)
does not admit the unsolvable symmetry stated in Theorem 1. Our algorithm
works in two stages, namely leader election and pattern formation from leader
configuration. The first stage is again divided into two phases, namely Phase
1 and Phase 2. In the first stage, a single robot will be elected as the leader
of the swarm. Since the robots do not have access to any global coordinate
system, they do not agree on how the given pattern P would be realized in the
plane. With the help of the elected leader, the robots can implicitly agree on a
common coordinate system. Once an agreement on a common coordinate system
is achieved, the robots will arrange themselves to form the given pattern in the
agreed coordinate system in the second stage. Since the robots are oblivious, in
each LCM cycle, a robot has to infer the current stage or phase from its local
view. This is described in Algorithm 1.

Algorithm 1: Arbitrary Pattern Formation
Input : The configuration of robots visible to me.

1 Procedure ArbitraryPatternFormation()
2 if there is a robot with light set to leader then // stage 2
3 PatternFormationFromLeaderConfiguration()
4 else // stage 1
5 if (the first batch has two robots with light set to terminal) and (the

lights of all robots of the second batch are set to same color) and (the

distance between the first and second batch is at least n+3
2 units) then

6 Phase2()
7 else if there is at least one robot with light set to failed, symmetry,

ready, move or switch off then
8 Phase2()
9 else

10 Phase1()

Due to space restrictions, we will not describe our algorithms here in much
detail. For further details and formal proofs of correctness, the reader is referred
to the full version of the paper [3].

3.1 Leader Election

In the leader election stage, a unique robot rl will elect itself as leader by setting
its light to leader (while the lights of all other robots should be set to off). We
want the configuration to satisfy some additional properties as well, that will be
useful in the second stage of the algorithm. In particular, we want (1) all the
non-leader robots to lie inside HO

R(rl)∩H where H ∈ {HO
U (rl),HO

B(rl)}, and (2)
the distance of any non-leader robot from LH(rl) to be at least 2 units. We shall
call this a leader configuration, and call rl the leader.

352 K. Bose et al.

3.2 Phase 1

Since the robots already have an agreement on left and right, if there is a unique
leftmost robot, i.e., the first batch has only one robot, then that robot, say r, can
identify this from its local view and elect itself as the leader. However, the robot
r will not immediately change its light to leader as the additional conditions
of a leader configuration might not be yet satisfied. So, it will start executing
the procedure BecomeLeader() to achieve these conditions. Only after these
conditions are satisfied, r will change its light to leader. However, there might
be more than one leftmost robots in the configuration. In the extreme case, all
the robots may lie on the same vertical line, i.e., there may be only one batch.
So if there are more than one leftmost robots, the aim of Phase 1 is to move the
two terminal robots of the first batch leftwards by the same amount. We also
want the distance between (the central axes of) the first batch and second batch
in the new configuration to be at least n+3

2 units. Therefore, at the end of Phase
1, we shall either have a leader configuration or have at least two batches in the
configuration with the first batch having exactly two robots and at least n+3

2
units to the left of the second batch. In the second case, the lights of the two
robots of the first batch will be set to terminal, lights of all robots of the second
batch will be set to either interior or off, and all other robots have lights set
to off. A pseudocode description of the algorithm is given in Algorithm 2.

Algorithm 2: Phase1
1 Procedure Phase1()
2 r ← myself
3 if r.light = off then
4 if I am in the first batch and I am the only robot in my batch then
5 BecomeLeader()
6 else if I am in the first batch and I am not the only robot in my batch then
7 if I am terminal then
8 r.light ← terminal
9 else

10 r.light ← interior

11 else if there is a robot with light interior on LV (r) then
12 if I am not terminal then
13 r.light ← interior

14 else if (I am terminal) and (there is exactly one robot r′ in HO
L (r)) and

(r′.light = terminal) then
15 r.light ← terminal

16 Move n+3
2 units to the left

17 else if r.light = terminal then
18 if there is a robot on LV (r) with light interior then

19 Move n+3
2 units to the left

20 else if there is a robot on LV (r) with light terminal then

21 d ← my horizontal distance from the leftmost robot in HO
R(r)

22 if d < n+3
2 then

23 Move n+3
2 − d units to the left

24 else if there is a robot r′ in HO
L (r) with light terminal then

25 d ← my horizontal distance from r′

26 Move d units to the left

Arbitrary Pattern Formation by Opaque Fat Robots with Lights 353

3.3 Phase 2

Assume that at the end of Phase 1, we have k ≥ 2 batches and exactly two robots
r11 and r12 in the first batch B1 with light terminal that are at least n+3

2 units
to the left of B2. So now we are in Phase 2. Let L be the horizontal line passing
through the mid-point of the line segment joining r11 and r12. Let H1 and H2 be
the two open half-planes delimited by L such that r11 ∈ H1 and r12 ∈ H2. Our
algorithm will achieve the following. Define i > 1 to be the smallest integer such
that Bi is either (Case 1) asymmetric with respect to L, or (Case 2) symmetric
with respect to L, but it has a robot lying on L. In Case 1, a terminal robot
from Bi−1 will become the leader and in Case 2, the robot from Bi that lies on
L will become the leader. From left to right, terminal robots of different batches
will attempt to elect a leader either by electing itself as the leader or by asking
a robot of the next batch to become the leader. In particular, when a batch Bj

tries to elect leader, its terminal robots will check whether the next batch Bj+1

is asymmetric or symmetric with respect to L. In the first case, the terminal
robot of Bj lying in the dominant half with respect to L and Bj+1 will elect
itself as the leader. In the later case, the terminal robots of Bj , using light, will
communicate to the robots of Bj+1 the fact that Bj+1 is symmetric with respect
to L. If L passes through the center of a robot of Bj+1, then that robot will elect
itself as the leader. Now there are three issues regarding the implementation of
this strategy, which we shall discuss in the following three sections.

1. What happens when the robots of Bj are unable to see all the robots of Bj+1?
2. How will the robots ascertain L from their local view?
3. How will all the conditions of a leader configuration be achieved?

Coordinated Movement of a Batch
When the terminal robots of a batch Bj attempt to elect leader, they need to see
all the robots of the next batch Bj+1. But since the robots are fat and opaque, a
robot may not be able to see all the robots of the next batch. However, each robot
of two consecutive batches will be able to see all robots of the other batch if the
two batches are more than 1 unit distance apart. Recall that at the beginning of
Phase 2, the robots of B1 are at least n+3

2 units to the left of the robots of B2.
Therefore, when the robots of the first batch attempt to elect leader, they are
able to see all robots of B2. Now consider the case where the terminal robots of
Bj , j > 1 are trying to elect leader. Therefore, the first j − 1 batches must have
failed to elect leader. This implies that the first j batches are symmetric with
respect to L and L does not pass through the center of a robot of the first j
batches. After the terminal robots of Bj−1 fail to elect leader, they will change
their lights to failed and ask the next batch Bj to try to elect a leader. Then
the robots of Bj will move left to position themselves exactly at a distance 1+ 1

n
units from the robots of Bj−1. It can be shown that Bj will have sufficient space
to execute the movement and also, their horizontal distance from the robots of
Bj+1 will be at least 2 units after the movement. So, after the movements, the
terminal robots of Bj can see all the robots of Bj+1.

354 K. Bose et al.

However, since the scheduler is asynchronous and the movements are non-
rigid, the robots of Bj can start moving at different times, move at different
speeds and by different amounts. Therefore, we have to carefully coordinate the
movements of the robots of a batch so that they do not get disbanded. We have
to ensure that all the robots of the batch remain vertically aligned after their
moves, and also the completion of the moves of the batch as a whole must be
detectable. We will need two extra colors for this. When the robots of Bj find
two terminal robots of Bj−1 with light failed, they will not immediately move;
they will first change their lights to ready. Having all robots of Bj with light
set to ready will help these robots to identify their batchmates. On one hand,
a robot that moves first will be able to identify the robots from its batch that
are lagging behind and also detect when every one has completed their moves.
On the other hand, a robot that has lagged behind will be able to remember
that it has to move (from its own light ready) and determine how far it should
move (from robots with light ready on its left) even if it can not see the terminal
robots of batch Bj−1. Therefore, before moving, all robots of Bj must change
their lights to ready. But they can not verify if all their batchmates have changed
their lights as they can not see all the robots of their batch. But the robots of
Bj−1 are able to see all the robots of Bj , and thus can certify this. So when all
the robots Bj have changed their lights to ready, the terminal robots of Bj−1

will confirm this by turning their lights to move. Only after this, the robots of
Bj will start moving. The robots will be able to detect that the movement of the
batch has completed by checking that its distance from Bj−1 is 1 + 1

n and there
are no robots with light ready on its right. When it detects that the movement
of the batch has completed, it will try to elect leader if it is terminal, otherwise,
it will change its light to off.

Electing Leader from Local View
When the terminal robots of a batch will attempt to elect leader, they will require
the knowledge of L. Therefore, as different batches try to elect leader from left
to right, the knowledge of L also needs to be propagated along the way with the
help of lights. Consider the terminal robots rj1 and rj2 of a batch Bj , j ≥ 1, that
are attempting to elect a leader. In order to do so, they need two things: (1)
the knowledge of L, and (2) a full view of the next batch Bj+1. First consider
the case j = 1. The terminal robots of the first batch r11 and r12 (with lights
set to terminal) obviously have the knowledge of L as it is the horizontal line
passing through the mid-point of the line segment joining them. Also, since r11
and r12 are at least n+3

2 units apart from the robots of B2, they can see all the
robots of B2. Now suppose that a batch Bj , j > 1, is attempting to elect leader.
Then as discussed in the last section, the robots of Bj are horizontally exactly
1 + 1

n units to the right of the robots of Bj−1 and at least 2 units to the left of
the robots of Bj+1. Therefore, rj1 and rj2 can see all the robots of both batches
Bj−1 and Bj+1. Now since Bj is attempting to elect leader, it implies that the
first j − 1 batches have failed to break symmetry. Hence, the first j batches are
symmetric with respect to L. In particular, L passes through the mid-point of

Arbitrary Pattern Formation by Opaque Fat Robots with Lights 355

the line segment joining the terminal robots of Bj−1. Since rj1 and rj2 can see the
terminal robots of Bj−1 (having lights set to move), they can determine L.

Now, for a batch Bj , j ≥ 1, attempting to elect leader, there are three cases
to consider. If the robots of Bj+1 are asymmetric with respect to L (Case 1),
the one of rj1 and rj2 which is in the dominant half will change its light to switch
off and start executing BecomeLeader() (described in the following section).
If the robots of Bj+1 are symmetric with respect to L and L passes through the
center of a robot r′ of Bj+1 (Case 2), then rj1 and rj2 will change their lights to
symmetry. When r′ finds two robots on its left batch with light symmetry that
are equidistant from it, it will change its light to switch off and start executing
BecomeLeader(). If the robots of Bj+1 are symmetric with respect to L and
L does not pass through the center of any robot of Bj+1 (Case 3), then rj1 and rj2
will change their lights to failed. Then the robots of Bj+1 execute movements
as described in the previous section.

Executing BecomeLeader()
When a robot finds itself eligible to become leader, it sets its light to switch off
and executes BecomeLeader() in order to fulfill all the additional conditions
of a leader configuration. A robot with light switch off will not do anything
if it sees any robot with light other than off in its own batch or an adjacent
batch, i.e., it will wait for those robots to turn their lights to off (See line 4
of Algorithm 3). A robot r that finds itself eligible to become leader, is either
(Case 1) a terminal robot of a batch, or (Case 2) a middle robot of a batch. The
first objective is to move vertically so that all robots are in H ∈ {HO

U (r),HO
B(r)}

and at least 2 units away from LH(r). In case 1, the robot has no obstruction
to move vertically. But in case 2, it will have to move horizontally left first. We
can show that it will have enough room to move and place itself at a position
where there is no obstruction to move vertically. After the vertical movement, it
will have to move horizontally so that all other robots are in HO

R(r). But it will
not try to do this in one go, as we have to also ensure that all other robots turn
their lights to off. It will first move left to align itself with its nearest left batch,
say Bj . From there it can see all robots of Bj−1 and Bj+1, and it will wait until
all robots of Bj−1 and Bj+1 turn their lights to off. Then it will move to align
itself with Bj−1 and so on. Eventually all the conditions of a leader configuration
will be satisfied and it will change its light to leader.

356 K. Bose et al.

Algorithm 3: Phase2
1 Procedure Phase2()
2 r ← myself
3 if r.light �= switch off then
4 if there is a robot with light switch off in my batch or an adjacent batch then
5 r.light ← off
6 else if r.light = off or interior then
7 if both terminal robots of my left batch have lights set to failed and the

non-terminal robots (if any) have lights set to off then
8 r.light ← ready
9 else if both terminal robots of my left batch have lights set to symmetry and

the non-terminal robots (if any) have lights set to off then
10 if the two terminal robots of my left batch are equidistant from me then
11 r.light ← switch off

12 else if r.light = terminal then
13 ElectLeader()
14 else if r.light = failed then
15 if all robots of my right batch have their lights set to ready then
16 r.light ← move

17 else if r.light = ready then

18 if there is a robot r′ in HO
L (r) with light set to ready then

19 d ← the horizontal distance of r′ from me
20 Move d units towards left

21 else if both terminal robots of my left batch have lights set to move then
22 d ← the horizontal distance of my left batch from me

23 if d > 1 + 1
n then

24 Move d − 1 − 1
n units towards left

25 else if d = 1 + 1
n then

26 if there is no robot with light ready in HO
R(r) then

27 if I am terminal then
28 ElectLeader()
29 else
30 r.light ← off

31 else
32 BecomeLeader()

33 Procedure ElectLeader()
34 if I am in the first batch then
35 L ← the horizontal line passing through the mid-point of the line segment joining

me and the other robot (with light terminal) on LV (r)
36 else
37 L ← the horizontal line passing through the mid-point of the line segment joining

the terminal robots (with lights move) of my left batch

38 if my right batch is symmetric with respect to L then
39 if L passes through the center of a robot of the right batch then
40 r.light ← symmetry
41 else
42 r.light ← failed

43 else if I am in the dominant half with respect to L and my right batch then
44 r.light ← switch off

3.4 Pattern Formation from Leader Configuration

In a leader configuration, the robots can reach an agreement on a common
coordinate system. All non-leader robots in a leader configuration lie on one of
the open half-planes delimited by the horizontal line passing through the leader

Arbitrary Pattern Formation by Opaque Fat Robots with Lights 357

rl. This half-plane will correspond to the positive direction of Y -axis or ‘up’.
Therefore, we have an agreement on ‘up’, ‘down’, ‘left’ and ‘right’. Now the
origin will be fixed at a point such that the coordinates of rl are (0,−2). Now
the given pattern can be embedded on the plane with respect to the common
coordinate system. Let us call these points the target points. Order these points
as t0, t1, . . . , tn−1 from top to bottom, and from right to left in case multiple
robots on the same horizontal line. Order the robots as rl = r0, r1, . . . , rn−1

from bottom to up, and from left to right in case multiple robots on the same
horizontal line. The non-leader robots will move sequentially according to this
order and place themselves on LH(rl). Then sequentially r1, . . . , rn−1 will move
to the target points t0, . . . , tn−2, and finally r0 will move to tn−1. Pseudocode of
the algorithm is given in Algorithm 4.

Algorithm 4: Pattern Formation from Leader Configuration
Input : The configuration of robots visible to me.

1 Procedure PatternFormationFromLeaderConfiguration()
2 r ← myself
3 rl ← the robot with light leader
4 if r.light = off then
5 if (rl ∈ HO

B(r)) and (there is no robot in HO
B(r) ∩ HO

U (rl)) and (r is leftmost on
LH(r)) then

6 if there are no robots on LH(rl) other than rl then
7 if there is a robot with light done then
8 if I am at tn−2 then
9 r.light ← done

10 else
11 Move to tn−2

12 else
13 Move to (1,−2)

14 else if there are i robots on LH(rl) other than rl at (1,−2), . . . , (i,−2)
then

15 Move to (i + 1,−2)
16 else if there are i robots on LH(rl) other than rl at

(n − i,−2), . . . , (n − 1,−2) then
17 if I am at tn−i−2 then
18 r.light ← done
19 else
20 Move to tn−i−2

21 else if rl ∈ LH(r) and HO
U (r) has no robots with light off then

22 if I am at (i,−2) then
23 Move to ti−1

24 else if r.light = leader then
25 if there are no robots with light off then
26 if I am at tn−1 then
27 r.light ← done
28 else
29 Move to tn−1

4 Conclusion

Using 4 extra colors, we have extended the results of [4] to the more realistic
setting of fat robots with non-rigid movements and also improved the move
complexity to Θ(n), which is asymptotically optimal. Techniques used in Phase
2 of our algorithm can be used to solve Leader Election without movement
for luminous opaque point robots for any initial configuration where Leader

358 K. Bose et al.

Election is solvable in full visibility model, except for the configuration where
all robots are collinear. An interesting question is whether there is a no movement
Leader Election algorithm for (luminous and opaque) fat robots. Another
open question is whether it is possible to solve APF for opaque (point or fat)
robots with only agreement in chirality.

Acknowledgements. The first two authors are supported by NBHM, DAE, Govt. of
India and CSIR, Govt. of India, respectively. We would like to thank the anonymous
reviewers for their valuable comments which helped us to improve the quality and
presentation of the paper.

References

1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: Proceedings of the 2013 ACM
symposium on Principles of distributed computing, pp. 250–259. ACM (2013)

2. Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation
on infinite grid by asynchronous oblivious robots. In: Das, G.K., Mandal, P.S.,
Mukhopadhyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp.
354–366. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10564-8 28

3. Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation by
opaque fat robots with lights. CoRR abs/1910.02706 (2019). http://arxiv.org/abs/
1910.02706

4. Bose, K., Kundu, M.K., Adhikary, R., Sau, B.: Arbitrary pattern formation by
asynchronous opaque robots with lights. In: Censor-Hillel, K., Flammini, M. (eds.)
SIROCCO 2019. LNCS, vol. 11639, pp. 109–123. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24922-9 8

5. Bramas, Q., Tixeuil, S.: Arbitrary pattern formation with four robots. In: Izumi,
T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 333–348. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 22

6. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous arbitrary pattern forma-
tion: the effects of a rigorous approach. Distrib. Comput., 1–42 (2018). https://
doi.org/10.1007/s00446-018-0325-7

7. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the
plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009). https://doi.org/10.1007/
11945529 25

8. Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern for-
mation problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 267–281. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15763-9 26

9. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3),
412–447 (2008). https://doi.org/10.1016/j.tcs.2008.07.026

10. Lukovszki, T., Meyer auf der Heide, F.: Fast collisionless pattern formation by
anonymous, position-aware robots. In: Aguilera, M.K., Querzoni, L., Shapiro, M.
(eds.) OPODIS 2014. LNCS, vol. 8878, pp. 248–262. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-14472-6 17

https://doi.org/10.1007/978-3-030-10564-8_28
http://arxiv.org/abs/1910.02706
http://arxiv.org/abs/1910.02706
https://doi.org/10.1007/978-3-030-24922-9_8
https://doi.org/10.1007/978-3-030-24922-9_8
https://doi.org/10.1007/978-3-030-03232-6_22
https://doi.org/10.1007/s00446-018-0325-7
https://doi.org/10.1007/s00446-018-0325-7
https://doi.org/10.1007/11945529_25
https://doi.org/10.1007/11945529_25
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1007/978-3-642-15763-9_26
https://doi.org/10.1016/j.tcs.2008.07.026
https://doi.org/10.1007/978-3-319-14472-6_17

Arbitrary Pattern Formation by Opaque Fat Robots with Lights 359

11. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new direc-
tions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.)
IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005). https://doi.
org/10.1007/11603771 1

12. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999). https://doi.org/
10.1137/S009753979628292X

13. Vaidyanathan, R., Sharma, G., Trahan, J.L.: On fast pattern formation by
autonomous robots. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol.
11201, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03232-6 14

14. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010).
https://doi.org/10.1016/j.tcs.2010.01.037

15. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited
visibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol.
8179, pp. 201–212. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03578-9 17

16. Yamauchi, Y., Yamashita, M.: Randomized pattern formation algorithm for asyn-
chronous oblivious mobile robots. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol.
8784, pp. 137–151. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45174-8 10

https://doi.org/10.1007/11603771_1
https://doi.org/10.1007/11603771_1
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1007/978-3-030-03232-6_14
https://doi.org/10.1007/978-3-030-03232-6_14
https://doi.org/10.1016/j.tcs.2010.01.037
https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-662-45174-8_10
https://doi.org/10.1007/978-3-662-45174-8_10

Combinatorial Algorithms

Greedy Universal Cycle Constructions
for Weak Orders

Marsden Jacques(B) and Dennis Wong(B)

State University of New York, Incheon, Korea
marsdenfernand.jacques@stonybrook.edu, cwong@uoguelph.ca

Abstract. A weak order is a way to rank n objects where ties are
allowed. In this paper, we extend the prefer-larger and the prefer-opposite
algorithms for de Bruijn sequences to provide the first known greedy uni-
versal cycle constructions for weak orders.

Keywords: Universal cycle · Greedy algorithm · Weak orders ·
Prefer-larger · Prefer-opposite

1 Universal Cycles for Weak Orders

A universal cycle for a set S is a cyclic sequence of length |S| whose substrings
of length n encode |S| distinct objects in S. When S is the set of k-ary strings of
length n, then a universal cycle for S is also known as a de Bruijn sequence. As
an example, the cyclic sequence 002212011 is a universal cycle (also known as de
Bruijn sequence) for the set of 3-ary strings of length 2; the 9 unique substrings
of length 2 when considered cyclicly are:

00, 02, 22, 21, 12, 20, 01, 11, 10.

This sequence is known as the prefer-larger de Bruijn sequence and can be
constructed using a simple greedy algorithm [6,14]. The prefer-larger algorithm
starts with the sequence 0n and applies a simple rule which can be summarized
as follows:

Greedily append the largest possible symbol such that the substrings of
length n in the resulting sequence are distinct.

The greedy algorithm always terminates with a length kn + n − 1 sequence that
has the suffix 0n−1. A de Bruijn sequence is thus obtained by removing the suffix
0n−1.

Since the discovery of the prefer-larger de Bruijn sequence, similar algorithms
have been proposed with different symbol insertion criteria [1–3,5,7,20]. One of
the well-known greedy algorithm is the prefer-opposite algorithm. The prefer-
opposite algorithm was first proposed by Alkahim in [1] for the construction
of a binary de Bruijn sequence. The algorithm was generalized to construct a
k-ary de Bruijn sequence by Alkahim and Sawada [15,16]. The prefer-opposite
algorithm starts with the sequence 0n and applies a simple rule which can be
summarized as follows:
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 363–370, 2020.
https://doi.org/10.1007/978-3-030-39219-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_29&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_29

364 M. Jacques and D. Wong

Greedily append the value t mod k such that t is the least possible value
that is greater than the last symbol and the substrings of length n in the
resulting sequence are distinct.

The greedy algorithm always terminates with a length kn+n−k+1 sequence that
has the suffix (k − 1)n−1(k − 2)n−1 · · · 0n−1 and missing the length n substrings
tn where t ∈ {1, 2, . . . , k−1}. A de Bruijn sequence is thus obtained by inserting
the symbols t ∈ {1, 2, . . . , k − 1} after the length n − 1 substrings tn−1 in the
suffix (k − 1)n−1(k − 2)n−1 · · · 0n−1 and also removing the suffix 0n−1. As an
example, the algorithm generates the cyclic sequence 001202211 when n = 2
and k = 3.

De Bruijn sequences are often used in education of discrete mathematics and
theoretical computer science, including the Concrete Mathematics textbook by
Graham, Knuth, and Patashnik [10] and The Art of Computer Programming by
Knuth [13]. Historically, they have been referred to by many different names and
have had many interesting applications, especially in the area of cryptography
and communication systems. For example, Stein offered an interesting survey
in the ‘Memory Wheels’ chapter in Mathematics: The Man-Made Universe [19].
An interesting problem in this research area is to generalize the idea of de Bruijn
sequences to construct universal cycles for interesting combinatorial objects [12].

Table 1. The 13 possible ways to rank vanilla, chocolate and strawberry flavour ice
cream.

First favorite(s) Second favorite(s) Third favorite(s) Weak order W (n)

Vanilla, Chocolate, Strawberry – – 1 ≡ 2 ≡ 3 000

Vanilla, Chocolate Strawberry – 1 ≡ 2 ≺ 3 001

Vanilla, Strawberry Chocolate – 1 ≡ 3 ≺ 2 010

Vanilla Chocolate, Strawberry – 1 ≺ 2 ≡ 3 011

Chocolate, Strawberry Vanilla – 2 ≡ 3 ≺ 1 100

Chocolate Vanilla, Strawberry – 2 ≺ 1 ≡ 3 101

Strawberry Vanilla, Chocolate – 3 ≺ 1 ≡ 2 110

Vanilla Chocolate Strawberry 1 ≺ 2 ≺ 3 012

Vanilla Strawberry Chocolate 1 ≺ 3 ≺ 2 021

Chocolate Vanilla Strawberry 2 ≺ 1 ≺ 3 102

Strawberry Vanilla Chocolate 3 ≺ 1 ≺ 2 120

Chocolate Strawberry Vanilla 2 ≺ 3 ≺ 1 201

Strawberry Chocolate Vanilla 3 ≺ 2 ≺ 1 210

In this paper, we extend the prefer-larger algorithm and the prefer-opposite
algorithm to construct universal cycles for weak orders. An ordering on how n
objects can be ranked when ties are allowed is known as a weak order. It can also
be understood as a way to rank favourites. As an example, most people have a
hard time picking a specific ice cream as their favourite. Table 1 lists out all 13
possible ways to rank vanilla, chocolate and strawberry flavour ice cream when
ties are allowed.

Greedy Universal Cycle Constructions for Weak Orders 365

The number of weak orders of order n is known as the ordered Bell num-
ber or Fubini number and the enumeration sequence is A000670 in the Online
Encyclopedia of Integer Sequences [18]. The first six terms in this enumeration
sequence are 1, 3, 13, 75, 541, and 4683 respectively.

Formally, a weak order for n objects is a binary relation � that is reflexive,
anti-symmetric and transitive. We say x ≡ y if x � y and y � x, and we
say x ≺ y if x � y but y � x. A weak order over the set of n objects Σ =
{1, 2, · · · , n} can be written as a permutation of the n objects with consecutive
objects separated by either ≡ or ≺ [13]. Let the height of an object be defined
as the number of symbols that precedes it in the weak order. Let W (n) denote
the set of weak orders under the height notation. In [4], Diaconis and Graham
introduced a notation to represent a weak order by the string h1h2 · · · hn, where
hj denotes the height of the competitor j, and proved that universal cycles for
weak orders exist under this notation. Table 1 lists out the weak orders (column
4) and their corresponding strings under the height notation (column 5) with
the symbols 1, 2 and 3 representing vanilla, chocolate and strawberry flavour ice
cream respectively. Note that the set of weak orders under the height notation
is closed under rotation.

A more detailed proof on the existence of universal cycles for weak orders
under the height notation is provided by Horan and Hurlbert in [11]. The problem
of finding an efficient algorithm to construct a universal cycle for weak orders is
listed as an open problem by Diaconis and Ruskey in [12] (Problem 2 of Problem
477) and has remained open.1 There is, however, no known simple construction
for such universal cycles for all n, albeit for an inefficient one. In this paper,
we provide the first known greedy universal cycle constructions for weak orders
in W (n) by extending the prefer-larger and the prefer-opposite algorithms to
W (n). The following two simple greedy algorithms generate universal cycles for
weak orders in W (n) starting with the sequence 0n:

Prefer-Larger Algorithm for W (n): Greedily append the largest pos-
sible symbol such that the substrings of length n in the resulting sequence
are distinct and in W (n);

Prefer-Opposite Algorithm for W (n): Greedily append the value
t mod n such that t is the least possible value that is greater than the
last symbol and the substrings of length n in the resulting sequence are
distinct and in W (n).

As an example, the universal cycles generated by the prefer-larger algorithm and
the prefer-opposite algorithm for n = 3 are 0001201102101 and 0001201011021
respectively. The 13 unique weak orders of length 3 for each sequence when
considered cyclicly are:

1 Sawada and Wong have recently discovered a new efficient algorithm to generate a
universal cycle for weak orders for all n in [17] under another notation by applying
the framework in [9].

366 M. Jacques and D. Wong

Algorithm 1. The prefer-larger algorithm that generates a universal cycle for
weak orders.
1: procedure Prefer-Larger
2: b1b2 · · · bn ← 0n

3: do
4: Print(b1)
5: for z from n − 1 to 0 do
6: if b2b3 · · · bnz ∈ W (n) and has not appeared before then
7: b1b2 · · · bn ← b2b3 · · · bnz
8: break
9: while b1b2 · · · bn �= 0n

Algorithm 2. The prefer-opposite algorithm that generates a universal cycle
for weak orders.
1: procedure Prefer-Opposite
2: b1b2 · · · bn ← 0n

3: do
4: Print(b1)
5: for z from 1 to n − 1 do
6: if b2b3 · · · bn((bn +z) mod n) ∈ W (n) and has not appeared before then
7: b1b2 · · · bn ← b2b3 · · · bn((bn + z) mod n)
8: break
9: while b1b2 · · · bn �= 0n

Prefer-Larger Sequence: 000, 001, 012, 120, 201, 011, 110, 102, 021,
210, 101, 010, 100;

Prefer-Opposite Sequence: 000, 001, 012, 120, 201, 010, 101, 011, 110,
102, 021, 210, 100.

Pseudocode of the prefer-larger algorithm and the prefer-opposite algorithm
for weak orders are given in Algorithms 1 and 2 respectively.

Theorem 1. The prefer-larger algorithm generates a universal cycle for weak
orders under the height notation for all n.

Theorem 2. The prefer-opposite algorithm generates a universal cycle for weak
orders under the height notation for all n.

The rest of the paper is outlined as follows. In Sect. 2, we prove Theorem 1.
Then in Sect. 3, we prove Theorem 2. We conclude our paper in Sect. 4.

2 Proof of Theorem 1

Before we prove Theorem 1, we first prove the following lemmas for the prefer-
larger universal cycle for weak orders.

Greedy Universal Cycle Constructions for Weak Orders 367

Lemma 1. The prefer-larger algorithm terminates after visiting the weak order
10n−1.

Proof. Assume the algorithm terminates after visiting some string b1b2 · · · bn �=
10n−1. Let m be the number of unique weak orders in W (n) that have the prefix
b2b3 · · · bn. As the algorithm terminates after visiting b1b2 · · · bn, it follows by
the greedy algorithm that all m weak orders with the prefix b2b3 · · · bn appear
previously in the sequence. It further follows that there are m + 1 weak orders
with the suffix b2b3 · · · bn appear in the sequence. However, observe that since
weak orders in W (n) are closed under rotation, the number of unique weak orders
in W (n) with the suffix b2b3 · · · bn is m. Thus by the pigeonhole principle, there
are two duplicated weak orders in W (n) with the suffix b2b3 · · · bn that appear
in the sequence, a contradiction.

Lemma 2. If b1b2 · · · bn ∈ W (n) does not appear in the prefer-larger sequence,
then b2b3 · · · bn0 also does not appear in the prefer-larger sequence.

Proof. Clearly the string b2b3 · · · bn0 does not appear in the sequence if it is not
a weak order in W (n). Now assume b2b3 · · · bn0 ∈ W (n), we prove the lemma
by contrapositive. Suppose the weak order b2b3 · · · bn0 �= 0n is a substring in the
sequence. Therefore by the greedy algorithm, all weak orders b2b3 · · · bnx ∈ W (n)
with x > 0 appear before b2b3 · · · bn0 in the sequence. Since weak orders in W (n)
are closed under rotation, the number of weak orders in W (n) with the suffix
b2b3 · · · bn is the same as the number of weak orders with the prefix b2b3 · · · bn.
Furthremore, since each weak order before b2b3 · · · bnx in the sequence is unique
and has the suffix b2b3 · · · bn, it thus implies that all weak orders in W (n) with
the suffix b2b3 · · · bn also appear in the sequence, which includes the weak order
b1b2 · · · bn.

Lemma 3. If b1b2 · · · bn ∈ W (n) with b1 a unique but not a maximal symbol
in b1b2 · · · bn, then the non-existence of b1b2 · · · bn in the prefer-larger sequence
implies b2b3 · · · bnb1 also does not appear in the prefer-larger sequence.

Proof. Assume by contradiction that b2b3 · · · bnb1 exists in the sequence but
b1b2 · · · bn does not exist in the sequence with b1 a unique symbol but not a
maximal symbol in b1b2 · · · bn. Observe that since b1 is unique and is not the
maximal symbol in b1b2 · · · bn, replacing b1 with any other symbol creates a
string that is not a weak order in W (n). Therefore, the weak order that precedes
b2b3 · · · bnb1 is b1b2 · · · bn, a contradiction.

We now prove Theorem 1 using the lemmas we proved in this section.

Theorem 1. The prefer-larger algorithm generates a universal cycle for weak
orders under the height notation for all n.

Proof. Since the greedy algorithm makes sure that there is no duplicated length
n substring in the prefer-larger sequence, it suffices to show that each weak order
in W (n) appears as a substring in the sequence.

368 M. Jacques and D. Wong

Assume by contradiction that there exists a weak order b1b2 · · · bn ∈ W (n)
that does not appear in the sequence and b1b2 · · · bn �= 0n. Let br > 0 be
the first symbol in b1b2 · · · bn which is not unique or is a maximal symbol
in b1b2 · · · bn. Such a symbol always exists since b1b2 · · · bn �= 0n. Since weak
orders in W (n) are closed under rotation, the string brbr+1 · · · bnb1b2 · · · br−1

is a weak order in W (n). By repeatedly applying Lemma 3, the weak order
brbr+1 · · · bnb1b2 · · · br−1 also does not exist in the sequence. Furthermore by
Lemma 2, the string br+1br+2 · · · bnb1b2 · · · br−10 is a weak order in W (n) and
also does not exist in the sequence. Recursively applying the same argument
implies that the weak order 10n−1 also does not exist in the sequence, a contra-
diction to Lemma 1. Therefore, each weak order in W (n) appears as a substring
in the prefer-larger sequence and thus the sequence is a universal cycle for W (n).

3 Proof of Theorem 2

The proof of Theorem 2 is similar to the proof of Theorem 1. Before we prove
Theorem 2, we first prove the following lemmas for the prefer-opposite universal
cycle for weak orders.

Lemma 4. The prefer-opposite algorithm terminates after visiting the weak
order 10n−1.

Proof. The proof is similar to the proof of Lemma 1 and hence is omitted.

Lemma 5. If b1b2 · · · bn ∈ W (n) does not appear in the prefer-opposite sequence
and bn > 0, then b2b3 · · · bn(bn − 1) also does not appear in the prefer-opposite
sequence.

Proof. The proof is similar to the proof of Lemma 2. Clearly the string
b2b3 · · · bn(bn − 1) does not appear in the sequence if it is not a weak order
in W (n). Now assume b2b3 · · · bn(bn − 1) ∈ W (n), we prove the lemma by con-
trapositive. Suppose the weak order b2b3 · · · bn(bn − 1) �= 0n is a substring in the
sequence. Therefore by the greedy algorithm, all weak orders b2b3 · · · bnx ∈ W (n)
with x �= bn − 1 appear before b2b3 · · · bn(bn − 1) in the sequence. Since weak
orders in W (n) are closed under rotation, the number of weak orders in W (n)
with the suffix b2b3 · · · bn is the same as the number of weak orders with the
prefix b2b3 · · · bn. Furthremore, since each weak order before b2b3 · · · bnx in the
sequence is unique and has the suffix b2b3 · · · bn, it thus implies that all weak
orders in W (n) with the suffix b2b3 · · · bn also appear in the sequence, which
includes the weak order b1b2 · · · bn.

Lemma 6. If b1b2 · · · bn ∈ W (n) with b1 a unique but not a maximal symbol in
b1b2 · · · bn, then the non-existence of b1b2 · · · bn in the prefer-opposite sequence
implies b2b3 · · · bnb1 also does not appear in the prefer-opposite sequence.

Proof. The proof is similar to the proof of Lemma 3 and hence is omitted.

We now prove Theorem 2 using the lemmas we proved in this section.

Greedy Universal Cycle Constructions for Weak Orders 369

Theorem 2. The prefer-opposite algorithm generates a universal cycle for weak
orders under the height notation for all n.

Proof. Since the greedy algorithm makes sure that there is no duplicated length
n substring in the prefer-opposite sequence, it suffices to show that each weak
order in W (n) appears as a substring in the sequence.

Assume by contradiction that there exists a weak order b1b2 · · · bn ∈ W (n)
that does not appear in the sequence and b1b2 · · · bn �= 0n. Let br > 0 be
the first symbol in b1b2 · · · bn which is not unique or is a maximal symbol
in b1b2 · · · bn. Such a symbol always exists since b1b2 · · · bn �= 0n. Since weak
orders in W (n) are closed under rotation, the string brbr+1 · · · bnb1b2 · · · br−1

is a weak order in W (n). By repeatedly applying Lemma 6, the weak order
brbr+1 · · · bnb1b2 · · · br−1 also does not exist in the sequence. Furthermore by
Lemma 5, the string br+1br+2 · · · bnb1b2 · · · br−1(br−1 − 1) is a weak order in
W (n) and also does not exist in the sequence, where br−1 − 1 < br. Recursively
applying the same argument implies that the weak order 10n−1 also does not
exist in the sequence, a contradiction to Lemma 4. Therefore, each weak order
in W (n) appears as a substring in the prefer-opposite sequence and thus the
sequence is a universal cycle for W (n).

4 Conclusion

This paper extends the prefer-larger algorithm and the prefer-opposite algorithm
to provide the first known greedy universal cycle constructions for weak orders.
Future avenues of this research include investigating the following open problems.

1. The prefer-larger de Bruijn sequence is the k-ary complement of the lexico-
graphically smallest de Bruijn sequence (also known as the GrandDaddy de
Bruijn sequence and the Ford sequence), which can be constructed efficiently
by a necklace concatenation approach in constant amortized time per sym-
bol [8]. Naturally we would like to devise an efficient algorithm to generate
the prefer-larger universal cycle for weak orders.

2. Another natural extension of this research is to generalize the greedy de Bruijn
sequence constructions to generate universal cycles for other interesting com-
binatorial objects.

Acknowledgements. This research is supported by the MSIT (Ministry of Science
and ICT), Korea, under the ICT Consilience Creative program (IITP-2019-2011-1-
00783) supervised by the IITP (Institute for Information & communications Technology
Planning & Evaluation).

The authors would like to thank Joe Sawada for his comments that greatly improve
this paper. They would also like to thank Kyounga Woo for the fruitful discussions
related to this research.

References

1. Alhakim, A.: A simple combinatorial algorithm for de Bruijn sequences. Am. Math.
Mon. 117(8), 728–732 (2010)

370 M. Jacques and D. Wong

2. Alhakim, A.: Spans of preference functions for de Bruijn sequences. Discrete Appl.
Math. 160(7–8), 992–998 (2012)

3. Alhakim, A., Sala, E., Sawada, J.: Revisiting the prefer-same and prefer-opposite
de Bruijn sequence constructions. Submitted manuscript (2019)

4. Diaconis, P., Graham, R.: Products of universal cycles. In: Demaine, E., Demaine,
M., Rodgers, T. (eds.) A Lifetime of Puzzles, pp. 35–55. A K Peters (2008)

5. Eldert, C., Gray, H.J., Gurk, H.M., Rubinoff, M.: Shifting counters. AIEE Trans.
77, 70–74 (1958)

6. Ford, L.R.: A cyclic arrangement of m-tuples. Report No. P-1071, RAND Corpo-
ration (1957)

7. Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms.
SIAM Rev. 24(2), 195–221 (1982)

8. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn
sequences. Discrete Math. 23, 207–210 (1978)

9. Gabric, D., Sawada, J., Williams, A., Wong, D.: A successor rule framework for
constructing k-ary de Bruijn sequences and universal cycles. IEEE Trans. Inf. The-
ory 66, 679–687 (2019)

10. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science, 2nd edn. Addison-Wesley Professional, Boston (1994)

11. Horan, V., Hurlbert, G.: Universal cycles for weak orders. SIAM J. Discrete Math.
27(3), 1360–1371 (2013)

12. Jackson, B., Stevens, B., Hurlbert, G.: Research problems on Gray codes and
universal cycles. Discrete Math. 309(17), 5341–5348 (2009)

13. Knuth, D.E.: The Art of Computer Programming, Volume 4A, Combinatorial Algo-
rithms. Addison-Wesley Professional, Boston (2011)

14. Martin, M.H.: A problem in arrangements. Bull. Am. Math. Soc. 40, 859–864
(1934)

15. Mütze, T., Sawada, J., Williams, A.: The Combinatorial Object Server++. http://
combos.org/index.html

16. Sawada, J.: Personal communication
17. Sawada, J., Wong, D.: An efficient universal cycle construction for weak orders.

Submitted manuscript (2019)
18. Sloane, N.: The on-line encyclopedia of integer sequences. http://oeis.org. Sequence

A000670
19. Stein, S.K.: Mathematics: The Man-Made Universe, 3rd edn. W. H. Freeman and

Company, San Francisco (1994)
20. Wang, X., Wong, D., Zhang, W.: A simple greedy de Bruijn sequence construction.

In: Proceedings of the 10th SEquences and Their Applications (SETA), Hong Kong
(2018)

http://combos.org/index.html
http://combos.org/index.html
http://oeis.org

A New Model in Firefighting Theory

Rolf Klein1, David Kübel1(B), Elmar Langetepe1, Jörg-Rüdiger Sack2 ,
and Barbara Schwarzwald1

1 Department of Computer Science, Universität Bonn, 53115 Bonn, Germany
{rklein,dkuebel,schwarzwald}@uni-bonn.de,

elmar.langetepe@cs.uni-bonn.de
2 School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada

sack@scs.carleton.ca

Abstract. Continuous and discrete models [1,5] for firefighting prob-
lems are well-studied in Theoretical Computer Science. We introduce a
new, discrete, and more general framework based on a hexagonal cell
graph to study firefighting problems in varied terrains. We present three
different firefighting problems in the context of this model; for two of
which, we provide efficient polynomial time algorithms and for the third,
we show NP-completeness. We also discuss possible extensions of the
model and their implications on the computational complexity.

Keywords: Cellular automaton · Combinatorial algorithms ·
Computational complexity · Discrete geometry · Fire spread models ·
Fire behaviour modeling · Firefighting · Forest fire simulation · Frontal
propagation · Graph algorithms · Graph theory · NP-completeness ·
Undecidability

1 Introduction and Model Definition

Fighting multiple wildfires simultaneously or predicting their propagation
involves many parameters one can neither foresee nor control. For the study of
problems in this context, several models have been suggested and investigated
in different communities.

In Theoretical Computer Science or Mathematics, models have been investi-
gated, where fire spreads in the Euclidean plane or along edges of a graph; see
e.g. [1,5]. Research in these models usually focuses on proving tight lower and
upper bounds on what can be achieved with limited resources: In continuous
models, researchers have been analysing the building speed of barriers which
slow down or even stop the fire’s expansion; in discrete models, the number of
firefighters available to block/contain/extinguish the fire has been considered.
Tight bounds are only available for simple cases in these models, e.g. [8]. For a
survey, we refer to [4].

This work has been supported in part by DFG grant Kl 655/19 as part of a DACH
project and by NSERC under grant no. RGPIN-2016-06253.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 371–383, 2020.
https://doi.org/10.1007/978-3-030-39219-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_30&domain=pdf
http://orcid.org/0000-0001-5936-1319
http://orcid.org/0000-0002-9535-9950
https://doi.org/10.1007/978-3-030-39219-2_30

372 R. Klein et al.

In other communities, models have been developed to predict a fire’s prop-
agation in a given terrain. To make the forecast as realistic as possible, some
models incorporate thermodynamic or chemical parameters as well as weather
conditions including wind speed and direction. Some of the models are capable
to distinguish between fires at different heights such as ground fires and crown
fires. For a survey on theoretical and (semi-) empirical models, see [11].

We introduce a new model with the aim to develop a simple, theoretical
framework for fire propagation forecast in large varied terrains and prove some
initial results.

Definition 1 (basic hexagonal model). Given a partition of the plane into
hexagonal cells. The state of cell c at time t is given by two non-negative integers,
x(c, t) and y(c, t). Cell c is called burning at time t if x(c, t) = 0 and y(c, t) > 0
hold; alive if x(c, t) > 0 and y(c, t) > 0; or dead if y(c, t) = 0 holds. At the
transition from time t to t + 1, the state of cell c changes as follows:

– If c is alive at time t, then x(c, t + 1) := max{x(c, t) − b, 0}, where b denotes
the number of direct neighbours of c burning at time t.

– If c is burning at time t, then y(c, t + 1) := y(c, t) − 1.

Intuitively, x and y describe the (diminished) resistance against ignition and
the (remaining) fuel of an individual cell at time t, respectively. Choosing suitable
values for the cells, one can model natural properties of a given terrain: different
types of ground and fuel; natural obstacles such as mountains or rivers. A cell
of dry grassland might get small integers for both values such that it catches
fire easily and burns down quickly. In contrast, we expect both values to be
comparatively high for a moist forest such that the forest keeps burning for
quite a while, once it caught fire. Figure 1 shows an example how a fire expands
over time from a single source in a small lattice.

By this definition, our basic hexagonal model is a cellular automaton [12],
whose cells can have state sets of different cardinality. We observe that in the
basic hexagonal model a dead cell can never become alive or burning again. This
is a major difference to cellular automata like Conway’s Game of Life [6] or
Wolframs model [13]. Another difference is that cells can die from overpopulation
in Conway’s Game of Life, for which there is no equivalent rule in our model.

Organization of the Paper. The rest of this paper is organized as follows.
Section 2 discusses three problems in context of the basic hexagonal model and
their algorithmic solutions. Variants of the basic model will be discussed in
Sect. 3. We conclude with Sect. 4.

2 Results for the Basic Hexagonal Model

There is a multitude of interesting questions one can formulate within this model.
In this paper, we will address the following three problems.

Suppose we restrict the hexagonal grid to a rectangular domain R consisting
of n cells. Let us assume that initially all cells along the right boundary of R are

A New Model in Firefighting Theory 373

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

0;2

5;2 5;2

1;2

4;2 5;2

5;2 5;2

(a) t = 0

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

0;2

0;1

5;2 5;2

2;2

2;2 5;2

4;2 4;2

(b) t = 1

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

0;0

0;10;2

4;2 4;2

2;2

1;2 1;2 5;2

(c) t = 2

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

3;2 3;2 3;2 3;2

0;0

0;00;1

0;2 0;2

2;2 2;2

2;2 1;2

5;2

(d) t = 3

2;2 2;2 2;2 2;2

2;2 2;2 2;2 2;2

2;2 2;2 2;2 2;2

2;2 2;2 2;2 2;2

0;0 0;0

0;0

0;2 0;2

0;1 0;1

1;2 1;2 3;2 3;2

4;2

(e) t = 4

1;2 1;2 1;2 1;2

1;2 1;2 1;2 1;2

1;2 1;2 1;2 1;2

1;2 1;2 1;2 1;2

0;0 0;0

0;0 0;0 0;0

0;2

0;1 0;1

2;2 2;2

2;2

(f) t = 5

1;2 1;2 1;2 1;2

1;2 1;2 1;2 1;2

1;2 1;2 1;2 1;2

1;2 1;2 1;2 1;2

0;0

0;0 0;0 0;0 0;0

0;0 0;0 0;0

0;1 0;2

(g) t = 7

1;2 1;2 1;2 1;2

1;2 1;2 1;2 1;2

1;2 1;2 1;2 1;2

1;2 1;2 1;2 1;2

0;0 0;0 0;0 0;0

0;0 0;0 0;0 0;0

0;0 0;0 0;0

(h) t = 10

Fig. 1. Fire spreading in a hexagonal lattice. The x- and y-values are given in the
cells as pairs of the form x; y at time t. The state of the cells is indicated by colours:
Burning cells are red, alive cells are white, and dead cells are grey. At time t = 10, the
propagation stops and several living cells remain. (Color figure online)

on fire and all cells along the left boundary of R represent a village that must
be protected from the fire. To this end, we want to connect the upper to the
lower boundary of R by a path π of cells that separates the village on the left
and the fire approaching from the right; see Fig. 2a. To make π fire-resistant, we
can fortify the cells on π by increasing their x-values.

In the first version of this problem, all cells on π will have their x-values raised
by the same amount k. This corresponds to a fly-over by aircraft that douses
each cell with the same amount of water. We want to compute the minimum k
for which such a protecting path π exists. In Subsect. 2.1, we present a solution
that runs in time O(n log n log Y) where Y is the maximum sum of y-values of
direct neighbours over all cells in R. Our algorithm is based on a fast propagation
routine that is interesting in its own right for simulation purposes.

In the second version of the above problem, firefighters can increase x-values
of cells individually. Now we are interested in finding a separating path π for
which the sum of these x-increments of cells on π is minimal. Although this
appears to be a shortest-path problem, we have not been able to apply a classic
graph algorithm like Dijkstra for reasons that will be explained in Subsect. 2.2.
Our algorithm runs in time O(n

√
n log n), provided that all cells have identical

y-values and each x-value is upper bounded by 2y + 1.
In the third version, we no longer assume that cells along the right boundary

of R are on fire, while cells along the left edge have to be protected. Instead,
the cells of the village are given by a set T and the fire is allowed to start at
cells of a set F ; see Fig. 2b. We now ask for a subset of F with m cells that
will, when put on fire, burn all cells of the village to the ground. More precisely,

374 R. Klein et al.

(a) A path π (grey cells) prevents a fire
(red cells) from reaching the village (blue
cells) at the left boundary of R.

(b) Given two set of cells F (red) and T
(blue). Can m cells out of F burn down
all cells of T , when put on fire?

Fig. 2. Problem variants on a rectangular finite domain R. (Color figure online)

we are interested in answering the following decision problem: Are there m cells
in F which, when put on fire, will eventually ignite all cells in T ? In Subsect. 2.3
we prove this problem to be NP-complete.

2.1 Homogeneous Fortification

For this problem, consider a rectangular domain R of our basic hexagonal model,
in which all cells on the right boundary are on fire and all cells on the left
boundary represent a village that must be protected. We call a path π connecting
the lower to the upper boundary of R a separating path. We call π a protecting
path for k if increasing the x-value of all cells along π by k ensures that the fire
never ignites a cell of the village. The natural optimization problem is to find
the minimum k for which a protecting path exists.

To solve this problem, we study the corresponding decision problem: Given
R and k, does a protecting path π exist? For k = 0, it can be solved by sim-
ulating the fire propagation step-by-step, where all cells on the right boundary
of R are initially ignited. Consider the map at the end of the simulation: All
cells are either alive or dead but none burning; all dead cells form a connected
component including the initially burning cells on the right boundary of R. If
no protecting path for k = 0 exists, at least one of the village cells will be dead.
However, if a protecting path for k = 0 exists, then some of the alive cells form
a connected component that includes all village cells on the left boundary of R,
see Fig. 2a. The fire border of this component which are alive cells with a direct
dead neighbour, form a protecting path π for k = 0.

This approach can be extended to solve the decision problem for larger values
of k: First increase the x-value of all cells by k, then run the simulation algorithm.
If a cell of the village is dead at the end of the simulation, no protecting path
for k exists. Otherwise, consider the fire border of the connected set of alive cells
that includes the village and induces the separating path π. By construction,

A New Model in Firefighting Theory 375

all cells of π stay alive, when their x-value is increased by k. This holds even
if all cells right of π are burning or dead. This also holds when the x-values of
all cells of R \ π remain untouched: Increasing the x-value of all burning cells
is irrelevant for the survival of the village; increasing the x-value of any other
alive cell is irrelevant as well, since only alive cells on π have burning or dead
neighbours. Therefore, π is a protecting path in R for k.

To solve the optimization problem, we combine the decision-algorithm with
binary search. It remains to give a sensible upper bound on k and an efficient
algorithm for the simulation of fire propagation. Let Y be the maximum sum of
y-values of all direct neighbours of a cell, over all cells in the grid. As every cell’s
x-value can only be decreased by at most the sum of its neighbours y, we know
that 0 < k ≤ Y holds. A brute force step-by-step simulation over time results in
an algorithm with a worst-case running time of O(n2 · xmax), where xmax is the
maximal value of x over all cells. However, given the state of all burning or dead
cells at a time t, one can determine the next cell to ignite. This intuition gives
rise to an O(n log n) Dijkstra-inspired algorithm independent of the cells values,
which uses a priority queue for the retrieval of the next cell to ignite. Details
and proofs can be found in the appendix of [9].

Theorem 1. Let R be a rectangular domain, where all cells along the right
boundary of R are on fire and all cells along the left boundary have to be pro-
tected.

The minimum k for which a protecting path exists can be found in time
O(n log n log Y) where Y denotes the maximum sum of y-values of all direct
neighbours of a cell, over all cells.

2.2 Selective Fortification

Similar to Subsect. 2.1, consider a rectangular domain R of our basic hexagonal
model in which all cells on the right boundary are on fire and all cells on the left
boundary represent a village that must be protected. We call a path π connecting
the lower to the upper boundary a separating path. The path can be fortified to
protect the village by individually increasing the x-value of each cell along π. For
a given path π, we call the sum of those increments the fortification cost of π.
The natural optimization problem is to find a separating path π that minimizes
the fortification cost.

To begin with, observe that there is always a separating path with minimal
fortification cost such that every cell along π has a direct, dead neighbour when
the simulation ends: Any cell of π without a direct, dead neighbour can be
excluded from π without increasing the fortification cost; all cells with a direct,
dead neighbour that do not belong to π can be included to π since they do not
require any fortification costs at all. Doing this, we obtain a separating path
where all cells have dead neighbours. Therefore, we may restrict our search to
separating paths to the right of which all cells are dead.

Moreover, this observation allows to compute the fortification costs of such
a path: For a cell c of π, let Yr be the sum of y-values of all neighbours of

376 R. Klein et al.

c to the right of π. The fortification cost of c is the minimum k such that
x(c, 0) + k = Yr + 1. The fortification cost of π is the sum of the fortification
costs of all cells of π.

Finding a separating path π of cells is equivalent to finding a path πb along
corners and edges of the cells: Using the observation stated above, we may con-
clude that there is such a path πb, where cells to the left belong to π and cells to
the right are dead. This path πb lies in the graph given by the corners and edges
of the cells, which we call the border graph. Similar to the previous denotation,
we call a path πb in the border graph separating if it connects the upper to the
lower boundary of R. To distinguish left from right, we replace every edge {v, w}
in the border graph by two directed edges (v, w) and (w, v).

x=8

y=5 y=5

y=5

y=5y=5

y=5

cost 5
type l4

cost 5
type l3

cost 5
type l2

cost 3
type l1

cost 0
type r

c

Fig. 3. A local-cost example.R.

When transforming the optimization problem
on the cells into a shortest-path problem on the
border graph, it is not obvious how to assign the
fortification cost of a cell to the adjacent edges;
consider the example depicted in Fig. 3, where
y = 5 for all cells and cell c has x = 8. The path
πb in question uses five edges of c, whose right
neighbour cells are considered as burning. The
crucial idea is to charge these edges for the forti-
fication cost of c depending on their occurrence in
πb: The first directed edge of πb along c gets cost
0 because no additional fortification is necessary
to protect c from a single burning neighbour; the
second edge gets cost 3; every further edge gets
cost 5, since the x-value of c has to be increased

by 5 for every additional burning neighbour. Unfortunately, this dynamic assign-
ment of costs, where the cost of an edge depends on the previous edges of the
path, rules out a direct solution via finding a shortest-path: A shortest path
might visit the border of a cell several times; the edges along the same cell do
not necessarily have to lie on the path in direct succession. Hence, the cost of
an edge can be influenced by any previous edge in the path.

In general, the following two problems rule out a direct solution via shortest-
path finding algorithms: (1) A shortest path πb does not have to be simple and
can have self-intersections, see Fig. 4a; (2) edges of πb along the same cell c do
not have to lie on πb in direct succession, it can leave and revisit c multiple
times, see Fig. 4b. In the following, we consider the problem for the case where
the y-values are identical for all cells and 0 < x(c, 0) ≤ 2y+1 holds. This implies
that each cell can always be ignited by three direct, burning neighbours. Based
on these assumptions, we are able to prove that none of these problems occurs
for a so-called shortest local-cost path.

Let e be an edge along a cell c of resistance xe := x(c, 0). We say e is of type
r if it comes after a right turn or is the very first edge of path πb. We say e is
of type lk if it comes after the kth consecutive left turn of πb along c. Thus, e is
the (k + 1)th consecutive edge along the same cell c on the left-hand side of πb.

A New Model in Firefighting Theory 377

t

s

2y + 1

y + 1

y + 1

2y + 1

2y + 1

2y + 1y + 1

y + 1

y + 1

y + 1

y + 1

y + 1

1

1

1

1

1

1

1

1

village

village

village

village

fire

fire

fire

fire

0

0

0

0

(a) A self-intersecting, shortest local-cost
s-t-path with cost 0 and winding number 7.

t

2y + 1

y + 1

y + 1

1

1

1

1

village

village

village

village

y + 1 y + 1

2y + 1

2y + 1

1

1

1 1

1

fire

fire

fire

fire

0

0

0

0

s

(b) A simple s-t-path πb with local-
cost 4y, winding number 1, and a re-
visit. The corresponding separating
path π has fortification cost 5y.

Fig. 4. Two example domains which illustrate problems (1) and (2) for standard
shortest-path finding algorithms. All cells have the same y-value and x-values as
denoted in the cells.

Thus, we can define the local-cost of an edge e at cell c depending on xe and its
type:

c(e, type) =

⎧
⎪⎨

⎪⎩

max(0, y + 1 − xe), if type = r

min(y, 2y + 1 − xe), if type = l1

y, if type ∈ {l2, l3, l4}.

Definition 2 (Shortest local-cost path). Let s, t be vertices in the border
graph, where all cells have identical y-values and 0 < x(c, 0) < 2y(c, 0)+1 holds.
Then, a shortest local-cost s-t-path is a path from s to t of minimum local edge
cost as defined above.

Moreover, we call the difference between the number of r-edges and lk-edges
of a path πb in the border graph the winding number of πb.

In the following, we prove that there is a shortest local-cost path πb with
winding number one that neither has (1) self-intersections, as shown in Fig. 4a,
nor (2) revisits as shown in Fig. 4b: Lemmas 1 and 2 together prove (1), while
Lemma 3 proves (2). Thus, the assigned local-cost of πb are the true fortification
costs of the corresponding separating path π.

Lemma 1. Let s, t be vertices on the upper and lower boundary of the border
graph of R and πb be an s-t path. If πb is simple, then it has winding number 1.

Proof. As all turns in the regular grid have exactly the same angle, the winding
number is a measure of the turn angle of the path. For any right turn, the total
angular turn of the path decreases by π

3 and every left turn increases the turn
angle by π

3 . A simple s-t-path has a turn angle of 0 as first and last edge are

378 R. Klein et al.

both vertical. Hence, the number of left turns equals the number of right turns
in πb. Since the first edge is considered to be an r-edge, to assure that local-costs
of the first cell are well defined, πb has winding number 1. ��

Note that this does not directly solve our first problem, as it holds only for one
direction: an s-t-path with winding number 1 might still contain intersections.
The reverse holds because of our restrictions on the x- and y-values.

Lemma 2. Any shortest local-cost s-t-path with winding number 1 is simple.

Proof sketch. Assume πb is a shortest local-cost s-t-path with winding number
1 and at least one intersection. Then, we prove a contradiction by constructing
an intersection-free path π′

b with fewer costs.
Let πb be given by the sequence s, v1, v2, . . . , vi, . . . , vn−1, vn, t of n+2 vertices

in the border graph. Let i < j be the smallest indices such that vi = vj holds.
By removing all vertices between vi and vj+1, we obtain a new path of which we
show that its cost is strictly less than the cost of πb.

While removed edges can no longer contribute to the cost of the path, remov-
ing them can change the type and hence the local cost of the edges from v up to
the first unaffected r-edge after (v, vj+1). A detailed proof, which shows that
the local-cost of π′

b is strictly less than the local-cost of πb, can be found in the
appendix of [9].

All in all, repeated removal of loops results in a simple s-t-path with fewer
costs than πb which contradicts the assumption and completes the proof. ��

Lemma 3. For any shortest local-cost s-t-path π with winding number 1, there
exists a simple, shortest local-cost path without cell revisits that costs not more
than π.

Proof. Assume πb is a shortest local-cost s-t-path with a winding number 1 where
at least one cell on the left-hand of πb is revisited. By Lemma 2, πb is free of
intersections. Then, we prove a contradiction by constructing a cell-revisit-free
path π′

b with local-costs no more than that of πb.
Let e be the first edge on the path along a revisited cell c. Let the edges

of c be numbered counter clockwise from 0 to 5, where e is edge 0. Then, the
situation at e can be restricted to the following two cases, also illustrated in
Fig. 5.

1. The last edge along c on πb is edge 2 and 1 does not lie on πb.
2. The last edge along c on πb is edge 3 and at least one of the edges 1 and 2

does not lie on πb.

Note that πb can neither include edge 4 nor 5. If it included edge 5, πb would
not be intersection free. If it included edge 4 but not 5, the edge preceding e
on πb would also lie along a revisited cell and we assumed e to be the first such
edge on πb.

We can construct π′
b from πb by removing cell visits as follows. In case 1, we

can replace all edges on πb after edge 0 and before edge 2 by edge 1. This adds at

A New Model in Firefighting Theory 379

Case 1 Case 2

c

0

1

23

5

4 c

0

1

23

5

4

Fig. 5. Path πb follows the blue edges upon its first visit of c and the red edges on its
second visit. Cases are equivalent for rotation. (Color figure online)

most cost 2y (y for the new edge 1, and another y for the change of type edge 2
to l2). In case 2, we replace all edges on πb between edge 0 and edge 3 including
these two edges by edge 4 and 5. This also adds at most cost 2y (y for edge 4
and 5 each). However, as πb is free of intersection by Lemma 2, we know for both
cases that the removed part includes enough lk edges with k > 1 to counter the
cost of adding the new edges to the path. ��

Finally, we describe how to compute such a shortest local-cost path with a
Dijkstra-inspired shortest-path algorithm tracking the winding number of the
path: We use a priority queue of tuples (c, v, p, e, w), where c is the minimum
known local-cost of a path to a vertex v via a predecessor p, where the last
edge (p, v) on the path has edge type e and the whole path has winding number
w. Due to regularity of the lattice, we know that: the vertex degree and hence
the number of possible predecessors is constant; the number of edge types is
constant. Moreover, w is limited by the size of our grid: A non-intersecting path
with a very high winding number roughly forms a spiral, where the winding
number corresponds to the number of spiralling rounds; the maximum size of
such a spiral is limited by the width w and height h of the grid. Thus, it suffices
to consider tuples with |w| ≤ 6min(w, h) = O(

√
n).

Altogether, our priority queue contains at most O(n
√

n) many items, which
results in a runtime of O(n

√
n log n) to find a simple, shortest local-cost path

from a specific starting vertex s on the lower boundary to any vertex t on the
upper boundary. To find the optimal separating path π, we have to compare
shortest paths for all pairs of s and t. We can do this in a single run of the
algorithm by initialising our priority queue with the outgoing edges of all possible
s. We can terminate as soon as the minimal entry in our priority queue is a tuple
where v is one of the vertices along the upper boundary of our grid and w is 1.
A pseudocode description of this algorithm can be found in the appendix of [9].

Theorem 2. Let R be a rectangular domain, where all cells have identical y-
values and 0 < x(c, 0) ≤ 2y(c, 0) + 1 holds. All cells at the right boundary of R
are on fire and all cells along the left boundary have to be protected.

Then, we can compute a separating path of minimum fortification cost in
time O(n

√
n log n).

380 R. Klein et al.

For arbitrary values of x and y, it is still open whether the optimization
problem can be solved in polynomial time. While the definition of local-costs
can be adjusted, problems (1) and (2) remain.

2.3 An NP-Complete Problem

In this section, we no longer assume that cells along the right boundary of R are
on fire, while cells along the left edge have to be protected. Instead, we consider
two sets of cells F , T , where the fire is allowed to start from cells in F to burn
cells in T . We consider the following decision problem: Are there m cells in F
which, when put on fire, will eventually ignite all cells in T ?

We prove this problem to be NP-complete by reduction from planar vertex
cover. The planar vertex cover problem is as follows: Given a planar graph G, a
vertex cover for G is a subset of vertices that contains at least one endpoint of
every edge. This problem was proven to be NP-complete, even for planar graphs
with maximum vertex degree three [7].

Given a planar graph G with n vertices, we have to show how to obtain an
instance of the fire expansion problem in polynomial time. For simplicity, we
assume that, instead of the basic hexagonal mode, we can use a basic grid model
where the same rules apply only that a rectilinear grid is used instead of the
hexagonal one. Consider the rectilinear grid, which is the infinite plane graph
with a vertex at every positive integer coordinate and an edge between every pair
of vertices at unit distance. In a first step, we compute a planar grid embedding
G� of G into the rectilinear grid such that the following holds: Disjoint vertices
of G are mapped to disjoint integer coordinates; edges of G are mapped to
rectilinear paths in the grid such that no two paths have a point in common,
except, possibly, for the endpoints. The size of G� is polynomial in n and can be
computed in polynomial time; see [3]. In a second step, we scale G� by a factor of
two: a vertex at coordinates (a, b) is mapped to coordinates (2a, 2b); edges of G�
are stretched accordingly. This introduces buffer coordinates between different
edges in the embedding of G�. Finally, we place a cell at every integer coordinate
spanned by G� and set the (x, y)-values of the cell c as follows:

– If c corresponds to a vertex of G� (vertex-cell) set the weights to (n, 1);
– if c corresponds to an edge of G� (edge-cell) set the weights to (1, 1);
– set the weights of all remaining cells to (0, 0).

Add all vertex-cells to F and all edge-cells incident to a vertex-cell to T . The
size of the resulting instance and the construction time are polynomial in n.

It remains to prove that this instance has m cells that ignite all cells in T
iff G has a vertex cover of size m. On the one hand, if G has a vertex cover
C of size m, the corresponding vertex-cells can be chosen to put on fire. Due
to the choice of values, they will ignite all adjacent edge-cells. Since C is a
vertex cover, all edge-cells will burn and therefore all cells in T . On the other
hand, assume there is a subset S ⊂ F of size m that will eventually ignite
all cells of T . Due to the construction, all cells of S are vertex-cells, so only

A New Model in Firefighting Theory 381

vertex-cells are put on fire. Observe that due to the choice of weights, a burning
edge-cell can never ignite a neighbouring vertex-cell. Moreover, due to the buffer
coordinates, any two edge-cells that belong to different edges of G� are separated
by at least one cell of weight (0, 0). Consequently, every edge-cell in T must be
either ignited by its direct neighbouring vertex-cell or by a fire reaching it from
the direct neighbouring edge-cell, emanating from a different vertex-cell. Since
for every edge in G there is an edge-cell in T , which is ignited via one of the
adjacent vertex-cells of S, the vertices of G corresponding to the vertex-cells in
S constitute a vertex cover of size m for G.

Certainly the problem is in NP, since the subset-certificate of cells S can
be verified in polynomial time via standard simulation. Thus, we obtain the
following theorem.

Theorem 3. Given an instance of the basic hexagonal model, m ∈ N and two
finite sets of cells F , T . It is NP-complete to decide whether there is a subset
S ⊆ F with |S| ≤ m such that putting all cells of S on fire will eventually ignite
all cells of T .

Note that the hardness proof requires T to be possibly of size linear in |F|.
Restricting T to a single cell, we obtain a problem that might very well be easier
to solve. We do not know, whether this restricted problem is still NP-hard and
leave this open. Definitely, the restricted problem becomes undecidable in simple
variants of the basic model, as the following section shows.

3 Variants of Basic Hexagonal Model

Our basic hexagonal model can be modified in many ways to model different
circumstances, environments or other known problems.

Certainly, the basic model can also be defined for other types of lattices, like
the rectilinear square lattice. Thus, the model covers grid versions of firefighting
problems, e.g. [2], as a special case: Set x(c, 0) = 1 and y(c, 0) = ∞ for each cell
c and model the blocking of c at time t via x(c, t) = ∞. In general, the values
for x and y could be replaced by positive (not necessarily monotone) functions
of the simulation time.

Another natural generalization is to stack several layers of cells on top of
each other. For every cell, the x- and y-values could be defined for each layer
individually. These extensions allow to model fire expansion in different heights,
such as crown or ground fires.

Environmental factors can also be modelled by slightly adjusting the transi-
tion rules. For example, wind can be modelled by letting a burning cell decrease
its neighbours’ x-values by different amounts per round, depending on the direc-
tion in which the neighbour lies and in which direction the wind blows. Cooling
down or regrowth of greenery can be modelled by having cells regain their x-
or y-values if no neighbouring cells are burning. However, even given regrowth,
seemingly similar models, like Conway’s Game of Life, remain distinct.

382 R. Klein et al.

Still, these variants can lead to surprisingly complex problems: With only
three layers of cells in an infinite lattice with a constant description complexity,
the question if putting fire to cell c will eventually ignite cell c′ becomes unde-
cidable. The problem remains undecidable, even with a single layer, if we allow
cells to recover their initial x-values over time; see appendix of [9] for details.

Theorem 4. In the version of our firefighting model, where regeneration or at
least three layers of cells are allowed, there is no algorithm that can decide every
instance of the following problem:

Given a lattice with a finite description, a set of cells F and a single cell v.
Each cell of F is set on fire at t = 0. Will cell v eventually catch fire?

4 Conclusion

In this paper, we present a new model for firefighting problems together with
some solutions and hardness results. The basic hexagonal model is simple to
understand and generalizes a discrete model that has been introduced before.
It allows to incorporate additional parameters to model weather conditions or
crown and ground fires. These extensions could be applied to single cells or the
entire lattice.

Obvious questions are how to improve on the results and to widen their
scopes. We did not address any dynamic aspects of firefighting, yet. How does
the fire’s propagation change, when single cells are fortified? Moreover, fortifying
a path of cells takes time to refill an aircraft’s water tanks and fly back and forth.
Can this task be accomplished before the path is reached by the fire? Research
on seemingly simple dynamic geometric problems [8,10] seem to indicate that
one should not hope for provably optimal results in the basic hexagonal model,
but strive for good approximations.

Acknowledgements. We thank all anonymous reviewers for their helpful comments
and suggestions.

References

1. Bressan, A.: Differential inclusions and the control of forest fires. J. Differ. Equ.
243(2), 179–207 (2007)

2. Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher.
Discrete Appl. Math. 155(17), 2257–2268 (2007)

3. Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal graph drawing. In: Drawing
Graphs, Methods and Models, pp. 121–171 (1999)

4. Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions
and questions. Australas. J. Comb. 43, 57–78 (2009)

5. Fomin, F.V., Heggernes, P., van Leeuwen, E.J.: The firefighter problem on graph
classes. Theor. Comput. Sci. 613, 38–50 (2016)

6. Gardner, M.: Mathematical games: the fantastic combinations of john conway’s
new solitaire game “life”. Sci. Am. 223, 120–123 (1970)

A New Model in Firefighting Theory 383

7. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem in NP complete.
SIAM J. Appl. Math. 32, 826–834 (1977)

8. Kim, S.-S., Klein, R., Kübel, D., Langetepe, E., Schwarzwald, B.: Geometric fire-
fighting in the half-plane. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.)
WADS 2019. LNCS, vol. 11646, pp. 481–494. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-24766-9 35

9. Klein, R., Kübel, D., Langetepe, E., Sack, J.R., Schwarzwald, B.: A new model
in firefighting theory. CoRR abs/1911.10341 (2019). https://arxiv.org/abs/1911.
10341

10. Klein, R., Langetepe, E., Schwarzwald, B., Levcopoulos, C., Lingas, A.: On a fire
fighter’s problem. Int. J. Found. Comput. Sci. 30(2), 231–246 (2019)

11. Pastor, E., Zárate, L., Planas, E., Arnaldos, J.: Mathematical models and calcula-
tion systems for the study of wildland fire behaviour. Prog. Energy Combust. Sci.
29(2), 139–153 (2003)

12. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, Cambridge (1987)

13. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3),
601 (1983)

https://doi.org/10.1007/978-3-030-24766-9_35
https://doi.org/10.1007/978-3-030-24766-9_35
https://arxiv.org/abs/1911.10341
https://arxiv.org/abs/1911.10341

An Algorithm for Strong Stability
in the Student-Project Allocation

Problem with Ties

Sofiat Olaosebikan(B) and David Manlove

School of Computing Science, University of Glasgow, Glasgow, Scotland
s.olaosebikan.1@research.gla.ac.uk, David.Manlove@glasgow.ac.uk

Abstract. We study a variant of the Student-Project Allocation problem
with lecturer preferences over Students where ties are allowed in the pref-
erence lists of students and lecturers (spa-st). We investigate the concept
of strong stability in this context. Informally, a matching is strongly sta-
ble if there is no student and lecturer l such that if they decide to form
a private arrangement outside of the matching via one of l’s proposed
projects, then neither party would be worse off and at least one of them
would strictly improve. We describe the first polynomial-time algorithm
to find a strongly stable matching or report that no such matching exists,
given an instance of spa-st. Our algorithm runs in O(m2) time, where
m is the total length of the students’ preference lists.

1 Introduction

Matching problems, which generally involve the assignment of a set of agents to
another set of agents based on preferences, have wide applications in many real-
world settings, including, for example, allocating junior doctors to hospitals [25]
and assigning students to projects [15]. In the context of assigning students to
projects, each project is proposed by one lecturer and each student is required to
provide a strictly-ordered preference list over the available projects that she finds
acceptable. Also, lecturers may provide strictly-ordered preference lists over the
students that find their projects acceptable, and/or over the projects that they
propose. Typically, each project and lecturer have a specific capacity denoting
the maximum number of students that they can accommodate. The goal is to
find a matching, i.e., an assignment of students to projects that respects the
stated preferences, such that each student is assigned at most one project, and
the capacity constraints on projects and lecturers are not violated—the so-called
Student-Project Allocation problem (spa) [1,6,19].

Two major models of spa exist in the literature: one permits preferences
only from the students [15], while the other permits preferences from the stu-
dents and lecturers [14,19]. In the latter case, three different variants have been

S. Olaosebikan was supported by a College of Science and Engineering Scholarship,
University of Glasgow; whilst D. Manlove was supported by grant EP/P028306/1 from
the Engineering and Physical Sciences Research Council.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 384–399, 2020.
https://doi.org/10.1007/978-3-030-39219-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_31&domain=pdf
http://orcid.org/0000-0002-8003-7887
http://orcid.org/0000-0001-6754-7308
https://doi.org/10.1007/978-3-030-39219-2_31

An Algorithm for Strong Stability 385

studied based on the nature of the lecturers’ preference lists. These include SPA

with lecturer preferences over (i) students [1], (ii) projects [12,21,22], and (iii)
(student, project) pairs [2]. Outwith assigning students to projects, applications
of each of these three variants can be seen in multi-cell networks where the goal
is to find a stable association of users to channels at base-stations [3–5].

In this work, we will concern ourselves with variant (i), i.e., the Student-
Project Allocation problem with lecturer preferences over Students (spa-s). In
this context, it has been argued in [25] that a natural property for a matching to
satisfy is that of stability. Informally, a stable matching ensures that no student
and lecturer would have an incentive to deviate from their current assignment.
Abraham et al. [1] described two linear-time algorithms to find a stable match-
ing in an instance of spa-s where the preference lists are strictly ordered. In
their paper, they also proposed an extension of spa-s where the preference lists
may include ties, known as the Student-Project Allocation problem with lecturer
preferences over Students with Ties (spa-st) [23].

If we allow ties in the preference lists of students and lecturers, three stability
definitions are possible, namely weak stability, strong stability and super-stability
[8–10]. We give an informal definition in what follows. Suppose M is a matching
in an instance of spa-st. Then M is (i) weakly stable, (ii) strongly stable, or
(iii) super-stable, if there is no student and lecturer l such that if they decide to
become assigned outside of M via one of l’s proposed projects, respectively,

(i) both of them would strictly improve,
(ii) one of them would strictly improve and the other would not be worse off,
(iii) neither of them would be worse off.

Existing Results for spa-st. Manlove et al. [20] showed that every instance
of spa-st admits a weakly stable matching, which could be of different sizes.
Moreover, the problem of finding a maximum size weakly stable matching (max-
spa-st) is NP-hard [11,20], even for the Stable Marriage problem with Ties and
Incomplete lists (smti). Cooper and Manlove [7] described a 3

2 -approximation
algorithm for max-spa-st. On the other hand, Irving et al. argued in [9] that
super-stability is a natural and most robust solution concept to seek in cases
where agents have incomplete information. Recently, Olaosebikan and Manlove
[23] showed that if an instance of spa-st admits a super-stable matching M ,
then all weakly stable matchings in the instance are of the same size (equal to
the size of M), and match exactly the same set of students. The main result of
their paper was a polynomial-time algorithm to find a super-stable matching or
report that no such matching exists, given an instance of spa-st. Their algorithm
runs in O(L) time, where L is the total length of all the preference lists.

Motivation for Strong Stability. It was motivated in [10] that weakly stable
matching may be undermined by bribery or persuasion, in practical applications
of the Hospitals-Residents problem with Ties (hrt). In what follows, we give a
corresponding argument for an instance I of spa-st. Suppose that M is a weakly
stable matching in I, and suppose that a student si prefers a project pj (where
pj is offered by lecturer lk) to her assigned project in M , say pj′ (where pj′ is

386 S. Olaosebikan and D. Manlove

offered by a lecturer different from lk). Suppose further that pj is full and lk is
indifferent between si and one of the worst student/s assigned to pj in M , say
si′ . Clearly, the pair (si, pj) does not constitute a blocking pair for the weakly
stable matching M , as lk would not improve by taking on si in the place of si′ .
However, si might be overly invested in pj that she is ready to persuade or bribe
lk to reject si′ and accept her instead; lk being indifferent between si and si′ may
decide to accept si’s proposal. We can reach a similar argument if the roles are
reversed. However, if M is strongly stable, it cannot be potentially undermined
by this type of (student, project) pair.

Henceforth, if a spa-st instance admits a strongly stable matching, we say that
such instance is solvable. Unfortunately not every instance of spa-st is solvable.
To see this, consider the case where there are two students, two projects and two
lecturers, the capacity of each project and lecturer is 1, the students have exactly
the same strictly-ordered preference list of length 2, and each of the lecturers pref-
erence list is a single tie of length 2 (any matching will be undermined by a student
and lecturer that are not assigned together). However, it should be clear from the
discussions above that in cases where a strongly stable matching exists, it should
be preferred over a matching that is merely weakly stable. Previous results for
strong stability in the literature include [8,10,13,16,18].

Our Contribution. We present the first polynomial-time algorithm to find
a strongly stable matching or report that no such matching exists, given an
instance of spa-st—thus solving an open problem given in [1,23]. Our algorithm
is student-oriented, which implies that if the given instance is solvable then our
algorithm will output a solution in which each student has at least as good a
project as she could obtain in any strongly stable matching. We note that our
algorithm is a non-trivial extension of the strong stability algorithms for smt
(Stable Marriage problem with Ties), smti and hrt described in [8,10,18] (we
discuss this further in [24, Sect. 4.3]).

The remainder of this paper is structured as follows. We give a formal defi-
nition of the spa-s problem, the spa-st variant, and the three stability concepts
in Sect. 2. We describe our algorithm for spa-st under strong stability in Sect. 3.
Further, in Sect. 3, we illustrate an execution of our algorithm with respect to an
instance of spa-st before moving on to present the algorithm’s correctness and
complexity results (all omitted proofs can be found in [24, Sect. 4.5]). Finally,
we present some potential directions for future work in Sect. 4.

2 Preliminary Definitions

In this section, we give a formal definition of spa-s as described in the literature
[1,23]. We also give a formal definition of spa-st as described in [23], which is a
generalisation of spa-s in which preference lists can include ties.

An Algorithm for Strong Stability 387

2.1 Formal Definition of Spa-S

An instance I of spa-s involves a set S = {s1, s2, . . . , sn1} of students, a set
P = {p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. Each
student si ranks a subset of P in strict order, which forms her preference list.
We say that si finds pj acceptable if pj appears on si’s preference list. We denote
by Ai the set of projects that si finds acceptable.

Each lecturer lk ∈ L offers a non-empty set of projects Pk, where P1, P2, . . . ,
Pn3 partitions P, and lk provides a preference list, denoted by Lk, ranking in
strict order of preference those students who find at least one project in Pk

acceptable. Also lk has a capacity dk ∈ Z
+, indicating the maximum number of

students she is willing to supervise. Similarly each project pj ∈ P has a capacity
cj ∈ Z

+ indicating the maximum number of students that it can accommodate.
We assume that for any lecturer lk, max{cj : pj ∈ Pk} ≤ dk ≤ ∑{cj : pj ∈

Pk} (i.e., the capacity of lk is (i) at least the highest capacity of the projects
offered by lk, and (ii) at most the sum of the capacities of all the projects lk
is offering). We denote by Lj

k, the projected preference list of lecturer lk for pj ,
which can be obtained from Lk by removing those students that do not find pj
acceptable (thereby retaining the order of the remaining students from Lk).

Given a pair (si, pj) ∈ S × P, where pj is offered by lk, we refer to (si, pj)
as an acceptable pair if pj ∈ Ai and si ∈ Lk. An assignment M is a collection
of acceptable pairs in S × P. If (si, pj) ∈ M , we say that si is assigned to pj ,
and pj is assigned si. For convenience, if si is assigned in M to pj , where pj is
offered by lk, we may also say that si is assigned to lk, and lk is assigned si.
For any project pj ∈ P, we denote by M(pj) the set of students assigned to pj
in M . Project pj is undersubscribed, full or oversubscribed according as |M(pj)|
is less than, equal to, or greater than cj , respectively. Similarly, for any lecturer
lk ∈ L, we denote by M(lk) the set of students assigned to lk in M . Lecturer lk
is undersubscribed, full or oversubscribed according as |M(lk)| is less than, equal
to, or greater than dk, respectively. A matching M is an assignment such that
|M(si)| ≤ 1, |M(pj)| ≤ cj and |M(lk)| ≤ dk. If si is assigned to some project in
M , we let M(si) denote that project; otherwise M(si) is undefined.

2.2 Ties in the Preference Lists

We now give a formal definition, similar to the one given in [23], for the general-
isation of spa-s in which the preference lists can include ties. In the preference
list of lecturer lk ∈ L, a set T of r students forms a tie of length r if lk does not
prefer si to si′ for any si, si′ ∈ T (i.e., lk is indifferent between si and si′). A tie
in a student’s preference list is defined similarly. For convenience, in what follows
we consider a non-tied entry in a preference list as a tie of length one. We denote
by spa-st the generalisation of spa-s in which the preference list of each student
(respectively lecturer) comprises a strict ranking of ties, each comprising one or
more projects (respectively students). An example spa-st instance I1 is given
in Fig. 1, which involves the set of students S = {s1, s2, s3}, the set of projects

388 S. Olaosebikan and D. Manlove

Fig. 1. An example spa-st instance I1.

P = {p1, p2, p3} and the set of lecturers L = {l1, l2}. Ties in the preference lists
are indicated by round brackets.

In the context of spa-st, we assume that all notation and terminology carries
over from spa-s with the exception of stability, which we now define. When ties
appear in the preference lists, three types of stability arise, namely weak stability,
strong stability and super-stability [8–10]. For our purpose in this paper, we only
give a formal definition of strong stability in the context of spa-st. Henceforth,
I is an instance of spa-st, (si, pj) is an acceptable pair in I and lk is the lecturer
who offers pj .

Definition 1 (Strong stability). We say that M is strongly stable in I if
it admits no blocking pair, where a blocking pair for M is an acceptable pair
(si, pj) ∈ (S × P) \ M such that either (1a and 1b) or (2a and 2b) holds as
follows:

(1a) either si is unassigned in M , or si prefers pj to M(si);
(1b) either (i), (ii), or (iii) holds as follows:

(i) pj is undersubscribed and lk is undersubscribed;
(ii) pj is undersubscribed, lk is full, and either si ∈ M(lk) or lk prefers si to

the worst student/s in M(lk) or is indifferent between them;
(iii) pj is full and lk prefers si to the worst student/s in M(pj) or is indifferent

between them.
(2a) si is indifferent between pj and M(si);
(2b) either (i), (ii), or (iii) holds as follows:

(i) pj is undersubscribed, lk is undersubscribed and si /∈ M(lk);
(ii) pj is undersubscribed, lk is full, si /∈ M(lk), and lk prefers si to the worst

student/s in M(lk);
(iii) pj is full and lk prefers si to the worst student/s in M(pj).

Some intuition for the strong stability definition is given in [24, Sect. 3]. In
the remainder of this paper, any usage of the term blocking pair refers to the
version of this term for strong stability as defined above.

3 An Algorithm for Spa-St under strong stability

In this section we present our algorithm for spa-st under strong stability, which
we will refer to as Algorithm SPA-ST-strong. In Sect. 3.1, we give some defini-
tions relating to the algorithm. In Sect. 3.2, we give a description of our algorithm

An Algorithm for Strong Stability 389

and present it in pseudocode form. We illustrate an execution of our algorithm
with respect to a spa-st instance in Sect. 3.3. Finally, we present the algorithm’s
correctness and complexity results in Sect. 3.4.

3.1 Definitions Relating to the Algorithm

Given a pair (si, pj) ∈ M , for some strongly stable matching M in I, we call
(si, pj) a strongly stable pair. During the execution of the algorithm, students
become provisionally assigned to projects (and implicitly to lecturers), and it
is possible for a project (and lecturer) to be provisionally assigned a number of
students that exceeds its capacity. We describe a project (respectively lecturer)
as replete if at any time during the execution of the algorithm it has been full
or oversubscribed. We say that a project (respectively lecturer) is non-replete if
it is not replete.

The provisional assignment graph is an undirected bipartite graph G = (S ∪
P,E), with S ⊆ S and P ⊆ P such that there is an edge (si, pj) ∈ E if and only
if si is provisionally assigned to pj . During the execution of the algorithm, it is
possible for a student to be adjacent to more than one project in G. Thus, we
denote by G(si) the set of projects that are adjacent to si in G. Given a project
pj ∈ P , we denote by G(pj) the set of students who are provisionally assigned
to pj in G and we let dG(pj) = |G(pj)|. Similarly, we denote by G(lk) the set of
students who are provisionally assigned to a project offered by lk in G and we
let dG(lk) = |G(lk)|.

As stated earlier, for a project pj , it is possible that dG(pj) > cj at some point
during the algorithm’s execution. Thus, we denote by qj = min{cj , dG(pj)} the
quota of pj in G, which is the minimum between pj ’s capacity and the number
of students who are provisionally assigned to pj in G. Similarly, for a lecturer lk,
it is possible that dG(lk) > dk at some point during the algorithm’s execution.
At this point, we denote by αk =

∑{qj : pj ∈ Pk∩P} the total quota of projects
offered by lk that is provisionally assigned to students in G and we denote by
qk = min{dk, dG(lk), αk} the quota of lk in G.

The algorithm proceeds by deleting from the preference lists certain (si, pj)
pairs that are not strongly stable. By the term delete (si, pj), we mean the
removal of pj from si’s preference list and the removal of si from Lj

k (the pro-
jected preference list of lecturer lk for pj); in addition, if (si, pj) ∈ E we delete
the edge from G. By the head and tail of a preference list at a given point we
mean the first and last tie respectively on that list after any deletions might have
occurred (recalling that a tie can be of length 1). Given a project pj , we say that
a student si is dominated in Lj

k if si is worse than at least cj students who are
provisionally assigned to pj . The concept of a student becoming dominated in a
lecturer’s preference list is defined in a slightly different manner.

Definition 2 (Dominated in Lk). At a given point during the algorithm’s
execution, let αk and dG(lk) be as defined above. We say that a student si
is dominated in Lk if min{dG(lk), αk} ≥ dk, and si is worse than at least dk
students who are provisionally assigned in G to a project offered by lk.

390 S. Olaosebikan and D. Manlove

Definition 3 (Lower rank edge). We define an edge (si, pj) ∈ E as a lower
rank edge if si is in the tail of Lk and min{dG(lk), αk} > dk.

Definition 4 (Bound). Given an edge (si, pj) ∈ E, we say that si is bound to
pj if (i) pj is not oversubscribed or si is not in the tail of Lj

k (or both), and (ii)
(si, pj) is not a lower rank edge or si is not in the tail of Lk (or both). If si is
bound to pj , we may also say that (si, pj) is a bound edge. Otherwise, we refer
to it as an unbound edge.1

We form a reduced assignment graph Gr = (Sr, Pr, Er) from a provisional
assignment graph G as follows. For each edge (si, pj) ∈ E such that si is bound
to pj , we remove the edge (si, pj) from Gr and we reduce the quota of pj in Gr

(and implicitly lk
2) by one. Further, we remove all other unbound edges incident

to si in Gr. Each isolated student vertex is then removed from Gr. Finally, if the
quota of any project is reduced to 0, or pj becomes an isolated vertex, then pj is
removed from Gr. For each surviving pj in Gr, we denote by q∗

j the revised quota
of pj , where q∗

j is the difference between pj ’s quota in G (i.e., qj) and the number
of students that are bound to pj . Similarly, we denote by q∗

k the revised quota
of lk in Gr, where q∗

k is the difference between lk’s quota in G (i.e., qk) and the
number of students that are bound to a project offered by lk. Further, for each
lk who offers at least one project in Gr, we let n =

∑{q∗
j : pj ∈ Pk ∩ Pr} − q∗

k,
where n is the difference between the total revised quota of projects in Gr that
are offered by lk and the revised quota of lk in Gr. Now, if n ≤ 0, we do nothing;
otherwise, we extend Gr as follows. We add n dummy student vertices to Sr.
For each of these dummy vertices, say sdi

, and for each project pj ∈ Pk ∩ Pr

that is adjacent to a student vertex in Sr via a lower rank edge, we add the edge
(sdi

, pj) to Er.3

Given a set X ⊆ Sr of students, define N (X), the neighbourhood of X, to be
the set of project vertices adjacent in Gr to a student in X. If for all subsets X of
Sr, each student in X can be assigned to one project in N (X), without exceeding
the revised quota of each project in N (X) (i.e., |X| ≤ ∑{q∗

j : pj ∈ N (X)} for
all X ⊆ Sr); then we say that Gr admits a perfect matching that saturates Sr.

Definition 5 (Critical set). It is well known in the literature [17] that if Gr

does not admit a perfect matching that saturates Sr, then there must exist a
deficient subset Z ⊆ Sr such that |Z| >

∑{q∗
j : pj ∈ N (Z)}. To be precise, the

deficiency of Z is defined by δ(Z) = |Z| − ∑{q∗
j : pj ∈ N (Z)}. The deficiency

of Gr, denoted δ(Gr), is the maximum deficiency taken over all subsets of Sr.
1 An edge (si, pj) ∈ E can change state from bound to unbound, but not vice versa.
2 If si is bound to more than one projects offered by lk, for all the bound edges

involving si and these projects that we remove from Gr, we only reduce lk’s quota
in Gr by one.

3 An intuition as to why we add dummy students to Gr is as follows. Given a lecturer
lk whose project is provisionally assigned to a student in Gr. If q∗

k <
∑{q∗

j : pj ∈
Pk ∩ Pr}, then we need n dummy students to offset the difference between

∑{q∗
j :

pj ∈ Pk ∩Pr} and q∗
k, so that we do not oversubscribe lk in any maximum matching

obtained from Gr.

An Algorithm for Strong Stability 391

Thus, if δ(Z) = δ(Gr), we say that Z is a maximally deficient subset of Sr, and
we refer to Z as a critical set.

We denote by PR the set of replete projects in G and we denote by P ∗
R a subset

of projects in PR which is obtained as follows. For each project pj ∈ PR, let
lk be the lecturer who offers pj . For each student si such that (si, pj) has been
deleted, we add pj to P ∗

R if (i) and (ii) holds as follows:

(i) either si is unassigned in G, or (si, pj′) ∈ G where si prefers pj to pj′ , or
(si, pj′) ∈ G and si is indifferent between pj and pj′ where pj′ /∈ Pk;

(ii) either lk is undersubscribed in G, or lk is full in G and either si ∈ G(lk) or
lk prefers si to some student assigned to lk in G.

Definition 6 (Feasible matching). A feasible matching in the final provi-
sional assignment graph G is a matching M obtained as follows:

1. Let G∗ be the subgraph of G induced by the students who are adjacent to a
project in P ∗

R. First, find a maximum matching M∗ in G∗;
2. Using M∗ as an initial solution, find a maximum matching M in G.

3.2 Description of the Algorithm

Algorithm SPA-ST-strong, described in Algorithm 1, begins by initialising an
empty bipartite graph G which will contain the provisional assignments of stu-
dents to projects (and implicitly to lecturers). We remark that such assignments
(i.e., edges in G) can subsequently be broken during the algorithm’s execution.

The while loop of the algorithm involves each student si who is not adjacent
to any project in G and who has a non-empty list applying in turn to each project
pj at the head of her list. Immediately, si becomes provisionally assigned to pj
in G (and to lk). If, by gaining a new provisional assignee, project pj becomes
full or oversubscribed then we set pj as replete. Further, for each student st in
Lj
k, such that st is dominated in Lj

k, we delete the pair (st, pj). As we will prove
later, such pairs cannot belong to any strongly stable matching. Similarly, if by
gaining a new provisional assignee, lk becomes full or oversubscribed then we set
lk as replete. For each student st in Lk, such that st is dominated in Lk and for
each project pu ∈ Pk that st finds acceptable, we delete the pair (st, pu). This
continues until every student is provisionally assigned to one or more projects or
has an empty list. At the point where the while loop terminates, we form the
reduced assignment graph Gr and we find the critical set Z of students in Gr (we
describe how to find Z on Page 9). As we will see later, no project pj ∈ N (Z)
can be assigned to any student in the tail of Lj

k in any strongly stable matching,
so all such pairs are deleted.

At the termination of the inner repeat-until loop in line 21, i.e., when Z
is empty, if some project pj that is replete ends up undersubscribed, we carry
out some certain deletions4. We let sr be any one of the most preferred students
4 This type of deletion was also carried out in Algorithm SPA-ST-super for super-

stability [23].

392 S. Olaosebikan and D. Manlove

(according to Lj
k) who was provisionally assigned to pj during some iteration of

the algorithm but is not assigned to pj at this point (for convenience, we hence-
forth refer to such sr as the most preferred student rejected from pj according
to Lj

k). If the students at the tail of Lk (recalling that the tail of Lk is the
least-preferred tie in Lk after any deletions might have occurred) are no bet-
ter than sr, it turns out that none of these students st can be assigned to any
project offered by lk in any strongly stable matching – such pairs (st, pu), for
each project pu ∈ Pk that st finds acceptable, are deleted. The repeat-until
loop is then potentially reactivated, and the entire process continues until every
student is provisionally assigned to a project or has an empty list.

At the termination of the outer repeat-until loop in line 30, if a student is
adjacent in G to a project pj via a bound edge, then we may potentially carry
out extra deletions. First, we let lk be the lecturer who offers pj and we let U
be the set of projects that are adjacent to si in G via an unbound edge. For
each project pu ∈ U \Pk, it turns out that the pair (si, pu) cannot belong to any
strongly stable matching, thus we delete all such pairs. Finally, we let M be any
feasible matching in the provisional assignment graph G. If M is strongly stable
relative to the given instance I then M is output as a strongly stable matching
in I. Otherwise, the algorithm reports that no strongly stable matching exists in
I. We present Algorithm SPA-ST-strong in pseudocode form in Algorithm 1.

Finding the Critical Set. Consider the reduced assignment graph Gr =
(Sr, Pr, Er) formed from G at a given point during the algorithm’s execution
(at line 15). To find the critical set of students in Gr, first we need to construct
a maximum matching Mr in Gr, with respect to the revised quota q∗

j , for each
pj ∈ Pr. In this context, a matching Mr ⊆ Er is such that |Mr(si)| ≤ 1 for all
si ∈ Sr, and |Mr(pj)| ≤ q∗

j for all pj ∈ Pr. We describe how to construct Mr as
follows:

1. Let G′
r be the subgraph of Gr induced by the dummy students adjacent to a

project in Gr. First, find a maximum matching M ′
r in G′

r.
2. Using M ′

r as an initial solution, find a maximum matching Mr in Gr.5

Given a maximum matching Mr in the reduced assignment graph Gr, the
critical set Z consists of the set U of unassigned students together with the set
U ′ of students reachable from a student in U via an alternating path (see [24,
Lemma 1] for a proof).

3.3 Example Algorithm Execution

In this section, we illustrate an execution of Algorithm SPA-ST-strong with
respect to the spa-st instance I3 shown in Fig. 2 (Page 10), which involves the
set of students S = {si : 1 ≤ i ≤ 8}, the set of projects P = {pj : 1 ≤ j ≤ 6} and

5 By making sure that all the dummy students are matched in step 1, we are guaran-
teed that no lecturer is oversubscribed with non-dummy students in Gr.

An Algorithm for Strong Stability 393

Algorithm 1. Algorithm SPA-ST-strong
Input: spa-st instance I
Output: a strongly stable matching in I or “no strongly stable matching exists in I”

1: G ← ∅
2: repeat
3: repeat
4: while some student si is unassigned and has a non-empty list do
5: for each project pj at the head of si’s list do
6: lk ← lecturer who offers pj
7: add the edge (si, pj) to G
8: if pj is full or oversubscribed then
9: for each student st dominated in Lj

k do
10: delete (st, pj)
11: if lk is full or oversubscribed then
12: for each student st dominated in Lk do
13: for each project pu ∈ Pk ∩ At do
14: delete (st, pu)
15: form the reduced assignment graph Gr

16: find the critical set Z of students
17: for each project pu ∈ N (Z) do
18: lk ← lecturer who offers pu
19: for each student st at the tail of Lu

k do
20: delete (st, pu)
21: until Z is empty
22: for each pj ∈ P do
23: if pj is replete and pj is undersubscribed then
24: lk ← lecturer who offers pj
25: sr ← most preferred student rejected from pj in Lj

k {any if > 1}
26: if the students at the tail of Lk are no better than sr then
27: for each student st at the tail of Lk do
28: for each project pu ∈ Pk ∩ At do
29: delete (st, pu)
30: until every unassigned student has an empty list
31: for each student si in G do
32: if si is adjacent in G to a project pj via a bound edge then
33: lk ← lecturer who offers pj
34: U ← unbound projects adjacent to si in G
35: for each pu ∈ U \ Pk do
36: delete (si, pu)
37: M ← a feasible matching in G
38: if M is a strongly stable matching in I then
39: return M
40: else
41: return “no strongly stable matching exists in I”

the set of lecturers L = {lk : 1 ≤ k ≤ 3}. The algorithm starts by initialising the
bipartite graph G = {}, which will contain the provisional assignment of students
to projects. We assume that the students become provisionally assigned to each

394 S. Olaosebikan and D. Manlove

Fig. 2. An instance I3 of spa-st.

Fig. 3. Iteration (1).

project at the head of their list in subscript order. Figures 3, 4 and 5 illustrate
how this execution of Algorithm SPA-ST-strong proceeds with respect to I3.

Iteration 1: At the termination of the while loop during the first iteration of the
inner repeat-until loop, every student, except s3, s6 and s7, is provisionally
assigned to every project in the first tie on their preference list. Edge (s3, p4) /∈
G(1) because (s3, p4) was deleted as a result of s6 becoming provisionally assigned
to p4, causing s3 to be dominated in L4

2. Also, edge (s6, p2) /∈ G(1) because (s6, p2)
was deleted as a result of s4 becoming provisionally assigned to p2, causing
s6 to be dominated in L1 (at that point in the algorithm, min{dG(l1), α1} =
min{4, 3} = 3 = d1 and s6 is worse than at least d1 students who are provisionally
assigned to l1). Finally, edge (s7, p3) /∈ G(1) because (s7, p3) was deleted as a
result of s5 becoming provisionally assigned to p5, causing s7 to be dominated
in L3

2.

An Algorithm for Strong Stability 395

To form G
(1)
r , the bound edges (s5, p3), (s6, p4), (s7, p1) and (s8, p5) are

removed from the graph. We can verify that edges (s4, p2) and (s5, p2) are
unbound, since they are lower rank edges for l1. Also, since p1 is oversubscribed,
and each of s1, s2 and s3 is at the tail of L1

1, edges (s1, p1), (s2, p1) and (s3, p1)
are unbound. Further, the revised quota of l1 in G

(1)
r is 2, and the total revised

quota of projects offered by l1 (i.e., p1 and p2) is 3. Thus, we add one dummy
student vertex sd1 to G1

r, and we add an edge between sd1 and p2 (since p2 is
the only project in G

(1)
r adjacent to a student in the tail of L1 via a lower rank

edge). With respect to the maximum matching M
(1)
r , it is clear that the critical

set Z(1) = {s1, s2, s3}, thus we delete the edges (s1, p1), (s2, p1) and (s3, p1) from
G(1); and the inner repeat-until loop is reactivated.

Fig. 4. Iteration (2).

Iteartion 2: At the beginning of this iteration, each of s1 and s2 is unassigned
and has a non-empty list; thus we add edges (s1, p6) and (s2, p2) to the pro-
visional assignment graph obtained at the termination of iteration (1) to form
G

(2)
r . It can be verified that every edge in G

(2)
r , except (s4, p2) and (s5, p2), is a

bound edge. Clearly, the critical set Z(2) = ∅, thus the inner repeat-until loop
terminates. At this point, project p1, which was replete during iteration (1), is
undersubscribed in iteration (2). Moreover, the students at the tail of L1 (i.e.,
s4 and s5) are no better than s3, where s3 is one of the most preferred students
rejected from p1 according to L1

1; thus we delete edges (s4, p2) and (s5, p2). The
outer repeat-until loop is then reactivated (since s4 is unassigned and has a
non-empty list).

Iteration 3: At the beginning of this iteration, the only student that is unas-
signed and has a non-empty list is s4; thus we add edges (s4, p5) and (s4, p6)
to the provisional assignment graph obtained at the termination of iteration (2)
to form G

(3)
r . The provisional assignment of s4 to p5 led to p5 becoming over-

subscribed; thus (s8, p5) is deleted (since s8 is dominated on L5
3). Further, s8

396 S. Olaosebikan and D. Manlove

Fig. 5. Iteration (3).

becomes provisionally assigned to p1. It can be verified that all the edges in G
(3)
r

are bound edges. Moreover, the reduced assignment graph G
(3)
r = ∅.

Again, every unassigned students has an empty list. We also have that a
project p2, which was replete in iteration (2), is undersubscribed in iteration
(3). However, no further deletion is carried out in line 29 of the algorithm, since
the student at the tail of L1 (i.e., s2) is better than s4 and s5, where s4 and
s5 are the most preferred students rejected from p2 according to L2

1. Hence,
the repeat-until loop terminates. Also, no deletion is carried out in line 36 of
the algorithm. We observe that P ∗

R = {p5}, since (s8, p5) has been deleted, s8
prefers p5 to her provisional assignment in G and l3 is undersubscribed. Thus
we need to ensure p5 fills up in the feasible matching M constructed from G, so
as to avoid (s8, p5) from blocking M . Finally, the algorithm outputs the feasible
matching M = {(s1, p6), (s2, p2), (s4, p5), (s5, p3), (s6, p4), (s7, p1), (s8, p1)} as a
strongly stable matching in I3.

3.4 Correctness of the algorithm

The correctness and complexity of Algorithm SPA-ST-strong is established via
a sequence of lemmas, namely Lemmas 4–14 in [24, Sect. 4.5]. These are omitted
here for space reasons, but may be summarised as follows:

1. no strongly stable pair is deleted during the execution of the algorithm;
2. no strongly stable matching exists if some:

(a) non-replete lecturer lk has fewer assignees in the feasible matching M
than provisional assignees in the final assignment graph G, or

(b) replete lecturer is not full in M , or
(c) student is bound to two or more projects that are offered by different

lecturers, or
(d) pair (si, pj) was deleted where pj is offered by lk, each of pj and lk is

undersubscribed in M , and for any pj′ ∈ Pk such that si is indifferent
between pj and pj′ , (si, pj′) /∈ M ;

An Algorithm for Strong Stability 397

3. if the algorithm outputs “no strongly stable matching exists” then at least
one of the properties in (2) above must hold;

4. Algorithm SPA-ST-strong may be implemented to run in O(m2) time,
where m is the total length of the students’ preference lists.

The following theorem collects together Lemmas 4–14 in [24] and establishes the
correctness and complexity of Algorithm SPA-ST-strong.

Theorem 1. For a given instance I of spa-st, Algorithm SPA-ST-strong

determines in O(m2) time whether or not a strongly stable matching exists in
I. If such a matching does exist, all possible executions of the algorithm find
one in which each assigned student is assigned at least as good a project as she
could obtain in any strongly stable matching, and each unassigned student is
unassigned in every strongly stable matchings.

Given the optimality property established by Theorem 1, we define
the strongly stable matching found by Algorithm SPA-ST-strong to be
student-optimal. For example, in the spa-st instance illustrated in Fig. 1,
it may be verified that the student-optimal strongly stable matching is
{(s1, p1), (s2, p2), (s3, p3)}.

4 Conclusion

We leave open the formulation of a lecturer-oriented counterpart to Algorithm
SPA-ST-strong. From an experimental perspective, an interesting direction
would be to carry out an empirical analysis of Algorithm SPA-ST-strong, to
investigate how various parameters (e.g., the density and position of ties in the
preference lists, the length of the preference lists, or the popularity of some
projects) affect the existence of a strongly stable matching, based on randomly
generated and/or real instances of spa-st.

Acknowledgement. The authors would like to convey their sincere gratitude to
Adam Kunysz for valuable discussions concerning Algorithm SPA-ST-strong. They
would also like to thank the anonymous reviewers for their helpful suggestions.

References

1. Abraham, D.J., Irving, R.W., Manlove, D.F.: Two algorithms for the Student-
Project allocation problem. J. Discrete Algorithms 5(1), 79–91 (2007)

2. Abu El-Atta, A.H., Moussa, M.I.: Student project allocation with preference lists
over (student, project) pairs. In: Proceedings of ICCEE 2009, pp. 375–379 (2009)

3. Baidas, M., Bahbahani, Z., Alsusa, E.: User association and channel assignment in
downlink multi-cell NOMA networks: a matching-theoretic approach. EURASIP
J. Wirel. Commun. Netw. 2019, 220 (2019)

4. Baidas, M., Bahbahani, M., Alsusa, E., Hamdi, K., Ding, Z.: D2D group association
and channel assignment in uplink multi-cell NOMA networks: a matching theoretic
approach. IEEE Trans. Commun. 67, 8771–8785 (2019)

398 S. Olaosebikan and D. Manlove

5. Baidas, M., Bahbahani, Z., El-Sharkawi, N., Shehada, H., Alsusa, E.: Joint relay
selection and max-min energy-efficient power allocation in downlink multicell
NOMA networks: a matching-theoretic approach. Trans. Emerg. Telecommun.
Technol. 30, 5 (2019)

6. Chiarandini, M., Fagerberg, R., Gualandi, S.: Handling preferences in student-
project allocation. Ann. Oper. Res. 275(1), 39–78 (2019)

7. Cooper, F., Manlove, D.: A 3/2-Approximation algorithm for the student-project
allocation problem. In: Proceedings of SEA 2018. Leibniz International Proceedings
in Informatics (LIPIcs), vol. 103, pp. 8:1–8:13 (2018)

8. Irving, R.W.: Stable marriage and indifference. Discrete Appl. Math. 48, 261–272
(1994)

9. Irving, R.W., Manlove, D.F., Scott, S.: The hospitals/residents problem with ties.
SWAT 2000. LNCS, vol. 1851, pp. 259–271. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44985-X 24

10. Irving, R.W., Manlove, D.F., Scott, S.: Strong stability in the hospitals/residents
problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 439–450.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 39

11. Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incomplete
lists and ties. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48523-6 41

12. Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation bounds for
the student-project allocation problem with preferences over projects. J. Discrete
Algorithms 13, 59–66 (2012)

13. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Strongly stable matchings
in time O(nm) and extension to the hospitals-residents problem. In: Diekert, V.,
Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 222–233. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24749-4 20

14. Kazakov, D.: Co-ordination of student-project allocation. Manuscript, University
of York, Department of Computer Science (2001). http://www-users.cs.york.ac.
uk/kazakov/papers/proj.pdf. Accessed 25 Nov 2019

15. Kwanashie, A., Irving, R.W., Manlove, D.F., Sng, C.T.S.: Profile-based optimal
matchings in the Student/project Allocation problem. In: Kratochv́ıl, J., Miller,
M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 213–225. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19315-1 19

16. Kunysz, A.: An algorithm for the maximum weight strongly stable matching prob-
lem. In: Proceedings of ISAAC 2018. LIPIcs, vol. 123, pp. 42:1–42:13 (2018)

17. Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill, New York
(1968)

18. Manlove, D.: Stable marriage with ties and unacceptable partners. Technical report
TR-1999-29, University of Glasgow, Department of Computing Science, January
1999

19. Manlove, D.: Algorithmics of Matching Under Preferences. World Scientific, Sin-
gapore (2013)

20. Manlove, D., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of
stable marriage. Theor. Comput. Sci. 276(1–2), 261–279 (2002)

21. Manlove, D., Milne, D., Olaosebikan, S.: An integer programming approach to the
student-project allocation problem with preferences over projects. In: Lee, J.,
Rinaldi, G., Mahjoub, A.R. (eds.) ISCO 2018. LNCS, vol. 10856, pp. 313–325.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96151-4 27

https://doi.org/10.1007/3-540-44985-X_24
https://doi.org/10.1007/3-540-44985-X_24
https://doi.org/10.1007/3-540-36494-3_39
https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/978-3-540-24749-4_20
http://www-users.cs.york.ac.uk/kazakov/papers/proj.pdf
http://www-users.cs.york.ac.uk/kazakov/papers/proj.pdf
https://doi.org/10.1007/978-3-319-19315-1_19
https://doi.org/10.1007/978-3-319-96151-4_27

An Algorithm for Strong Stability 399

22. Manlove, D., O’Malley, G.: Student project allocation with preferences over
projects. J. Discrete Algorithms 6, 553–560 (2008)

23. Olaosebikan, S., Manlove, D.: Super-stability in the student-project allocation
problem with ties. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA 2018.
LNCS, vol. 11346, pp. 357–371. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-04651-4 24

24. Olaosebikan, S., Manlove, D.F.: An Algorithm for Strong Stability in the Student-
Project Allocation problem with Ties. CoRR, abs/1911.10262 (2019). http://arxiv.
org/abs/1911.10262

25. Roth, A.E.: The evolution of the labor market for medical interns and residents: a
case study in game theory. J. Polit. Econ. 92(6), 991–1016 (1984)

https://doi.org/10.1007/978-3-030-04651-4_24
https://doi.org/10.1007/978-3-030-04651-4_24
http://arxiv.org/abs/1911.10262
http://arxiv.org/abs/1911.10262

Computational Complexity

Overlaying a Hypergraph with a Graph
with Bounded Maximum Degree

Frédéric Havet1,2 , Dorian Mazauric2 , Viet-Ha Nguyen1,2(B),
and Rémi Watrigant3

1 CNRS, I3S, Sophia Antipolis, France
2 Inria, Université Côte d’Azur, Sophia Antipolis, France

thi-viet-ha.nguyen@inria.fr
3 Université de Lyon, Lyon, France

Abstract. Let G and H be respectively a graph and a hypergraph
defined on a same set of vertices, and let F be a fixed graph. We say
that G F -overlays a hyperedge S of H if F is a spanning subgraph of the
subgraph of G induced by S, and that it F -overlays H if it F -overlays
every hyperedge of H. Motivated by structural biology, we study the
computational complexity of two problems. The first problem, (Δ ≤ k)
F -Overlay, consists in deciding whether there is a graph with maxi-
mum degree at most k that F -overlays a given hypergraph H. It is a
particular case of the second problem Max (Δ ≤ k) F -Overlay, which
takes a hypergraph H and an integer s as input, and consists in deciding
whether there is a graph with maximum degree at most k that F -overlays
at least s hyperedges of H.

We give a complete polynomial/NP-complete dichotomy for the Max
(Δ ≤ k)-F -Overlay problems depending on the pairs (F, k), and estab-
lish the complexity of (Δ ≤ k) F -Overlay for many pairs (F, k).

1 Introduction

A major problem in structural biology is the characterization of low resolution
structures of macro-molecular assemblies [5,20]. To attack this very difficult
question, one has to determine the plausible contacts between the subunits (e.g.
proteins) of an assembly, given the lists of subunits involved in all the com-
plexes. We assume that the composition, in terms of individual subunits, of
selected complexes is known. Indeed, a given assembly can be chemically split
into complexes by manipulating chemical conditions. This problem can be con-
veniently modeled by graphs and hypergraphs. We consider the hypergraph H
whose vertices represent the subunits and whose hyperedges are the complexes.
We are then looking for a graph G with the same vertex set as H whose edges
represent the contacts between subunits, and satisfying (i) some local properties
for every complex (i.e. hyperedge), and (ii) some other global properties.

We first focus on the local properties. They are usually modeled by a (possibly
infinite) family F of admissible graphs to which each complex must belong: to
this end, we define the notion of enforcement of a hyperedge and a hypergraph.
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 403–414, 2020.
https://doi.org/10.1007/978-3-030-39219-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_32&domain=pdf
http://orcid.org/0000-0002-3447-8112
http://orcid.org/0000-0002-5589-1889
http://orcid.org/0000-0002-6243-5910
https://doi.org/10.1007/978-3-030-39219-2_32

404 F. Havet et al.

A graph G F-enforces a hyperedge S ∈ E(H) if the subgraph G[S] of G induced
by S belongs to F , and it F-enforces H if it F-enforces all hyperedges of H.
Very often, the considered family F is closed on taking edge supergraphs [1,8]:
if F ∈ F , then every graph obtained from G by adding edges is also in F .
Such a family is completely defined by its set M = M(F) of minimal graphs
that are the elements of F which are not edge supergraphs of any other. In this
case, a graph G F-enforcing S is such that there is an element of M which is
a spanning subgraph of G[S]. This leads to the following notion of overlayment
when considering minimal graph families.

Definition 1. A graph G F-overlays a hyperedge S if there exists F ∈ F such
that F is a spanning subgraph of G[S], and it F-overlays H if it F-overlays
every hyperedge of H.

As said previously, the graph sought will also have to satisfy some global
constraints. Since in a macro-molecular assembly the number of contacts is small,
the first natural idea is to look for a graph G with the minimum number of edges.
This leads to the min-F-Overlay problem: given a hypergraph H and an integer
m, decide if there exists a graph G F-overlaying H such that |E(G)| ≤ m.

A typical example of a family F is the set of all connected graphs, in which
case M(F) is the set of all trees. Agarwal et al. [1] focused on min-M(F)-
Overlay for this particular family in the aforementioned context of structural
biology. However, this problem was previously studied by several communities
in other domains, as pointed out by Chen et al. [6]. Indeed, it is also known as
Subset Interconnection Design, Minimum Topic-Connected Overlay

or Interconnection Graph Problem, and was considered (among others)
in the design of vacuum systems [10,11], scalable overlay networks [7,18], and
reconfigurable interconnection networks [12,13]. Some variants have also been
considered in the contexts of inferring a most likely social network [2], deter-
mining winners of combinatorial auctions [9], as well as drawing hypergraphs
[4,14].

Cohen et al. [8] presented a dichotomy regarding the polynomial vs. NP-hard
status of the problem min-F-Overlay with respect to the considered family F .
Roughly speaking, they showed that the easy cases one can think of (e.g. when
edgeless graphs of the right sizes are in F , or if F contains only cliques) are the
only families giving rise to a polynomial-time solvable problem: all others are
NP-complete. They also considered the FPT/W[1]-hard dichotomy for several
families F .

In this paper, we consider the variant in which the additional constraint
is that G must have a bounded maximum degree: this constraint is motivated
by the context of structural biology, since a subunit (e.g. a protein) cannot be
connected to many other subunits. This yields the following problem for any
family F of graphs and an integer k.

Overlaying a Hypergraph with a Graph with Bounded Maximum Degree 405

(Δ ≤ k)-F-overlay
Input: A hypergraph H.
Question: Does there exist a graph G F-overlaying H such that Δ(G) ≤ k ?

We denote by overF (H,G) the number of hyperedges of H that are F-
overlaid by G. A natural generalization is to find overF (H, k), the maximum
number of hyperedges F-overlaid by a graph with maximum degree at most k.

Max (Δ ≤ k)-F-overlay
Input: A hypergraph H and a positive integer s.
Question: Does there exist a graph G such that Δ(G) ≤ k and overF (H, G) ≥ s ?

Observe that there is an obvious reduction from (Δ ≤ k)-F-overlay to
Max (Δ ≤ k)-F-overlay (by setting s = |E(H)|) (Fig. 1).

4 5 6

32

7 7

32

4 5 6

32

7

4 5 6

1 11

Fig. 1. Example of (Δ ≤ k)-F-overlay and max (Δ ≤ k)-F-overlay. In the figure,
an instance H (left), a graph G with Δ(G) ≤ 1 that O3-overlays H (with O3 being the
graph with three vertices and one edge) (center), and a solution to Max (Δ ≤ 3)-C3-
overlay (with C3 being the cycle on three vertices) (right).

In this paper, we mainly consider the case when the family F contains a
unique graph F . We abbreviate (Δ ≤ k)-{F}-Overlay and Max (Δ ≤ k)-{F}-
Overlay as (Δ ≤ k)-F -Overlay and Max (Δ ≤ k)-F -Overlay, respectively.
By definition those two problems really make sense only for |F |-uniform hyper-
graphs i.e. hypergraphs whose hyperedges are of size |F |. Therefore, we always
assume the hypergraph to be |F |-uniform.

If F is a graph with maximum degree greater than k, then solving (Δ ≤ k)-
F -Overlay or Max (Δ ≤ k)-F -Overlay is trivial as the answer is always ‘No’.
So we only study the problems when Δ(F) ≤ k.

If F is an empty graph, then Max (Δ ≤ k)-F -Overlay is also trivial,
because for any hypergraph H, the empty graph on V (H) vertices F -overlays H.
Hence the first natural interesting cases are the graphs with one edge. For every
integer p ≥ 2, we denote by Op the graph with p vertices and one edge. In Sect. 2,
we prove the following dichotomy theorem.

Theorem 1. Let k ≥ 1 and p ≥ 2 be integers. If p = 2 or if k = 1 and p = 3,
then Max (Δ ≤ k)-Op-Overlay and (Δ ≤ k)-Op-Overlay are polynomial-
time solvable. Otherwise, they are NP-complete.

Then, in Sect. 3, we give a complete polynomial/NP-complete dichotomy for
the Max (Δ ≤ k)-F -Overlay problems.

406 F. Havet et al.

Theorem 2. Max (Δ ≤ k)-F -Overlay is polynomial-time solvable if either
Δ(F) > k, or F is an empty graph, or F = O2, or k = 1 and F = O3.
Otherwise it is NP-complete.

In Sect. 4, we investigate the complexity of (Δ ≤ k)-F -Overlay problems.
We believe that each such problem is either polynomial-time solvable or NP-
complete. However the dichotomy seems to be more complicated than the one
for Max (Δ ≤ k)-F -Overlay. We exhibit several pairs (F, k) such that (Δ ≤
k)-F -Overlay is polynomial-time solvable, while Max (Δ ≤ k)-F -Overlay

is NP-complete. This is in particular the case when F is a complete graph
(Proposition 3), F is connected k-regular (Proposition 4), F is a path and k = 2
(Theorem 8), and when F is the cycle on 4 vertices and k ≤ 3 (Theorem 7).

Due to space constraints, some proofs (marked with a �) were omitted.
Most notations of this paper are standard. We now recall some of them, and

we refer the reader to [3] for any undefined terminology. For a positive integer
p, let [p] = {1, . . . , p}.

Given S ⊆ V (G), we denote by G[S] the subgraph induced by S, that is the
subgraph with vertex set S and edge set {uv ∈ E(G) | u, v ∈ S}. We denote
by Ek the edgeless graph on k vertices, that is the graph with k vertices and no
edges. The disjoint union of two graphs F and G is denoted by F + G.

Let H be a hypergraph. Two hyperedges are adjacent if their intersection
has size at least 2. A hypergraph is neat if any two distinct hyperedges intersect
in at most one vertex. In other words, a hypergraph is neat if there is no pair
of adjacent hyperedges. We denote by K(H), the graph obtained by replacing
each hyperedge by a complete graph. In other words, V (K(H)) = V (H) and
E(K(H)) = {xy | ∃S ∈ E(H), {x, y} ⊆ S}. The edge-weight function induced by
H on K(H), denoted by wH , is defined by wH(e) = |{S ∈ E(H) | e ⊆ S}|. In
words, wH(e) is the number of hyperedges of H containing e. A hypergraph H is
connected if K(H) is connected, and the connected components of a hypergraph
H are the connected components of K(H). Finally, a graph G F-overlaying H
with maximum degree at most k is called an (F ,H, k)-graph.

2 The Graphs with One Edge

In this section, we establish Theorem 1. Let p ≥ 2, and H be a p-uniform
hypergraph. Consider the edge-weighted graph (K(H), wH). For every matching
M of this graph, let GM = (V (H),M). Every hyperedge Op-overlaid by GM

contains at least one edge of M and at most �p
2� edges of M . We thus have the

following:

Observation 3. For every matching M of K(H), we have:

1
�p
2�wH(M) ≤ overOp

(H,GM) ≤ wH(M), (1)

where wH(M) =
∑

e∈M wH(e).

Overlaying a Hypergraph with a Graph with Bounded Maximum Degree 407

Consider first the case when p = 2. Let H be a 2-uniform hypergraph. Every
hyperedge is an edge, so K(H) = H. Moreover, a (hyper)edge of H is O2-overlaid
by G if and only if it is in E(G). Hence Max (Δ ≤ k)-O2-Overlay is equivalent
to finding a maximum k-matching (that is a subgraph with maximum degree at
most k) in K(H). This problem is polynomial-time solvable, see [19, Chap. 31],
hence:

Proposition 1. Max (Δ ≤ k)-O2-Overlay is polynomial-time solvable for all
positive integer k.

If p = 3, Inequalities (1) are equivalent to overO3(H,GM) = wH(M). Since
the edge set of a graph with maximum degree 1 is a matching, Max (Δ ≤
1)-O3-Overlay is equivalent to finding a maximum-weight matching in the
edge-weighted graph (K(H), wH). This can be done in polynomial-time, see [15,
Chap. 14].

Proposition 2. Max (Δ ≤ 1)-O3-Overlay is polynomial-time solvable.

We shall now prove that if p ≥ 4, or p = 3 and k ≥ 2, then Max (Δ ≤ k)-
Op-Overlay is NP-complete. We prove it by a double induction on k and p.
Theorems 4 and 5 first prove the base cases of the induction and Lemma 1
corresponds to the inductive steps.

Theorem 4 (�). (Δ ≤ 1)-O4-Overlay is NP-complete.

Theorem 5 (�). (Δ ≤ 2)-O3-Overlay is NP-complete.

Lemma 1 (�). If (Δ ≤ k)-Op-Overlay is NP-complete, then (Δ ≤ k)-Op+1-
Overlay and (Δ ≤ k + 1)-Op-Overlay are NP-complete.

Propositions 1 and 2, Theorems 4 and 5, and Lemma 1 imply Theorem 1.

3 Complexity of Max (Δ ≤ k)-F -Overlay

The aim of this section is to establish Theorem 2 that gives the polynomial/NP-
complete dichotomy for the Max (Δ ≤ k)-F -Overlay problems.

As noticed in the introduction, if Δ(F) > k or F is an empty graph then
Max (Δ ≤ k)-F-Overlay is trivially polynomial-time solvable. Moreover, by
Propositions 1 and 2, Max (Δ ≤ 1)-O3-Overlay as well as Max (Δ ≤ k)-O2-
Overlay (for all positive integers k) are also polynomial-time solvable.

We shall now prove that if we are not in one of the above cases, then Max

(Δ ≤ k)-F -Overlay is NP-complete. We first establish the NP-completeness
when F has no isolated vertices.

Theorem 6. Let F be a graph on at least three vertices with no isolated ver-
tices. If k ≥ Δ(F), then Max (Δ ≤ k)-F -Overlay is NP-complete on neat
hypergraphs.

408 F. Havet et al.

Proof. Assume k ≥ Δ(F). Let n = |F |, a1, . . . , an be an ordering of the vertices
of F such that δ(F) = d(a1) ≤ d(a2) ≤ · · · ≤ d(an) = Δ(F).
Let γ = �k/δ(F)� − 1, β = k − γδ(F). Observe that δ(F) ≤ β ≤ 2δ(F) − 1.

We shall give a reduction from Independent Set which is a well-known
NP-complete problem even for cubic graphs (see [16].) We distinguish two cases
depending on whether d(a2) > β or not. The two reductions are very similar.

Case 1: d(a2) > β. Set γ1 = γ2 = �(k − d(a2))/δ(F)� and γ3 = �(k −
d(a3))/δ(F)�.

Let Γ be a cubic graph. For each vertex v ∈ V (Γ), let (e1(v), e2(v), e3(v)) be
an ordering of the edges incident to v. We shall construct the neat hypergraph
H = H(Γ) as follows.

– For each vertex v ∈ Γ , we create a hyperedge Sv = {av
1, . . . , a

v
n}. Then, for

1 ≤ i ≤ 3, we add γi av
i -leaves, that are hyperedges containing av

i and n − 1
new vertices.

– For each edge e = uv ∈ Γ , let i and j be the indices such that e = ei(u) =
ej(v). We create a new vertex ze and hyperedges Se

u (Se
v) containing ze, au

i

(av
j), and n − 2 new vertices, respectively. Then, we add γ ze-leaves, that are

hyperedges containing ze and n − 1 new vertices.

We shall prove that overF (H, k) = (γ1+γ2+γ3)|V (Γ)| +(γ+1)|E(Γ)|+α(Γ),
where α(Γ) denotes the cardinality of a maximum independent set in Γ .

The following claim shows that there are optimal solutions with specific struc-
ture. This leads to the inequality:

overF (H, k) ≤ (γ1 + γ2 + γ3)|V (Γ)| + (γ + 1)|E(Γ)| + α(Γ)

Claim 1 (�). There is a graph G with Δ(G) ≤ k that F -overlays overF (H, k)
hyperedges of H such that:

(a) each x-leaf L is F -overlaid and x is incident to δ(F) edges in G[L] (with
x = av

i or x = ze).
(b) for each edge e = uv ∈ E(Γ), exactly one of the two hyperedges Se

u and Se
v

is F -overlaid. Moreover if Se
u (Se

v) is F -overlaid, then au
i (av

j) is incident
to d(a2) edges in Se

u (Se
v), respectively.

(c) the set of vertices v such that Sv is F -overlaid is an independent set in Γ .

Conversely, consider W a maximum independent set of Γ .
Let G be the graph with vertex V (H) which is the union of the following

subgraphs:

– for each x-leaf L, we add a copy of F on L in which x has degree δ(F);
– for each vertex v ∈ W , we add a copy of F on Sv in which av

i has degree d(ai)
for all 1 ≤ i ≤ n.

– for each edge e ∈ E(Γ), we choose an endvertex u of e such that u /∈ W , and
add a copy of F in which ze has degree d(a1) and au

i has degree d(a2) (with
i the index such that ei(u) = e).

Overlaying a Hypergraph with a Graph with Bounded Maximum Degree 409

It is simple matter to check that Δ(G) ≤ k and that G F -overlays
(γ1+γ2+γ3)|V (Γ)| +(γ+1)|E(Γ)|+α(Γ) hyperedges of H. Thus overF (H, k) ≥
(γ1 + γ2 + γ3)|V (Γ)| + (γ + 1)|E(Γ)| + α(Γ).
Case 2: d(a2) ≤ β. The proof is very similar to Case 1. The main difference is
the definition of the γi. In this case, we set γi = �(k−d(ai))/δ(F)� for 1 ≤ i ≤ 3,
and we can adapt the proof of Claim 1.
Conversely, if we have W a maximum independent set of Γ , then we construct
graph G, union of the subgraphs as Case 1 except the subgraphs for hyperedges
S

e1(v)
u , that we add a copy of F in which d(ze) = d(a2) and d(au

1) = d(a1).
We then establish the following lemma, which allows to derive the NP-

completeness of Max (Δ ≤ k)-F -Overlay when F has isolated vertices.

Lemma 2 (�). Let k be a positive integer, let F be a graph with δ(F) ≥ 1,
and let q be a non-negative integer. If Max (Δ ≤ k)-(F + Eq)-Overlay is
NP-complete, then Max (Δ ≤ k)-(F + Eq+1)-Overlay is also NP-complete.

Now we can prove Theorem 2. As explained in the beginning of the section,
it suffices to prove that Max (Δ ≤ k)-F -Overlay remains NP-complete when
Δ(F) ≤ k, F 	= E|F |, |F | ≥ 3 and (F, k) 	= (O3, 1). Assume that the above
conditions are satisfied. Let F ′ be the graph induced by the non-isolated vertices
of F . Then F = F ′ +Eq with q = |F | − |F ′|. If |F ′| = 2, then F = O|F |, and we
have the result by Theorem 1. If |F ′| ≥ 3, then the result follows from Theorem 6,
Lemma 2, and an immediate induction.

4 Complexity of (Δ ≤ K)-F-Overlay

4.1 Regular Graphs

Proposition 3. For every complete graph K and every positive integer k, (Δ ≤
k)-K-Overlay is polynomial-time solvable.

Proof. Observe that a |V (K)|-uniform hypergraph H is a positive instance of
(Δ ≤ k)-K-Overlay if and only if K(H) is a (K,H, k)-graph.

Proposition 4. For every connected k-regular graph F , (Δ ≤ k)-F -Overlay

is polynomial-time solvable.

Proof. One easily sees that a |V (F)|-uniform hypergraph H admits an (F,H, k)-
graph if and only if the hyperedges of H are pairwise non-intersecting.

Let C4 denote the cycle on 4 vertices. Proposition 4 implies that (Δ ≤ 2)-C4-
Overlay is polynomial-time solvable. We now show that (Δ ≤ 3)-C4-Overlay

is also polynomial-time solvable.

Theorem 7. (Δ ≤ 3)-C4-Overlay is polynomial-time solvable.

410 F. Havet et al.

Proof. Let H be a 4-uniform hypergraph.
Let us describe an algorithm to decide whether there is a (C4,H, 3)-graph.

It is sufficient to do it when H is connected since the disjoint union of the
(C4,K, 3)-graphs for connected components K of H is a (C4,H, 3)-graph.

Observe first that if two hyperedges of H intersect in exactly one vertex u,
then no such graph exists, since u must have degree 2 in each of the hyperedges
if they are C4-overlaid, and thus degree 4 in total. Therefore if there are two
such hyperedges, we return ‘No’. At this point we may assume that |E(H)| ≥ 2
for otherwise we return ‘Yes’.

From now on we may assume that two hyperedges either do not intersect, or
are adjacent (intersect on at least two vertices).

Claim 2. If two hyperedges S1 and S2 intersect on three vertices and there is a
(C4,H, 3)-graph G, then |V (H)| ≤ 6.

Proof of claim:. Assume S1 = {a1, b, c, d} and S2 = {a2, b, c, d}. Let G be a
(C4,H, 3)-graph. In G, a1 and a2 have the same two neighbours in {b, c, d} and
the third vertex of {b, c, d} is also adjacent to those two. Consider a hyperedge
S3 intersecting S1 ∪ S2. Since it is C4-overlaid by G, at least two edges connect
S3∩(S1∪S2) to S3\(S1∪S2). The endvertices of those edges in S1∪S2 must have
degree 2 in G[S1∪S2]. Hence, without loss of generality, either S3 = {a1, a2, b, e},
or S3 = {a1, b, c, e} for some vertex e not in S1 ∪S2. Now no hyperedge can both
intersect S1 ∪ S2 ∪ S3 and contain a vertex not in S1 ∪ S2 ∪ S3, for such a
hyperedge must contain either the vertices c, e or a2, e which are at distance 3 in
G[S1∪S2∪S3]. (However there can be more hyperedges contained in S1∪S2∪S3.)
Hence |V (H)| ≤ 6. 	

In view of Claim 2, if there are two hyperedges with three vertices in common,
either we return ‘No’ if |V (H)| > 6, or we check all possibilities (or follow the
proof of the above claim) to return the correct answer otherwise. Henceforth, we
may assume that any two adjacent hyperedges intersect in exactly two vertices.

Let S1 and S2 be two adjacent hyperedges, say S1 = {a, b, c, d} and S2 =
{c, d, e, f}. Note that every (C4,H, 3)-graph contains the edges ab, cd and ef ,
and that N(c) ∪ N(d) = S1 ∪ S2.

Claim 3. If there is another hyperedge than S1 and S2 containing c or d, and
there is a (C4,H, 3)-graph G, then |V (H)| ≤ 8.

Proof of claim:. Without loss of generality, we may assume that G contains the
cycle (a, b, d, f, e, c, a) and the edge cd. Hence the only possible hyperedges con-
taining c or d and a vertex not in S1∪S2 are S3 = {a, c, e, g} for some g /∈ S1∪S2

and S4 = {b, d, f, h} for some h /∈ S1 ∪ S2.
If H contains both S3 and S4, then G contains the edges ag, eg, bh and hf . If

G contains also gh, then G[S1∪S2∪S3∪S4] is 3-regular, so G = G[S1∪S2∪S3∪S4].
If G does not contain gh, then the only vertices of degree 2 in G[S1∪S2∪S3∪S4]
are g and h, and they are at distance at least 3 in this graph. Thus every
hyperedge intersecting S1 ∪ S2 ∪ S3 ∪ S4 is contained in this set, so |V (H)| = 8.

Overlaying a Hypergraph with a Graph with Bounded Maximum Degree 411

Assume now that G contains only one of S3, S4. Without loss of generality,
we may assume that this is S3. Hence G also contains the edges ag and eg. If
V (G) 	= S1 ∪ S2 ∪ S3, then there is a hyperedge S that intersects S1 ∪ S2 ∪ S3

and that is not contained in S1 ∪ S2 ∪ S3. It does not contain c and d. Hence it
must contain one of the vertices a or e, because it intersects each Si along an
edge of G or not at all. Without loss of generality, a ∈ S. Hence S = {a, b, i, g}
for some vertex i not in S1 ∪ S2 ∪ S3, and G contains the edges bi and ig. Now,
as previously, either i and f are adjacent and G = G[S1 ∪ S2 ∪ S3 ∪ S] or they
are not adjacent, and every hyperedge intersecting S1 ∪ S2 ∪ S3 ∪ S is contained
in this set. In both cases, |V (H)| = 8. 	

We now summarize the algorithm: if |V (G)| ≤ 8, then we solve the instance
by brute force. Otherwise, for every pair of hyperedges S1, S2, if their intersection
is of size 1 or 3, we answer ‘No’. In the remaining cases, if S1 and S2 have non-
empty intersection, then, they must intersect on two vertices c and d, and these
vertices do not belong to any other hyperedges but S1 and S2.

In this case, let H ′ be the hypergraph with vertex set V (H)\{c, d} and hyper-
edge set (E(H)∪{{a, b, e, f}})\{S1, S2}. It is simple matter to check that there
is a (C4,H, 3)-graph if and only if there is a (C4,H

′, 3)-graph. Consequently, we
recursively apply the algorithm on H ′.

Clearly, the above-described algorithm runs in polynomial time.

4.2 Paths

Let P be the set of all paths. We have the following:

Theorem 8. (Δ ≤ 2)-P-Overlay is linear-time solvable.

Proof. Clearly, if H is not connected, it suffices to solve the problem on each of
the components and to return ‘No’ if the answer is negative for at least one of
the components, and ‘Yes’ otherwise. Henceforth, we shall now assume that H is
connected. In such a case, a (P,H, 2)-graph is either a path or a cycle. However,
if H is P-overlaid by a path P , then it is also P-overlaid by the cycle obtained
from P by adding an edge between its two endvertices. Thus, we focus on the
case where G is a cycle.

Let S be a family of sets. The intersection graph of a set S is the graph
IG(S) whose vertices are the sets of S, and in which two vertices are adjacent
if the corresponding sets in S intersect.

The intersection graph of a hypergraph H, denoted by IG(H), is the inter-
section graph of its hyperedge set. We define two functions lH and sH as follows:

lH(S) = |S|− 1 for all S ∈ E(H) and sH(S, S′) = |S ∩S′|− 1 for all S, S′ ∈ E(H).

Let C� be the circle of circumference
. We identify the points of C� with
the integer numbers (points) of the segment [0,
], (with 0 identified with
). A
circular-arc graph is the intersection graph of a set of arcs on C�. A set A of
arcs such that IG(A) = G is called an arc representation of G. We denote by

412 F. Havet et al.

Av the arc corresponding to v in A. Let G be a graph and let l : V (G) → N

and s : E(G) → N be two functions. An arc representation A of G is l-respecting
if Av has length l(v) for any v ∈ V (G), s-respecting if Av ∩ Au has length
s(u, v) for all uv ∈ E(G), and (l, s)-respecting if it is both l-respecting and s-
respecting. One can easily adapt the algorithm given by Köbler et al. [17] for
(l, s)-respecting interval representations to decide in linear time whether a graph
admits an (l, s)-respecting arc representation in Cn for every integer n.

Claim 4. Let H be a connected hypergraph on n vertices. There is a cycle P-
overlaying H if and only if IG(H) admits an (lH , sH)-respecting arc represen-
tation into Cn.

Proof of claim:. Assume that H is P-overlaid by a cycle C = (v0, v1, . . . ,
vn−1, v0). There is a canonical embedding of C to Cn in which every vertex
vi is mapped to i and every edge vivi+1 to the circular arc [i, i + 1]. For every
hyperedge S ∈ E(H), P [S] is a subpath, which is mapped to the circular arc
AS of Cn that is the union of the circular arcs to which its edges are mapped.
Clearly, A = {AS | S ∈ E(H)} is an (lH , sH)-respecting interval representation
of IG(H).

Conversely, assume that IG(H) admits an (lH , sH)-respecting interval rep-
resentation A = {AS | S ∈ E(H)} into Cn. Let S0 be a hyperedge of minimum
size. Free to rotate all intervals, we may assume that AS0 is [1, |S0|]. Now since A
is (lH , sH)-respecting and H is connected, we deduce that the extremities of AS

are integers for all S ∈ E(H). Let v1 be a vertex of H that belongs to the hyper-
edges whose corresponding arcs of A contain 1. Then for all i = 2 to n = |V (H)|,
denote by vi an arbitrary vertex not in {v1, . . . , vi−1} that belongs to the hyper-
edges whose corresponding arcs of A contain i. Such a vertex exists because A
is (lH , sH)-respecting. Observe that such a construction yields S = {vi | i ∈ AS}
for all S ∈ E(H). Furthermore, the cycle C = (v1, . . . , vn, v1) P-overlays H.
Indeed, for each S ∈ E(H), C[S] is the subpath corresponding to AS , that is
V (C[S]) = {vi | i ∈ AS} and E(C[S]) = {vivi+1 | [i, i + 1] ⊆ AS}.

The algorithm to solve (Δ ≤ 2)-P-Overlay for a connected hypergraph H
in linear time is thus the following:

1. Construct the intersection graph IG(H) and compute the associated functions
lH and sH .

2. Check whether graph IG(H) has an (lH , sH)-respecting interval representa-
tion. If it is the case, return ‘Yes’. If not return ‘No’.

Remark 1. We can also detect in polynomial time whether a connected hyper-
graph H is P-overlaid by a path. Indeed, similarly to Claim 4, one can show
that there is a path P-overlaying H if and only if IG(H) admits an (lH , sH)-
respecting interval representation.

Overlaying a Hypergraph with a Graph with Bounded Maximum Degree 413

5 Further Research

Theorem 2 characterizes the complexity of Max (Δ ≤ k)-F-Overlay when
F contains a unique graph. It would be nice to extend this characterization to
families F of arbitrary size.

Problem 1. Characterize the pairs (F , k) for which Max (Δ ≤ k)-F-Overlay

is polynomial-time solvable and those for which it is NP-complete.

Theorem 1 and the results obtained in Sect. 4 give a first view of the com-
plexity of (Δ ≤ k)-F -Overlay. A natural problem is to close the dichotomy:

Problem 2. Characterize the pairs (F, k) for which (Δ ≤ k)-F -Overlay is
polynomial-time solvable and those for which it is NP-complete.

It would be interesting to consider the complexity of this problem when F is
k-regular but non-connected, and when F is a cycle. In order to attack Problem 2,
it would be helpful to prove the following conjecture.

Conjecture 1. If (Δ ≤ k)-F -Overlay is NP-complete, then (Δ ≤ k + 1)-F -
Overlay is also NP-complete.

Furthermore, for each pair (F , k) such that Max (Δ ≤ k)-F-Overlay is
NP-complete and (Δ ≤ k)-F-Overlay is polynomial-time solvable, it is natural
to consider the parameterized complexity of Max (Δ ≤ k)-F-Overlay when
parameterized by |E(H)| − s, because (Δ ≤ k)-F-Overlay is the case s = 0.

Finally, it would be interesting to obtain approximation algorithms for Max

(Δ ≤ k)-F-Overlay when this problem is NP-complete.

References

1. Agarwal, D., Caillouet, C., Coudert, D., Cazals, F.: Unveiling contacts within
macro-molecular assemblies by solving minimum weight connectivity inference
problems. Mol. Cell. Proteomics 14, 2274–2284 (2015)

2. Angluin, D., Aspnes, J., Reyzin, L.: Inferring social networks from outbreaks. In:
Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI),
vol. 6331, pp. 104–118. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16108-7_12

3. Bondy, A.J., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol.
244. Springer, New York (2008)

4. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Blocks of hypergraphs. In:
Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 201–211.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19222-7_21

5. Burnley, R., Damoc, E., Denisov, E., Makarov, A., Heck, A.: High-sensitivity orbi-
trap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 10 (2012)

6. Chen, J., Komusiewicz, C., Niedermeier, R., Sorge, M., Suchý, O., Weller, M.:
Polynomial-time data reduction for the subset interconnection design problem.
SIAM J. Discret. Math. 29(1), 1–25 (2015)

https://doi.org/10.1007/978-3-642-16108-7_12
https://doi.org/10.1007/978-3-642-16108-7_12
https://doi.org/10.1007/978-3-642-19222-7_21

414 F. Havet et al.

7. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays
for pub-sub with many topics. In: PODC 2007, pp. 109–118. ACM, New York
(2007)

8. Cohen, N., Havet, F., Mazauric, D., Sau, I., Watrigant, R.: Complexity dichotomies
for the minimum F-overlay problem. J. Discret. Algorithms 52, 133–142 (2019)

9. Conitzer, V., Derryberry, J., Sandholm, T.: Combinatorial auctions with struc-
tured item graphs. In: 16th Conference on Innovative Applications of Artificial
Intelligence (AAAI 2004), pp. 212–218 (2004)

10. Du, D.Z., Kelley, D.F.: On complexity of subset interconnection designs. J. Global
Optim. 6(2), 193–205 (1995)

11. Du, D.-Z., Miller, Z.: Matroids and subset interconnection design. SIAM J. Discret.
Math. 1(4), 416–424 (1988)

12. Fan, H., Hundt, C., Wu, Y.-L., Ernst, J.: Algorithms and implementation for inter-
connection graph problem. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA
2008. LNCS, vol. 5165, pp. 201–210. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85097-7_19

13. Fan, H., Wu, Y.: Interconnection graph problem. In: Proceedings of the 2008 Inter-
national Conference on Foundations of Computer Science, FCS 2008, pp. 51–55
(2008)

14. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing
venn diagrams. J. Graph Theory 11(3), 309–325 (1987)

15. Jungnickel, D.: Graphs, Networks and Algorithms. Algorithmsand Computation
in Mathematics, vol. 5. Springer, Heidelberg (2013)

16. Karp, R.M.: Reducibility among Combinatorial Problems. Springer, New York
(1972)

17. Köbler, J., Kuhnert, S., Watanabe, O.: Interval graph representation with given
interval and intersection lengths. J. Discret. Algorithms 34, 108–117 (2015)

18. Onus, M., Richa, A.W.: Minimum maximum-degree publish-subscribe overlay net-
work design. IEEE/ACM Trans. Networking 19(5), 1331–1343 (2011)

19. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer-Verlag, Berlin (2003)

20. Sharon, M., Robinson, C.V.: The role of mass spectrometry in structure elucidation
of dynamic protein complexes. Annu. Rev. Biochem. 76(1), 167–193 (2007). PMID:
17328674

https://doi.org/10.1007/978-3-540-85097-7_19
https://doi.org/10.1007/978-3-540-85097-7_19

Parameterized Algorithms for Directed
Modular Width

Raphael Steiner and Sebastian Wiederrecht(B)

Technische Universität Berlin, Berlin, Germany
sebastian.wiederrecht@tu-berlin.de

Abstract. Many well-known NP-hard algorithmic problems on directed
graphs resist efficient parameterizations with most known width mea-
sures for directed graphs, such as directed treewidth, DAG-width, Kelly-
width and many others. While these focus on measuring how close a
digraph is to an oriented tree resp. a directed acyclic graph, in this
paper, we investigate directed modular width as a parameter, which is
closer to the concept of clique-width. We investigate applications of mod-
ular decompositions of directed graphs to a wide range of algorithmic
problems and derive FPT algorithms for several well-known digraph-
specific NP-hard problems, namely minimum (weight) directed feedback
vertex set, minimum (weight) directed dominating set, digraph colour-
ing, directed Hamiltonian path/cycle, partitioning into paths, (capaci-
tated) vertex-disjoint directed paths, and the directed subgraph homeo-
morphism problem. The latter yields a polynomial-time algorithm for
detecting topological minors in digraphs of bounded directed modular
width. Finally we illustrate that other structural digraph parameters,
such as directed pathwidth and cycle-rank can be computed efficiently
using directed modular width as a parameter.

Keywords: Parameterized complexity · Fixed-parameter-tractability ·
Width measures · Modular decomposition · Integer Linear
Programming

1 Introduction

Width measures for graphs have become a fundamental pillar in both structural
graph theory and parameterized complexity. From an algorithmic point of view
a good width measure should provide three things: (1) graph classes of bounded
width should have a reasonably rich structure, (2) a large number of different
problems should be efficiently solvable on those classes, and at last (3) a decom-
position witnessing the width of a graph should be computable in a reasonable
amount of time. For undirected graphs width measures have been extremely suc-
cessful. For sparse graph classes the notion of treewidth [33] has lead to a plethora

A full version of this article is available at https://arxiv.org/abs/1905.13203.
R. Steiner—Supported by DFG-GRK 2434.
S. Wiederrecht—Supported by the ERC consolidator grant DISTRUCT-648527.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 415–426, 2020.
https://doi.org/10.1007/978-3-030-39219-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_33&domain=pdf
http://orcid.org/0000-0002-4234-6136
http://orcid.org/0000-0003-0462-7815
https://arxiv.org/abs/1905.13203
https://doi.org/10.1007/978-3-030-39219-2_33

416 R. Steiner and S. Wiederrecht

of different algorithmic approaches to solve otherwise untractable problems [4].
Among the methods utilising treewidth there are also so called algorithmic meta
theorems like Courcelle’s Theorem [6] stating that any MSO2-definable problem
can be solved on graphs of bounded treewidth in linear time. For dense graphs
the approach of clique-width [9] still leads to the tractability of several other-
wise hard problems on classes of bounded width [14]. In fact, in the case of
clique-width still a powerful algorithmic meta theorem exists [7,10].

In harsh contrast to the immense success of undirected graph width measures
for algorithmic applications, the setting of digraphs has resisted all approaches
that tried to replicate the algorithmic power of treewidth. The most popular
among the treewidth-like measures are directed treewidth [27], DAG-width [3],
and Kelly-width [26]. For most of these concepts there exist some (XP) algo-
rithms for a couple of specialized problems, usually involving some kind of rout-
ing, however the spectrum of algorithmic applications does not even come close to
that of undirected treewidth. Ganian et al. [20] introduce a concept to capture
the algorithmic abilities of a directed width parameter and reach the conclu-
sion that no directed width measure can be ‘algorithmically useful’ and have
‘nice structural properties’ at the same time. So with all of the above mentioned
directed analogues of treewidth being nicely behaved with respect to subdigraphs
and butterfly minors, one cannot expect much more from the algorithmic side
of these width measures.

The authors of [20] conclude their work by suggesting that the directed ver-
sion of clique-width [9] would be a more suitable parameter, especially since the
afore mentioned algorithmic meta theorem carries over to the digraph setting.
However, it is not entirely clear how a directed clique-width expression of min-
imum width can be approximated in reasonable time. The current technique is
to compute a bi-rank-width decomposition of optimal width, say k, and then use
this decomposition to obtain a directed clique-width expression of width at most
2k+1−1 in FPT-time [8]. There are elementary problems that still are W [1]-hard
on graphs of bounded clique-width like the Hamiltonian cycle problem [16].

This naturally motivates finding a digraph width measure that does not
struggle with more global decision problems like Hamiltonian cycles, while at
the same time offers a broad variety of different problems that become efficiently
computable in digraphs of bounded width and uses a decomposition concept that
can be computed, or at least approximated within a reasonable span in FPT-
time. In the case of undirected graphs clique width has similar problems, which
led Gajarsky et al. to consider the more restrictive parameter of modular width
[19]. For undirected graphs modular width fills the very specific niche as it covers
dense undirected graphs, allows for FPT-time algorithms for a broad spectrum
of problems and an optimal decomposition can be computed efficiently [28].

Contribution. The main contribution of this paper is to consider the directed
version of modular width as a structural parameter for directed graphs in terms
of its usefulness in parameterized algorithms. While directed modular width is
more restrictive than the digraph parameters discussed above, the advantage is a
wealth of otherwise untractable problems that turn out to admit FPT algorithms

Parameterized Algorithms for Directed Modular Width 417

when parameterized with the directed modular width of the input digraph. Sim-
ilar to the undirected case a directed modular decomposition of optimal width
can be computed in polynomial time [29]. Besides other classical hard problems
we give FPT algorithms for the problems digraph colouring, Hamiltonian cycle,
partitioning into paths, capacitated k-disjoint paths, the directed subgraph home-
omorphism problem, and for computing the directed pathwidth and the cycle
rank. We obtain polynomial-time algorithms for finding topological minors in
digraphs of bounded modular width. The dynamic programming approach we
take utilizes the recursive nature of a directed modular decomposition, however,
combining the dynamic programming tables of the children of some node in our
recursion tree turns out to be a non-trivial problem on its own.

The paper is organized as follows. In the next section we give a short intro-
duction to the tools we will use to construct our algorithms while in Sect. 3 we
give a very high level overview on the strategy used in (almost) all of these algo-
rithms. In Sect. 4 we show how to use this strategy to obtain a parameterized
algorithm for a generalized version of the disjoint path problem which then can
be applied to solve the directed subgraph homeomorphism problem. In Sect. 5
we present algorithms to compute the cycle rank and the directed pathwidth of a
given digraph. For these problems we do not use the approach involving integer
programming, instead we exploit the fact that these parameters can be equiva-
lently formulated as vertex orderings. We conclude with an overview over other
algorithmic results we obtained for directed modular width in a compact table.
For detailed proofs of the theorems and discussions on the individual problems
the reader is referred to the arXiv-version1 of this paper.

2 Preliminaries

Digraphs in this paper are considered loopless and without parallel edges, but
may have pairs of anti-parallel directed edges (called digons). Given a vertex
x in a digraph D, we denote by N+

D (x) = {y ∈ V (D)|(x, y) ∈ E(D)} and
N−

D (x) = {y ∈ V (D)|(y, x) ∈ E(D)} the out- and in-neighbourhood of x in D.

Directed Modular Width. Modules in digraphs are sets of vertices with the same
relations to vertices outside the set Directed modular width measures the ability
to repeatedly decompose a digraph into a bounded number of modules.

Definition 1. Let D be a digraph. A non-empty subset M ⊆ V (D) of vertices is
called a module, if all the vertices in M have the same sets of out-neighbours and
the same sets of in-neighbours outside the module. Formally, we have N+

D (u1) \
M = N+

D (u2) \ M and N−
D (u1) \ M = N−

D (u2) \ M for all u1, u2 ∈ M .

Definition 2 (Directed Modular Width). Let k ∈ N0, and let D be a
digraph. D has directed modular width at most k if one of the following holds:

• |V (D)| ≤ k, or
1 https://arxiv.org/abs/1905.13203.

https://arxiv.org/abs/1905.13203

418 R. Steiner and S. Wiederrecht

• There exists a partition of V (D) into � ∈ {2, . . . , k} modules M1, . . . ,M� such
that for every i, D[Mi] has directed modular width at most k.

The least k ≥ 1 for which a digraph D has directed modular width at most k is
now defined to be the directed modular width, denoted by dmw(D), of D.

Fact 1 Let D be a digraph, and let D′ be an induced subdigraph of D. Then

dmw(D′) ≤ dmw(D) .

Given a digraph D and a partition M1, . . . ,M� of V (D) into modules, we will fre-
quently use DM to denote the module-digraph of D corresponding to the module-
decomposition M1, . . . ,M�: DM is obtained from D by identifying Mi, i ∈ [�] each
into a single vertex vi ∈ V (DM) and deleting parallel directed edges afterwards.
By the definition of a module, for every edge (vi, vj) ∈ E(DM) we have that
(u,w) ∈ E(D) for all u ∈ Mi, w ∈ Mj .

In the undirected case, clique-width is a lower bound on the modular width.
The same is true in the case of directed clique-width, denoted by dcw(D), and
directed modular width. A full definition of this parameter is given in [1].

Theorem 1. Let D be a directed graph, then dcw(D) ≤ dmw(D).

Computing a Non-Trivial Module-Decomposition. An important tool for all algo-
rithms proposed in this paper is the ability to find a non-trivial decomposition
of the vertex set of a given digraph into modules, in polynomial time. In fact,
this task can be executed in a much stronger form. In [29], it was shown that a
so-called canonical module-decomposition of a given digraph can be obtained in
linear time. For us, the following weaker form of this result will be sufficient.

Theorem 2 ([29]). There is an algorithm that, given a digraph D on at least
two vertices as input, returns a decomposition of V (D) into � ∈ {2, . . . ,dmw(D)}
modules. The running time is O(n + m), where n := |V (D)| and m := |E(D)|.

Integer Linear Programming with Bounded Number of Variables. The following
strong theoretical result on the fixed-parameter tractability of Integer Linear
Programs is an important part of most of our algorithms.

Theorem 3 ([15], Theorem 12). There exists an algorithm that, given as
input a matrix A ∈ Zn×p, vectors c ∈ Zp, b ∈ Zn, and some U1, U2 ∈ Z+, tests
feasibility and if applicable outputs an optimal solution of the ILP

min cT x (1)
subj. to Ax ≥ b, x ∈ Zp (2)

in time O(p2.5p+o(p)L log(U1U2)) where L denotes the coding length of the input
(A, b, c). Here we assume that the optimal value of the program lies within
[−U1, U1] and that U2 is an upper bound on the largest absolute value any entry
in an optimal solution vector can take.

Parameterized Algorithms for Directed Modular Width 419

3 Strategy

Our FPT algorithms are based on a common general strategy, which shall be
outlined in the following.

• In most cases, we consider a well-chosen generalisation of the original problem
we want to solve. This often involves additional inputs, such as integer weights
or capacities on the vertices. In many cases, this is a crucial step to enable
the recursion.

• We derive auxiliary theoretical results, that deal with a given module-decom-
position of a digraph and describe how the studied parameters or objects
which shall be computed on the whole digraph interact with corresponding
objects on the digraphs induced by the modules and the module-digraph.
These results are at the core of the construction of these algorithms.

• We describe an algorithm that, given solutions to the considered problem on
the modules and the module-digraph, constructs a solution to the problem
for the whole digraph in polynomial time.

• To solve the problem on the module-digraph, we make use of the fact that
for bounded directed modular width, we can bound the number of vertices of
the module-digraph by a constant. We then reformulate the problem on the
module-digraph as an Integer Linear Program, which has bounded number
of variables. However, the additional inputs such as weights on the vertices
may still have polynomial size. We then make use of Theorem 3 to solve the
problem on the module-digraph in FPT-time.

• Now we recurse until we end up solving the problem on digraphs consisting
of single vertices. Because in each step, we further decompose an induced
subdigraph into modules, the size of the recursion-tree is linear in the number
of vertices of the input digraph. Because the module-decompositions can be
computed in polynomial time in each step, we manage to prove an upper
bound on the run-time of the form O(f(ω)p(n)q(log τ)), where f is some
function, p and q are polynomials, ω denotes the directed modular width
of the input digraph, n the number of vertices of the input digraph, and τ
bounds the additional information carried in the input (for instance an upper
bound on the sum of the weights distributed on the digraph).

4 Disjoint Paths and the Directed Subgraph
Homeomorphism Problem

Instead of stating the actual problem we will describe a generalized version
which is specifically designed for the needs of our strategy. For an overview on
the r-Directed Disjoint Paths Problem, we refer to [18,31]. We list some known
results.

• The 1-VDDP is polynomial-time solvable for arbitrary digraphs2.
2 Reachability in directed graphs is a simple special case of the max-flow problem and

can be solved using one of the well-known polynomial algorithms for this task (see
for instance [12]).

420 R. Steiner and S. Wiederrecht

• For general digraphs, the existence version of r-VDDP is NP-complete, for
any fixed r ≥ 2 ([17]).

• There is an FPT algorithm solving r-VDPP with respect to parameter r for
planar digraphs [11].

• The r-VDDP is polynomial-time solvable on DAGs ([17]), for any fixed r ≥ 1.
More generally, for any fixed r ≥ 1, there exists an XP-algorithm for r-VDDP
when parametrized with the directed treewidth dtw(D) of the digraph [27].
No FPT algorithms with respect to parameters r and dtw(D) are known.

Given a digraph D and vertices s, t ∈ V (D), we use the term s-t-path to refer
to a usual directed path starting in s and ending in t in the case of s �= t,
and to a directed cycle with a designated ‘beginning’ and ‘end’ at the vertex
s = t otherwise. For the generalized problem, we allow that in the given pairs
(s1, t1), . . . , (sr, tr), vertices coincide, i.e., si = tj or si = sj for some i, j ∈ [r].
Our goal is to find an si-ti-path Pi in D for every i ∈ [r]. However, we do not
require the paths to be disjoint any more, they are allowed to share vertices.
Instead, we bound the number of times a vertex can be traversed by the paths
in total by a respective non-negative integer-capacity. For an s-t-path with s = t,
we count two traversals of the vertex s = t (at the beginning and at the end). The
last important alteration of the original problem is that in addition to testing
whether a collection of si-ti-paths as required exists, in case it does, we want
to find one that minimizes the sum of the sizes of the paths. In the following,
the size of an s-t-path P shall be defined as |P | := |E(P)| + 1. |P | is defined
such that (independent of whether s = t or s �= t), it counts the total number of
traversals of vertices by P .

For the purpose of applying the method from Theorem 3, we use a param-
eter τ ∈ N as additional input, which bounds the sum of the vertex-capacities.
To formulate our generalized problem properly, we need the following terminol-
ogy. Given a list S = [(s1, t1), . . . , (sr, tr)] of vertex-pairs equipped with vertex-
capacities w : V (D) → N0 of a digraph D, let us say that a collection P1, . . . , Pr

of si-ti-paths in D is compatible with (w,S), if any vertex z ∈ V (D) is tra-
versed at most w(z) times in total by the collection. Furthermore, let us define
W (D,w,S) to be the minimum of W (P1, . . . , Pr) :=

∑r
i=1 |Pi| over all com-

patible collections P = (P1, . . . , Pr) of si-ti-paths in D. If such a collection of
si-ti-paths does not exist, by convention, we put W (D,w,S) = ∞. A feasible
collection P for the pair (w,S) is called optimal, if it attains the minimum.

r-Vertex-Disjoint Directed Paths (Capacity Version)
short: r-VDDP-C

Input A digraph D, a list S = [(s1, t1), . . . , (sr, tr)] of not necessarily
disjoint pairs of not necessarily distinct vertices in D, non-negative
capacities w : V (D) → N0 on the vertices and a threshold τ ∈ N

such that
∑

z∈V (D) w(z) ≤ τ .
Task Does there exist a feasible collection P1, . . . , Pr compatible with

(w,S)? If so, output the value of W (D,w,S) and a corresponding
optimal collection.

Parameterized Algorithms for Directed Modular Width 421

Setting w(v) := 1, v ∈ V (D) we see that the original r-VDDP forms a special
case of r -VDDP-C, where we can take τ = n. Our main result is the following.

Theorem 4. There exists an algorithm solving the r-VDDP-C which runs in
time O (

n3 + f(r, ω)(n2 + n log τ)
)
, where n := |V (D)| and ω := dmw(D). Fur-

thermore, f(r, ω) = 2O(r log r·2ωω). As a consequence, the r-VDDP on D can be
solved in time O(n3 + f(r, ω)n2).

Proof (High-Level-Sketch). A first step towards an algorithm will be to observe
that we can restrict our attention to reduced paths, these are s-t-paths P such
that there is no s-t-path P ′ with V (P ′) � V (P). Given a module-decomposition
M1, . . . ,M�, such a path is either completely contained in a module Mj of D,
or it uses at most one vertex of each module, except maybe for the endpoints,
which may be contained in the same module.

Suppose that si, ti lie in the same module for 1 ≤ i ≤ r′ and in different
modules for all i > r′. For i ≤ r′, we have to make a decision whether to route
the path Pi connecting si, ti within the module or to leave the module and
reenter eventually. Let B ⊆ [r′] be the set of indices for which we choose the
second option. It is now possible to split the pairs si, ti into two parts, namely the
ones with i ∈ B ∪{r′ +1, . . . , r}, which are routed between the modules, and the
ones with i ∈ [r′]\B, which are routed within their module. The first part of this
problem is taken care of by solving an equivalent routing problem in the module-
digraph DM using an integer-program with a bounded number of variables (see
Theorem 3), the second part splits into individual routing problems within the
respective modules. For each of those modular routing problems we have to solve,
we need to correspondingly adapt the weight functions. The basic idea is to solve
the problem for all possible sets B ⊆ [r′] and to choose the best collection of
paths in the end. However, a central problem here is to control the complexity
of the dynamic programming tree and therefore to control the different possible
weight functions which can arise in the subproblems. This problem is overcome
by computing in each step not only the optimal collection for the problem with a
fixed given weight function w, but instead for many different well-chosen weight
functions wA on the vertices, determined by an index-set A ⊆ [r], which include
via w[r] = w the original weight function we are interested in. We can then
show that given optimal solutions to this more general problem for all digraphs
D[Mj], 1 ≤ j ≤ r, it is possible to recover the optimal path-collections for D and
all weightings wA, A ⊆ [r].

Consider a pair of an input digraph D and a pattern digraph H. The pattern
digraph H (exceptionally in this paper) is allowed to admit loops, as well as
multiple parallel or anti-parallel edges. A homeomorphism from H into D maps
vertices of H to distinct vertices in D and directed edges in H to directed paths
in D connecting the images of the corresponding end vertices, such that the
paths only intersect at common endpoints. For a loop, this means that its image
forms a directed cycle passing through the image of the incident vertex in H.
The directed subgraph homeomorphism problem (H-DSHP) is to decide whether
a given digraph D contains a homeomorphic image of a pattern digraph H using

422 R. Steiner and S. Wiederrecht

specified vertices. This can be seen as a generalized path finding problem. In
fact, the r-VDDP is the special case of this problem where the pattern digraph
H forms an oriented matching consisting of r disjoint edges. To keep control of
the complexity of this problem, one usually regards the pattern digraph H as
part of the problem description rather than as part of the input.

The authors of [17] show that H-DSHP is in P for pattern digraphs H which
admit a dominating source or a dominating sink, and NP-complete in every
other case. They established polynomial-time algorithms to solve the H-DSHP
on DAGs for every fixed pattern digraph H. Using a suitable weight function w
on the vertices it is possible to formulate the H-DSHP as a subproblem of the
r-VDDP-C. As a Corollary of Theorem 4, we obtain the following.

Theorem 5. Let H be a pattern digraph with vertex set h1, . . . , hr, and let m :=
|E(H)|. There exists an algorithm that, given as input a digraph D equipped with
a list s1, s2, . . . , sr of pairwise distinct vertices in D, solves the H-DSHP with
this instance in time

O(n3 + f(m,ω)n2),

where n := |V (D)|, ω := dmw(D), and f(m,ω) = 2O(m log m·2ωω).

If a digraph D contains a homeomorphic image (also called subdivision) of a
digraph H, H is called a topological minor of D. For undirected graphs, it has
been proven that the detection of topological minors is fixed parameter-tractable
[24] when parametrizing with the size of the minor. However, for directed graphs,
there exist instances H for which it is NP-complete to test whether a given
digraph D contains a subdivision of H (see Theorem 33 in [2] for an example).
We therefore believe that the following result is a relevant contribution to minor-
testing in directed graphs.

Theorem 6. Let H be a multi-digraph (possibly containing loops, and multiple
parallel and anti-parallel edges). There exists an algorithm that decides whether
H is a topological minor of a given digraph D, and if so, returns a subdivision
of H which is a subdigraph of D. This algorithm runs in time

O(f(m,ω)nr+3).

Here, we have m := |E(H)|, r := |V (H)|, n := |V (D)| and ω := dmw(D). We
furthermore have f(m,ω) = 2O(m log m·2ωω).

5 Other Directed Width Measures

Although most directed width measures are not very powerful in the algorith-
mic context, some of them like directed pathwidth or the cycle-rank which have
high theoretical importance, find specialized applications and there are no FPT
algorithms known to compute their corresponding optimal decompositions.

Parameterized Algorithms for Directed Modular Width 423

A directed path decomposition for a digraph D is a tuple (P, β) where P is a
directed path and β : V (P) → 2V (D) a function of bags such that

⋃
p∈V (P) β(p) =

V (D). Moreover for every v ∈ V (D) the vertices p ∈ V (P) with v ∈ β(p)
induce a subpath of P and for every edge (p, t) ∈ E(P) every edge with tail
in

⋃
t′∈V (tP) β(t′) and head in

⋃
p′∈Pp β(p′) contains a vertex of β(p) ∩ β(t).

Here we denote the maximal subpath of P ending in p by Pp while the maximal
subpath starting in t is denoted by tP . The width of (P, β) is maxp∈V (P) |β(p)|−1
and the directed pathwidth of D is the minimum width over all directed path
decompositions for D.

We want to produce an optimal directed path decomposition for D from
partial solutions obtained for its modules, so we need to be able to merge these
partial solutions. To do this we differ between two kinds of vertices: those which
appear in exactly one bag and need no further care, and those that are contained
in at least two bags. Since the size of the module digraph is bounded we are able
to consider all possible directed paths of length at most dmw(D) − 1 together
with all possible bag functions β for these paths. So the key to our algorithm is
to show that there always exists an optimal directed path decomposition for D
such that for every module M , either all vertices of M need to be contained in a
single bag, or we may use an optimal decomposition of M independently of the
rest of D. This yields the following.

Theorem 7. There exists an algorithm that given a digraph D as input, outputs
a directed path decomposition for D of minimum width. The algorithm runs in
time O

(
ωn3 + ω32ω2

n
)
, where n := |V (D)| and ω := dmw(D).

Proof (High-Level-Sketch). Let M be a module and vM the corresponding ver-
tex in the module digraph. To realize the above ideas we first have to show
that we can always find an optimal directed path decomposition (P, β) for the
module digraph such that P has at most dmw(D) vertices. Now suppose with
β′(p) := β(p) \ {vM}, (P, β′) is still a directed path decomposition. Then vM is
not needed to block an edge and thus we may incorporate an optimal directed
path decomposition of M into our solution. Otherwise vM is essential as a vertex
in some separator defined by the decomposition. In this case we do not have to
bother decomposing M , since each vertex of M has to be part of said separa-
tor. We show that every vM belongs to one of the two categories and that we
can always find an optimal directed path decomposition decomposing D in this
fashion.

In a similar way, the cycle-rank of D can be expressed as an ordering of its
vertices, see [13,23] for the definitions.

Theorem 8. There exists an algorithm that, given a digraph D as input, outputs
an ordering σ for V (D) such that rank(σ) = cr(D). The algorithm runs in time
O(

n3 + ω3ω!n
)
, where n := |V (D)| and ω := dmw(D).

Neither of the two algorithms makes use of the integer programming app-
roach. The factor ω! in Theorem 8 arises from the enumeration of all possible

424 R. Steiner and S. Wiederrecht

orderings of the vertices of the module digraph, while in Theorem 7 the factor
2ω2

expresses the enumeration of all possible directed paths of length at most ω.

6 Conclusion

By applying the strategy from Sect. 3 and by revisiting some ideas from [19] we
are able to construct parameterized algorithms for several classical problems.
Since the main ideas do not differ to much, we present them here in form of a
table, moreover we give additional information on known hardness results for
these problems with regards to the width parameters directed treewidth (dtw)
and directed clique-width (dcw). If hardness results for very restricted classes of
digraphs exist, or a problem is known to be parameterizable by the solution-size,
we will also mention those.

Problem dmwa dtw dcw General complexity

Directed Feedback
Vertex Set

FPT - FPT [10] NP-hard for planar
digraphs with Δ+,
Δ− ≤ 3 [22], FPT in
general [5]

Directed
Dominating Set

FPT NP-h [21] FPT [1] -

Dichromatic
Number

FPT NP-h [30] - NP-hard even for
bounded directed
tree-width and bounded
degeneracy [30]

Partitioning into
Directed Paths

FPT - - NP-hard even for planar
digraphs and digraphs of
bounded degree [32]

Directed
Hamiltonian Cycle

FPT XP [27] W[1]-h [16], XP [14] -

aAll results in this column are due to the work presented in this report.

To summarize we have initiated the study of the directed modular width in
parameterized algorithmics, which is a natural structural parameter for digraphs.
We have seen that by combining dynamical programming with the strong tool of
bounded-variable ILP solving, one can obtain FPT algorithms for many intrin-
sically hard problems on directed graphs, which are intractable or unsolved for
classes of bounded directed tree-width, DAG-width or clique-width. Moreover,
the recursive nature of module-decompositions allows us to find fast FPT algo-
rithms for generalisations of these problems, such as r -VDDP-C for r-VDDP.

Our results show that the directed modular width covers a nice niche in the
landscape of directed width measures, as it can be computed efficiently, is small
on dense but structured networks and avoids the algorithmic price of generality
paid by most other width measures for directed graphs. Directed modular width
furthermore generalizes directed co-graphs (digraphs of modular width 2), which
have received attention in terms of algorithmics previously (cf. [25]).

Parameterized Algorithms for Directed Modular Width 425

References

1. Bang-Jensen, J., Gutin, G.: Classes of Directed Graphs. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-71840-8

2. Bang-Jensen, J., Havet, F., Trotignon, N.: Finding an induced subdivision of a
digraph. Theor. Comput. Sci. 443, 10–24 (2012)

3. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536.
Springer, Heidelberg (2006). https://doi.org/10.1007/11672142 43

4. Bodlaender, H.L.: Treewidth: algorithmic techniques and results. In: Pŕıvara, I.,
Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0029946

5. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5), 21 (2008)

6. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Handbook of Graph Grammars and Computing
By Graph Transformation: Volume 1: Foundations, pp. 313–400. World Scientific
(1997)

8. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic:
A Language-Theoretic Approach, vol. 138. Cambridge University Press, New York
(2012)

9. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)

10. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

11. Cygan, M., Marx, D., Pilipczuk, M.: The planar directed k-vertex-disjoint paths
problem is fixed-parameter tractable. In: 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science, pp. 197–206 (2013)

12. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19, 248–264 (1972)

13. Eggan, L.C., et al.: Transition graphs and the star-height of regular events. The
Mich. Math. J. 10(4), 385–397 (1963)

14. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B.
(eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45477-2 12

15. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

16. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-
width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

17. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theor. Comput. Sci. 10, 111–121 (1980)

18. Frank, A.: Packing paths, circuits and cuts-a survey. In: Paths, Flows, and VLSI-
Layout, pp. 47–100. Springer-Verlag, Berlin (1990)

https://doi.org/10.1007/978-3-319-71840-8
https://doi.org/10.1007/11672142_43
https://doi.org/10.1007/BFb0029946
https://doi.org/10.1007/3-540-45477-2_12
https://doi.org/10.1007/978-3-540-92182-0_28

426 R. Steiner and S. Wiederrecht

19. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8 15

20. Ganian, R., et al.: Are there any good digraph width measures? J. Comb. Theory
Ser. B 116, 250–286 (2016)

21. Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdržálek, J., Rossmanith, P.:
Digraph width measures in parameterized algorithmics. Discrete Appl. Math. 168,
88–107 (2014)

22. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

23. Giannopoulou, A.C., Hunter, P., Thilikos, D.M.: Lifo-search: a min-max theorem
and a searching game for cycle-rank and tree-depth. Discrete Appl. Math. 160(15),
2089–2097 (2012)

24. Grohe, M., Kawarabayashi, K.I., Marx, D., Wollan, P.: Finding topological sub-
graphs is fixed-parameter tractable. In: Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing, STOC 2011, New York, NY, USA,
pp. 479–488 (2011)

25. Gurski, F., Komander, D., Rehs, C.: Computing digraph width measures on
directed co-graphs. In: G ↪asieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT
2019. LNCS, vol. 11651, pp. 292–305. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-25027-0 20

26. Hunter, P., Kreutzer, S.: Digraph measures: kelly decompositions, games, and
orderings. Theor. Comput. Sci. 399(3), 206–219 (2008)

27. Johnson, T., Robertson, N., Seymour, P., Thomas, R.: Directed tree-width. J.
Comb. Theory Ser. B 82(1), 138–154 (2001)

28. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation.
Discrete Math. 201(1–3), 189–241 (1999)

29. McConnella, R.M., de Montgolfier, F.: Linear time modular decomposition of
directed graphs. Discrete Appl. Math. 145, 198–209 (2005)

30. Millani, M.G., Steiner, R., Wiederrecht, S.: Colouring non-even digraphs. Technical
report (2019, submitted). arXiv Preprint, arXiv:1903.02872

31. N. Robertson, P.D.S.: An outline of a disjoint paths algorithm. In: Paths, Flows,
and VLSI-Layout, pp. 267–292. Springer-Verlag, Berlin (1990)

32. Plesńık, J.: The NP-completeness of the Hamiltonian cycle problem in planar
digraphs with degree bound two. Inform. Process. Lett. 8(4), 199–201 (1979)

33. Robertson, N., Seymour, P.D.: Graph minors. ii. algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

https://doi.org/10.1007/978-3-319-03898-8_15
https://doi.org/10.1007/978-3-030-25027-0_20
https://doi.org/10.1007/978-3-030-25027-0_20
http://arxiv.org/abs/1903.02872

On the Parameterized Complexity
of Spanning Trees with Small

Vertex Covers

Chamanvir Kaur and Neeldhara Misra(B)

Indian Institute of Technology, Gandhinagar, Gujarat, India
{chamanvir.kaur,neeldhara.m}@iitgn.ac.in

Abstract. We consider the minimum power spanning tree (MPST)
problem with general and unit demands from a parameterized perspec-
tive. The case of unit demands is equivalent to the problem of finding
a spanning tree with the smallest possible vertex cover (MCST). We
show that MPST is W[1]-hard when parameterized by the vertex cover
of the input graph, and is W[2]-hard when parameterized by the solu-
tion size—the latter holds even in the case of unit demands. For the
special case of unit demands, however, we demonstrate an FPT algo-
rithm when parameterized by treewidth. In the context of kernelization,
we show that even MCST is unlikely to admit a polynomial kernel under
standard complexity-theoretic assumptions when parameterized by the
vertex cover of the input graph.

Keywords: Vertex cover · Spanning trees · Treewidth

1 Introduction

A spanning tree is a minimally connected subgraph of a graph that spans all
of its vertices. The problem of finding spanning trees of minimum weight is a
fundamental algorithmic question and has received much attention. Variations
of this question have also attracted a lot of interest, wherein one is interested
in spanning trees with special structural properties, such as having bounded
diameter [10], many leaves [4], or minimum poise (the sum of the diameter and
the maximum degree [11]).

Our focus, in this work, is on the problem of finding spanning trees with
small vertex covers. This is a special case of a more general problem which we
also address, namely the minimum power spanning tree problem (MPST). Here,
we are given an edge-weighted graph G = (V,E), where the weights can be
thought of as “demands”, and the objective is to find a spanning tree and to
assign “power” values to vertices such that all the edges of the spanning tree are
covered. An edge is covered if the assigned power in one of its extremities is at
least its demand. The goal is to minimize the sum of powers over all vertices.

This work is supported by the Science and Engineering Research Board (SERB), India.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 427–438, 2020.
https://doi.org/10.1007/978-3-030-39219-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_34&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_34

428 C. Kaur and N. Misra

Observe that if all edges have unit demands, then this question is equivalent to
finding a spanning tree with the smallest possible vertex cover. As an example,
consider the complete graph, which has two spanning trees that are extreme
from this perspective: the first is a star, which has a vertex cover of size one and
the other is a Hamiltonian path, where we need roughly half the vertices of the
graph to cover all the edges involved.

The minimum power variation of various optimization problems—notably,
vertex cover (power vertex cover), Steiner trees (minimum power Steiner trees),
and cut problems—are widely studied for their suitability in application scenar-
ios. As a consequence of being more general, these problems usually model more
sophisticated scenarios. Several applications arise in the context of connectiv-
ity questions in the domain of wireless networks and placements of sensors and
cameras on road and home networks.

Our Contributions. In this contribution, we explore the parameterized complex-
ity of the MPST problem and special cases. Our main result is that MPST is
W[1]-hard when parameterized by the vertex cover of the input graph (Theo-
rem 2), even when the weights are polynomially bounded in the size of the input.
In fact, assuming ETH (Exponential Time Hypothesis), this also implies that
there is no algorithm with a running time of no(�), where � denotes the size of
the vertex cover.

Motivated by this intractibility, we turn to the special case with unit
demands, which we refer to as the Minimum Cover Spanning Tree problem
(MCST). We show that MCST is W[2]-hard when parameterized by the solu-
tion size (Theorem 1). On the other hand, we show an FPT algorithm when
parameterized by the treewidth of the input graph (Theorem 3). In the context
of kernelization, we show that even MCST is unlikely to admit a polynomial
kernel under standard complexity-theoretic assumptions when parameterized by
the vertex cover of the input graph (Corollary 3).

Related Work. The MPST problem, in the form that we propose and study it
here, was considered by Angel et al. [2], who establish the hardness of approxi-
mation for this problem by a reduction from Dominating Set. In fact, our FPT
reduction showing that MCST is W[2]-hard is in similar spirit. For a treatment of
MCST from the perspective of approximation algorithms and on special classes
of graphs, see [8].

Our result showing the hardness of MPST when parameterized by the vertex
cover uses some ideas from the reduction employed by Angel et al. [3] to demon-
strate that the Power Vertex Cover problem is also similarly intractable when
parameterized by treewidth. The Power Vertex Cover problem is the natural
“power”-based analog of the traditional vertex cover problem, where we seek an
assignment of power values to the vertices, minimizing the total power assigned,
so that the demand of every edge is met.

Closely related to MPST and MCST is the minimum power analog of the
Steiner Tree problem, which has also been studied quite extensively (see, for
instance, [1,9]). However, we remark that in these treatments, the demand of an

On the Parameterized Complexity of Spanning Trees 429

edge is met only if both of its endpoints receive a power value that is at least as
much as its demand. For recent developments in approximation algorithms for
power covering problems, see [5].

2 Preliminaries

We use [n] to denote the set {1, 2, . . . ,n}. We follow standard notation and
terminology from parameterized complexity [6] and graph theory [7]. We recall
some of the definitions that will be relevant to our discussions.

The neighborhood of a vertex is denoted N(v) and consists of all vertices u

adjacent to v. The closed neighborhood of a vertex is denoted N[v] and is defined
as N(v) ∪ {v}. A tree is a connected and acyclic graph. Given a graph G, a
spanning tree T is a subgraph of G such that V(T) = V(G) and T is a tree. For
any two vertices u and v, we let d(u, v) denote the length of the shortest path
between the vertices. For S ⊆ V, G[S] denotes the graph induced by S in G. The
vertex set of G[S] is S, and the edge set is {(u, v) | u ∈ S, v ∈ S and (u, v) ∈ E}.
We say that a vertex v is global to a set S of vertices if v is adjacent to every
vertex in S. We now turn to the description of some of the problems that will
be considered in this contribution.

The Minimum Power Spanning Tree (MPST) problem is the following.

Minimum Power Spanning Tree (MPST)
Input: A graph G, a demand function w : E → R

+, and k ∈ Z
+.

Question: Does G admit a spanning tree T and an assignment of power
values ρ : V(G) → R

+ such that
∑

v∈V(G) ρ(v) � k and for every edge
e ∈ E(T) with endpoints u and v, max(ρ(u), ρ(v)) � w(e)?

We now consider this problem in the context of unit demands. Noting that
this is equivalent to finding a spanning tree with the smallest vertex cover, we
refer to this as Minimum Cover Spanning Tree (MCST) problem.

Minimum Cover Spanning Tree (MCST)
Input: A graph G and a positive integer k.
Question: Does G admit a spanning tree T with a vertex cover of size
at most k?

The problems RBDS and MCIS (defined below) are known to be W[2]-hard
and W[1]-hard, respectively, when parameterized by the solution size [6].

Red-Blue Dominating Set (RBDS)
Input: A bipartite graph G = (R ∪ B,E) and a positive integer k.
Question: Does there exist a subset S ⊆ R of size at most k such that
for every v ∈ B, |N(v) ∩ S| � 1?

430 C. Kaur and N. Misra

Multi-Colored Independent Set (MCIS)
Input: A G = (V,E) and a partition of V = (V1, . . . ,Vk) into k parts.
Question: Does there exist a subset S ⊆ V such that S is independent
in G and for every i ∈ [k], |Vi ∩ S| = 1?

We now turn to the notion of the treewidth of a graph.

Definition 1. Let G be a graph. A tree-decomposition of G is a pair T =
(T , (Bt)t∈V(T)), where T is a rooted tree, and for all t ∈ V(T), Bt ⊆ V(G)
such that

� ∪t∈V(T)Bt = V(G),
� for every edge xy ∈ E(G) there is a t ∈ V(T) such that {x,y} ⊆ Bt, and
� for every vertex v ∈ V(G) the subgraph of T induced by the set {t | v ∈ Bt}

is connected.

The width of a tree decomposition is maxt∈V(T) |Bt| − 1 and the treewidth
of G is the minimum width over all tree decompositions of G and is denoted by
tw(G).

For completeness, we also define here the notion of a nice tree decomposition
with introduce edge nodes, as this is what we will work with in due course. We
note that a given tree decomposition can be modified in linear time to fulfill the
above constraints; moreover, the number of nodes in such a tree decomposition
of width w is O(w · n) [12].

Definition 2. A tree decomposition T = (T , (Bα)α∈V(T)) is a nice tree decom-
position with introduce edge nodes if the following conditions hold.

1. The tree T is rooted and binary.
2. For all edges in E(G) there is exactly one introduce edge node in T , where

an introduce edge node is a node α in the tree decomposition T of G labeled
with an edge {u, v} ∈ E(G) with u, v ∈ Bα that has exactly one child node α ′;
furthermore Bα = Bα′ .

3. Each node α ∈ V(T) is of one of the following types:
� introduce edge node: as described above;
� leaf node: α is a leaf of T and Bα = ∅;
� introduce vertex node: α is an inner node of T with exactly one child
node β ∈ V(T); furthermore Bβ ⊆ Bα and |Bα\Bβ| = 1;
� forget node: α is an inner node of T with exactly one child node β ∈
V(T); furthermore Bα ⊆ Bβ and |Bβ\Bα| = 1;
� join node: α is an inner node of T with exactly two child nodes β,γ ∈
V(T); furthermore Bα = Bβ = Bγ.

On the Parameterized Complexity of Spanning Trees 431

3 The Standard Parameter

In this section, we show that MCST is W[2]-hard with respect to the standard
parameter (i.e, the solution size). In particular, we describe an FPT reduction
from RBDS to MCST.

Theorem 1. MCST is W[2]-hard when parameterized by the solution size.

Proof. Let (G,k) be an instance of RBDS where G = (R ∪ B,E). Without loss
of generality, we assume that every vertex in B has at least one neighbor in R,
because if this is not the case, we may return a trivial No instance. We now
describe the transformed instance of MCST, which we denote by (H,k′). The
graph H is obtained from G by adding a global vertex to R, which in turn has
(k + 2) new neighbors of degree one, which we refer to as guards. In particular,
we have:

V(H) = V(G) ∪ {g,g1, . . . ,gk+2},
and:

E(H) = E(G) ∪ {(g,g1), (g,g2), . . . , (g,gk+2)} ∪ {(g, v) | v ∈ R}.

We let k′ = k + 1. This completes the description of the reduction, and we
now turn to a proof of the equivalence of the instances.

The Forward Direction. Let S ⊆ R be a dominating set. For a vertex v ∈ B, let
pv ∈ R denote a vertex from S such that pv ∈ N(v). In the event that there
are multiple vertices in S that are adjacent to v, the choice of pv is arbitrary.
Consider the spanning tree T given by the following edges:

E(T) = {(g,g1), (g,g2), . . . , (g,gk+2)} ∪ {(g, v) | v ∈ R} ∪ {(v,pv) | v ∈ B}.

It is easy to verify that {g} ∪ S is a vertex cover of size (k + 1) for the edges
of T . Indeed, it is evident that any edge in T that is not incident to g is incident
to a vertex from S and this concludes the argument in the forward direction.

The Reverse Direction. Let T be a spanning tree of H with a vertex cover S of
size (k + 1). Observe that the edge (g,gi) belongs to T for any 1 � i � k + 2:
if not, the vertex gi would be isolated in T . Therefore, we also conclude that
g ∈ S, since it would otherwise be too expensive for S to account for covering
the edges incident to all the guards.

Let S′ := S ∩ (R ∪ B). By the argument above, we have that |S′| � k. For any
v ∈ B ∩ S′, let pv denote an arbitrarily chosen neighbor of v in R. Now consider
the set given by:

S� := (S ∩ R) ∪ {pv | v ∈ S ∩ B}.
It is easy to see that |S�| � k and that S� ⊆ R dominates all vertices in B.

Indeed, consider any v ∈ B. If v ∈ S ∩ B, then pv ∈ S� dominates v. If not, then
observe that for some vertex u ∈ N(v), the edge (u, v) must belong to T (if not,
v is isolated in T , a contradiction). By the case we are in, v /∈ S, so to cover the
edge (u, v), we must have that u ∈ S. Further, since G is bipartite, u ∈ R, thus
u ∈ (S ∩ R). This implies, by construction, that u ∈ S�, and u dominates v, as
required. This concludes the proof. �	

432 C. Kaur and N. Misra

4 Vertex Cover and Treewidth

We begin by establishing that MPST is W[1]-hard when parameterized even by
the vertex cover of the input graph (and therefore also its treewidth). Thereafter,
we show a FPT algorithm for the special case of unit demands, i.e, the MCST
problem, when parameterized by treewidth. We remark that the ideas in the
reduction demonstrating the hardness parameterized by vertex cover are inspired
by the construction used for showing the hardness of the power vertex cover
problem when parameterized by treewidth [3].

Theorem 2. MPST is W[1]-hard when parameterized by the vertex cover of the
input graph.

Proof. We reduce from MCIS. Let (G,k) be an instance of MCIS where G =
(V,E) and further, let V = (V1, . . . ,Vk) denote the partition of the vertex set V.
We assume, without loss of generality, that |Vi| = n for all i ∈ [k]. Specifically,
we denote the vertices of Vi by {vi

1, . . . , v
i
n}. We are now ready to describe the

transformed instance of MCST, which we denote by (H,w,k′). The construction
is a combination of choice gadgets and checker gadgets.

Choice Gadgets. For each 1 � i � k, introduce two vertices xi and yi, and
further, introduce n vertices zi

1, . . . , z
i
n. We add the edges (xi, zi

j) and (yi, zi
j)

for all j ∈ [n]. The weight function is defined as follows, for all 1 � j � n.

w(u, zi
j) =

{
j if u = xi,
n − j + 1 if u = yi.

In other words, for all 1 � i � k and 1 � j � n, the vertex zi
j is adjacent to

xi with an edge of weight j and to yi with an edge of weight (n− j+1). We refer
to xi and yi as anchors and their neighbors in the choice gadget as guards.

Checker Gadgets. For each edge e = (va
p, vb

q) ∈ E(G), we introduce a vertex ce,
which is adjacent to the vertices xa,ya, xb,yb in the choice gadgets. The edge
weights are given by:

w(ce,u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p + 1 if u = xa,
n − p + 1 if u = ya,
q + 1 if u = xb,
n − q + 1 if u = yb.

Our transformed instance comprises of all the k choice gadgets and m checker
gadgets. Further, we add a vertex g universal to all the anchor vertices and intro-
duce b vertices {g1, . . . ,gb} that are adjacent only to g, where b = nk + 2. All
edges incident to g have a weight of one. This completes the description of the
graph H. We refer the reader to Fig. 1 for a schematic depiction of the graph H.

On the Parameterized Complexity of Spanning Trees 433

The target total power, k′, is set to nk+ 1. Observe that the anchor vertices
along with the vertex g form a vertex cover of size (2k + 1) for H—indeed, all
edges not incident to the universal vertices are either edges between anchors and
guards, or between anchors and the vertices in the checker gadgets representing
the edges of G. We now turn to a proof of equivalence.

Fig. 1. An overview of the reduction used in the proof of Theorem 2. The anchor
vertices are placed in the blue box, and along with the vertex g, form a vertex cover
of size 2k + 1. The red vertices are the guards while the green vertex is an example of
a vertex from a checker gadget. (Color figure online)

Forward Direction. Let S ⊆ V be a multicolored independent set of G. Further,
let τ : [k] → [n] denote the choice of S from the parts of V. Specifically:

S ∩ Vi := {vi
τ(i)}.

We now describe our spanning tree T and a power assignment ρ of total cost
at most k′ = nk + 1. First, we choose all edges incident on g. Next, from the
choice gadget containing vertices xi and yi, we pick the following edges:

{(xi, zi
1), . . . , (xi, zi

t), (yi, zi
t+1), . . . , (yi, zi

n)},

where t := τ(i). Before describing how we will connect ce to the structure devel-
oped so far, it will be useful to describe the power value assignment ρ. We have
the following, where i ∈ [k]:

ρ(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if u = g,
τ(i) if u = xi,
n − τ(i) if u = yi,
0 for all other vertices.

434 C. Kaur and N. Misra

We now consider again the checker gadgets. Let e = (va
p, vb

q) ∈ E(G). Con-
sider the case when va

p ∈ S (the other scenarios are symmetric). Then vb
q /∈ S.

Consider ρ(xb). We know that ρ(xb)
= q. If ρ(xb) < q, then:

ρ(yb) = n − ρ(xb) > n − q � n − q + 1 = w(ce,yb),

and we choose the edge (ce,yb) in our spanning tree, noting that its demand is
met by ρ. On the other hand, if ρ(xb) > q, then:

ρ(xb) > q � q + 1 = w(ce, xb),

and we choose the edge (ce,yb) in our spanning tree in this case. It is easy to
verify that T is indeed a spanning tree and that ρ accounts for the demands of all
the edges in T . Further, observe that the total power assigned by ρ is (nk + 1),
as required, and this completes the argument in the forward direction.

Reverse Direction. Let T be a spanning tree and let ρ be a assignment of power
values with total power value at most (nk + 1). Notice that by an argument
similar to the one used in the proof of Theorem 1, we have that:

∑

v∈V(H)\{g,g1,...,gb}

ρ(v) � nk. (1)

This is to say that any valid assignment of power values must assign a power
value of one or more to the vertex g. Therefore, we are left with nk “units of
power” to distribute amongst the k choice gadgets and the m checker gadgets.
Our next claim is that if Ci ⊆ V(H) denotes the set of vertices used in the ith

choice gadget, then: ∑

v∈Ci

ρ(v) � n. (2)

Indeed, suppose not. Fix i ∈ [k] and suppose ρ(xi) = p and ρ(yi) = q. If
p + q � n, then there is nothing to prove, therefore, assume that p + q < n.
This implies that for vertices zi

j, where p < j < n − q + 1, ρ(zi
j) � 1, since the

assignment to the vertices xi and yi will not be enough to meet the demands of
either of the edges incident to zi

j. This implies that the total power assigned by
ρ in this gadget is:

p + q + ((n − q + 1) − p) − 1 = n,

and the claim follows. The inequalities (1) and (2) imply that every choice gadget
is assigned a total power of n according to ρ, which also gives us that ρ(ce) = 0
for all e ∈ E.

Now, we choose our independent set as follows. Let τ(i) denote ρ(xi). Then
from Vi we choose the vertex vi

τ(i). We claim that these chosen vertices must be
independent in G. Indeed, suppose not, and in particular, suppose the vertices
chosen from parts a,b ∈ [k] are adjacent in G. Let the chosen vertices be va

p and

On the Parameterized Complexity of Spanning Trees 435

vb
q. Note that the power assignments made by ρ on the relevant choice gadget

can be inferred to be:

ρ(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p if u = xa,
q if u = xb,
p′ if u = ya,
q′ if u = yb.

Here, we know that p′ � n − p and q′ � n − q. Now consider the vertex ce.
The spanning tree T must include one of the following edges, since these are the
only edges incident to ce:

{(ce, xa), (ce,ya), (ce, xb), (ce,yb)}.

However, recalling the weights of these edges from the construction, the fact
that ρ(ce) = 0, and given what we have inferred about the power values on
the vertices xa,ya, xb and yb, it is clear that ρ does not meet the demand of
any of these possible edges that is used by T to span the vertex ce. This is a
contradiction, implying that the chosen vertices indeed form an independent set.
This argument concludes the proof. �	

Observing that the vertex cover of the reduced graph in the proof of Theorem 2
was bounded linearly in k, and based on the fact that there is no no(k) algorithm
for MCIS unless the ETH is false, we obtain the following consequence.

Corollary 1. If there exists an algorithm which, given an instance (G =
(V,E),w) of MPST where G has a vertex cover of size �, computes an opti-
mal solution in time |V |o(�), then the ETH is false. This holds even if all weights
are polynomially bounded.

Our next result shows that when we restrict our attention to unit demands,
then the problem of finding a minimum power spanning tree (equivalently,
MCST) becomes tractable. Our approach is quite similar to the one used to
show that Steiner Tree is FPT parameterized by treewidth, with two main
differences: in the Steiner Tree problem, we need to explicitly track the subset
of vertices that are “touched” by the solution, which we do not need to do since
every vertex is effectively a terminal for the spanning tree problem. On the other
hand, for the Steiner Tree problem, the cost of a solution is linked to its size in
a rather straightforward manner, while for MCST, the structure of the edges
involved in the spanning tree (or, for partial solutions, the spanning forests)
is rather relevant. Therefore, we explicitly store not only the partition induced
on a bag by a spanning forest, but also guess the specific edges from the bag
that participate in the forest. This helps us keep track of the vertex cover as we
go along, but it does affect the running time since our dynamic programming
(DP) tables have 2O(w

2) rows in contrast with the 2O(w logw) that turn out to be
enough for Steiner Tree.

Theorem 3. MCST admits an algorithm with running time 2O(w
2) where w

denotes the treewidth of the input graph.

436 C. Kaur and N. Misra

Proof. (Sketch.) Let (G,k) be an instance of MCST with G = (V,E), where
n := |V | and m := |E|. Let T = (T , {Bt}t∈V(T)) be a nice tree decomposition of G

(with introduce edge nodes) of width w. Let t be a node of V(T) and Bt be the
bag associated with it. Note that |Bt| � w + 1.

We use Gt to denote the graph induced by the vertex set
⋃

t′ Bt′ , where t ′

ranges over all descendants of t, including t. By E(Bt) we denote the edges
present in G[Bt]. We use Ht to denote the graph on vertex set V(Gt) and the
edge set E(Gt) \ E(Bt).

Let H be a subgraph of G. For a subset of vertices X ⊆ V(H) and a partition
P of X into s parts X1, . . . ,Xs, we say that a spanning forest F of H is compatible
with P if F has exactly s components C1, . . . ,Cs such that Xi ⊆ Ci for all i ∈ [s].
We are now ready to describe the semantics of our DP table. For each t ∈ V(T),
for all possible partitions P of Bt, for each F ⊆ E(Bt), X ⊆ V(Bt) and k ∈ [n],
we let:

D[t,P, F,X,k] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if there exists a spanning forest F� of Gt compatible
with P with a vertex cover S of size at most k,
such that F� ∩ E(Bt) = F and S ∩ Bt = X,

0 otherwise.

Note that the solution to the problem is the smallest k for which:

D[t,P, F,X,k] = 1,

for any choice of F and X, where t is the root node and P is the partition with
exactly one part. Also observe that the size of the DP table is 2O

�(w2) · nO�(1).
The recursive relationships are described in a standard fashion, but we briefly
sketch some of the interesting cases.

The calculations for the leaf nodes and the introduce vertex nodes are trivial.
When at an introduce edge node, if the introduced edge belongs to F, then it
is important to check that X includes one of its endpoints. At a forget node, if
v is the forgotten vertex and P is the partition under consideration, we review
all rows in the child bag consistent with P on the vertices in Bt but where v

belongs to one of the given parts, and ignore rows where v is a standalone part.
The value of k will also have to be adjusted appropriately depending on whether
v was chosen in the vertex cover or not, and in all the cases where v was not in
the vertex cover, we need to run a sanity check to ensure that edges incident to
v as given by the row of the child node under consideration are covered by the
current choice of vertex cover in Bt.

The most non-trivial case is the join nodes. Intuitively, the procedure for
the join node involves “patching” the solutions from the two child nodes, while
adjusting for the double-counting of the cost of vertex cover vertices in X. How-
ever, a straightforward patch may lead to cycles in our combined solution, which
might also lead to suboptimal costs for the corresponding vertex covers. It can
be verified that in this case, we can follow an approach similar to what is used
in the case of Steiner Trees, except that the auxiliary graphs used for “acyclic

On the Parameterized Complexity of Spanning Trees 437

merges” have to now account for the edges given in F. Due to lack of space, defer
a detailed description to a full version of this manuscript. �	

We conclude this section by making some observations about the relationship
between spanning trees that have small vertex covers and the vertex covers of
the underlying graph.

Observation 1. Every connected graph G admits a spanning tree with a vertex
cover of size at most κ, where κ is the size of a smallest connected vertex cover
of G.

Proof. Let S ⊆ V(G) be a connected vertex cover of size at most κ. Let T be
a spanning tree for G[S]. For any vertex v ∈ V\S, let sv denote an arbitrarily
chosen vertex from N(v). Note that N(v) ⊆ S (since S is a vertex cover) and
N(v)
= ∅ (since G is connected). Consider the tree T ′ obtained from T by adding
the edges (v, sv) for all v ∈ V\S. Observe that T ′ is a spanning tree and S covers
all edges of T , which is |S| � κ, as desired. This concludes the proof. �	

Combined with the well-known fact that any connected graph that has a
vertex cover of size � also has a connected vertex cover of size at most 2� (for
instance, by choosing all the non-leaf vertices of a depth-first search traversal,
which is known to be a two-approximate vertex cover), we have the following.

Corollary 2. Every graph admits a spanning tree with a vertex cover of size at
most 2�, where � is the size of a smallest vertex cover of G.

Although far from optimal—for instance, consider the complete graphs—the
bound in Observation 1 is tight, as witnessed by the graph consisting of two
stars on three leaves whose centers are connected by an edge. We remark that
the size of the vertex cover of the transformed instance constructed in the proof
of Theorem 1 is bounded by (|R|+1), which implies the following consequence in
the context of kernelization when parameterized by the size of the vertex cover.

Corollary 3. When parameterized by the solution size, MCST does not admit
a polynomial kernel unless coNP ⊆ NP/poly.

5 Concluding Remarks

We showed that MPST is W[1]-hard when parameterized by the vertex cover
of the input graph, and is W[2]-hard when parameterized by the solution size.
For the special case of unit demands, however, we demonstrate an FPT algo-
rithm when parameterized by treewidth. We also demonstrated the hardness of
polynomial kernelization for MCST when parameterized by the vertex cover.
For MPST, the dynamic programming algorithm presented would also give us
a FPT algorithm for the combined parameter (w,M), where M is the maximum
demand and w is the treewidth. To achieve this, we would have to store all
possible power assignments to the vertices in the bags.

438 C. Kaur and N. Misra

Our contributions here for the MCST problem leave open several directions
for future work. The most natural question is if we can improve the running
time of the dynamic programming algorithm when parameterized by treewidth,
possibly using randomized approaches such as “Cut and Count”, which have
proven to be successful for the related Steiner Tree problem. We also leave open
the question of whether there is a deterministic single-exponential algorithm
when parameterized by the vertex cover of the input graph. This seems to be an
intuitively appealing possibility, and indeed, it is promising to pursue the natural
approach where we guess the interaction of a possible optimal solution with a
given vertex cover. We also leave open the question of obtaining Turing or lossy
kernels for MPST or MCST when parameterized by vertex cover. Finally, we
believe that it would be interesting to study these problems on special classes of
graphs, especially those relevant to application scenarios, from a parameterized
perspective. We note that the reduced instance in Theorem 1 is bipartite.

References

1. Althaus, E., Călinescu, G., Mandoiu, I.I., Prasad, S.K., Tchervenski, N., Zelikovsky,
A.: Power efficient range assignment for symmetric connectivity in static ad hoc
wireless networks. Wireless Netw. 12(3), 287–299 (2006)

2. Angel, E., Bampis, E., Chau, V., Kononov, A.: Min-power covering problems. In:
Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 367–377.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0 32

3. Angel, E., Bampis, E., Escoffier, B., Lampis, M.: Parameterized power vertex cover.
In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 97–108. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53536-3 9

4. Bonsma, P.S., Zickfeld, F.: Improved bounds for spanning trees with many leaves.
Discrete Math. 312(6), 1178–1194 (2012)

5. Calinescu, G., Kortsarz, G., Nutov, Z.: Improved approximation algorithms for
minimum power covering problems. In: Epstein, L., Erlebach, T. (eds.) WAOA
2018. LNCS, vol. 11312, pp. 134–148. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-04693-4 9

6. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

7. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

8. Fukunaga, T., Maehara, T.: Computing a tree having a small vertex cover. In:
Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 77–
91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6 6

9. Grandoni, F.: On min-power steiner tree. In: Epstein, L., Ferragina, P. (eds.) ESA
2012. LNCS, vol. 7501, pp. 527–538. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33090-2 46

10. Ho, J., Lee, D.T., Chang, C., Wong, C.K.: Minimum diameter spanning trees and
related problems. SIAM J. Comput. 20(5), 987–997 (1991)

11. Iglesias, J., Rajaraman, R., Ravi, R., Sundaram, R.: Plane gossip: approximat-
ing rumor spread in planar graphs. LATIN 2018. LNCS, vol. 10807, pp. 611–624.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77404-6 45

12. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0045375

https://doi.org/10.1007/978-3-662-48971-0_32
https://doi.org/10.1007/978-3-662-53536-3_9
https://doi.org/10.1007/978-3-030-04693-4_9
https://doi.org/10.1007/978-3-030-04693-4_9
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-319-48749-6_6
https://doi.org/10.1007/978-3-642-33090-2_46
https://doi.org/10.1007/978-3-642-33090-2_46
https://doi.org/10.1007/978-3-319-77404-6_45
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375

Minimum Conflict Free Colouring
Parameterized by Treewidth

Pradeesha Ashok1(B), Rathin Bhargava1, Naman Gupta2,
Mohammad Khalid1, and Dolly Yadav1

1 International Institute of Information Technology Bangalore, Bangalore, India
pradeesha@iiitb.ac.in,

{rathin.bhargava,mohammadkhalid.udayagiri,dolly.yadav}@iiitb.org
2 Indian Institute of Science Education and Research Mohali, Mohali, India

ms17169@iisermohali.ac.in

Abstract. Conflict free q-Colouring of a graph G refers to the colour-
ing of a subset of vertices of G using q colours such that every vertex
has a neighbour of unique colour. In this paper, we study the Mini-
mum Conflict free q-Colouring problem. Given a graph G and a
fixed constant q, Minimum Conflict free q-Colouring is to find a
Conflict free q-Colouring of G that minimises the number of coloured
vertices. We study the Minimum Conflict free q-Colouring prob-
lem parameterized by the treewidth of G. We give an FPT algorithm for
this problem and also prove running time lower bounds under Exponen-
tial Time Hypothesis (ETH) and Strong Exponential Time Hypothesis
(SETH).

Keywords: Conflict free colouring of graphs · Parameterized
complexity · FPT algorithms · Treewidth · Exponential Time
Hypothesis · Strong Exponential Time Hypothesis

1 Introduction

Given a graph G(V,E) a q-colouring refers to a function c : V → [q], where
[q] = {1, 2, . . . , q}. A well studied colouring problem in graphs is the Proper
Colouring problem which is a colouring c with the added constraint that if
(u, v) ∈ E then c(u) �= c(v). Many other versions of graph colouring are also
studied. In this paper, we study the Conflict Free Colouring problem in
graphs.

Given a hypergraph G(V, E), a Conflict free q-colouring of G refers to a colour-
ing c : V → [q] such that every hyperedge E ∈ E has a vertex v with a distinct
colour c(v) i.e., no other vertex in E has the colour c(v) under c. Conflict free
colouring was initially studied for geometric hypergraphs motivated by the fre-
quency allocation problem in wireless networks [6]. Later, Pach and Tardos [10]
studied this problem for hypergraphs induced by graph neighbourhoods. In this
version, all vertices of the graph are coloured. Abel et al. [1] studied a closely
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 439–450, 2020.
https://doi.org/10.1007/978-3-030-39219-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_35&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_35

440 P. Ashok et al.

related problem of colouring only a subset of vertices of G such that for every
vertex in V there exists a vertex with a distinct colour in its neighbourhood.
They studied algorithmic and combinatorial problems on Conflict free colouring
of planar and outerplanar graphs. [1] also studied the bicriteria problem of min-
imizing the number of coloured vertices in a Conflict free q-colouring of graphs.
We study this problem for general graphs.

We now state the problem that we study. Consider a graph G(V,E) and a
fixed constant q. Let N(v) denote the open neighbourhood of a vertex v i.e.,
the set of all vertices u in V such that (u, v) ∈ E and N [v] denote the closed
neighbourhood of v i.e., N [v] = N(v) ∪ {v}. A Closed Neighbourhood Conflict
Free q-Colouring is a colouring c of a subset V ′ of V such that for every vertex
v ∈ V , there exists a vertex u ∈ N [v] such that c(u) �= c(u′) for any vertex
u′ ∈ N [v] \ {u}. Similarly, a Open Neighbourhood Conflict Free q-Colouring is
a colouring c of a subset V ′ of V such that for every vertex v ∈ V , there exists
a vertex u ∈ N(v) such that c(u) �= c(u′) for any vertex u′ ∈ N(v) \ {u}. We
study the following minimisation problems.

Min-q-CNCF: Given a graph G(V,E) and a fixed constant q, find a Closed
Neighbourhood Conflict Free q-Colouring that minimises the number of coloured
vertices.

Min-q-ONCF: Given a graph G(V,E) and a fixed constant q, find a Open
Neighbourhood Conflict Free q-Colouring that minimises the number of coloured
vertices.

The above problems can be seen as variants of an important problem in graph
theory called the Minimum Dominating Set problem. Specifically, when q = 1,
Min-q-CNCF and Min-q-ONCF respectively are the Efficient Dominat-
ing Set problem and Perfect Dominating Set problem. Therefore Min-q-
CNCF and Min-q-ONCF are NP-hard [7,12].

We study the parameterized complexity of the minimum Conflict Free q-
colouring problem when parameterized by the treewidth τ of the graph and
prove upper and lower bounds.

1. We show that Min-q-CNCF and Min-q-ONCF are FPT when parameter-
ized by treewidth. This can also be proved using Courcelle’s theorem [3]. We
give a constructive proof by giving an algorithm with running time O(qO(τ))
for both problems.

2. For q = 1, we show that an algorithm with running time O(2o(|V |)) can-
not exist for Min-q-CNCFand Min-q-ONCF , under Exponential Time
Hypothesis. Since |V | is an upper bound for τ , this also rules out the pos-
sibility of algorithms with running time O(2o(τ)). For q = 2, we show that
an algorithm with running time O(2o(|V |)) cannot exist for Min-q-CNCF
and we show that an algorithm with running time O(2o(τ)) cannot exist for
Min-q-ONCF.

3. For q ≥ 3, we show that an algorithm with running time O((q−ε)o(τ)) cannot
exist for Min-q-CNCF and Min-q-ONCF , under Strong Exponential Time
Hypothesis.

Minimum Conflict Free Colouring Parameterized by Treewidth 441

2 Preliminaries

In this section, we give definitions and results that will be used in subsequent
sections.

Parameterized Complexity: Parameterized complexity was introduced as
a technique to design efficient algorithms for problems that are NP-hard. An
instance of a parameterized problem is a pair (Π, k) where Π is the input and k
is the parameter. A parameter is a positive integer that represents the value of
a fixed attribute of the input or output and is assumed to be much smaller than
the size of the input, n. A parameterized problem is said to be fixed parameter
tractable (FPT) if there exists an algorithm that solves it in f(k)nO(1) time,
where f is a computable function independent of n. Refer [4,5] for a detailed
description of Parameterized Complexity. We denote an FPT running time using
the notation O(f(k)) that hides the polynomial functions.

Exponential Time Hypothesis (ETH) [4]: For q ≥ 3, let δq be the infinimum
of the set of constants of c for which there exists an algorithm solving the n
variable q-SAT in time O(2cn). ETH states that δ3 > 0. Strong Exponential
Time Hypothesis (SETH) states that lim

q→∞ δq = 1. In other words, ETH

implies that 3-SAT cannot be solved faster than O(2o(n)) and SETH implies
q-SAT cannot be solved faster than O((q − ε)n).

Treewidth [4]: A tree decomposition is a pair T = (T, {Xt}t∈V (T)) where T is
a tree whose every node t is assigned to a vertex subset, Xt ⊆ V (G), called a
bag, such that the following conditions hold.

–
⋃

t∈V (T) Xt = V (G). In other words, every vertex of G is at least in one bag.
– For every (u, v) ∈ E(G), there exists a node t of T such that bag Xt contains

both u and v.
– For every node u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Xt}, i.e. the set of

nodes whose corresponding bags contain u, induces a connected subtree of T .
The width of the tree decomposition T is the maximum size of the bag minus
1. The treewidth of the graph G, denoted by τ(G) is the minimum possible
width of a tree decomposition of G.

Nice Tree Decomposition: A rooted tree decomposition, (T, {Xt}t∈V (T)) is
nice if

– Xr = ∅ and Xl = ∅ where r is the root and l is a leaf of the tree.
– Every other node of T is one of the following
– Introduce node: A node t with exactly one child t′ such that Xt = Xt′ ∪{v}

where v /∈ Xt

– Forget node: A node t with exactly one child t′ such that Xt = Xt′\{w}
– Join node: A node t with two children t1, t2 such that Xt = Xt1 = Xt2 .
– Introduce edge node: A node t that introduces the edge (u, v) where u, v ∈

Xt and has only one child t′ such that Xt = Xt′ .

442 P. Ashok et al.

In this variant of the tree decomposition, the total number of the nodes is
still O(τn). It is known that we can compute a nice tree decomposition (T,X)
of G with |V (T)| ∈ |V (G)|O(1) of width at most 5τ in time O(2O(τ)n), where τ
is the treewidth of G [4].

Positive 1-in-3 SAT Problem: Given a 3-CNF formula φ with all positive
literals, the Positive 1-in-3 SAT problem asks whether there exists a truth
assignment such that exactly one literal is true in all clauses.

For a given graph G, let χCF (G) represent the minimum value of q such
that there exists a Conflict free q-colouring of G. In a conflict free colouring c
of V ′ ⊆ V , if a vertex v has a neighbour u ∈ V ′ such that c(u) is unique in the
neighbourhood of v, then v is said to be conflict-free dominated by u.

3 FPT Algorithm for Min-q-CNCF

We present an FPT algorithm for the Min-q-CNCF problem parameterized
by treewidth. Our algorithm uses a popular FPT technique known as Dynamic
Programming over Treewidth. Assume a nice tree composition T of G is given.
For a node t in T , let Xt represent the set of vertices in the bag of t. With each
node t of the tree decomposition we associate a subgraph Gt of G defined as:
Gt = (Vt, Et = {e : e is introduced in the subtree rooted at t}). Here, Vt is the
union of all bags present in the subtree rooted at t.

For every node t, we define colouring functions α, β, f where α : Xt →
{c0, c1, ..., cq}, β : Xt → {c1, ..., cq} and f : Xt → {B,W,C,R}. Here, ci repre-
sents the ith colour for 1 ≤ i ≤ q and c0 denotes a no-colour assignment. α(u)
and β(u) denotes the colour of the vertex u and the colour it is dominated by
respectively. The function f denotes the ‘state’ of each vertex. We now give a
little more insight to what α, β and f represent. For any vertex u ∈ Xt we have
the following.

A Black vertex is denoted by f(u) = B. Intuitively, a black vertex is coloured
and dominated in Gt. A Cream vertex is denoted by f(u) = C. A cream vertex is
coloured but not dominated in Gt. A White vertex is denoted by f(u) = W and
is not coloured but is dominated in Gt. A Grey vertex is denoted by f(u) = R.
It is not coloured and not dominated in Gt. A tuple [t, α, β, f] is valid if the
following conditions are true for every vertex u ∈ Xt.

– If f(u) = B then α(u) �= c0.
– If f(u) = C then α(u) �= c0 and α(u) �= β(u).
– If f(u) ∈ {W,R} then α(u) = 0.

A colouring c : Vt → {c0, c1, ..., cq} is said to extend [t, α, β, f] if every vertex in
Vt \ Xt is conflict-free dominated and for every v ∈ Xt, the following is true:

1. c(v) = α(v).
2. if f(v) ∈ {B,W}, then v has exactly one neighbour u in Gt such that c(u) =

β(v).
3. if f(v) ∈ {C,R} then no neighbour of v in Gt is given the colour β(v) by c.

Minimum Conflict Free Colouring Parameterized by Treewidth 443

We now define sub problems for every node t. Let dp[t, α, β, f] denote the min-
imum number of coloured vertices in any colouring of Vt that extends [t, α, β, f].
Every tuple, which is either invalid or cannot be extended to a conflict free
colouring, corresponds to dp[t, α, β, f] = ∞.

We define fv→γ where γ ∈ {B,W,R,C}, as the function where fv→γ(x) =
f(x), if x �= v, and fv→γ(x) = γ, otherwise. Similarly, we define αv→γ , for
γ ∈ {c0, c1, . . . , cq} and βv→γ for γ ∈ {c1, c2, . . . , cq}. We now give recursive
formulae for dp[., ., ., .].

Leaf Node: In this case Xt = φ. So, dp[t, φ, φ, φ] = 0.

Introduce Vertex Node: Let t′ be the only child node of t. Then, ∃ v /∈ Xt′

such that Xt = Xt′ ∪ {v}.

dp[t, α, β, f] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dp[t′, α|Xt′ , β|Xt′ , f |Xt′] + 1 if f(v) = B ∧ α(v) = β(v).
dp[t′, α|Xt′ , β|Xt′ , f |Xt′] + 1 if f(v) = C ∧ α(v) �= β(v).
dp[t′, α|Xt′ , β|Xt′ , f |Xt′] if f(v) = R.

∞ otherwise.

The correctness of the recurrence formula follows from the fact that a vertex is
an isolated vertex when it is introduced and can be conflict-free dominated only
by itself.

Forget Vertex Node: Let t′ be the only child node of t. Then, ∃v /∈ Xt such
that Xt′ = Xt ∪ {v}. The vertex v cannot be dominated by a vertex introduced
above Xt. Hence [t, α, β, f] cannot be extended by a colouring if f(v) ∈ {C,R}.
Hence we get the following:

dp[t, α, β, f] = min
1≤i,j≤q

{
dp[t′, αv→ci , βv→cj , fv→B].
dp[t′, αv→c0 , βv→ci , fv→W].

Introduce Edge Node: Let t be an introduce edge node with child node t′.
Let (u∗, v∗) be the edge introduced at t. Consider distinct u, v ∈ {u∗, v∗}. We
decide the value of dp[t, α, β, f] based on the following cases.

dp[t, α, β, f] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dp[t′, α, β, fu→C,v→C] ((f(u), f(v)) = (B, B) ∧ (α(u) = β(v)) ∧ (α(v) = β(u))).

dp[t′, α, β, fv→C] (f(u) ∈ {B, C} ∧ f(v) = B ∧ α(u) = β(v) ∧ α(v)
= β(u)).

dp[t′, α, β, fv→R] (f(u) ∈ {B, C} ∧ f(v) = W ∧ α(u) = β(v)).

∞ (f(u) ∈ {B, C} ∧ f(v) ∈ {C, R} ∧ α(u) = β(v)).

dp[t′, α, β, f] otherwise.

Clearly, the edge (u, v) can only dominate v if u is coloured with β(v). If v is
conflict-free dominated by u and f(v) ∈ {W,B}, then v was not conflict-free
dominated in t′ under the same colouring functions α and β. Hence if f(v) is
black (or white), we set f(v) to cream (or grey) in the child node.

Join Node: Let t be a join node with 2 child nodes t1, t2 and Xt = Xt1 = Xt2 .
We call tuples [t1, α1, β1, f1] and [t2, α2, β2, f2] as [t, α, β, f]-consistent if the
following conditions hold for all v ∈ Xt.

444 P. Ashok et al.

– α(v) = α1(v) = α2(v).
– β(v) = β1(v) = β2(v).
– If f(v) = B then (f1(v), f2(v)) = (B,B) ∧ α(v) = β(v) or (f1(v), f2(v)) ∈

{(B,C), (C,B)} ∧ α(v) �= β(v)).
– If f(v) = C then f1(v) = f2(v) = C.
– If f(v) = R then f1(v) = f2(v) = R.
– If f(v) = W then (f1(v), f2(v)) ∈ {(W,G), (G,W)}.

All other colourings are not consistent. For example, assume f1(v) = f2(v) =
W and both dp[t1, α1, β1, f1] and dp[t2, α2, β2, f2] are finite. Then v is conflict
free dominated in Gt1 and Gt2 . By the property of nice tree decomposition, an
edge between two vertices in a join node is introduced above the join node. Hence
Xt induces an independent set in Gt. Therefore v is conflict free dominated by a
vertex outside Xt in both Gt1 and Gt2 . Now, in Gt, v has two neighbours with
colour β(v) and hence v cannot be conflict free dominated.

Now we give the recurrence formula for dp[].

dp[t, α, β, f] = min (dp[t1, α1, β1, f1] + dp[t2, α2, β2, f2] − |f−1(B)| − |f−1(C)|)

where tuples [t1, α1, β1, f1] and [t2, α2, β2, f2] are [t, α, β, f]-consistent.
Now dp[r, ∅, ∅, ∅] where r is the root of T gives the desired solution. Also, it

can be seen that all recurrences except those for join nodes, can be computed
in O((4q2)τ) time. For a join node t, two tuples are consistent with [t, α, β, f]
if (f, f1, f2) is in one of 7 forms. Thus, processing a join node can be done in
O((7q2)τ) time. Hence, we get the following result.

Theorem 1. There exists an FPT algorithm with running time O(qO(τ)) for
Min-q-CNCF parameterized by the treewidth of the graph.

We also prove a similar result for Min-q-ONCF . The algorithm is very similar
to that given above and can be found in the full version of the paper.

Theorem 2. There exists an FPT algorithm with running time O(qO(τ)) for
Min-q-ONCF parameterized by the treewidth of the graph.

4 Lower Bounds

In this section, we give lower bounds that complement the results given in Sect. 3.

4.1 Lower Bounds for Min-q-CNCF

Theorem 3. Min-1-CNCF cannot be solved in O(2o(n)) time, unless ETH
fails.

Minimum Conflict Free Colouring Parameterized by Treewidth 445

cbcu

cv

cw

ca

Fig. 1. Clause gadget

cb

u1 u2

v1 v2

w1 w2

cacv

cu

cw

g2

g3

g1
pv,c

pu,c

pw,c

pw,c′

Fig. 2. Combination of vertex and
clause gadgets

We prove the theorem by giving a linear reduction from the Positive 1-in-
3 SAT problem. It is known that Positive 1-in-3 SAT cannot be solved in
O(2o(n)) time, unless ETH fails [9,11]. Let φ be an instance of the Positive
1-in-3 SAT problem, with n variables and m clauses. We will construct a graph
G(V,E) corresponding to φ. For every variable u of φ, we add two nodes u1, u2

to V (G) and the edge (u1, u2) to E(G). For every clause c, we add a gadget as
shown in Fig. 1.

If a variable u belongs to a clause c, then in G, the vertex u2 is connected to
one of the vertices in {cu, cv, cw} in the clause gadget of c, through a connector
vertex pu,c as shown in Fig. 2. The vertex cb in each clause gadget is connected
to a global vertex g1. The global vertex also has two neighbours of degree 1, g2
and g3. Clearly G has 2n + 8m + 3 vertices.

Lemma 1. φ is satisfiable if and only if G can be conflict-free coloured using
one colour.

Proof. Assume that φ has a satisfying assignment. We now give a valid conflict
free 1-colouring of G. Colour the global vertex g. If a variable u is true in the
satisfying assignment, then we colour the vertex u1 of the corresponding vari-
able gadget, otherwise we colour the vertex u2. Observe that if the vertex u1

is coloured, then u2 is conflict-free dominated by u1 and hence, u2 cannot be
coloured. For the same reason, a connector vertex pu,c that connects u2 to the
clause gadget of clause c cannot be coloured. Therefore, in order to conflict-free
dominate the vertex pu,c, the vertex cu of the clause gadget should be coloured.
By similar arguments, if the vertex u1 in variable gadget is uncoloured then the
corresponding vertex cu in clause gadget should also be uncoloured.

Let c be an arbitrary clause in φ and let u, v, w be the variables in c. In a
satisfying assignment, exactly one among u, v, w is true. Without loss of gener-
ality, let u be the variable that is true. Then cu is coloured and is conflict free
dominated by itself. cv, cw and ca are uncoloured but conflict free coloured by
cu. This means that for every clause c in φ the vertex cb of the corresponding
clause gadget in G is uncoloured and is conflict-free dominated by g. This gives
us a valid 1-conflict free colouring of graph G.

Similarly we can prove that if G has a valid 1-conflict free colouring then φ
has a satisfying assignment. �
Now we will consider the case q = 2. Assume the colours used are red and blue.

446 P. Ashok et al.

Theorem 4. Min-2-CNCF cannot be solved in O(2o(n)) time, unless ETH
fails.

We use the following lemma from [1].

Lemma 2. [Lemma 3.2, [1]] Let G be any graph, u, v ∈ V (G) and e = (v, u) ∈
E(G). If N(v) contains two disjoint and independent copies of a graph H = Gq

with χCF (H) = q, not adjacent to any other vertex w ∈ G, every q-conflict-free
colouring of G colours v. If the same holds for u and in addition, NG(u)∩NG(v)
contains two disjoint and independent copies of a graph J = Gq−1 with χCF (J) =
q − 1, not adjacent to any other vertex w ∈ G, every q-conflict-free colouring of
G colours u and v with different colours.

We’re looking at the special case, where q = 2. As given in Lemma 2, G1 is
a single vertex. G2 is K1,3 with one edge subdivided by another vertex.

We define a vertex v′ ∈ V (G) as a special vertex if N(v′) contains two disjoint
and independent copies of G2. We also define an edge gadget between 2 special
vertices u′ and v′ as a special edge between u′ and v′ if (u′, v′) ∈ E(G) and
NG(u) ∩ NG(v) contains two disjoint and independent copies of G1. We note
that by Lemma 2, a special vertex in a graph needs to be coloured red or blue
and if there exists a special edge between two special vertices u′ and v′, then u′

and v′ needs to be coloured with opposite colours.

a′
1

a′
2

a′
4

a′
3

a′
5

a′
6

u′

b′
1

b′
2 b′

4

b′
3

b′
5

b′
6

v′
t

v′
f

a′
1

a′
2

a′
4

a′
3

a′
5

a′
6

u′

b′
1

b′
2 b′

4

b′
3

b′
5

b′
6

v1t

v1f

R’

(a) Vertex Gadget (b) Clause Gadget

v3t

v3f

v2t

v2f

(c) Vertex Gadget vi connected to Clause Gadget Cj connected to the palette vertex R′

: Edge Gadget

: Special Vertex

Fig. 3. All the gadgets used in this proof

Minimum Conflict Free Colouring Parameterized by Treewidth 447

We give a linear reduction from the 3-Sat problem to Min-2-CNCF . Let
φ be an instance of the 3-Sat problem with n variables and m clauses. We
construct an instance of Min-2-CNCF , G(V,E), corresponding to φ. For every
variable v in φ, we add a vertex gadget to G which consists of two special vertices
v′

t and v′
f connected by a special edge. We define a sub-clause gadget which

consists of 6 special vertices denoted as a′
1, a

′
2, a

′
3, a

′
4, a

′
5, a

′
6 where a′

i, i ∈ [5] form
C5 - {a′

1, a
′
3, a

′
5, a

′
4, a

′
2, a

′
1}. The vertex a′

6 is adjacent to a′
5. For every clause c

in φ, we add a clause gadget to G. A clause gadget is constructed by taking 2
sub-clause gadgets {a′

1, . . . , a
′
6} and {b′

1, . . . , b
′
6} and connecting them through

a vertex u′ by adding special edges between a′
6 and u′, and b′

1 and u′. Let the
variables in the clause ci be denoted as vi

k, k ∈ [3]. Then the variable gadgets
corresponding to the the variables vi

1, v
i
2, v

i
3 in G are respectively connected to

the vertices a′
1, a

′
2, b

′
2 of the clause gadget corresponding to ci, through special

edges. If the variable v appears in ci as a positive literal, then vf is connected to
the clause gadget, otherwise vt is connected. Finally, there exists a palette vertex
R such that there is a special edge between R and b6 for all clause gadgets. (Refer
Fig. 3). Since every vertex gadget and clause gadget has a constant number of
vertices, V has O(n + m) vertices. Specifically, V contains k = 2n + 13m + 1
special vertices.

Lemma 3. Let vertices a′
1 and a′

2 have exactly 1 neighbour outside the sub-
clause gadget which is coloured the opposite to it and conflict-free dominates
itself. Then, given that we colour only special vertices, if a′

1 and a′
2 are both

coloured red, a′
6 will be coloured red. If a′

1 or a′
2 is coloured blue, then there

exists a colouring where a′
6 will be coloured blue.

Proof. We first prove that colouring a′
1 and a′

2 red forces a′
6 to be coloured red.

By construction of the sub-clause gadget, a′
1 and a′

2 are adjacent to each other.
It’s given that both a′

1 and a′
2 have one blue neighbour outside the gadget. The

colour red appears twice in the closed neighbourhood of a′
1. Thus, the only colour

which can dominate a′
1 is blue. If a′

3 is coloured blue, a′
1 would not be conflict

free dominated. Thus, a′
3 is coloured red. By a similar argument involving a′

2,
we can show that a′

4 has to be coloured red. In this way, let a′
5 be coloured

blue. By contradiction, if a′
5 is coloured red, then a′

3 does not have a conflict
free neighbour as all its neighbours are red. Thus, a′

6 gets coloured red. If it
gets coloured blue, then a′

5 will have 2 red and 2 blue neighbours in its closed
neighbourhood and cannot get dominated. Thus, a′

6 is coloured red. If both a′
1

and a′
2 are coloured blue, then we can prove, in a similar case to the one done

above, that a′
6 will be coloured blue.

To prove the second part, let’s assume without loss of generality, that a′
1 is

coloured red and a′
2 is coloured blue. Since a′

1 is connected to a blue neighbour
outside the sub-clause gadget, a′

3 is forced to be coloured blue. Likewise, a′
4 is

coloured red. To ensure that a′
6 gets a blue colour, we need a′

5 to be coloured
blue. It can be seen that this is a valid colouring. �

Lemma 4. Any instance φ of 3-Sat is satisfiable if and only if G can be conflict
free 2-coloured with at most k coloured vertices.

448 P. Ashok et al.

Proof. Assume there exists a 2-conflict free colouring of G which colours at most
k vertices. We will show that φ has a satisfying assignment. By Lemma 2, in
any conflict free 2-colouring of G every special vertex is coloured. Since we have
coloured at most k vertices, only the special vertices are coloured. The palette
vertex, R, is coloured since it is a special vertex. Without loss of generality,
let it be coloured red. Since b′

6 vertices of all the clause gadgets have special
edges to R, they are coloured blue. By Lemma 3, we know that at least one of
a′
1, a

′
2, b

′
2 is coloured blue. Let that one vertex be u. Now, u is connected to a

corresponding variable gadget. If it is connected to v′
t, then assign that variable

v in φ false, otherwise assign true. It is easy to see that this is a satisfying
assignment. Similarly, we can see that if there exists a satisfying assignment of
φ, there exists a conflict free 2-colouring of G. �

Now the theorem follows from ETH. �
Now we consider q ≥ 3.

Lemma 5. For q ≥ 3, an algorithm with running time O((q − ε)o(τ)) cannot
exist for Min-q-CNCF , under Strong Exponential Time Hypothesis.

We reduce Proper q-colouring to Min-q-CNCF. We know from [8] that
Proper q-colouring under SETH, cannot be solved faster than O((q−ε)τ(G)).
As shown in Lemma 3.4 from [1], from any graph G, we can construct G′ which
can be Conflict free q-coloured if and only if G can be proper q-coloured. From
Claim 2, Lemma 7 from [2], we know that the treewidth of G′ is max{τ(G), q}.
where τ(G) is the treewidth of the graph G. Hence, Min-q-CNCF colouring
cannot be solved faster than O((q − ε)max{τ(G),q}) and the lemma follows. �

4.2 Lower Bounds for Min-q-ONCF

Theorem 5. Min-1-ONCF cannot be solved in O(2o(n)) time, unless ETH
fails.

Proof. We give a reduction from Positive 1-in-3 SAT. Let φ′ be an instance
of Positive 1-in-3 SAT with n variables and m clauses. We will construct a
graph G′(V,E) corresponding to φ′. For each variable and clause we construct
a variable gadget and a clause gadget respectively. The variable gadget for an
arbitrary variable u is a path of length 3. The clause gadget is shown in Fig. 4.
There is a global gadget which consists of a path of length 4, g1 − g2 − g3 − g4
with a pendant vertex connected at vertex g3. If a variable u belongs to a clause
c, then vertex u3 is connected to vertex cu,1 in G′. Vertex g4 is connected to
vertex cy of all clause gadgets. Clearly, G′ has 8m + 3n + 5 vertices.

Lemma 6. φ′ is satisfiable if and only if G′ can be conflict free 1-coloured.

Proof. We will show that if G′ has a valid 1-conflict free colouring then φ′ has
a satisfying truth assignment. We can show the other direction by similar argu-
ments. Observe that the vertices g2, g3 should always be coloured and g1, g5, g4

Minimum Conflict Free Colouring Parameterized by Treewidth 449

cu,1

cv,2cv,1

cw,1 cw,2

cu,2

cx cy

(a) Clause gadget for
clause c

u1 u2 u3

(b) variable gadget for
variable u

Fig. 4. Clause and variable gadgets

cu,1

cv,2cv,1

cw,1 cw,2

cu,2

cx cy

u1 u2 u3

v1 v2 v3

w1 w2 w3

g5

g4

g3

g2 g1

Other Clauses

c′w,1

Fig. 5. Combined gadget

should always be uncoloured as it is the only way to conflict free colour the ver-
tices g1, g2, g3, g4 and g5. Since g4 is uncoloured and is dominated by g3, all its
neighbours except g3 should also be uncoloured and dominated in a valid colour-
ing. Hence, for every clause c, the vertex cy in G′ should be uncoloured and cx

should be coloured. To conflict free dominate cx, exactly one among the vertices
cu,2, cv,2, cw,2 should be coloured. Without loss of generality, assume that the
vertex cu,2 is coloured. Since cu,2 is coloured, the vertex u1 should be coloured
and the vertices v1, w1 should be uncoloured. Then, assign true to variable u and
false for variables v and w. It can be seen that this gives a satisfying assignment
for φ′ (Fig. 5). �

Theorem 6. Min-2-ONCF cannot be solved in O(2o(τ)), assuming ETH is
true.

Proof. [2] gives a result that a variant of Min-2-ONCF where every vertex
needs to be coloured cannot be solved in time O(2o(τ)) under ETH. For prov-
ing this result, they give a reduction from the 3-Sat problem that reduces an
instance of the 3-Sat problem, φ, to an instance of the Min-2-ONCF problem,
G, with treewidth a linear function of |φ|. We use the same reduction and mod-
ify G by connecting a vertex of degree 1 to every vertex in G. Note that the
treewidth of the modified instance, G′, is still a linear function of |φ|. Now, we
will show that φ has a satisfying assignment if and only if G′ has a valid conflict

450 P. Ashok et al.

free 2-colouring that colours at most |V (G)| vertices. This follows from the result
in [2] and the fact that a vertex of degree one can only be conflict free dominated
by its neighbour when open neighbourhood is considered.

Lemma 7. Min-q-ONCF cannot be solved in time O((q − ε)τ(G)) under
SETH.

Proof. We give a reduction from the Proper q-colouring problem to the
Min-q-ONCF problem. We know from [8] that Proper q-colouring under
SETH, cannot be solved faster than O((q − ε)τ(G)). We consider the graph G′

in lemma 5 in [2] and construct graph G′′ by adding a vertex with degree 1 to
all the vertices in G′. Now the proof follows as before.

References

1. Abel, Z., et al.: Conflict-free coloring of graphs. SIAM J. Discrete Math. 32(4),
2675–2702 (2018)

2. Bodlaender, H.L., Kolay, S., Pieterse, A.: Parameterized complexity of conflict-free
graph coloring. In: Algorithms and Data Structures - 16th International Sympo-
sium, WADS 2019, Edmonton, AB, Canada, 5–7 August 2019, Proceedings, pp.
168–180 (2019). https://doi.org/10.1007/978-3-030-24766-9 13

3. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

4. Cygan, M., et al.: Parameterized Algorithms, vol. 4. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Switzerland
(2012). https://doi.org/10.1007/978-3-319-21275-3

6. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple
geometric regions with applications to frequency assignment in cellular networks.
SIAM J. Comput. 33(1), 94–136 (2003)

7. Kratochv́ıl, J., Křivánek, M.: On the computational complexity of codes in graphs.
In: Chytil, M.P., Koubek, V., Janiga, L. (eds.) MFCS 1988. LNCS, vol. 324, pp.
396–404. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0017162

8. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded
treewidth are probably optimal. In: Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 777–789. SIAM (2011)

9. Muzi, I., O’Brien, M.P., Reidl, F., Sullivan, B.D.: Being even slightly shallow makes
life hard. In: 42nd International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2017), vol. 83, p. 79. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2017)

10. Pach, J., Tardos, G.: Conflict-free colourings of graphs and hypergraphs. Comb.
Probab. Comput. 18(5), 819–834 (2009)

11. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM
(1978)

12. Yen, C.C., Lee, R.C.T.: The weighted perfect domination problem. Inf. Process.
Lett. 35(6), 295–299 (1990)

https://doi.org/10.1007/978-3-030-24766-9_13
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/BFb0017162

Computational Geometry

Planar Projections of Graphs

N. R. Aravind(B) and Udit Maniyar

Indian Institute of Technology Hyderabad, Sangareddy, India
aravind@iith.ac.in

Abstract. We introduce and study a new graph representation where
vertices are embedded in three or more dimensions, and in which the
edges are drawn on the projections onto the axis-parallel planes. We show
that the complete graph on n vertices has a representation in �√n/2+1�
planes. In 3 dimensions, we show that there exist graphs with 6n − 15
edges that can be projected onto two orthogonal planes, and that this
is best possible. Finally, we obtain bounds in terms of parameters such
as geometric thickness and linear arboricity. Using such a bound, we
show that every graph of maximum degree 5 has a plane-projectable
representation in 3 dimensions.

Keywords: Graph drawing · Planarity · Thickness · Planar
projections

1 Introduction

In this paper, we consider embeddings of graphs where the vertices are mapped
to points in R

d, for d ≥ 3, and the edges are represented by line-segments on

the
(

d

2

)
axis-parallel planes. For example, a 3-dimensional network may be

visualized by placing it inside a cube and drawing the edges on the walls of the
cube by projecting the points.

One motivation is the connection to two classical parameters, thickness and
geometric thickness. The thickness of a graph G, is the smallest number of planar
subgraphs into which the edges of G can be decomposed. This was introduced by
Tutte in [18]; see also [16] for a survey of thickness. Geometric thickness adds the
restriction that all the subgraphs must be embedded simultaneously, that is, with
a common embedding of the vertices. This was studied in [4] for complete graphs.
The connection between geometric thickness and parameters such as maximum
degree and tree-width has been studied in various papers: [2,7,8]. While using the
standard co-ordinate planes in high dimensions is more restrictive than thickness,
it appears to be less so than geometric thickness (Sect. 3).

Book embeddings, defined by Ollmann in [17], are restrictions of geometric
drawings in which the vertices are in convex position. The book thickness of
G is the smallest number of subgraphs that cover all the edges of G in such a
drawing. This is also known as stack number, and is studied in [6]. Also see [5]
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 453–462, 2020.
https://doi.org/10.1007/978-3-030-39219-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_36&domain=pdf
http://orcid.org/0000-0002-6590-7952
https://doi.org/10.1007/978-3-030-39219-2_36

454 N. R. Aravind and U. Maniyar

for a survey. More generally, a survey on simultaneous embedding of graphs may
be found in [3].

In [14], the authors showed that n-vertex graphs of geometric thickness 2 can
have at most 6n − 18 edges. Such graphs can also be represented as projections
in two orthogonal planes; orthogonal planes appear to allow a greater degree of
freedom, as we give a construction of graphs with 6n − 15 edges. We also note
that a plane-projectable construction with 6n − 17 edges was given in [15].

1.1 Preliminaries

For a point q in R
d, we denote by πi,j(q), the projection of q on the plane

{x ∈ R
d | xi = xj = 0} formed by the ith and jth co-ordinate axes.

Definition 1. Given a graph G = (V,E), we say that an injective map π :
V → R

d is a plane-projecting map of G if there exists a decomposition E =
∪1≤i<j≤dEi,j such that the projection πi,j is injective and induces a straight-line
planar embedding of the subgraph (V,Ei,j).

We define the plane-projecting dimension of a graph G to be the smallest
integer d for which a plane-projecting map in R

d exists for G. We denote this
by pdim(G).

If pdim(G) ≤ d, we shall say that G is d-dimensionally projectable or
plane-projectable in d-dimensions.

We note the following connection between the plane-projecting dimension
and the two thickness parameters of a graph.

Observation 1. Let G have thickness θ(G) = r and geometric thickness ¯θ(G) =
s ≥ r. Then we have:

(i)
√

8r + 1 + 1
2

≤ pdim(G) ≤ 2r.

(ii) pdim(G) ≤ 2�√s	.

Proof. The first inequality in (i) follows from the observation that r ≤(
pdim(G)

2

)
; the second inequality is easy to see. For (ii), we let k = �√s	.

For a vertex v, let (a, b) be its position in an optimal geometric thickness rep-
resentation of G. Then the map f(v) = (a, a, . . . , a, b, b, . . . , b) (with number
of a’s and b’s each equal to k), is a plane-projecting map, with the edge sets
{Ei,j : 1 ≤ i ≤ k, k + 1 ≤ j ≤ 2k} corresponding to the subgraphs of the geo-
metric thickness representation, and Ei,j drawn on the plane with xi = xj = 0.

�
In [7], the author obtained a bound of O(log n) on the geometric thickness of

graphs with arboricity two; thus as a corollary, we obtain a bound of O(
√

log n)
on the plane-projecting dimension of such graphs.

Planar Projections of Graphs 455

1.2 Our Results

In Sect. 2, we obtain an upper bound of
√

n/2 + O(1) on the plane-projecting
dimension of Kn.

In Sect. 3, we give a construction of graphs having n vertices and 6n − 15
edges that can be projected on two orthogonal planes, and further show that
this is tight. We also obtain an upper bound on the maximum number of edges
of a n-vertex graph that is plane-projectable in 3 dimensions.

In Sect. 4, we show that every graph of maximum degree five is plane- pro-
jectable in three dimensions, by obtaining an upper bound in terms of the linear
arboricity of G (which is the minimum number of linear forests that partition

the edges of G). We also obtain a general upper bound of Δ(G)
(

1
2

+ o(1)
)

on

pdim(G). Note that an upper bound of Δ(G)+1 follows from Observation 1 and
a result of [13], which states that the thickness of a graph of maximum degree

Δ is at most �Δ

2
	.

2 Plane-Projecting Dimension of Complete Graphs

In the paper [4], the authors show that the geometric thickness of Kn is at most
�n/4	. Combining this with Observation 1, we get pdim(Kn) ≤ �√n	.

The thickness of Kn is known to be 1 for 1 ≤ n ≤ 4, 2 for 5 ≤ n ≤ 8, 3 for

9 ≤ n ≤ 10, and �n + 2
6

	 for n > 10. Thus, for n > 10, we get pdim(Kn) ≥√
n/3.
By using the construction of [4] in a more direct way, we obtain the following

improved upper bound.

Theorem 2. pdim(Kn) ≤ �
√

2n + 7 + 1
2

	.
To prove Theorem 2, we shall use the following lemma, which we first state

and prove.

Lemma 1. For every natural number d ≥ 2 and every natural number n, there
exist n points in R

d such that for every 1 ≤ i < j ≤ d, the projections of these
points to the (i, j)-plane are in convex position, and in the same order on the
convex hull.

Proof (of Lemma 1). We consider the point-set Pi = (cos(ai + ib), cos(ai + (i +
1)b), . . . , cos(ai + (i + d − 1)b)) for some suitable b and ais. For given i, j ∈
{1, 2, . . . , d}, the projection of these points in the (i, j) plane lie on an ellipse.
�

We now prove Theorem 2.

Proof (of Theorem 2). Let d be such that
(

d

2

)
≥ �n

4
	. We assume that n = 2k,

where k is even, and find sets S, T of n/2 points each in R
d such that the

456 N. R. Aravind and U. Maniyar

projections of S and T to two given axis-parallel planes lie on an ellipse, with
the ellipse corresponding to S always contained inside and congruent to the
ellipse corresponding to T , as shown in Fig. 1 (right).

v1

v5

v2

v3

v4

v6

v7

v8

w5

w1

Fig. 1. Left: Path in S/T ; Right: Edges between diametrically opposite vertices of T
and the vertices of S

The drawing of edges is now the same as in [4], which we explain for the sake
of completeness.

We decompose the complete graph on each of S, T into k/2 disjoint paths
and draw their edges in k/2 planes such that each path contains exactly one
pair of diametrically opposite vertices that are adjacent. Here, we use the phrase
“diametrically opposite” for a pair of vertices if the points corresponding to
them have exactly k/2 − 1 other points between them on the convex hull. This
is illustrated in Fig. 1(a), where v1, v5 are the diametrically opposite pair which
are adjacent. Other diametrically opposite pairs are {v2, v6}, {v3, v7} etc., each
of which shall be adjacent in a different plane.

Finally, we add edges between every vertex of S and the diametrically oppo-
site pair of T . That this can be done is shown in [4], by showing that there
exist a set of parallel lines each passing through one point in S, and arguing
by continuity that if the diametrically opposite pair is far enough, they may be
joined to the points of S without intersections. This is illustrated in Fig. 1(b).
�

3 Plane-Projectable Graphs in R
3

In this section, we focus on R
3, and ask the following two extremal questions.

Q1. What is the maximum number of edges of a n-vertex graph with plane-
projecting dimension three?
Q2. What is the maximum number of edges of a n-vertex graph whose edges
can be projected into two orthogonal planes in R

3?

Planar Projections of Graphs 457

We shall answer Question 1 partially by giving an upper bound of 9n − 24, and
Question 2 completely, by giving matching upper and lower bounds.

As mentioned earlier, any graph with geometric thickness two can be pro-
jected in two of the co-ordinate planes. In [14], it was shown that a n-vertex graph
of geometric thickness two can have at most 6n−18 edges and that 6n−20 edges
is achievable. This was improved in [9], where it was shown that for every n ≥ 9,
6n − 19 edges is achievable.

By modifying their construction, we show the following:

Theorem 3. For every n ≥ 14, there exists a graph Gn on 6n − 15 edges with
an embedding in R

3 such that the restriction to two of the planes form planar
straight-line embeddings of two graphs whose edge-union is equal to Gn.

Fig. 2. On left: H14, On right: M14; G14 has 6 × 14 − 15 = 69 edges. The dark edges
are common to both planes. Also the exact vertex positions are not important, but the
ordering of the vertices on the common axis should be the same.

Proof. Let Hn, Mn be the projection of Gn on XY , Y Z planes respectively.
Observe that if we fix the embedding of vertices of G in H, then in M we would
have the freedom to move vertices along Z axis because z coordinate of vertices
have not been fixed yet.

Figure 2 gives the construction of a graph G14 with 14 vertices and 6 × 14 −
15 = 69 edges.

Let us assume that we are given Hk,Mk which are the planar projections of
Gk on XY, Y Z planes respectively, such that |Ek| = 6k − 15.

We now show that we can add a vertex vk+1 with 6 neighbors, such that
three of the new edges are added to Hk to obtain Hk+1 and the other three are
added to Mk to obtain Mk+1.

In Hk, we place vk+1 inside a triangle whose vertices are disjoint from the
vertices present on the convex hull of Mk namely v1, v2, vk. Now the (x, y) coor-
dinates of vk+1 are fixed we can take the z coordinate of vk+1 to be a value

458 N. R. Aravind and U. Maniyar

strictly greater than the z coordinate of vk. Now in Mk(Y Z plane) we can add
vk+1 by connecting vk+1 to v1, v2, vk.

We can always find a triangle whose vertices should not contain any one of
v1, v2, vk. If k is odd we add vk+1 inside the triangle v6, v4, vk−1 in Hk and if k
is even we add vk+1 inside the triangle v7, v8, vk in Hk.

Since we have added 6 edges to the graph Gk the new graph Gk+1 contains
6k − 15 + 6 = 6(k + 1) − 15. The vertex vn+1 is also being mapped to a suitable
point in R

3.
Inductively using the above process, we can generate Gn for all n such that

|En| = 6n − 15.

We will now show that the above upper bound is in fact tight; we first need
the following definition.

Definition 2. We say that an embedding of a planar graph G is maximally
planar if no non-adjacent pair of vertices can be joined by a line-segment without
intersecting the existing edges.

Theorem 4. Let G be a connected graph on n ≥ 3 vertices having an embedding
in R

3 such that the restriction to two of the planes form straight-line planar
embeddings of two graphs. Then G has at most 6n − 15 edges.

Proof. Consider an embedding of G(V,E) such that the edges of G are covered
by planar drawings in two (projected) planes. Let XY and Y Z be the two planes
and let G1 = (V,E1) and G2 = (V,E2) be the two planar sub-graphs respectively,
which are projected on these planes.

Clearly we can assume that the embeddings of both G1 and G2 are maximally
planar.

Let
A to be the vertex with lowest y coordinate value,
B to be the vertex with highest y coordinate value,
C to be the vertex with second lowest y coordinate value,
D to be the vertex with second highest y coordinate value.

Claim 5. Both AC and BD belong to G1 ∩ G2.

Proof of Claim 5: Suppose for contradiction that AC /∈ G1. Since G1 is maxi-
mally planar, there must be an edge uv that intersects the line-segment joining
AC. Therefore the y co-ordinate of u or the y co-ordinate of v must lie between
the y co-ordinates of A and C, which contradicts the choice of A,C. The proof
for BD is identical.

We now consider two cases.

Case 1: |E1| < 3n − 6 or |E2| < 3n − 6. In this case, we have: |E1 ∪ E2| =
|E1| + |E2| − |E1 ∩ E2| ≤ 6n − 13 − 2 = 6n − 15.

Planar Projections of Graphs 459

Case 2: |E1| = |E2| = 3n − 6. In this case, we show that in addition to AC and
BD, the edge AB also belongs to both E1 and E2, which shows that |E1 ∪E2| ≤
6n − 15.

Since G1 has 3n − 6 edges, its convex hull is a triangle. By the definition of
A,B, we see that AB should be on the convex hull, and hence is an edge of G1.
Similarly, AB belongs to G2 as well.

This completes the proof of Theorem 4.
�
We now give an upper bound on graphs with plane-projectable dimension

three.

Theorem 6. Let G be a connected graph on n ≥ 3 vertices having an embed-
ding in R

3 such that the restriction to the three planes form straight-line planar
embeddings of three graphs. Then G has at most 9n − 24 edges.

Proof. Consider an embedding of G(V,E) such that the edges of G are covered
by planar drawings in three (projected) planes. Let XY , Y Z and ZX be the
two planes and let G1 = (V,E1), G2 = (V,E2) and G3 = (V,E3) be the three
planar sub-graphs respectively, which are projected on these planes.

We may assume that G1, G2, G3 are maximally planar.
Here we have to consider few cases:

Case 1: |E1| = |E2| = |E3| = 3n − 6. In this case we use the same argument as
Theorem 4, we get |E2 \ E1| = 3n − 9, |E3 \ E1| = 3n − 9.

|E1 ∪ E2 ∪ E3| ≤ |E1| + |E2 \ E1| + |E3 \ E1|.
=⇒ |E1 ∪ E2 ∪ E3| ≤ (3n − 6) + (3n − 9) + (3n − 9) = 9n − 24.

Case 2: |E1| = |E2| = 3n − 6, |E3| ≤ 3n − 7. In this case if we use the same
argument as Theorem 4 we get |E2 \ E1| = 3n − 9.

Since G1, G3 are maximally planar using Claim 5, we get |E3 \ E1| ≤ 3n −
7 − 2 = 3n − 9.

=⇒ |E1 ∪ E2 ∪ E3| ≤ (3n − 6) + (3n − 9) + (3n − 9) = 9n − 24.

Case 3: |E1| = 3n − 6, |E2| ≤ 3n − 7, |E3| ≤ 3n − 7.
Since G1, G2, G3 are maximally planar using Claim 5, we get |E3 \ E1| ≤

3n − 7 − 2 = 3n − 9.
|E2 \ E1| ≤ 3n − 7 − 2 = 3n − 9.
=⇒ |E1 ∪ E2 ∪ E3| ≤ (3n − 6) + (3n − 9) + (3n − 9) = 9n − 24.

Case 4: |E1| ≤ 3n − 7, |E2| ≤ 3n − 7, |E3| ≤ 3n − 7.
Since G1, G2, G3 are maximally planar, using Claim 5, we get |E3 \ E1| ≤

|E2 \ E1| ≤ 3n − 7 − 2 = 3n − 9. Similarly |E3 \ E1| =≤ 3n − 9;
=⇒ |E1 ∪ E2 ∪ E3| ≤ (3n − 7) + (3n − 9) + (3n − 9) = 9n − 25.

This completes the proof of Theorem 6.

4 Relation with Linear Arboricity and Maximum Degree

A linear forest is a forest in which every tree is a path. The linear arboricity of
a graph G is the minimum number of linear forests into which the edges of G
can be decomposed.

460 N. R. Aravind and U. Maniyar

We have the following.

Proposition 1. If G has linear arboricity at most k, then there is an embedding
of G in R

k such that the edges of G can be drawn on the following k standard
planes: for i = 1, . . . , k − 1, the ith plane is {x ∈ R

k : xj = 0∀j /∈ {1, i}}, and
the kth plane is {x ∈ R

k : xj = 0∀j /∈ {2, 3}}. In particular, pdim(G) ≤ k.

In [10], it was shown that graphs of maximum degree 5 have linear arboricity
at most 3. Thus, we get the following.

Corollary 1. Any graph of maximum degree 5 is plane-projectable.

In [1], Alon showed that a graph of maximum degree Δ has linear arboricity

at most
Δ

2
+ o(Δ). Thus, we have: pdim(G) ≤ Δ(G)

(
1
2

+ o(1)
)

.

We shall actually prove a stronger form of Proposition 1, in which we replace
linear arboricity by caterpillar arboricity, which we define below.

A caterpillar tree is a tree in which all the vertices are within distance 1 of
a central path. A caterpillar forest is a forest in which every tree is a caterpillar
tree. The caterpillar arboricity of a graph G is the minimum number of caterpillar
forests into which the edges of G can be decomposed. This has been studied
previously in [12].

The main idea behind Proposition 1 is the following.

Lemma 2. Given a caterpillar tree G with vertex set V = {v1, v2, . . . , vn}, and
n ≥ 2 distinct real numbers y1, . . . , yn, there exist n real numbers x1, . . . , xn such
that G has a straight-line embedding with the vertex vi mapped to (xi, yi).

Proof. Let w1, w2, . . . wk be the vertices on the central path such that wi has an
edge with wi−1 and wi+1. All the indices are taken modulo k. Also, let Li denote
the set of leaf vertices adjacent to wi.

We set the x co-ordinate of wi to be i, and the x co-ordinate of every vertex
of Li to be i + 1. Clearly the edges of the caterpillar drawn with the above
embedding are non-crossing.
�

We remark that the above result and concept have also been studied as
“unleveled planar graphs” in [11].

Lemma 3. Given a cycle G with vertex set V = {v1, v2, . . . , vn}, and n ≥ 2
distinct real numbers y1, . . . , yn, there exist n real numbers x1, . . . , xn such that
G has a straight-line embedding with the vertex vi mapped to (xi, yi).

Proof. Without loss of generality, let v1, v2, . . . vn be the vertices on the cycle
such that vi has an edge with vi−1 and vi+1 and v1 be the vertex with smallest
y coordinate value. All the indices are taken modulo n.

We first remove the edge between v1 and vn so that the remaining graph is
a path for which we use the previous lemma to construct the embedding.

Now to add back the edge v1vn, we have to make sure that none of the other
edges intersect with the edge between v1 and vn. Let slopei to be the slope

Planar Projections of Graphs 461

between v1 and vi, and note that this is positive for all i, since v1 has the lowest
y coordinate. Let m = mini{slopei}. We now draw a line L through v1 with
slope less than m and place the vertex vn on L, as illustrated in the figure below
(Fig. 3).

v1

v2

vi
vn

Fig. 3. Cycle graph with given y co-ordinates

The proposition below also follows from an application of Lemma 2.

Proposition 2. Let G be the edge-union of a planar graph and d paths. Then
pdim(G) ≤ d + 2.

5 Open Problems

1. What is the plane-projecting dimension of Kn?
2. Find tight bounds for the maximum number of edges in a n-vertex graph that

is plane-projectable in R
3.

3. Is every graph of maximum degree 6 plane-projectable in three dimensions?
4. Is pdim(G) = O(

√
Δ(G))?

5. Is it true that pdim(G) is at most the smallest d such that
(

d

2

)
≥ θ̄(G)?

References

1. Alon, N.: The linear arboricity of graphs. Isr. J. Math. 62(3), 311–325 (1988)
2. Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large

geometric thickness. Electron. J. Comb. 13(1), 3 (2006)
3. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs.

In: Handbook on Graph Drawing and Visualization, pp. 349–381. Chapman and
Hall/CRC (2013)

462 N. R. Aravind and U. Maniyar

4. Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete
graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000)

5. Dujmovic, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2), 339–358 (2004)

6. Dujmovic, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivi-
sions. Discrete. Math. Theor. Comput. Sci. 7(1), 155–202 (2005)

7. Duncan, C.A.: On graph thickness, geometric thickness, and separator theorems.
Comput. Geom. 44(2), 95–99 (2011)

8. Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree
graphs. In: Proceedings of the 20th ACM Symposium on Computational Geometry,
Brooklyn, New York, USA, 8–11 June 2004, pp. 340–346 (2004)

9. Durocher, S., Gethner, E., Mondal, D.: Thickness and colorability of geometric
graphs. Comput. Geom. 56, 1–18 (2016)

10. Enomoto, H., Péroche, B.: The linear arboricity of some regular graphs. J. Graph
Theory 8(2), 309–324 (1984)

11. Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unla-
beled level planar trees. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS,
vol. 4372, pp. 367–379. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-70904-6 35

12. Gonçalves, D., Ochem, P.: On star and caterpillar arboricity. Discrete Math.
309(11), 3694–3702 (2009)

13. Halton, J.H.: On the thickness of graphs of given degree. Inf. Sci. 54(3), 219–238
(1991)

14. Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-
two graphs. Comput. Geom. 13(3), 161–171 (1999)

15. Malviya, P.: Graph visualization. Master’s thesis, Indian Institute of Technology
Hyderabad (2016)

16. Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: a survey. Graphs
Comb. 14(1), 59–73 (1998)

17. Ollmann, T.: On the book thickness of various graphs. In: Proceedings of the 4th
SouthEastern Conference on Combinatorics, Graph Theory and Computing, vol.
VIII, p. 459 (1973)

18. Tutte, W.: The thickness of a graph. Indag. Math. 25, 567–577 (1963)

https://doi.org/10.1007/978-3-540-70904-6_35
https://doi.org/10.1007/978-3-540-70904-6_35

New Algorithms and Bounds for Halving
Pseudolines

Sergey Bereg(B) and Mohammadreza Haghpanah

University of Texas at Dallas, Richardson, TX 75080, USA
{besp,Mohammadreza.Haghpanah}@utdallas.edu

Abstract. Let P be a set of points in general position in the plane. A
halving line of P is a line passing through two points of P and cutting
the remaining n − 2 points in a half (almost half if n is odd). Gener-
alized configurations of points and their representations using allowable
sequences are useful for bounding the number of halving lines.

We study a problem of finding generalized configurations of points
maximizing the number of halving pseudolines. We develop algorithms
for optimizing generalized configurations of points using the new notion
of partial allowable sequence and the problem of computing a partial
allowable sequence maximizing the number of k-transpositions. It can
be viewed as a sorting problem using transpositions of adjacent elements
and maximizing the number of transpositions at position k.

We show that this problem can be solved in O(nkn) time for any
k > 2, and in O(nk) time for k = 1, 2. We develop an approach for opti-
mizing allowable sequences. Using this approach, we find new bounds for
halving pseudolines for even n, n ≤ 100.

1 Introduction

Let S be a set of n points in the plane in general position. A halving line of S is
a line passing through two points of S and

(i) cutting the remaining points in a half, if n is even, or
(ii) having (n − 1)/2 and (n − 3)/2 points of S on each side, if n is odd.

The problem of finding h(n), the maximum number of halving lines for a set of
n points, is one of the important open problems in the field of discrete geometry.
Erdős, Lovász, Simmons Straus [13,19] raised this problem for first time.

This problem is extended from the real plane R
2 to the real projective plane

P
2. A generalized configuration of points consists of n distinct points in the pro-

jective plane and an arrangement of
(
n
2

)
pseudolines crossing from each pair of

points and intersect each other exactly once. Halving lines in R
2 can be sim-

ilarly extended to halving pseudolines [15] for a generalized configuration of
points in P

2 and define h̃(n) is the maximum number of halving pseudolines.

The research is supported in part by NSF award CCF-1718994.

c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 463–475, 2020.
https://doi.org/10.1007/978-3-030-39219-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_37&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_37

464 S. Bereg and M. Haghpanah

A part of extensive research on finding bounds on h(n) and h̃(n) can be found in
[1,7,12,24].

Goodman and Pollack [17] introduced allowable sequences of permutations
(allowable sequence for short) which are useful for encoding configurations of
points in P

2. Allowable sequence is a doubly infinite sequence and half-period of
it can be represented by a sequence Π = (π0, π1, . . . , π(n2)) of permutations on n

elements such that:

(1) Any permutation πi, i ≥ 1 can be obtained from the previous permutation
πi−1 by a transposition of two adjacent elements.

(2) Every two elements are transposed exactly one time.

A transposition between elements at positions k and k + 1 is called a k-
transposition. We denote by τ(k,Π) the number of k-transpositions in Π.

Allowable sequences are one of most the important tools in proving bounds for
many problems of discrete geometry including bounds on the number of k-sets,
halving lines, halving pseudolines, also problems of finding rectilinear crossing
number of graph Kn and pseudolinear crossing number of Kn, see [1–3,6,9]. For
example, the number of (≤ k)-sets of a set of n points in the plane in general
position were studied in [11,20] using allowable sequences.

Most known upper bounds for h(n) use the upper bound

h(n) ≤ h̃(n), (1)

where h̃(n) is the maximum number of halving pseudolines. The definition of h̃(n)
is based on generalized configurations of points in P

2. For the sake of simplicity,
we define it using allowable sequences as follows. Let Π be an allowable sequence
of permutations on [n]. In this paper, we denote by [n] the set {1, 2, . . . , n}. First,
we define h̃(Π) using two cases. If n is even then h̃(Π) = τ(n/2,Π). If n ≥ 3 is
odd then h̃(Π) = τ(n−1

2 ,Π) + τ(n+1
2 ,Π). Then h̃(n) is the maximum value of

h̃(Π) over all allowable sequences of permutations on [n].
The bound (1) is used to show the tight bounds for the halving numbers by

proving upper bounds for h̃(n) matching the lower bounds for h(n). The tight
bounds h(n) = h̃(n) are known for all n ≤ 27 [4]. Inequality (1) can be viewed
as the lower bound for h̃(n). Current lower bounds of h̃(n) and h(n), for small n,
are mostly can be attained by point configurations of Aichholzer’s construction
[5]. Can the bound (1) be improved?

In this paper, we propose to study lower bounds for h̃(n) using allowable
sequences. This can be viewed as the problem of finding an allowable sequence
Π maximizing h̃(Π) for a given n. The problem is known to be difficult for
large n. Checking all possible configurations is computationally expensive as the
number of simple arrangements of n pseudolines Bn, grows exponentially in n.
Best upper bound for Bn is found by Felsner and Valtr [16] and best lower bound
of Bn is provided by Dumitrescu and Mandal [10]. (see also [14,18,21])

Ω(20.2053n2
) = Bn = O(20.6571n2

).

New Algorithms and Bounds for Halving Pseudolines 465

We propose an approach using partial allowable sequences described in Sect. 2.
An interesting problem in our approach is the following sorting problem.

Max-k Sorting Problem. Given a permutation π on [n] and an integer
1 ≤ k < n, sort π using transpositions to (n, n − 1, n − 2, . . . , 1) such that

(1) The number of k-transpositions is maximized, and
(2) Every pair (i, j) can transposed at most one time.

Our Results. In this paper, we show that Max-k sorting problem can be
solved in O(nkn) time for any k and in O(nk) time for k = 1, 2. We develop an
approach for optimizing allowable sequences and use it to find new bounds for
halving pseudolines for even n, n ≤ 100.

2 Transforming Allowable Sequences

Allowable sequences are very flexible and can be modified to increase h̃(Π). For
example, if the transpositions in permutations πi and πi+1 are non-overlapping,
say transpositions at positions j, j + 1 in πi and positions j′, j′ + 1 in πi+1 with
|j − j′| ≥ 2, then the transpositions in πi and in πi+1 can be exchanged.

We define a push operation as follows. Consider a permutation πj of an allow-
able sequence Π = (π0, π1, . . . , π(n2)). Consider two elements πj(i) = a and
πj(i + 1) = b. If a > b then the transposition of a and b is at some permutation
πj′ before πj , i.e. j′ < j. We can push the transposition of a and b down from the
j′th permutation to the jth permutation. Thus, a and b should be exchanged in
all permutations between these two permutations, see an example at Fig. 1. We
call this operation push-down.

1 2 3 4 1 2 3 4
j′ 1 3 2 4 2 1 3 4

3 1 2 4 2 1 4 3
3 1 4 2 2 4 1 3
3 4 1 2 4 2 1 3
4 3 1 2 4 2 3 1

j 4 3 2 1 4 3 2 1

Fig. 1. Pushing down the transposition of 2 and 3 from permutation πj′ to πj .

Now suppose that a < b and the transposition of a and b is at some per-
mutation πj′ after πj , i.e. j′ > j. We can push the transposition of a and b
up from the j′th permutation to the jth permutation. Thus, a and b should be
exchanged in all permutations between these two permutations. We called the
operation push-up.

466 S. Bereg and M. Haghpanah

Proposition 1. For any two allowable sequences Π,Π ′ of permutations on n
elements, there exists a sequence of push operations transforming Π into Π ′. It
holds even if the operations are restricted to push-down (or push-up) operations.

We describe another tool for transforming allowable sequences. Let Π =
(π0, π1, . . . , π(n2)) be an allowable sequence. A partial allowable sequence Πi,j is
a subsequence of consecutive permutations of Π, i.e. Πi,j = (πi, πi+1, . . . , πj).
One way to optimize h̃(Π) is to choose a partial allowable sequence Πi,j and
find another partial allowable sequence Π ′

i,j = (π′
i, π

′
i+1, . . . , π

′
j) such that

(1) π′
i = πi, π

′
j = πj , and

(2) the partial allowable sequence Πi,j can be transformed to Π ′
i,j using push

operations within Πi,j .

In many cases, the permutations of Πi,j have a common prefix and a common
suffix. By removing them and renumbering the elements of the permutations,
we reduce the size of the problem. Suppose that n is even. Then the halving
transpositions correspond to k-transpositions for some value of k in the reduced
problem. The elements of the reduced partial allowable sequence can be renum-
bered such that the last permutation is (m,m−1, . . . , 2, 1) for some m ≤ n. Then
the problem of optimizing the halving transpositions can be viewed as Max-k
sorting problem. In this paper, we mostly focus on this problem.

For odd n, the problem is to maximize the sum τ(k,Π) + τ(k + 1,Π). This
problem will be discussed in Sect. 7.

The output of Max-k sorting problem is a partial allowable sequence Πi,j =
(πi, πi+1, . . . , πj). It can be represented by a transcript which is a sequence of
integers k1, k2, . . . , kj−i such that πs, (1 ≤ s ≤ j − i) is obtained from πs−1 by a
ks-transposition.

3 General Max-k Sorting Problem

Let π a permutation on [n] and k be an integer with 1 ≤ k < n. We associate
a vector v(π) = (v1, v2, . . . , vn−1) with π where vi is the number of elements
π(1), π(2), . . . , π(i − 1) larger than π(i). Now, let i be the largest integer such
that vi ≥ k. Let m = π(i). Consider any sorting of π to the reverse of identity
using adjacent transpositions. Every transposition of m in the sorting will be at
positions j, j + 1 where j ≥ k. Thus, m will never be used in a k-transposition;
therefore, we can remove it from π. By renumbering the permutation elements,
we reduce π to a permutation on [n−1]. If vi < k for all i, we call the permutation
π k-bounded. By repeating the above process, a permutation π can be reduced
to a unique k-bounded permutation, say σ. We called v(σ) a k-vector of π.

Let λk(π) be the maximum number of k-transpositions in a sorting of per-
mutation π. The use of vectors of k-bounded permutations is motivated by the
following proposition.

New Algorithms and Bounds for Halving Pseudolines 467

Proposition 2. Let π1, and π2 be two permutation on [n]. If the k-vectors of
π1 and π2 are equal then λk(π1) = λk(π2).

Lemma 1. The number of k-bounded permutations on [n] is (k − 1)!kn−k+1.

Theorem 3. Max-k sorting problem can be solved in O(nk!kn−k) time.

Proof. First, we will explain the main idea of the algorithm. Then, we show
the improvement of the algorithm efficiency by changing the indexing process
of storing array. We employ dynamic programming and compute arrays Am for
m = 1, 2, . . . , n. An array Am stores the maximum number of k-transpositions
for all k-bounded permutations of size m. We use km entries in Am since the
number of k-bounded permutations of size m is (k − 1)!km−k+1 ≤ km. A k-
bounded permutation π of size m corresponds to Am[j] where j =

∑m
i=1 vik

i−1

and v = v(π).
For a given vector vπ, the corresponding k-bounded permutation π can be

computed in linear time following the proof of Proposition 1. Then the maximum
number of k-transpositions in a sorting of π can be computed as follows. Apply
one transposition and find the corresponding k-bounded permutation. Its length
is either m or m − 1. So, it is stored in Am or Am−1. There are at most m − 1
possible transposition for π. We find the maximum value for them in O(m) time.
The running time for computing each Am is O(m2km). Then the total running
time is

∑
m≤n cm2km = O(n2kn).

We modify the previous approach to improve both the running time and the
space. The size of each array Am can be reduced using Lemma 1. We change
indexing for k-bounded permutations and introduce a one-to-one map T from
set of k-bounded permutations of size m to {0, 1, . . . , (k − 1)!km−k+1 − 1} 1.
Let π be a k-bounded permutations of size m, and vπ = (v1, v2, . . . , vm) be the
associated vector with π. We define T b

a(π) =
∑b

i=a δk(i)vi where 1 ≤ a ≤ b ≤ m,
and T (π) = Tm

1 (π) where

δk(i) =

⎧
⎪⎨

⎪⎩

1 i = 1
δk(i − 1) · i 1 < i < k

δk(i − 1) · k i ≥ k.

The vector δk = (δk(1), . . . , δk(m) can be computed once at the beginning.
Given an index t = T (π) of a permutation π, π can be computed in O(m)
time. For a permutation π of size m, the values of Tn

t (π), and T t
1(π) for t ∈ [m]

can be computed in O(m) time. Let π′ be the permutation obtained from π
by applying one transposition, say p-transposition. The permutations π and π′

are different only at positions p and p + 1, the vector vπ′ may be different from
vπ only at positions p and p + 1. Specifically, if v = v(π) and u = v(π′), then
up = vp+1, up+1 = vp + 1 and ui = vi, i = 1, . . . , p − 1, p + 2, . . . , m.

1 This improves the space by a factor of kk−1/(k − 1)!. For example, if k = 5 this a
factor of 26.041.

468 S. Bereg and M. Haghpanah

If up+1 < k then permutation π′ is k-bounded and

T (π′) = T (π) + δk(p)vp+1 + δk(p + 1)(vp + 1) − δk(p)vp − δk(p + 1)vp+1.

Suppose that up+1 ≥ k. Then p ≥ k and π′(p + 1) will be deleted and the
elements of π′ will be renumbered. Then π′ corresponds to an entry of array
Am−1 and

T (π′) = T p
1 (π) + Tm

p+2(π)/k.

Notice that the computation of the final π′ takes O(m) time whereas T (π′) can
be computed in O(1) time. We avoid the computation of π′ in this case and use
Am−1[T (π′)] directly.

The runnig time for computing each Am is O(m(k − 1)!km−k+1). Then the
total running time is O(nk!kn−k). ��

4 Max-1 Sorting Problem

We show that Max-1 sorting problem can be solved by a greedy algorithm. Let
π be a permutation on [n]. The following algorithm has two steps. The first step
will maximize the number of 1-transposition and step 2 will complete the sorting
of the permutation.

Step 1. While π(1) �= n, pick the smallest i such that π(i) > π(1) and move
it to the first position, i.e. by swapping π(i) with π(i − 1), π(i − 2), . . . , π(1).

Step 2. While π(i) < π(i + 1) for some i, swap π(i) and π(i + 1).
To compute the maximum number of 1-transpositions for π, one can apply

Step 1 without doing swaps. This can be done by computing the longest increas-
ing sequence in π where start at first position.

Proposition 4. Max-1 sorting problem can be solved in linear time, i.e. the
maximum number of 1-transpositions to sort π can be found in O(n) time and
the corresponding transcript can be found in time O(n + I) where I is the size
of the transcript.

5 Max-2 Sorting Problem

First, we solve Max-2 sorting problem in a special case where the input permu-
tation is 1, 2, . . . , n. Define a function f : Z+ → Z+

f(n) =

{
3n/2 − 3, if n is even,
3(n − 1)/2 − 1, if n is odd.

Theorem 5. For any n ≥ 3, the maximum number of 2-transpositions in a
sorting of 1, 2, . . . , n is f(n).

New Algorithms and Bounds for Halving Pseudolines 469

Proof. We omit the base case M(3) ≤ 2 and M(4) ≤ 3 due to the lack of space.

Inductive step. First, we show that, for any n ≥ 3, M(n) ≤ f(n) implies M(n +
2) ≤ f(n + 2).

Let Π be an allowable sequence of size n + 2. We transform it by pushing
operators as follows. Consider elements n, n + 1, and n + 2. There are three
transpositions in Π between these elements, and at most two of them are 2-
transpositions. We push them down in the following order: transposition of n
and n + 1, transposition of n and n + 2, and transposition of n + 1 and n + 2.
The number of 2-transpositions in Π will not decrease. This is shown in Fig. 2
(the last four lines).

Now, n + 2 is in third position, and it was never swapped to this position
before. Therefore we can push-down the transpositions of n + 2 with n − 1, n −
2, . . . , 1, see Fig. 2. Similarly, we can push-down the transpositions of n + 1 with
n − 1, n − 2, . . . , 1 as shown in Fig. 2. Let Π ′ be the allowable sequence of the
remaining permutations after removing n + 1 and n + 2 from them. Let t and t′

be the number of 2-transpositions in Π and Π ′, respectively. Then t ≤ t′ + 3.
By induction hypothesis, t′ ≤ f(n). Then t ≤ f(n) + 3 = f(n + 2).

1 2 3 4 · · · n n+ 1 n+ 2
· · · · · ·
n n− 1 n− 2 n− 3 · · · 1 n+ 1 n+ 2
n n− 1 n− 2 n− 3 · · · n+ 1 1 n+ 2

n n− 1 n− 2 n+ 1 · · · 2 1 n+ 2
n n− 1 n+ 1 n− 2 · · · 2 1 n+ 2
n n+ 1 n− 1 n− 2 · · · 2 1 n+ 2
n n+ 1 n− 1 n− 2 · · · 2 n+ 2 1
n n+ 1 n− 1 n− 2 · · · n+ 2 2 1

n n+ 1 n− 1 n+ 2 · · · 3 2 1
n n+ 1 n+ 2 n− 1 · · · 3 2 1
n n+ 2 n+ 1 n− 1 · · · 3 2 1

n+ 2 n n+ 1 n− 1 · · · 3 2 1
n+ 2 n+ 1 n n− 1 · · · 3 2 1

Fig. 2. An allowable sequence of size n + 2.

The above argument can be used to construct an allowable sequence with
f(n) 2-transpositions for any n ≥ 5, see Fig. 3 for an example. ��

We show how to solve Max-2 sorting problem for a given permutation π
on n elements. As in Sect. 3, consider the vector vπ = (v1, v2, . . . , vn−1) where
vi is the number of elements π(1), π(2), . . . , π(i − 1) larger than π(i). First, we
observe that an element π(i) can be removed from π if vi ≥ 2. We remove all
elements π(i) from π with π if vi ≥ 2. Without loss of generality, we assume that

470 S. Bereg and M. Haghpanah

1

2

3

4

3

2

1

4

5

5

Fig. 3. The inductive step. The wiring diagrams for n = 5 constructed from the wiring
diagrams for n = 3. The corresponding transcript of it is (2, 1, 2, 3, 2, 4, 3, 2, 1, 2).

all vi < 2 in the vector v for π. Then vector v is simply a binary sequence. We
define an i-block, i = 0, 1, as a maximal subsequence of v of consecutive i. Then
vector v is a sequence of alternating blocks

v = B0
1B

1
1B

0
2B

1
2 . . . B0

kB1
k, (2)

where Bi
j is an i-block and block B1

k may be not present. Note that the first block
of vector v must be a 0-block since v1 = 0. Thus, the first block in (2) is B0

1 .
We employ dynamic programming and compute mi

j , i = 0, 1, j = 1, 2, . . . , k, the
maximum number of 2-transpositions in a sorting of π(1), π(2), . . . , π(l) where
l = |B0

1 | + |B1
1 | + |B0

2 | + |B1
2 | + · · · + |Bi

j |. Initially m0
1 = f(|B0

1 |) if |B0
1 | ≥ 3;

otherwise m0
1 = 0. If |B0

1 | = 1 then m1
1 = |B1

1 | − 1; otherwise m1
1 = m0

j + |B1
1 |.

To make a recursive formula we consider a pair (j′, j) such that 1 ≤ j′ < j ≤ k.
Let α be the permutation obtained from sequence π(1), π(2), . . . , π(l) by

(i) sorting first |B0
1 | + |B1

1 | + · · · + |B1
j′ | elements, and then

(ii) deleting elements of π corresponding to blocks B1
j′+1, B

1
j′+2, . . . , B

1
j−1.

Let g(j′, j) be the maximum number of 2-transpositions in a sorting of permu-
tation α. Then,

m0
j = max(f(lj), max

1≤j′<j
(m1

j′ + g(j′, j))), (3)

m1
j =

{
m0

j + |B1
j |, if j > 1 or (j = 1 and |B0

1 | > 1)
|B1

j | − 1, otherwise.
(4)

where lj = |B0
1 | + |B0

2 | + · · · + |B0
j |.

Computing g(j′, j). Let a be the total length of blocks B0
1 , B

1
1 , . . . , B

1
j′ and let b be

the total length of blocks B0
j′+1, B

0
j′+2, . . . , B

0
j . Then vector α (after relabeling)

is
α = a, a − 1, . . . , 1, a + 1, a + 2, . . . , a + b

and g(j′, j) can be computed as

g(j′, j) =

{
3b/2, if b is even,

3(b − 1)/2 + 1, if b is odd.
(5)

New Algorithms and Bounds for Halving Pseudolines 471

This can be shown similar to the proof of Theorem 5. In the base case, b = 1, 2
and α can be sorted using one and three 2-transpositions, respectively. The
inductive case is similar to Fig. 3 and three 2-transpositions can be added.

The maximum number of 2-transpositions in a sorting of π is m0
k or m1

k if
block B1

k exists. The corresponding transcript can be computed as follows. First,
we modify the dynamic program and, for each j = 1, 2, . . . , k, we store the value
of j′ that is used in computing m0

j . If m0
j is computed as f(lj) in Eq. (3) then

we store j′ = −1. We denote by tij the transcript corresponding to mi
j , i.e. the

transcript for sorting π(1), π(2), . . . , π(l) where l = |B0
1 |+|B1

1 |+|B0
2 |+|B1

2 |+· · ·+
|Bi

j |. Then transcript t1j is the transcript t0j followed by inserting the elements
of π corresponding to B1

j as in the insertion sort.
The transcript t0j can be computed as follows. If m0

j = f(lj) then the tran-
script t0j is obtained by using Theorem 5, see Fig. 3 for an example. Suppose that
m0

j = m1
j′ + g(j′, j) for some 1 ≤ j′ < j. Then the transcript t0j is the transcript

t1j′ followed by the transcript obtained using the proof of Eq. 5.

Theorem 6. For any permutation π on [n], n ≥ 3, a transcript maximizing
Max-2 sorting problem can be solved in O(n2) time.

6 Improving Lower Bounds for h̃(n)

In this section we use algorithms developed in previous sections to improve lower
bounds for h̃(n) for even n. Since n is even, we use allowable sequences maximiz-
ing the number of n

2 -transpositions. We can directly apply the Max-k sorting
algorithm from Theorem 3 for k = n

2 but this is infeasible for large n. Instead,
we devise a heuristic approach to the problem using a local optimization by

(i) creating a block and an allowable sequence and
(ii) solving the corresponding Max-k sorting problem for small k.

Let Π = (π0, π1, . . . , π(n2)) be an allowable sequence. We define a (l, r)-
window or simply a window for a permutation πi of Π as the sequence
πi(l), πi(l + 1), . . . , πi(r), (see Fig. 4(a)). In general, we define a block2 of Π
as a sequence of (l, r)-windows in consecutive permutations πi, πi+1, . . . , πj of Π
such that each window of the block has the same set of elements and every two
consecutive windows are different, see Fig. 4 for examples. For a permutation in
an allowable sequence, we call the n

2 -th position of the permutation, the halving
position.

Let B be a block in Π which consists of (l, r)-windows of length r−l+1 = t on
permutations πi, πi+1, . . . , πj . Suppose that there is at least one l-transposition
and at least one (r − 1)-transposition in the block. We also assume that block B
overlaps with the halving position in Π. Consider the partial allowable sequence
Πi,j . Note that the optimization of this partial allowable sequence (as described
in Sect. 2) corresponds to Max-k sorting problem derived from the block B as
2 The blocks in this section are different from alternating blocks used in the proof of

Theorem 6.

472 S. Bereg and M. Haghpanah

1 2 3 4 5 6
1 2 3 5 4 6
1 3 2 5 4 6
1 3 5 2 4 6
1 5 3 2 4 6
1 5 3 2 6 4
1 5 3 6 2 4
1 5 3 6 4 2
1 5 6 3 4 2
1 6 5 3 4 2
1 6 5 4 3 2

1 2 3 4 5 6
1 2 3 5 4 6
1 3 2 5 4 6
1 3 5 2 4 6
1 3 5 2 6 4
1 3 5 6 2 4
1 3 5 6 4 2
1 3 6 5 4 2
1 6 3 5 4 2
1 6 5 3 4 2
1 6 5 4 3 2

1 2 3 4 5 6
1 3 2 4 5 6
1 3 4 2 5 6
1 3 4 2 6 5
1 3 4 6 2 5
1 3 4 6 5 2
1 3 6 4 5 2
1 6 3 4 5 2
1 6 3 5 4 2
1 6 5 3 4 2
1 6 5 4 3 2

1 2 3 4 5 6
1 3 2 4 5 6
1 3 4 2 5 6
1 3 4 2 6 5
1 3 4 6 2 5
1 3 4 6 5 2
1 3 6 4 5 2
1 6 3 4 5 2
1 6 4 3 5 2
1 6 4 5 3 2
1 6 5 4 3 2

1 2 3 4 5 6
1 2 3 5 4 6
1 3 2 5 4 6
1 3 5 2 4 6
1 3 5 2 6 4
1 3 5 6 2 4
1 3 5 6 4 2
1 3 6 5 4 2
1 6 3 5 4 2
1 6 5 3 4 2
1 6 5 4 3 2

(a) (b) (c)

(d) (e)

Fig. 4. (a) Initial window. (b–d) Extension of the window using push-up/push-down.
(e) Applying the Max-1 sorting algorithm.

follows. There is a bijection α : {πj(l), πj(l + 1), . . . , πj(r)} → [t] such that
α(πj(x)) = t − (x − l), l ≤ x ≤ r. This map transforms the last window of B
into sequence (t, t − 1, t − 2, . . . , 1). Then the permutation for Max-k sorting
problem is α(πi(l)), α(πi(l + 1)), . . . , α(πi(r)) and the value of k corresponds to
the halving position in the block. The solution of an algorithm for Max-k sorting
problem can be used to increase τ(n

2 ,Π) if the block in Π is replaced by α−1(Π ′)
where Π ′ is the output of the algorithm (a sequence of permutations).

A block B that allows to increase τ(n
2 ,Π) may not exist in the allowable

sequence Π. We create new blocks using push operations as follows. First, we
choose a (l, r)-window in a permutation of Π such that it includes the halving
position We consider it as the initial block B0. To construct a new block Bi, i > 0,
we consider the permutation πj containing the lower window wj of Bi−1. Take
two adjacent elements πj(t) and πj(t + 1) in wj such that πj(t) < πj(t + 1)
and the corresponding transposition of πj(t) and πj(t + 1) in Π is not a n

2 -
transposition. Apply the push operation (push-up) to this transposition such
that it is a transposition between πj and πj+1. Then the block Bi is the extension
of Bi−1 using the (l, r)-window in permutation πj+1. Note that this extension
preserves the block property that every two consecutive windows are different.

New Algorithms and Bounds for Halving Pseudolines 473

The same process can be done to extend the block upward by pushing down
transpositions (see Fig. 4(b)).

Let B be the block constructed by the above procedure. The block contains
the halving position, say at its k-th position. By applying a Max-k sorting
algorithm for block B we may increase τ(k,B). This will increase τ(n

2 ,Π), see
Fig. 4(e)) for an example. We run this algorithm all even n up to 100 for k = 1.
The running time for each n is between two hours and two days. The results
are shown in Table 1. Many of them improve known lower bounds for h̃. The
transcripts of these allowable sequences are available at http://www.utdallas.
edu/∼besp/soft/pseudo/halving/even.zip.

7 Future Work

In this paper, we used the algorithm discussed in Sect. 6 combined with the Max-
1 sorting algorithm from Sect. 4 on allowable sequences of even length to achieve
the results shown in Table 1. For odd n, the problem of maximizing h̃(Π) for an

Table 1. Bounds for the ˜h(n). LB/UB denotes the current lower bound/upper bound

for ˜h(n). The bounds in bold are obtained in this paper. Prev denotes the previous
lower bound for h(n) if they are improved in this paper. The numbers in this column
are from [5,24].

n LB UB Prev n LB UB Prev

28 63 64 - 66 202 236 197

30 69 72 - 68 207 246 203

32 74 79 - 70 226 257 211

34 81 86 79 72 229 268 211

36 88 94 84 74 237 279 228

38 97 102 94 76 253 291 237

40 104 110 103 78 262 303 242

42 111 119 - 80 265 315 250

44 117 127 112 82 268 327 261

46 126 136 122 84 282 339 264

48 133 146 129 86 292 351 276

50 141 155 139 88 297 363 282

52 146 164 143 90 312 376 290

54 153 174 152 92 317 388 300

56 163 183 158 94 326 401 309

58 169 193 165 96 345 414 308

60 177 204 172 98 338 427 320

62 187 214 180 100 366 440 328

64 195 225 187

http://www.utdallas.edu/~besp/soft/pseudo/halving/even.zip
http://www.utdallas.edu/~besp/soft/pseudo/halving/even.zip

474 S. Bereg and M. Haghpanah

allowable sequence Π uses two halving positions. A heuristic solution is to use
a Max-k sorting algorithm on a block for each of halving positions separately.
Another approach is to provide an algorithm for the problem of maximizing total
number of k-transpositions and (k+1)-transpositions in sorting of a permutation.
We will explore this approach for odd values of n in the future.

Every allowable sequence from Table 1 corresponds to an arrangement of
pseudolines. If an arrangement of n pseudolines is stretchable, i.e., is isomorphic
to an arrangement of n straight lines, then one can find a set of n points in the
plane providing a new bound for h(n). The problem of determining whether a
pseudoline arrangement is stretchable is NP-hard, see [22,23,25]. It would be
interesting to explore the stretchability of the pseudoline arrangements from
Table 1, perhaps using the heuristic method by Bokowski [8].

References

1. Ábrego, B.M., Balogh, J., Fernández-Merchant, S., Leaños, J., Salazar, G.: An
extended lower bound on the number of (≤ k)-edges to generalized configurations
of points and the pseudolinear crossing number of Kn. J. Comb. Theory Ser. A
115(7), 1257–1264 (2008)

2. Ábrego, B.M., Cetina, M., Fernández-Merchant, S., Leaños, J., Salazar, G.: On ≤
k-edges, crossings, and halving lines of geometric drawings of kn. Discrete Comput.
Geom. 48(1), 192–215 (2012)

3. Ábrego, B.M., Fernández-Merchant, S.: A lower bound for the rectilinear crossing
number. Graphs Combin. 21(3), 293–300 (2005)

4. Ábrego, B.M., Fernández-Merchant, S., Leaños, J., Salazar, G.: The maximum
number of halving lines and the rectilinear crossing number of kn for n ≤ 27.
Electron. Notes Discrete Math. 30, 261–266 (2008)

5. Aichholzer, O.: On the rectilinear crossing number. http://www.ist.tugraz.at/staff/
aichholzer/research/rp/triangulations/crossing/

6. Alon, N., Györi, E.: The number of small semispaces of a finite set of points in the
plane. J. Comb. Theory Ser. A 41(1), 154–157 (1986)

7. Beygelzimer, A., Radziszowski, S.: On halving line arrangements. Discrete Math.
257(2–3), 267–283 (2002)

8. Bokowski, J.: On heuristic methods for finding realizations of surfaces. In: Bobenko,
A.I., Sullivan, J.M., Schröder, P., Ziegler, G.M. (eds.) Discrete Differential Geom-
etry. Oberwolfach Seminars, vol. 38, pp. 255–260. Springer, Basel (2008). https://
doi.org/10.1007/978-3-7643-8621-4 13

9. Cetina, M., Hernández-Vélez, C., Leaños, J., Villalobos, C.: Point sets that min-
imize (≤ k)-edges, 3-decomposable drawings, and the rectilinear crossing number
of K30. Discrete Math. 311(16), 1646–1657 (2011)

10. Dumitrescu, A., Mandal, R.: New lower bounds for the number of pseudoline
arrangements. In: Proceedings of 13th Symposium on Discrete Algorithms, pp.
410–425 (2019)

11. Edelsbrunner, H., Hasan, N., Seidel, R., Shen, X.J.: Circles through two points
that always enclose many points. Geometriae Dedicata 32, 1–12 (1989)

12. Eppstein, D.: Sets of points with many halving lines. Technical Report ICS-TR92-
86, University of California, Irvine, Department of Information and Computer Sci-
ence, August 1992

http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
https://doi.org/10.1007/978-3-7643-8621-4_13
https://doi.org/10.1007/978-3-7643-8621-4_13

New Algorithms and Bounds for Halving Pseudolines 475

13. Erdős, P., Lovász, L., Simmons, A., Straus, E.: Dissection graphs of planar point
sets. In: Srivastava, J.N. (ed.) A Survey of Combinatorial Theory, pp. 139–154.
North-Holland, Amsterdam (1973)

14. Felsner, S.: On the number of arrangements of pseudolines. Discrete Comput.
Geom. 18, 257–267 (1997)

15. Felsner, S., Goodman, J.E.: Pseudoline arrangements. In: Handbook of Discrete
and Computational Geometry, pp. 125–157. Chapman and Hall/CRC (2017)

16. Felsner, S., Valtr, P.: Coding and counting arrangements of pseudolines. Discrete
Comput. Geom. 46(3), 405–416 (2011)

17. Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of
arrangements. J. Comb. Theory Ser. A 37(3), 257–293 (1984)

18. Knuth, D.E. (ed.): Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55611-7

19. Lovász, L.: On the number of halving lines. Annal. Univ. Scie. Budapest. de
Rolando Eötvös Nominatae, Sectio Math. 14, 107–108 (1971)

20. Lovász, L., Vesztergombi, K., Wagner, U., Welzl, E.: Convex quadrilaterals and
k-sets. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs, pp. 139–148.
Contemporary Mathematics, American Mathematical Society (2004)

21. Matoušek, J.: Lectures on Discrete Geometry, vol. 212. Springer-Verlag, New York
(2002). https://doi.org/10.1007/978-1-4613-0039-7

22. Mnëv, N.: On manifolds of combinatorial types of projective configurations and
convex polyhedra. Soviet Math. Doklady 32, 335–337 (1985)

23. Mnev, N.E.: The universality theorems on the classification problem of configura-
tion varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.)
Topology and Geometry — Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer,
Heidelberg (1988). https://doi.org/10.1007/BFb0082792

24. Rodrigo, J., López, M.D.: An improvement of the lower bound on the maximum
number of halving lines in planar sets with 32 points. Electr. Notes in Discr. Math.
68, 305–310 (2018)

25. Shor, P.: Stretchability of pseudolines is NP-hard. Applied Geometry and Discrete
Mathematics-The Victor Klee Festschrift (1991)

https://doi.org/10.1007/3-540-55611-7
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/BFb0082792

Algorithms for Radon Partitions
with Tolerance

Sergey Bereg(B) and Mohammadreza Haghpanah

University of Texas at Dallas, Richardson, TX 75080, USA
{besp,Mohammadreza.Haghpanah}@utdallas.edu

Abstract. Let P be a set n points in a d-dimensional space. Tverberg
theorem says that, if n is at least (k − 1)(d + 1), then P can be par-
titioned into k sets whose convex hulls intersect. Partitions with this
property are called Tverberg partitions. A partition has tolerance t if
the partition remains a Tverberg partition after removal of any set of t
points from P . A tolerant Tverberg partition exists in any dimensions
provided that n is sufficiently large. Let N(d, k, t) be the smallest value
of n such that tolerant Tverberg partitions exist for any set of n points
in R

d. Only few exact values of N(d, k, t) are known.
In this paper, we study the problem of finding Radon partitions (Tver-

berg partitions for k = 2) for a given set of points. We develop several
algorithms and found new lower bounds for N(d, 2, t).

Keywords: Tverberg’s theorem · Linear classifiers · Tolerance

1 Introduction

Tverberg’s theorem and Tverberg partitions are of crucial importance in combi-
natorial convexity and stands on the intersection of combinatorics, topology and
linear algebra. Tverberg partitions with tolerance showed importance in these
fields, years after the main theorem.

Theorem 1 (Tverberg [32]). For any set P ⊂ R
d of at least (k−1)(d+1)+1

points, there exists a partition of P ⊂ R
d into k sets P1, P2, . . . , Pk such that

their convex hulls intersect

k⋂

i=1

conv(Pi) �= ∅. (1)

This is a generalization of Radon’s theorem from 1921 [26] which provides a
partition of at least d+1 points for k = 2. We call a partition satisfying Equation
(1) a Tverberg partition. If k = 2, we call it a Radon partition.

The computational complexity of finding a Tverberg partition according to
Theorem 1 is not known. Teng [31] showed that testing whether a given point
is in the intersection of convex hulls of a partition is coNP-complete. On the
c© Springer Nature Switzerland AG 2020
M. Changat and S. Das (Eds.): CALDAM 2020, LNCS 12016, pp. 476–487, 2020.
https://doi.org/10.1007/978-3-030-39219-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39219-2_38&domain=pdf
https://doi.org/10.1007/978-3-030-39219-2_38

Algorithms for Radon Partitions with Tolerance 477

other hand, such a point can be computed in nd2
time if d is fixed [2]. Mulzer

and Werner [24] found an approximation algorithm for Tverberg partitions with
linear running time.

A Tverberg partition has tolerance t if after removing t points from P it still
remains Tverberg partition.

Definition 2. (t-tolerant Tverberg partition) Let P be set of point in R
d. Π =

{P1, P2, . . . , Pk} be a partition of size k of P . A partition Π = {P1, P2, . . . , Pk}
of P is called t-tolerant if for every C ⊂ P with |C| ≤ t

k⋂

i=1

conv(Pi \ C) �= ∅.

In 1972, Larman [21] proved that every set of size 2d + 3 admits a 1-tolerant
Tverberg partition into two sets, i.e., a 1-tolerant Radon partition. Garćıa-Coĺın
[13] proved the existence of a Radon partition for any tolerance t, see also [14].
Soberon et al. [30] proved if |P | > (t + 1)(k − 1)(d + 1) then P has a t-tolerant
Tverberg partition. Examples of a Tverberg partition (with tolerance 0) and
tolerant Tverberg partitions are shown in Fig. 1.

Fig. 1. (a) A Tverberg partition for k = 3 (the intersection of 3 convex hulls is shaded).
Points from the same set of the partition have the same shape (disk, circle or square).
(b) A 1-tolerant Tverberg partition for k = 2. (c) A 2-tolerant Tverberg partition for
k = 2.

The problem of finding Tverberg partitions with tolerance seems more dif-
ficult. For example, Tverberg’s theorem provides a tight bound for the number
of points. On the other hand, only a few tight bounds are known for Tverberg
partitions with tolerance. Let N(d, k, t) be minimum number such that every set
of points P ⊂ R

d with |P | ≥ N(d, k, t) has a t-tolerant Tverberg partition. For
fixed t and d, Garcia et al. showed [15], N(d, k, t) = kt + o(t) using a general-
ization of the Erdos-Szekeres theorem for cyclic polytopes in R

d. Soberon [29]
improved the bound to N(d, k, t) = kt + O(

√
t). Mulzer and Stein [23] provided

an algorithm for finding a t-tolerant Tverberg partition of size k for a set P ⊂ R
d

in O(2d−1dkt+kt log t) time. The algorithm by Mulzer and Stein [23] for finding

478 S. Bereg and M. Haghpanah

a t-tolerant Tverberg partition uses large number of points. A natural question
is to find algorithms when n is relatively small. In this paper, we consider the
following problems.

Problem 1. (ComputingTolerantPartition)

Given a finite set P ⊂ R
d and an integer t.

Compute a t-tolerant Tverberg partition for P if it exists.

Our motivation for this problem is to construct sets of points in R
d with large

tolerance t to find new lower bounds for N(d, t, k) for some small values of d and
t. One approach to this problem is to check all possible partitions and solve the
following problem for them. This is possible in practice only for relatively small
n, k, and d.

Problem 2. (ComputingMaxTolerance)

Given a finite set P ⊂ R
d, a Tverberg partition Π = {P1, P2, . . . , Pk} of P .

Compute the largest t such that Π is t-tolerant Tverberg partition.

For a Tverberg partition Π, we say that the tolerance of Π is t and write
τ(Π) = t if partition Π is t-tolerant but not (t + 1)-tolerant. Thus, the problem
ComputingMaxTolerance is to compute the tolerance of a Tverberg parti-
tion. The decision problem of ComputingMaxTolerance has been studied
by Mulzer and Stein [23].

Problem 3. (TestingTolerantTverberg)

Given a finite set P ⊂ R
d, a partition Π = {P1, P2, . . . , Pk} of P , and an

integer t ≥ 0.
Decide whether Π is a t-tolerant Tverberg partition of P .

Mulzer and Stein [23] proved that TestingTolerantTverberg is coNP-
complete by a reduction from the problem of testing a centerpoint. In fact, their
proof is for k = 2. We call the problem TestingTolerantTverberg in this
case TestingTolerantRadon.

In this paper we study algorithms for problems ComputingTolerantPar-
tition, ComputingMaxTolerance and TestingTolerantTverberg aim-
ing to compute point configurations in d dimensions with high tolerance. These
problems are hard even for k = 2, i.e., for Radon Partitions. In this paper we
focus on Radon Partitions only. We use M(d, t) = N(d, 2, t) for simplicity. They
would provide new lower bounds for M(d, t). We are not aware of any program
supporting lower bounds for M(d, t). Our results can be summarized as follows.

1. We found that the problem ComputingMaxTolerance for k = 2 (Radon
partitions) is related to linear classifiers with outliers which is a well-known
classification problem in machine learning and statistics. The literature on
linear classifiers is vast, see for example [3,9,16,18,25,27,33]. This classifi-
cation problem is also known as the weak separation problem [5,10,12,19,22]
and linear programming with violations [7]. In fact, our Theorem 3 states that
two optimization problems are equivalent (ComputingMaxTolerance and
optimal weak separation problem).

Algorithms for Radon Partitions with Tolerance 479

2. The relation between ComputingTolerantPartition and the classifica-
tion problem can be used to solve ComputingTolerantPartition more
efficiently. We provide three algorithms for the problem ComputingToler-
antPartition. The first algorithm is simple and easy to implement. The
second algorithm improved testing separable partition (Step 3) in the first
algorithm by using BFS and hamming distances. As a result, the second
algorithm is faster. To provide a more memory efficient algorithm, we used
gray code in the last algorithm.

3. Using the algorithms for ComputingRadonPartition, we established new
lower bounds on M(d, t). For this purpose, we design algorithms for generating
sets of points and improving them. The bounds computed by the program are
shown in Table 1 (different algorithms for different pairs of d and t). Because
of the efficiency of these algorithms, we could solve ComputingRadonPar-
tition for set of points as large as 26.

Following [5,19,20], in this paper we assume that the points of set P are in
general position. In Sect. 2 we show that Radon partitions and linear classifiers
are related. In Sect. 3 we discuss algorithms for Radon partitions. In Section 4
we discuss experiments and lower bounds for M(d, t).

2 Radon Partitions and Linear Classifiers

In this section we show a relation between the problem ComputingMaxTol-
erance for two sets (i.e. the problem of computing the maximum tolerance of
a Radon partition in d dimensions) and linear classifiers with outliers which is
a well-known classification problem in machine learning and statistics, see for
example [3,25,27,33]. Outlier detection algorithms are often computationally
intensive [27] (Fig. 2).

Fig. 2. Example of a classification problem in the plane that can be solved with a
linear classifier and few outliers.

480 S. Bereg and M. Haghpanah

This classification problem is also known as the weak separation problem
[5,10,12,19,22] and can be defined as follows. Let P be a bicolored set of points
in R

d, i.e. P = R ∪ B where R be a set red points in R
d and B is a set blue

points. Let h be a hyperplane a1x1 · · ·+adxd = a0. Let h+ be the halfspace that
contains the points satisfying a1x1 · · · + adxd ≤ a0 and let h− be the halfspace
that contains the points satisfying a1x1 · · · + adxd ≥ a0. If h were a separator
(or classifier) of P , we would have R ⊂ h+ and B ⊂ h−. A red point x is an
outlier, if x /∈ h+. A blue point x is an outlier, if x /∈ h−. The weak separation
problem is to find a hyperplane h minimizing the number of misclassified points
(outliers)

mis(h) = |R \ h+| + |B \ h−|.
The weak separation problem in the plane is well studied. Gajentaam and

Overmars [12] showed the weak separation problem is 3Sum-hard by reducing
the point covering problem to it. An algorithm with O(n2) time complexity is
provided for the weak separation problem by Houle [19]. Cole et al. [8] pre-
sented an O(Nk(n) log2 k + n log n) time algorithm to compute the k-hull of n
points in the plane where Nk(n) is the maximum number of k-sets for a set
of n points. This algorithm can be used to compute the space of all classifiers
misclassifying up to k points in the plane in O(nt log2 t+n log n) time [5]. Thus,
a t-weak separator can be computed within the same time. A better algorithm
with O(nt log t + n log n) time have been found by Everett et al. [10]. In higher
dimensions, Aronov et al. [5] proved that the weak separation problem can be
solved using duality in O(nd) time.

The connection of tolerant Radon partitions and the weak separations is
estableshed in the next theorem.

Theorem 3. Let Π = {P1, P2} be a Radon partition of a set P ⊂ R
d (i.e.

conv(P1) ∩ conv(P2) �= ∅). The tolerance of partition Π is t if and only if the
number of outliers in an optimal solution for the weak separation problem for P1

and P2 is t + 1.

Theorem 3 shows the equivalence between the weak separation problem and
the problem ComputingMaxTolerance for k = 2, see Fig. 3 for an example.

Proof. Recall that Π is a t-tolerant Radon partition if and only if for any set
C ⊂ P of at most t points

conv(P1 \ C) ∩ conv(P2 \ C) �= ∅.

Suppose that Π is a t-tolerant Radon partition. We show that the number of
outliers in an optimal solution for the weak separation problem for P1 and P2 is
at least t + 1. The proof is by contradiction. Suppose that there is a hyperplane
h such that the number of misclassified points mis(h) = |P1 \ h+| + |P2 \ h−| is
at most t. Let Ch be the set of points misclassified by h, i.e. Ch = (P1 \ h+) ∪
(P2 \ h−). Then P1 \ Ch ⊂ h+ and P2 \ Ch ⊂ h−. Therefore

conv(P1 \ Ch) ∩ conv(P2 \ Ch) ⊂ h.

Algorithms for Radon Partitions with Tolerance 481

Fig. 3. A linear classifier with 2 outliers (and maximum margin) corresponding to the
1-tolerant Radon partition in Fig. 1(b).

The hyperlane h contains at most d points of P1 ∪ P2 (due to general position).
Then

conv(P1 ∩ h) ∩ conv(P2 ∩ h) = ∅.

Therefore

conv(P1 \ Ch) ∩ conv(P2 \ Ch) = conv(P1 ∩ h) ∩ conv(P2 ∩ h) = ∅.

and Π is not t-tolerant. Contradiction.
Now, suppose that Π is not a (t+1)-tolerant Radon partition. We show that

the number of outliers in an optimal solution for the weak separation problem
for P1 and P2 is at most t + 1. There is a set C of size at most t + 1 such that

conv(P1 \ C) ∩ conv(P2 \ C) = ∅.

By Minkowski hyperplane separation theorem [6, Section 2.5.1]1 there is a
separating hyperplane h for conv(P1\C) and conv(P2\C), i.e., conv(P1\C) ⊂ h+

and conv(P2 \ C) ⊂ h−. Then, the number of misclassified points mis(h) =
|P1 \ h+| + |P2 \ h−| is at most |C| ≤ t + 1.

Therefore, if the tolerance of partition Π is t, then the number of outliers in
an optimal solution for the weak separation problem for P1 and P2 is t + 1. The
converse is true and the theorem follows. ��

3 Algorithms for Tolerant Radon Partitions

In this section, we design several algorithms for the problem ComputingToler-
antPartition in order to find new lower bounds for tolerant Radon partitions.
In this section, we assume that given points are in general position. The first
idea is based on the connection of the problem ComputingMaxTolerance for

1 See also https://en.wikipedia.org/wiki/Hyperplane separation theorem.

https://en.wikipedia.org/wiki/Hyperplane_separation_theorem

482 S. Bereg and M. Haghpanah

k = 2 to linear classifiers with outliers that we discussed in the previous section.
We can iterate through all possible partitions of given set into two sets and check
if the partition is t-tolerant or not (Problem TestingTolerantRadon). The
test can be done using an algorithm for weak separation with O(nt log t+n log n)
time for the plane [10] and O(nd) time for higher dimensions. This approach has
O(2nTd(n)) running time complexity where Td(n) is the time complexity of the
problem TestingTolerantRadon.

Since the problem is computationally difficult, all our algorithms have expo-
nential running time and can be used only for bounded n, t and d. However,
the algorithms have different running time and space bounds. This allows us to
obtain lower bounds for n up to 27 in Sect. 4. We assume in this section that
t = O(1) is a constant.

The above approach uses TestingTolerantRadon with O(nd) running
time which is not easy to implement. Our first algorithm is simpler. The algo-
rithm uses separable partitions. A partition of P into k subsets is seprable [20]
if their convex hulls are pair-wise disjoint. The number of separable partitions
for k = 2 is well-known Harding number H(n, d) [17]. Harding proved

H(n, d) =
d∑

j=0

(
n − 1

j

)
= Θ(nd).

Hwang and Rothblum [20] provided a method for enumerating separable 2-
partitions in O(nH(n, d)) time. It is based on the following recursive formula

H(n, d) = H(n − 1, d) + H(n − 1, d − 1).

Algorithm 1

1. Let P = {p1, p2, . . . , pn}. Construct S, the set of all separable partitions
using the enumeration from [20]. For any separable partition P = P1 ∪P2, we
assume that p1 ∈ P1 and we encode the partition with a binary code b1 . . . bn
where bi = j − 1 if pi ∈ Pj . Note hat |S| = H(n, d).

2. Construct P, the set of all partitions of P = P1 ∪ P2 with p1 ∈ P1. Encode
the partitions as in Step 1.

3. For every binary code b = (b1, b2, . . . , bn) ∈ S and every C ⊂ [n] with |C| ≤ t,
we make a b′ by flipping bi for all i ∈ C and remove b′ from P.

4. Return any remaining partition in P as tolerant partition of points P .

Running Time Analysis. The partitions of S and their correspondent binary
codes can be computed in O(nd+1). The number of all binary codes in P is
2n−1, and creating each of them takes O(n). Therefore, Step (2) takes O(n2n)
time. Step (3) searches |S|nt = O(nd+t) binary codes in P. Thus, Step (3) takes
O(nd+t+1) time. Each binary code contains n bits. The total time for Algorithm
1 is O(n2n + nd+t+1).

Correctness. We prove the following for the correctness of the algorithm.

Algorithms for Radon Partitions with Tolerance 483

(1) Every binary code deleted from S is not t-tolerant,
(2) Every binary code remained in S is t-tolerant.

Clearly, every binary code b deleted from P can be transformed into a binary
code in S by flipping at most t bits. Since a binary code in S corresponds to a
separable partition, the partition of b is not t-tolerant.

For the second part, suppose that a binary code b in P corresponds to a
partition that is not t-tolerant. Then, it can be transformed to a separable code
by flipping at most t bits. Therefore, b must be deleted from P.

Algorithm 1 can be improved using the fact that it tries to delete the same
binary code a multiple numbers of times. The second algorithm avoids it.

Algorithm 2

1. Construct S and P as in Algorithm 1.
2. Let S0 = S and remove S0 element form P. For each i ∈ [t] compute Si as

follows.
2a. For each b ∈ Si−1 and each position j ∈ [n], we change j-th position of b

and call it b′. Then, if b′ is in P, we remove it from P and add it to Si.
3. Return remaining elements in P as tolerant partition of points P .

We show that Algorithm 2 is correct. First if binary code b′ is removed from
P in Step (2a) there is a binary code b in S such that hamming distance between
b′ and b is at most t. So the partition corresponding to b′ is not t-tolerant.

It remains to show that every binary code b ∈ P corresponding to a partition
Π with τ(Π) < t is removed from P. Let t1 = τ(Π). There exists b′′ ∈ S such
that hamming distance between b and b′′ is t1. Algorithm 2 will change t1 bits
in b′′ in Step (2a), and create binary code b. Then binary code b will be removed
from P. Only codes correspondent to t-tolerant partition will be left in P.

Since both S and P contain at most 2n−1 binary codes, Algorithm 2 takes
only O(n2n+nd+1) time. Using Algorithm 2 we were able to obtain more bounds
on M(d, t) (the bounds are shown in Sect. 4).

We also develop Algorithm 3, which is slower than Algorithm 2 but it is
memory efficient. The idea is to apply gray code to enumerate all binary codes
for P. Let hd(u, v) be the hamming distance between binary codes u and v (the
number of positions where u and v are different). For each binary code b, we
compute a hamming vector vb = (v1, v2, . . . , vN) where

• N = |S| = H(n, d) is the size of S,
• vi = hd(b, si), i = 1, 2, . . . , N and
• si is the binary code of the i-th partition of S.

Algorithm 3

1. Construct S as in Algorithm 1.
2. For each binary code b ∈ P, generated by the gray code, compute the ham-

ming vector vb as follows.

484 S. Bereg and M. Haghpanah

2.1 For the first binary code b, compute vb directly by computing every vi =
hd(b, si) in O(n) time.

2.2 For every other binary code b following binary code b′, b and b′ are differ-
ent in only one position. Then hd(b, si) = hd(b′, si)± 1 and the hamming
vector vb can be computed in O(N) time.

2.3 If all entries of vb are greater than t, then the Radon partition corre-
sponding to binary code b is t-tolerant and the algorithms stops.

3. If the algorithm does not stop in Step (2.3), then P does not admit a t-tolerant
Radon partition.

For the correctness of Algorithm 3 it is sufficient to proof following lemma.

Lemma 1. Let Π be a Radon partition, and b is binary representation of it. All
entries of vb are greater than k if and only if Π is t-tolerant.

Proof. It follows as a sequence of equivalences. All entries of vb are greater than
k ⇐⇒ hd(si, b) > k for every i ∈ N ⇐⇒ for every separable partition si ∈ S
there is at least k + 1 outliers ⇐⇒ Π is a t-tolerant Radon partition. ��

Running Time Analysis. Step (2.1) calculates vb in O(nN) time, and it only
happens one time through the algorithm. Step (2.2) takes O(2nN) time. So, the
time complexity of above algorithm is O(2nnd).

4 Experimental Results

There have been some known lower bound for M(d, t) which are listed as follows.
Larman [21] proved for M(d, 1) ≥ 2d + 3 for d = 2, 3. Forge et al. [11] proved
M(4, 1) ≥ 11. Ramı́rez-Alfonśı [4] proved that, for any d ≥ 4,

M(d, 1) ≥
⌈

5d

3

⌉
+ 3. (2)

Garćıa-Coĺın and Larman [14] proved

M(d, t) ≥ 2d + t + 1. (3)

Soberón [28] proved a lower bound for N

N(d, k, t) ≥ k(t + �d/2� + 1). (4)

As we concern about lower bound of M , M(d, t) ≥ 2t+d for odd d, and M(d, t) ≥
2t + d + 1 for even d.

To improve a lower bound on M(d, t) for a pair of d and t, it is sufficient
to find a set of points in R

d which its size is larger than previous lower bound
on M(d, t) such that every partition of it into two sets is not t-tolerant. One
approach finding such a set of points is as follows. For a given number of points
n, we start with initial points set P computed randomly. We can use one of

Algorithms for Radon Partitions with Tolerance 485

Table 1. Lower bounds on M(d, t) using point configurations computed by algorithms
from Sect. 2 for tolerance t ≤ 10 and dimension d = 2, 3, 4. We omit bounds for d = 1
and t = 1 because the tight bounds are known [4,21,23].

t d = 2 d = 3 d = 4

2 10 11 13

3 12 14 16

4 14 16 18

5 17 18 21

6 19 20 23

7 21 - -

8 23 - -

9 25 - -

10 27 - -

the algorithms for problem ComputingTolerantPartition from the previous
section. There are two possible outcomes. If a t-tolerant Radon partition for P
does not exists, then M(d, t) ≥ n+1, which a lower bound for M . Otherwise, the
algorithm output a t-tolerant Radon partition for P , say Π = {P1, P2}. Since P
is t-tolerant Radon partition every classifier of Π has at least t + 1 outliers. We
compute all classifiers of Π, and choose a classifier c which has the minimum
number of misclassification. We want to decrease the number of misclassifications
of c by moving one of the points of P . Therefore, we compute the distance of
c and all outliers of c and pick one of the outliers p which has the minimum
distance to c. Finally, we move p to the other side of c randomly and continue
this process with the new set of points.

Table 1 shows the lower bounds we obtained by using of mentioned algorithms
in this paper. Using Algorithm 1, we have achieved new lower bounds for M(2, 5)
and M(2, 6); however, it is slow for larger t in the plane. The results in the Table
for d = 3 and d = 4 are computed by Algorithm 2. Algorithm 3 is more memory
efficient than Algorithm 2 and it is used larger number of points in the plane,
including M(2, 10) ≥ 27. In higher dimensions, Algorithm 2 performed better
than others since it has less dependency on the dimension of points than other
Algorithms.

We provide a website with the point sets corresponding to the lower bounds
in Table 1 at [1]. A point set providing a lower bound for M(d, t) must have
points in general position and there must be no t-tolerant Radon partition for
it. The following basic tests can be used for verification.

1. Test whether d + 1 points lie on the same hyperplane,
2. Given a point p and a hyperplane π such that p /∈ π, test whether p ∈ π+ or

p ∈ π−.

486 S. Bereg and M. Haghpanah

Both tests can be done using the determinant of the following matrix defined by
points p1, p2, . . . , pd+1 ∈ R

d

⎡

⎢⎢⎢⎢⎢⎣

p1,1 p2,1 p3,1 . . . pd+1,1

p1,2 p2,2 p3,2 . . . pd+1,2

...
...

...
. . .

...
p1,d p2,d p3,d . . . pd+1,d

1 1 1 . . . 1

⎤

⎥⎥⎥⎥⎥⎦
.

If the determinant is equal to 0, then the points lie on the same hyperplane.
Otherwise, let π be the hyperplane passing through the points p1, p2, . . . , pd.
Then the sign of the determinant corresponds to one of the cases pd+1 ∈ π+ or
pd+1 ∈ π−. The points in our sets have integer coordinates and the determinant
can be computed without rounding errors.

References

1. Point sets. http://www.utdallas.edu/∼besp/soft/NonTolerantRadon.zip
2. Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and Tverberg points.

ACM Trans. Algorithms 5(1), 5:1–5:20 (2008)
3. Aggarwal, C.C., Sathe, S.: Theoretical foundations and algorithms for outlier

ensembles. SIGKDD Explor. 17(1), 24–47 (2015)
4. Alfonśın, J.R.: Lawrence oriented matroids and a problem of mcmullen on projec-

tive equivalences of polytopes. Eur. J. Comb. 22(5), 723–731 (2001)
5. Aronov, B., Garijo, D., Rodŕıguez, Y.N., Rappaport, D., Seara, C., Urrutia, J.:

Minimizing the error of linear separators on linearly inseparable data. Discrete
Appl. Math. 160(10–11), 1441–1452 (2012)

6. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press,
New York (2004)

7. Chan, T.M.: Low-dimensional linear programming with violations. SIAM J. Com-
put. 34(4), 879–893 (2005)

8. Cole, R., Sharir, M., Yap, C.K.: On k-hulls and related problems. SIAM J. Comput.
16, 61–77 (1987)

9. Corrêa, R.C., Donne, D.D., Marenco, J.: On the combinatorics of the 2-class clas-
sification problem. Discrete Optim. 31, 40–55 (2019)

10. Everett, H., Robert, J., van Kreveld, M.J.: An optimal algorithm for the (≤ k)-
levels, with applications to separation and transversal problems. Int. J. Comput.
Geom. Appl. 6(3), 247–261 (1996)

11. Forge, D., Las Vergnas, M., Schuchert, P.: 10 points in dimension 4 not projectively
equivalent to the vertices of a convex polytope. Eur. J. Comb. 22(5), 705–708
(2001)

12. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Comput. Geom. 5(3), 165–185 (1995)

13. Garćıa-Coĺın, N.: Applying Tverberg type theorems to geometric problems. Ph.D.
thesis, University College of London (2007)

14. Garćıa-Coĺın, N., Larman, D.G.: Projective equivalences of k-neighbourly poly-
topes. Graphs Comb. 31(5), 1403–1422 (2015)

http://www.utdallas.edu/~besp/soft/NonTolerantRadon.zip

Algorithms for Radon Partitions with Tolerance 487

15. Garćıa-Coĺın, N., Raggi, M., Roldán-Pensado, E.: A note on the tolerant Tverberg
theorem. Discrete Comput. Geom. 58(3), 746–754 (2017)

16. Hamel, L.H.: Knowledge Discovery with Support Vector Machines. Wiley-
Interscience, New York (2009)

17. Harding, E.F.: The number of partitions of a set of n points in k dimensions induced
by hyperplanes. Proc. Edinb. Math. Soc. 15(4), 285–289 (1967)

18. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edn.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

19. Houle, M.F.: Algorithms for weak and wide separation of sets. Discrete Appl. Math.
45(2), 139–159 (1993)

20. Hwang, F.K., Rothblum, U.G.: On the number of separable partitions. J. Comb.
Optim. 21(4), 423–433 (2011)

21. Larman, D.G.: On sets projectively equivalent to the vertices of a convex polytope.
Bull. London Math. Soc. 4(1), 6–12 (1972)

22. Matouvsek, J.: On geometric optimization with few violated constraints. Discrete
Comput. Geom. 14(4), 365–384 (1995)

23. Mulzer, W., Stein, Y.: Algorithms for tolerant Tverberg partitions. Int. J. Comput.
Geom. Appl. 24(04), 261–273 (2014)

24. Mulzer, W., Werner, D.: Approximating Tverberg points in linear time for any
fixed dimension. Discrete Comput. Geom. 50(2), 520–535 (2013)

25. Niu, Z., Shi, S., Sun, J., He, X.: A survey of outlier detection methodologies and
their applications. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds.) AICI 2011,
Part I. LNCS (LNAI), vol. 7002, pp. 380–387. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23881-9 50

26. Radon, J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten.
Math. Ann. 83, 113–115 (1921)

27. Sathe, S., Aggarwal, C.C.: Subspace histograms for outlier detection in linear time.
Knowl. Inf. Syst. 56(3), 691–715 (2018)

28. Soberón, P.: Equal coefficients and tolerance in coloured Tverberg partitions. Com-
binatorica 35(2), 235–252 (2015)

29. Soberón, P.: Robust Tverberg and colourful Carathéodory results via random
choice. Comb. Probab. Comput. 27(3), 427–440 (2018)

30. Soberón, P., Strausz, R.: A generalisation of Tverberg’s theorem. Discrete Comput.
Geom. 47(3), 455–460 (2012)

31. Teng, S.-H.: Points, Spheres, and Separators: a unified geometric approach to graph
partitioning. Ph.D. thesis, School of Computer Science, Carnegie-Mellon University
(1990). Report CMU-CS-91-184

32. Tverberg, H.: A generalization of Radon’s theorem. J. London Math. Soc. 1(1),
123–128 (1966)

33. Yuan, G., Ho, C., Lin, C.: Recent advances of large-scale linear classification. Pro-
ceedings of the IEEE 100(9), 2584–2603 (2012)

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-642-23881-9_50
https://doi.org/10.1007/978-3-642-23881-9_50

Author Index

Abbasi, Huzaifa 197
Adhikary, Ranendu 347
Ajish Kumar, K. S. 307
Anand, Bijo S. 209
Antony, Cyriac 3
Aravind, N. R. 453
Arif, Umair 269
Ashok, Pradeesha 439

Bandyapadhyay, Sayan 79
Banik, Aritra 79
Basavaraju, Manu 197
Beaudou, Laurent 184
Benkoczi, Robert 269
Bereg, Sergey 463, 476
Bhagat, Subhash 318
Bhargava, Rathin 439
Bhore, Sujoy 79
Bose, Kaustav 347

Chakraborty, Abhinav 318
Chakraborty, Dibyayan 102
Chandran, L. Sunil 235

Das, Angsuman 131
Das, Bibhuti 318
Das, Gautam K. 67
Das, Soura Sena 260
Dourado, Mitre C. 167

Fischer, Dennis 282
Foucaud, Florent 28, 102, 184
Francis, Mathew C. 41
Francis, P. 178
Fuchs, Janosch 282

Gahlawat, Harmender 102
Gaur, Daya Ram 269
Ghosh, Subir Kumar 102
Gokulnath, M. 178
Goyal, Pooja 92
Gupta, Arobinda 331

Gupta, Naman 439
Gurushankar, Eeshwar 197

Habib, Michel 53
Haghpanah, Mohammadreza 463, 476
Havet, Frédéric 403
Hell, Pavol 15
Hernández-Cruz, César 15

Jacob, Dalu 41
Jacques, Marsden 363
Jain, Nivedit 116
Jena, Sangram K. 67
Jivani, Yash 197

Kaur, Chamanvir 427
Khalid, Mohammad 439
Klasing, Ralf 28
Klein, Rolf 371
Koch, Laura Vargas 282
Korenblit, Mark 248
Krishnamurti, Ramesh 269
Kübel, David 371
Kundu, Manash Kumar 347

Lajou, Dimitri 219
Langetepe, Elmar 371
Levit, Vadim E. 248

Mandal, Subhrangsu 331
Maniyar, Udit 453
Manlove, David 384
Mazauric, Dorian 403
Miller, Mirka 28
Misra, Neeldhara 427
Mouatadid, Lalla 53
Mukhopadhyaya, Krishnendu 318

Nandi, Soumen 260
Narasimha-Shenoi, Prasanth G. 209
Naserasr, Reza 184
Nguyen, Viet-Ha 403
Nöllenburg, Martin 79

Olaosebikan, Sofiat 384

Padinhatteeri, Sajith 235
Panda, B. S. 92
Pandey, Arti 116
Panigrahi, Pratima 141
Pushpam, P. Roushini Leely 156

Raj, S. Francis 178
Rajendraprasad, Deepak 307
Ravi Shankar, Karthik 235
Roy, Bodhayan 102
Ryan, Joe 28

Sabeer Sain, R. 209
Sack, Jörg-Rüdiger 371
Sanyal, Anurag 15
Sau, Buddhadeb 347
Schwarzwald, Barbara 371
Sen, Sagnik 260
Shalu, M. A. 3

Sharma, Gopika 116
Singh, Aakash 141
Singh, Priyanka 141
Srikanth, Deepak 197
Srilakshmi, N. 156
Steiner, Raphael 415
Sudeep, K. S. 307

Tauer, Bjoern 282
Thankachy, Maya G. S. 167

Ullas Chandran, S. V. 167

Watrigant, Rémi 403
Wiederrecht, Sebastian 415
Wong, Dennis 363

Yadav, Dolly 439

Zieger, Stephan 282
Zou, Mengchuan 53

490 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Interactions Between Geometry, Graphs and Algorithms
	The Slow-Coloring Game on a Graph
	Contents
	Graph Algorithms
	Complexity of Restricted Variant of Star Colouring
	1 Introduction
	2 Preliminaries
	3 Planar Bipartite Graphs
	4 Trees
	5 Chordal Graphs
	6 Cobipartite Graphs
	7 Conclusion
	References

	Partitioning Cographs into Two Forests and One Independent Set
	1 Introduction and Motivation
	2 The List of Minimal Obstructions
	3 The Completeness of the List
	4 Conclusions
	5 The Remaining Proofs for Lemma 1
	References

	Monitoring the Edges of a Graph Using Distances
	1 Introduction
	2 Preliminaries
	3 Basic Graph Families and Bounds
	4 Complexity
	5 Conclusion
	References

	The Lexicographic Method for the Threshold Cover Problem
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem1
	4 A Certifying Algorithm
	5 The Chain Subgraph Cover Problem
	6 Conclusion
	References

	Approximating Modular Decomposition Is Hard
	1 Introduction
	2 Approximations of Modules
	2.1 Subset Families

	3 -Modules and Basic Properties
	3.1 A Symmetric Variation of -Modules
	3.2 -Series and -Parallel Operations

	4 Computing the Minimal -Modules
	5 The Bipartite Case
	5.1 Conclusions and Perspectives

	References

	Vertex-Edge Domination in Unit Disk Graphs
	1 Introduction
	2 Releated Work
	3 Our Contribution
	4 NP-Hardness
	5 Approximation Scheme
	5.1 Construction of Subsets

	6 Conclusion
	References

	Geometric Planar Networks on Bichromatic Points
	1 Introduction
	2 Non-crossing Hamiltonian Path for Collinear Points
	2.1 The Construction
	2.2 A Linear Time Algorithm for Non-crossing Hamiltonian Path

	3 Minimum Spanning Tree for Collinear Points
	4 Minimum Non-crossing Matching for Collinear Points
	5 TS Tour for Chunked Points on a Circle
	5.1 Lower Bound

	References

	Hardness Results of Global Total k-Domination Problem in Graphs
	1 Introduction
	2 Preliminaries
	3 NP-completeness Results
	3.1 NP-completeness for Bipartite Graphs
	3.2 NP-completeness for Chordal Graphs

	4 APX-completeness for Bounded Degree Graphs
	5 Conclusion
	References

	Hardness and Approximation for the Geodetic Set Problem in Some Graph Classes
	1 Introduction and Results
	2 Hardness Results
	2.1 NP-hardness on Planar Graphs
	2.2 NP-hardness on Line Graphs
	2.3 Inapproximability on Graphs with Diameter 2

	3 Approximation Algorithms
	3.1 General Graphs
	3.2 Solid Grid Graphs

	4 Conclusion
	References

	Maximum Weighted Edge Biclique Problem on Bipartite Graphs
	1 Introduction
	2 Preliminaries
	3 NP-completeness
	4 Bipartite Permutation Graphs
	4.1 Maximal Bicliques
	4.2 Our Algorithm

	5 Chain Graphs
	5.1 Maximal Bicliques
	5.2 Our Algorithm

	6 Conclusion
	References

	Graph Theory
	Determining Number of Generalized and Double Generalized Petersen Graph
	1 Introduction
	2 Generalized Petersen Graphs
	3 Double Generalized Petersen Graphs
	References

	Self-centeredness of Generalized Petersen Graphs
	1 Introduction
	2 Self-centeredness of P(n,k) for an Even n
	3 Self-centeredness of P(n,k) for Odd n
	4 Computer Search and Concluding Remarks
	References

	Weak Roman Bondage Number of a Graph
	1 Introduction
	2 Notation
	3 Some Standard Graphs
	4 Trees
	5 Unicyclic Graphs
	References

	On the Geodetic and Hull Numbers of Shadow Graphs
	1 Introduction
	2 Preliminaries
	3 Hull Number of Shadow Graphs
	4 Geodetic Number of Shadow Graphs
	References

	Indicated Coloring of Complete Expansion and Lexicographic Product of Graphs
	1 Introduction
	2 Indicated Coloring of Lexicographic Product of Graphs
	3 Consequences of Theorem 3
	4 Conclusion
	References

	Smallest C2l+1-Critical Graphs of Odd-Girth 2k+1
	1 Introduction
	2 Preliminaries
	3 Rows of Table1
	4 The Value of (3,2)
	5 Concluding Remarks
	References

	Ramsey Numbers for Line Graphs
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem
	4 Conclusion
	References

	-Convexity Number and -Number of Graphs and Graph Products
	1 Introduction
	2 Convexity Number of Block Graphs
	3 Convexity Number in Graph Products
	4 Realizing -Number and Hull Number of Graphs
	5 Delta Number in Graph Products
	References

	On Cartesian Products of Signed Graphs
	1 Introduction
	2 Definitions and Notation
	3 Preliminary Results
	4 Cartesian Products of Signed Graphs
	5 Signed Chromatic Number of Cartesian Products of Complete Graphs
	6 Signed Chromatic Number of Cartesian Products of Cycles
	7 Conclusion
	References

	List Distinguishing Number of pth Power of Hypercube and Cartesian Powers of a Graph
	1 Introduction
	2 List Distinguishing Number of the Hypercube
	3 List Distinguishing Number of Products of Arbitrary Graphs
	4 List Distinguishing Number for pth Power of the Hypercube
	References

	On Algebraic Expressions of Two-Terminal Directed Acyclic Graphs
	1 Introduction
	2 Generating Expressions for Complete St-Dags
	2.1 Complexities of St-Dag Expressions

	3 Conclusions
	References

	The Relative Oriented Clique Number of Triangle-Free Planar Graphs Is 10
	1 Introduction and Main Result
	2 Proof of Theorem 1
	References

	Combinatorial Optimization
	On the Minimum Satisfiability Problem
	1 Introduction
	1.1 Our Contributions

	2 A Primal-Dual Approximation
	3 A Combinatorial Algorithm for Solving the Dual
	4 Conclusions
	References

	Waiting for Trains: Complexity Results
	1 Introduction
	2 Preliminaries
	2.1 Model
	2.2 Feasible Train Movement
	2.3 Deadlock

	3 Complexity Results
	3.1 Waiting
	3.2 Shunting

	4 Polynomial Time Algorithms for Paths
	5 Conclusion
	A Difference Between Wormhole and Train Routing
	B Difference Between Waiting and Shunting Instance
	C Proof of Proposition 1
	D Deadlock Examples
	E Proof of Theorem 2
	F Counter-Example: FPT Approach Cannot Be Generalized
	G Proof of Theorem 5
	H Delaying on a Path
	I Algorithm to Compute Waiting Times on an Uni- directional Path on Which All Trains Share One Node
	J Counter-Example: RTF-Algorithm Cannot be Generalized if Trains do not Share a Node
	References

	Distributed Algorithms
	Oriented Diameter of Star Graphs
	1 Introduction
	1.1 The n-star Graph (Sn)

	2 Preliminaries
	2.1 Graph Terminology
	2.2 Cycle Structure of Permutations
	2.3 Routing in Undirected Star Graph

	3 The Proposed Routing Algorithm
	4 Analysis of the Proposed Routing Algorithm
	References

	Gathering over Meeting Nodes in Infinite Grid
	1 Introduction
	2 Earlier Works
	3 Our Contributions
	4 Model and Definitions
	5 Impossibility Results
	6 Algorithm
	7 Correctness
	8 Conclusion
	References

	0-1 Timed Matching in Bipartite Temporal Graphs
	1 Introduction
	2 Related Work
	3 System Model
	4 0-1 Timed Matching
	5 Complexity of Finding Maximum 0-1 Timed Matching in Bipartite Temporal Graphs
	5.1 NP-Completeness of MAX-0-1-TMB-1
	5.2 NP-Completeness of MAX-0-1-TMT-3

	6 Finding Maximum 0-1 Timed Matching for Rooted Temporal Tree with Single Time Interval Per Edge
	6.1 Proof of Correctness

	7 Conclusion
	References

	Arbitrary Pattern Formation by Opaque Fat Robots with Lights
	1 Introduction
	2 Model and Definitions
	3 The Algorithm
	3.1 Leader Election
	3.2 Phase 1
	3.3 Phase 2
	3.4 Pattern Formation from Leader Configuration

	4 Conclusion
	References

	Combinatorial Algorithms
	Greedy Universal Cycle Constructions for Weak Orders
	1 Universal Cycles for Weak Orders
	2 Proof of Theorem 1
	3 Proof of Theorem 2
	4 Conclusion
	References

	A New Model in Firefighting Theory
	1 Introduction and Model Definition
	2 Results for the Basic Hexagonal Model
	2.1 Homogeneous Fortification
	2.2 Selective Fortification
	2.3 An NP-Complete Problem

	3 Variants of Basic Hexagonal Model
	4 Conclusion
	References

	An Algorithm for Strong Stability in the Student-Project Allocation Problem with Ties
	1 Introduction
	2 Preliminary Definitions
	2.1 Formal Definition of Spa-S
	2.2 Ties in the Preference Lists

	3 An Algorithm for Spa-St under strong stability
	3.1 Definitions Relating to the Algorithm
	3.2 Description of the Algorithm
	3.3 Example Algorithm Execution
	3.4 Correctness of the algorithm

	4 Conclusion
	References

	Computational Complexity
	Overlaying a Hypergraph with a Graph with Bounded Maximum Degree
	1 Introduction
	2 The Graphs with One Edge
	3 Complexity of Max (k)-F-Overlay
	4 Complexity of (K)-F-Overlay
	4.1 Regular Graphs
	4.2 Paths

	5 Further Research
	References

	Parameterized Algorithms for Directed Modular Width
	1 Introduction
	2 Preliminaries
	3 Strategy
	4 Disjoint Paths and the Directed Subgraph Homeomorphism Problem
	5 Other Directed Width Measures
	6 Conclusion
	References

	On the Parameterized Complexity of Spanning Trees with Small Vertex Covers
	1 Introduction
	2 Preliminaries
	3 The Standard Parameter
	4 Vertex Cover and Treewidth
	5 Concluding Remarks
	References

	Minimum Conflict Free Colouring Parameterized by Treewidth
	1 Introduction
	2 Preliminaries
	3 FPT Algorithm for Min-q-CNCF
	4 Lower Bounds
	4.1 Lower Bounds for Min-q-CNCF
	4.2 Lower Bounds for Min-q-ONCF

	References

	Computational Geometry
	Planar Projections of Graphs
	1 Introduction
	1.1 Preliminaries
	1.2 Our Results

	2 Plane-Projecting Dimension of Complete Graphs
	3 Plane-Projectable Graphs in R3
	4 Relation with Linear Arboricity and Maximum Degree
	5 Open Problems
	References

	New Algorithms and Bounds for Halving Pseudolines
	1 Introduction
	2 Transforming Allowable Sequences
	3 General Max-k Sorting Problem
	4 Max-1 Sorting Problem
	5 Max-2 Sorting Problem
	6 Improving Lower Bounds for h"0365h(n)
	7 Future Work
	References

	Algorithms for Radon Partitions with Tolerance
	1 Introduction
	2 Radon Partitions and Linear Classifiers
	3 Algorithms for Tolerant Radon Partitions
	4 Experimental Results
	References

	Author Index

