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Abstract

In diatom identification process, image fusion is per-
formed as a preprocessing step that can enhance the con-
tours and ornamentation features (e.g., the striation pat-
tern) characteristic of diatom frustules. These enhanced
features help to improve the performance of diatom identi-
fication process. In doing so, defining activity level based
on local sharpness measure is the main challenge. In this
chapter, the pixel-wise weighted average multifocus im-
age fusion technique is described that can extend the depth
of field (DOF) by selecting the most focused region from
source images. First, each source image is decomposed
into base layer (BL) and detail layer (DL) to extract sharp
and fine details, respectively. Sharp edge details of source
images are important determinants of local sharpness
measure that yields initial weight maps, which are further
refined using weighted least squares (WLS) optimization.
For detail enhancement, sharp details and fine details are
fused with the refined weight maps, separately. Finally,
the fused BL is combined with fused DL to obtain an
all-in-focus fused image. In addition to the use of fixed
time exposure light microscopy (LM), we propose that
multiexposure image fusion can be of great importance
for improving the final identification process.
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10.1 Introduction

Nowadays, groups of researchers around the globe are work-
ing to develop systems for monitoring the health of aquatic
systems. World ecosystems, including aquatic (marine and
freshwater) environments, integrate both abiotic and biotic
components. Aquatic ecosystems are mainly divided into two
categories: freshwater ecosystems and marine ecosystems.
Three-fourths of the Earth’s surface is covered by the marine
ecosystems and only 0.78% of the Earth’s surface is covered
by the freshwaters. To monitor the health of any aquatic
ecosystem, diatoms are important organisms provided their
biological features (see Chap. 2). Diatoms are single-celled
organisms containing light-absorbing molecules, which are
responsible for photosynthesis. It has been stated that 20%
of the oxygen is produced by marine microalgae (mainly
diatoms) that remove a huge amount of carbon dioxide
(CO2) from the planet. The structural layers outside the cell
membrane made of silica are called frustules. The nano-scale
patterns in the frustules yield unique features that are used for
the identification and classification of diatoms.

Almost every diatom is microscopic and the cell size
of the diatom is between 2µm to 2 mm. To visualize the
features in cell structure, microscopy imaging techniques
have been developed. In light microscopy (LM), visible
light and magnifying lenses are used to visualize the cell
structure. When diatoms are seen with a LM, the nano-
scale patterns in the frustules appear transparent. Since most
diatom walls have a 3D structure, therefore the majority
cannot be adequately represented in a single focal plane.
Many recent computational photography techniques play a
significant role to overcome the limitation of LM to handle
3D structure of diatom walls ornamented by intricate and
striking patterns of silica. In many of these techniques, it
is often desirable to fuse details from images captured at
different focal planes so that both contour and striation are
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well defined for feature extraction. These cell wall features
are vital for distinguishing diatom species.

In recent years, several fusion algorithms have been
developed to combine substantial information from multiple
input images into a single composite image. For instance,
most of the image fusion techniques are based on multi-
resolution decomposition [1,2]. The principal motivation for
image fusion is to extend the depth of field (DOF) [3], to
improve spatial and temporal resolution [4, 5], and finally
to extend the dynamic range of the fused image in the case
of the multiexposure techniques [6]. Image fusion has a
fundamental difficulty in preventing artifacts and preserving
local contrast when fusing the characteristics recorded from
the source data, such as exposure value, focusing, modality,
and environmental conditions. In particular, the choice of
parameter settings during input stacks acquisition will have a
large impact on the outcome of the image fusion framework.
Two examples of multifocus and multiexposure stacks, and
corresponding fusion results are shown in Fig. 10.1. The
automated procedure of extracting all the meaningful details
from the input images to a final fused image is the main
motivation of image fusion.

In this chapter, we present a two-scale decomposition-
based weighted average multifocus image fusion (TSD-MF)

method. The aim of two-scale decomposition (TSD) is to
produceadetail-enhanced image fromasetof images thathave
been taken at different focal lengths of a camera sensor. Since
the goal of mutifocus image fusion is to create anew image that
is focused throughout, it is always a challenging task to decide
a local measure of information content of source images. In
the case that optical defocus is the major source of quality
degradation, it is natural to assume that the image region that
has sharper edges is more active and thus more informative [7].
In existing multifocus image fusion techniques, a common
implicit assumption is that finding the sharper edges regions
is associated with finding the focused region.

This chapter is organized as follows. In Sect. 10.2, we
explore in detail one multifocus image fusion algorithm to
extend the DOF by combining in-focus details from several
images of diatom species captured by LM. In order to obtain
a sharp valve contour and striation pattern, images captured
at different exposure settings can be fused. This example of
multiexposure image fusion is described in Sect. 10.3. The
fusion quality metrics are presented in Sect. 10.4. To perform
a rapid mathematical calculation using graphics processing
unit (GPU), the efficient implementation of the proposed
fusion method is discussed in Sect. 10.5. Finally, Sect. 10.6
contains concluding remarks.

Fig. 10.1 Top row: (a) example of a multifocus stack and (b) example of a multiexposure stack. Bottom row: (c) fused image obtained from
image stack shown in (a) and (d) fused image obtained from image stack shown in (b)
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10.2 Multifocus FusionMethods

10.2.1 Two-Scale Decomposition (TSD)

The first TSD-based image fusion was introduced in 2013
by Li et al. [8]. They aimed to propose fast two-scale image
fusion techniques that do not rely heavily on a specific
multi-resolution method. A simple average filter was used
to decompose source images into base layers (BLs) and
detail Layers (DLs). To perform weighted average fusion, the
guided filtering (GF) [9] based spatial consistency principal
was introduced. In this study, we selected an edge-preserving
filter (EPF) based two-scale fusion approach [10]. The aim
of EPF-based decomposition is to better approximate the
DL for detail enhancement. Applying this fusion technique
requires additional computation but performs better for both
multifocus and multiexposure microscopy data sets.

Let In be the nth source image which needs to be operated
by an EPF. In order to compute BL and DL, we first
decompose source images into two-scale representations by
using anisotropic diffusion [11]. The BL Bn of each source
image is obtained as follows:

Bt+1
s,n = I t

s,n + γ

|ηs |
[
gN · ∇Ns In + gS · ∇SIn + gE · ∇EIn

+gW · ∇W In]ts (10.1)

where ∇N , ∇S , ∇E , and ∇W indicate the difference of
North, South, East, and West neighbor for pixel position s,
respectively. The corresponding diffusion coefficients [11]
gN , gS , gE , and gW are computed from local window of size
(3 × 3).The pictorial view of gradient computation from 1-D
grid structure and 2-D grid structure is illustrated in Fig. 10.2.
The diffusion functions g(·) used in our TSD approach can
be defined as follows:

g(∇I) = e

(
−

( ‖∇I‖
K

)2
)

(10.2)

and in Eq. 10.1, the variable t determines iterations, the
constant γ is a scalar that determines the rate of diffusion,
ηs represents the spatial neighborhoods of current sample
position s, and |ηs | is the number of neighbors. In this
chapter, these parameters are empirically determined. In
practice, a set of t = 5, γ = 1/7 yield plausible results.

Once the BL is computed for each nth input image, the
DL Dn can be directly calculated by subtracting the Bn from
the corresponding source image In as follows:

Dn = In − Bn (10.3)

To see the behavior of Perona et al. [11] filter at edges,
we first analyze 1-D signal into BL and DL. As can be seen
in Fig. 10.3, in BL (i.e., the coarser level after diffusion),
high-frequency textures disappear. The weak texture details
filtered out from the BL are exactly reconstructed in the DL.

The BL and DL decomposition of Actinocyclus ralfsii
image data set is illustrated in Fig. 10.4. From Fig. 10.4, it
can be visually seen that the BL provides coarse details
and the textures are almost eliminated. The texture details
compressed in the BL are exactly reconstructed in DL.

10.2.2 Detection of a Focused Region
andWeight Map Computation

Sharp edge details are important determinants in weight
map computation. A traditional view is that an in-focus
region yields sharper edge details than out-of-focus region.
A wide variety of criteria functions have been proposed in
the literature for selecting the in-focus region from source
images to construct an all-in-focus fused image. Examples of
these criteria functions include variance (VAR), Tenengrad
(TNG), spatial frequency (SF), energy of image gradients
(EOG), energy of Laplacian (EOL), sum modified Laplacian
(SML), Laplacian of Gaussian (LOG) [12], and frequency
selective weighted median filter (FSWM) [13]. The authors
in [13] have provided comparative studies of different criteria
functions. In literature [14, 15], EOL-based criteria function

Fig. 10.2 Gradient computation:
(a) from 1-D grid structure by
considering left (L) and right (R)
neighbors and (b) from 2-D grid
structure by considering North
(N), South (S), East (E), and West
(W) neighbors
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Fig. 10.3 The TSD of 1-D signal based on EPF after 5 iterations
with K = 30, γ = 1/3, and |ηs | = 2 (left and right neighbors).
The 1-D input signal (I ) is decomposed into two main components:

a low-frequency BL and a high-frequency DL. Notice that the edges are
preserved in the diffused image (i.e., BL) and the DL yields fine details
only

Fig. 10.4 (a–c) Multifocus images of Actinocyclus ralfsii diatom species. (d–f) Example of BL decomposition. (g–i) Example of DL
decomposition. In order to better visualize the DLs, a constant value is added to each pixel, e.g., 100
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Fig. 10.5 (a–c) Saliency maps of Actinocyclus ralfsii diatom species, computed using Eq. 10.5 and (d–f) noisy weight maps computed using
Eq. 10.6

provided better performance for multifocus image fusion
than SF and EOG.

In this chapter, to identify the block having high frequen-
cies, the EOL is computed in each M × N block of input
images. The higher value of EOL indicates that an image
block is in-focus and the lower value of EOL indicates that an
image block is faint/out-of-focus. The EOL of the nth input
image is computed as follows:

EOLn =
∑

i

∑

j

(∇2In(i, j))2 (10.4)

The 3×3 Laplacian kernel: [0,−1, 0; −1, 4,−1; 0,−1, 0]
is used for gradient computation. The result of computing
an EOL with this Laplacian kernel is a filtered image that
contains strong edges in areas where rich details are present.
In order to compute initial saliency maps SMn, we apply the
Gaussian low pass filter G having 5 × 5 symmetric kernel
size r with standard deviation σ = 5, which is formulated as
follows:

SMn = |EOLn| ⊗ Gr,σ (10.5)

where ⊗ denotes the convolution operator. Next, the saliency
maps are compared to determine the weight maps as follows:

WMk
n =

{
1 if SMk

n = max
(
SMk

1 , SMk
2 , . . . , SMk

N

)
,

0 otherwise

(10.6)

where WMk
n and SMk

n are, respectively, the weight map and
saliency value of the pixel k in the nth image.

Figure 10.5a–c shows the saliency maps computed by
using Eq. 10.5, and the initial weight maps (computed by
using Eq. 10.6) are shown in Fig. 10.5d–f. From Fig. 10.5d–f,
we can easily notice that the initial weight maps computing
by using Eq. 10.6 yield noisy outputs that are not suitable
for the fusion process. To refine these noisy weight maps,
weighted least squares (WLS) [16] based weight map refine-
ment process is introduced in our fusion algorithm, which is
discussed in the forthcoming section.

10.2.3 Weight Map Refinement

The weight maps computed in Eq. 10.6 are hard, noisy, and
not aligned with the object boundaries. In our implemen-
tation, the WLS framework [16] is used for weight map
refinement. WLS-based edge-preserving operator may be
viewed as a compromise between two possible contradictory
goals. Given an input image v, we seek a new image w,
which, on the one hand, is as close as possible to v, and at
the same time, is as smooth as possible everywhere, except
across significant gradients in v. To achieve these objectives,
we seek to minimize the following quadratic functional:

∑

p

(
(
wp − vp

)2 + γ

(

qx,p(v)

(
∂w

∂x

)2

p

+ qy,p(v)

(
∂w

∂y

)2

p

))

(10.7)

where the subscript p denotes the spatial location of a pixel.
The goal of the expression term (wp−vp)2 is to minimize the
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distance between w and v, while the second (regularization)
term strives to achieve smoothness by minimizing the partial
derivatives of w. The smoothness requirement is enforced in
a spatially varying manner via the smoothness weights qx

and qy , which depend on v:

qx,p(v) =
(∣

∣∣
∣
∂l

∂x
(p)

∣
∣∣
∣

α

+ ε

)−1

,

qy,p(v) =
(∣

∣∣
∣
∂l

∂y
(p)

∣
∣∣
∣

α

+ ε

)−1

(10.8)

where l is the log-luminance channel of the input image v,
the exponent α (typically between 1.2 and 2.0) determines
the sensitivity to the gradients of v, while ε is a small
constant (typically 0.0001) that prevents division by zero in
areas where v is constant.

Let w = WLSγ,α,ε(v) represent the WLS filtering oper-
ation. In our case, WMk

n computed in Eq. 10.6 serves as the
input image to WLS filter (i.e., v = WMk

n ), and WB
n or WD

n

is the output of WLS filter (w = WB
n for BL and w = WD

n

for DL). More specifically, the coarser version of weight map
WMk

n will serve as refined weight map for nth base layer and
detail layer:

WB
n = WLSγ1,α1,ε(v) (10.9)

WD
n = WLSγ2,α2,ε(v) (10.10)

where WB
n and WD

n are refined weight maps for correspond-
ing Bn and Dn, respectively. We have found that the weight
refinement for most of the data sets with the parameters
γ1 = 1.2 and α1 = 0.9 is suitable for the fusion of BLs. In
Eq. 10.10, γ2 = 0.2 and α2 = 0.1 will work for preserving
details in the fused image.

The refined weight maps computed from Eq. 10.9 are
shown in Fig. 10.6a–c. To demonstrate in-focus region se-
lection efficiently, different selected regions are visualized
in false color, as shown in Fig. 10.6d. The false color image
visualizes that the sharp regions across source images (shown
in Fig. 10.4a–c) are detected perfectly. The red shows where
the first input image contributes, green the second image, and
blue shows the contribution of the third image.

10.2.4 Weighted Average Fusion of BL and DL

The final step of weight map refinement consists of weight
map normalization so that they sum to one at each pixel k.
These normalized weight maps are used to compute fused
base layer BF and fused detail layer DF as follows:

BF =
N∑

n=1

WB
n Bn (10.11)

DF =
N∑

n=1

WD
n Dn (10.12)

and the resulting fused image IF can be directly calculated
as follows:

IF = BF + DF (10.13)

To enhance details, we found that a simple interactive tool
is very effective for DL manipulation. The enhanced detail
fused image can be computed by:

I e
F = BF +

N∑

n=1

WD
n S(a,Dn) (10.14)

where S is a sigmoid function S = 1/(1 + exp(−ax)),
applied on nth DL for detail manipulation. The parameter
a is the user-defined boosting factor, which can be selected
empirically. We have found that the free parameter a = 4
is very effective for boosting fine details in the fused image
with fewer visible artifacts near strong edges. The effective
manipulation range is very wide and will vary in accordance
with the texture details present in the source images.

Figure 10.7a shows a fused base layer BF that is produced
from a sequence of three base layers of Actinocyclus ralfsii
diatom species, shown in Fig. 10.4d–f. An example result of
detail layer fusion using Eq. 10.12 is shown in Fig. 10.7b,
along with the final fused image shown in Fig. 10.7c. From
the image shown in Fig. 10.7c, We can see that single all-in-
focus image is produced from three partially focused images.
Most notable, the fine details appear without introducing
visible artifacts.

Fig. 10.6 (a–c) Refined weight maps computed from Eq. 10.9 and (d) false color visualization of in-focus regions detected across source images
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Fig. 10.7 (a) Fused base layer BF was computed using Eq. 10.11, (b) fused detail layer DF was computed using Eq. 10.12, and (c) fused image
IF was computed using Eq. 10.13

10.3 Exposure Fusion (EF) vs High Dynamic
Range (HDR)

Nowadays, much research is going on for developing expo-
sure fusion techniques for real-world scenes. Yet, multiex-
posure image fusion which enhances the contrast of fused
image has not been applied to diatoms. Actually, study
and characterization of intricate micrometer-sized silica pat-
tern of diatom becomes more desirable for classification of
species in different aquatic systems. Recently, Ferrara et al.
have found that the period of exposure of the sensor plays an
important role to exploit the optical properties of micro- and
nano-structures of diatoms [17]. Beyond visualization and
localization of intricate micrometer-sized silica pattern, on
the other hand, the full dynamic range of the sensor can be
utilized by variable exposure time to produce more details.
In this section, we hypothesize that multiexposure image
fusion techniques are expected to provide better performance
in diatom identification and classification.

In recent years, several techniques have been developed
that are capable of providing precise representation of com-
plete information of shadows and highlights present in the
real-world natural scenes [6]. The direct 8-bit gray and 24-
bit RGB representation of visual data, with the standard
digital cameras at single exposure settings, often causes loss
of information. This is because the dynamic range of most
scenes is beyond what can be captured by the standard digital
cameras. Such representation is referred to as low dynamic
range (LDR) image. To handle such typical cases, digital
cameras have the aperture setting, exposure time, and ISO
value that regulate the amount of light to be captured by the
sensors. Therefore, it is important to somehow determine ex-
posure setting for controlling the response of charge coupled
device (CCD). For single exposure setting, either detail in the
poorly illuminated area (i.e., shadows) is visible with long
exposure or brightly illuminated area (i.e., highlights) with
short exposure. Thus, the image captured by the standard
digital camera for single exposure setting is partially over-

or underexposed. As a result, there will always be a need to
capture the detail of the entire scene with a sufficient number
and value of exposures.

The idealized response of digital camera sensor from
highlights, mid-tones, and shadows present in the scene is
shown in Fig. 10.8. In Fig. 10.8, the graph represents col-
lected charges versus exposure times for three illuminations.
We assume that both the aperture and ISO setting are kept
fixed over integration times (tint1, tint2, and tint3). There is
one setting (i.e., exposure time), which determines how long
the sensor is exposed to light. The charge (Q) produced at
the end of integration is a functional f [.] of the current I (t)

over the integration time 0 ≤ t ≤ tint . When the sensor is
operating in integration mode, functional f [.] is given by:

f [x] =
∫ tint

0
I (t) dt (10.15)

As depicted in the graph shown in Fig. 10.8, in difficult
lighting situations, where highlights, shadows, and mid-tones
appear simultaneously, the camera sensors under the influence
of highlights are saturated at integration time (tint1). As the
exposure time increases further, the camera sensors under the
influence of mid-tones are saturated at integration time (tint2).
Similarly, as we have seen for integration time (tint3), the
camera sensors under the influence of shadows are producing
non-saturating signal, while the sensors under the influence of
highlights and shadows have been saturated. Therefore, after
a short integration time, highlights are captured before the
sensor saturates, and adequate integration time is required for
capturing the shadows present in the scene.

10.3.1 HDR and Tone-Mapping

In principle, there are two major approaches to handle the
limitations of the existing image capturing devices. The first
approach is to develop HDR reconstruction from multiple
exposures. Debevec and Malik [19] has estimated camera
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Fig. 10.8 Idealized repose of CCD sensor from highlights, mid-tones, and shadows present the scene. Image courtesy of [18]

response function (CRF) from images acquired at different
exposure settings. The CRF recovered from differently ex-
posed images is used to create HDR image whose pixel
values are equivalent to the true radiance value of a scene.
Let multiple exposures of a scene are captured with different
exposure times �tj , where j is an index over exposure times
j = 1, 2.....N that determines the number of images to be
captured from the scene. The pixel values Zij at each j th
spatial location can be computed as:

Zij = f (Ei�tj ) (10.16)

where Ei is irradiance values of ith pixel, and f (.) is the
CRF. If CRF is assumed to be monotonic and invertible, we
then can rewrite Eq. 10.16 as:

f −1(Zij ) = Ei�tj (10.17)

This equation can be solved by taking the natural logarithm
of both sides:

g(Zij ) = InEi + In�tj (10.18)

where g is the monotonic and invertible function [19]. In
this equation, Ei and g are unknowns. A quadratic objective
function based on linear least squares optimization was
proposed by Debevec and Malik to derive response function,
which is defined as:

O =
N∑

i=1

P∑

j=1

{
w(Zij )

[
g(Zij ) − InEi − In�tj

]}2

+ γ1

Zmax−1∑

z=Zmin+1

[
w(z)g′′(z)

]2 (10.19)

Therefore, the second term g′′(z) = g(z − 1) − 2g(z) +
g(z + 1) is a smoothness term on the sum of squared values,
and γ1 is a scalar that helps to control noise level in Zij .

The weighting function w(z) chosen in [19] is a simple hat
function:

w(z) =
{

z − Zmin for z ≤ 1
2 (Zmin + Zmax),

Zmax − z for z > 1
2 (Zmin + Zmax)

(10.20)

Once the response function g is recovered, the desired
HDR radiance values are computed using weighting function
as:

InEi =
∑P

j=1 w(Zij )
(
g

(
Zij

) − In�tj
)

∑P
j=1 w(Zij )

(10.21)

It reconstructs the full dynamic range up to 8 orders of
magnitude. HDR imaging is called scene-referred represen-
tation which represents the original captured scene values
as close as possible [19]. Such representation is sometimes
also referred to as extrasensory data representation. After ac-
quiring HDR data, an efficient encoding technique is needed
to avoid taking an excess of disk space. Various possible
formats to store radiance maps have been developed that are
described by Reinhard et al. [6].

HDR reconstruction recovers a much wider range of
brightness from input exposures, but it is impractical to
display such images on standard display devices and print-
ing media, as shown in Fig. 10.9b. Although HDR display
devices will be developed in the near future, conventional
printers may lead to inconsistencies which will be responsi-
ble for the loss of details in the output. Recently, Sunnybrook
technologies, BrightSide, and Dolby prototypes of HDR
display devices have been proposed [20] that can display
HDR data directly. As a result, to avoid these inconsistencies,
we must use tone-mapping operators [21] to prepare HDR
imagery for depiction on LDR devices.

The problem of recovering HDR image by combining
multiple frames captured at variable exposure settings is well
described in the literature, and up to now, different software
to build HDR photograph have been proposed, e.g., HDR-
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Fig. 10.9 (a) Images acquired at different exposure settings, (b) depiction of unprocessed HDR image constructed by Photomatix Pro [23] on a
standard monitor, (c) the tone-mapped image, and (d) exposure fusion results

Exposure 1

Exposure 2

Exposure 3

Exposure N

AEB

Camera Response
Function Calibration

HDR Assembly
LDRs to HDR

Tone Mapping
HDR to LDR

HDR
Display Device

Prototypes of HDR
Display Device

Conventional
Display Device

Weight Map
Computation

Exposure Fusion
LDRs to LDR

Fig. 10.10 Comparison of high resolution imaging pipeline (i.e., HDR imaging followed by tone-mapping process, and exposure fusion process).
The yellow color depicts HDR and tone-mapping pipeline, and blue color depicts exposure fusion pipeline

shop [22] and Photomatix [23]. Photomatix is developed by
HDRsoft to fuse a series of differently exposed images. Pho-
tomatix Pro and Photomatix Essentials are two standalone
versions of Photomatix that can be run on Windows and Mac
OS X. Photomatix Essentials is an excellent simple tool for
constructing HDR images and is user-friendly. Photomatix
Pro offers more options and includes advanced features such
as batch processing and selective deghosting. An example of
constructing HDR photograph and tone-mapping is shown in
Fig. 10.9.

Here, to visualize all important details of the diatom, we
have captured five different multiexposure images (shown
in Fig. 10.9a). We can observe that appearance of details in
multiexposure images depends upon the exposure settings.
These five frames are merged to construct 32-bit HDR image.
The HDR image has significantly larger dynamic range and
does not fit into the display limits of a standard monitor.
For demonstration purpose, we depict the HDR image on a

standard monitor, which is shown in Fig. 10.9b. Therefore,
dynamic-range reduction based on tone-mapping operator
would need to be applied on HDR image. The resultant tone-
mapped image is shown on the left in Fig. 10.9c. Alterna-
tively, we may directly generate 8-bit LDR image that looks
like a tone-mapped image (as shown in Fig. 10.9d), which is
described in the following section.

10.3.2 Exposure Fusion

The second alternative approach for the purpose is com-
bining multiexposure images directly into 8-bit single LDR
images that do not contain underexposed and overexposed
regions [10]. It provides a convenient and consistent way for
preserving details in both brightly and poorly illuminated
areas by skipping the construction of HDR image, and
the use of tone-mapping operators. The incorporation of
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Fig. 10.11 (a–e) Multifocus image series of Triceratium favus diatom
species, acquired at low exposure settings (i.e., shutter speed of 1/160 s
and ISO 400), (f–j) multifocus image series acquired at high exposure
settings (i.e., shutter speed of 1/100 s and ISO 400), (k) multifocus

fusion result obtained from total five images shown in top row, (l)
multifocus fusion result obtained from total five images shown in
middle row, and (m) exposure fusion result obtained from total two
images shown in (k) and (l)

the notion of combining multiple exposures without typical
HDR and tone-mapping steps is known as exposure fusion
(EF), as shown in Fig. 10.10. The underlying idea of various
exposure fusion approaches [24] is based on the utilization
of different local measures for generating a weight map to
preserve details present in the several exposures. In [24],
the pyramid-based multi-resolution decomposition (MRD)
[25] was utilized as an analysis and synthesis tool for image
fusion. The Laplacian pyramid of source images and the
Gaussian pyramid of weight maps were computed to produce
a seamless fused image.

In our exposure image fusion approach, we additionally
incorporate the exposure measure into our weighting func-
tion. To compute exposure value, we normalize the intensity
values of input image so that they lie between 0 and 1.
A correctly exposed picture is one that has intensities, not
near zero (underexposed), or one (overexposed). Therefore,
a pixel is said to be well-exposed if the intensity value is
close to 0.5. The weight intensity value (I) of each pixel k

based on how close it is to 0.5 using a Gauss curve can be
computed as:

EXn = e

(
− (I−0.5)2

2σ2

)

(10.22)

Therefore, the saliency map computation in Eq. 10.5 can be
redefined as follows:

ˆSMn = |EXn| ⊗ Gr,σ (10.23)

The effect of exposure settings on multifocus images
of Triceratium favus diatom species acquired by dark-field
microscopy is shown in Fig. 10.11a–e. The image series
shown in top row (a–e) were acquired with a shutter speed
of 1/160 s. To acquire sufficient details, a second series
was acquired with a shutter speed of 1/100 s (shown in
middle row (f–j)). For demonstration purposes, Fig. 10.11k,l
shows the resulting multifocus fusion results for image series
captured at low exposure settings and high exposure settings,
respectively. These figures show the images fused by con-
sidering the saliency maps computed from Eq. 10.5. Thus, a
single fused image with improved DOF is obtained from two
or more images of the same scene acquired at different focal
lengths of a camera sensor.

The fused result shown in Fig. 10.11m is generated
by considering the multifocus fusion results shown in
Fig. 10.11k,l. This figure shows the image constructed by
considering the saliency maps computed from Eq. 10.23.
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Fig. 10.12 (a–e) Multifocus image series of Triceratium pentacrinus
diatom species, acquired at low exposure settings (i.e., shutter speed
of 1/160 s and ISO 400), (f–j) multifocus image series acquired at
high exposure settings (i.e., shutter speed of 1/100 s and ISO 400), (k)

multifocus fusion result obtained from total five images shown in top
row, (l) multifocus fusion result obtained from total five images shown
in middle row, and (m) exposure fusion result obtained from total two
images shown in (k) and (l)

For detail enhancement, multifocus results are generated
using Eq. 10.14. It should be noted that the details produced
in Fig. 10.11m are therefore more pronounced than for
multifocus fusion results shown in Fig. 10.11k,l. The fusion
results of multifocus images of Triceratium pentacrinus
diatom species shown in Fig. 10.12 are also generated in a
similar manner. In our opinion, the precise selection of ex-
posure settings of image acquisition device leads to produce
plausible results; it seems to handle very bright and too dark
areas in all exposures. Finally, the fusion results show that
a sharp and enhanced image can be generated by combining
multifocus image fusion with a multiexposure image fusion.
This would, of course, be desirable for capturing features of
micro- and nano-structures found in diatom species that is
helpful for distinguishing the living organism.

10.4 Depth Map and 3-D Surface
Visualization of Fusion Results

In this section, the depth map and 3-D visualization have
been obtained from the fusion results of Triceratium favus di-
atom species. To indicate the regions where sharp structures
are detected in the fusion results, depth map was generated

using PICOLAY [26]. PICOLAY, developed by Heribert
Cypionka, is a scientific software that allows to perform
focus stacking and generate three-dimensional views from
image series acquired at sequential focus levels. The depth
map of fusion results is shown in Fig. 10.13a–c. The depth
map shows colors from yellow (top) over green (middle)
to blue (bottom). Gray indicates regions without detected
structures and no depth localization.

Another extremely useful way to analyze the diatom
shape and its structural variation is to consider that the
fused image can be modeled as a 3-D surface. The depth
map can also be used to generate a 3-D view of depth
levels. The use of a depth map for 3D surface reconstruction
was used by the authors in [27], The constructed depth
map in Fig. 10.13a–c and the corresponding 3-D surface
visualizations are shown in Fig. 10.13d–f. The additional
dimension helps to identify each pixel from different angles
that have better physical relevance. The 3-D surface visual-
izations shown in Fig. 10.13d–f are constructed by using Fiji
[28]. Fiji was developed at the Laboratory for Optical and
Computational Instrumentation (LOCI) at the University of
Wisconsin-Madison and is maintained by Curtis Rueden. It
allows to explore scientific data and includes features in the
form of plugins and scripts.



176 H. Singh et al.

Fig. 10.13 2-D and 3-D visualization of depth map of Triceratium favus diatom: (a) depth map of fusion result shown in 10.11k, (b) depth map
of fusion result shown in 10.11l, (c) depth map of fusion result shown in 10.11m, and (d–f) their 3-D surface visualization

A 3-D projection of fusion results can give a better
visualization of structures that belong to different layers.
Eventually, different structures can be visualized by chang-
ing the viewing angle. For demonstration purpose, Fig. 10.14
shows 3-D reconstruction of the fusion results of Triceratium
favus diatom. In this way, 3-D surface visualization of a
fused image having sharp contour and striation pattern can
be used by the diatomists to attempt diatom identification and
classification.

10.5 Fusion Quality Metrics

The quality assessment of fused images is necessary before
using them for different applications such as machine vision,
surveillance applications, scientific, and medical imagery, in
which data is analyzed and visualized to record more details.
The subjective evaluation of fusion results is time-consuming
process, and expert viewers are need to be involved for
assessing the performance. In addition, as per ITU recom-
mendation [29], equal viewing conditions are also needed for
all viewers for accuracy and fair comparison. On the other
hand, the fusion quality metrics quantify the performance of

a fusion process without involving the expert viewers. The
goal is to measure the amount of complementary information
transferred from the source images to the fused image. There-
fore, it is essential to use objective image quality metric,
which has relevance with the subjective quality measures for
validation purpose [30].

In order to quantify the performance of image fusion
framework, two assessment strategies are preferred, either
referenced or non-referenced assessment. In full referenced
assessment, the fused image is compared with a reference
image (or ground truth). However, ground truth is not always
obtainable in practical applications. The input source images
are used as a reference for quality assessment. The second
strategy, the quality assessment, is obtained from the fused
image without considering any reference or ground truth
and is called blind assessment. Numerous non-referenced
conventional objective performance measures including spa-
tial frequency (QSF ), average gradient (QAG), and entropy
(QH ) have been proposed [31,32]. The newly developed ref-
erenced assessment-based fusion performance measure has
been demonstrated by Xydeas and Petrovic [33] in which the
amount of edge information transferred from input images
to the fused image is evaluated. The detailed description of
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Fig. 10.14 3-D surface
visualization of fusion results of
Triceratium favus diatom: (a) 3-D
surface visualization of fusion
result shown in 10.11k, (b) 3-D
surface visualization of fusion
result shown in 10.11l, and (c)
3-D surface visualization of
fusion result shown in 10.11m

fusion performance measures is introduced in the following
sections.

10.5.1 Gradient-Based Fusion Performance
(QAB/F )

Xydeas and Petrovic [33] proposed a feature-based fusion
quality metric that evaluates the amount of edge information
transferred from input images to the fused image. A Sobel
operator is applied to yield the edge strength and orientation
information for each pixel. For two input images A and B,
and a resulting fused image F , the Sobel edge operator is
applied to compute edge strength e(m, n) and orientation
β(m, n) information of input image A for each pixel, which
can be defined as follows:

eA(m, n) =
√

sx
A(m, n)2 + s

y
A(m, n)2 (10.24)

βA(m, n) = tan−1

[
sx
A(m, n)

s
y
A(m, n)

]

(10.25)

where sx
A(m, n)2 and s

y
A(m, n) are horizontal and vertical

Sobel template cantered on pixel (m, n) and convolved with
the corresponding pixels of image A. The relative strength
and orientation values of an input image A with respect to F

are formed as:

(
GAF (m, n),AAF (m, n)

)

=
((

eF (m, n)

eA(m, n)

)ψ

, 1 − |βA(m, n) − βF (m, n)|
π/2

)

(10.26)

where ψ is

ψ =
{

1 if eA(m, n) > eF (m, n),

−1 otherwise
(10.27)

The edge strength and orientation preservation values can be
derived:

QAF
e (m, n) = Γe

1 + eκe(GAF (m,n)−σe)
(10.28)

QAF
β (m, n) = Γβ

1 + eκβ(AAF (m,n)−σβ)
(10.29)

where Γe,κe,σe and Γβ ,κβ ,σβ determine the shape of sigmoid
functions used to form the edge strength and orientation
preservation. Edge information preservation value is then
defined as follows:

QAF (m, n) = QAF
e (m, n)QAF

β (m, n) (10.30)

Finally, the metric value QAB/F is defined as:

QAB/F

=
∑N

n=1
∑M

m=1

(
QAF (m, n)ωA(m, n) + QBF (m, n)ωB(m, n)

)

∑N
n=1

∑M
m=1

(
ωA(m, n) + ωB(m, n)

)

(10.31)

which evaluates the sum of edge information preservation
values for both inputs QAF and QBF weighted by lo-
cal importance perceptual factors ωA and ωA. We defined
ωA(m, n) = [eA(m, n)]L and ωB(m, n) = [eB(m, n)]L,
where L is a constant.

For the “ideal fusion,” the sum of QAB/F , total loss of
information LAB/F , and noise added in the fused image due
to fusion process NAB/F should be equal to unity [32], as
shown in 10.32.

QAB/F + LAB/F + NAB/F = 1 (10.32)
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In most of the cases, fusion artifact measure introduced
in [33] could not lead to unity. In order to overcome this

problem, the revised fusion artifact measure was proposed
by B.K.S. Kumar [32], which is defined as follows:

Table 10.1 Quantitative
assessments of multifocus image
fusion results

Measure QAB/F LAB/F NAB/F Sum Eq. 10.32 QSF QAG QH

Actinocyclus ralfsii

MRD [24] 0.6658 0.3189 0.0153 1 8.774 7.363 5.781

TSD-MF 0.8891 0.0826 0.0283 1 9.289 10.403 6.024

Actinoptychus senarius

MRD [24] 0.2573 0.7331 0.0096 1 2.608 1.456 4.999

TSD-MF 0.5419 0.3849 0.0732 1 5.795 3.303 5.365

Triceratium favus (1/160 s)

MRD [24] 0.7157 0.2378 0.0465 1 3.971 2.219 5.892

TSD-MF 0.7587 0.1902 0.0511 1 4.040 2.255 5.780

Triceratium favus (1/100 s)

MRD [24] 0.7119 0.2292 0.0589 1 4.323 2.552 6.462

TSD-MF 0.7688 0.1507 0.0805 1 4.799 2.922 6.565

Triceratium pentacrinus (1/160 s)

MRD [24] 0.9361 0.0515 0.0124 1 3.895 1.936 4.762

TSD-MF 0.9265 0.0535 0.0200 1 4.330 2.200 4.671

Triceratium pentacrinus (1/100 s)

MRD [24] 0.8490 0.1365 0.0145 1 4.559 2.458 5.575

TSD-MF 0.8765 0.0953 0.0282 1 5.228 3.073 5.605

NAB/F =
∑N

n=1
∑M

m=1 AM(m, n)
[(

1 − QAF (m, n)
)
ωA(m, n) + (

1 − QBF (m, n)
)
ωB(m, n)

]

∑N
n=1

∑M
m=1

(
ωA(m, n) + ωB(m, n)

) (10.33)

where AM(m, n) indicates the location of fusion artifacts in
the fused image and is defined as follows:

AM(m, n) =
{

1 if eF (m, n) > eA(m, n) and eF (m, n) > eB(m, n),

0 otherwise
(10.34)

The outcomes of objective performance measures are tabu-
lated in Table 10.1.

10.5.2 Image Fusion Metric Based on Spatial
Frequency (QSF )

The spatial frequency, which is originated from the human
visual system (HVS), indicates the overall activity level in
an image and has led to an effective objective quality index
for image fusion [34]. The total spatial frequency of the
fused image is computed from row (RF) and column (CF)
frequencies of the image block and QSF is defined as:

QSF =
√

RF 2 + CF 2 (10.35)

RF =
√√√
√ 1

MN

M∑

m=1

N∑

n=1

(IF (m, n) − IF (m, n − 1))2

(10.36)

CF =
√√
√
√ 1

MN

M∑

m=1

N∑

n=1

(IF (m, n) − IF (m − 1, n))2

(10.37)

where IF (m, n) is the gray value of pixel at position (m, n)

of image IF .
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10.5.3 Average Gradient-Based Fusion Metric
(QAG)

It estimates a degree of clarity and sharpness in the fused
image and is computed as

Table 10.2 Comparison of
execution time in seconds (s).
The number of input images is
shown in brackets

Algorithm/operation Input read BL DL WB WD IF Total

Actinocyclus ralfsii 925 × 694 (3)

TSD-MF 0.05 0.41 0.02 7.06 7.06 0.08 14.64

Actinoptychus senarius 454 × 439 (5)

TSD-MF 0.08 0.21 0.01 3.30 3.30 0.04 6.86

Triceratium favus 2592 × 1728 × 3 (5)

TSD-MF 0.76 61.92 0.71 540.8 540.8 49.05 1194.1

QAG =
∑

i

∑
j

(
((IF (i, j) − IF (i + 1, j))2 + IF (i, j) − IF (i, j + 1))2

)1/2

mn
(10.38)

In general, we desire that a good image fusion method
should yield a higher score in terms of QAG.

10.5.4 Entropy-Based Fusion Metric (QH )

This metric is based on information theory. It quantifies the
amount of information present in the fused image, and is
defined as follows:

QH = −
255∑

k=0

pk log2pk (10.39)

where pk is the probability of intensity value k in an 8-bit
fused image.

To better analyze the performance of fusion approaches
with the help of assessment metrics, the outcomes of two-
scale decomposition-based weighted average multifocus
image fusion (TSD-MF) and the results proposed by
multi-resolution decomposition (MRD) [24] are given in
Table 10.1, better values are depicted in bold. The higher
the value of QAB/F is, better is the quality of the composite
image. On the other hand, the lower the values of LAB/F

and NAB/F are, the better the quality of composite image.
In relation to non-referenced quality metrics QSF , QAG,
and QH , higher values are expected from the ideal fusion
process. The analysis presented in Table 10.1 shows that on
six microscopy data sets the TSD-MF outperformed MSD.
It can be observed that TSD-MF has scored higher value
in terms of QAB/F and lower value in terms of LAB/F , for
all data sets except Triceratium Pentacrinus (acquired at

exposure time of 1/160 s). It can be noticed that MSD has
better performance in terms of NAB/F that gives the lower
metric outcome. On the other hand, MSD did not perform
well in terms of QAB/F and LAB/F . In terms of QSF , QAG,
and QH , TSD-MF has scored a higher value for all six data
sets. Thus, the performance of TSD-MF is excellent for
improving DOF, while avoiding visual artifacts.

10.6 Efficient Implementations

The average execution time of the TSD-MF algorithm on
microscopy data is presented in Table 10.2. The algorithm
is implemented in MATLAB 2014a and executed on the
machine with 3.70 GHz Intel Core i3 processor and 8 GB
RAM. The total execution time includes the n number of
source images read time, the BL computation time, the DL
computation time, the computation time of n number of
weight maps for BL, the computation time of n number
of weight maps for DL, and the computation time of the
resultant fused image generation, while the write time of the
resultant fused image is not included.

As shown in Table 10.2, the weight map refinement based
on WLS operator in Eq. 10.9 and Eq. 10.10 is the most time-
consuming. In our fusion approach, the WLS operator uses
the preconditioned conjugate gradients (PCG) [35]. It was
reported in [16] that the average time of PCG-based sparse
matrix solver is 3.5 s per megapixel on a 2.2 GHz Intel Core
2 Duo. We believe that the overall execution time of weight
map optimization can be reduced through an efficient GPU
implementation of the solver proposed by Weber et al. [36].
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10.7 Discussion and Conclusions

In this chapter, we have presented TSD-MF scheme that
can extend DOF of the fused image by selecting the in-
focus region from source images of diatom species. The
EOL is utilized as a criteria function that identifies the
in-focus region to compute the initial saliency maps. The
weight maps are determined by comparing the edge strength
that explicitly defined which region should be selected from
source images to obtain a single composite image. The
weight maps are hard, noisy, and not aligned with the object
boundaries, which are not suitable for pixel-level weighted
overage fusion. In this chapter, we have introduced a weight
map refinement approach based on WLS edge-preserving
operator. The results show that significant improvements
have been obtained by fusing BLs and DLs separately, with
different weight maps for BLs and DLs fusion rather than
same weight map.

We have observed that the appearance of details in the
multiexposure images of diatom species depends upon ex-
posure settings. By using exposure measure as a criteria
function, multiexposure images can be used to enhance
intricate micrometer-sized silica patterns of diatom. This
study has opened up a potent way to provide a clue to their
role in diatom identification and classification. The fusion
results from two very different data sets acquired at a shutter
speed of 1/160 s and a shutter speed of 1/100 s revealed that
further developments would undoubtedly perform better for
identification and classification of diatom species.

The quantitative analysis of fusion results using four
quality metrics clearly demonstrates that TSD-MF method
preserves more details to improve the clarity and sharpness
in the fused image. It should be noted that the fixed parameter
setting was used to obtain fusion results for all data sets. In
future work, we would like to experiment with more precise
parameter selection for improving the DOF of fused image.
Another direction for future work is to explore which GPU
implementation of sparse matrix solver might reduce the
execution time of our fusion method. In particular, we would
like to develop a more computationally efficient scheme
for generating the fused image with improved DOF and
robustness.
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