Chapter 8 )
From Vocal to Neural Encoding: A s
Transversal Investigation of Information
Transmission at Long Distance in Birds

Solveig C. Mouterde

Abstract Acoustic communication in the natural world requires both emitter and
receiver to adapt to the loss of information due to the transmission of sound in the
environment. At the emitter’s end, encoding information into propagation-resistant
features may ensure its transmission on ecologically relevant distances. At the
receiver’s end, making sense of the degraded signal merged with added noise
enables animals to produce behaviorally relevant responses. In this chapter, I use a
songbird model to investigate both sides of the transmission chain, examining how
individual vocal signatures are encoded, degraded and finally discriminated, with a
particular emphasis on the receiver’s neural encoding of degraded information. The
cornerstone of this focal study is the use of naturally degraded vocalizations,
combining various aspects of the challenges faced by animals performing auditory
scene analysis, in order to address the complexity of real-life ecological constraints.
While the individual signature of our songbird model, the zebra finch, is very
resistant to propagation-induced degradation, single neurons in the avian auditory
cortex have the ability to discriminate highly degraded individual vocal signatures,
without prior familiarization or training. In the light of past and recent findings in
birds and mammals, I delve further into significant insights uncovered by the
research on neural processing and ensemble coding, and discuss the roles of percep-
tual plasticity and learning in the neural interface between brain and behavior.

Communication is the fabric of animal sociality. It is the foundation on which
relationships between mates, rivals, or offspring develop, and population cohesion
is maintained. For individuals to communicate properly, both sides of the
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transmission chain must take an active part in the transfer of information. On one
end, the emitter sends an acoustical message through a coded signal that can
withstand some level of degradation induced by the propagation of sound through
the natural environment. At the other end, the receiver(s) make(s) sense of a complex
auditory stimulus (containing the potentially degraded initial signal merged with
added noise) to extract the relevant information it contains, that is, to decode the
signal. In this chapter, we will take a look at the whole picture, using a songbird
model to investigate how the information encoded in the original signal is degraded
through the environment, and how receivers deal with deciphering this altered
information, both on neurological and behavioral levels.

8.1 Active Space and Encoded Information in Animal
Vocalizations

In our endeavor, the notion of active space is interesting to consider because it
encompasses all aspects of the communication chain. The active space of a signal is
the distance from the source (emitter) over which the signal can be perceived by
potential receivers (Brenowitz 1982); it is of fundamental importance in acoustic
communication as it pertains to the biological relevance of propagated signals
(Marler and Slabbekoorn 2004). The active space of a signal depends on its coding
by the emitter, which may be the result of an adaptation to the species’ lifestyle and
environment; it is impacted by the acoustic constraints of the environment in which
the signal propagates, which can vary in time (e.g., biotic noise, weather conditions);
and it depends as well on the receivers’ psychoacoustic abilities, in other words, on
their capacity to perceive and decode the signal.

Within a given vocalization, the active space may also differ depending on the
type of information being transmitted by the emitter. The white-browed warbler
Basileuterus leucoblepharus provides a good illustration of this idea: the song of
male warblers contains information about their species, as well as their individual
identity (“individual signature,” Aubin et al. 2004). Researchers found that for this
bird living in the dense environment of the Brazilian tropical forest, species-specific
information in the male song was encoded in a resistant acoustic feature that
propagates at long distance (further than 100 m), while individually specific infor-
mation degraded rapidly with propagation, restricting individual recognition to
neighboring males (Mathevon et al. 2008). In this territorial species, being able to
recognize the identity of neighboring males is of critical importance to mediate the
male’s responses to a song emitted in the vicinity; only a song perceived as being
emitted by a stranger will elicit a response. Outside the territorial boundaries
however, the transmission of species-specific information in the song is useful to
inform potential intruders of the presence of a conspecific, but the added information
about individual identity is not strictly necessary. The active space of each type of
information in this species’ song is thus well adapted to its ecological requirements.
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Fig. 8.1 Spectrograms of a male and female zebra finch distance call. The color scale is in relative
dB as shown on the color bar, with 100 dB corresponding to the maximum amplitude observed

In other species, individual discrimination at long distance can be of critical
importance, e.g., in mated pairs that need to remain within earshot when visual
contact has been lost. This is the case for the zebra finch Taeniopygia guttata, a small
gregarious songbird from subarid regions of Australia, living in large flocks in open
grassy country with a scattering of trees and bushes (Zann 1996). Partners form
strong pair bonds for life, and because these opportunistic breeders live in a very
unpredictable environment, maintaining a strong pair bond between breeding events
while living in large fission—fusion groups that are constantly on the move is of
utmost importance. In this species, using a strong vocal recognition system could
avoid the cost of partners losing each other. Within the zebra finch repertoire, the
vocalization used for this purpose is the distance call, which was described by
Richard Zann (1984) as a loud call that “will prevent members of a pair getting
lost in vegetation but [it] probably serves to help them locate each other in flocks, in
which contact between mates may easily be lost, especially when alarmed.” The
distance call of zebra finches is a complex sound emitted by both sexes, consisting of
a harmonic series modulated in frequency as well as amplitude. It is sexually
dimorphic (Zann 1984; Vicario et al. 2001), the males’ fundamental frequency
being higher than the females’ (typically 650-1000 Hz vs. 500-600 Hz) as well as
usually being shorter and more frequency modulated (Fig. 8.1). It has been shown
that the distance call bears an individual signature, and that zebra finches are capable
of call-based individual recognition (Zann 1984; Vignal et al. 2004, 2008). Regard-
ing the active space of the individual signature in these calls, it has been estimated in
earlier studies, based on naturalistic observations as well as theoretical analyses, to
be up to around 100 m (Zann 1996; Lohr et al. 2003).

As a common thread throughout this chapter, I will use the vocal recognition
system of zebra finches as a model to study the impact of propagation-induced
degradation on information content, and investigate how the birds manage to decode
the degraded signals, while working within realistic biological constraints faced by
this species. For this purpose, I will focus on the individual identity encoded in
distance calls (that is, the individual vocal signature of the calls), and how the fine
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spectral and temporal acoustical structure needed for this task (Mathevon et al. 2008)
is encoded in the avian auditory system.

8.2 The “Issue” of Communicating at Long Distance
in a Natural Environment

When a friend talks to you from a few meters away, you will immediately recognize
his/her voice. If this same friend calls you from a few hundred meters away, you
might hear that it is a man or a woman calling, in any case a human being, but not
necessarily that this is your friend. Acoustic signals transmitted over long distances
through the atmosphere not only degrade in amplitude, but also in their spectral and
temporal structure, which may alter the original information (Wiley and Richards
1982; Forrest 1994). Intensity decreases as a result of spherical spreading, as well as
excess attenuation due to the nonhomogeneous environment. Changes in the spectral
characteristics of the signal can be due to masking ambient noise, atmospheric
absorption, and environmental filtering, whereas changes in the temporal domain
may be the result of the reflection, reverberation, and scattering of sound waves
(Forrest 1994). These modifications in the signal structure increase with the propa-
gation distance, which makes the transmission of information from emitter to
receiver(s) more and more difficult.

As an illustration of the difficulty of this task in the context of individual
discrimination, Fig. 8.2 shows the similarity between calls of pairs of different
male zebra finches as a function of propagation distance, from 2 to 256 m. The
similarity, which is shown here as the spectral correlation between calls, increases
with distance along with the propagation-induced signal degradation and the
decrease of the signal-to-noise ratio. As an example, and to further illustrate
the increasing difficulty of discriminating between individuals at long distance, the
spectrograms of the same calls from two different males are shown for various
propagation distances (Fig. 8.2). Note however that this propagation-induced deg-
radation of the signal is not solely a hindrance in animal communication, as receivers
can use it to locate the emitter and estimate the propagation distance (a process called
“ranging”’; Naguib 1995; Fotheringham 1997; Holland 1998).

At the receiver’s end, the challenge is to interpret this sensory information in
the auditory system and display behavioral responses that are adapted to the situation
and context. This ability to extract relevant information from a complex environment
and to interpret it in terms of behaviorally relevant objects, otherwise known as scene
analysis, is universal to species and sensory modalities (Lewicki et al. 2014). This
process is especially complex in the auditory context where sounds from various
sources and localizations, potentially degraded by transmission through the envi-
ronment, combine to form a single acoustical signal. While a number of studies have
highlighted the proficiency with which animals deal with this difficult task of
discriminating what is relevant from what is not in degraded auditory signals
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Fig. 8.2 Spectral correlations (i.e., similarity) between the distance calls of 17 pairs of male zebra
finches, as a function of propagation distance. Mean correlations are represented for each distance,
and error bars correspond to the standard deviation. Correlations were calculated between the mean
frequency spectra of each male. As an example, the spectrograms of the same calls from two
different males are shown for various distances (reproduced with permission from Mouterde et al.
2014a)

(Schnitzler and Flieger 1983; Aubin and Jouventin 2002; von der Emde 2004;
Appeltants et al. 2005), understanding the underlying biological mechanisms
involved in auditory scene analysis has proved particularly challenging for scientists
(Shamma et al. 2011), especially on the neurophysiological level. In order to
discriminate individual identity from vocalizations propagated at different distances,
neurons must show a certain degree of perceptual invariance, that is, some stability
in their responses to stimuli showing large variations in their acoustic parameters
(Bregman 1993). A number of studies dealing with auditory scene analysis and
individual discrimination or recognition in birds have revealed important insights on
specific aspects of this question, such as invariance to intensity or background noise
(Billimoria et al. 2008; Moore et al. 2013; Schneider and Woolley 2013), or
individual recognition of undegraded signals (Chew et al. 1996; Gentner 2004).
However, concern has been recently raised that studies on scene analysis do not
address the complexity of the problems that need to be solved in natural settings;
researchers were thus encouraged to focus more on the real-life issues faced by
animals in their natural environment (Lewicki et al. 2014). Furthermore, since the
auditory system of animals has evolved to process behaviorally relevant natural
sounds (Mizrahi et al. 2014), using natural stimuli to investigate auditory scene
analysis would be the best way to understand the neural computations at play
(Theunissen and Elie 2014).

In the study presented as a common theme in this chapter, naturally degraded
vocalizations were used in order to reflect ecologically relevant stimuli and behaviors
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for our songbird model. The degraded calls shown in Fig. 8.2 were recorded in a
natural environment, on a flat field and in low wind conditions, at a height of 1.30 m
and at propagation distances ranging from 2 to 256 m (for more details on
the recordings, see Mouterde et al. (2014b)). In these calls, the reduction of the
signal-to-noise ratio is due to the combined effects of attenuation, sound degradation,
and ambient noise. In order to explore the real-life issue of partner acoustic recogni-
tion in our zebra finch model, we used these naturally degraded calls to investigate
individual discrimination in different facets of the communication chain, from emitter
to receiver.

8.3 The Coding of Individual Vocal Signatures
in Propagated Calls

In the natural environment, communication distance is affected by a number of
factors pertaining to the signal’s emitter. An obvious one is the loudness of vocal-
izations, which may have evolved to serve a territorial function in the case of songs
for example (Brenowitz 1982), and which can in any case vary due to proximal
causes such as noise (Cynx et al. 1998; Brumm and Todt 2002). Active space can be
enhanced (or conserved in adverse environmental conditions) by repeating the signal
and thus increasing the redundancy of encoded information, or emitting the signal at
a certain localization or time (Brumm and Naguib 2009). While these findings shed
light on the emitters’ capacity to adapt to various transmission conditions, investi-
gating how the information is encoded in the spectro-temporal features of the
vocalization itself, and how it is affected by long-distance propagation, is critical
to understand how the receivers solve the issue of interpreting degraded signals at the
other side of the communication chain. The first studies investigating the actual
information content of propagated calls mostly dealt with species-specific informa-
tion, providing significant insights into the link between birds’ vocalizations and
their habitat. Indeed, the coding of information in acoustic signals is generally based
on features that are resistant to propagation, depending on the environmental acous-
tics that are characteristic of the habitat (Morton 1975; Mathevon and Aubin 1997).
Generalities can be drawn: the most important acoustic features for species discrim-
ination are usually found in a frequency bandwidth that is less degraded through
propagation (Brenowitz 1982), and within this bandwidth, frequency modulation
can mediate the discriminability of the information (Brémond and Aubin 1990;
Mathevon et al. 1997). These observations form the basis for further investigations
into the long-range degradation of finer grained information such as individual
identity. In this respect, research has been rather scarce. Two previous studies
using birds have been published on the subject; in the white-browed warbler,
mentioned earlier in this chapter, the individual signature is encoded in songs in a
succession of pure tones decreasing in frequency (Aubin et al. 2004; Mathevon et al.
2008). Conversely, in the male corncrake Crex crex, individuality is coded in
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propagated calls in the inter-pulse duration (Rek and Osiejuk 2011). In these
examples, individual signatures are encoded in either the spectral or the temporal
domain, with pure tones or pulses.

Let us now consider the propagation-induced information loss in complex
sounds, i.e., in vocalizations displaying wide frequency bandwidths together with
amplitude and frequency modulations. The conundrum in this case is to calculate the
appropriate parameters for the acoustic analysis: in calls propagated at long distance,
it is not possible to describe precisely the spectro-temporal features such as param-
eters following closely the fundamental frequency and its variation in time. These
parameters, frequently used in studies investigating individual signatures
(Guyomarc’h et al. 1998; Naguib et al. 2001; Vignal et al. 2008), are impossible
to calculate here with reasonable precision, with the fundamental frequency pro-
gressively disappearing within the background noise, and the low resolution of the
temporal characteristics hindering the calculation of even basic measurements such
as the calls’ duration. In the first step of our focal study, this challenge was tackled by
performing a sound transmission experiment using zebra finch calls, with the aim of
characterizing and quantifying the degradation of the calls’ individual signature
during propagation. To this end, 16 exemplars of distance calls from each of
16 female and 16 male individuals (that is, 512 calls) were recorded at five propa-
gation distances, from 2 to 256 m. The calls were then characterized using two
distinct sets of acoustic parameters. The first set, which will be called “envelope
parameters”, described separately the spectral envelope (amplitude in the spectral
domain) and the temporal envelope (amplitude in the temporal domain) of each call.
The second set used the complete spectrogram, in an attempt to circumvent the use of
subjective assumptions on the nature of information-bearing acoustical features in
the calls. A principal components analysis was used to reduce the high dimension-
ality to a manageable set of parameters describing the variability of the calls,
subsequently called the “spectrogram principal component” or “SPC” parameters.
To test for the presence of an individual acoustic signature in the propagated calls,
discriminant function analyses were performed separately for each sex and each
propagation distance (Mouterde et al. 2014b). These analyses yielded percentages of
correct classification of calls (PCC), which quantified the discriminability of differ-
ent individuals within each sex and for each distance; a percentage value over the
chance level (1 over 16 individuals) shows the existence of individualized acoustic
features in the calls.

We found that the individual vocal signature encoded in the distance calls of
zebra finches is remarkably resistant to propagation-induced sound degradation.
Figure 8.3 shows the percentages of correct classification, that is, the individual
discriminability, as a function of propagation distance, for each set of parameters and
each sex.

While the individual discriminability of calls logically decreases with distance, it
is still well over the chance level at 128 m for both sets of parameters, and up to
256 m for the SPC parameters. SPC parameters yield higher discriminability values
than envelope parameters, especially at longer distances, which can be explained by
the fact that while the envelope parameters take spectral and temporal features into
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Fig. 8.3 Mean percentages of correct classification (i.e., individual discriminability) obtained for
each propagation distance and both sexes. SPC parameters are represented as solid lines and
envelope parameters as dash-dot lines. Standard deviations are indicated. The chance level,
corresponding to 6.25% of correct classification, is shown as a horizontal dotted line (reproduced
from Mouterde et al. 2014b)

account separately, SPC parameters are extracted from the full spectrogram, thus
also describing the joint spectro-temporal variations in the calls such as up- or down-
sweeps (Mouterde et al. 2014b). We also found that at short distances, both sets of
parameters yield similar discrimination performances for males (the performance of
the envelope parameters decreasing rapidly at 64 and 128 m), while for females the
envelope parameters lead to noticeably lower discriminability values. Hence, the
added information available in the SPC parameters is not indispensable for discrim-
inating between males at short distances, the information extracted separately from
the spectral and temporal domains (envelope parameters) being sufficient to yield
equally high discrimination performances. This difference in coding properties is
well illustrated in Fig. 8.4, which shows the first three discriminant functions (DFs)
calculated in the analysis for the SPC parameters, represented in the spectrographic
space at short, medium, and long distance. In other words, Fig. 8.4 is a description of
the most important features in the spectrogram that can be used to discriminate
between individuals at various distances: red bands show features whose presence is
important for individual discrimination, while blue bands show features whose
absence is important. One can observe that while the available frequency bandwidth
shrinks with distance, fine spectral cues (as seen on the stacks of red and blue narrow
bands) are useful at all distances, and for both sexes. Interestingly, at short and
medium distance, the DFs pertaining to male calls do not look at all like the
spectrographic representation of an average male call, the faster and more predom-
inant down-sweep component in particular (seen on Fig. 8.1) being absent for short
and medium distances and only appearing at 128 m (not shown on Fig. 8.4) and
256 m (DF2 and DF3, Fig. 8.4).
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Fig. 8.4 Representation of the discriminant functions (DFs) projected into the spectrographic space
for the SPC parameters. The first three DFs, obtained from the SPC parameters, are shown for
females (left) and males (right). Each row indicates the propagation distance used to perform the
discriminant function analysis. Positive frequency bands are shown in red and negative bands in
blue. This representation describes the most important features in the spectrogram that can be used
to discriminate between individuals at various distances (adapted with permission from Mouterde
et al. 2014b)

This corroborates our previous conclusions, in the sense that while information
about frequency modulation is not necessary to discriminate between males at close
range, it becomes critical at long distance in order to maintain individual discrimi-
nability above the chance level. Thus, while it was already known that the down-
sweep component of male calls is highly individualized (Vignal et al. 2008), this
study shows that the same level of individualization can be found at close range in
male calls using parameters describing only its energy spectrum and its temporal
variation in amplitude. This redundancy in the coding of the individual signature,
clearly shown here for the male calls, is also found for the female calls of zebra
finches, albeit to a lesser extent (Mouterde et al. 2014b); indeed, in females, the
information about spectro-temporal modulations is important at all distances to
obtain higher discrimination performances.

In a real-life situation, redundant coding of information within a single short call
can make all the difference in terms of communicating efficiently in ever-changing
conditions. Let me be clear: the furthest propagation distance (256 m) advertised
here as still enabling the transmission of individualized information in the distance
calls of zebra finches is the result of a transmission experiment performed on a
specific day, with specific weather conditions and background noise. While testing at
longer distances might have pushed the boundary of theoretical active space a little
further, tougher recording conditions (wind, biotic noise) could have drastically
reduced it (Brumm and Naguib 2009). In this respect, redundantly coded informa-
tion in vocalizations may help maintain efficient communication at shorter distances
despite the varying conditions in the environment in which communication takes
place.
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We will now turn to the other side of the communication chain to investigate how
receivers optimize the gained information and in particular, which neurophysiolog-
ical processes are at play to make sense of this degraded acoustic information.

8.4 Signal Decoding: Investigating the Neural Substrate
for Auditory Scene Analysis

8.4.1 Increasing Selectivity for Behaviorally Relevant
Features Along the Auditory Pathway

In order for a bird to appropriately respond to information encoded in a naturally
propagated vocalization, it must have the neural ability to make sense of this
auditory input. This process involves discriminating the relevant features in per-
ceived sounds, that is, showing a higher selectivity for the type of information that is
relevant to the animal. Indeed, as auditory information from the sensory system
ascends the avian auditory pathway through the midbrain, thalamus and into the
auditory cortex, itself divided into a primary (field L complex, a region that is
analogous to the primary auditory cortex of mammals) and a secondary region
(caudal mesopallium or CM; caudomedial nidopallium or NCM), neurons show an
increasing selectivity in their responses for natural sounds (Theunissen et al. 2004;
Woolley 2006). In particular, high selectivity for conspecific songs has been found in
both primary and secondary regions of the auditory cortex (Grace et al. 2003; Hsu
et al. 2004; Theunissen and Shaevitz 2006; Hauber et al. 2007). These findings
support a hierarchical view of auditory processing, in which neurons in the lower
pathway tune to simple low-level acoustic features and send their combined inputs to
the forebrain neurons, which in turn detect more complex natural sound features
(Woolley et al. 2009; Meliza et al. 2010; Theunissen and Elie 2014). This hierar-
chical sensory processing enables the representation of sounds as auditory objects
(i.e., stable perceptual units), reflecting the system’s transformation of an acoustic
waveform from low-level sensory representation into perceptual representations that
are behaviorally relevant to the organism (Christison-Lagay et al. 2015). A number
of studies suggest that further hierarchical processing occurs within the auditory
cortex (Meliza and Margoliash 2012), with secondary auditory areas encoding
stimulus surprise (Gill et al. 2008) or playing a major role in learned auditory
discriminations (Gentner 2004; Pinaud and Terleph 2008; Jeanne et al. 2011).

In the context of auditory scene analysis, signal decoding also implies extracting
the biologically relevant information content from the noise in the perceived sound,
whether the decrease in signal-to-noise ratio (SNR) stems from the noise level itself
or the reduction of signal intensity due to propagation. This process starts in the
peripheral auditory system, in which a selective frequency tuning process breaks
complex sounds into their frequency components (Fay and Popper 2000). This
tonotopic organization can improve the SNR for the representation and detection
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of acoustic signals by reducing the masking interference from background noise
when signal and noise are in different frequency bandwidths (Klump 1996; Fay and
Popper 2000). Further along the ascending pathway, neurons in Field L have been
shown to adjust their spectral tuning properties to the characteristics of background
noise, enhancing their frequency selectivity as a result (Nieder and Klump 1999).
This dynamic sharpening of auditory filters in the auditory forebrain of birds echoes
the idea, also investigated in mammals, that higher-level neural processing enables
an increased tolerance for noise (Rabinowitz et al. 2013). Indeed, two
electrophysiology-based studies on zebra finches found noise-invariant coding in
neurons in NCM responding to familiar and unfamiliar songs from conspecifics
(Moore et al. 2013; Schneider and Woolley 2013). Another study described a
population of field L neurons able to discriminate between bird songs while being
invariant to intensity, showing a link between invariance and discrimination perfor-
mance (Billimoria et al. 2008). This increased tolerance in the auditory forebrain for
variations in the signal’s characteristics would indeed be an important factor of
success in the task of discriminating between individuals at a distance in a natural
environment.

8.4.2 Discrimination of Naturally Degraded Individual Vocal
Signatures in Single Cortical Neurons

In these studies above, the overall acoustical quality of the vocalizations used as
stimuli was preserved, and thus the question of how the songbird brain deals with the
impact of propagation-induced degradations as naturally experienced by the animals
when communicating at long range was yet to be investigated. Using the previously
described database of propagated distance calls, we tested zebra finches’ brains with
some rather tough questions: are there single auditory neurons that are able to
discriminate such fine-detailed information as individual identity in short vocaliza-
tions like distance calls, using not simply individual calls but multiple call exemplars
from each individual, after they have been naturally degraded through propagation?
Is such a discrimination capacity possible spontaneously, without prior experience of
long-range propagation or prior knowledge of the individuals used as stimuli, and
with little help from higher order neural processes such as attentional mechanisms?
To answer these questions, extracellular electrophysiological recordings were
performed on anaesthetized zebra finches, spanning the whole auditory forebrain,
to test whether neurons from these aviary-reared subjects could discriminate indi-
vidual identity in unfamiliar degraded distance calls of males or females (stimuli
from each sex being tested separately, on different recording sites). From this
multiunit data we identified single auditory units and analyzed their responses
(Mouterde et al. 2017). We found neurons showing high discrimination of the
identity of unfamiliar vocalizing birds, at short as well as long distances: these
neurons are able to code distinct individuals differently, and maintain some aspects
of this code across all tested distances, from 2 to 256 m (Fig. 8.5). As an example, a
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Fig. 8.5 Comparison of the responses of a unit highly discriminative for the signature of individual
vocalizers to the call of two different males, at three tested distances. For each propagation distance,
the spectrogram of the stimulus call is shown on top, followed by the spike trains for the eight
recorded presentations, and by the peristimulus time histogram averaging these eight presentations.
Sound frequency is given in kilohertz and rate in spikes per second (adapted with permission from
Mouterde et al. 2017)

high-performance neuron discriminating between multiple calls from four different
males showed a percentage of correct classification (PCC) over the chance level of
66.8% at 2 m, and 34.4% at 256 m (the chance level being 25% in this case). This
impressive ability would require a high degree of invariance to decreasing signal-to-
noise ratio and/or sound intensity, as well as the ability to extract parameters
encoding individual identity in calls from previously unknown vocalizers.
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In order to disentangle the overall effect of sound propagation through natural
environment from the mere effect of intensity decrease, we compared the units’
responses to naturally degraded calls to their responses to synthetic calls that
mimicked the intensity decrease of the naturally degraded calls, but with the same
high SNR as the one observed for the calls recorded at 2 m. We found that these units
are remarkably invariant to the signal degradation and to large decreases in SNR
induced by long-range propagation, the decline in discrimination performance being
mostly a result of the intensity decrease (Mouterde et al. 2017). Interestingly, we did
not find that the neural substrate for the discrimination of individuals in degraded
calls was linked to specific traditional auditory areas (field L, NCM etc.), but we did
find a distinctive spatial distribution of these neurons, the units most discriminative
of individual identity being mostly found in superficial as well as deep regions of the
auditory cortex.

Looking further into the coding properties of these discriminant neurons, we
examined the spikes (or action potentials) which fired in response to the propagated
calls, and calculated for each unit the length of the encoding time window yielding
the highest discrimination performance for individual identity; the encoding time
window is defined as the duration of the spike train assumed to correspond to a single
symbol in the neural code (Theunissen and Miller 1995). This analysis also enabled
us to investigate different temporal resolutions for the neural code depending on the
length of the time window, exploring at one end the mean firing rate over the
stimulus (rate code), and on the other end the fine temporal structure of the spike
train, that is, the actual patterns of spikes within the encoding time window (temporal
code). We found that while the average spike rate during the whole stimulus
presentation was related to the discrimination performance, the precise timing of
the spike patterns within a shorter encoding time window provided more information
regarding the coding of individual identity in degraded calls. This observation is in
line with a number of studies showing that neurons use a spike timing strategy to
encode vocalizations (Narayan et al. 2006; Huetz et al. 2011; Gaucher et al. 2013;
Lopes-dos-Santos et al. 2015). Furthermore, sensory neurons have been shown to
encode different stimulus attributes on different temporal scales, resulting in a
temporal multiplexing of information (Panzeri et al. 2010). We investigated how
the units coded for propagation distance as well as individual identity, and indeed
found units coding for both types of information, using respectively longer (~30 ms)
and shorter (~10 ms) encoding time windows (Mouterde et al. 2017). This
multiplexing ability enhances the encoding capacity of neural responses, enabling
disambiguation of stimuli that cannot be discriminated at a single timescale and
making sensory representations more stable in regard to variability. Temporal
multiplexing is thus acknowledged as a strategy used by the brain to create
information-rich and stable representations of noisy and variable environments
(Panzeri et al. 2010), and could be a key factor in efficiently decoding the individual
signature in propagated vocalizations.

It is interesting to compare the performance level of the most discriminant
neurons to the performance obtained in the acoustic analysis previously described.
For males for example (and using SPC parameters, see Sect. 8.3), the mean PCC
over the chance level is 76.4% at 2 m and 42.1% at 256 m following the acoustic
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analysis, compared to respectively 66.8% and 34.4% for the most discriminant
neuron tested with male calls. Although these values correspond to two different
assessments of discriminability (statistical discrimination from the calls’ acoustical
structure versus between-calls discrimination ability by one particular neuron), this
comparison implies that some neurons are able to take the best advantage of the
information still remaining after long-distance propagation. Indeed, these observa-
tions highlight the fact that neurons may be able to retrieve a comparable, if
somewhat lower amount of information at long distance than what was theoretically
calculated using acoustical features optimized for that distance. These results show
that complex processing of higher order acoustic features occurs at the level of the
single neuron.

8.4.3 Ensemble Coding: The Auditory System as a Neural
Network

We will now take a step back and consider the brain, processing information through
a network of interconnected neurons, each of which carrying complementary infor-
mation about the auditory stimuli. While single neurons can encode information on
different timescales, ensembles of neurons can also process information on different
spatial scales, their synchronization properties potentially generating an additional
layer of sensory processing (Quian Quiroga and Panzeri 2009; Panzeri et al. 2010).
Investigating the population code, defined as a neural representation in which
information is conveyed by relative amounts of activity across multiple elements
of an array (Covey 2000), has thus become the focus of a number of neurophysio-
logical studies. Feng and Ratnam (2000) stated that an important and unresolved
issue was to determine at which level of complexity certain features are represented
in single neurons while others are represented across groups of synchronized
neurons. It has been found since that information processing by single neurons can
reach a level of complexity that had not been shown before in the context of auditory
scene analysis (Mouterde et al. 2017). Of course, since each individual neuron
receives excitatory and inhibitory inputs from a population of neurons that are
lower in the ascending pathway, the analysis of single neurons in the auditory cortex
is in itself a “readout” of a population code, each neuron’s response being a
computation of all these convergent inputs (Covey 2000). Taking into account the
coordinated activity of a population of cortical neurons, however, could provide
access to higher-order levels of sensory information and enhance the information-
carrying capability of the auditory cortex (Woolley 2006; Kayser et al. 2009).
Depending on the tuning curves of the neural population involved, a population
code would either increase the range of stimulus features encoded by that population,
or lead to a better discrimination of stimulus features (Panzeri et al. 2015). Previous
studies on mammals suggested that ensemble coding could be critical to various
auditory processes, such as auditory stream formation (defined as a series of sounds
that is perceived by the listener as a coherent entity; Fishman et al. 2001; Shamma
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etal. 2011), sound source localization (Fitzpatrick et al. 1997; Miller and Recanzone
2009) or sound level encoding (Dean et al. 2005). Another interesting observation is
that the brain encodes sensory information using a small number of active neurons at
any given point in time, this strategy being referred to as “sparse coding” (Olshausen
and Field 2004). Regarding auditory scene analysis, a spatially distributed popula-
tion code, much like temporal multiplexing, can stabilize the sensory representation
to external or internal noise (Kayser et al. 2009).

In birds, the representation of complex sounds by synchronized activation of
groups of neurons has been observed in the song system (Margoliash et al. 1994)
and the encoding of unexpected auditory events (Beckers and Gahr 2012). Further
research is needed to analyze ensemble codes in the field of sensory processing; in
particular, it remains to be determined how further gains in the neural discrimination of
identity in naturally propagated calls could be achieved by examining the population
code. I hypothesize that we could estimate the stimulus intensity from the ensemble
responses of cortical neurons; as explained earlier, the most discriminant units for
individual identity in degraded calls that we found were mostly affected by intensity
decrease while being highly invariant to large decreases in SNR and degradations of
the signals’ spectro-temporal features (Mouterde et al. 2017). Investigating the neural
population code could improve the sound level coding accuracy (Dean et al. 2005). In
recent years, a number of new analysis techniques for information processing in neural
networks have been developed, which would be of interest to researchers aiming to
study these questions further (Mahmud and Vassanelli 2016). In addition to spatial
population coding (including accounting for the various encoding timescales of the
single neurons encompassed in the recorded population), imaging techniques such as
functional magnetic resonance imaging have proved useful (Boumans et al. 2008), as
well as the analysis of mass signals such as local field potentials (LFPs). LFPs are
extracellularly recorded potentials with frequencies of up to ~500 Hz that reflect the
slow fluctuations of neural activity of local cortical networks, thus providing an
aggregate measure of local sub-threshold integrative processes and network state
changes that are not reflected in spike trains (Kayser et al. 2009; Einevoll et al.
2013). It has been found that combining the analyses of simultaneously recorded
LFPs and spikes provided more information about cortical activity (Quian Quiroga
and Panzeri 2009; Einevoll et al. 2013). In particular, the nested combination of spike
patterns with the phase of low-frequency network rhythms was highlighted as an
especially promising code, as it was found to be most informative and provided
robustness to noise (Kayser et al. 2009). Slow cortical thythms thus help stabilize
neural codes to the detrimental effects of sensory noise, and taking into account such
nested combinations of codes in the study of auditory scene analyses might majorly
increase our understanding of the processes involved in the discrimination of individ-
ual signatures in naturally degraded vocalizations.

As tempting as it may be, however, to think that we are now close to finding the
key to how the brain as a neural network decrypts information encoded in sounds,
and to predicting reliably the subsequent behavioral responses, some important
issues need to be addressed. First, given the sheer size of the auditory system’s
network of interconnected neurons, most decoding algorithms may fail to decode
stimuli owing to a high-dimensional response space or the use of incorrect
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assumptions about the neuronal code actually used (Quian Quiroga and Panzeri
2009). While recent studies have focused on methods for dimensionality reduction
(Cunningham and Yu 2014), interesting findings suggest that a small-dimensional
subspace of the experimentally measured activity may be sufficient to explain the
population dynamics underlying sensory processing (Bathellier et al. 2012; Panzeri
et al. 2015). Second, neural responses are sensitive to context, which constitutes a
substantial source of variability. This may relate to sounds that have occurred at
specific times prior to the stimulus under consideration (Covey 2000; Mizrahi et al.
2014); an illustration of this sensitivity to context is the fact that we are better at
discriminating frequency relationships (e.g., recognizing a melody regardless of the
key in which it is played) than we are at making absolute frequency judgments, (e.g.,
having absolute pitch). Context also relates to the internal state of the brain, which
may or may not be mediated by the animal’s environment. Cortical states can vary
along a continuum of synchronized and desynchronized states. A synchronized state
(commonly observed during slow-wave sleep and anesthesia) is characterized by
slow fluctuations between intrinsically generated up and down states, while in a
desynchronized state (commonly observed during sensory processing in awake
animals), activity is strongly modulated by sensory inputs (Pachitariu et al. 2015).
It has been found in mammals that variations in brain state accounted for a signif-
icant amount of the variability in population activity, the cortical state modulating
the selectivity and reliability of spike patterns and impacting the fidelity of the
population code as a result (Curto et al. 2009; Pachitariu et al. 2015). This cortical
state can vary with behavioral and cognitive states, and may play a key role in
shaping the responses of the awake cortex to sensory stimuli (Curto et al. 2009). In
anaesthetized animals, the internal synchronous activity of neural networks has been
found to be involved in the neural processing of context-dependent auditory infor-
mation in the secondary auditory areas of zebra finches (Beckers and Gahr 2012).
Since the behavioral state has a major impact on the neural interpretation of auditory
stimuli, and since a neuronal code yielding high information values might not be
biologically relevant in the sense that neural systems might not be capable of
exploiting all of this information (Quian Quiroga and Panzeri 2009; Nagel et al.
2011), it is critical to understand how neural activity in sensory cortices relates to
perception, so as to bridge the gap between neural processing and behavior. This is
how we will come closer to understanding the neural interface between animals and
their environment.

8.5 In Search of the Neural Interface Between Brain
and Behavior

8.5.1 The Role of Conscious Perception on Neural Processing

We will now turn toward the role of attentional and learning mechanisms in the
neural encoding of auditory information. In the zebra finch study described earlier
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(see Sect. 8.4.2), the subjects were anaesthetized with urethane, which, as we saw
above, would induce a different brain state than that of awake animals. What, then,
would be the potential benefits of the attentional mechanisms found in awake
animals in terms of discrimination of auditory objects? A number of studies have
compared neural activity in both awake and anaesthetized songbirds in response to
vocalizations, and produced controversial results. Studies examining the impact of
urethane anesthesia on the midbrain (Schumacher et al. 2011), primary (Narayan
et al. 2006) and secondary auditory cortex (Meliza et al. 2010) of zebra finches have
found that while some parameters (such as neural excitability, spike precision or
inter-trial correlation) differed between anaesthetized and awake states, anesthesia
did not affect the discrimination of songs or selectivity for song motifs. In contrast,
other studies using songbirds found important changes in neuronal preferences
between both states (Capsius and Leppelsack 1996; Schmidt and Konishi 1998;
Karino et al. 2016). In an effort to address this apparent discrepancy, Karino et al.
(2016) argued that anesthesia might modify the balance of neuronal preference
between behaviorally significant auditory signals and nonsignificant sounds; vigi-
lance and attention may thus be required in order to produce the appropriate
behavioral responses toward particularly meaningful vocalizations. Interestingly,
in a study investigating neurons in the secondary auditory cortex of anaesthetized
zebra finches that responded preferentially to unexpected sounds (on the basis of
recent stimulus history), Beckers and Gahr (2012) found an internally synchronized
neural network that may reflect an early-stage process involved in the involuntary
capturing of attention. In any case, attentional processes might indeed be useful in
the task of extracting individual signatures from degraded and potentially noisy
signals, which is faced by animals in their natural environment. In humans,
Christison-Lagay et al. (2015) found that selective attention acts by enhancing the
cortical representations of the attended sound streams, the population-level activity
in the presence of competing sound streams reflecting primarily the activity in
response to the attended stream in isolation compared to that of the ignored stream.

These observations spark the debate on the relative involvement of
ascending vs. centrifugal pathways in the perception of behaviorally relevant audi-
tory objects. On one hand, the neural representation of sounds is transformed
systematically along the ascending auditory pathway, leading to integration in
time, frequency, and space domains and allowing the extraction of behaviorally
relevant features (Feng and Ratnam 2000). This “bottom-up” process is driven
predictably by patterns of acoustic variations in the stimulus (Gentner 2004). On
the other hand, this information flow is subject to dynamic modulation by a
descending auditory pathway that runs from the cortex to the cochlea and which is
largely independent of any particular acoustic feature (Feng and Ratnam 2000;
Gentner 2004). These “top-down” mechanisms enhance the response of some
neurons while decreasing the response of others (Jen et al. 1998), and may thus
form the basis for attention, motivation, and/or reward mechanisms, enabling ani-
mals to acquire information about one or two auditory objects while ignoring others.
The role of this centrifugal pathway is particularly useful for the extraction of signals
in difficult listening conditions (Feng and Ratnam 2000). In this light, the
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interpretation of an auditory scene consists of a selection of particular auditory
objects through a combination of bottom-up object salience and top-down attention,
filtered by experience and expectation (Middlebrooks and Simon 2017).

While we have found that bottom-up processes can discriminate very fine-
detailed information such as information about individual identity and propagation
distance in highly degraded calls (Mouterde et al. 2017), the next step is to inves-
tigate how top-down processes, in the form of conscious perception, can further
improve sensory processing. Can a bird learn to better discriminate degraded
information in these signals over time?

8.5.2 Perceptual Learning: Pushing the Limits
of Discrimination

Perceptual learning, a manifestation of experience-dependent plasticity in the sen-
sory systems, occurs at the developmental stage as well as throughout adult life
(Seitz and Dinse 2007; Dahmen and King 2007). It involves improved sensitivity
independent of cognitive, motor or other, non-perceptual factors (Gold and
Watanabe 2010). Interestingly, while attention and behavioral reinforcement medi-
ate the selection and learning of only the information that is deemed to be of
importance, perceptual learning has been found to occur not only under training
conditions but also in situations that lack attention and reinforcement (Seitz and
Dinse 2007). As an example, unreinforced learning of song discrimination has been
shown to occur rapidly in zebra finches, after 3 hours of passive song exposure
(Stripling et al. 2003). Seitz and Dinse (2007) have thus suggested that in order for
learning to occur, sensory stimulation needs to be sufficient to drive the neural
system past the point of a learning threshold. The added “layer” of attention and
conscious perception however seems necessary for memory consolidation (Gilbert
et al. 2001). The study of perceptual plasticity at the receiver’s level has been
generally overlooked in auditory scene analysis, comparatively to the extensive
research that has been conducted on the vocal plasticity of emitters in the context
of difficult communication conditions (Pohl et al. 2012; Slabbekoorn 2013). While
perceptual learning may increase the discrimination of specific acoustic features,
how efficient can it be when approaching the limit of sensory perception? In other
words, at which point will the inherent limits of the auditory system hinder any
potential improvements due to perceptual learning?

As a last step in our focal study on the discrimination of degraded vocal
signatures in zebra finches’ calls, we investigated the role of experience in the
discrimination performance of highly degraded calls. Adult female zebra finches
were used in forced-choice conditioning experiments, in which the results of two
different protocols were compared. In both protocols, the females were asked to
discriminate between the propagated calls of two unfamiliar males. In the first
protocol, the subjects learned to discriminate between a number of calls of two
males recorded at short range before being systematically challenged with the calls
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of the same males recorded at longer distances. In the second protocol, the subjects
were challenged daily with a different pair of males and with a randomly selected
propagation distance, and thus did not have the possibility to learn from their
previous experience in the task. We found that the subjects were able to discriminate
between the degraded calls of male zebra finches at up to 128 m without training, and
up to 256 m with training. This augmented performance in the training condition
suggests that the subjects enhanced their discrimination abilities through perceptual
learning, even in a very difficult listening situation (Mouterde et al. 2014a).

On a physiological level, while it is a challenge to identify the changes in
neuronal response properties that are causally related to the perceptual improve-
ments, evidence for learning-related changes in the auditory cortex have accumu-
lated, with the learning process resulting in an expanded representation of the trained
features (Recanzone et al. 1993). Indeed, devoting more neurons to processing those
aspects of a sensory stimulus that have particular behavioral relevance may seem like
a plausible way of improving perceptual acuity (Dahmen and King 2007). In
songbirds, the modification of neurons’ encoding properties following experience-
dependent perceptual plasticity was found in the secondary auditory regions, CMM
(Gentner and Margoliash 2003), NCM (Pinaud and Terleph 2008), and in a lesser
extent, CLM (Jeanne et al. 201 1)—the latter authors suggesting that CLM and CMM
are a part of a functional hierarchical neural circuit. These regions contribute to the
recognition of familiar songs, and the learning of novel song discriminations
(Gentner et al. 2004). Another important issue is to disentangle the effects of
bottom-up and top-down processes in perceptual learning (Gentner 2004). While
some studies supported the idea of a top-down control of perceptual learning,
showing its strong interaction with attention (Ahissar and Hochstein 1993; Gilbert
et al. 2001), other studies showed that perceptual learning can occur not only under
training conditions but also in situations of unattended and passive sensory stimu-
lation (Stripling et al. 2003; Seitz and Dinse 2007). Overall, it is probable that the
plasticity in adult cortical networks that accompanies perceptual learning is shaped
by an interaction between bottom-up sensory inputs, neuromodulator release, and
task-specific top-down inputs (Gentner 2004; Polley et al. 2006; Dahmen and King
2007). Training facilitates these processes by strengthening both bottom-up sensory
encoding and top-down modulation of the auditory cortex (Caras and Sanes 2017).

8.5.3 A Neural Substrate Readily Available
Jor the Discrimination of Fine-Detailed Information

While we have found that zebra finch females could not discriminate between the
naturally degraded vocal identities of males at 256 m without training, some single
neurons in naive birds had the capacity to perform this task. Keeping in mind that
both studies involved different subjects (but the same auditory stimuli), it seems that
for a comparable level of training, this discrimination ability found at the neural level
is not shown at the behavioral level. This finding is interesting in regards to previous
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studies that have shown in a number of sensory systems that behavioral discrimina-
tion performance tends to mirror the neuronal discrimination of the most selective
single cells (Britten et al. 1992; Romo and Salinas 2003; Wang et al. 2007). In the
auditory system, behavioral performance for song discrimination matched the neural
performance of the best neurons using a spike-timing code, the activity of which
might potentially reflect the computations performed by the entire network (Wang
et al. 2007; Narayan et al. 2007). In our zebra finch study, single neurons
outperformed behavioral tests in the sense that recognition at the longest propagation
distance in the behavioral test was only achieved after repeated training. Narayan
et al. (2007) also found several cases in which neural performance was higher than
behavioral performance, and they provided two potential explanations for this
observation: (1) these results stem from intersubject variability, both experiments
having been made on different animals; (2) the information available in the auditory
cortex might be reduced in the course of the downstream readout of information,
either because of additional source(s) of noise at the readout stage, or because the
readout is able to access the best neurons only after repeated exposures via a learning
mechanism.

I support the latter explanation, and propose that this neural substrate for indi-
vidual discrimination of degraded vocalizations that we found in zebra finches may
constitute a neural basis for vocal recognition in auditory scenes, that is, a “pool of
discriminability” which could then develop in the secondary auditory areas follow-
ing the birds’ experience for the learned recognition of specific individuals in natural
settings. In other words, this small population of highly discriminant neurons could
take part in a bottom-up process creating a potential for individual discrimination,
while top-down processes such as attentional or reinforcement mechanisms would
develop this potential through perceptual plasticity. The more numerous, less selec-
tive neurons could serve as a pool of cells that can acquire selectivity as the bird
learns to discriminate new auditory objects (Meliza et al. 2010). Indeed, these
authors reported that during the acquisition of new songs by songbirds in perceptual
learning tasks, CMM neurons rapidly changed their selectivity toward the reinforced
novel stimuli and then lost this selectivity as the animal learned new stimuli. This
“recruitment” of neurons in the wake of experience-dependent needs converges on
the concept of learning threshold developed by Seitz and Dinse (2007), in which
standard neural responses must be boosted by plasticity-inducing factors such as
attention or signal reinforcement, or optimized sensory inputs such as multisensory
stimulation, to drive the system past the point of a learning threshold and induce
augmented neural responses, and potentially lead to a change in behavior.

8.6 Conclusion and Perspectives

In this chapter, I have endeavored to take a transversal view on the transmission of
fine-detailed auditory information at long distance, from sender to receiver, focusing
on a songbird model and emphasizing the use of stimuli and paradigms that reflected
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the behavioral relevance of the challenges that these animals face in their natural
environment. While the individual vocal signature encoded in the distance calls of
zebra finches is remarkably resistant to propagation-induced sound degradation, a
number of neurons in the auditory cortex have the spontaneous ability to encode
individual identity of previously unknown vocalizers, as well as propagation dis-
tance, in extremely degraded calls. This latter finding is particularly compelling since
the subjects had no prior experience in hearing propagated vocalizations. Gentner
and Margoliash (2003) suggested that “for vocal recognition, the predictability
imparted by species-specific characteristics of vocalizations, and the constraints
imposed by evolutionary history and experience, probably yield a population of
neurons predisposed to represent those vocalizations.” 1 suspect that the same
process, led by evolution, can explain the proficiency with which some neurons
deal with propagation-induced degradation.

Regarding the neural encoding of auditory information, the field of neurophysi-
ology is turning toward the investigation of neural networks, following the idea that
population coding drives behavior (Curto et al. 2009; Panzeri et al. 2015). One may
argue that, seeing the link that was found between single neuron performance and
behavior, the known sparseness of neural coding representing the natural world, and
the proposed idea of a neural substrate with a potential for high-level discrimination,
analyzing single neuron encoding properties is still critical to understanding the link
between neural and behavioral levels (Narayan et al. 2006). There is however a
general consensus for the idea that although single neurons might drive percepts and
elicit behavioral responses, everyday perception is probably the result of coordinated
activity by neural populations (Panzeri et al. 2010). Recently, Panzeri et al. (2017)
made the case that the two processes underlying perceptual decisions (that is, how
neural responses encode stimuli and how they inform behavioral choices) have
mainly been studied separately, the latter one having received much less attention.
They proposed to redefine the neural code as the neural features that carry sensory
information used by the animal to drive appropriate behavior, since only the features
that lie in the intersection between sensory coding and information readout can be
used to convert sensory perception into appropriate behavioral actions. This inter-
esting approach would help scientists target more efficiently the processes that are
actually used by animals in their reactions to their sensory environment. In the case
of our focal study, this investigation method, coupled with the computation of the
neurons’ spectro-temporal receptive fields (STRFs; Theunissen et al. 2001; Nagel
etal. 2011; Meyer et al. 2015), could help pinpoint which acoustic parameters in the
degraded calls are actually used in the neural code driving behavioral responses. It
would be interesting to be able to compare the acoustic parameters that were found to
be important for individual discrimination in the acoustic analysis with the acoustic
features that birds use while performing this task. This would imply for example the
recording of neural responses in a freely moving animal performing an auditory
discrimination task in an operant conditioning setup, so as to link auditory input to
behavioral output.

In this chapter I have focused on the transmission of individual signatures that
were degraded by propagation, combining factors such as sound attenuation,
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spectro-temporal degradations, and ambient noise in the analysis. In their daily lives
however, animals encounter other aspects of auditory scene analysis as well, such as
conspecific noise, directionality and auditory source separation (Lewicki et al.
2014). In our case, the use of a loudspeaker to broadcast sounds during electrophys-
iological recordings effectively annihilated any spatial information that our subjects
would have had access to in a natural environment. This probably lead us to
underestimate the natural discriminability rather than the opposite, since animals
are able to use spatially separated sound sources to enhance their discrimination
performance (Dent et al. 2009; Maddox et al. 2012). In any case, combining more of
these factors in future research, while investigating the interaction between neuro-
physiological processes at the brain level and the behavioral output of the animal,
will improve our understanding of how animals process real-world scenes such as
mate recognition in the natural environment, and bring further insight into how the
brain processes this seemingly easy and yet computationally challenging task that is
auditory scene analysis.
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