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Abstract. The graph isomorphism, subgraph isomorphism, and graph
edit distance problems are combinatorial problems with many applica-
tions. Heuristic exact and approximate algorithms for each of these prob-
lems have been developed for different kinds of graphs: directed, undi-
rected, labeled, etc. However, additional work is often needed to adapt
such algorithms to different classes of graphs, for example to accommo-
date both labels and property annotations on nodes and edges. In this
paper, we propose an approach based on answer set programming. We
show how each of these problems can be defined for a general class of
property graphs with directed edges, and labels and key-value properties
annotating both nodes and edges. We evaluate this approach on a variety
of synthetic and realistic graphs, demonstrating that it is feasible as a
rapid prototyping approach.

1 Introduction

Graphs are a pervasive and widely applicable data structure in computer sci-
ence. To name just a few examples, graphs can represent symbolic knowledge
structures extracted from Wikipedia [5], provenance records describing how a
computer system executed to produce a result [20], or chemical structures in a
scientific knowledge base [15]. In many settings, it is of interest to solve graph
matching problems, for example to determine when two graphs have the same
structure, or when one graph appears in another, or to measure how similar two
graphs are.

Given two graphs, possibly with labels or other data associated with nodes
and edges, the graph isomorphism problem (GI) asks whether the two graphs
have the same structure, that is, whether there is an invertible mapping from
one graph to another that preserves and reflects edges and any other constraints.
The subgraph isomorphism problem (SUB) asks whether one graph is isomorphic
to a subgraph of another. Finally, the graph edit distance problem (GED) asks
whether one graph can be transformed into another via a sequence of edit steps,
such as insertion, deletion, or updates to nodes or edges.

These are well-studied problems. Each is in the class NP, with SUB and GED
being NP-complete [12], while the lower bound of the complexity of GI is an open
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problem [4]. Approximate and exact algorithms for graph edit distance, based
on heuristics or on reduction to other NP-complete problems, have been pro-
posed [9,11,17,21]. Moreover, for special cases such as database querying, there
are algorithms for subgraph isomorphism that can provide good performance in
practice when matching small query subgraphs against graph databases [16].

However, there are circumstances in which none of the available techniques is
directly suitable. For example, many of the algorithms considered so far assume
graphs of a specific form, for example with unordered edges, or unlabeled nodes
and edges. In contrast, many typical applications use graphs with complex struc-
ture, such as property graphs: directed multigraphs in which nodes and edges can
both be labeled and annotated with sets of key-value pairs (properties). Adapt-
ing an existing algorithm to deal with each new kind of graph is nontrivial.
Furthermore, some applications involve searching for isomorphisms, subgraph
isomorphisms, or edit scripts subject to additional constraints [8,22].

In this paper we advocate the use of answer set programming (ASP) to specify
and solve these problems. Property graphs can be represented uniformly as sets
of logic programming facts, and each of the graph matching problems we have
mentioned can be specified using ASP in a uniform way. Concretely, we employ
the Clingo ASP solver, but our approach relies only on standard ASP features.

For each of the problems we consider, it is clear in principle that it should
be possible to encode using ASP, because ASP subsumes the NP-complete SAT
problem. Our contribution is to show how to encode each of these problems
directly in a way that produces immediately useful results, rather than via encod-
ing as SAT or other problems and decoding the results. For GI and SUB, the
encoding is rather direct and the ASP specifications can easily be read as declara-
tive specifications of the respective problems; however, the standard formulation
of the graph edit distance problem is not as easy to translate to a logic program
because it involves searching for an edit script whose maximum length depends
on the input. Instead, we consider an indirect (but still natural) approach which
searches for a partial matching between the two graphs that minimizes the edit
distance, and derives an edit script (if needed) from this matching. The proof of
correctness of this encoding is our main technical contribution.

We provide experimental evidence of the practicality of our declarative app-
roach, drawing on experience with a nontrivial application: generalizing and
comparing provenance graphs [8]. In this previous work, we needed to solve two
problems: (1) given two graphs with the same structure but possibly different
property values (e.g. timestamps), identify the general structure common to all
of the graphs, and (2) given a background graph and a slightly larger foreground
graph, match the background graph to the foreground graph and “subtract” it,
leaving the unmatched part. We showed in [8] that our ASP approach to approx-
imate graph isomorphism and subgraph isomorphism can solve these problems
fast enough that they were not the bottleneck in the overall system. In this
paper, we conduct further experimental evaluation of our approach to graph iso-
morphism, subgraph isomorphism, and graph edit distance on synthetic graphs
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and real graphs used in a recent Graph Edit Distance Contest (GEDC) [1] and
our recent work [8].

2 Background

Property Graphs. We consider (directed) multigraphs G = (V,E, src, tgt, lab)
where V and E are disjoint sets of node identifiers and edge identifiers, respec-
tively, src, tgt : E → V are functions identifying the source and target of each
edge, and lab : V ∪ E → Σ is a function assigning each vertex and edge a label
from some set Σ. Note that multigraphs can have multiple edges with the same
source and target. Familiar definitions of ordinary directed or undirected graphs
can be recovered by imposing further constraints, if desired.

A property graph is a directed multigraph extended with an additional partial
function prop : (V ∪ E) × Γ ⇀ Δ where Γ is a set of keys and Δ is a set of data
values. For the purposes of this paper we assume that all identifiers, labels, keys
and values are represented as Prolog atoms.

We consider a partial function with range X to be a total function with range
X � {⊥} where ⊥ is a special token not appearing in X. We consider X � {⊥}
to be partially ordered by the least partial order satisfying ⊥ � x for all x ∈ X.

Isomorphisms. A homomorphism from property graph G1 to G2 is a function
h : G1 → G2 mapping V1 to V2 and E1 to E2, such that:

– for all v ∈ V1, lab2(h(v)) = lab1(v) and prop2(h(v), k) � prop1(v, k)
– for all e ∈ E1, lab2(h(e)) = lab1(e) and prop2(h(e), k) � prop1(e, k)
– for all e ∈ E1, src2(h(e)) = h(src1(e)) and tgt2(h(e)) = h(tgt1(e))

(Essentially, h is a pair of functions (V1 → V2) × (E1 → E2), but we abuse
notation slightly here by writing h for both.) As usual, an isomorphism is an
invertible homomorphism whose inverse is also a homomorphism, and G1 and
G2 are isomorphic (G1

∼= G2) if an isomorphism between them exists. Note that
the labels of nodes and edges must match exactly, that is, we regard labels as
integral to nodes and edges, while properties must match only if defined in G1.

Subgraph Isomorphism. A subgraph G′ of G is a property graph satisfying:

– V ′ ⊆ V and E′ ⊆ E
– src′(e) = src(e) ∈ V ′ and tgt(e) = tgt′(e) ∈ V ′ for all e ∈ E′
– lab′(x) = lab(x) when x ∈ V ′ ∪ E′
– prop′(x, k) � prop(x, k) when x ∈ V ′ ∪ E′

In other words, the vertex and edge sets of G′ are subsets of those of G that still
form a meaningful graph, the labels are the same as in G′, and the properties
defined in G′ are the same as in G (but some properties in G may be omitted).

We say that G1 is subgraph isomorphic to G2 (G1 � G2) if there is a subgraph
of G2 to which G1 is isomorphic. Equivalently, G1 � G2 holds if there is a
injective homomorphism h : G1 → G2. If such a homomorphism exists, then it
maps G1 to an isomorphic subgraph of G2, whereas if G1

∼= G′
2 ⊆ G2 then the

isomorphism between G1 and G′
2 extends to an injective homomorphism from

G1 to G2.
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Table 1. Edit operation semantics

op V ′ E′ src′ tgt′ lbl′ prop′

insV(n, l) V � {v} E src tgt lbl[v := l] prop

insE(e, v, w, l) V E � {e} src[e := v] tgt[e := w] lbl[e := l] prop

insP(x, k, d) V E src tgt lbl prop[x, k := d]

delV(v) V − {v} E src tgt lbl[v := ⊥] prop

delE(e) V E − {e} src[e := ⊥] tgt[e := ⊥] lbl[e := ⊥] prop

delP(x, k) V E src tgt lbl prop[x, k := ⊥]

updP(x, k, d) V E src tgt lbl prop[x, k := d]

Graph Edit Distance. We consider edit operations:

– insertion of a node (insV(v, l)), edge (insE(e, v, w, l)), or property
(insP(x, k, v, d))

– deletion of a node (delV(v)), edge (delE(e)), or property (delP(x, k))
– in-place update (updP(x, k, d)) of a property value on a given node or edge x

with a given key k to value d

The meanings of each of these operations are defined in Table 1, where we
write G = (V,E, src, tgt, lab, prop) for the graph before the edit and G′ =
(V ′, E′, src′, tgt′, lab′, prop′) for the updated graph. Each row of the table
describes how each part of G′ is defined in terms of G. In addition, the edit
operations have the following preconditions: Before an insertion, the inserted
node, edge, or property must not already exist; before a deletion, a deleted node
must not be a source or target of an edge, and a node/edge must not have any
properties; before an update, the updated property must already exist on the
affected node or edge. If these preconditions are not satisfied, the edit operation
is not allowed on G.

We write op(G) for the result of op acting on G. More generally, if ops is a
list of operations then we write ops(G) for the result of applying the operations
to G. Given graphs G1, G2 we define the graph edit distance between G1 and G2

as GED(G1, G2) = min{|ops| | ops(G1) = G2}, that is, the shortest length of an
edit script modifying G1 to G2.

Computing the graph edit distance between two graphs (even without labels
or properties) is an NP-complete problem. Moreover, we consider a particular
setting where the edit operations all have equal cost, but in general different
weights can be assigned to different edit operations. We can consider a slight
generalization as follows: Given a weighting function w mapping edit operations
to positive rational numbers, the weighted graph edit distance between G1 and
G2 is wGED(G1, G2) = min{∑

op∈ops w(op) | ops(G1) = G2}. The unweighted
graph edit distance is a special case so this problem is also NP-complete.

Answer Set Programming. We assume familiarity with general logic program-
ming concepts (e.g. familiarity with Prolog or Datalog). To help make the paper
accessible to readers not already familiar with answer set programming, we illus-
trate some programming techniques that differ from standard logic programming
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e(uk,ie).

e(fr,(sp;de;ch;it;be;lu)).

e(sp,pt). e(it,at).

e(be,(lu;nl)). e(ch,(it;at)).

e(de,(be;nl;at;dk;ch;lu)).

Fig. 1. Graph coloring example (Color figure online)

via a short example: coloring the nodes of an undirected graph with the minimum
number of colors. Graph 3-coloring is a standard example of ASP, but we will
adopt a slightly nonstandard approach to illustrate some key techniques we will
rely on later. We will use the concrete syntax of the Clingo ASP solver, which is
part of the Potassco framework [13,14]. Examples given here and elsewhere in
the paper can be run verbatim using the Clingo interactive online demo1.

Listing 1.1. Graph 3-coloring

1 e(X,Y) :- e(Y,X).

2 n(X) :- e(X,_).

3 color(1..3).

4 {c(X,Y) : color(Y)} = 1 :- n(X).

5 :- e(X,Y), c(X,C), c(Y,D), not C <> D.

Listing 1.2. Minimal k-coloring (extending Listing 1.1)

1 color(X) :- n(X).

2 cost(C,1) :- c(_,C).

3 #minimize { Cost,C : cost(C,Cost) }.

Figure 1 shows an example graph where edge relationships correspond to land
borders between some countries. The edges are defined using an association
list notation; for example e(be,(lu;nl)) abbreviates two edges e(be,lu) and
e(be,nl). Listing 1.1 defines graph 3-coloring declaratively. The first line states
that the edge relation is symmetric and the second defines the node relation
to consist of all sources (and by symmetry targets) of edges. Line 3 defines a
relation color/1 to hold for values 1, 2, 3. Lines 4–5 define when a graph is 3-
colorable, by defining when a relation c/2 is a valid 3-coloring. Line 4 says that
c/2 represents a (total) function from nodes to colors, i.e. for every node there
is exactly one associated color. Line 5 says that for each edge, the associated
colors of the source and target must be different. Here, we are using the not

operator solely to illustrate its use, but we could have done without it, writing
C = D instead.

1 https://potassco.org/clingo/run/.

https://potassco.org/clingo/run/


Flexible Graph Matching and GED Using Answer Set Programming 25

Listing 1.1 is a complete program that can be used with Fig. 1 to determine
that the example graph is not 3-colorable. What if we want to find the least k
such that a graph is k-colorable? We cannot leave the number of colors undefined,
since ASP requires a finite search space, but we could manually change the ‘3’ on
line 5 to various values of k, starting with the maximum k = |V | and decreasing
until the minimum possible k is found.

Instead, using minimization constraints, we can modify the 3-coloring pro-
gram above to instead compute a minimal k-coloring (that is, find a coloring
minimizing the number of colors) purely declaratively by adding the clauses
shown in Listing 1.2. Line 1 defines the set of colors simply to be the set of node
identifiers (plus the three colors we already had, but this is harmless). Line 2
associates a cost of 1 with each used color. Finally, line 3 imposes a minimization
constraint: to minimize the sum of the costs of the colors. Thus, using a single
Clingo specification we can automatically find the minimum number of colors
needed for this (or any) undirected graph. The 4-coloring shown in Fig. 1 was
found this way.

3 Specifying Graph Matching and Edit Distance

In this section we give ASP specifications defining each problem. We first consider
how to represent graphs as flat collections of facts, suitable for use in a logic
programming setting. We choose one among several reasonable representations:
given G = (V,E, src, tgt, lab, prop) and given three predicate names n, e, p we
define the following relations:

RelG(n, e, p) = {n(v, lab(v)) | v ∈ V }
∪{e(e, src(e), tgt(e), lab(e)) | e ∈ E}
∪{p(x, k, d) | x ∈ V ∪ E, prop(x, k) = d 
= ⊥}

Clearly, we can recover the original graph from this representation.
In the following problem specifications, we always consider two graphs, say

G1 and G2, and to avoid confusion between them we use two sets of relation
names to encode them, thus RelG1(n1, e1, p1) ∪ RelG2(n2, e2, p2) represents two
graphs. We also assume without loss of generality that the sets of vertex and
edge identifiers of the two graphs are all disjoint, i.e. (V1 ∪ E1) ∩ (V2 ∪ E2) = ∅,
to avoid any possibility of confusion among them.

We now show how to specify homomorphisms and isomorphisms among
graphs. The Clingo code in Listing 1.3 defines when a graph homomorphism
exists from G1 to G2. We refer to this program extended with suitable represen-
tations of G1 and G2 as Homh(G1, G2). The binary relation h, representing the
homomorphism, is specified using two constraints. The first says that h maps
nodes of G1 to nodes of G2 with the same label, while the second additionally
specifies that h maps edges of G1 to those of G2 preserving source, target, and
label. Notice in particular that the cardinality constraint ensures that h repre-
sents a total function with range V1 ∪ E1, so in any model satisfying the first
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clause, every node in G1 is matched to one in G2, which means that the body of
the second clause is satisfiable for each edge. The third clause simply constrains
h so that any properties of nodes or edges in G1 must be present on the matching
node or edge in G2.

Listing 1.3. Graph homomorphism

1 {h(X,Y) : n2(Y,L)} = 1 :- n1(X,L).

2 {h(X,Y) : e2(Y,S2,T2,L), h(S1,S2), h(T1,T2)} = 1 :- e1(X,S1,T1,L).

3 :- p1(X,K,D), h(X,Y), not p2(Y,K,D).

Listing 1.4. Graph isomorphism (extending Listing 1.3)

1 {h(X,Y) : n1(X,L)} = 1 :- n2(Y,L).

2 {h(X,Y) : e1(X,S1,T1,L), h(S1,S2), h(T1,T2)} = 1 :- e2(Y,S2,T2,L).

3 :- p2(Y,K,D), h(X,Y), not p1(X,K,D).

Listing 1.5. Subgraph isomorphism (extending Listing 1.3)

1 {h(X,Y) : n1(X,L)} <= 1 :- n2(Y,L).

2 {h(X,Y) : e1(X,S1,T1,L), h(S1,S2), h(T1,T2)} <= 1 :- e2(Y,S2,T2,L).

Next to define when h is a graph isomorphism, we add the symmetric clauses
shown in Listing 1.4. We write Isoh(G1, G2) for the combination of Listings 1.3
and 1.4. Since the two listings together imply that h represents a homomorphism
in the forward direction and simultaneously represents a homomorphism from
G2 to G1 in the backward direction, these four clauses suffice to specify that h
is an isomorphism.

To specify subgraph isomorphism, we simply require that h is an injective
homomorphism from G1 to G2, as shown in Listing 1.5. We refer to the spec-
ification in Listing 1.5 as Subh(G1, G2). The two additional constraints specify
that the inverse of h is a partial homomorphism. This is equivalent to h being
an injective homomorphism.

Finally we consider the specification of the graph edit distance problem. On
the surface, this seems challenging, since the graph edit distance is defined as
the length of a minimal edit script mapping one graph to another, and there are
infinitely many possible edit scripts. However, there is clearly always an upper
bound d on the edit distance: consider an edit script that just deletes G1 and
inserts G2, and take d to be the length of this script. So, given two graphs and
this upper bound d we could proceed by specifying a search space over edit scripts
of bounded length, defining the meaning of each edit operator, and seeking to
minimize the number of steps necessary to get from G1 to G2. However, this
encoding seems rather heavyweight, and requires preprocessing to determine d.

Instead, we follow a different strategy, analogous to the approach adopted for
graph coloring earlier. The strategy is based on the observation that the graph
edit distance is closely related to the maximum subgraph problem [6], that is,
given two graphs G1, G2, find the largest graph that is subgraph isomorphic to
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both. If we identify such a graph then (as we shall show) we can read off an
edit script that maps G1 to G2, which first deletes unmatched structure from
G1, then updates properties in-place, and finally inserts new structure needed in
G2. Furthermore, to identify the maximum common subgraph, we do not need
to construct a new graph separate from G1 and G2; instead, we can think of the
maximum common subgraph as an isomorphic pair of subgraphs of G1 and G2.
So in other words, we will search for a partial isomorphism h between G1 and
G2, use it as a basis for extracting an edit script, and minimize its cost.

Listing 1.6. Graph edit distance

1 {h(X,Y) : n2(Y,L)} <= 1 :- n1(X,L).

2 {h(X,Y) : n1(X,L)} <= 1 :- n2(Y,L).

3 {h(X,Y) : e2(Y,S2,T2,L), h(S1,S2), h(T1,T2)} <= 1 :- e1(X,S1,T1,L).

4 {h(X,Y) : e1(X,S1,T1,L), h(S1,S2), h(T1,T2)} <= 1 :- e2(Y,S2,T2,L).

5
6 delete_node(X) :- n1(X,_), not h(X,_).

7 insert_node(Y,L) :- n2(Y,L), not h(_,Y).

8
9 delete_edge(X) :- e1(X,_,_,_), not h(X,_).

10 insert_edge(Y,S,T,L) :- e2(Y,S,T,L), not h(_,Y).

11
12 update_prop(X,K,V1,V2) :- p1(X,K,V1), h(X,Y), p2(Y,K,V2), V1 <> V2.

13 delete_prop(X,K) :- p1(X,K,_), h(X,Y), not p2(Y,K,_).

14 delete_prop(X,K) :- p1(X,K,_), delete_node(X).

15 delete_prop(X,K) :- p1(X,K,_), delete_edge(X).

16 insert_prop(Y,K,V) :- p2(Y,K,V), h(X,Y), not p1(X,K,_).

17 insert_prop(Y,K,V) :- p2(Y,K,V), insert_node(Y,_).

18 insert_prop(Y,K,V) :- p2(Y,K,V), insert_edge(Y,_,_,_).

19
20 node_cost(Y,1) :- insert_node(Y,_).

21 node_cost(X,1) :- delete_node(X).

22
23 edge_cost(Y,1) :- insert_edge(Y,_,_,_).

24 edge_cost(X,1) :- delete_edge(X).

25
26 prop_cost(X,K,1) :- update_prop(X,K,V1,V2).

27 prop_cost(X,K,1) :- delete_prop(X,K).

28 prop_cost(Y,K,1) :- insert_prop(Y,K,V).

29
30 #minimize { NC,X : node_cost(X,NC);

31 EC,X : edge_cost(X,EC);

32 LC,X,K : prop_cost(X,K,LC)}.

Listing 1.6 accomplishes this. The first four lines specify that h must be
a partial isomorphism, by dropping the requirement that h must match all
nodes/edges on one side with those of another, and dropping the hard constraint
that properties must match. Lines 6–7 define when a node must be deleted or
inserted. Nodes that are in G1 and not matched in G2 must be deleted, and
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conversely those that are in G2 and not matched in G1 must be inserted. Lines
9–10 similarly specify when edges must be inserted or deleted. Lines 12–18 define
when a property is updated in-place, deleted, or inserted. If a property key is
present on an object in G1 and on the matching object in G2 but with a differ-
ent value, then the key’s value needs to be updated. If it is present in G1 but
not present on the matching object in G1 then it is deleted. Likewise, if it is
present in G1 but the associated object is deleted then the property also must
be deleted. Dually, properties are inserted if they are present in G2 but not in
G1, either because the matching object does not have that property or because
there is no matching object because the property is on an inserted object. Lines
20–28 specify the costs associated with each of the edit operations. We assign
each operation a cost of 1. It would also be possible to assign different (integer)
costs to different kinds of updates, or even to specify different costs depending
on labels, keys, or values.

4 Correctness

We first state the intended correctness properties for the homomorphism, iso-
morphism, and subgraph isomorphism problems:

Theorem 1. 1. There exists a homomorphism h : G1 → G2 if and only if
Homh(G1, G2) is satisfiable.

2. There exists an isomorphism h : G1 → G2 if and only if Isoh(G1, G2) is
satisfiable.

3. h : G1 → G2 witnesses a subgraph isomorphism if and only if Subh(G1, G2)
is satisfiable.

Proof. See Appendix A of the extended version [7]. �
Next we turn to graph edit distance. To assist with the reasoning, we define

the following canonical form:

Definition 1 (Edit script canonical form). An edit script is in canonical
form if it is of the form delp; dele; delv;updp; insv; inse; insp, where:

– delp, dele and delv are sequences of property deletions, edge deletions, and
node deletions respectively;

– updp is a sequence of property updates;
– insv, inse, and insp are sequences of node insertions, edge insertions, and

property insertions, respectively.

Edit scripts obtained from GEDh(G1, G2) are in this form. Moreover, any valid
edit script can be converted to a canonical one by applying a set of rewrite rules,
as shown in Fig. 2. We first consider marked versions op∗ of each edit operation,
for example writing delP∗(x, k) for the marked version of delP. A marked opera-
tion op∗ has the same effect as op when applied to a graphs; the mark is only to
indicate which operation is actively being rewritten. The idea here is that if we
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delE∗(e); delP(x, k) −→ delP(x, k); delE∗(e)

delV∗(v); delP(x, k) −→ delP(x, k); delV∗(v)
delV∗(v); delE(e) −→ delE(e); delV∗(v)

updP∗(x, k, d); delP(y, k′) −→
{
delP(y, k′) if x = y, k = k′

delP(y, k′); updP∗(x, k, d) otherwise
updP∗(x, k, d); delE(e) −→ delE(e); updP∗(x, k, d)
updP∗(x, k, d); delV(v) −→ delV(v); updP∗(x, k, d)

insV∗(v, l); delP(x, k) −→ delP(x, k); insV∗(v, l)
insV∗(v, l); delE(e) −→ delE(e); insV∗(v)

insV∗(v, l); delV(v′) −→
{

ε if v = v′

delV(v′); insV∗(v, l) otherwise
insV∗(v, l); updP(x, k, d) −→ updP(x, k, d); insV∗(v, l)

insE∗(e, v, w, l); delP(x, k) −→ delP(x, k); insE∗(e, v, w, l)

insE∗(e, v, w, l); delE(e′) −→
{

ε if e = e′

delE(e′); insE∗(e, v, w, l) otherwise
insE∗(e, v, w, l); delV(v′) −→ delV(v′); insE∗(e, v, w, l)

insE∗(e, v, w, l); updP(x, k, d) −→ updP(x, k, d); insE∗(e, v, w, l)
insE∗(e, v, w, l); insV(v′, l) −→ insV(v′, l); insE∗(e, v, w, l)

insP∗(x, k, d); delP(y, k′) −→
{

ε if x = y, k = k′

delP(y, k′); insP∗(x, k, d) otherwise
insP∗(x, k, d); delE(e) −→ delE(e); insP∗(x, k, d)
insP∗(x, k, d); delV(v) −→ delV(v); insP∗(x, k, d)

insP∗(x, k, d); updP(y, k′, d′) −→
{
insP∗(x, y, d′) if x = y, k = k′

updP(y, k′, d′); insP∗(x, k, d) otherwise
insP∗(x, k, d); insV(v, l) −→ insV(v′, l); insP∗(x, k, d)

insP∗(x, k, d); insE(e, v, w, l) −→ insE(e, v, w, l); insP∗(x, k, d)
op∗; ops −→ op; ops if no earlier rule applies

Fig. 2. Edit script rewrite rules

have a canonical edit script ops and wish to add a new edit operation, we use
the rewrite rules to canonicalize op∗; ops. The rules are applied in order and at
each step, the first matching rule is applied. Note that there is a catch-all rule
op∗; ops −→ op; ops, which only applies if none of the other rules do. Essentially,
the rewrite rules consider all of the possible pairs of adjacent operations that
can appear in a non-canonical form, with the first element marked. In each case,
they show how to simplify the edit script by either moving the marked opera-
tion closer to the end, or removing the mark. Removal can happen as a result of
either cancellation of the marked operation by another operation (e.g. a delete
undoing an insert), or by removing the mark once it has reached an appropriate
place for it in the canonical form.

Lemma 1. If ops is an edit script mapping G1 to G2, then there is a canonical
edit script ops′ mapping G1 to G2 such that |ops′| ≤ |ops|.
Proof. See Appendix A of the extended version [7]. �
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Theorem 2. The specification GEDh(G1, G2) always has a solution, and the
edit script described by the insertion, deletion and update predicates is a valid,
canonical script mapping G1 to G2. Moreover, the cost of the optimal solution
to GEDh(G1, G2) equals GED(G1, G2).

Proof. For the first part, we observe that the empty relation h = ∅ always solves
GEDh(G1, G2) if we ignore the minimization constraint. Therefore, the cost
of this solution is an upper bound. Moreover, if we apply the edit operations
described by the insert, delete and update relations in the order required by
the canonical form, then each edit operation is valid, all structure present in
G1 and not G2 is removed, all properties whose values differ in G1 and G2 are
updated, and all structure present in G2 and not G1 is inserted. Therefore, the
corresponding edit script maps G1 to G2.

To show that the minimum cost obtained from solving the GEDh(G1, G2)
specification coincides with GED(G1, G2), one direction is easy: for any h
(including the one corresponding to a minimum cost solution) the collection of
edit operations resulting from GEDh(G1, G2) is a valid edit script so its length
d must be greater than or equal to the minimum over all valid scripts. To show
the reverse direction, we use Lemma 1. Given a minimum-length edit script that
is not in canonical form, we can rewrite it to one that is canonical, with equal
cost (since the original script was already minimum-length). �

5 Discussion

We have argued that using ASP offers considerable flexibility. To illustrate this
claim, we consider three modifications to our approach.

Weighted Graph Edit Distance. If the operations have different (integer) weights,
implemented using a suitable modification to the cost predicates in some specifi-
cation wGEDh(G1, G2), then the same argument as above suffices to show that
a minimum-weight canonical script always exists to be found by the ASP speci-
fication. The key point is that weights are defined on individual edit operations,
and the rewrite rules only permute or delete operations, so preserve or decrease
weight.

Relabeling. We have treated labels as hard constraints: it is not possible to
change the label of a node in G1 to a different label in G2, short of deleting
the node and inserting a new one with a different label. On the other hand,
properties are soft constraints in the sense that we may delete or update a
property value without also being obliged to delete and re-create the underlying
node or edge structure. It is natural to consider an in-place relabeling operation
as well. Such behavior can be encoded on top of the already-developed framework
by using a single “blank” label for nodes and edges and introducing an unused
property key called “label” instead; now this can be updated in-place like other
properties. Alternatively, we can accommodate this behavior more directly as
shown in Listing 1.7. The first four lines relax the constraint that node and edge
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labels have to be preserved by h. The next two lines define the relabel_node

and relabel_edge predicates to detect when two matched nodes or edges have
different labels. Finally, the node_cost and edge_cost predicates are extended to
charge a cost of 1 per relabeling.

Listing 1.7. Graph edit distance with relabeling (modifies Listing 1.6)

1 {h(X,Y) : n2(Y,_)} <= 1 :- n1(X,_).

2 {h(X,Y) : n1(X,_)} <= 1 :- n2(Y,_).

3 {h(X,Y) : e2(Y,S2,T2,_), h(S1,S2), h(T1,T2)} <= 1 :- e1(X,S1,T1,_).

4 {h(X,Y) : e1(X,S1,T1,_), h(S1,S2), h(T1,T2)} <= 1 :- e2(Y,S2,T2,_).

5 ...

6 relabel_node(X,L2) :- n1(X,L1),h(X,Y), n2(Y,L2), L1 <> L2.

7 relabel_edge(X,L2) :- e1(X,_,_,L1),h(X,Y),e2(Y,_,_,L2), L1 <> L2.

8 ...

9 node_cost(X,1) :- relabel_node(X,_).

10 edge_cost(X,1) :- relabel_edge(X,_).

Ad Hoc Constraints. The use of ASP opens up many other possibilities for
controlling or constraining the various isomorphism or edit distance problems.
One example which we found useful in previous work [8] was to modify the
definitions of isomorphism or subgraph isomorphism to treat properties as soft
constraints and minimize the number of mismatched properties.

Another potentially interesting class of constraints is to allow “access control”
constraints on the possible edit scripts, for example specifying that certain nodes
or edges in one graph cannot not be modified and so must be matched with
equivalent constructs in the other graph. This is similar to the approximate
constrained subgraph matching problem [22].

6 Evaluation

Graph matching and edit distance are widely studied problems and a thorough
comparison of our approach with state-of-the-art algorithms is beyond the scope
of this paper. However, we do not claim that our approach is faster, only that
it is easy to implement and modify, rendering it suitable for rapid prototyping
situations. Nevertheless, in this section we summarize a preliminary evaluation
that supports a claim that our approach is fast enough to be useful for rapid
prototyping. Our experiments were run on an 2.6 GHz Intel Core i7 MacBook
Pro machine with 8 GB RAM and using Clingo v5.2.0.

First, we consider the various problems on synthetic graphs, such as k-cycles
and k-chains (linear sequences of k edges), with only one possible node and
edge label and no properties. These problems are not representative of typical
real problems, but illustrate some general trends. We considered each of the
problems: (HOM), (ISO) G1

∼= G2, (SUB) Sn � Cn, and (GED) GED(G1, G2).
We first considered comparisons where G1 and G2 are k-cycles or k-chains, for
k ∈ {10, 20, . . . , 100}. We found the running times for each of these problems
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Fig. 3. Synthetic results: (a) chains and cycles (b) randomly generated graphs

to be relatively stable independent of whether the comparison was between two
k-chains, a k-chain with a k-cycle, or two k-cycles, so we have averaged across all
four scenarios. We also considered randomly generated graphs with k nodes and
each edge generated with probability 0.1, with k ∈ {5, 10, . . . , 50}. We attempted
each problem with a running time limit of 30 seconds; the results are shown in
Fig. 3 results. Unsurprisingly, the HOM instances are solved fastest, and GED
slowest.

Second, we consider some real graphs from the Mutagenesis dataset (MUTA),
a standard dataset used for evaluating graph edit distance algorithms [15], for
example in a recent graph edit distance competition (GEDC) [1]. In the contest,
eight algorithms were run on different problems for up to 30 s, and compared
in terms of time, accuracy (for approximate algorithms), and success rate (for
exact algorithms). We modified the GED specification to allow node and edge
relabeling and use the same weight function as in the second (and more chal-
lenging) configuration used in the contest, for which even the best algorithm
(called F2) was not able to deal with graphs of size larger than 30. We con-
sider three datasets MUTA-10, MUTA-20 and MUTA-30 each consisting of ten
chemical structure graphs of size 10, 20 or 30 respectively. We also consider a
dataset MUTA-MIXED which consists of ten graphs of varying sizes. We consid-
ered all unordered pairs of the graphs in each subset and attempted to find the
GED with a timeout of 30 s. Table 2 shows the results compared with the four
exact algorithms reported in [1]. The first two algorithms, F2 and F24threads,
are implementations of a binary linear programming encoding of graph edit dis-
tance [17], the first being the plain single-threaded algorithm, and the second
running with four threads. The other two, DF and PDFS, are sequential and
parallel implementations of a depth-first, branch-and-bound algorithm [2,3].

Table 2 illustrates that our approach is competitive with DF and slightly
worse than PDFS, but does not match the performance of the two F2 algorithms.
These results should be taken with a grain of salt, since we have not replicated
the GEDC results on our (slightly faster) hardware. Memory did not appear to
be a bottleneck for our approach.

We have implemented and used variations of the isomorphism and subgraph
isomorphism specifications for property graphs in a provenance graph analysis
system called ProvMark [8]. In this earlier work, we found that for graphs of
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Table 2. Success rate (optimal solution found in under 30 s) on Mutagenesis dataset

MUTA-10 MUTA-20 MUTA-30 MUTA-MIXED

F24threads [1,17]† 100% 98% 23% 44%

F2 [1,17]† 100% 94% 15% 41%

PDFS [1,3]† 100% 26% 11% 10%

Our approach 100% 26% 10% 4%

DF [1,2]† 100% 14% 10% 10%
†Experiments from [1] run on a 4-core 2.0 GHz AMD Opteron 8350 with
16 GB RAM.

Table 3. Performance improvement vs. ProvMark [8]

Experiment Size Old time (s) New time (s) Speedup

creat-bg-gen 1006 0.060 0.034 1.9×
creat-fg-gen 1060 0.070 0.037 1.9×
creat-comp 1033 0.053 0.026 2.1×
execve-bg-gen 1006 0.061 0.036 1.7×
execve-fg-gen 1340 0.114 0.051 2.2×
execve-comp 1173 0.083 0.042 1.9×

up to around 100 nodes and edges, and a few hundred properties, these problems
are usually solvable within a few seconds. However, these problems may not be
representative of other scenarios.

The specifications we used to define approximate subgraph isomorphism
problems in ProvMark are similar to those presented here, but we subsequently
experimented with several different approaches with different performance. Here,
we compare the performance of ProvMark on subgraph isomorphism problems
over two representative example graphs considered in our previous experiments:
the graph generalization and comparison problems resulting from benchmark-
ing the creat and execve system calls using the CamFlow provenance record-
ing system [20]. See [8] for further details and the Clingo code of the previous
approaches.

Table 3 shows the running time of the old version and new version of approxi-
mate subgraph isomorphism. The code for both specifications is in Appendix C of
the extended version [7]. The problem sizes (that is, the number of nodes, edges,
and properties of the two graphs) is shown under “Size”. The “Old Time” column
corresponds to the time obtained using the old approach and “New Time” shows
the time obtained using the code in Listing 1.5 modified to allow approximate
property matching. The “Speedup” column shows the ratio between the old and
new time. In most cases, the speedup is around a factor of two. As future work,
we plan to use graph edit distance with the results of the ProvMark system, for
example for clustering or regression testing across runs.
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7 Related Work

The lower bound of the complexity of graph isomorphism is a well-known
open problem [4], but subgraph isomorphism and graph edit distance are NP-
complete [12]. A number of practical algorithms for graph isomorphism have
been studied, however, including NAUTY [18], which has also been integrated
with Prolog [10]. However, most such algorithms consider graphs with vertex
labels but not edge labels or properties, so are not directly applicable to prop-
erty graph isomorphism. Subgraph isomorphism has been studied extensively
over the past years, one survey [19] summarizes the state-of-art algorithms for
solving partial or simplified version of the problem. Subgraph isomorphism is
also studied for graph databases, where the query subgraph is usually small but
the other graph may be very large. Lee et al. [16] evaluated five such algorithms
on query graphs of up to 24 edges and databases of up to tens of thousands
of nodes and edges. Approximate subgraph matching with constraints has also
been studied, particularly in biomedical settings [22], and it would be interesting
to investigate whether our approach is competitive with their CSP-based algo-
rithm. Graph edit distance has also been studied extensively [11], with much
attention on approximate algorithms that can provide results quickly [21].

While several approaches to graph matching and edit distance have been
based on expressing these problems as constraint satisfaction problems, satisfia-
bility, or linear programming problems, to the best of our knowledge there is no
previous work based on answer set programming. Moreover, our approach eas-
ily accommodates richer graph structure such as hard or soft label constraints,
properties, and multiple edges between pairs of nodes, whereas the algorithms
we have seen generally consider ordinary graphs (without properties and with
at most one edge between two nodes).

8 Conclusions

The graph edit distance problem is a widely studied problem that has many
applications. Exact solutions to it, and to related problems such as graph iso-
morphism and subgraph isomorphism, are challenging to compute efficiently due
to their NP-completeness or unresolved complexity (in the case of graph isomor-
phism). There are a number of proposed algorithms in the literature, with one of
the most effective based on a reduction to binary linear programming [17]. In this
paper, we investigated an alternative approach using answer set programming
(ASP), specifically the Clingo solver. This approach may not be competitive
with the best known techniques in terms of performance, but has the poten-
tial advantage that it is straightforward to modify the problem specification to
accommodate different kinds of graphs, cost metrics or other variations, or to
accommodate ad hoc constraints that can also be expressed using ASP. Our
approach has already proved useful for a real application [8], and our experi-
mental evaluation suggests that it is also competitive with two out of four exact
algorithms from a graph edit distance competition.
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Our work may be valuable to others interested in rapid prototyping of graph
matching or edit distance problems using declarative programming. Additional
work could be done to facilitate this, for example using Clingo’s Python wrapper
library. Graph matching and edit distance problems may also be an interesting
class of challenge problems for developers of ASP solvers.
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