
A DSL for Integer Range Reasoning: Partition,
Interval and Mapping Diagrams

Johannes Eriksson1(B) and Masoumeh Parsa2

1 Vaadin Ltd., Turku, Finland
joheriks@vaadin.com

2 Department of Information Technologies, Åbo Akademi University, Turku, Finland
mparsa@abo.fi

Abstract. Expressing linear integer constraints and assertions over integer
ranges—as becomes necessary when reasoning about arrays—in a legible and
succinct form poses a challenge for deductive program verification. Even simple
assertions, such as integer predicates quantified over finite ranges, become quite
verbose when given in basic first-order logic syntax. In this paper, we propose
a domain-specific language (DSL) for assertions over integer ranges based on
Reynolds’s interval and partition diagrams, two diagrammatic notations designed
to integrate well into linear textual content such as specifications, program anno-
tations, and proofs. We extend intervalf diagrams to the more general concept
of mapping diagrams, representing partial functions from disjoint integer inter-
vals. A subset of mapping diagrams, colorings, provide a compact notation for
selecting integer intervals that we intend to constrain, and an intuitive new con-
struct, the legend, allows connecting colorings to first-order integer predicates.
Reynolds’s diagrams have not been supported widely by verification tools. We
implement the syntax and semantics of partition and mapping diagrams as a DSL
and theory extension to the Why3 program verifier. We illustrate the approach
with examples of verified programs specified with colorings and legends. This
work aims to extend the verification toolbox with a lightweight, intuitive DSL for
array and integer range specifications.

1 Introduction

Deductive program verification is the activity of establishing correctness by mathemat-
ically proving verification conditions (VCs) extracted from a program and its speci-
fication. If all VCs are proved, the program is guaranteed to terminate in a state sat-
isfying its postcondition for all inputs satisfying the precondition. While much of the
mechanics of program verification is automated by VC generators and automatic the-
orem provers, the construction of correct programs by this method remains a largely
interactive task. In the case of total correctness verification of sequential programs, VC
generation relies on supplying a pre- and postcondition specification of each subrou-
tine (procedure, method), and verification of a subroutine in turn requires intermediate
assertions and loop invariants to be inserted into the routine. Producing these asser-
tions requires both familiarity with a formal state description language and the ability
to express the assertions in it succinctly. Such languages are usually based on first- or
c© Springer Nature Switzerland AG 2020
E. Komendantskaya and Y. A. Liu (Eds.): PADL 2020, LNCS 12007, pp. 196–212, 2020.
https://doi.org/10.1007/978-3-030-39197-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39197-3_13&domain=pdf
http://orcid.org/0000-0002-8676-5623
http://orcid.org/0000-0001-8206-0530
https://doi.org/10.1007/978-3-030-39197-3_13


A DSL for Integer Range Reasoning 197

higher-order logic, and like programming languages general-purpose. While concise at
expressing basic mathematical relations, constraints over arrays and integer ranges tend
to require verbose expressions, obfuscating the original notion. Indeed, for array con-
straints, pictures often provide a more intuitive grip on the problem. For instance, given
the textbook verification exercise of specifying the loop invariant of a binary search
routine that determines the presence of the value x in a sorted array a (indexed from 0
to n−1), we may start by jotting down a box diagram similar to the following:

a[i] �= x a[i] �= x

0 l u n

This diagram captures the pertinent assertions over the mutable state of binary search:
that the loop variables l and u partition the array into three disjoint subarrays, and that
the value x is not present in the leftmost or rightmost subarray. Once these relationships
have been understood, we may then refine the diagram into a logic formula. A possible
rendition of the above in first-order predicate logic is:

0 ≤ l ≤ u+1 ≤ n ∧ ∀i(0 ≤ i< l∨u< i< n ⇒ a[i] �= x)

It is easy to see that the formula lacks the legibility of the diagram, but is it actually
more formal, as to make us accept this tradeoff? If we stipulate that the juxtaposition of
the indexes (0, l, u and n) and the vertical lines denotes order constraints, and that the
propositions written inside the shaded ranges are universally quantified over the corre-
sponding subarrays, the diagram becomes semantically equivalent to the predicate logic
formula. Hence, if the diagram incurs no loss of information, but appears more closely
connected to our understanding of the domain, reasoning with the diagram directly
could benefit both precision and legibility. As Dijkstra notes, “the purpose of abstrac-
tion is not to be vague, but to create a new semantic level in which one can be absolutely
precise” [8]. However, unlike diagrams, predicate logic carries with it a collection of
formula manipulation rules. Only given similar rules for diagrams like the above, may
we consider them a worthy alternative to predicate logic for writing specifications and
proofs. This is precisely the motivation behind Reynolds’s interval and partition dia-
grams, introduced 40 years ago [16] together with a set of abstractions for reasoning
about arrays. Reynolds argues “Of course, an equivalent assertion can be given in the
predicate calculus, but this sacrifices the intuitive content of the diagram [...] A better
approach is to formalize and give rigorous meaning to the diagram itself.”

Approaching diagrams as formal specifications in their own right rather than as step-
ping stones, we do observe some rough edges in the box diagram: multiple occurrences
of the expression a[i] �= x and the ad hoc assumption that i is quantified over the indexes
of the shaded subarrays, while a and x, on the other hand, are free. To avoid the redun-
dancy and clarify variable binding in the shaded subarrays, we redraw the diagram as
follows:

i : a[i] �= x 0 l u n

The revised diagram consists of two components: a legend asserting a[i] �= x over a
single shaded element at index i, and a box diagram specifying the constraints on l, u



198 J. Eriksson and M. Parsa

and n as well as the extent of the shading. Following Reynolds, we also place the parti-
tion bounds inside the boxes rather than below them, as this convention both conserves
space and increases legibility of a bound’s position relative to its adjacent vertical line.
Our intention with this example so far has only been to demonstrate that box diagrams
are sufficiently precise for formal specification. As we will see through examples in the
sequel, legends extend naturally to properties involving multiple indexes, such as sort-
edness (which we omitted for brevity in the above example). We give a detailed syntax
and semantics of these diagrams, and present tool support for verifying programs spec-
ified with such diagrams.

Reynolds’s Diagrams as a DSL. Domain-specific languages (DSLs), mini-languages
tailored for a particular application, are commonly used in software engineering to raise
the level of abstraction. The degree of sophistication range from substitution macros to
rich high-level languages. A DSL should be easy to both use and opt out of if not
deemed beneficial. Following the DSL approach, we decided to add diagram support to
an existing language satisfying the following desiderata:

– Established in the verification community and supported by state-of-the-art, open-
source tooling for VC generation and automatic theorem proving.

– Able to lexically combine box diagrams with the language’s own syntax.
– Able to represent diagrams as data types, avoiding error-prone lexical translation
stages and enabling use of diagrams in proofs.

– Tooling supports automatic reduction of VCs containing diagrams into their logical
equivalences, e.g., by rewrite rules.

Consequently, we chose Why3 [11], an open-source platform1 for deductive pro-
gram verification consisting of a specification language, an ML-like programming lan-
guage, and a common interface to multiple automatic theorem provers—including SMT
solvers, the workhorses of modern program verification.

Contribution. We generalize Reynolds’s interval diagrams to mapping diagrams, for-
mally partial functions from a set of disjoint integer intervals to any type. Colorings
constitute a subset of mapping diagrams, labeling intervals from a finite set (“palette”)
of colors. We introduce the legend construct for attaching interpretation to colorings.
Intuitively, colorings specify labeled selections, e.g., “all integers between 0 and l are
red” and “all indexes in the array are green”, while legends express quantified predi-
cates like “x is not among the red elements”, “all red elements are greater than all green
elements” and “all green elements are sorted”. We show that colorings and legends are
automatically reducible to universally quantified predicates. We have implemented an
extension to the Why3 theorem prover to support diagrams similar to those shown in the
introduction. The extension consists of a DSL allowing partition and mapping diagrams
to be used in Why3 theories and programs, and a Why3 theory encoding partition and
mapping diagrams as a data type together with the functions and predicates defining
their semantics. The diagram syntax is character-based and does not require sophisti-
cated editor support. All properties have been mechanically proved in Why3 using its
underlying theorem provers. We demonstrate the DSL by verified code examples.

1 Binary, source, and documentation available at https://why3.lri.fr.

https://why3.lri.fr


A DSL for Integer Range Reasoning 199

Notational Conventions. We give the semantics of diagrams in first-order predicate
logic with partial expressions. While the Why3 logic is total and requires a parametric
data type (option) for expressing partiality, we describe the general semantics using
partial expressions for brevity. We denote by the operator def definedness of a partial
expression, and by =∃ the existential equality relation between two partial expressions
e1 and e2 satisfying

e1 =∃ e2 ≡̂ def e1 ∧def e2 ∧ e1 = e2

In syntax definitions we adopt the convention that the meta-variables A and B stand for
integer expressions, Q stands for Boolean expressions (predicates), E and F stand for
expressions of other types, and X stands for identifiers. Subscript variables (e.g., A1, A2)
are considered separate meta-variables of the same class. For sequences of identifiers,
we write X̄ . We write E? to indicate that an expression may be omitted in a syntactic
context, and we semantically handle absence by partiality. We indicate by E[X ] that X
is a free variable in E. When E[X ] occurs as a subexpression we assume that adjacent
subexpressions do not contain free occurrences of X ; for instance, in the syntax defini-
tion Q1[X ]∧Q2, the Boolean expression Q1 may contain free occurrences of X whereas
Q2 may not. We write λX(E[X ]) for the anonymous function of variable X to value E.
Other logic and arithmetic operators are the standard ones.

Overview of Paper. The rest of the paper is structured as follows. Section 2 describes
interval and partition diagrams. Section 3 generalizes interval diagrams to mapping dia-
grams and colorings. Section 4 introduces the legend notation for assertions over col-
ored intervals. Section 5 describes a tool extension allowing diagrams to be used inWhy
specifications. We illustrate use of this tool by example in Sect. 6. We review related
work in Sect. 7 and conclude the paper with a discussion of lessons learned so far and
possible future research directions in Sect. 8.

2 Interval and Partition Diagrams

Reynolds [16] introduces two interpretations for the pictogram A2A1 : as an inter-
val diagram, standing for the (possibly empty) integer interval {x | A1 < x≤ A2}, and as
a partition diagram, standing for the predicate A1 ≤ A2. This dual interpretation reflects
the close semantical relationship between intervals and partitions. As diagrams are for-
mulas, the intended meaning can in practice always be determined from the context:
in a set-theoretic context it is an interval diagram, whereas in a logical context it is a
partition diagram. Note that when A1 = A2 the partition diagram is universally true and
the interval diagram represents the empty interval.

The form A2A1 is called the normal form of an interval or partition diagram,
where both bounds are written to the left of the corresponding adjacent vertical lines,
called dividing lines. Alternatively, either or both bounds of a diagram may be written to
the right of the dividing line to offset the bound by 1. This means that the bound “A−1|”
can be equivalently written as “|A”. Below we list the alternative forms together with
the corresponding normal forms and meanings as interval and partition predicate:



200 J. Eriksson and M. Parsa

diagram equiv. normal form integer interval partition predicate
A1 A2 A2 −1A1 {x | A1 < x< A2} A1 < A2

A1 A2 A2 −1A1 −1 {x | A1 ≤ x< A2} A1 −1 ≤ A2 −1
A1 A2 A2A1 −1 {x | A1 ≤ x ≤ A2} A1 −1 ≤ A2

Note that when interpreted as partition diagrams, A2A1 and A1 A2 are
equivalent, whereas when interpreted as interval diagrams, they represent different
intervals. As a shorthand, we may write A to denote the singleton interval contain-
ing only A:

A AA−1 {x | x= A} A−1 ≤ A

When considered a partition diagram, A is a tautology. However, the singleton form
is still useful as a component of general partition diagrams. These consist of multiple
chained partition diagrams that share dividing lines so that the right bound of the pre-
decessor becomes the left bound of the successor. The following definition formalizes
this notion.

Definition 1. A general partition diagram is a sequence of n (where n ≥ 1) component
partition diagrams, with n+1 integer bounds A0, . . . ,An, asserting that these partition
the total interval AnA0 into n disjoint and connected component intervals:

A1A0 A2 . . . An−1 An =̂
n−1∧

j=0

(
Aj ≤ Aj+1

)

(Here the fragment . . . An−1A2 is meta-syntax standing for any number of inter-
mediate component intervals; it is not part of the actual diagram syntax).

While each component diagram in Definition 1 is given on normal form (where each
component interval bound is written to the left of the dividing line), as with the basic
partition diagrams, a bound may be written on the opposite side of the dividing line to
offset it by 1. We illustrate this with two examples.

Example 2.1. The partition diagram corresponding to the partial binary search invari-
ant discussed in Sect. 1, 0 l u n , has the equivalent normal form

l−1−1 u n−1 and stands for the predicate 0 ≤ l ≤ u+1 ≤ n (equiva-
lently −1 ≤ l−1 ≤ u ≤ n−1).

Example 2.2. The partition diagram 0 k n has the equivalent normal form

k−1−1 k n and stands for the predicate 0 ≤ k ≤ n (equivalently −1 ≤
k−1 ≤ k ≤ n).

We note that Definition 1 is stricter than Reynolds’s original definition, which considers
the diagram true also when A0 ≥ A1 ≥ ·· · ≥ An. I.e, in the original notation an empty
partition may be specified with a left bound exceeding the right bound (i.e., Ai > Ai+1).
Reynolds calls such diagrams irregular representations of the empty interval. Our def-
inition allows only for what Reynolds refers to as regular representations of empty



A DSL for Integer Range Reasoning 201

intervals (i.e., Ai = Ai+1), and a partition diagram is always false if any Ai > Ai+1.
The stricter interpretation has the advantages that the basic partition diagram with two
bounds A2A1 constitutes a meaningful assertion by itself (rather than a tautol-
ogy), and that the cardinality of an interval diagram is A2 −A1 when its corresponding
partition diagram is true. Unlike for partition diagrams, Reynolds does not define a
chained form for interval diagrams.

3 Mapping Diagrams and Colorings

Next we introduce mapping diagrams, a generalization of interval diagrams to partial
functions from the integers. A mapping diagram consists of a sequence of mapping
components. A mapping component X → #E[X ] A2A1 , where E is a total expres-
sion over the integer parameter X to some type T , stands for the function λX(E) from
the domain A2A1 to the range T .

Definition 2. A general mapping diagram is a sequence of mapping components that
stands for the union of the corresponding functions:

X → #E0[X ]? A1A0 . . . An−1
#En−1[X ]? An

=̂
⋃n−1

i=0

{
(x,λX(Ei)(x)) | x ∈ Ai+1Ai ∧def Ei

}

We note that when the corresponding partition diagram A1A0 . . . An−1 An

is true, the union of tuples is a partial function (as the domains of the component func-
tions are disjoint). This is a side condition of the definition that we always verify when
introducing a mapping diagram. In the diagram, an expression Ei may be omitted to
indicate that the mapping is undefined on the interval Ai+1Ai .

Property 3.1. A mapping diagram with bounds A0, . . . ,An and expressions E0, . . .En−1

is well-defined in each point of each interval i where Ei is present, and undefined in
each point on each interval j where Ej is absent as well as in each point outside of the
total interval AnA0 .

Example 3.1. The mapping diagram k → # − k ba c #k d stands for the

following partial piecewise defined function: λk

{
−k if a< k ≤ b

k if c< k ≤ d
. The function is

undefined on the interval cb .

Definition 3. A coloring is a mapping diagram where each component interval is either
unmapped, or mapped to a member of a set of labels (colors) C:

#E?
0 A1A0 . . . An−1

#E?
n−1 An

In the above, each Ei ∈C if def Ei.



202 J. Eriksson and M. Parsa

The term coloring reflects the use of colors for marking intervals of interest in box
diagrams. In particular, we will use colorings to assert a given predicate (specified with
the legend construct described in the next section) over one or more intervals.

Property 3.2. A coloring col with component bounds A0, . . . ,An maps each point in an
interval with a defined color to that value. That is, for each interval j, 0 ≤ j < n:

∀k(
Aj < k ≤ Aj+1 ∧def Ej ⇒ col(k) = Ej

)

Example 3.2. The coloring 0 #R l u #R n stands for the following piece-

wise defined partial function: λk

{
R if 0 ≤ k < l

R if u< k < n
.

4 Legends

A legend defines the interpretation of a coloring by a parametric, universally quantified
assertion over all intervals colored in accordance with the legend.

Definition 4. A legend is a binding expression over a sequence of integer variables X̄
associating a coloring with bounds A0[X̄ ], . . . ,An[X̄ ] and colors E0, . . . ,En−1 of type C
to a predicate Q[X̄ ]:

X̄ : #E?
0 A1[X̄ ]A0[X̄ ] . . . An−1[X̄ ] #E?

n−1 An[X̄ ] → Q[X̄ ]

It stands for the following parametric predicate where the parameter r ∈ Z →C:

∀X̄
(

n−1∧

j=0

(
Aj+1Aj ∧ (def Ej ⇒ ∀k(k ∈ Aj+1Aj ⇒ r(k) =∃ Ej))

)
⇒ Q

)

Informally put, the legend states that Q is true for a partitioning if the parameter func-
tion r returns the prescribed color value in every point of each colored component (on
uncolored component intervals, the value of r is ignored).

Example 4.1. The legend “i : i #R → a[i] �= x” stands for the following parametric
predicate over r:

∀i (i−1 ≤ i∧ (def R ⇒ ∀k(i−1< k ≤ i ⇒ r(k) =∃ R)) ⇒ a[i] �= x)
≡ { tautology elimination, singleton quantification domain }

∀i (r(i) =∃ R ⇒ a[i] �= x)

Example 4.2. The legend “i j : i #B j #B → a[i] ≤ a[ j]” is equivalent to the fol-
lowing parametric predicate over r (the predicate has been simplified):

∀ i j (i< j∧ r(i) =∃ B∧ r( j) =∃ B ⇒ a[i] ≤ a[ j])

Informally, Example 4.1 states that x is not among the elements of the array a colored
R, while Example 4.2 states that the elements of a at ordered index pairs i, j colored B
are sorted in nondecreasing order (regardless of coloring of interjacent indexes). To use
a legend in expressing a state assertion, we apply it to a coloring function over the state
space of the program we are specifying.



A DSL for Integer Range Reasoning 203

Example 4.3. Applying the legend given in Example 4.1 to the coloring 0 #R l
reduces to an assertion that the subarray a[0], . . . ,a[l−1] does not contain the value x:

(i : i #R → a[i] �= x)( 0 #R l )
≡ { Definition 4, β -reduction }

∀ i (( 0 #R l )(i) =∃ R ⇒ a[i] �= x)
≡ { definition of =∃ }

∀ i (0 ≤ i< l ⇒ a[i] �= x)

An important design consideration has been that using legends and colorings when
writing assertions should not result in formulas that make automatic verification more
difficult compared to equivalent assertions written in traditional quantifier notation. As
the inner quantification in the legend definition and the color type C are syntactic arti-
facts of the DSL, they should preferably be eliminated from the correctness formula
before applying SMT solvers or other ATPs. To achieve this, our tool applies to each
formula an elimination rule that rewrites terms of the form lgd(col), where lgd is a
legend and col is a coloring. The following proposition formalizes the elimination rule.

Proposition 1. Given the legend

lgd = X̄ : #E?
0 A1[X̄ ]A0[X̄ ] . . . An−1[X̄ ] #E?

n−1 An[X̄ ] → Q[X̄ ]

and the coloring

col= #F?
0 B0B0 . . . Bm−1

#F?
m−1 Bm

the following equivalence holds for the application lgd(col):

lgd(col) ≡ ∀X̄
(

n−1∧

j=0

(
Aj ≤ Aj+1 ∧ (def Ej ⇒ contains (Aj,Ej,Aj+1,col))

) ⇒ Q

)

where contains is defined recursively on the structure of mapping diagrams:

contains (a,e,b, #EA B ) =̂ (rec. case)
b ≤ a

∨ (A ≤ a ≤ B∧ (A= B∨ e=∃ E)∧ contains (B,e,b, B ))
∨ contains (a,e,b, B )

contains (a,e,b, #E BA ) =̂
b ≤ a

∨ (A ≤ a ≤ B∧ (A= B∨ e=∃ E))

(base case)

Proof. ⇐ by structural induction on col and Property 3.2, ⇒ by transitivity of contains
and induction over an integer interval.

Note that the definition of contains involves only Boolean connectives, integer com-
parison, and color terms of the form e =∃ E. When e and E are literal color values (or
absent), the equality e =∃ E can be immediately evaluated, reducing the inner quan-
tification of the legend to a propositional formula where the atoms are linear integer
constraints.



204 J. Eriksson and M. Parsa

5 Diagram Extension to the Why3 Verification Platform

We have developed a prototype extensionWhy3 supporting mechanically proving meta-
properties like Proposition 1 as well as specifying programs with partition and map-
ping diagrams. We first briefly present relevant features of the Why3 platform and then
describe our implementation. The implementation is available in source form at https://
gitlab.com/diagrammatic/whyp.

The Why3 Platform. The Why3 specification language is a first-order logic extended
with polymorphic types and algebraic data types. Theorems can be proved using over a
dozen supported automatic and interactive theorem provers. Users interact with Why3
in batch mode through a command-line interface, or interactively through a graphi-
cal IDE. In addition to the purely logical specification language, programs with loops,
mutable variables, and exceptions can be written in the WhyML language. Why3 gen-
erates VCs from WhyML programs based on weakest preconditions. A good example-
driven tour of Why3 is given by Bobot et al. [6]. Why3 provides a set of transformations
on verification tasks, including definition inlining, application of rewrite rules and log-
ical inference rules. The Why3 drivers for external theorem provers employ these to
transform the sequent into a form amenable to automation, for instance by eliminating
language features that are not supported by the target prover (e.g. algebraic data types).
Other transformations are intended to be used interactively to reduce a goal into one or
more subgoals, e.g., proof-by-cases, instantiation, and induction. Why3 is designed to
both be a backend for other tools as well as an extensible verification platform. It comes
with a standard library of theories which can be reused through an importing mecha-
nism. The platform itself can be extended with different kinds of plug-ins adding new
input formats, prover drivers and other extensions. The core of Why3 is implemented in
OCaml and is offered as a software library for programmatic access to all platform func-
tionality, including parsing, typing, transformations, and invocation of external theorem
provers.

Extension Architecture. The extension to Why3 consists of two components: a set of
Why3 theories formalizing partition diagrams and mappings, and a syntactic prepro-
cessor (written in OCaml) that translates the concrete diagram syntax into Why3 terms.
Figure 1 shows the data flow when the user asks the tool to check a theory contain-
ing diagrams (indicated by the theory existing in a file with the suffix .whyp). The
preprocessor parses the input theory and translates all partition diagrams, mapping dia-
grams and legends into normal form and then into instances of a data type defined in
the theory extension. The resulting AST is dispatched to Why3 for typing, inclusion of
standard library theories, task generation, and external theorem prover execution. From
here onwards the data flow is identical to that of checking a normal Why3 theory. Next,
we describe the concrete diagram syntax and the embedding of the diagrams in the
Why3 logic.

DSL Syntax and Semantics. The DSL follows the ASCII-based lexical rules of Why3
[5]. A partition diagram must be enclosed in square brackets ‘[’ and ‘]’, and vertical
dividing lines are written as ‘|’. The leftmost or rightmost vertical line may be omitted

https://gitlab.com/diagrammatic/whyp
https://gitlab.com/diagrammatic/whyp


A DSL for Integer Range Reasoning 205

Parsing

Normalization

Translation

AST

Typing

Transformation

Tasks

Stdlib

Prover drivers

Preprocessor

Why3 Platform

Fig. 1. Processing pipeline of Why3 extension

when it would be adjacent to a square bracket. The bounds themselves follow the syntax
of Why3 terms. Mapping diagrams must be enclosed in ‘[X→[’ and ‘]]’ (the binder X
may be omitted for colorings). The ellipsis ‘...’ separates bounds inside a component,
and in mapping diagrams may be followed by ‘#’ and an expression. The following are
examples of accepted ASCII partition and mapping diagrams and their diagrammatic
equivalents:

ASCII syntax diagrammatic syntax

[a| ... b] ba

[a| ... |b] a b

[f a ... | f b | ... f c] f (a) f (b) f (c)
[x → [a| ...#(-x) |b ...#(x) c]] x → # − xa b #x c

[[a| ... #R |b ... c]] #Ra b c

Partition and mapping diagrams may occur in a Why3 theory anywhere a term is
expected. After parsing, both types of diagrams are translated into instances of the poly-
morphic data type diag:

type diag α = P int (option α) (diag α) | L int (option α) int

The data type represents partition diagrams in normal form; the preprocessing hence
includes a normalization stage, converting each ‘|e’-fragment into ‘e-1|’ and each
‘|e|’-fragment into ‘e-1|...e|’, before finally converting the result into an instance
of the above data type. The option data type from Why3s standard library is used to
handle partiality. It has two constructors, None and Some α. For partition diagrams, the
second parameter is always None. For mapping diagrams, it is Some α for each interval
associated with an expression of type α, otherwise None. The semantics of partition
diagrams is given by the predicate partitioning:



206 J. Eriksson and M. Parsa

predicate partitioning (d:diag α) = match d with
| P a _ ((P b _ _ | L b _ _) as r) → a≤b ∧ partitioning r
| L a _ b → a≤b
end

meta ‘‘rewrite_def’’ predicate partitioning

and for mapping diagrams by the function mapping:

function mapping (d:diag α) (i:int) : option α = match d with
| P a e ((P b _ _ | L b _ _) as r) → if a<i≤b then e else mapping r i
| L a e b → if a<i≤b then e else None
end

meta ‘‘rewrite_def’’ function mapping

Themeta declarations instruct Why3 to use the above definitions as rewrite rules when
transforming a proof task in preparation for sending it to an external theorem prover.
The rewrites are applied recursively and exhaustively, viz. partitioning is rewritten
into a conjunction sequence and mapping into a nested if-else-expression. This is
normally desirable when using diagrams for specification; only when proving meta-
theorems about partition and mapping diagrams may we want to suppress automatic
rewriting.

A legend is declared with the legend keyword followed by an identifier, a sequence
of parameters and a semicolon-separated list of coloring-to-predicate mappings. The
preprocessor translates the legend into a conjunction of universally quantified state-
ments according to Definition 4. For example, the legend:

type col = R | G
legend lgnd(a: array int)(x:int) of col =
i : [[i#R]] → a[i] �=x;
i,j : [[i| ... #G j]] → a[i]≤a[j]

is translated by the preprocessor into the following Why3 predicate:

predicate lgnd(a:array int)(x:int)(~r:int→option col) =
(forall i:int. i-1≤i ∧ (forall ~k:int. i-1<~k≤i → ~r ~k = Some R) → a[i]�=x) ∧
(forall i,j:int. i≤j ∧ (forall ~k:int . i<~k≤j → ~r ~k = Some G) → a[i]≤a[j])

For automatic elimination of the inner quantification and color-typed terms in a leg-
end applied to a coloring, as described in Sect. 4, the partitioning theory includes the
following lemma declared as a rewrite rule:

lemma mapping_to_contains [@rewrite]:
forall a,b:int, c:α, d: diag α.
(forall k:int. a<k≤b → mapping d = Some c) ↔ contains a b c d

Here contains is defined as in Proposition 1. The rewrite is automatically
applied (from left to right) by Why3 when executing the compute_specified and
compute_in_goal transformations on a goal. The default strategy of the extended
Why3 verifier applies these transformations prior to invoking the user’s back-end theo-
rem prover of choice.



A DSL for Integer Range Reasoning 207

Listing 1. Dutch National Flag

type col = B | W | R

legend flag(a: array col) =
i: [[i#B]] → a[i] = B;
i: [[i#W]] → a[i] = W;
i: [[i#R]] → a[i] = R;

let dutch_national_flag (a: array col) : unit
ensures { exists b r: int . flag a [[0 ...#B |b ...#W |r ...#R |length a]] }
ensures { permut_all (old a) a }

=
let b = ref 0 in
let i = ref 0 in
let r = ref (length a) in
while !i < !r do

invariant { [0 ... |!b ... |!i ... |!r ... |length a] }
invariant { flag a [[0 ...#B |!b ...#W |!i ... |!r ...#R |length a]] }
invariant { permut_all (old a) a }
variant { !r - !i }
match a[!i] with
| B → swap a !b !i; b := !b + 1; i := !i + 1
| W → i := !i + 1
| R → r := !r - 1; swap a !r !i
end

done

6 Verified Code Examples

In this section we present three formally specified and verified procedures where the
pre- and postconditions and loop invariants are expressed as diagrams. The procedures
are specified in the WhyML language with the diagram extensions described in Sect. 5,
and all VCs were proved automatically by a combination of Z3 [7], CVC4 [3] and
Alt-Ergo [4] after preprocessing by our tool.

A classical example of using the coloring analogy in verification is the Dutch
National Flag problem introduced by Dijkstra [9]. It is a simplified sorting prob-
lem: an array containing, in random order, any number of each of the three values
blue (B), white (W), and red (R) should be rearranged so that the blue elements pre-
cede all the white elements, which in turn precede all the red elements (i.e., the final
order is B, W, R). Listing 1 shows an adaptation of an existing Why3 solution2, in
which we have replaced the textual postcondition (ensures clauses) and loop invariant
(invariant clauses) with diagrammatic equivalents. The procedure executes in time lin-
ear to the size of the array and mutates the array by pairwise compare and swap. The
loop invariant consists of three components: a partition diagram constraining the values

2 Part of a gallery of verified programs available at http://toccata.lri.fr/gallery/why3.en.html.

http://toccata.lri.fr/gallery/why3.en.html


208 J. Eriksson and M. Parsa

Listing 2. Binary search

type sorted_col = SO

legend sorted (a: array int) of sorted_col =
i,j: [[i#SO| ... |j#SO]] → a[i] ≤ a[j] ;

type found_col = NE | EQ

legend found (a: array int) (x:int) of found_col =
i: [[i#NE]] → a[i] �= x ;
i: [[i#EQ]] → a[i] = x

let binary_search (a: array int) (x: int) : int
requires { sorted a [[0 ...#SO |length a]] }
ensures { [0 ... |result| ... |length a] }
ensures { found a v [[result#EQ]] }
raises { Not_Found → found a x [[0 ...#NE |length a]] }

=
let l = ref 0 in
let u = ref (length a - 1) in
while !l ≤ !u do

invariant { sorted a [[0 ...#SO |length a]] }
invariant { [0 ... |!l] ∧ [!u ... |(length a)-1] }
invariant { found a x [[0 ...#NE |!l ... !u| ...#NE |length a]] }
variant {!u - !l}
let m = !l + div (!u - !l) 2 in
if a[m] < x then l := m + 1
else if a[m] > x then u := m - 1
else return m

done;
raise Not_Found

of the loop variables b, i and r; a coloring mapping the intervals 0 b , b i
and r length a to B, W and R, respectively; and a (non-diagrammatic) assertion
that the modified array is a permutation of the original. The swap operation and the
permut_all predicate are imported from the Why3 array library together with the prop-
erty that the former maintains the latter. The program is atypical in that the color values,
represented by the datatype col, are not pure specification constructs but also occur in
the computation itself. The legend flag is trivial due to the nature of the program; it
simply asserts that a is elementwise equal to the coloring on the intervals on which the
latter is defined.

Listing 2 shows a verified implementation of binary search with a diagrammatic
postcondition and loop invariant similar to the invariant discussed in the introduction.
The procedure binary_search determines the presence of the value x in the sorted input
array a. It has two exits, one normal and one abnormal. If x is found in a, the procedure



A DSL for Integer Range Reasoning 209

Listing 3. Insertion sort

type col = SO | I

legend sorting (a: array int) of col =
i,j: [[i#SO| ... |j#SO]] → a[i] ≤ a[j] ;
i: [[i#I|i+1#SO]] → a[i] ≤ a[i+1]

let insertion_sort (a: array int)
ensures { sorting a [0 ...#B |length a] }
ensures { permut_all a (old a) }

=
let m = ref 0 in
while !m < length a do

invariant { [0 ... |!m| ... length a] }
invariant { sorting a [[0 ...#SO |!m]] }
invariant { permut_all a (old a) }
variant { length a - !m }
let k = ref !m in
while !k > 0 && a[!k-1] > a[!k] do

invariant { [0 ... |!k| ... !m] }
invariant { sorting a [[0 ...#SO |!k#I| ...#SO !m]] }
invariant { permut_all a (old a) }
variant { !k }
swap a !k (!k - 1);
k := !k - 1

done;
m := !m + 1

done;

exits normally returning an index containing x (in Why3, normal return values are rep-
resented by the result variable in the postcondition specification). If x is not found in
a, the procedure exits abnormally in the Not_Found exception carrying the associated
postcondition that all elements of a are different from x. To express the specification and
invariants diagrammatically, we introduce two legends for the specification of binary
search: sorting, expressing sortedness of the SO-colored range; and found, expressing
existence (EQ) or absence (NE) of the sought element x.

The final example, Listing 3 shows an implementation of a simple sorting algo-
rithm, insertion sort. The procedure insertion_sort sorts the input array by maintain-
ing two partitions, one sorted partition ranging from index 0 to m, followed by one
unsorted partition ranging from m to the end of the array. Each iteration of the outer
loop extends the sorted partition by one element, until the whole array is sorted. The
outer loop invariant is expressed by the partition diagram 0 !m length a and

the coloring 0 #SO !m . The first component of the legend sorting for SO-colored
intervals is identical to the one introduced in Listing 2. In order to achieve sortedness
of the first interval after incrementing m, the inner loop moves the element at index m



210 J. Eriksson and M. Parsa

backwards into its final position in the sorted partition by repeatedly swapping it with
its predecessor using the loop counter k. During the execution of the inner loop, the
outer loop invariant is temporarily invalidated: the interval 0 !m is almost sorted,
but with the exception of a single potential inversion of elements at indexes k-1 and k.
Diagrammatically, this is expressed by the index k being colored by I, and the second
component of the sorting legend specifying that any I-colored element followed by an
SO-colored element constitutes a sorted pair.

7 Related Work

Partition and interval diagrams were originally proposed by Reynolds [16], who used
them extensively in the specification and verification of several array-manipulating pro-
grams in his textbook The Craft of Programming [17]. Notably, Reynolds gives a for-
mal syntax and a set of manipulation rules for the diagrams to facilitate their use as
terms in calculational correctness proofs. Reynolds writes universally quantified invari-
ants using the standard ∀-operator and gives the quantification domain as an interval
diagram, rather than making the quantification implicit in the diagrammatic notation
itself. Many textbooks, e.g. [12,18], use similar box diagrams (termed “array pictures”
or “array diagrams”) in the presentation of assertions over both array indexes and array
elements, but most of them do not formalize their semantics fully. Astrachan [1] sug-
gests diagram representations for arrays and linked lists, emphasizing the role of dia-
grams in comprehension. Generating visual representations from textual specifications
has been addressed in the context of the Z language [14]. Similar diagrams have also
been proposed for visualizing array VCs [13], as an aid to proof and debugging. Wicker-
son et al. [19] employ partition-like diagrams in the visual proof notation called ribbon
proofs for separation logic. Pearce [15] explores through a number of examples how
array-based programming is enhanced by languages which support specifications and
invariants over arrays. Invariant-based programming [2] is a correct-by-construction
formal method aimed at teaching in which programs and their proofs are constructed
diagrammatically, often with the aid of partition diagram-like pictures during the ini-
tial stages of construction. The idea of colorings and legends also originates from the
authors’ previous joint work with R-J. Back [10]. We are not aware of existing work on
integrating partition or interval diagrams into a general-purpose program verification
platform.

8 Conclusions and Future Work

This paper approaches box diagrams from the viewpoint that they can serve as an
expressive formal mini-language—a DSL—rather than being restricted to their tradi-
tional role of ephemeral pre-code sketches and post-code visualizations. We have intro-
duced an extension to Reynolds’s original partition and interval diagrams for piecewise
definition of partial functions over integer intervals, and a legend construct for asserting
a predicate over a sequence of labeled (“colored”) intervals. We have extended Why3
to read diagrammatic syntax and formalized its semantics in a Why3 theory.



A DSL for Integer Range Reasoning 211

We believe that the value of a formal specification is largely dependent on its legibil-
ity, as the specification cannot be proved correct (only checked for internal consistency),
but is instead subject to human assessment of fitness for purpose (validation). Also,
although significant advances have been made in automatically synthesizing invariants
from the code, such techniques cannot discover difficult invariants, meaning that the
same requirement of legibility applies to these as well. Good notation makes writing
readable assertions more tractable, and while notation by itself may not be the primary
challenge of verification, it is nevertheless held in high regard among verification prac-
titioners. In particular, we have observed a tendency among the experienced to write
integer range and array predicates following idioms that serve similar organizational
purposes as the diagrams proposed herein, such as chaining relational operators and
maintaining increasing order of bounds from left to right, preferring the relations <
and ≤ over > and ≥. Formalizing such idioms is where a DSL and tool support can
be of value. However, diagrammatic languages requiring sophisticated tool support and
considerable learning investments from users are hard to justify for niche domains. The
authors believe that the DSL presented here achieves a sensible compromise between
expressive power and ease of integration. During implementation of the tool support,
we came to appreciate both the semantically rich Why3 and WhyML languages and
the extensibility of the Why3 platform through its API. The one feature we missed was
a way to extend the Why3 language in a modular fashion, e.g., by adding new term
productions while leaving the rest of the grammar intact, rather than by modifying its
parser.

Finally, we emphasize that our goal has not been to address all aspects of array
reasoning. The authors have found the DSL useful when writing array invariants that
involves partitioning, but do not make further claims regarding its general applicability.
There are classes of array invariants for which the DSL is not a sensible choice: clearly,
assertions not involving partitions may have little to gain, and assertions with multiple
nested quantifications may find the legibility advantage being lost. A lightweight DSL
has the advantage that we can restrict its use to specification tasks for which we deem
it beneficial, and fall back to standard FOL notation in other cases. Hence we believe
the DSL’s primary role is to ease writing of certain classes of array and integer range
properties, viz. those that involve partitioning and universal quantification. We surmise
that the class of programs involving such properties is large enough that a DSL like the
one presented here could justify its place in the modern verification toolbox.

Future Work. There is scope for much further work on partition, interval and mapping
diagrams, both in improving tool support and in generalizing the notation itself. The tool
is in the first prototype stage and has so far only been tested on a small collection of
toy examples. We have identified enhancements and optimizations that will be required
to address real-world requirements. For instance, the diagram syntax is currently not
supported in the Why3 IDE during interactive proofs. Also, the contains rewrite should
be optimized, as it currently expands a diagram into a formula that is exponential in the
length of the diagram chain (this has not been an issue in practice with typical diagrams,
but prevents larger diagrams from being processed). More experiments will be needed to
gain more experience with the notation and identify potential pitfalls, and a comparative
study with real users is necessary to experimentally assess the merits of the DSL over



212 J. Eriksson and M. Parsa

regular FOL notation. Finally, we are also looking into extending the diagram notation
beyond the domain of integers, in particular to non-linear structures in order to reason
about multi-dimensional arrays, trees and graphs.

References

1. Astrachan, O.L.: Pictures as invariants. In: Dale, N.B. (ed.) Proceedings of the 22nd SIGCSE
Technical Symposium on Computer Science Education, pp. 112–118. ACM (1991). https://
doi.org/10.1145/107004.107026

2. Back, R.J.: Invariant based programming: basic approach and teaching experiences. Form.
Asp. Comput. 21(3), 227–244 (2009). https://doi.org/10.1007/s00165-008-0070-y

3. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_14

4. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., Mebsout, A.: The Alt-
Ergo Automated Theorem Prover (2008). http://alt-ergo.lri.fr/

5. Bobot, F., Filliâtre, J.C., Marché, C., Melquiond, G., Paskevich, A.: The Why3 Platform
(2019). Version 1.2.0. http://why3.lri.fr/manual.pdf

6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verifythis with why3. Int. J. Softw.
Tools Tech. Transf. 17(6), 709–727 (2015). https://doi.org/10.1007/s10009-014-0314-5

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3_24

8. Dijkstra, E.W.: The humble programmer. Commun. ACM 15(10), 859–866 (1972). https://
doi.org/10.1145/355604.361591

9. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Upper Saddle River (1976)
10. Eriksson, J., Parsa, M., Back, R.-J.: A precise pictorial language for array invariants. In:

Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 151–160. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98938-9_9

11. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen, M., Gard-
ner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37036-6_8

12. Gries, D.: The Science of Programming, 1st edn. Springer, New York (1987)
13. Jami, M., Ireland, A.: A verification condition visualizer. In: Giannakopoulou, D., Kroening,

D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp. 72–86. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-12154-3_5

14. Moremedi, K., van der Poll, J.A.: Transforming formal specification constructs into dia-
grammatic notations. In: Cuzzocrea, A., Maabout, S. (eds.) MEDI 2013. LNCS, vol. 8216,
pp. 212–224. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41366-7_18

15. Pearce, D.J.: Array programming in whiley. In: Proceedings of the 4th ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array Programming,
pp. 17–24. ACM, New York (2017). https://doi.org/10.1145/3091966.3091972

16. Reynolds, J.C.: Reasoning about arrays. Commun. ACM 22(5), 290–299 (1979). https://doi.
org/10.1145/359104.359110

17. Reynolds, J.C.: The Craft of Programming. Prentice Hall PTR, Upper Saddle River (1981)
18. Tennent, R.D.: Specifying Software - A Hands-On Introduction. Cambridge University

Press, Cambridge (2002)
19. Wickerson, J., Dodds, M., Parkinson, M.: Ribbon proofs for separation logic. In: Felleisen,

M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 189–208. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37036-6_12

https://doi.org/10.1145/107004.107026
https://doi.org/10.1145/107004.107026
https://doi.org/10.1007/s00165-008-0070-y
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
http://alt-ergo.lri.fr/
http://why3.lri.fr/manual.pdf
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/355604.361591
https://doi.org/10.1007/978-3-319-98938-9_9
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-319-12154-3_5
https://doi.org/10.1007/978-3-319-12154-3_5
https://doi.org/10.1007/978-3-642-41366-7_18
https://doi.org/10.1145/3091966.3091972
https://doi.org/10.1145/359104.359110
https://doi.org/10.1145/359104.359110
https://doi.org/10.1007/978-3-642-37036-6_12

	A DSL for Integer Range Reasoning: Partition, Interval and Mapping Diagrams
	1 Introduction
	2 Interval and Partition Diagrams
	3 Mapping Diagrams and Colorings
	4 Legends
	5 Diagram Extension to the Why3 Verification Platform
	6 Verified Code Examples
	7 Related Work
	8 Conclusions and Future Work
	References




