
Exploiting Database Management
Systems and Treewidth for Counting

Johannes K. Fichte1(B) , Markus Hecher2,3(B) , Patrick Thier2(B),
and Stefan Woltran2(B)

1 TU Dresden, Dresden, Germany
johannes.fichte@tu-dresden.de

2 TU Wien, Vienna, Austria
{hecher,thier,woltran}@dbai.tuwien.ac.at
3 University of Potsdam, Potsdam, Germany

hecher@uni-potsdam.de

Abstract. Bounded treewidth is one of the most cited combinatorial
invariants, which was applied in the literature for solving several count-
ing problems efficiently. A canonical counting problem is #Sat, which
asks to count the satisfying assignments of a Boolean formula. Recent
work shows that benchmarking instances for #Sat often have reasonably
small treewidth. This paper deals with counting problems for instances
of small treewidth. We introduce a general framework to solve count-
ing questions based on state-of-the-art database management systems
(DBMS). Our framework takes explicitly advantage of small treewidth
by solving instances using dynamic programming (DP) on tree decompo-
sitions (TD). Therefore, we implement the concept of DP into a DBMS
(PostgreSQL), since DP algorithms are already often given in terms of
table manipulations in theory. This allows for elegant specifications of DP
algorithms and the use of SQL to manipulate records and tables, which
gives us a natural approach to bring DP algorithms into practice. To the
best of our knowledge, we present the first approach to employ a DBMS
for algorithms on TDs. A key advantage of our approach is that DBMS
naturally allow to deal with huge tables with a limited amount of main
memory (RAM), parallelization, as well as suspending computation.

Keywords: Dynamic programming · Parameterized algorithmics ·
Bounded treewidth · Database systems · SQL · Relational algebra ·
Counting

1 Introduction

Counting solutions is a well-known task in mathematics, computer science, and
other areas [8,17,24,38]. In combinatorics, for instance, one characterizes the

Our system dpdb is available under GPL3 license at github.com/hmarkus/dp on dbs.
The work has been supported by the Austrian Science Fund (FWF), Grants Y698,
P26696, and P32830, and the German Science Fund (DFG), Grant HO 1294/11-1.

c© Springer Nature Switzerland AG 2020
E. Komendantskaya and Y. A. Liu (Eds.): PADL 2020, LNCS 12007, pp. 151–167, 2020.
https://doi.org/10.1007/978-3-030-39197-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39197-3_10&domain=pdf
http://orcid.org/0000-0002-8681-7470
http://orcid.org/0000-0003-0131-6771
http://orcid.org/0000-0003-1594-8972
https://github.com/hmarkus/dp_on_dbs/releases/tag/v1.001-pre
https://doi.org/10.1007/978-3-030-39197-3_10

152 J. K. Fichte et al.

number of solutions to problems by means of mathematical expressions, e.g.,
generating functions [18]. One particular counting problem, namely model count-
ing (#Sat) asks to output the number of solutions of a given Boolean formula.
Model counting and variants thereof have already been applied for solving a
variety of real-world applications [8,10,19,44]. Such problems are typically con-
sidered rather hard, since #Sat is complete for the class #P [3,35], i.e., one
can simulate any problem of the polynomial hierarchy with polynomially many
calls [41] to a #Sat solver. Taming this high complexity is possible with tech-
niques from parameterized complexity [12]. In fact, many of the publicly avail-
able #Sat instances show good structural properties after using regular prepro-
cessors like pmc [29], see [23]. By good structural properties, we mean that graph
representations of these instance have reasonably small treewidth. The measure
treewidth is a structural parameter of graphs which models the closeness of the
graph to being a tree and is one of the most cited combinatorial invariants stud-
ied in parameterized complexity [12], and subject of recent competitions [15].

This observation gives rise to a general framework for counting problems
that leverages treewidth. The general idea to develop such frameworks is indeed
not new, since there are both, specialized solvers [9,23,25], as well as general
systems like D-FLAT [5], Jatatosk [4], and sequoia [31], that exploit treewidth.
Some of these systems explicitly use dynamic programming (DP) to directly
exploit treewidth by means of so-called tree decompositions (TDs), whereas oth-
ers provide some kind of declarative layer to model the problem (and perform
decomposition and DP internally). In this work, we solve (counting) problems
by means of explicitly specified DP algorithms, where essential parts of the DP
algorithm are specified in form of SQL SELECT queries. The actual run of the DP
algorithm is then delegated to our system dpdb, which employs database man-
agement systems (DBMS) [43]. This has not only the advantage of naturally
describing and manipulating the tables that are obtained during DP, but also
allows dpdb to benefit from decades of database technology in form of the capa-
bility to deal with huge tables using limited amount of main memory (RAM),
dedicated database joins, as well as query optimization and data-dependent exe-
cution plans.

Contribution. We implement a system dpdb for solving counting problems based
on dynamic programming on tree decompositions, and present the following con-
tributions. (i) Our system dpdb uses database management systems to handle
table operations needed for performing dynamic programming efficiently. The
system dpdb is written in Python and employs PostgreSQL as DBMS, but can
work with other DBMSs easily. (ii) The architecture of dpdb allows to solve
general problems of bounded treewidth that can be solved by means of table
operations (in form of relational algebra and SQL) on tree decompositions. As a
result, dpdb is a generalized framework for dynamic programming on tree decom-
positions, where one only needs to specify the essential and problem-specific parts
of dynamic programming in order to solve (counting) problems. (iii) Finally, we
show how to solve the canonical problem #Sat with the help of dpdb, where
it seems that the architecture of dpdb is particularly well-suited. Concretely, we

Exploiting Database Management Systems and Treewidth for Counting 153

compare the runtime of our system with state-of-the-art model counters, where
we observe competitive behavior and promising indications for future work.

2 Preliminaries

We assume familiarity with terminology of graphs and trees. For details, we refer
to the literature and standard textbooks [16].

d a

b c {a, b, c}
t1

{a, d}
t2

{a}t3

Fig. 1. Graph G (left) with a TD T of graph G (right).

Boolean Satisfiability. We define Boolean formulas and their evaluation in the
usual way, cf., [26]. A literal is a Boolean variable x or its negation ¬x. A CNF
formula ϕ is a set of clauses interpreted as conjunction. A clause is a set of
literals interpreted as disjunction. For a formula or clause X, we abbreviate by
var(X) the variables that occur in X. An assignment of ϕ is a mapping I :
var(ϕ) → {0, 1}. The formula ϕ(I) under assignment I is obtained by removing
every clause c from ϕ that contains a literal set to 1 by I, and removing from
every remaining clause of ϕ all literals set to 0 by I. An assignment I is satisfying
if ϕ(I) = ∅. Problem #Sat asks to output the number of satisfying assignments
of a formula.

Tree Decomposition and Treewidth. A tree decomposition (TD) [12,27] of a given
graph G is a pair T = (T, χ) where T is a rooted tree and χ is a mapping
which assigns to each node t ∈ V (T) a set χ(t) ⊆ V (G), called bag, such that
(i) V (G) =

⋃
t∈V (T) χ(t) and E(G) ⊆ {{u, v} | t ∈ V (T), {u, v} ⊆ χ(t) }; and

(ii) for each r, s, t ∈ V (T), such that s lies on the path from r to t, we have
χ(r) ∩ χ(t) ⊆ χ(s). We let width(T) := maxt∈V (T) |χ(t)| − 1. The treewidth
tw(G) of G is the minimum width(T) over all TDs T of G. For a node t ∈ V (T),
we say that type(t) is leaf if t has no children and χ(t) = ∅; join if t has children t′

and t′′ with t′ �= t′′ and χ(t) = χ(t′) = χ(t′′); intr (“introduce”) if t has a single
child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)| + 1; rem (“removal”) if t has a single
child t′, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)| + 1. If for every node t ∈ V (T),
type(t) ∈ {leaf, join, intr, rem}, then the TD is called nice.

Example 1. Figure 1 depicts a graph G and a TD T of G of width 2. The
treewidth of G is also 2 since G contains a complete graph with 3 vertices [27].

�

Relational Algebra. We use relational algebra [11] for manipulation of rela-
tions, which forms the theoretical basis of the database standard Structured
Query Language (SQL) [43] on tables. An attribute a is of a certain finite

154 J. K. Fichte et al.

Algorithm 1. Table algorithm S(t, χ(t), ϕt, 〈τ1, . . . , τ�〉) for #Sat [36] using
nice TD.

In: Node t, bag χ(t), clauses ϕt, sequence 〈τ1, . . . τ�〉 of child tables. Out: Table τt.
1 if type(t) = leaf then τt := {〈∅, 1〉}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt := {〈J, c〉 | 〈I, c〉 ∈ τ1, J ∈ {I+

a�→0, I
+
a�→1}, ϕt(J) = ∅}

4 else if type(t) = rem, and a �∈ χ(t) is removed then
5 τt := {〈I−

a , Σ〈J,c〉∈τ1:I
−
a =J−

a
c〉 | 〈I, ·〉 ∈ τ1}

6 else if type(t) = join then
7 τt := {〈I, c1 · c2〉 | 〈I, c1〉 ∈ τ1, 〈I, c2〉 ∈ τ2}

S−
e :=S \ {e �→ 0, e �→ 1}, S+

s :=S ∪ {s}.

domain dom(a). Then, a tuple r over set att(r) of attributes is a set of pairs
of the form (a, v) with a ∈ att(r), v ∈ dom(a) s.t. for each a ∈ att(r), there is
exactly one v ∈ dom(a) with (a, v) ∈ r. A relation R is a finite set of tuples r
over set att(R) := att(r) of attributes. Given a relation R over att(R). Then, we
let dom(R) :=

⋃
a∈att(R) dom(a), and let relation R projected to A ⊆ att(R) be

given by ΠA(R) := {rA | r ∈ R}, where rA := {(a, v) | (a, v) ∈ r, a ∈ A}. This
concept can be lifted to extended projection Π̇A,S , where we assume in addition
to A ⊆ att(R), a set S of expressions of the form a ← f , such that a ∈ att(R)\A,
and f is an arithmetic function that takes a tuple r ∈ R, such that there is at
most one expression in S for each a ∈ att(R)\A. Formally, we define Π̇A,S(R) :=
{rA ∪ rS | r ∈ R} with rS := {(a, f(r)) | a ∈ att(r), (a ← f) ∈ S}. Later, we use
aggregation by grouping AG(a←g), where we assume A ⊆ att(R), a ∈ att(R) \ A
and a so-called aggregate function g, which takes a relation R′ ⊆ R and returns
a value of domain dom(a). Therefore, we let AG(a←g)(R) := {r∪{(a, g(R[r]))} |
r ∈ ΠA(R)}, where R[r] := {r′ | r′ ∈ R, r ⊆ r′}. We define renaming
of R given set A of attributes, and a bijective mapping m : att(R) → A s.t.
dom(a) = dom(m(a)) for a ∈ att(R), by ρm(R) := {(m(a), v) | (a, v) ∈ R}.
Selection of rows in R according to a given Boolean formula ϕ with equal-
ity1 is defined by σϕ(R) := {r | r ∈ R,ϕ(rE) = ∅}, where rE is a truth
assignment over var(ϕ) such that for each v, v′, v′′ ∈ dom(R) ∪ att(R) (1)
rE(v ≈ v′) = 1 if (v, v′) ∈ r, (2) rE(v ≈ v) = 1, (3) rE(v ≈ v′) = rE(v′ ≈ v),
and (4) if rE(v ≈ v′) = 1, and rE(v′ ≈ v′′) = 1, then rE(v ≈ v′′) = 1. Given
a relation R′ with att(R′) ∩ att(R) = ∅. Then, we refer to the cross-join
by R × R′ := {r ∪ r′ | r ∈ R, r′ ∈ R′}. Further, a θ-join (according to ϕ)
corresponds to R �	ϕ R′ := σϕ(R × R′).

3 Towards Relational Algebra for Dynamic Programming

A solver based on dynamic programming (DP) evaluates the input I in parts
along a given TD of a graph representation G of the input. Thereby, for each
node t of the TD, intermediate results are stored in a table τt. This is achieved
1 We allow for ϕ to contain expressions v≈v′ as variables for v, v′ ∈ dom(R) ∪ att(R),

and we abbreviate for v ∈ att(R) with dom(v) = {0, 1}, v≈1 by v and v≈0 by ¬v.

Exploiting Database Management Systems and Treewidth for Counting 155

∅ t1

{a} t2

{a, c} t3

{a, b, c} t4

{a, b} t5

{a} t6

∅t7

{d}t8

{a, d}t9

{a}t10

{a} t11

∅ t12

〈I4.i, c4.i〉
〈{a �→ 0, b �→ 0, c �→ 0}, 1〉
〈{a �→ 0, b �→ 1, c �→ 0}, 1〉
〈{a �→ 1, b �→ 1, c �→ 0}, 1〉
〈{a �→ 0, b �→ 0, c �→ 1}, 1〉
〈{a �→ 1, b �→ 0, c �→ 1}, 1〉
〈{a �→ 1, b �→ 1, c �→ 1}, 1〉

τ4

i

1
2
3
4
5
6

〈I5.i, c5.i〉
〈{a �→ 0, b �→ 0}, 2〉
〈{a �→ 1, b �→ 0}, 1〉
〈{a �→ 0, b �→ 1}, 1〉
〈{a �→ 1, b �→ 1}, 2〉

τ5

i

1
2
3
4

i

1
2

〈I9.i, c9.i〉
〈{a �→ 1, d �→ 0}, 1〉
〈{a �→ 1, d �→ 1}, 1〉

τ9

〈I11.i, c11.i〉
〈{a �→ 1}, 6〉

τ11

i

1

〈I12.i, c12.i〉
〈∅, 6〉 τ12

i

1

i

1

〈I1.i, c1.i〉
〈∅, 1〉

τ1

Fig. 2. Selected tables obtained by DP on T ′ for ϕ of Example 2 using algorithm S.
(Color figure online)

by running a so-called table algorithm A, which is designed for a certain graph
representation, and stores in τt results of problem parts of I, thereby considering
tables τt′ for child nodes t′ of t. DP works for many problems P as follows.

1. Construct a graph representation G of the given input instance I.
2. Heuristically compute a tree decomposition T = (T, χ) of G.
3. Traverse the nodes in V (T) in post-order, i.e., perform a bottom-up traversal

of T . At every node t during post-order traversal, execute a table algorithm A
that takes as input t, bag χ(t), a local problem P(t, I) = It depending on P,
as well as previously computed child tables of t and stores the result in τt.

4. Interpret table τn for the root n of T in order to output the solution of I.

For solving problem P = #Sat, we need the following graph representation.
The primal graph Gϕ [36] of a formula ϕ has as vertices its variables, where two
variables are joined by an edge if they occur together in a clause of ϕ. Given
formula ϕ, a TD T = (T, χ) of Gϕ and a node t of T . Sometimes, we refer to the
treewidth of the primal graph of a given formula by the treewidth of the formula.
Then, we let local problem #Sat(t, ϕ) = ϕt be ϕt := { c | c ∈ ϕ, var(c) ⊆ χ(t) },
which are the clauses entirely covered by χ(t).

Table algorithm S as presented in Algorithm 1 shows all the cases that are
needed to solve #Sat by means of DP over nice TDs. Each table τt consist
of rows of the form 〈I, c〉, where I is an assignment of ϕt and c is a counter.
Nodes t with type(t) = leaf consist of the empty assignment and counter 1, cf.,
Line 1. For a node t with introduced variable a ∈ χ(t), we guess in Line 3 for
each assignment β of the child table, whether a is set to true or to false, and
ensure that ϕt is satisfied. When an atom a is removed in node t, we project
assignments of child tables to χ(t), cf., Line 5, and sum up counters of the same
assignments. For join nodes, counters of common assignments are multiplied, cf.,
Line 7.

Example 2. Consider formula ϕ := {
c1

︷ ︸︸ ︷
{¬a, b, c},

c2
︷ ︸︸ ︷
{a,¬b,¬c},

c3
︷ ︸︸ ︷
{a, d},

c4
︷ ︸︸ ︷
{a,¬d}}.

Satisfying assignments of formula ϕ are, e.g., {a �→ 1, b �→ 1, c �→ 0, d �→ 0},

156 J. K. Fichte et al.

Algorithm 2. Alternative table algorithm SRAlg(t, χ(t), ϕt, 〈τ1, . . . , τ�〉) for
#Sat.

In: Node t, bag χ(t), clauses ϕt, sequence 〈τ1, . . . τ�〉 of child tables. Out: Table τt.
1 if type(t) = leaf then τt := {{(cnt, 1)}}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt := τ1 ��ϕt {{([[a]], 0)}, {([[a]], 1)}}
4 else if type(t) = rem, and a �∈ χ(t) is removed then
5 τt := χ(t)Gcnt←SUM(cnt)

(Πatt(τ1)\{[[a]]}τ1)

6 else if type(t) = join then

7 τt := Π̇χ(t),{cnt←cnt·cnt′}(τ1 ��∧
a∈χ(t)[[a]]≈[[a]]′ ρ⋃

a∈att(τ2)
{[[a]] �→[[a]]′}τ2)

{a �→ 1, b �→ 0, c �→ 1, d �→ 0} or {a �→ 1, b �→ 1, c �→ 1, d �→ 1}. In total, there are
6 satisfying assignments of ϕ. Observe that graph G of Fig. 1 actually depicts
the primal graph Gϕ of ϕ. Intuitively, T of Fig. 1 allows to evaluate formula ϕ
in parts. Figure 2 illustrates a nice TD T ′ = (·, χ) of the primal graph Gϕ and
tables τ1, . . ., τ12 that are obtained during the execution of S on nodes t1, . . . , t12.
We assume that each row in a table τt is identified by a number, i.e., row i cor-
responds to ut.i = 〈It.i, ct.i〉.

Table τ1 = { 〈∅, 1〉 } has type(t1) = leaf. Since type(t2) = intr, we construct
table τ2 from τ1 by taking I1.i∪{a �→ 0} and I1.i∪{a �→ 1} for each 〈I1.i, c1.i〉 ∈ τ1.
Then, t3 introduces c and t4 introduces b. ϕt1 = ϕt2 = ϕt3 = ∅, but since
χ(t4) ⊆ var(c1) we have ϕt4 = {c1, c2} for t4. In consequence, for each I4.i of
table τ4, we have {c1, c2}(I4.i) = ∅ since S enforces satisfiability of ϕt in node t.
Since type(t5) = rem, we remove variable c from all elements in τ4 and sum
up counters accordingly to construct τ5. Note that we have already seen all
rules where c occurs and hence c can no longer affect interpretations during
the remaining traversal. We similarly create τ6 = {〈{a �→ 0}, 3〉, 〈{a �→ 1}, 3〉}
and τ10 = {〈{a �→ 1}, 2〉}. Since type(t11) = join, we build table τ11 by taking
the intersection of τ6 and τ10. Intuitively, this combines assignments agreeing
on a, where counters are multiplied accordingly. By definition (primal graph and
TDs), for every c ∈ ϕ, variables var(c) occur together in at least one common
bag. Hence, since τ12 = {〈∅, 6〉}, we can reconstruct for example model {a �→
1, b �→ 1, c �→ 0, d �→ 1} = I11.1 ∪ I5.4 ∪ I9.2 of ϕ using highlighted (yellow) rows
in Fig. 2. On the other hand, if ϕ was unsatisfiable, τ12 would be empty (∅). �

Alternative: Relational Algebra. Instead of using set theory to describe how tables
are obtained during dynamic programming, one could alternatively use relational
algebra. There, tables τt for each TD node t are pictured as relations, where τt

distinguishes a unique column (attribute) [[x]] for each x ∈ χ(t). Further, there
might be additional attributes required depending on the problem at hand, e.g.,
we need an attribute cnt for counting in #Sat, or an attribute for modeling
costs or weights in case of optimization problems. Algorithm 2 presents a table
algorithm for problem #Sat that is equivalent to Algorithm 1, but relies on
relational algebra only for computing tables. This step from set notation to
relational algebra is driven by the observation that in these table algorithms one

Exploiting Database Management Systems and Treewidth for Counting 157

1. Build graph of Store results
in table t E

Apply ARAlg to
local prob. (t,)

E2. Create TD of

2b.Create DB Tables done?
no

yes

Visit next node t
of in post-order

4. Specify Output

E E

3. Dynamic Programming for

Fig. 3. Architecture of Dynamic Programming with Databases. Steps highlighted in
red are provided by the system depending on specification of yellow and blue parts,
which is given by the user for specific problems P. The yellow “E”s represent events
that can be intercepted and handled by the user. The blue part concentrates on table
algorithm ARAlg, where the user specifies how SQL code is generated in a modular way.
(Color figure online)

can identify recurring patterns, and one mainly has to adjust problem-specific
parts of it (highlighted by coloring in Algorithm1). In particular, one typically
derives for nodes t with type(t) = leaf, a fresh initial table τt, cf., Line 1 of
Algorithm 2. Then, whenever an atom a is introduced, such algorithms often
use θ-joins with a fresh initial table for the introduced variable a representing
potential values for a. In Line 3 the selection of the θ-join is performed according
to ϕt, i.e. corresponding to the local problem of #Sat. Further, for nodes t
with type(t) = rem, these table algorithms typically need projection. In case
of Algorithm 2, Line 5 also needs grouping in order to maintain the counter, as
several rows of τ1 might collapse in τt. Finally, for a node t with type(t) = join, in
Line 7 we use extended projection and θ-joins, where we join on the same truth
assignments, which allows us later to leverage advanced database technology.
Extended projection is needed for multiplying the counters of the two rows
containing the same assignment.

4 Dynamic Programming on TDs Using Databases
and SQL

In this section, we present a general architecture to model table algorithms by
means of database management systems. The architecture is influenced by the
DP approach of the previous section and works as depicted in Fig. 3, where
the steps highlighted in yellow and blue need to be specified depending on the
problem P. Steps outside Step 3 are mainly setup tasks, the yellow “E”s indicate
events that might be needed to solve more complex problems on the polynomial
hierarchy. For example, one could create and drop auxiliary sub-tables for each
node during Step 3 within such events. Observe that after the generation of a
TD T = (T, χ), Step 2b automatically creates tables τt for each node t of T ,
where the corresponding table schema of τt is specified in the blue part, i.e.,
within ARAlg. The default schema of such a table τt that is assumed in this

158 J. K. Fichte et al.

Listing 3. Template of ARAlg(t, χ(t), It, 〈τ1, . . . , τ�〉) of Figure 3 for problem P.

In: Node t, bag χ(t), instance It, sequence 〈τ1, . . . τ�〉 of child tables. Out: Table τt.
1 if type(t) = leaf then τt := #εTab#
2 else if type(t) = intr, and a ∈ χ(t) is introduced then

3 τt := Π̇χ(t),#extProj#(τ1 ��#localProbFilter# #intrTab#)
4 else if type(t) = rem, and a �∈ χ(t) is removed then
5 τt := χ(t)G#aggrExp#

(Πatt(τ1)\{[[a]]}τ1)

6 else if type(t) = join then

7 τt := Π̇χ(t),#extProj#(τ1 ��∧
a∈χ(t)[[a]]≈[[a]]′ ρ⋃

a∈att(τ2)
{[[a]] �→[[a]]′}τ2)

section foresees one column for each element of the bag χ(t), where additional
columns such as counters or costs can be added.

Actually, the core of this architecture is focused on the table algorithm ARAlg

executed for each node t of T of TD T = (T, χ). Besides the definition of table
schemes, the blue part concerns specification of the table algorithm by means
of a procedural generator template that describes how to dynamically obtain
SQL code for each node t thereby oftentimes depending on χ(t). This generated
SQL code is then used internally for manipulation of tables τt during the tree
decomposition traversal in Step 3 of dynamic programming. Listing 3 presents a
general template, where parts of table algorithms for problems that are typically
problem-specific are replaced by colored placeholders of the form #placeHolder#,
cf., Algorithm 2. Observe that Line 3 of Listing 3 uses extended projection as in
Line 7. This is needed for some problems requiring changes on vertex introduc-
tion.

Note, however, that the whole architecture does not depend on certain nor-
malization or forms of TDs, e.g., whether it is nice or not. Instead, a table algo-
rithm of any TD is simply specified by handling problem-specific implementations
of the placeholders of Listing 3, where the system following this architecture is
responsible for interleaving and overlapping these cases within a node t. In fact,
we discuss an implementation of a system according to this architecture next,
where it is crucial to implement non-nice TDs to obtain higher efficiency.

4.1 System dpdb: Dynamic Programming with Databases

We implemented the proposed architecture of the previous section in the proto-
typical dpdb system. The system is open-source2, written in Python 3 and uses
PostgreSQL as DBMS. We are convinced though that one can easily replace
PostgreSQL by any other state-of-the-art relational database that uses SQL. In
the following, we discuss implementation specifics that are crucial for a perfor-
mant system that is still extendable and flexible.

Computing TDs. TDs are computed mainly with the library htd version 1.2
with default settings [2], which finds TDs extremely quick also for interesting
instances [23] due to heuristics. Note that dpdb directly supports the TD format
2 Our system dpdb is available under GPL3 license at github.com/hmarkus/dp on dbs.

https://github.com/hmarkus/dp_on_dbs/releases/tag/v1.001-pre

Exploiting Database Management Systems and Treewidth for Counting 159

of recent competitions [15], i.e., one could easily replace the TD library. It is
important though to not enforce htd to compute nice TDs, as this would cause a
lot of overhead later in dpdb for copying tables. However, in order to benefit from
the implementation of θ-joins, query optimization and state-of-the-art database
technology in general, we observed that it is crucial to limit the number of child
nodes of every TD node. Then, especially when there are huge tables involved,
θ-joins among child node tables cover at most a limited number of child node
tables. In consequence, the query optimizer of the database system still has a
chance to come up with meaningful execution plans depending on the contents
of the table. Note that though one should consider θ-joins with more than just
two tables, since such binary θ-joins already fix in which order these tables shall
be combined, thereby again limiting the query optimizer. Apart from this trade-
off, we tried to outsource the task of joining tables to the DBMS, since the
performance of database systems highly depends on query optimization. The
actual limit, which is a restriction from experience and practice only, highly
depends on the DBMS that is used. For PostgreSQL, we set a limit of at most 5
child nodes for each node of the TD, i.e., each θ-join covers at most 5 child
tables.

Towards non-nice TDs. Although this paper presents the algorithms for nice
TDs (mainly due to simplicity), the system dpdb interleaves these cases as pre-
sented in Listing 3. Concretely, the system executes one query per table τt for
each node t during the traversal of TD T . This query consists of several parts
and we briefly explain its parts from outside to inside. First of all, the inner-most
part concerns the row candiates for τt consisting of the θ-join as in Line 7 of List-
ing 3, including parts of Line 3, namely cross-joins for each introduced variable,
involving #intrTab# without the filtering on #localProbFilter#. Then, there are
different configurations of dpdb concerning these row candidates. For debugging
(see below) one could (1) actually materialize the result in a table, whereas
for performance runs, one should use (2) common table expressions (CTEs or
WITH-queries) or (3) sub-queries (nested queries), which both result in one nested
SQL query per table τt. On top of these row candidates, projection3 and group-
ing involving #aggrExp# as in Line 5 of Listing 3, as well as selection according
to #localProbFilter#, cf., Line 3, is specified. It turns out that PostgreSQL can
do better with sub-queries, where the query optimizer oftentimes pushes selec-
tion and projection into the sub-query if needed, which is not the case for CTEs,
as discussed in the PostgreSQL manual [1, Sec. 7.8.1]. On different DBMS or
other vendors, e.g., Oracle, it might be better to use CTEs instead.

Example 3. Consider again Example 2 and Fig. 1. If we use table algo-
rithm SRAlg with dpdb on formula ϕ of TD T and Option (3): sub-queries, where
the row candidates are expressed via a sub-queries. Then, for each node ti of T ,
dpdb generates a view vi as well as a table τi containing in the end the con-
tent of vi. Observe that each view only has one column [[a]] for each variable a
of ϕ since the truth assignment of the other variables are not needed later. This

3 Actually, dpdb keeps only columns relevant for the table of the parent node of t.

160 J. K. Fichte et al.

keeps the tables compact, only τ1 has two rows, τ2, and τ3 have only one row.
We obtain the following views.

CREATE VIEW v1 AS SELECT a, sum(cnt) AS cnt FROM

(WITH intrTab AS (SELECT 1 AS val UNION ALL SELECT 0)

SELECT i1.val AS a, i2.val AS b, i3.val AS c, 1 AS cnt

FROM intrTab i1, intrTab i2, intrTab i3)

WHERE (NOT a OR b OR c) AND (a OR NOT b OR NOT c) GROUP BY a

CREATE VIEW v2 AS SELECT a, sum(cnt) AS cnt FROM

(WITH intrTab AS (SELECT 1 AS val UNION ALL SELECT 0)

SELECT i1.val AS a, i2.val AS d, 1 AS cnt FROM intrTab i1, intrTab i2)

WHERE (a OR d) AND (a OR NOT d) GROUP BY a

CREATE VIEW v3 AS SELECT a, sum(cnt) AS cnt FROM

(SELECT τ1.a, τ1.cnt * τ2.cnt AS cnt FROM τ1, τ2 WHERE τ1.a = τ2.a)
GROUP BY a �

Parallelization. A further reason to not over-restrict the number of child nodes
within the TD, lies in parallelization. In dpdb, we compute tables in parallel along
the TD, where multiple tables can be computed at the same time, as long as the
child tables are computed. Therefore, we tried to keep the number of child nodes
in the TD as high as possible. In our system dpdb, we currently allow for at most
24 worker threads for table computations and 24 database connections at the
same time (both pooled and configurable). On top of that we have 2 additional
threads and database connections for job assignments to workers, as well as one
dedicated watcher thread for clean-up and connection termination, respectively.

Logging, Debugging and Extensions. Currently, we have two versions of the dpdb

system implemented. One version aims for performance and the other one tries
to achieve comprehensive logging and easy debugging of problem (instances),
thereby increasing explainability. The former for instance does neither keep inter-
mediate results nor create database tables in advance (Step 2b), as depicted in
Fig. 3, but creates tables according to an SQL SELECT statement. In the latter
we keep all the intermediate results, we record database timestamps before and
after certain nodes, provide statistics as, e.g., width, number of rows, etc. Fur-
ther, since for each table τt, exactly one SQL statement is executed for filling this
table, we also have a dedicated view of the SQL SELECT statement, whose result
is then inserted in τt. Together with the power and flexibility of SQL queries, we
observed that this helps in finding errors in the table algorithm specifications.

Besides convenient debugging, system dpdb immediately contains an exten-
sion for approximation. There, we restrict the table contents to a maximum
number of rows. This allows for certain approximations on counting problems or
optimization problems, where it is infeasible to compute the full tables. Further,
dpdb foresees a dedicated randomization on these restricted number of rows such
that we obtain different approximate results on different random seeds.

Note that dpdb can be easily extended. Each problem can overwrite existing
default behavior and dpdb also supports problem-specific argument parser for

Exploiting Database Management Systems and Treewidth for Counting 161

each problem individually. Out-of-the-box, we support the formats DIMACS sat
and DIMACS graph [32] as well as the common format for TDs [15].

4.2 Table Algorithms With dpdb for Selected Problems

The system dpdb allows for easy protyping of DP algorithms on TDs. This covers
decision problems, counting problems as well as optimization problems. As a
proof of concept, we present the relevant parts of table algorithm specification
according to the template in Listing 3 for a selection of problems below4. To
this end, we assume in this section a not necessarily nice TD T = (T, χ) of
the corresponding graph representation of our given instance I. Further, for
the following specifications of the table algorithm using the template ARAlg in
Algorithm 2, we assume any node t of T and its child nodes t1, . . . , t�.

Problem #Sat. Given instance formula I = ϕ. Then, specific parts for #Sat
for node t with ϕt = {{l1,1, . . . , l1,k1}, . . . , {ln,1, . . . , ln,kn

}}.

– #εTab#: SELECT 1 AS cnt
– #intrTab#: SELECT 1 AS val UNION ALL 0
– #localProbFilter#: (l1,1 OR . . . OR l1,k1) AND . . . AND (ln,1 OR . . . OR ln,kn

)
– #aggrExp#: SUM(cnt) AS cnt
– #extProj#: τ1.cnt * . . . * τ�.cnt AS cnt

Observe that for the corresponding decision problem Sat, where the goal is to
decide only the existence of a satisfying assignment for given formula ϕ, #εTab#
returns the empty table and parts #aggrExp#,#extProj# are just empty since
there is no counter needed.

Problem #o-Col. For given input graph I = G = (V,E), a o-coloring is a
mapping ι : V → {1, . . . , o} such that for each edge {u, v} ∈ E, we have ι(u) �=
ι(v). Problem #o-Col asks to count the number of o-colorings of G. Local
problem #o-Col(t,G) is defined by the graph Gt := (V ∩χ(t), E ∩ [χ(t)×χ(t)]).

Specific parts for #o-Col for node t with E(Gt) = {{u1, v1}, . . . , {un, vn}}.

– #εTab#: SELECT 1 AS cnt
– #intrTab#: SELECT 1 AS val UNION ALL . . . UNION ALL o
– #localProbFilter#: NOT ([[u1]] = [[v1]]) AND . . . AND NOT ([[un]] = [[vn]])
– #aggrExp#: SUM(cnt) AS cnt
– #extProj#: τ1.cnt * . . . * τ�.cnt AS cnt

Problem MinVC. Given input graph I = G = (V,E), a vertex cover is a set of
vertices C ⊆ V of G such that for each edge {u, v} ∈ E, we have {u, v} ∩ C �=
∅. Then, MinVC asks to find the minimum cardinality |C| among all vertex
covers C, i.e., C is such that there is no vertex cover C ′ with |C ′| < |C|. Local
problem MinVC(t,G) := Gt is defined as above. We use an additional column
card for storing cardinalities.

Problem MinVC for node t with E(Gt) = {{u1, v1}, . . . , {un, vn}} and χ(t) =
{a1, . . . , ak} can be specified as follows.
4 Implementation for problems #Sat as well as MinVC is readily available in dpdb.

162 J. K. Fichte et al.

– #εTab#: SELECT 0 AS card
– #intrTab#: SELECT 1 AS val UNION ALL 0
– #localProbFilter#: ([[u1]] OR [[v1]]) AND . . . AND ([[un]] OR [[vn]])
– #aggrExp#: MIN(card) AS card
– #extProj#: τ1.card + . . . + τ�.card - (Σ�

i=1|χ(ti) ∩ {a1}| - 1) *
τ1.[[a1]] - . . . - (Σ�

i=1|χ(ti) ∩ {ak}| - 1) * τ1.[[ak]]

Observe that #ExtProj# is a bit more involved on non-nice TDs, as, whenever
the column for a vertex a is set to 1, i.e., vertex a is in the vertex cover, we have
to consider a only with cost 1, also if a appears in several child node bags.

Note that concrete implementations could generate and apply parts of this
specification, as for example in #localProbFilter# only edges involving newly
introduced vertices need to be checked.

Similar to MinVC and #o-Col one can model several other (graph) prob-
lems. One could also think of counting the number of solutions of problem
MinVC, where both a column for cardinalities and one for counting is used.
There, in addition to grouping with GROUP BY in dpdb, we additionally could use
the HAVING construct of SQL, where only rows are kept, whose column card is
minimal.

5 Experiments

We conducted a series of experiments using publicly available benchmark sets
for #Sat. Our tested benchmarks [22] are publicly available, and our results are
also on github at github.com/hmarkus/dp on dbs/padl2020.

Fig. 4. Runtime for the top 15 solvers over all #Sat instances. The x-axis refers to
the number of instances and the y-axis depicts the runtime sorted in ascending order
for each solver individually.

https://github.com/hmarkus/dp_on_dbs/tree/padl2020

Exploiting Database Management Systems and Treewidth for Counting 163

Table 1. Number of solved #Sat instances, preprocessed by pmc and grouped by
intervals of upper bounds of the treewidth. time[h] is the cumulated wall clock time in
hours, where unsolved instances are counted as 900 s.

solver 0-20 21-30 31-40 41-50 51-60 >60 best unique
∑

time[h]
pr
ep

ro
ce
ss
ed

by
pm

c
[2
9]

miniC2D 1193 29 10 2 1 7 13 0 1242 68.77
gpusat2 1196 32 1 0 0 0 250 2 1229 71.27
d4 1163 20 10 2 4 28 52 1 1227 76.86
countAntom 12 1141 18 10 5 4 13 101 0 1191 84.39
dpdb 1159 19 5 2 0 0 2 1 1185 100.99
c2d 1124 31 10 3 3 10 20 0 1181 84.41
sharpSAT 1029 16 10 2 4 30 253 1 1091 106.88
gpusat1 1020 16 0 0 0 0 106 1 1036 114.86
sdd 1014 4 7 1 0 2 0 0 1028 124.23
sts 927 4 8 7 5 52 73 21 1003 128.43
dsharp 853 3 7 2 0 0 83 0 865 157.87
cnf2eadt 799 3 7 2 0 7 328 0 818 170.17
approxmc 3 794 3 7 2 0 6 10 0 812 173.35
bdd minisat all 791 4 1 0 0 0 99 0 796 175.09
cachet 624 3 8 2 3 24 3 0 664 209.26
approxmc 2 447 3 0 0 0 0 1 0 450 265.31
sharpCDCL 340 3 0 0 0 0 0 0 343 289.17

5.1 Setup

Measure & Resources. We mainly compare wall clock time and number of time-
outs. In the time we include preprocessing time as well as decomposition time
for computing a TD with a fixed random seed. For parallel solvers we allowed
access to 24 physical cores on machines. We set a timeout of 900 s and limited
available RAM to 14 GB per instance and solver.

Benchmark Instances. We considered a selection of overall 1494 instances from
various publicly available benchmark sets #Sat consisting of fre/meel bench-
marks5(1480 instances), and c2d benchmarks6 (14 instances). However, we con-
sidered instances preprocessed by regular #Sat preprocessor pmc [29], similar
to results of recent work on #Sat [23], where it was also shown that more than
80% of the #Sat instances have primal treewidth below 19 after preprocessing.

Benchmarked system dpdb. We used PostgreSQL 9.5 for our system dpdb, which
was available on our benchmark described hardware below. However, we expect
major performance increases if higher versions are used, which was not available
on our benchmark machines. In particular, parallel queries, where a query is
evaluated in parallel, were added and improved in every version greater than
9.6.

Other benchmarked systems. In our experimental work, we present results for the
most recent versions of publicly available #Sat solvers, namely, c2d 2.20 [13],

5 See: tinyurl.com/countingbenchmarks.
6 See: reasoning.cs.ucla.edu/c2d.

http://reasoning.cs.ucla.edu/c2d/download.php
http://tinyurl.com/countingbenchmarks
http://reasoning.cs.ucla.edu/c2d/results.html

164 J. K. Fichte et al.

d4 1.0 [30], DSHARP 1.0 [33], miniC2D 1.0.0 [34], cnf2eadt 1.0 [28],
bdd minisat all 1.0.2 [42], and sdd 2.0 [14], which are all based on knowl-
edge compilation techniques. We also considered rather recent approximate
solvers ApproxMC2, ApproxMC3 [7] and sts 1.0 [20], as well as CDCL-based
solvers Cachet 1.21 [37], sharpCDCL7, and sharpSAT 13.02 [40]. Finally, we also
included multi-core solvers gpusat 1.0 and gpusat 2.0 [23], which both are based
on dynamic programming, as well as countAntom 1.0 [6] on 12 physical CPU
cores, which performed better than on 24 cores. Experiments were conducted
with default solver options.

Benchmark Hardware. Almost all solvers were executed on a cluster of 12 nodes.
Each node is equipped with two Intel Xeon E5-2650 CPUs consisting of 12
physical cores each at 2.2 GHz clock speed, 256 GB RAM and 1 TB hard disc
drives (not an SSD) Seagate ST1000NM0033. The results were gathered on
Ubuntu 16.04.1 LTS machines with disabled hyperthreading on kernel 4.4.0-
139. As we also took into account solvers using a GPU, for gpusat1 and gpusat2
we used a machine equipped with a consumer GPU: Intel Core i3-3245 CPU
operating at 3.4 GHz, 16 GB RAM, and one Sapphire Pulse ITX Radeon RX 570
GPU running at 1.24 GHz with 32 compute units, 2048 shader units, and 4 GB
VRAM using driver amdgpu-pro-18.30-641594 and OpenCL 1.2. The system
operated on Ubuntu 18.04.1 LTS with kernel 4.15.0-34.

5.2 Results

Figure 4 illustrates the top 15 solvers, where instances are preprocessed by pmc,
in a cactus-like plot, which provides an overview over all the benchmarked #Sat
instances. The x-axis of these plots refers to the number of instances and the
y-axis depicts the runtime sorted in ascending order for each solver individually.
Overall, dpdb seems to be quite competitive and beats most of the solvers, as for
example gpusat1, sharpSAT, dsharp, approxmc as well as cachet. Surprisingly,
our system shows a different runtime behavior than the other solvers. We believe
that the reason lies in an initial overhead caused by the creation of the tables that
seems to depend on the number of nodes of the used TD. There, I/O operations
of writing from main memory to hard disk seem to kick in. Table 1 presents
more detailed runtime results, showing a solid fifth place for dpdb as our system
solves the vast majority of the instances. Assume we only have instances up to
an upper bound8 of treewidth 35. Then, if instances with TDs up to width 35
are considered, dpdb solves even slightly more instances than countAntom.

6 Final Discussion and Conclusions

We presented a generic system dpdb for explicitly exploiting treewidth by means
of dynamic programming on databases. The idea of dpdb is to use database
7 See: tools.computational-logic.org.
8 These upper bounds were obtained via decomposer htd in at most two seconds.

http://www.cril.univ-artois.fr/KC/d4.html
https://bitbucket.org/haz/dsharp
http://reasoning.cs.ucla.edu/minic2d/
http://www.cril.univ-artois.fr/KC/eadt.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://reasoning.cs.ucla.edu/sdd/
https://bitbucket.org/kuldeepmeel/approxmc
http://cs.stanford.edu/~ermon/code/STS.zip
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
http://tools.computational-logic.org/content/sharpCDCL.php
https://sites.google.com/site/marcthurley/sharpsat
https://github.com/daajoe/GPUSAT/releases/tag/v0.815-pre
http://tools.computational-logic.org/content/sharpCDCL.php

Exploiting Database Management Systems and Treewidth for Counting 165

management systems (DBMS) for table manipulation, which makes it (1) easy
and elegant to perform rapid prototyping for problems, and (2) allows to leverage
from decades of database theory and database system tuning. It turned out that
all the cases that occur in dynamic programming can be handled quite elegantly
with plain SQL queries. Our system dpdb can be used for both decision and
counting problems, thereby also considering optimization. We see our system
particularly well-suited for counting problems, especially, since it was shown
that for model counting (#Sat) instances of practical relevance typically have
small treewidth [23]. In consequence, we carried out preliminary experiments
on publicly available instances for #Sat, where we see competitive behavior
compared to most recent solvers.

Future Work. Our results give rise to several research questions. First of all, we
want to push towards PostgreSQL 12, but at the same time also consider other
vendors and systems, e.g., Oracle. In particular, the behavior of different systems
might change, when we use different strategies on how to write and evaluate our
SQL queries, e.g., sub-queries vs. common table expressions. Currently, we do
not create or use any indices, as preliminary tests showed that meaningful B*tree
indices are hard to create and oftentimes cost too much time to create. Further,
the exploration of bitmap indices, as available in Oracle enterprise DBMS would
be worth trying in our case (and for #Sat), since one can efficiently combine
database columns by using extremely efficient bit operations.

It might be worth to rigorously test and explore our extensions on limiting the
number of rows per table for approximating #Sat or other counting problems,
cf., [8,19,39]. Another interesting research direction is to study whether efficient
data representation techniques on DBMS can be combined with dynamic pro-
gramming in order to lift our solver to quantified Boolean formulas. Finally, we
are also interested in extending this work to projected model counting [21].

References

1. Postgresql documentation 12 (2019). https://www.postgresql.org/docs/12/
queries-with.html

2. Abseher, M., Musliu, N., Woltran, S.: htd – a free, open-source framework for (cus-
tomized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 376–386. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59776-8 30

3. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT
and Bayesian inference. In: FOCS 2003, pp. 340–351. IEEE Computer Society
(2003)

4. Bannach, M., Berndt, S.: Practical access to dynamic programming on tree decom-
positions. Algorithms 12(8), 172 (2019)

5. Bliem, B., Charwat, G., Hecher, M., Woltran, S.: D-flat2: subset minimization in
dynamic programming on tree decompositions made easy. Fundam. Inform. 147(1),
27–61 (2016)

https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1007/978-3-319-59776-8_30

166 J. K. Fichte et al.

6. Burchard, J., Schubert, T., Becker, B.: Laissez-Faire caching for parallel #SAT
solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 46–61.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 5

7. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for SAT. In: AAAI 2014, pp. 1722–
1730. The AAAI Press (2014)

8. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Improving approximate counting for
probabilistic inference: From linear to logarithmic sat solver calls. In: IJCAI 2016,
pp. 3569–3576. The AAAI Press (2016)

9. Charwat, G., Woltran, S.: Expansion-based QBF solving on tree decompositions.
Fundam. Inform. 167(1–2), 59–92 (2019)

10. Choi, A., Van den Broeck, G., Darwiche, A.: Tractable learning for structured
probability spaces: a case study in learning preference distributions. In: IJCAI
2015. The AAAI Press (2015)

11. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

12. Cygan, M., et al.: Parameterized Algorithms. Springer, Switzerland (2015).
https://doi.org/10.1007/978-3-319-21275-3

13. Darwiche, A.: New advances in compiling CNF to decomposable negation normal
form. In: ECAI 2004, pp. 318–322. IOS Press (2004)

14. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: IJCAI 2011, pp. 819–826. AAAI Press/IJCAI (2011)

15. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameter-
ized algorithms and computational experiments challenge: the second iteration. In:
IPEC 2017, Leibniz International Proceedings in Informatics (LIPIcs), vol. 89, pp.
30:1–30:12. Dagstuhl Publishing (2018)

16. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-662-53622-3

17. Domshlak, C., Hoffmann, J.: Probabilistic planning via heuristic forward search
and weighted model counting. J. Artif. Intell. Res. 30, 565–620 (2007)

18. Doubilet, P., Rota, G.C., Stanley, R.: On the foundations of combinatorial theory
(VI): the idea of generating function. In: Berkeley Symposium on Mathematical
Statistics and Probability, vol. 2, pp. 267–318 (1972)

19. Dueñas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability
estimation for power-transmission grids. In: AAAI 2017, pp. 4488–4494. The AAAI
Press (2017)

20. Ermon, S., Gomes, C.P., Selman, B.: Uniform solution sampling using a constraint
solver as an oracle. In: UAI 2012, pp. 255–264. AUAI Press (2012)

21. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Exploiting treewidth for pro-
jected model counting and its limits. In: Beyersdorff, O., Wintersteiger, C.M. (eds.)
SAT 2018. LNCS, vol. 10929, pp. 165–184. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94144-8 11

22. Fichte, J.K., Hecher, M., Woltran, S., Zisser, M.: A benchmark collection of #SAT
instances and tree decompositions (benchmark set), June 2018. https://doi.org/
10.5281/zenodo.1299752

23. Fichte, J.K., Hecher, M., Zisser, M.: An improved GPU-based SAT model counter.
In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 491–509. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30048-7 29

24. Gomes, C.P., Sabharwal, A., Selman, B.: Chapter 20: Model counting. In: Hand-
book of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 633–654. IOS Press (2009)

https://doi.org/10.1007/978-3-319-24318-4_5
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.5281/zenodo.1299752
https://doi.org/10.5281/zenodo.1299752
https://doi.org/10.1007/978-3-030-30048-7_29

Exploiting Database Management Systems and Treewidth for Counting 167

25. Kiljan, K., Pilipczuk, M.: Experimental evaluation of parameterized algorithms for
feedback vertex set. In: SEA. LIPIcs, vol. 103, pp. 12:1–12:12. Schloss Dagstuhl
(2018)

26. Kleine Büning, H., Lettman, T.: Propositional Logic: Deduction and Algorithms.
Cambridge University Press, Cambridge (1999)

27. Kloks, T.: Treewidth: Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

28. Koriche, F., Lagniez, J.M., Marquis, P., Thomas, S.: Knowledge compilation for
model counting: affine decision trees. In: IJCAI 2013. The AAAI Press (2013)

29. Lagniez, J., Marquis, P.: Preprocessing for propositional model counting. In: AAAI,
pp. 2688–2694. AAAI Press (2014)

30. Lagniez, J.M., Marquis, P.: An improved decision-DDNF compiler. In: IJCAI 2017,
pp. 667–673. The AAAI Press (2017)

31. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Evaluation of an MSO-solver. In:
Proceedings of ALENEX. pp. 55–63. SIAM/Omnipress (2012)

32. Liu, J., Zhong, W., Jiao, L.: Comments on “the 1993 DIMACS graph coloring
challenge” and “energy function-based approaches to graph coloring”. IEEE Trans.
Neural Netw. 17(2), 533 (2006)

33. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: fast d-DNNF compi-
lation with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) AI 2012. LNCS (LNAI),
vol. 7310, pp. 356–361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30353-1 36

34. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In:
IJCAI 2015, pp. 3141–3148. The AAAI Press (2015)

35. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302
(1996)

36. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

37. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: SAT 2004 (2004)

38. Sang, T., Beame, P., Kautz, H.: Performing Bayesian inference by weighted model
counting. In: AAAI 2005. The AAAI Press (2005)

39. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: a scalable probabilistic exact
model counter. In: IJCAI, pp. 1169–1176. ijcai.org (2019)

40. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 38

41. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),
865–877 (1991)

42. Toda, T., Soh, T.: Implementing efficient all solutions SAT solvers. ACM J. Exp.
Algorithmics 21, 1–12 (2015). special Issue SEA 2014

43. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. II. Com-
puter Science Press (1989)

44. Xue, Y., Choi, A., Darwiche, A.: Basing decisions on sentences in decision diagrams.
In: AAAI 2012. The AAAI Press (2012)

https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/11814948_38

	Exploiting Database Management Systems and Treewidth for Counting
	1 Introduction
	2 Preliminaries
	3 Towards Relational Algebra for Dynamic Programming
	4 Dynamic Programming on TDs Using Databases and SQL
	4.1 System dpdb: Dynamic Programming with Databases
	4.2 Table Algorithms With dpdb for Selected Problems

	5 Experiments
	5.1 Setup
	5.2 Results

	6 Final Discussion and Conclusions
	References

