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Abstract. On top of a neural network-based dependency parser and
a graph-based natural language processing module we design a Prolog-
based dialog engine that explores interactively a ranked fact database
extracted from a text document.

We reorganize dependency graphs to focus on the most relevant con-
tent elements of a sentence, integrate sentence identifiers as graph nodes
and after ranking the graph we take advantage of the implicit semantic
information that dependency links bring in the form of subject-verb-
object, “is-a” and “part-of” relations.

Working on the Prolog facts and their inferred consequences, the dia-
log engine specializes the text graph with respect to a query and reveals
interactively the document’s most relevant content elements.

The open-source code of the integrated system is available at https://
github.com/ptarau/DeepRank.

Keywords: Logic-based dialog engine · Graph-based natural language
processing · Dependency graphs · query-driven salient sentence
extraction · Synergies between neural and symbolic text processing

1 Introduction

Logic programming languages have been used successfully for inference and plan-
ning tasks on restricted domain natural language processing tasks [1–4] but not
much on open domain, large scale information retrieval and knowledge repre-
sentation tasks. On the other hand, deep learning systems are very good at
basic tasks ranging from parsing to factoid-trained question answering systems,
but still taking baby steps when emulating human-level inference processing on
complex documents [5,6]. Thus, a significant gap persists between neural and
symbolic processing in the field.

A motivation of our work is to help fill this gap by exploring synergies between
the neural, graph based and symbolic ecosystems in solving a practical problem:
building a dialog agent, that, after digesting the content of a text document
(e.g., a story, a textbook, a scientific paper, a legal document), enables the user
to interact with its most relevant content.
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We will start with a quick overview of the tools and techniques needed.
Building a state-of-the art Natural Language Processing system requires inter-
action with multi-paradigm components as emulating their functionality from
scratch could easily become a 100-person/years project. In our case, this means
integrating a declarative language module, focusing on high level text mining,
into the Python-based nltk ecosystem, while relying on the Java-based Stanford
CoreNLP toolkit for basic tasks like segmentation, part-of-speech tagging and
parsing.
Overview of the System Architecture. Figure 1 summarizes the architecture
of our system. The Stanford parser is started as a separate server process to
which the Python text processing module connects as a client. It interfaces with
the Prolog-based dialog engine by generating a clausal representation of the
document’s structure and content, as well as the user’s queries. The dialog engine
is responsible for handling the user’s queries for which answers are sent back to
the Python front-end which handles also the call to OS-level spoken-language
services, when activated.

Python-based 
Document Processor 

and Text Graph Ranker

Java-based 
Stanford CoreNLP

Dependency Parser
in server mode

Prolog-based
Dialog Engine

Prolog facts
representing the

 document's content

pyswip
Python-Prolog interface

Document 
Collection

User

Fig. 1. System architecture

Today’s dependency parsers [7–9], among which the neurally-trained Stan-
ford dependency parser [7] stands out, produce highly accurate dependency
graphs and part of speech tagged vertices. Seen as edges in a text graph, they pro-
vide, by contrast to collocations in a sliding window, “distilled” building blocks
through which a graph-based natural language processing system can absorb
higher level linguistic information.
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Inspired by the effectiveness of algorithms like Google’s PageRank, recursive
ranking algorithms applied to text graphs have enabled extraction of keyphrases,
summaries and relations. Their popularity continues to increase due to the holis-
tic view they shed on the interconnections between text units that act as recom-
menders for the most relevant ones, as well as the comparative simplicity of the
algorithms. At close to 3000 citations and a follow-up of some almost equally
as highly cited papers like [10] the TextRank algorithm [11,12] and its creative
descendants have extended their applications to a wide variety of document types
and social media interactions in a few dozen languages.

While part of the family of the TextRank descendants, our graph based text
processing algorithm will use information derived from the dependency graphs
associated to sentences. With help from the labels marking the edges of a depen-
dency graph and the part of speech tags associated to its nodes, we will extract
rank-ordered facts corresponding to content elements present in sentences. We
pass these to logic programs that can query them and infer new relations, beyond
those that can be mined directly from the text.

Like in the case of a good search engine, interaction with a text document will
focus on the most relevant and semantically coherent elements matching a query.
With this in mind, the natural feel of an answer syntactically appropriate for a
query is less important than the usefulness of the content elements extracted:
just sentences of the document, in their natural order.

We will also enable spoken interaction with the dialog engine, opening doors
for the use of the system via voice-based appliances. Applications range from
assistive technologies to visually challenged people, live user manuals, teaching
from K-12 to graduate level and interactive information retrieval from complex
technical or legal documents.

The paper is organized as follows. Section 2 describes the graph-based Nat-
ural Language Processing module. Section 3 describes our Prolog-based dialog
engine. Section 4 puts in context the main ideas of the paper and justifies some
of the architecture choices we have made. Section 5 overviews related work and
background information. Section 6 concludes the paper.

2 The Graph-Based Natural Language Processing
Module

We have organized our Python-based textgraph processing algorithm together
with the Prolog-based dialog engine into a unified system1. We start with the
building and the ranking of the text graph. Then, we overview the summary,
keyphrase and relation extraction and the creation of the Prolog database that
constitutes the logical model of the document, to be processed by the dialog
engine.

1 Our implementation is available at https://github.com/ptarau/DeepRank.

https://github.com/ptarau/DeepRank
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2.1 Building and Ranking the Text Graph

We connect as a Python client to the Stanford CoreNLP server and use it to
provide our dependency links via the wrapper at https://www.nltk.org/ of the
Stanford CoreNLP toolkit [13].

Unlike the original TextRank and related approaches that develop special
techniques for each text processing task, we design a unified algorithm to obtain
graph representations of documents, that are suitable for keyphrase extraction,
summarization and interactive content exploration.

We use unique sentence identifiers and unique lemmas2 as nodes of the text
graph. As keyphrases are centered around nouns and good summary sentences
are likely to talk about important concepts, we will need to reverse some links in
the dependency graph provided by the parser, to prioritize nouns and deprioritize
verbs, especially auxiliary and modal ones. Thus, we redirect the dependency
edges toward nouns with subject and object roles, as shown for a simple short
sentence in Fig. 2 as “about” edges.

sits VBZ

cat NN mat NN

The cat sits on the mat.

predicate

The DT

on IN

the DP

nsubj

nmod

det

case

det

recommends

recommends

about
about

recommends

recommends recommends

Fig. 2. Dependency graph of a simple sentence with redirected and newly added arrows

We also create “recommend” links from words to the sentence identifiers
and back from sentences to verbs with predicate roles to indirectly ensure that
sentences recommend and are recommended by their content. Specifically, we
ensure that sentences recommend verbs with predicate function from where their
recommendation spreads to nouns relevant as predicate arguments (e.g., having
subject or object roles).
2 A lemma is a canonical representation of a word, as it stands in a dictionary, for all

its inflections e.g., it is “be” for “is”, “are”, “was” etc.

https://www.nltk.org/
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Fig. 3. Text graph of the highest ranked words in the U.S. Constitution

By using the PageRank implementation of the networkx toolkit3, after rank-
ing the sentence and word nodes of the text graph, the system is also able to dis-
play subgraphs filtered to contain only the highest ranked nodes, using Python’s

3 https://networkx.github.io/.

https://networkx.github.io/
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graphviz library. An example of text graph, filtered to only show word-to-word
links, derived from the U.S. Constitution4, is shown in Fig. 3.

2.2 Pre- and Post-ranking Graph Refinements

The algorithm induces a form of automatic stopword filtering, due to the fact
that our dependency link arrangement ensures that modifiers with lesser seman-
tic value relinquish their rank by pointing to more significant lexical components.
This is a valid alternative to explicit “leaf trimming” before ranking, which
remains an option for reducing graph size for large texts or multi-document col-
lections as well as helping with a more focussed relation extraction from the
reduced graphs.

Besides word-to-word links, our text graphs connect sentences as additional
dependency graph nodes, resulting in a unified keyphrase and summary extrac-
tion framework. Note also that, as an option that is relevant especially for sci-
entific, medical or legal documents, we add first in links from a word to the
sentence containing its first occurrence, to prioritize sentences where concepts
are likely to be defined or explained.

Our reliance on graphs provided by dependency parsers builds a bridge
between deep neural network-based machine learning and graph-based natural
language processing enabling us to often capture implicit semantic information.

2.3 Summary and Keyword Extraction

As link configurations tend to favor very long sentences, a post-ranking nor-
malization is applied for sentence ranking. After ordering sentences by rank we
extract the highest ranked ones and reorder them in their natural order in the
text to form a more coherent summary.

We use the parser’s compound phrase tags to fuse along dependency links.
We design our keyphrase synthesis algorithm to ensure that highly ranked words
will pull out their contexts from sentences, to make up meaningful keyphrases.
As a heuristic, we mine for a context of 2–4 dependency linked words of a highly
ranked noun, while ensuring that the context itself has a high-enough rank, as we
compute a weighted average favoring the noun over the elements of its context.

2.4 Relation Extraction

We add subject-verb-object facts extracted from the highest ranked dependency
links, enhanced with “is-a” and “part-of” relations using WordNet via the nltk
toolkit. We plan in the future to also generate relations from conditional state-
ments identified following dependency links and involving negations, modalities,
conjuncts and disjuncts, to be represented as Prolog rules. Subject-verb-object
(SVO) relations are extracted directly from the dependency graph and an extra

4 Available as a text document at: https://www.usconstitution.net/const.txt.

https://www.usconstitution.net/const.txt
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argument is added to the triplet marking the number of the sentence they orig-
inate from.

“Is-a” relations are extracted using WordNet [14] hypernyms and hyponyms5.
Similarly, “part of” relations are extracted using meronyms and holonyms6. As
a heuristic that ensures that they are relevant to the content of the text, we
ensure that both their arguments are words that occur in the document, when
connecting their corresponding synsets via WordNet relations. By constraining
the two ends of an “is-a” or “part-of” edge to occur in the document, we avoid
relations derived from synsets unrelated to the document’s content. In fact, this
provides an effective word-sense disambiguation heuristic.

3 The Prolog-Based Dialog Engine

After our Python-based document processor, with help from the Stanford
dependency parser, builds and ranks the text graph and extracts summaries,
keyphrases and relations, we pass them to the Prolog-based dialog engine.

3.1 Generating Input for Post-processing by Logic Programs

Once the document is processed, we generate, besides the dependency links pro-
vided by the parser, relations containing facts that we have gleaned from pro-
cessing the document. Together, they form a Prolog database representing the
content of the document.

To keep the interface simple and portable to other logic programming tools,
we generate the following predicates in the form of Prolog-readable code, in one
file per document:

1. keyword(WordPhrase). – the extracted keyphrases
2. summary(SentenceId, SentenceWords). – the extracted summary sen-

tences sentence identifiers and list of words
3. dep(SentenceID, WordFrom, FromTag, Label, WordTo, ToTag). – a com-

ponent of a dependency link, with the first argument indicating the sentence
they have been extracted

4. edge(SentenceID, FromLemma, FromTag, RelationLabel, ToLemma,
ToTag). – edge marked with sentence identifiers indicating where it was
extracted from, and the lemmas with their POS tags at the two ends of
the edge

5. rank(LemmaOrSentenceId, Rank). – the rank computed for each lemma
6. w2l(Word, Lemma, Tag). – a map associating to each word a lemma, as

found by the POS tagger
7. svo(Subject, Verb, Object, SentenceId). – subject-verb-object rela-

tions extracted from parser input or WordNet-based is a and part of labels
in verb position

5 More general and, respectively, more specific concepts.
6 Concepts corresponding to objects that are part of, and, respectively, have as part

other objects.



10 P. Tarau and E. Blanco

8. sent(SentenceId, ListOfWords). – the list of sentences in the document
with a sentence identifier as first argument and a list of words as second
argument

They provide a relational view of a document in the form of a database that will
support the inference mechanisms built on top of it.

The resulting logic program can then be processed with Prolog semantics,
possibly enhanced by using constraint solvers [15], abductive reasoners [16] or
via Answer Set Programming systems [17]. Specifically, we expect benefits from
such extensions for tackling computationally difficult problems like word-sense
disambiguation (WSD) or entailment inference as well as domain-specific rea-
soning [3,4,18].

We have applied this process to the Krapivin document set [19], a collection of
2304 research papers annotated with the authors’ own keyphrases and abstracts.

The resulting 3.5 GB Prolog dataset7 is made available for researchers in the
field, interested to explore declarative reasoning or text mining mechanisms.

3.2 The Prolog Interface

We use as a logic processing tool the open source SWI-Prolog system8 [20] that
can be called from, and can call Python programs using the pyswip adaptor9.
After the adaptor creates the Prolog process and the content of the digested
document is transferred from Python (in a few seconds for typical scientific
paper sizes of 10–15 pages), query processing is realtime.

3.3 The User Interaction Loop

With the Prolog representation of the digested document in memory, the dia-
log starts by displaying the summary and keyphrases extracted from the docu-
ment10. One can see this as a “mini search-engine”, specialized to the document,
and, with help of an indexing layer, extensible to multi-document collections.
The dialog agent associated to the document answers queries as sets of salient
sentences extracted from the text, via a specialization of our summarization
algorithm to the context inferred from the query.

As part of an interactive read/listen, evaluate, print/say loop, we generate for
each query sentence, a set of predicates that are passed to the Prolog process,
from where answers will come back via the pyswip interface. The predicates
extracted from a query have the same structure as the database representing the
content of the complete document, initially sent to Prolog.

7 http://www.cse.unt.edu/∼tarau/datasets/PrologDeepRankDataset.zip.
8 http://www.swi-prolog.org/.
9 https://github.com/yuce/pyswip.

10 And also speak them out if the quiet flag is off.

http://www.cse.unt.edu/~tarau/datasets/PrologDeepRankDataset.zip
http://www.swi-prolog.org/
https://github.com/yuce/pyswip
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3.4 The Answer Generation Algorithm

Answers are generated by selecting the most relevant sentences, presented in
their natural order in the text, in the form of a specialized “mini-summary”.

Query Expansion. Answer generation starts with a query-expansion mecha-
nism via relations that are derived by finding, for lemmas in the query, WordNet
hypernyms, hyponyms, meronyms and holonyms, as well as by directly extract-
ing them from the query’s dependency links. We use the rankings available both
in the query and the document graph to prioritize the highest ranked sentences
connected to the highest ranked nodes in the query.

Short-Time Dialog Memory. We keep representations of recent queries in
memory, as well as the answers generated for them. If the representation of
the current query overlaps with a past one, we use content in the past query’s
database to extend query expansion to cover edges originating from that query.
Overlapping is detected via shared edges between noun or verb nodes between
the query graphs.

Sentence Selection. Answer sentence selection happens by a combination of
several interoperating algorithms:

– use of personalized PageRank [21,22] with a dictionary provided by highest
ranking lemmas and their ranks in the query’s graph, followed by reranking
the document’s graph to specialize to the query’s content

– matching guided by SVO-relations
– matching of edges in the query graph against edges in the document graph
– query expansion guided by rankings in both the query graph and the docu-

ment graph
– matching guided by a selection of related content components in the short-

term dialog memory window

Matching against the Prolog database representing the document is cur-
rently implemented as a size constraint on the intersection of the expanded
query lemma set, built with highly ranked shared lemmas pointing to sentences
containing them. The set of answers is organized to return the highest-ranked
sentences based on relevance to the query and in the order in which they appear
in the document.

We keep the dialog window relatively small (limited to the highest ranked
3 sentences in the answer set, by default). Relevance is ensured with help from
the rankings computed for both the document content and the query.

3.5 Interacting with the Dialog Engine

The following example shows the result of a query on the US Constitution doc-
ument.
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Fig. 4. Graph of query on the U.S. Constitution

>>> talk about(’examples/const’)
?-- How can a President be removed from office?
59: In Case of the Removal of the President from Office, or of his Death, Resigna-
tion, or Inability to discharge the Powers and Duties of the said Office, the same
shall devolve on the Vice President, and the Congress may by Law provide for the
Case of Removal, Death, Resignation or Inability, both of the President and Vice
President, declaring what Officer shall then act as President, and such Officer shall
act accordingly, until the Disability be removed, or a President shall be elected.
66: Section 4 The President, Vice President and all civil Officers of the United
States, shall be removed from Office on Impeachment for, and Conviction of, Trea-
son, Bribery, or other high Crimes and Misdemeanors.

190: If the Congress, within twenty one days after receipt of the latter written dec-

laration, or, if Congress is not in session, within twenty one days after Congress is

required to assemble, determines by two thirds vote of both Houses that the President

is unable to discharge the powers and duties of his office, the Vice President shall

continue to discharge the same as Acting President; otherwise, the President shall

resume the powers and duties of his office.

Note the relevance of the extracted sentences and resilience to semantic and
syntactic variations (e.g., the last sentence does not contain the word “remove”).
The dependency graph of the query is shown in Fig. 4. The clauses of the
query rank/2 predicate in the Prolog database corresponding to the query are:

query_rank(’President’, 0.2162991696472837).

query_rank(’remove’, 0.20105324712764877).

query_rank(’office’, 0.12690425831428373).

query_rank(’how’, 0.04908035060099132).

query_rank(’can’, 0.04908035060099132).

query_rank(’a’, 0.04908035060099132).

query_rank(’be’, 0.04908035060099132).

query_rank(’from’, 0.04908035060099132).

query_rank(0, 0.0023633884483800784).
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Fig. 5. Graph of query on Einstein’s book on Relativity

Our next example uses an ASCII version of Einstein’s 1920 book on relativity,
retrieved from the Gutenberg collection11 and trimmed to the actual content of
the book (250 pages in epub form).

>>> talk about(’examples/relativity’)
?-- What happens to light in the presence of gravitational fields?
611: In the example of the transmission of light just dealt with, we have seen that
the general theory of relativity enables us to derive theoretically the influence of a
gravitational field on the course of natural processes, the laws of which are already
known when a gravitational field is absent.
764: On the contrary, we arrived at the result that according to this latter theory the
velocity of light must always depend on the co-ordinates when a gravitational field
is present.

765: In connection with a specific illustration in Section XXIII, we found that the

presence of a gravitational field invalidates the definition of the coordinates and the

time, which led us to our objective in the special theory of relativity.

The query graph is shown in Fig. 5. After the less than 30 s that it takes to
digest the book, answers are generated in less than a second for all queries that
we have tried. Given the availability of spoken dialog, a user can iterate and
refine queries to extract the most relevant answer sentences of a document.

On an even larger document, like the Tesla Model 3 owner’s manual12, digest-
ing the document takes about 60 s and results in 12 MB of Prolog clauses. After
that, query answering is still below 1 s.

>>> talk about(’examples/tesla’)
?-- How may I have a flat tire repaired?
3207: Arrange to have Model 3 transported to a Tesla Service Center, or to a nearby
tire repair center.

11 https://www.gutenberg.org/files/30155/30155-0.txt.
12 https://www.tesla.com/sites/default/files/model 3 owners manual north america

en.pdf.

https://www.gutenberg.org/files/30155/30155-0.txt
https://www.tesla.com/sites/default/files/model_3_owners_manual_north_america_en.pdf
https://www.tesla.com/sites/default/files/model_3_owners_manual_north_america_en.pdf
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3291: Note: If a tire has been replaced or repaired using a different tire sealant than

the one available from Tesla, and a low tire pressure is detected, it is possible that

the tire sensor has been damaged.

The highly relevant first answer is genuinely useful in this case, given that Tesla
Model 3’s do not have a spare tire. Being able to use voice queries while driv-
ing and in need of urgent technical information about one’s car, hints towards
obvious practical applications of our dialog engine.

4 Discussion

Ideally, one would like to evaluate the quality of natural language understand-
ing of an AI system by querying it not only about a set of relations explicitly
extracted in the text, but also about relations inferred from the text. Moreover,
one would like also to have the system justify the inferred relations in the form
of a proof, or at least a sketch of the thought process a human would use for the
same purpose. The main challenge here is not only that theorem-proving logic is
hard, (with first-order classical predicate calculus already Turing-complete), but
also that modalities, beliefs, sentiments, hypothetical and contrafactual judge-
ments often make the underlying knowledge structure intractable.

On the other hand, simple relations, stated or implied by text elements that
can be mined or inferred from a ranked graph built from labeled dependency
links, provide a limited but manageable approximation of the text’s deeper logic
structure, especially when aggregated with generalizations and similarities pro-
vided by WordNet or the much richer Wikipedia knowledge graph.

Given its effectiveness as an interactive content exploration tool, we plan
future work on packaging our dialog engine as a set of Amazon Alexa skills
for some popular Wikipedia entries as well as product reviews, FAQs and user
manuals.

Empirical evaluation of our keyphrase and summarization algorithms will be
subject to a different paper, but preliminary tests indicate that both of them
match or exceed Rouge scores for state of the art systems [23].

5 Related Work

Dependency Parsing. The Stanford neural network based dependency parser
[7] is now part of the Stanford CoreNLP toolkit13, which also comes with part of
speech tagging, named entities recognition and co-reference resolution [13]. Its
evolution toward the use of Universal Dependencies [24] makes tools relying on it
potentially portable to over 70 languages covered by the Universal Dependencies
effort14.

13 https://stanfordnlp.github.io/CoreNLP/.
14 https://universaldependencies.org/.

https://stanfordnlp.github.io/CoreNLP/
https://universaldependencies.org/
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Of particular interest is the connection of dependency graphs to logic ele-
ments like predicate argument relations [25]. The mechanism of automatic con-
version of constituency trees to dependency graphs described in [9] provides a
bridge allowing the output of high-quality statistically trained phrase structure
parsers to be reused for extraction of dependency links.

We analyze dependency links and POS-tags associated to their endpoints to
extract SVO relations. By redirecting links to focus on nouns and sentences we
not only enable keyphrase and summary extraction from the resulting document
graph but also facilitate its use for query answering in our dialog engine.

Graph Based Natural Language Processing. In TextRank [11,12]
keyphrases are using a co-occurrence relation, controlled by the distance between
word occurrences: two vertices are connected if their corresponding lexical units
co-occur within a sliding window of 2 to 10 words. Sentence similarity is com-
puted as content overlap giving weights on the links that refine the original
PageRank algorithm [26,27]. TextRank needs elimination of stop words and
reports best results when links are restricted to nouns and adjectives. In [10]
several graph centrality measures are explored and [28] offers a comprehensive
overview on graph-based natural language processing and related graph algo-
rithms. Graph-based and other text summarization techniques are surveyed in
[29] and more recently in [30]. Besides ranking, elements like coherence via sim-
ilarity with previously chosen sentences and avoidance of redundant rephrasings
are shown to contribute to the overall quality of the summaries. The main novelty
of our approach in this context is building the text graph from dependency links
and integrating words and sentences in the same text graph, resulting in a unified
algorithm that also enables relation extraction and interactive text mining.

Relation Extraction. The relevance of dependency graphs for relation extrac-
tion has been identified in several papers, with [8] pointing out to their role as a
generic interface between parsers and relation extraction systems. In [31] several
models grounded on syntactic patterns are identified (e.g., subject-verb-object)
that can be mined out from dependency graphs. Of particular interest for rela-
tion extraction facilitated by dependency graphs is the shortest path hypothesis
that prefers relating entities like predicate arguments that are connected via
a shortest paths in the graph [32]. To facilitate their practical applications to
biomedical texts, [33] extends dependency graphs with focus on richer sets of
semantic features including “is-a” and “part-of” relations and co-reference res-
olution.

The use of ranking algorithms in combination with WordNet synset links
for word-sense disambiguation goes back as far as [34], in fact a prequel to the
TextRank paper [11]. With the emergence of resources like Wikipedia, a much
richer set of links and content elements has been used in connection with graph
based natural language processing [8,35,36].

We currently extract our relations directly from the dependency graph and
by using one step up and one step down links in the WordNet hypernym and
meronym hierarchies, but extensions are planned to integrate Wikipedia content,
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via the dbpedia database15 and to extract more elaborate logic relations using
a Prolog-based semantic parser like Boxer [37].

Logic Programming Systems for Natural Language Processing. A com-
mon characteristic of Prolog or ASP-based NLP systems is their focus on closed
domains with domain-specific logic expressed in clausal form [1–4], although
recent work like [18] extracts action language programs from more general nar-
ratives.

As our main objective is the building of a practically useful dialog agent, and
as we work with open domain text and query driven content retrieval, our focus
is not on precise domain-specific reasoning mechanisms. By taking advantage of
the Prolog representation of a document’s content, we use reasoning about the
extracted relations and ranking information to find the most relevant sentences
derived from a given query and the recent dialog history.

6 Conclusions

The key idea of the paper has evolved from our search for synergies between
symbolic AI and emerging machine-learning based natural language processing
tools. It is our belief that these are complementary and that by working together
they will take significant forward steps in natural language understanding. We
have based our text graph on heterogeneous, but syntactically and semantically
meaningful text units (words and sentences) resulting in a web of interleaved
links, mutually recommending each other’s highly ranked instances. Our fact
extraction algorithm, in combination with the Prolog interface has elevated the
syntactic information provided by dependency graphs with semantic elements
ready to benefit from logic-based inference mechanisms. Given the standardiza-
tion brought by the use of Universal Dependencies, our techniques are likely to
be portable to a large number of languages.

The Prolog-based dialog engine supports spoken interaction with a conver-
sational agent that exposes salient content of the document driven by the user’s
interest. Its applications range from assistive technologies to visually challenged
people, voice interaction with user manuals, teaching from K-12 to graduate level
and interactive information retrieval from complex technical or legal documents.

Last but not least, we have used our system’s front end to generate the Prolog
dataset at http://www.cse.unt.edu/∼tarau/datasets/PrologDeepRankDataset.
zip, derived from more than 2000 research papers and made it available to other
researchers using logic programming based reasoners and content mining tools.

Acknowledgment. We are thankful to the anonymous reviewers of PADL’2020 for
their careful reading and constructive suggestions.
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