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Preface

Welcome to the 22nd International Symposium on Practical Aspects of Declarative
Languages—PADL 2020!

PADL is a well-established forum for researchers and practitioners to present
original work emphasizing novel applications and implementation techniques for all
forms of declarative programming, including programming with sets, functions, logic,
and constraints. Declarative languages have been applied to increasingly more
important and challenging real-world applications, ranging from database management
to active networks to software engineering to decision support systems. Topics of
interest to PADL include, but are not limited to:

– Innovative applications of declarative languages
– Declarative domain-specific languages and applications
– Practical applications of theoretical results
– New language developments and their impact on applications
– Declarative languages for software engineering
– Evaluation of implementation techniques on practical applications
– Practical experiences and industrial applications
– Novel uses of declarative languages in the classroom
– Practical languages/extensions such as probabilistic and reactive languages

PADL 2020 especially welcomed new ideas and approaches pertaining to appli-
cations, including design and implementation of declarative languages going beyond
the scope of the past PADL symposia, for example, advanced database languages and
contract languages, efficient symbolic reasoning methods, and automatic theorem
proving methods.

Originally established as a workshop (PADL 1999 in San Antonio, Texas), the
PADL series developed into a regular annual symposium; previous editions took place
in San Antonio, Texas (1999), Boston, Massachusetts (2000), Las Vegas, Nevada
(2001), Portland, Oregon (2002), New Orleans, Louisiana (2003), Dallas, Texas
(2004), Long Beach, California (2005), Charleston, South Carolina (2006), Nice,
France (2007), San Francisco, California (2008), Savannah, Georgia (2009), Madrid,
Spain (2010), Austin, Texas (2012), Rome, Italy (2013), San Diego, California (2014),
Portland, Oregon (2015), St. Petersburg, Florida (2016), Paris, France (2017), Los
Angeles, California (2018), and Lisbon, Portugal (2019).

The 22nd installment of the symposium was co-located with the 47th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2020),
and took place during January 20–21, 2020, in New Orleans, USA.

PADL 2020 featured invited talks, an invited experience and direction session,
presentations of full and short research papers, discussion panels, and a competitive
programming experience session.



The program included two invited talks:

– Nikolaj Bjorner (Microsoft Research, USA),
“Logical Engines for Cloud Configurations”

– Adnan Darwiche (University of California, Los Angeles, USA),
“Symbolic Reasoning About Machine Learning Systems”

The invited experience and direction session included four invited talks:

– Molham Aref (RelationalAI, USA),
“Relational Artificial Intelligence”

– Mayur Naik (University of Pennsylvania, USA),
“Learning Interpretable Rules from Structured Data”

– Grant Passmore (Imandra Inc. and Cambridge University, UK),
“An Introduction to the Imandra Automated Reasoning System”

– Philip Wadler (University of Edingburgh, UK),
“We Are All Poor Schmucks: On the Value of Gradual Types”

and was chaired by David S. Warren (Stony Brook University, USA).
Research papers include 10 full papers and 4 short papers, selected from 24 sub-

missions including 21 complete submissions. Each submission was reviewed by at least
three Program Committee members and went through a five-day online discussion
period by the Program Committee before a final decision was made. The selection was
based only on the merit of each submission and regardless of scheduling or space
constraints.

Research papers are grouped into five topics: (1) Logical Engines and Applications,
(2) Answer Set Programming Systems, (3) Memory and Real-Time in Functional
Programming, (4) Reasoning and Efficient Implementation, and (5) Small Languages
and Implementation.

There were four discussion panels by invited speakers, presenters of research papers,
and all participants, on (1) Programming with Logic for the Masses, (2) Memory and
Real-Time Programming in Practice, (3) Reasoning for Machine Learning at Large, and
(4) Experience and Direction.

The programming experience session offers a presentation by Neng-Fa Zhou on
the programming problems written using PiCat that won the online track of the
programming contest at the 35th International Conference on Logic Programming
(ICLP 2019).

We thank the Association of Logic Programming (ALP) and the Association for
Computing Machinery (ACM) for their continuous support of the symposium, and
Springer for the longstanding, successful cooperation with the PADL series. We are
grateful to the 21 members of the PADL 2020 Program Committee and the external
reviewers for their timely and invaluable work. Many thanks to Marco Gavanelli, the
ALP Conference Coordinator, and Brigitte Pientka, the POPL 2020 Chair, for their
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great help in steering the organizational details of the event; and to Yi Tong, Elmer van
Chastelet, and Josh Ko for their important technical support.

We are happy to note that the conference paper evaluation was successfully
managed with the help of EasyChair.

January 2020 Ekaterina Komendantskaya
Yanhong Annie Liu

Preface vii
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Abstracts of Invited Talks



Logical Engines for Cloud Configurations

Nikolaj Bjørner

Microsoft Research
nbjorner@microsoft.com

https://www.microsoft.com/en-us/research/people/nbjorner/

Abstract. Configurations form a basis for deploying infrastructure and custom
instances in today’s hyperscale cloud environments. Similar to conventional
program analysis, configurations can be subjected to logical specifications and
checked for correctness claims. In contrast to program analysis, the analysis
relies on information from, and provides feedback on the health of, live systems.

This talk takes as starting point some of the experiences with using the SMT
solver Z3 for checking declarative configurations in the Azure cloud. It then
describes solving techniques applied for checking configurations, and SMT
formulas in general. A theme characterizing these solving techniques is how
they combine search for a model with deducing logical consequences. The talk
provides exemplars of how search and consequence finding is integrated in Z3.

Biography. Nikolaj’s main line of work is around the state-of-the-art SMT constraint
solver Z3. Z3 received the 2015 ACM SIGPLAN Software System award and most
influential tool paper in the first 20 years of TACAS, and the ETAPS test of time
award. Leonardo and Nikolaj received the Herbrand Award at CADE 2019, in
recognition of numerous and important contributions to SMT solving, including its
theory, implementation, and application to a wide range of academic and industrial
needs. A prolific application is around Network Verification as deployed in the Sec-
Guru tool in Microsoft Azure. In previous work in the Windows File Systems Group,
he developed the Distributed File System Replication, DFS-R, protocol. He studied at
DTU, DIKU; and for his Master’s and PhD at Stanford.



Symbolic Reasoning About Machine
Learning Systems

Adnan Darwiche

University of California, Los Angeles
darwiche@cs.ucla.edu

http://web.cs.ucla.edu/~darwiche/

Abstract. I will discuss a line of work in which we compile common machine
learning systems into symbolic representations that have the same input-output
behavior to facilitate formal reasoning about these systems. We have targeted
Bayesian network classifiers, random forests, and some types of neural net-
works, compiling each into tractable Boolean circuits, including Ordered Binary
Decision Diagrams (OBDDs). Once the machine learning system is compiled
into a tractable Boolean circuit, reasoning can commence using classical AI and
computer science techniques. This includes generating explanations for deci-
sions, quantifying robustness, and verifying properties such as monotonicity.
I will particularly discuss a new theory for unveiling the reasons behind the
decisions made by classifiers, which can detect classifier bias sometimes from
the reasons behind unbiased decisions. The theory is based on a new type of
tractable circuits, ‘Reason Circuits,’ introduced specifically for this purpose.

Biography. Adnan Darwiche is a professor and former chairman of the computer
science department at UCLA. He directs the Automated Reasoning Group, which
focuses on probabilistic and symbolic reasoning and their applications to machine
learning. Professor Darwiche is Fellow of AAAI and ACM. He is a former
editor-in-chief of the Journal of Artificial Intelligence Research (JAIR) and author of
“Modeling and Reasoning with Bayesian Networks,” by Cambridge University Press.
His group’s YouTube Channel can be found at: http://www.youtube.com/c/
UCLAAutomatedReasoningGroup.

http://www.youtube.com/c/UCLAAutomatedReasoningGroup
http://www.youtube.com/c/UCLAAutomatedReasoningGroup
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Relational Artificial Intelligence

Molham Aref

RelationalAI
https://www.linkedin.com/in/molham/

Abstract. In this talk, I will make the case for a first-principles approach to
machine learning over relational databases that exploits recent development in
database systems and theory. The input to learning classification and regression
models is defined by feature extraction queries over relational databases. The
mainstream approach to learning over relational data is to materialize the results
of the feature extraction query, export it out of the database, and then learn over
it using statistical software packages. These three steps are expensive and
unnecessary. Instead, one can cast the machine learning problem as a database
problem, keeping the feature extraction query unmaterialized and using a new
generation of meta-algorithms to push the learning through the query. The
performance of this approach benefits tremendously from structural properties
of the relational data and of the feature extraction query; such properties may be
algebraic (semi-ring), combinatorial (hypertree width), or statistical (sampling).
Performance is further improved by leveraging recent advances in compiler
technology that eliminate the cost of abstraction and allows us to specialize the
computation for specific workloads and datasets. This translates to several
orders-of-magnitude speed-up over state-of-the-art systems.

This work is done by my colleagues at RelationalAI and by members of our
faculty research network, including Dan Olteanu (Oxford), Maximilian Schleich
(Oxford), Ben Moseley (CMU), and XuanLong Nguyen (Michigan).

Biography. Molham Aref is the Chief Executive Officer of RelationalAI. He has more
than 28 years of experience in leading organizations that develop and implement high
value machine learning and artificial intelligence solutions across various industries.
Prior to RelationalAI he was CEO of LogicBlox and Predictix (now Infor), Optimi
(now Ericsson), and co-founder of Brickstream (now FLIR). Molham held senior
leadership positions at HNC Software (now FICO) and Retek (now Oracle).



Learning Interpretable Rules
from Structured Data

Mayur Naik

University of Pennsylvania
mhnaik@cis.upenn.edu

https://www.cis.upenn.edu/~mhnaik/

Abstract. The problem of learning interpretable rules from structured data has
important theoretical and practical ramifications in the fields of machine learning
and program synthesis. Datalog, a declarative logic programming language, has
emerged as a popular medium for studying this problem due to its rich
expressivity and scalable performance. I will present search-based and
constraint-solving techniques to learn Datalog programs from relational
input-output data. The techniques address previously open problems as well as
pose new challenges, spanning data-efficient learning, tolerating noise, sup-
porting expressive features of Datalog, learning without syntactic bias, and
scaling to very large search spaces.

Biography. Mayur Naik is an Associate Professor of Computer and Information
Science at the University of Pennsylvania. His research spans programming languages
related topics with the overarching goal of making software better, safer, and easier to
build and maintain. His current focus concerns developing scalable techniques to
reason about programs by combining machine learning and formal methods. He is also
interested in foundations and applications of neuro-symbolic approaches that syner-
gistically combine deep learning and symbolic reasoning. He received a PhD in
Computer Science from Stanford University in 2008. Previously, he was a researcher at
Intel Labs, Berkeley, from 2008 to 2011, and a faculty member at Georgia Tech from
2011 to 2016.



An Introduction to the Imandra Automated
Reasoning System

Grant Passmore

Imandra Inc. and Clare Hall, Cambridge
grant.passmore@cl.cam.ac.uk

https://www.cl.cam.ac.uk/~gp351/

Abstract. Imandra (imandra.ai) is a cloud-native automated reasoning system
powering a suite of tools for the design and regulation of complex algorithms.
Imandra is finding exciting industrial use: for example, Goldman Sachs is now
public with the fact that Imandra is used to design and audit some of their most
complex trading algorithms.

Foundationally, Imandra is a full-featured interactive theorem prover with a
unique combination of features, including: an “executable” logic based on a
(pure, higher-order) subset of OCaml (in much the same way that ACL2’s logic
is based on a subset of Lisp), first-class computable counterexamples (with a
proof procedure that is “complete for counterexamples” in a precise sense), a
seamless integration of bounded model checking and full-fledged theorem
proving, decision procedures for nonlinear real and floating point arithmetic,
first-class state-space decompositions, and powerful techniques for automated
induction (including the “lifting” of many Boyer-Moore ideas to our typed,
higher-order setting).

In this talk, I’ll give an overview of Imandra and we’ll together work many
examples. You can follow along and experiment with Imandra in the browser at
http://try.imandra.ai/ and install Imandra locally by following the instructions at
http://docs.imandra.ai/.

Biography. Grant Passmore is co-founder and co-CEO of Imandra Inc. (imandra.ai)
where he leads the development of the Imandra automated reasoning system. Grant is a
widely published researcher in formal verification and symbolic AI, with work ranging
from nonlinear decision procedures in SMT to the analysis of fairness and regulatory
compliance of financial algorithms. He has been a key contributor to safety verification
of algorithms at Cambridge, Carnegie Mellon, Edinburgh, Microsoft Research, and
SRI. He earned his PhD from the University of Edinburgh, is a graduate of UT Austin
(BA in Mathematics) and the Mathematical Research Institute in the Netherlands
(Master Class in Mathematical Logic), and is a Life Member of Clare Hall, University
of Cambridge.

http://try.imandra.ai/
http://docs.imandra.ai/


We Are All Poor Schmucks: On the Value
of Gradual Types

Philip Wadler

University of Edinburgh
wadler@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/wadler/

Abstract. I always assumed gradual types were to help those poor schmucks
using untyped languages to migrate to typed languages. I now realise that I am
one of the poor schmucks. Much interest within the programming language
community now centres on systems such as session types, effect types, and
dependent types, which are not currently available in any widely-used language.
To support migration from legacy code to code with these exotic type systems,
some form of gradual typing appears essential.

(Adapted from A Complement to Blame, Philip Wadler, SNAPL 2015.)

Biography. Philip Wadler is Professor of Theoretical Computer Science at the
University of Edinburgh and Senior Research Fellow at IOHK. He is an ACM Fellow
and a Fellow of the Royal Society of Edinburgh, past chair of ACM SIGPLAN, past
holder of a Royal Society-Wolfson Research Merit Fellowship, and winner of the
SIGPLAN Distinguished Service Award and the POPL Most Influential Paper Award.
Previously, he worked or studied at Stanford, Xerox Parc, CMU, Oxford, Chalmers,
Glasgow, Bell Labs, and Avaya Labs, and visited as a guest professor in Copenhagen,
Sydney, and Paris. He has an h-index of 70 with more than 25,000 citations to his
work, according to Google Scholar. He contributed to the designs of Haskell, Java, and
XQuery, and is a co-author of Introduction to Functional Programming (Prentice Hall,
1988), XQuery from the Experts (Addison Wesley, 2004), Generics and Collections in
Java (O’Reilly, 2006), and Programming Language Foundations in Agda (2018). He
has delivered invited talks in locations ranging from Aizu to Zurich.
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Competitive Programming with Picat

Neng-Fa Zhou

CUNY Brooklyn College and Graduate Center
zhou@sci.brooklyn.cuny.edu

http://www.sci.brooklyn.cuny.edu/~zhou/

Abstract. Picat (picat-lang.org) is a logic-based multi-paradigm programming
language that integrates logic programming, functional programming, constraint
programming, and scripting. Picat takes many features from other languages,
including logic variables, unification, backtracking, pattern-matching rules,
functions, list/array comprehensions, loops, assignments, tabling for dynamic
programming and planning, and constraint solving with CP (Constraint
Programming), MIP (Mixed Integer Programming), SAT (Satisfiability), and
SMT (SAT Modulo Theories). These features make Picat suitable for scripting
and modeling. Picat has been used in programming competitions, including
ASP, Prolog, LP/CP, and Google Code Jam. For competitive programming, a
language should be both expressive and efficient. With expressiveness, algo-
rithms and models can be coded concisely and within the allowed time limit.
With efficiency of the language system, programs can produce answers within
the memory and time limits. I’ll report on the solutions in Picat to the five
problems used in the 2019 LP/CP Programming Contest.1 The problems are all
combinatorial, and all have practical application backgrounds, including code
deciphering, resource allocation, auto-programming, game design, and opera-
tions research optimization. The problems require different modeling techniques
and solvers. One of the programs employs the CP module, one uses the planner
module, and three others rely on the SAT module. These solutions well illustrate
the use of Picat’s language constructs and solver tools, and, in hindsight,
demonstrate the fitness of Picat for competitive programming. For each problem,
I’ll give a problem description, a program, and the underlying techniques used
by the program. I’ll also compare Picat, as a general-purpose language, with
Prolog, Haskell, and Python, and, as a modeling language, with ASP, MiniZinc,
and AMPL.

1 The solutions are available at: http://picat-lang.org/pc/lpcomp2019.html. I won the online track
of the contest with these solutions.

http://picat-lang.org/pc/lpcomp2019.html
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Interactive Text Graph Mining
with a Prolog-based Dialog Engine

Paul Tarau(B) and Eduardo Blanco

Department of Computer Science and Engineering, University of North Texas,
Denton, USA

{paul.tarau,eduardo.blanco}@unt.edu

Abstract. On top of a neural network-based dependency parser and
a graph-based natural language processing module we design a Prolog-
based dialog engine that explores interactively a ranked fact database
extracted from a text document.

We reorganize dependency graphs to focus on the most relevant con-
tent elements of a sentence, integrate sentence identifiers as graph nodes
and after ranking the graph we take advantage of the implicit semantic
information that dependency links bring in the form of subject-verb-
object, “is-a” and “part-of” relations.

Working on the Prolog facts and their inferred consequences, the dia-
log engine specializes the text graph with respect to a query and reveals
interactively the document’s most relevant content elements.

The open-source code of the integrated system is available at https://
github.com/ptarau/DeepRank.

Keywords: Logic-based dialog engine · Graph-based natural language
processing · Dependency graphs · query-driven salient sentence
extraction · Synergies between neural and symbolic text processing

1 Introduction

Logic programming languages have been used successfully for inference and plan-
ning tasks on restricted domain natural language processing tasks [1–4] but not
much on open domain, large scale information retrieval and knowledge repre-
sentation tasks. On the other hand, deep learning systems are very good at
basic tasks ranging from parsing to factoid-trained question answering systems,
but still taking baby steps when emulating human-level inference processing on
complex documents [5,6]. Thus, a significant gap persists between neural and
symbolic processing in the field.

A motivation of our work is to help fill this gap by exploring synergies between
the neural, graph based and symbolic ecosystems in solving a practical problem:
building a dialog agent, that, after digesting the content of a text document
(e.g., a story, a textbook, a scientific paper, a legal document), enables the user
to interact with its most relevant content.
c© Springer Nature Switzerland AG 2020
E. Komendantskaya and Y. A. Liu (Eds.): PADL 2020, LNCS 12007, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-39197-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39197-3_1&domain=pdf
https://github.com/ptarau/DeepRank
https://github.com/ptarau/DeepRank
https://doi.org/10.1007/978-3-030-39197-3_1


4 P. Tarau and E. Blanco

We will start with a quick overview of the tools and techniques needed.
Building a state-of-the art Natural Language Processing system requires inter-
action with multi-paradigm components as emulating their functionality from
scratch could easily become a 100-person/years project. In our case, this means
integrating a declarative language module, focusing on high level text mining,
into the Python-based nltk ecosystem, while relying on the Java-based Stanford
CoreNLP toolkit for basic tasks like segmentation, part-of-speech tagging and
parsing.
Overview of the System Architecture. Figure 1 summarizes the architecture
of our system. The Stanford parser is started as a separate server process to
which the Python text processing module connects as a client. It interfaces with
the Prolog-based dialog engine by generating a clausal representation of the
document’s structure and content, as well as the user’s queries. The dialog engine
is responsible for handling the user’s queries for which answers are sent back to
the Python front-end which handles also the call to OS-level spoken-language
services, when activated.

Python-based 
Document Processor 

and Text Graph Ranker

Java-based 
Stanford CoreNLP

Dependency Parser
in server mode

Prolog-based
Dialog Engine

Prolog facts
representing the

 document's content

pyswip
Python-Prolog interface

Document 
Collection

User

Fig. 1. System architecture

Today’s dependency parsers [7–9], among which the neurally-trained Stan-
ford dependency parser [7] stands out, produce highly accurate dependency
graphs and part of speech tagged vertices. Seen as edges in a text graph, they pro-
vide, by contrast to collocations in a sliding window, “distilled” building blocks
through which a graph-based natural language processing system can absorb
higher level linguistic information.



Interactive Text Graph Mining with a Prolog-Based Dialog Engine 5

Inspired by the effectiveness of algorithms like Google’s PageRank, recursive
ranking algorithms applied to text graphs have enabled extraction of keyphrases,
summaries and relations. Their popularity continues to increase due to the holis-
tic view they shed on the interconnections between text units that act as recom-
menders for the most relevant ones, as well as the comparative simplicity of the
algorithms. At close to 3000 citations and a follow-up of some almost equally
as highly cited papers like [10] the TextRank algorithm [11,12] and its creative
descendants have extended their applications to a wide variety of document types
and social media interactions in a few dozen languages.

While part of the family of the TextRank descendants, our graph based text
processing algorithm will use information derived from the dependency graphs
associated to sentences. With help from the labels marking the edges of a depen-
dency graph and the part of speech tags associated to its nodes, we will extract
rank-ordered facts corresponding to content elements present in sentences. We
pass these to logic programs that can query them and infer new relations, beyond
those that can be mined directly from the text.

Like in the case of a good search engine, interaction with a text document will
focus on the most relevant and semantically coherent elements matching a query.
With this in mind, the natural feel of an answer syntactically appropriate for a
query is less important than the usefulness of the content elements extracted:
just sentences of the document, in their natural order.

We will also enable spoken interaction with the dialog engine, opening doors
for the use of the system via voice-based appliances. Applications range from
assistive technologies to visually challenged people, live user manuals, teaching
from K-12 to graduate level and interactive information retrieval from complex
technical or legal documents.

The paper is organized as follows. Section 2 describes the graph-based Nat-
ural Language Processing module. Section 3 describes our Prolog-based dialog
engine. Section 4 puts in context the main ideas of the paper and justifies some
of the architecture choices we have made. Section 5 overviews related work and
background information. Section 6 concludes the paper.

2 The Graph-Based Natural Language Processing
Module

We have organized our Python-based textgraph processing algorithm together
with the Prolog-based dialog engine into a unified system1. We start with the
building and the ranking of the text graph. Then, we overview the summary,
keyphrase and relation extraction and the creation of the Prolog database that
constitutes the logical model of the document, to be processed by the dialog
engine.

1 Our implementation is available at https://github.com/ptarau/DeepRank.

https://github.com/ptarau/DeepRank
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2.1 Building and Ranking the Text Graph

We connect as a Python client to the Stanford CoreNLP server and use it to
provide our dependency links via the wrapper at https://www.nltk.org/ of the
Stanford CoreNLP toolkit [13].

Unlike the original TextRank and related approaches that develop special
techniques for each text processing task, we design a unified algorithm to obtain
graph representations of documents, that are suitable for keyphrase extraction,
summarization and interactive content exploration.

We use unique sentence identifiers and unique lemmas2 as nodes of the text
graph. As keyphrases are centered around nouns and good summary sentences
are likely to talk about important concepts, we will need to reverse some links in
the dependency graph provided by the parser, to prioritize nouns and deprioritize
verbs, especially auxiliary and modal ones. Thus, we redirect the dependency
edges toward nouns with subject and object roles, as shown for a simple short
sentence in Fig. 2 as “about” edges.

sits VBZ

cat NN mat NN

The cat sits on the mat.

predicate

The DT

on IN

the DP

nsubj

nmod

det

case

det

recommends

recommends

about
about

recommends

recommends recommends

Fig. 2. Dependency graph of a simple sentence with redirected and newly added arrows

We also create “recommend” links from words to the sentence identifiers
and back from sentences to verbs with predicate roles to indirectly ensure that
sentences recommend and are recommended by their content. Specifically, we
ensure that sentences recommend verbs with predicate function from where their
recommendation spreads to nouns relevant as predicate arguments (e.g., having
subject or object roles).
2 A lemma is a canonical representation of a word, as it stands in a dictionary, for all

its inflections e.g., it is “be” for “is”, “are”, “was” etc.

https://www.nltk.org/
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Fig. 3. Text graph of the highest ranked words in the U.S. Constitution

By using the PageRank implementation of the networkx toolkit3, after rank-
ing the sentence and word nodes of the text graph, the system is also able to dis-
play subgraphs filtered to contain only the highest ranked nodes, using Python’s

3 https://networkx.github.io/.

https://networkx.github.io/
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graphviz library. An example of text graph, filtered to only show word-to-word
links, derived from the U.S. Constitution4, is shown in Fig. 3.

2.2 Pre- and Post-ranking Graph Refinements

The algorithm induces a form of automatic stopword filtering, due to the fact
that our dependency link arrangement ensures that modifiers with lesser seman-
tic value relinquish their rank by pointing to more significant lexical components.
This is a valid alternative to explicit “leaf trimming” before ranking, which
remains an option for reducing graph size for large texts or multi-document col-
lections as well as helping with a more focussed relation extraction from the
reduced graphs.

Besides word-to-word links, our text graphs connect sentences as additional
dependency graph nodes, resulting in a unified keyphrase and summary extrac-
tion framework. Note also that, as an option that is relevant especially for sci-
entific, medical or legal documents, we add first in links from a word to the
sentence containing its first occurrence, to prioritize sentences where concepts
are likely to be defined or explained.

Our reliance on graphs provided by dependency parsers builds a bridge
between deep neural network-based machine learning and graph-based natural
language processing enabling us to often capture implicit semantic information.

2.3 Summary and Keyword Extraction

As link configurations tend to favor very long sentences, a post-ranking nor-
malization is applied for sentence ranking. After ordering sentences by rank we
extract the highest ranked ones and reorder them in their natural order in the
text to form a more coherent summary.

We use the parser’s compound phrase tags to fuse along dependency links.
We design our keyphrase synthesis algorithm to ensure that highly ranked words
will pull out their contexts from sentences, to make up meaningful keyphrases.
As a heuristic, we mine for a context of 2–4 dependency linked words of a highly
ranked noun, while ensuring that the context itself has a high-enough rank, as we
compute a weighted average favoring the noun over the elements of its context.

2.4 Relation Extraction

We add subject-verb-object facts extracted from the highest ranked dependency
links, enhanced with “is-a” and “part-of” relations using WordNet via the nltk
toolkit. We plan in the future to also generate relations from conditional state-
ments identified following dependency links and involving negations, modalities,
conjuncts and disjuncts, to be represented as Prolog rules. Subject-verb-object
(SVO) relations are extracted directly from the dependency graph and an extra

4 Available as a text document at: https://www.usconstitution.net/const.txt.

https://www.usconstitution.net/const.txt
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argument is added to the triplet marking the number of the sentence they orig-
inate from.

“Is-a” relations are extracted using WordNet [14] hypernyms and hyponyms5.
Similarly, “part of” relations are extracted using meronyms and holonyms6. As
a heuristic that ensures that they are relevant to the content of the text, we
ensure that both their arguments are words that occur in the document, when
connecting their corresponding synsets via WordNet relations. By constraining
the two ends of an “is-a” or “part-of” edge to occur in the document, we avoid
relations derived from synsets unrelated to the document’s content. In fact, this
provides an effective word-sense disambiguation heuristic.

3 The Prolog-Based Dialog Engine

After our Python-based document processor, with help from the Stanford
dependency parser, builds and ranks the text graph and extracts summaries,
keyphrases and relations, we pass them to the Prolog-based dialog engine.

3.1 Generating Input for Post-processing by Logic Programs

Once the document is processed, we generate, besides the dependency links pro-
vided by the parser, relations containing facts that we have gleaned from pro-
cessing the document. Together, they form a Prolog database representing the
content of the document.

To keep the interface simple and portable to other logic programming tools,
we generate the following predicates in the form of Prolog-readable code, in one
file per document:

1. keyword(WordPhrase). – the extracted keyphrases
2. summary(SentenceId, SentenceWords). – the extracted summary sen-

tences sentence identifiers and list of words
3. dep(SentenceID, WordFrom, FromTag, Label, WordTo, ToTag). – a com-

ponent of a dependency link, with the first argument indicating the sentence
they have been extracted

4. edge(SentenceID, FromLemma, FromTag, RelationLabel, ToLemma,
ToTag). – edge marked with sentence identifiers indicating where it was
extracted from, and the lemmas with their POS tags at the two ends of
the edge

5. rank(LemmaOrSentenceId, Rank). – the rank computed for each lemma
6. w2l(Word, Lemma, Tag). – a map associating to each word a lemma, as

found by the POS tagger
7. svo(Subject, Verb, Object, SentenceId). – subject-verb-object rela-

tions extracted from parser input or WordNet-based is a and part of labels
in verb position

5 More general and, respectively, more specific concepts.
6 Concepts corresponding to objects that are part of, and, respectively, have as part

other objects.
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8. sent(SentenceId, ListOfWords). – the list of sentences in the document
with a sentence identifier as first argument and a list of words as second
argument

They provide a relational view of a document in the form of a database that will
support the inference mechanisms built on top of it.

The resulting logic program can then be processed with Prolog semantics,
possibly enhanced by using constraint solvers [15], abductive reasoners [16] or
via Answer Set Programming systems [17]. Specifically, we expect benefits from
such extensions for tackling computationally difficult problems like word-sense
disambiguation (WSD) or entailment inference as well as domain-specific rea-
soning [3,4,18].

We have applied this process to the Krapivin document set [19], a collection of
2304 research papers annotated with the authors’ own keyphrases and abstracts.

The resulting 3.5 GB Prolog dataset7 is made available for researchers in the
field, interested to explore declarative reasoning or text mining mechanisms.

3.2 The Prolog Interface

We use as a logic processing tool the open source SWI-Prolog system8 [20] that
can be called from, and can call Python programs using the pyswip adaptor9.
After the adaptor creates the Prolog process and the content of the digested
document is transferred from Python (in a few seconds for typical scientific
paper sizes of 10–15 pages), query processing is realtime.

3.3 The User Interaction Loop

With the Prolog representation of the digested document in memory, the dia-
log starts by displaying the summary and keyphrases extracted from the docu-
ment10. One can see this as a “mini search-engine”, specialized to the document,
and, with help of an indexing layer, extensible to multi-document collections.
The dialog agent associated to the document answers queries as sets of salient
sentences extracted from the text, via a specialization of our summarization
algorithm to the context inferred from the query.

As part of an interactive read/listen, evaluate, print/say loop, we generate for
each query sentence, a set of predicates that are passed to the Prolog process,
from where answers will come back via the pyswip interface. The predicates
extracted from a query have the same structure as the database representing the
content of the complete document, initially sent to Prolog.

7 http://www.cse.unt.edu/∼tarau/datasets/PrologDeepRankDataset.zip.
8 http://www.swi-prolog.org/.
9 https://github.com/yuce/pyswip.

10 And also speak them out if the quiet flag is off.

http://www.cse.unt.edu/~tarau/datasets/PrologDeepRankDataset.zip
http://www.swi-prolog.org/
https://github.com/yuce/pyswip
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3.4 The Answer Generation Algorithm

Answers are generated by selecting the most relevant sentences, presented in
their natural order in the text, in the form of a specialized “mini-summary”.

Query Expansion. Answer generation starts with a query-expansion mecha-
nism via relations that are derived by finding, for lemmas in the query, WordNet
hypernyms, hyponyms, meronyms and holonyms, as well as by directly extract-
ing them from the query’s dependency links. We use the rankings available both
in the query and the document graph to prioritize the highest ranked sentences
connected to the highest ranked nodes in the query.

Short-Time Dialog Memory. We keep representations of recent queries in
memory, as well as the answers generated for them. If the representation of
the current query overlaps with a past one, we use content in the past query’s
database to extend query expansion to cover edges originating from that query.
Overlapping is detected via shared edges between noun or verb nodes between
the query graphs.

Sentence Selection. Answer sentence selection happens by a combination of
several interoperating algorithms:

– use of personalized PageRank [21,22] with a dictionary provided by highest
ranking lemmas and their ranks in the query’s graph, followed by reranking
the document’s graph to specialize to the query’s content

– matching guided by SVO-relations
– matching of edges in the query graph against edges in the document graph
– query expansion guided by rankings in both the query graph and the docu-

ment graph
– matching guided by a selection of related content components in the short-

term dialog memory window

Matching against the Prolog database representing the document is cur-
rently implemented as a size constraint on the intersection of the expanded
query lemma set, built with highly ranked shared lemmas pointing to sentences
containing them. The set of answers is organized to return the highest-ranked
sentences based on relevance to the query and in the order in which they appear
in the document.

We keep the dialog window relatively small (limited to the highest ranked
3 sentences in the answer set, by default). Relevance is ensured with help from
the rankings computed for both the document content and the query.

3.5 Interacting with the Dialog Engine

The following example shows the result of a query on the US Constitution doc-
ument.
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be

0

VB_recommends_SENT

remove

VB_auxpass_VBN

SENT_predicate_VBN

President

SENT_about_NNP

off ce

NN_f rst_in_SENT

how

WRB_recommends_SENT

WRB_advmod_VBN

VBN_nmod_NN VBN_nsubjpass_NNP

NNP_f rst_in_SENT

from

IN_recommends_SENT

IN_case_NN

a

DT_recommends_SENT

DT_det_NNP

can

MD_recommends_SENT

MD_aux_VBN

Fig. 4. Graph of query on the U.S. Constitution

>>> talk about(’examples/const’)
?-- How can a President be removed from office?
59: In Case of the Removal of the President from Office, or of his Death, Resigna-
tion, or Inability to discharge the Powers and Duties of the said Office, the same
shall devolve on the Vice President, and the Congress may by Law provide for the
Case of Removal, Death, Resignation or Inability, both of the President and Vice
President, declaring what Officer shall then act as President, and such Officer shall
act accordingly, until the Disability be removed, or a President shall be elected.
66: Section 4 The President, Vice President and all civil Officers of the United
States, shall be removed from Office on Impeachment for, and Conviction of, Trea-
son, Bribery, or other high Crimes and Misdemeanors.

190: If the Congress, within twenty one days after receipt of the latter written dec-

laration, or, if Congress is not in session, within twenty one days after Congress is

required to assemble, determines by two thirds vote of both Houses that the President

is unable to discharge the powers and duties of his office, the Vice President shall

continue to discharge the same as Acting President; otherwise, the President shall

resume the powers and duties of his office.

Note the relevance of the extracted sentences and resilience to semantic and
syntactic variations (e.g., the last sentence does not contain the word “remove”).
The dependency graph of the query is shown in Fig. 4. The clauses of the
query rank/2 predicate in the Prolog database corresponding to the query are:

query_rank(’President’, 0.2162991696472837).

query_rank(’remove’, 0.20105324712764877).

query_rank(’office’, 0.12690425831428373).

query_rank(’how’, 0.04908035060099132).

query_rank(’can’, 0.04908035060099132).

query_rank(’a’, 0.04908035060099132).

query_rank(’be’, 0.04908035060099132).

query_rank(’from’, 0.04908035060099132).

query_rank(0, 0.0023633884483800784).
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happen

presence

VBZ_nmod_NN

light

VBZ_nmod_NN

0

NN_f rst_in_SENT f eld

NN_nmod_NNS

to

TO_recommends_SENT

TO_case_NNSENT_predicate_VBZ

the

DT_det_NN

DT_recommends_SENT

in

IN_case_NN

IN_recommends_SENT

what

WP_nsubj_VBZ

WP_recommends_SENTof

IN_recommends_SENT

IN_case_NNS

NNS_f rst_in_SENTNN_f rst_in_SENT

gravitational

JJ_recommends_SENT

JJ_amod_NNS

Fig. 5. Graph of query on Einstein’s book on Relativity

Our next example uses an ASCII version of Einstein’s 1920 book on relativity,
retrieved from the Gutenberg collection11 and trimmed to the actual content of
the book (250 pages in epub form).

>>> talk about(’examples/relativity’)
?-- What happens to light in the presence of gravitational fields?
611: In the example of the transmission of light just dealt with, we have seen that
the general theory of relativity enables us to derive theoretically the influence of a
gravitational field on the course of natural processes, the laws of which are already
known when a gravitational field is absent.
764: On the contrary, we arrived at the result that according to this latter theory the
velocity of light must always depend on the co-ordinates when a gravitational field
is present.

765: In connection with a specific illustration in Section XXIII, we found that the

presence of a gravitational field invalidates the definition of the coordinates and the

time, which led us to our objective in the special theory of relativity.

The query graph is shown in Fig. 5. After the less than 30 s that it takes to
digest the book, answers are generated in less than a second for all queries that
we have tried. Given the availability of spoken dialog, a user can iterate and
refine queries to extract the most relevant answer sentences of a document.

On an even larger document, like the Tesla Model 3 owner’s manual12, digest-
ing the document takes about 60 s and results in 12 MB of Prolog clauses. After
that, query answering is still below 1 s.

>>> talk about(’examples/tesla’)
?-- How may I have a flat tire repaired?
3207: Arrange to have Model 3 transported to a Tesla Service Center, or to a nearby
tire repair center.

11 https://www.gutenberg.org/files/30155/30155-0.txt.
12 https://www.tesla.com/sites/default/files/model 3 owners manual north america

en.pdf.

https://www.gutenberg.org/files/30155/30155-0.txt
https://www.tesla.com/sites/default/files/model_3_owners_manual_north_america_en.pdf
https://www.tesla.com/sites/default/files/model_3_owners_manual_north_america_en.pdf
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3291: Note: If a tire has been replaced or repaired using a different tire sealant than

the one available from Tesla, and a low tire pressure is detected, it is possible that

the tire sensor has been damaged.

The highly relevant first answer is genuinely useful in this case, given that Tesla
Model 3’s do not have a spare tire. Being able to use voice queries while driv-
ing and in need of urgent technical information about one’s car, hints towards
obvious practical applications of our dialog engine.

4 Discussion

Ideally, one would like to evaluate the quality of natural language understand-
ing of an AI system by querying it not only about a set of relations explicitly
extracted in the text, but also about relations inferred from the text. Moreover,
one would like also to have the system justify the inferred relations in the form
of a proof, or at least a sketch of the thought process a human would use for the
same purpose. The main challenge here is not only that theorem-proving logic is
hard, (with first-order classical predicate calculus already Turing-complete), but
also that modalities, beliefs, sentiments, hypothetical and contrafactual judge-
ments often make the underlying knowledge structure intractable.

On the other hand, simple relations, stated or implied by text elements that
can be mined or inferred from a ranked graph built from labeled dependency
links, provide a limited but manageable approximation of the text’s deeper logic
structure, especially when aggregated with generalizations and similarities pro-
vided by WordNet or the much richer Wikipedia knowledge graph.

Given its effectiveness as an interactive content exploration tool, we plan
future work on packaging our dialog engine as a set of Amazon Alexa skills
for some popular Wikipedia entries as well as product reviews, FAQs and user
manuals.

Empirical evaluation of our keyphrase and summarization algorithms will be
subject to a different paper, but preliminary tests indicate that both of them
match or exceed Rouge scores for state of the art systems [23].

5 Related Work

Dependency Parsing. The Stanford neural network based dependency parser
[7] is now part of the Stanford CoreNLP toolkit13, which also comes with part of
speech tagging, named entities recognition and co-reference resolution [13]. Its
evolution toward the use of Universal Dependencies [24] makes tools relying on it
potentially portable to over 70 languages covered by the Universal Dependencies
effort14.

13 https://stanfordnlp.github.io/CoreNLP/.
14 https://universaldependencies.org/.

https://stanfordnlp.github.io/CoreNLP/
https://universaldependencies.org/
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Of particular interest is the connection of dependency graphs to logic ele-
ments like predicate argument relations [25]. The mechanism of automatic con-
version of constituency trees to dependency graphs described in [9] provides a
bridge allowing the output of high-quality statistically trained phrase structure
parsers to be reused for extraction of dependency links.

We analyze dependency links and POS-tags associated to their endpoints to
extract SVO relations. By redirecting links to focus on nouns and sentences we
not only enable keyphrase and summary extraction from the resulting document
graph but also facilitate its use for query answering in our dialog engine.

Graph Based Natural Language Processing. In TextRank [11,12]
keyphrases are using a co-occurrence relation, controlled by the distance between
word occurrences: two vertices are connected if their corresponding lexical units
co-occur within a sliding window of 2 to 10 words. Sentence similarity is com-
puted as content overlap giving weights on the links that refine the original
PageRank algorithm [26,27]. TextRank needs elimination of stop words and
reports best results when links are restricted to nouns and adjectives. In [10]
several graph centrality measures are explored and [28] offers a comprehensive
overview on graph-based natural language processing and related graph algo-
rithms. Graph-based and other text summarization techniques are surveyed in
[29] and more recently in [30]. Besides ranking, elements like coherence via sim-
ilarity with previously chosen sentences and avoidance of redundant rephrasings
are shown to contribute to the overall quality of the summaries. The main novelty
of our approach in this context is building the text graph from dependency links
and integrating words and sentences in the same text graph, resulting in a unified
algorithm that also enables relation extraction and interactive text mining.

Relation Extraction. The relevance of dependency graphs for relation extrac-
tion has been identified in several papers, with [8] pointing out to their role as a
generic interface between parsers and relation extraction systems. In [31] several
models grounded on syntactic patterns are identified (e.g., subject-verb-object)
that can be mined out from dependency graphs. Of particular interest for rela-
tion extraction facilitated by dependency graphs is the shortest path hypothesis
that prefers relating entities like predicate arguments that are connected via
a shortest paths in the graph [32]. To facilitate their practical applications to
biomedical texts, [33] extends dependency graphs with focus on richer sets of
semantic features including “is-a” and “part-of” relations and co-reference res-
olution.

The use of ranking algorithms in combination with WordNet synset links
for word-sense disambiguation goes back as far as [34], in fact a prequel to the
TextRank paper [11]. With the emergence of resources like Wikipedia, a much
richer set of links and content elements has been used in connection with graph
based natural language processing [8,35,36].

We currently extract our relations directly from the dependency graph and
by using one step up and one step down links in the WordNet hypernym and
meronym hierarchies, but extensions are planned to integrate Wikipedia content,
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via the dbpedia database15 and to extract more elaborate logic relations using
a Prolog-based semantic parser like Boxer [37].

Logic Programming Systems for Natural Language Processing. A com-
mon characteristic of Prolog or ASP-based NLP systems is their focus on closed
domains with domain-specific logic expressed in clausal form [1–4], although
recent work like [18] extracts action language programs from more general nar-
ratives.

As our main objective is the building of a practically useful dialog agent, and
as we work with open domain text and query driven content retrieval, our focus
is not on precise domain-specific reasoning mechanisms. By taking advantage of
the Prolog representation of a document’s content, we use reasoning about the
extracted relations and ranking information to find the most relevant sentences
derived from a given query and the recent dialog history.

6 Conclusions

The key idea of the paper has evolved from our search for synergies between
symbolic AI and emerging machine-learning based natural language processing
tools. It is our belief that these are complementary and that by working together
they will take significant forward steps in natural language understanding. We
have based our text graph on heterogeneous, but syntactically and semantically
meaningful text units (words and sentences) resulting in a web of interleaved
links, mutually recommending each other’s highly ranked instances. Our fact
extraction algorithm, in combination with the Prolog interface has elevated the
syntactic information provided by dependency graphs with semantic elements
ready to benefit from logic-based inference mechanisms. Given the standardiza-
tion brought by the use of Universal Dependencies, our techniques are likely to
be portable to a large number of languages.

The Prolog-based dialog engine supports spoken interaction with a conver-
sational agent that exposes salient content of the document driven by the user’s
interest. Its applications range from assistive technologies to visually challenged
people, voice interaction with user manuals, teaching from K-12 to graduate level
and interactive information retrieval from complex technical or legal documents.

Last but not least, we have used our system’s front end to generate the Prolog
dataset at http://www.cse.unt.edu/∼tarau/datasets/PrologDeepRankDataset.
zip, derived from more than 2000 research papers and made it available to other
researchers using logic programming based reasoners and content mining tools.

Acknowledgment. We are thankful to the anonymous reviewers of PADL’2020 for
their careful reading and constructive suggestions.

15 https://wiki.dbpedia.org/.

http://www.cse.unt.edu/~tarau/datasets/PrologDeepRankDataset.zip
http://www.cse.unt.edu/~tarau/datasets/PrologDeepRankDataset.zip
https://wiki.dbpedia.org/
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Abstract. The graph isomorphism, subgraph isomorphism, and graph
edit distance problems are combinatorial problems with many applica-
tions. Heuristic exact and approximate algorithms for each of these prob-
lems have been developed for different kinds of graphs: directed, undi-
rected, labeled, etc. However, additional work is often needed to adapt
such algorithms to different classes of graphs, for example to accommo-
date both labels and property annotations on nodes and edges. In this
paper, we propose an approach based on answer set programming. We
show how each of these problems can be defined for a general class of
property graphs with directed edges, and labels and key-value properties
annotating both nodes and edges. We evaluate this approach on a variety
of synthetic and realistic graphs, demonstrating that it is feasible as a
rapid prototyping approach.

1 Introduction

Graphs are a pervasive and widely applicable data structure in computer sci-
ence. To name just a few examples, graphs can represent symbolic knowledge
structures extracted from Wikipedia [5], provenance records describing how a
computer system executed to produce a result [20], or chemical structures in a
scientific knowledge base [15]. In many settings, it is of interest to solve graph
matching problems, for example to determine when two graphs have the same
structure, or when one graph appears in another, or to measure how similar two
graphs are.

Given two graphs, possibly with labels or other data associated with nodes
and edges, the graph isomorphism problem (GI) asks whether the two graphs
have the same structure, that is, whether there is an invertible mapping from
one graph to another that preserves and reflects edges and any other constraints.
The subgraph isomorphism problem (SUB) asks whether one graph is isomorphic
to a subgraph of another. Finally, the graph edit distance problem (GED) asks
whether one graph can be transformed into another via a sequence of edit steps,
such as insertion, deletion, or updates to nodes or edges.

These are well-studied problems. Each is in the class NP, with SUB and GED
being NP-complete [12], while the lower bound of the complexity of GI is an open
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problem [4]. Approximate and exact algorithms for graph edit distance, based
on heuristics or on reduction to other NP-complete problems, have been pro-
posed [9,11,17,21]. Moreover, for special cases such as database querying, there
are algorithms for subgraph isomorphism that can provide good performance in
practice when matching small query subgraphs against graph databases [16].

However, there are circumstances in which none of the available techniques is
directly suitable. For example, many of the algorithms considered so far assume
graphs of a specific form, for example with unordered edges, or unlabeled nodes
and edges. In contrast, many typical applications use graphs with complex struc-
ture, such as property graphs: directed multigraphs in which nodes and edges can
both be labeled and annotated with sets of key-value pairs (properties). Adapt-
ing an existing algorithm to deal with each new kind of graph is nontrivial.
Furthermore, some applications involve searching for isomorphisms, subgraph
isomorphisms, or edit scripts subject to additional constraints [8,22].

In this paper we advocate the use of answer set programming (ASP) to specify
and solve these problems. Property graphs can be represented uniformly as sets
of logic programming facts, and each of the graph matching problems we have
mentioned can be specified using ASP in a uniform way. Concretely, we employ
the Clingo ASP solver, but our approach relies only on standard ASP features.

For each of the problems we consider, it is clear in principle that it should
be possible to encode using ASP, because ASP subsumes the NP-complete SAT
problem. Our contribution is to show how to encode each of these problems
directly in a way that produces immediately useful results, rather than via encod-
ing as SAT or other problems and decoding the results. For GI and SUB, the
encoding is rather direct and the ASP specifications can easily be read as declara-
tive specifications of the respective problems; however, the standard formulation
of the graph edit distance problem is not as easy to translate to a logic program
because it involves searching for an edit script whose maximum length depends
on the input. Instead, we consider an indirect (but still natural) approach which
searches for a partial matching between the two graphs that minimizes the edit
distance, and derives an edit script (if needed) from this matching. The proof of
correctness of this encoding is our main technical contribution.

We provide experimental evidence of the practicality of our declarative app-
roach, drawing on experience with a nontrivial application: generalizing and
comparing provenance graphs [8]. In this previous work, we needed to solve two
problems: (1) given two graphs with the same structure but possibly different
property values (e.g. timestamps), identify the general structure common to all
of the graphs, and (2) given a background graph and a slightly larger foreground
graph, match the background graph to the foreground graph and “subtract” it,
leaving the unmatched part. We showed in [8] that our ASP approach to approx-
imate graph isomorphism and subgraph isomorphism can solve these problems
fast enough that they were not the bottleneck in the overall system. In this
paper, we conduct further experimental evaluation of our approach to graph iso-
morphism, subgraph isomorphism, and graph edit distance on synthetic graphs
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and real graphs used in a recent Graph Edit Distance Contest (GEDC) [1] and
our recent work [8].

2 Background

Property Graphs. We consider (directed) multigraphs G = (V,E, src, tgt, lab)
where V and E are disjoint sets of node identifiers and edge identifiers, respec-
tively, src, tgt : E → V are functions identifying the source and target of each
edge, and lab : V ∪ E → Σ is a function assigning each vertex and edge a label
from some set Σ. Note that multigraphs can have multiple edges with the same
source and target. Familiar definitions of ordinary directed or undirected graphs
can be recovered by imposing further constraints, if desired.

A property graph is a directed multigraph extended with an additional partial
function prop : (V ∪ E) × Γ ⇀ Δ where Γ is a set of keys and Δ is a set of data
values. For the purposes of this paper we assume that all identifiers, labels, keys
and values are represented as Prolog atoms.

We consider a partial function with range X to be a total function with range
X � {⊥} where ⊥ is a special token not appearing in X. We consider X � {⊥}
to be partially ordered by the least partial order satisfying ⊥ � x for all x ∈ X.

Isomorphisms. A homomorphism from property graph G1 to G2 is a function
h : G1 → G2 mapping V1 to V2 and E1 to E2, such that:

– for all v ∈ V1, lab2(h(v)) = lab1(v) and prop2(h(v), k) � prop1(v, k)
– for all e ∈ E1, lab2(h(e)) = lab1(e) and prop2(h(e), k) � prop1(e, k)
– for all e ∈ E1, src2(h(e)) = h(src1(e)) and tgt2(h(e)) = h(tgt1(e))

(Essentially, h is a pair of functions (V1 → V2) × (E1 → E2), but we abuse
notation slightly here by writing h for both.) As usual, an isomorphism is an
invertible homomorphism whose inverse is also a homomorphism, and G1 and
G2 are isomorphic (G1

∼= G2) if an isomorphism between them exists. Note that
the labels of nodes and edges must match exactly, that is, we regard labels as
integral to nodes and edges, while properties must match only if defined in G1.

Subgraph Isomorphism. A subgraph G′ of G is a property graph satisfying:

– V ′ ⊆ V and E′ ⊆ E
– src′(e) = src(e) ∈ V ′ and tgt(e) = tgt′(e) ∈ V ′ for all e ∈ E′
– lab′(x) = lab(x) when x ∈ V ′ ∪ E′
– prop′(x, k) � prop(x, k) when x ∈ V ′ ∪ E′

In other words, the vertex and edge sets of G′ are subsets of those of G that still
form a meaningful graph, the labels are the same as in G′, and the properties
defined in G′ are the same as in G (but some properties in G may be omitted).

We say that G1 is subgraph isomorphic to G2 (G1 � G2) if there is a subgraph
of G2 to which G1 is isomorphic. Equivalently, G1 � G2 holds if there is a
injective homomorphism h : G1 → G2. If such a homomorphism exists, then it
maps G1 to an isomorphic subgraph of G2, whereas if G1

∼= G′
2 ⊆ G2 then the

isomorphism between G1 and G′
2 extends to an injective homomorphism from

G1 to G2.
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Table 1. Edit operation semantics

op V ′ E′ src′ tgt′ lbl′ prop′

insV(n, l) V � {v} E src tgt lbl[v := l] prop

insE(e, v, w, l) V E � {e} src[e := v] tgt[e := w] lbl[e := l] prop

insP(x, k, d) V E src tgt lbl prop[x, k := d]

delV(v) V − {v} E src tgt lbl[v := ⊥] prop

delE(e) V E − {e} src[e := ⊥] tgt[e := ⊥] lbl[e := ⊥] prop

delP(x, k) V E src tgt lbl prop[x, k := ⊥]

updP(x, k, d) V E src tgt lbl prop[x, k := d]

Graph Edit Distance. We consider edit operations:

– insertion of a node (insV(v, l)), edge (insE(e, v, w, l)), or property
(insP(x, k, v, d))

– deletion of a node (delV(v)), edge (delE(e)), or property (delP(x, k))
– in-place update (updP(x, k, d)) of a property value on a given node or edge x

with a given key k to value d

The meanings of each of these operations are defined in Table 1, where we
write G = (V,E, src, tgt, lab, prop) for the graph before the edit and G′ =
(V ′, E′, src′, tgt′, lab′, prop′) for the updated graph. Each row of the table
describes how each part of G′ is defined in terms of G. In addition, the edit
operations have the following preconditions: Before an insertion, the inserted
node, edge, or property must not already exist; before a deletion, a deleted node
must not be a source or target of an edge, and a node/edge must not have any
properties; before an update, the updated property must already exist on the
affected node or edge. If these preconditions are not satisfied, the edit operation
is not allowed on G.

We write op(G) for the result of op acting on G. More generally, if ops is a
list of operations then we write ops(G) for the result of applying the operations
to G. Given graphs G1, G2 we define the graph edit distance between G1 and G2

as GED(G1, G2) = min{|ops| | ops(G1) = G2}, that is, the shortest length of an
edit script modifying G1 to G2.

Computing the graph edit distance between two graphs (even without labels
or properties) is an NP-complete problem. Moreover, we consider a particular
setting where the edit operations all have equal cost, but in general different
weights can be assigned to different edit operations. We can consider a slight
generalization as follows: Given a weighting function w mapping edit operations
to positive rational numbers, the weighted graph edit distance between G1 and
G2 is wGED(G1, G2) = min{∑

op∈ops w(op) | ops(G1) = G2}. The unweighted
graph edit distance is a special case so this problem is also NP-complete.

Answer Set Programming. We assume familiarity with general logic program-
ming concepts (e.g. familiarity with Prolog or Datalog). To help make the paper
accessible to readers not already familiar with answer set programming, we illus-
trate some programming techniques that differ from standard logic programming
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e(uk,ie).

e(fr,(sp;de;ch;it;be;lu)).

e(sp,pt). e(it,at).

e(be,(lu;nl)). e(ch,(it;at)).

e(de,(be;nl;at;dk;ch;lu)).

Fig. 1. Graph coloring example (Color figure online)

via a short example: coloring the nodes of an undirected graph with the minimum
number of colors. Graph 3-coloring is a standard example of ASP, but we will
adopt a slightly nonstandard approach to illustrate some key techniques we will
rely on later. We will use the concrete syntax of the Clingo ASP solver, which is
part of the Potassco framework [13,14]. Examples given here and elsewhere in
the paper can be run verbatim using the Clingo interactive online demo1.

Listing 1.1. Graph 3-coloring

1 e(X,Y) :- e(Y,X).

2 n(X) :- e(X,_).

3 color(1..3).

4 {c(X,Y) : color(Y)} = 1 :- n(X).

5 :- e(X,Y), c(X,C), c(Y,D), not C <> D.

Listing 1.2. Minimal k-coloring (extending Listing 1.1)

1 color(X) :- n(X).

2 cost(C,1) :- c(_,C).

3 #minimize { Cost,C : cost(C,Cost) }.

Figure 1 shows an example graph where edge relationships correspond to land
borders between some countries. The edges are defined using an association
list notation; for example e(be,(lu;nl)) abbreviates two edges e(be,lu) and
e(be,nl). Listing 1.1 defines graph 3-coloring declaratively. The first line states
that the edge relation is symmetric and the second defines the node relation
to consist of all sources (and by symmetry targets) of edges. Line 3 defines a
relation color/1 to hold for values 1, 2, 3. Lines 4–5 define when a graph is 3-
colorable, by defining when a relation c/2 is a valid 3-coloring. Line 4 says that
c/2 represents a (total) function from nodes to colors, i.e. for every node there
is exactly one associated color. Line 5 says that for each edge, the associated
colors of the source and target must be different. Here, we are using the not

operator solely to illustrate its use, but we could have done without it, writing
C = D instead.

1 https://potassco.org/clingo/run/.

https://potassco.org/clingo/run/
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Listing 1.1 is a complete program that can be used with Fig. 1 to determine
that the example graph is not 3-colorable. What if we want to find the least k
such that a graph is k-colorable? We cannot leave the number of colors undefined,
since ASP requires a finite search space, but we could manually change the ‘3’ on
line 5 to various values of k, starting with the maximum k = |V | and decreasing
until the minimum possible k is found.

Instead, using minimization constraints, we can modify the 3-coloring pro-
gram above to instead compute a minimal k-coloring (that is, find a coloring
minimizing the number of colors) purely declaratively by adding the clauses
shown in Listing 1.2. Line 1 defines the set of colors simply to be the set of node
identifiers (plus the three colors we already had, but this is harmless). Line 2
associates a cost of 1 with each used color. Finally, line 3 imposes a minimization
constraint: to minimize the sum of the costs of the colors. Thus, using a single
Clingo specification we can automatically find the minimum number of colors
needed for this (or any) undirected graph. The 4-coloring shown in Fig. 1 was
found this way.

3 Specifying Graph Matching and Edit Distance

In this section we give ASP specifications defining each problem. We first consider
how to represent graphs as flat collections of facts, suitable for use in a logic
programming setting. We choose one among several reasonable representations:
given G = (V,E, src, tgt, lab, prop) and given three predicate names n, e, p we
define the following relations:

RelG(n, e, p) = {n(v, lab(v)) | v ∈ V }
∪{e(e, src(e), tgt(e), lab(e)) | e ∈ E}
∪{p(x, k, d) | x ∈ V ∪ E, prop(x, k) = d 
= ⊥}

Clearly, we can recover the original graph from this representation.
In the following problem specifications, we always consider two graphs, say

G1 and G2, and to avoid confusion between them we use two sets of relation
names to encode them, thus RelG1(n1, e1, p1) ∪ RelG2(n2, e2, p2) represents two
graphs. We also assume without loss of generality that the sets of vertex and
edge identifiers of the two graphs are all disjoint, i.e. (V1 ∪ E1) ∩ (V2 ∪ E2) = ∅,
to avoid any possibility of confusion among them.

We now show how to specify homomorphisms and isomorphisms among
graphs. The Clingo code in Listing 1.3 defines when a graph homomorphism
exists from G1 to G2. We refer to this program extended with suitable represen-
tations of G1 and G2 as Homh(G1, G2). The binary relation h, representing the
homomorphism, is specified using two constraints. The first says that h maps
nodes of G1 to nodes of G2 with the same label, while the second additionally
specifies that h maps edges of G1 to those of G2 preserving source, target, and
label. Notice in particular that the cardinality constraint ensures that h repre-
sents a total function with range V1 ∪ E1, so in any model satisfying the first
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clause, every node in G1 is matched to one in G2, which means that the body of
the second clause is satisfiable for each edge. The third clause simply constrains
h so that any properties of nodes or edges in G1 must be present on the matching
node or edge in G2.

Listing 1.3. Graph homomorphism

1 {h(X,Y) : n2(Y,L)} = 1 :- n1(X,L).

2 {h(X,Y) : e2(Y,S2,T2,L), h(S1,S2), h(T1,T2)} = 1 :- e1(X,S1,T1,L).

3 :- p1(X,K,D), h(X,Y), not p2(Y,K,D).

Listing 1.4. Graph isomorphism (extending Listing 1.3)

1 {h(X,Y) : n1(X,L)} = 1 :- n2(Y,L).

2 {h(X,Y) : e1(X,S1,T1,L), h(S1,S2), h(T1,T2)} = 1 :- e2(Y,S2,T2,L).

3 :- p2(Y,K,D), h(X,Y), not p1(X,K,D).

Listing 1.5. Subgraph isomorphism (extending Listing 1.3)

1 {h(X,Y) : n1(X,L)} <= 1 :- n2(Y,L).

2 {h(X,Y) : e1(X,S1,T1,L), h(S1,S2), h(T1,T2)} <= 1 :- e2(Y,S2,T2,L).

Next to define when h is a graph isomorphism, we add the symmetric clauses
shown in Listing 1.4. We write Isoh(G1, G2) for the combination of Listings 1.3
and 1.4. Since the two listings together imply that h represents a homomorphism
in the forward direction and simultaneously represents a homomorphism from
G2 to G1 in the backward direction, these four clauses suffice to specify that h
is an isomorphism.

To specify subgraph isomorphism, we simply require that h is an injective
homomorphism from G1 to G2, as shown in Listing 1.5. We refer to the spec-
ification in Listing 1.5 as Subh(G1, G2). The two additional constraints specify
that the inverse of h is a partial homomorphism. This is equivalent to h being
an injective homomorphism.

Finally we consider the specification of the graph edit distance problem. On
the surface, this seems challenging, since the graph edit distance is defined as
the length of a minimal edit script mapping one graph to another, and there are
infinitely many possible edit scripts. However, there is clearly always an upper
bound d on the edit distance: consider an edit script that just deletes G1 and
inserts G2, and take d to be the length of this script. So, given two graphs and
this upper bound d we could proceed by specifying a search space over edit scripts
of bounded length, defining the meaning of each edit operator, and seeking to
minimize the number of steps necessary to get from G1 to G2. However, this
encoding seems rather heavyweight, and requires preprocessing to determine d.

Instead, we follow a different strategy, analogous to the approach adopted for
graph coloring earlier. The strategy is based on the observation that the graph
edit distance is closely related to the maximum subgraph problem [6], that is,
given two graphs G1, G2, find the largest graph that is subgraph isomorphic to
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both. If we identify such a graph then (as we shall show) we can read off an
edit script that maps G1 to G2, which first deletes unmatched structure from
G1, then updates properties in-place, and finally inserts new structure needed in
G2. Furthermore, to identify the maximum common subgraph, we do not need
to construct a new graph separate from G1 and G2; instead, we can think of the
maximum common subgraph as an isomorphic pair of subgraphs of G1 and G2.
So in other words, we will search for a partial isomorphism h between G1 and
G2, use it as a basis for extracting an edit script, and minimize its cost.

Listing 1.6. Graph edit distance

1 {h(X,Y) : n2(Y,L)} <= 1 :- n1(X,L).

2 {h(X,Y) : n1(X,L)} <= 1 :- n2(Y,L).

3 {h(X,Y) : e2(Y,S2,T2,L), h(S1,S2), h(T1,T2)} <= 1 :- e1(X,S1,T1,L).

4 {h(X,Y) : e1(X,S1,T1,L), h(S1,S2), h(T1,T2)} <= 1 :- e2(Y,S2,T2,L).

5
6 delete_node(X) :- n1(X,_), not h(X,_).

7 insert_node(Y,L) :- n2(Y,L), not h(_,Y).

8
9 delete_edge(X) :- e1(X,_,_,_), not h(X,_).

10 insert_edge(Y,S,T,L) :- e2(Y,S,T,L), not h(_,Y).

11
12 update_prop(X,K,V1,V2) :- p1(X,K,V1), h(X,Y), p2(Y,K,V2), V1 <> V2.

13 delete_prop(X,K) :- p1(X,K,_), h(X,Y), not p2(Y,K,_).

14 delete_prop(X,K) :- p1(X,K,_), delete_node(X).

15 delete_prop(X,K) :- p1(X,K,_), delete_edge(X).

16 insert_prop(Y,K,V) :- p2(Y,K,V), h(X,Y), not p1(X,K,_).

17 insert_prop(Y,K,V) :- p2(Y,K,V), insert_node(Y,_).

18 insert_prop(Y,K,V) :- p2(Y,K,V), insert_edge(Y,_,_,_).

19
20 node_cost(Y,1) :- insert_node(Y,_).

21 node_cost(X,1) :- delete_node(X).

22
23 edge_cost(Y,1) :- insert_edge(Y,_,_,_).

24 edge_cost(X,1) :- delete_edge(X).

25
26 prop_cost(X,K,1) :- update_prop(X,K,V1,V2).

27 prop_cost(X,K,1) :- delete_prop(X,K).

28 prop_cost(Y,K,1) :- insert_prop(Y,K,V).

29
30 #minimize { NC,X : node_cost(X,NC);

31 EC,X : edge_cost(X,EC);

32 LC,X,K : prop_cost(X,K,LC)}.

Listing 1.6 accomplishes this. The first four lines specify that h must be
a partial isomorphism, by dropping the requirement that h must match all
nodes/edges on one side with those of another, and dropping the hard constraint
that properties must match. Lines 6–7 define when a node must be deleted or
inserted. Nodes that are in G1 and not matched in G2 must be deleted, and
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conversely those that are in G2 and not matched in G1 must be inserted. Lines
9–10 similarly specify when edges must be inserted or deleted. Lines 12–18 define
when a property is updated in-place, deleted, or inserted. If a property key is
present on an object in G1 and on the matching object in G2 but with a differ-
ent value, then the key’s value needs to be updated. If it is present in G1 but
not present on the matching object in G1 then it is deleted. Likewise, if it is
present in G1 but the associated object is deleted then the property also must
be deleted. Dually, properties are inserted if they are present in G2 but not in
G1, either because the matching object does not have that property or because
there is no matching object because the property is on an inserted object. Lines
20–28 specify the costs associated with each of the edit operations. We assign
each operation a cost of 1. It would also be possible to assign different (integer)
costs to different kinds of updates, or even to specify different costs depending
on labels, keys, or values.

4 Correctness

We first state the intended correctness properties for the homomorphism, iso-
morphism, and subgraph isomorphism problems:

Theorem 1. 1. There exists a homomorphism h : G1 → G2 if and only if
Homh(G1, G2) is satisfiable.

2. There exists an isomorphism h : G1 → G2 if and only if Isoh(G1, G2) is
satisfiable.

3. h : G1 → G2 witnesses a subgraph isomorphism if and only if Subh(G1, G2)
is satisfiable.

Proof. See Appendix A of the extended version [7]. �
Next we turn to graph edit distance. To assist with the reasoning, we define

the following canonical form:

Definition 1 (Edit script canonical form). An edit script is in canonical
form if it is of the form delp; dele; delv;updp; insv; inse; insp, where:

– delp, dele and delv are sequences of property deletions, edge deletions, and
node deletions respectively;

– updp is a sequence of property updates;
– insv, inse, and insp are sequences of node insertions, edge insertions, and

property insertions, respectively.

Edit scripts obtained from GEDh(G1, G2) are in this form. Moreover, any valid
edit script can be converted to a canonical one by applying a set of rewrite rules,
as shown in Fig. 2. We first consider marked versions op∗ of each edit operation,
for example writing delP∗(x, k) for the marked version of delP. A marked opera-
tion op∗ has the same effect as op when applied to a graphs; the mark is only to
indicate which operation is actively being rewritten. The idea here is that if we
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delE∗(e); delP(x, k) −→ delP(x, k); delE∗(e)

delV∗(v); delP(x, k) −→ delP(x, k); delV∗(v)
delV∗(v); delE(e) −→ delE(e); delV∗(v)

updP∗(x, k, d); delP(y, k′) −→
{
delP(y, k′) if x = y, k = k′

delP(y, k′); updP∗(x, k, d) otherwise
updP∗(x, k, d); delE(e) −→ delE(e); updP∗(x, k, d)
updP∗(x, k, d); delV(v) −→ delV(v); updP∗(x, k, d)

insV∗(v, l); delP(x, k) −→ delP(x, k); insV∗(v, l)
insV∗(v, l); delE(e) −→ delE(e); insV∗(v)

insV∗(v, l); delV(v′) −→
{

ε if v = v′

delV(v′); insV∗(v, l) otherwise
insV∗(v, l); updP(x, k, d) −→ updP(x, k, d); insV∗(v, l)

insE∗(e, v, w, l); delP(x, k) −→ delP(x, k); insE∗(e, v, w, l)

insE∗(e, v, w, l); delE(e′) −→
{

ε if e = e′

delE(e′); insE∗(e, v, w, l) otherwise
insE∗(e, v, w, l); delV(v′) −→ delV(v′); insE∗(e, v, w, l)

insE∗(e, v, w, l); updP(x, k, d) −→ updP(x, k, d); insE∗(e, v, w, l)
insE∗(e, v, w, l); insV(v′, l) −→ insV(v′, l); insE∗(e, v, w, l)

insP∗(x, k, d); delP(y, k′) −→
{

ε if x = y, k = k′

delP(y, k′); insP∗(x, k, d) otherwise
insP∗(x, k, d); delE(e) −→ delE(e); insP∗(x, k, d)
insP∗(x, k, d); delV(v) −→ delV(v); insP∗(x, k, d)

insP∗(x, k, d); updP(y, k′, d′) −→
{
insP∗(x, y, d′) if x = y, k = k′

updP(y, k′, d′); insP∗(x, k, d) otherwise
insP∗(x, k, d); insV(v, l) −→ insV(v′, l); insP∗(x, k, d)

insP∗(x, k, d); insE(e, v, w, l) −→ insE(e, v, w, l); insP∗(x, k, d)
op∗; ops −→ op; ops if no earlier rule applies

Fig. 2. Edit script rewrite rules

have a canonical edit script ops and wish to add a new edit operation, we use
the rewrite rules to canonicalize op∗; ops. The rules are applied in order and at
each step, the first matching rule is applied. Note that there is a catch-all rule
op∗; ops −→ op; ops, which only applies if none of the other rules do. Essentially,
the rewrite rules consider all of the possible pairs of adjacent operations that
can appear in a non-canonical form, with the first element marked. In each case,
they show how to simplify the edit script by either moving the marked opera-
tion closer to the end, or removing the mark. Removal can happen as a result of
either cancellation of the marked operation by another operation (e.g. a delete
undoing an insert), or by removing the mark once it has reached an appropriate
place for it in the canonical form.

Lemma 1. If ops is an edit script mapping G1 to G2, then there is a canonical
edit script ops′ mapping G1 to G2 such that |ops′| ≤ |ops|.
Proof. See Appendix A of the extended version [7]. �
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Theorem 2. The specification GEDh(G1, G2) always has a solution, and the
edit script described by the insertion, deletion and update predicates is a valid,
canonical script mapping G1 to G2. Moreover, the cost of the optimal solution
to GEDh(G1, G2) equals GED(G1, G2).

Proof. For the first part, we observe that the empty relation h = ∅ always solves
GEDh(G1, G2) if we ignore the minimization constraint. Therefore, the cost
of this solution is an upper bound. Moreover, if we apply the edit operations
described by the insert, delete and update relations in the order required by
the canonical form, then each edit operation is valid, all structure present in
G1 and not G2 is removed, all properties whose values differ in G1 and G2 are
updated, and all structure present in G2 and not G1 is inserted. Therefore, the
corresponding edit script maps G1 to G2.

To show that the minimum cost obtained from solving the GEDh(G1, G2)
specification coincides with GED(G1, G2), one direction is easy: for any h
(including the one corresponding to a minimum cost solution) the collection of
edit operations resulting from GEDh(G1, G2) is a valid edit script so its length
d must be greater than or equal to the minimum over all valid scripts. To show
the reverse direction, we use Lemma 1. Given a minimum-length edit script that
is not in canonical form, we can rewrite it to one that is canonical, with equal
cost (since the original script was already minimum-length). �

5 Discussion

We have argued that using ASP offers considerable flexibility. To illustrate this
claim, we consider three modifications to our approach.

Weighted Graph Edit Distance. If the operations have different (integer) weights,
implemented using a suitable modification to the cost predicates in some specifi-
cation wGEDh(G1, G2), then the same argument as above suffices to show that
a minimum-weight canonical script always exists to be found by the ASP speci-
fication. The key point is that weights are defined on individual edit operations,
and the rewrite rules only permute or delete operations, so preserve or decrease
weight.

Relabeling. We have treated labels as hard constraints: it is not possible to
change the label of a node in G1 to a different label in G2, short of deleting
the node and inserting a new one with a different label. On the other hand,
properties are soft constraints in the sense that we may delete or update a
property value without also being obliged to delete and re-create the underlying
node or edge structure. It is natural to consider an in-place relabeling operation
as well. Such behavior can be encoded on top of the already-developed framework
by using a single “blank” label for nodes and edges and introducing an unused
property key called “label” instead; now this can be updated in-place like other
properties. Alternatively, we can accommodate this behavior more directly as
shown in Listing 1.7. The first four lines relax the constraint that node and edge
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labels have to be preserved by h. The next two lines define the relabel_node

and relabel_edge predicates to detect when two matched nodes or edges have
different labels. Finally, the node_cost and edge_cost predicates are extended to
charge a cost of 1 per relabeling.

Listing 1.7. Graph edit distance with relabeling (modifies Listing 1.6)

1 {h(X,Y) : n2(Y,_)} <= 1 :- n1(X,_).

2 {h(X,Y) : n1(X,_)} <= 1 :- n2(Y,_).

3 {h(X,Y) : e2(Y,S2,T2,_), h(S1,S2), h(T1,T2)} <= 1 :- e1(X,S1,T1,_).

4 {h(X,Y) : e1(X,S1,T1,_), h(S1,S2), h(T1,T2)} <= 1 :- e2(Y,S2,T2,_).

5 ...

6 relabel_node(X,L2) :- n1(X,L1),h(X,Y), n2(Y,L2), L1 <> L2.

7 relabel_edge(X,L2) :- e1(X,_,_,L1),h(X,Y),e2(Y,_,_,L2), L1 <> L2.

8 ...

9 node_cost(X,1) :- relabel_node(X,_).

10 edge_cost(X,1) :- relabel_edge(X,_).

Ad Hoc Constraints. The use of ASP opens up many other possibilities for
controlling or constraining the various isomorphism or edit distance problems.
One example which we found useful in previous work [8] was to modify the
definitions of isomorphism or subgraph isomorphism to treat properties as soft
constraints and minimize the number of mismatched properties.

Another potentially interesting class of constraints is to allow “access control”
constraints on the possible edit scripts, for example specifying that certain nodes
or edges in one graph cannot not be modified and so must be matched with
equivalent constructs in the other graph. This is similar to the approximate
constrained subgraph matching problem [22].

6 Evaluation

Graph matching and edit distance are widely studied problems and a thorough
comparison of our approach with state-of-the-art algorithms is beyond the scope
of this paper. However, we do not claim that our approach is faster, only that
it is easy to implement and modify, rendering it suitable for rapid prototyping
situations. Nevertheless, in this section we summarize a preliminary evaluation
that supports a claim that our approach is fast enough to be useful for rapid
prototyping. Our experiments were run on an 2.6 GHz Intel Core i7 MacBook
Pro machine with 8 GB RAM and using Clingo v5.2.0.

First, we consider the various problems on synthetic graphs, such as k-cycles
and k-chains (linear sequences of k edges), with only one possible node and
edge label and no properties. These problems are not representative of typical
real problems, but illustrate some general trends. We considered each of the
problems: (HOM), (ISO) G1

∼= G2, (SUB) Sn � Cn, and (GED) GED(G1, G2).
We first considered comparisons where G1 and G2 are k-cycles or k-chains, for
k ∈ {10, 20, . . . , 100}. We found the running times for each of these problems
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Fig. 3. Synthetic results: (a) chains and cycles (b) randomly generated graphs

to be relatively stable independent of whether the comparison was between two
k-chains, a k-chain with a k-cycle, or two k-cycles, so we have averaged across all
four scenarios. We also considered randomly generated graphs with k nodes and
each edge generated with probability 0.1, with k ∈ {5, 10, . . . , 50}. We attempted
each problem with a running time limit of 30 seconds; the results are shown in
Fig. 3 results. Unsurprisingly, the HOM instances are solved fastest, and GED
slowest.

Second, we consider some real graphs from the Mutagenesis dataset (MUTA),
a standard dataset used for evaluating graph edit distance algorithms [15], for
example in a recent graph edit distance competition (GEDC) [1]. In the contest,
eight algorithms were run on different problems for up to 30 s, and compared
in terms of time, accuracy (for approximate algorithms), and success rate (for
exact algorithms). We modified the GED specification to allow node and edge
relabeling and use the same weight function as in the second (and more chal-
lenging) configuration used in the contest, for which even the best algorithm
(called F2) was not able to deal with graphs of size larger than 30. We con-
sider three datasets MUTA-10, MUTA-20 and MUTA-30 each consisting of ten
chemical structure graphs of size 10, 20 or 30 respectively. We also consider a
dataset MUTA-MIXED which consists of ten graphs of varying sizes. We consid-
ered all unordered pairs of the graphs in each subset and attempted to find the
GED with a timeout of 30 s. Table 2 shows the results compared with the four
exact algorithms reported in [1]. The first two algorithms, F2 and F24threads,
are implementations of a binary linear programming encoding of graph edit dis-
tance [17], the first being the plain single-threaded algorithm, and the second
running with four threads. The other two, DF and PDFS, are sequential and
parallel implementations of a depth-first, branch-and-bound algorithm [2,3].

Table 2 illustrates that our approach is competitive with DF and slightly
worse than PDFS, but does not match the performance of the two F2 algorithms.
These results should be taken with a grain of salt, since we have not replicated
the GEDC results on our (slightly faster) hardware. Memory did not appear to
be a bottleneck for our approach.

We have implemented and used variations of the isomorphism and subgraph
isomorphism specifications for property graphs in a provenance graph analysis
system called ProvMark [8]. In this earlier work, we found that for graphs of



Flexible Graph Matching and GED Using Answer Set Programming 33

Table 2. Success rate (optimal solution found in under 30 s) on Mutagenesis dataset

MUTA-10 MUTA-20 MUTA-30 MUTA-MIXED

F24threads [1,17]† 100% 98% 23% 44%

F2 [1,17]† 100% 94% 15% 41%

PDFS [1,3]† 100% 26% 11% 10%

Our approach 100% 26% 10% 4%

DF [1,2]† 100% 14% 10% 10%
†Experiments from [1] run on a 4-core 2.0 GHz AMD Opteron 8350 with
16 GB RAM.

Table 3. Performance improvement vs. ProvMark [8]

Experiment Size Old time (s) New time (s) Speedup

creat-bg-gen 1006 0.060 0.034 1.9×
creat-fg-gen 1060 0.070 0.037 1.9×
creat-comp 1033 0.053 0.026 2.1×
execve-bg-gen 1006 0.061 0.036 1.7×
execve-fg-gen 1340 0.114 0.051 2.2×
execve-comp 1173 0.083 0.042 1.9×

up to around 100 nodes and edges, and a few hundred properties, these problems
are usually solvable within a few seconds. However, these problems may not be
representative of other scenarios.

The specifications we used to define approximate subgraph isomorphism
problems in ProvMark are similar to those presented here, but we subsequently
experimented with several different approaches with different performance. Here,
we compare the performance of ProvMark on subgraph isomorphism problems
over two representative example graphs considered in our previous experiments:
the graph generalization and comparison problems resulting from benchmark-
ing the creat and execve system calls using the CamFlow provenance record-
ing system [20]. See [8] for further details and the Clingo code of the previous
approaches.

Table 3 shows the running time of the old version and new version of approxi-
mate subgraph isomorphism. The code for both specifications is in Appendix C of
the extended version [7]. The problem sizes (that is, the number of nodes, edges,
and properties of the two graphs) is shown under “Size”. The “Old Time” column
corresponds to the time obtained using the old approach and “New Time” shows
the time obtained using the code in Listing 1.5 modified to allow approximate
property matching. The “Speedup” column shows the ratio between the old and
new time. In most cases, the speedup is around a factor of two. As future work,
we plan to use graph edit distance with the results of the ProvMark system, for
example for clustering or regression testing across runs.
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7 Related Work

The lower bound of the complexity of graph isomorphism is a well-known
open problem [4], but subgraph isomorphism and graph edit distance are NP-
complete [12]. A number of practical algorithms for graph isomorphism have
been studied, however, including NAUTY [18], which has also been integrated
with Prolog [10]. However, most such algorithms consider graphs with vertex
labels but not edge labels or properties, so are not directly applicable to prop-
erty graph isomorphism. Subgraph isomorphism has been studied extensively
over the past years, one survey [19] summarizes the state-of-art algorithms for
solving partial or simplified version of the problem. Subgraph isomorphism is
also studied for graph databases, where the query subgraph is usually small but
the other graph may be very large. Lee et al. [16] evaluated five such algorithms
on query graphs of up to 24 edges and databases of up to tens of thousands
of nodes and edges. Approximate subgraph matching with constraints has also
been studied, particularly in biomedical settings [22], and it would be interesting
to investigate whether our approach is competitive with their CSP-based algo-
rithm. Graph edit distance has also been studied extensively [11], with much
attention on approximate algorithms that can provide results quickly [21].

While several approaches to graph matching and edit distance have been
based on expressing these problems as constraint satisfaction problems, satisfia-
bility, or linear programming problems, to the best of our knowledge there is no
previous work based on answer set programming. Moreover, our approach eas-
ily accommodates richer graph structure such as hard or soft label constraints,
properties, and multiple edges between pairs of nodes, whereas the algorithms
we have seen generally consider ordinary graphs (without properties and with
at most one edge between two nodes).

8 Conclusions

The graph edit distance problem is a widely studied problem that has many
applications. Exact solutions to it, and to related problems such as graph iso-
morphism and subgraph isomorphism, are challenging to compute efficiently due
to their NP-completeness or unresolved complexity (in the case of graph isomor-
phism). There are a number of proposed algorithms in the literature, with one of
the most effective based on a reduction to binary linear programming [17]. In this
paper, we investigated an alternative approach using answer set programming
(ASP), specifically the Clingo solver. This approach may not be competitive
with the best known techniques in terms of performance, but has the poten-
tial advantage that it is straightforward to modify the problem specification to
accommodate different kinds of graphs, cost metrics or other variations, or to
accommodate ad hoc constraints that can also be expressed using ASP. Our
approach has already proved useful for a real application [8], and our experi-
mental evaluation suggests that it is also competitive with two out of four exact
algorithms from a graph edit distance competition.
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Our work may be valuable to others interested in rapid prototyping of graph
matching or edit distance problems using declarative programming. Additional
work could be done to facilitate this, for example using Clingo’s Python wrapper
library. Graph matching and edit distance problems may also be an interesting
class of challenge problems for developers of ASP solvers.
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Abstract. When a composite web service—i.e., a composition of individual web
services—is executed and fails, it is desirable to reuse as much as possible the
results that have been obtained thus far. For example, a travel agent, after receiv-
ing an order to arrange for a trip from LA to NY from a customer, would typically
identify the flights and the hotels, obtain the confirmation from the customer, and
place the reservations using the credit card information provided by the user; if
something is wrong (e.g., at the last step, the credit card information was wrong),
the travel agent would prefer to place the reservations using another means (e.g.,
a different card) instead of starting from the beginning.

This paper introduces an approach for dealing with service failures in the con-
text of workflow execution. The paper defines the notion of a web service compo-
sition (WSC) problem and the notion of a solution workflow for a WSC problem.
The paper describes two approaches to repair a partially executed workflow, with
the goal of effectively reusing parts of the workflow that have been successfully
executed. The usefulness of these approaches are demonstrated in an implementa-
tion using Answer Set Programming (ASP) in the well-known shopping domain.

Keywords: Repair · Reuse · Workflow · Web Services Composition

1 Introduction

The Semantics Web has been long considered as a killer application of the Internet that
will, according to [1], “unleash a revolution of new possibilities” of the Web [1]. One
of the key features of the Semantics Web is that it provides an environment suitable
for intelligent agents to automatically: (i) discover and compose web services to create
personalized services or workflows (i.e.,Web Services Composition (WSC)); (ii) execute
these personalized services whenever their users request; (iii) monitor such executions;
and (iv) deal with failures of the services. These features are often provided by a WSC
framework with two phases: one is responsible for the composition of web services and
the other for the execution and monitoring the composition of web services.

Our interest, in this paper, is on the second phase of a WSC framework, dealing with
failures during the execution of a workflow. This is because web services are inherently
dynamic and cannot be expected to be stable all the time—developers often modify
them, introduce faults, and modify APIs in unexpected manners. There are many differ-
ent situations that can cause failures of web services [2,9]—ranging from physical fail-
ures, e.g., due to network failures, to development failures, e.g., due to incorrect APIs
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and incorrect logic, to interaction faults, e.g., due to incorrect parameter exchanges
and misunderstood behavior. This paper focuses on the question of how to deal with
physical failures.

There is a growing literature that addresses the problem of recovery when the exe-
cution of a web service fails. Several research contributions explore the problem of
services monitoring, often based on checkpointing and oriented towards orchestration
and choreography [13]. Proposed recovery methodologies include execution rollback
to previous checkpoints and the use of redundancy to assist with server failures (e.g.,
[5,14,16]). Alternative approaches have explored the use of replacement of failed ser-
vices in an attempt to repair a workflow (e.g., [4,15]). The idea of replacement has been
expanded in [11], by allowing both rollback steps (with re-execution of failed services)
as well as substitution of sequences of services with new workflows. A variety of stud-
ies have also proposed Several web service architectures that provide monitoring, fault
detection, and exception event handlers have been described (e.g., [2,3,12]). Most of
these approaches rely on static recovery techniques or relatively simple repetitions of
the composition process. In [10], the authors propose a method based on partial-order
planning that makes use of feedbacks from the plan execution to improve new plan
search and to repair failed services. The method is illustrated using a shopping exam-
ple. Unfortunately, the system available at http://sws.mcm.unisg.ch:8080/axis/services/
MegashopService?wsdl is no longer active.

Initial
State
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checkAvailability([lapt
op, desk], shop_A)

shop_A 
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addToCart(laptop, 
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_A)
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ai_book
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Fig. 1. Shopping for some items from different web-sites (Web Shopping Domain)

In this paper, we investigate the problem of repairing a web services workflow
whose execution failed. We develop a general framework for repairing web services
workflows, that aims at reusing as much as possible the results obtained by an incom-
plete execution of the workflow. The framework could potentially be used in any WSC
realization. We illustrate the framework by examples from the shopping domain.

2 Web Shopping Domain

Throughout the paper, we will illustrate our definitions using elements of theWeb shop-
ping domain as described in [10]. It consists of an ontology describing different classes

http://sws.mcm.unisg.ch:8080/axis/services/MegashopService?wsdl
http://sws.mcm.unisg.ch:8080/axis/services/MegashopService?wsdl
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of e-commerce shops (e.g., electronic, furniture, etc.), items sold in these shops
(e.g., laptops, books, desks, etc.), containers (e.g., shop cart), payment methods
(e.g., credit card payment), and their subclasses (e.g., shop type A is a subclass
of shops, cart shop A is a subclass of shop cart, ai book is a subclass of books,
etc.). In addition, each type of shop provides a diversity of services and operations.
They are listed below.

– checkAvailability: checks for the availability of a set of items. This service takes as
input a list of items and returns the list of items and their metadata that are available
in the shop. This service is available at all the shops.

– addToCart: places an item into a shopping cart. This service takes two inputs: a
shopping cart and an item in the shop; the service produces an output which is the
cart containing the added item. This service is provided in shops of type A and B.

– removeFromCart: removes an item from a shopping cart. It is the reverse of addTo-
Cart and is available at the shops of type A and B.

– checkout: purchases the items currently in the shopping cart; the service is available
at shops of type A and B. It requires a valid credit card as an input. The output is that
this cart is paid and the items belong to the client.

– getItemsList: returns the list of items that are in the shop’s catalog. The input of this
service is a shop and the output is the list of items in the shop’s categories. This
service is provided by shops of type A and B.

– buytItem: purchases a single item in shop. This service takes an item in the shop and
a valid credit card as inputs. This service belongs to shops of type A and C.

– getList: works only for shops of type C and retrieves a list of all available items in
the shop.

In shops of type B, every item needs to be placed into a shopping cart before it can
be purchased (by the service checkout). In shops of type C, a selected item can be
purchased directly by the service buyItem. Both purchasing methods (shopping cart or
direct) can be used in shops of type A.

Figure 1 shows an example of a workflow over a WSC problem in the web shopping
domain, aimed at purchasing some items (a laptop, an ai book, a time magazine

and a desk) from different online stores with credit card information that has been
submitted by users. The initial state supplies a credit card (and its information) to
the services checkout or buyItem. The Web Shopping Ontology provides the infor-
mation and status of the shops (shop A, shop B etc.) in the initial state, which are
used in service checkAvailability to verify the availability of the requested item
in shops as well as to retrieve the metadata of the requested items. Let us assume that,
in this example, credit card is valid and has enough balance to use; these shops
are online and open. In the goal state, possess(client,X) denotes that item X is
owned by the client.

3 The Web Service Composition Problem

In order to formalize the notion of repair, we need a precise definition of the WSC prob-
lem and its solutions. The well-known abstract view of a WSC problem as a planning



40 T. H. Nguyen et al.

problem is easy to understand but assumes groundedness (i.e., actions are propositional
terms)—which is not the case in our context, as parameters of a web service are often
specified by types and will be instantiated only when the service is executed. We there-
fore start by defining the notion of a WSC problem.

An abstract resource is specified by its type, typically described as a class in an
ontology. A concrete resource is specified by its type and concrete data, which is an
instance of the resource type. A named abstract/concrete resource is a resource asso-
ciated with a unique identifier. Let us denote with T the set of resource types. We
use the notations (n, t,nil) and (n, t,d), where n is the name of the resource, t ∈ T is a
resource type and d is an instance of t, to describe a named abstract and named concrete
resource, respectively; nil represents an unknown value.

A Web service receives a set of named resources and produces a set of named
resources. For example, the getItemsList service receives a shop object (e.g., shop A

of the type shops) and produces a list of all available items that are in the shop’s cat-
alogs (e.g., list catalog A of the type list). At the specification level, a Web ser-
vice over a set of abstract resource types T is a pair (a,e(a)), where a is the service
name and e(a) is a tuple of pairs of named abstract resources, i.e., each element in
e(a) is of the form (in,out) where in,out denote sets of named resources. Each ele-
ment in e(a) is called a precondition-effect pair for a. For example, e(addToCart) =
(in1,out1) where in1 = {(cart id,shop cart,nil),(it id,item,nil)} and out1 =
{(cart id,shop cart,nil),(it id,item,nil)}.

The execution of a service a will take concrete data conforming to the specification
in in and output concrete data of the type specified by out. For example, in Fig. 1, an
instance of the addToCart service receives a shop cart object of the type cart shop A,
a subclass of the type shop cart, and an object of the type laptop, a subclass of the
type item, as inputs, and produces as output a shopping cart containing the item.

Definition 1. A Web service composition (WSC) problem P is a tuple (T ,A,S0,Sg)
where

– T is a set of abstract resource types;
– A is a set of web services over T ;
– S0 and Sg are two sets of concrete resources.

Let P = (T ,A,S0,Sg) be a web service composition problem. A state s of P is a set
of concrete resources over T . Let x be a set of abstract resources. We say that a set xc
of concrete resources is an instance of x if there exists a bijection b from x to xc such
that b((n, t,nil)) = (n, t,d) for each (n, t,nil) ∈ x. Given a state s and a set of abstract
resources x, we denote:

s|x = {(n, t,d) | (n, t,d) ∈ s,(n, t,nil) ∈ x}.

We say that s contains an instance of x iff s|x is an instance of x. Given a state s and
a service a ∈ A, the execution of a in s results in one of the three situations: (i) There
exists a precondition-effect pair (i,o) of a such that s|i is an instance of i. In this case,
we say that (i,o) is an active precondition-effect of a in s and the execution of a will
produce an instance, denoted by res(a,s), of o; (ii) There exists no precondition-effect
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pair (i,o) of a such that s|i is an instance of i. In this case, the execution of awill produce
/0, which will also be denoted by res(a,s); or (iii) the execution of a fails, which will
be denoted by ⊥. In the following, a service a ∈ A is executable in a state s if the cases
(i) or (ii) occur. The WSC problem related to the example in Fig. 1 can be specified by
Ps = (Ts,As,S0,Sg) where:

– Ts consists of the types (classes) in the ontology of the Web Shopping Domain;
– As consists of the services described in the previous section;
– S0 = {credit card(valid, enough balance), shop A(open, online), ...}
– Sg = {possess(client, laptop), possess(client, desk), possess

(client, ai book), possess(client, time magazine)}.
Definition 2. A workflow over a WSC problem P = (T ,A,S0,Sg) is a tuple G =
(V,E,v0,vg) where (V,E) is an acyclic directed graph with the set of nodes V and
the set of labeled edges E, v0,vg ∈ V are referred to as the initial and goal state of G,
respectively, and

– each v ∈V \{v0,vg} is associated to an action a ∈ A, denoted by act(v);
– each (u,v) ∈ E is labeled with a set of abstract resources, denoted by lE(u,v); and
– {x | (x,v0) ∈ E} = /0 and {x | (vg,x) ∈ E} = /0.

A workflow over a WSC problem in the shopping domain is given Fig. 1. The
two triangles represent the initial and goal state (v0,vg) respectively. Ellipses represent
nodes of the graph, each node is associated to a service. Ingoing and outgoing links
represent preconditions and effects of the service. For example, the top-left node is
associated to checkAvailability, which requires a shop (in this case, shop A from
the initial state) and a set of items (that the client wishes to buy).

Given a workflowG over a problemP , the execution ofG starts from its initial state
by sending concrete resources to its neighbors in accordance to the specification on the
edges. Whenever all concrete resources from the predecessors of a node v are delivered
to v, the service attached to v, act(v), will be executed. If the execution is successful, i.e.,
it produces the proper concrete resources to be sent to the neighbors, then the execution
continues; otherwise the execution of the workflow fails. The process continues until
every service in the workflow is executed. The execution is said to be successful if the
concrete resources specified at the goal state of G are produced. Formally, this process
can be defined via a state function as follows.

Definition 3. Let G = (V,E,v0,vg) be a workflow over P = (T ,A,S0,Sg). The state
function of G, denoted by st, is a function that maps each node of G into a state of P
or nil and is defined as follows.

– st(v0) = S0;
– for each v ∈V \{v0}

(a) if there exists some u ∈V such that (u,v) ∈ E and st(u) = nil then st(v) = nil;
(b) otherwise, let in(v) =

⋃
(u,v)∈E st(u)|lE (u,v),

(b.1) if v= vg then st(v) = in(v);
(b.2) if v �= vg and in(v)∪ res(act(v), in(v)) is not an instance of lE(v,z) for some

(v,z) ∈ E then st(v) = nil;
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(b.3) if v �= vg and Case (b.2) does not occur then st(v) = in(v) ∪
res(act(v), in(v)).

We say that the execution of G succeeds if st(v) �= nil for every v ∈ V. Otherwise, the
execution of G fails. G is a solution ofP if the execution of G succeeds and Sg ⊆ st(vg).
Otherwise, G is not a solution of P .

In (Case b) of Definition 3, in(v) is the set of concrete resources received by node v.
st(v) denotes the set of concrete resources which includes in(v) and the result of the
execution of act(v) in in(v). The situation st(v) = nil indicates that the execution of the
workflow at node v fails. Such situation can occur in different ways: (i) the execution of
one of the predecessor of v failed (Case a); (ii) the execution of act(v) does not result in
proper concrete resources for the continuation of the execution of the workflow (Case
b.2).

Observe that Definition 3 only considers G to be a solution of P if all services
associated to G are executed successfully. This implies that G does not contain any
redundant nodes, producing concrete resources not needed by any of its successors. This
might sound too strong but it is reasonable for two reasons. First, the generation of G—
similar to the generation of a plan—does not usually generate redundant nodes. Second,
the definition could easily be relaxed to accommodate workflows with redundant nodes.

Observe also that Definition 3 assumes that communication between services is per-
fect and all services are executed. During the execution of a workflow, failures can
happen when a service becomes unavailable. This could also be classified as a service
failure. The execution monitoring server is responsible for dealing with this type of
failures, as discussed in the next section.

4 Repair

Let P = (T ,A,S0,Sg) be a WSC problem. Assume that G = (V,E,v0,vg) is a work-
flow overP . Furthermore, assume thatG is a solution ofP under the normal condition
(e.g., communication between services is perfect, no machine failures, etc.), i.e., if the
execution of G is successful then G will be a solution of P . We are interested in situ-
ations where the execution of G is not successful due to the unavailability of a service
attached to some node in G. In such a case, recovery measures are needed in order to
achieve the goal ofP . For example, if the execution of G fails at node v, which is asso-
ciated to the service act(v), then a simple repair could consist of replacing act(v) with
another service a ∈ A that takes the concrete resources at v and produces the concrete
resources needed for the continuation of the execution of G. It is easy to see that this
may not be always possible, due to the fact that no such service may exist. We call the
process of identifying a new workflow G′ that is a solution of P , under the condition
that the execution of G fails, as the repair process.

4.1 Formalization

Let P = (T ,A,S0,Sg) be a WSC problem and G = (V,E,v0,vg) be a workflow over
P . Let us assume that st is the state function of G.
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Definition 4. Let G be a workflow over P , we define:

Ast
f ailed = {act(v) | st(v) = nil,st(u) �= nil for all u such that (u,v) ∈ E}.

We are interested in identifying another workflow G′ which achieves the same goal
and such thatG′ reuses as much as possible the services in G that have been successfully
executed. It is easy to see that G′ must not consider the services that are not available.
Intuitively, a service act(v) associated to a node v fails with respect to st if it does not
allow the execution of the workflow to continue.

By Gst we denote the subgraph (Vst ,Est) of (V,E) such that Vst = {v | v ∈V,st(v) �=
nil} and Est = {(v,u) | (v,u) ∈ E, v,u ∈ Vst}. For each (u,v) ∈ Est , lEst (u,v) = lE(u,v).
Thus, (Vst ,Est) is the graph containing all nodes whose services have been successfully
executed. We explore two approaches for the repair process.

Planning from Failed State. The first alternative is to consider a new WSC problem
whose initial state corresponds to the set of available concrete resources in Gst .

Let Vst
0 =

⋃
v∈Vst st(v). Intuitively, V0(st) denotes the set of concrete resources that

are available. LetP ′ = (T ,A\Ast
f ailed ,V

st
0 ,Sg). We can achieve the goal ofP by iden-

tifying a new workflow G′ = (V ′,E ′,v′
0,v

′
g) over P

′. To evaluate how much G′ reuses
the executed services in G, we define the notion of a reusable resource as follows.
Given a node v in a graph G, let us denote with preG(v) the set of all predecessors of v
in G—i.e., u ∈ preG(v) iff there exists a non-empty path in G from u to v.

Definition 5. Let P ′ = (T ,A\Ast
f ailed ,V

st
0 ,Sg) and G′ = (V ′,E ′,v′

0,v
′
g) be a workflow

overP ′ that is a solution ofP ′. A concrete resource (n, t,d) ∈Vst
0 \ st(v0) is said to be

reused by G′ if:

– for every u ∈ preG′(v), (n, t,d) ∈ st(u) and (n, t,d) �∈ res(act(u), in(u)); and
– (n, t,d) ∈ in(v) and, if (i,o) is the active precondition-effect of act(v) in in(v), then

(n, t,nil) ∈ i.

Intuitively, Definition 5 says that the concrete resource is reused if it is generated by
Gst and is needed in G′. The above definition allows us to define the score of reusable
resources as follows.

Definition 6. Let G′ be a solution of P ′. The amount of reusable resources of G′ is
denoted by reused(G′) = |{(n, t,d) | (n, t,d) ∈Vst

0 \ st(v0),(n, t,d) is reused by G′}|.
We say that G′ reuses more than G′′, denoted by G′′ ≺r G′, if reused(G′) ≥

reused(G′′). It is easy to see that ≺r creates a transitive, reflexive, and antisymmet-
ric relation among solutions of P ′. The identification of the workflow that reuses as
much as possible of G is then equivalent to determining the solutions of P ′ which are
maximal elements of ≺r. The Implementation section will discuss how to compute such
solutions.
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Replanning with Successful Services. Replanning from the failed state might be use-
ful. However, this will mean that we have to ignore the workflowG completely. In many
situations, it is better to keep G as the original workflow might have components that
have been included as desirable by the user. This idea also appears in the discussion
of designing a workflow when users’ preferences are taken into consideration [7]. For
this reason, we develop an alternative approach to reuse the workflow G. This approach
aims at keeping the services that have been executed successfully in the new workflow.

Let G′ = (V ′,E ′,v′
0,v

′
g) be another solution of P . We define a relation 
→ between

G and G′, as the minimal relation satisfying the following properties:

– v0 
→ v′
0

– if (x,y) ∈ Est , (x′,y′) ∈ E ′, x 
→ x′ and act(y) = act(y′) then y 
→ y′

We next define the function π :V ′ −→ {0,1} as follows.

π(y′) =

{
1 if ∃y ∈Vst ,y 
→ y′

0 otherwise
(1)

Note that the second case in the definition of π occurs if either y′=v′
0 or if there is

no node in Gst which is related to y′. Finally, we define a function: score(G,G′) =
sum{x′∈V ′}π(x′).

Definition 7. A workflow G′ is said to re-use executed services and their relations as
much as possible with current workflow G if score(G,G′) is maximal.

In Fig. 2, the blue arrow lines illustrate the relations 
→ between nodes in G and
possible associated nodes in G′ (e.g., init node in G 
→ init node in G′, service node
a in G 
→ service a in G′, etc.); and Gst (grey area) is the part of G that was executed
successfully.

G

Init

a b c d

e f
b

g

h
Goal

d

Gst

Init

a b c d

e f Goal

Fig. 2. Relation between G and G′

4.2 Implementation

In order to experiment with the notions of recovery discussed in the previous section,
we obtained the source code from the authors of the code in the Phylotastic project as
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described in [8]. We implement the two notions of recovery on top of their implementa-
tion. The system described in the Phylotastic project has been developed using Answer
Set Programming (ASP) and includes the execution monitoring module that captures
the state of execution of a workflow. The implementation described in this paper will
focus on the repairing phase. For reference, we denote with Π(P) the planning module
in the Phylotastic project and include the basic rules of the system below.

From Ontology to ASP Encoding: The ontology encoding the types, resources, ser-
vices, etc. of the Web Shopping Domain is translated into an ASP program in Π(P).
This task is accomplished using a translation program. For example, a service in the
class pur ol op takes item and credit card as inputs and produces outputs item—
has been purchased (possess(client,item)) and a receipt—will be sent to client
by email (have(receipt,sentByEmail)). Operation buyItem is an instance of this
class which purchases the available item if the provided credit card is valid and
enough balance. The ASP encoding of this operation and its resources is the follow-
ing:

Listing 1.1. ASP encoding for buyItem operation

1 class(purchase_op). class(pur_onl_op).
2 subclass(pur_onl_op,purchase_op).
3 operation(buyItem). type(buyItem,pur_onl_op).
4 class(credit_card). class(receipt).
5 class(payment_method). class(item).
6 subclass(credit_card,payment_method).
7 has input(pur_onl_op,item_1,item).
8 has input(pur_onl_op,card_1,credit_card).
9 has output(pur_onl_op,item_1,item).
10 has output(pur_onl_op,receipt_1,receipt).
11 input spec(buyItem,item,item_1,have(item,available)).
12 input spec(buyItem,credit_card,card_1,
13 have(credit_card,valid)).
14 input spec(buyItem,credit_card,card_1,
15 have(credit_card,enough_balance)).
16 output spec(buyItem,item,item_1,possess(client,item)).
17 output spec(buyItem,receipt,receipt_1,
18 have(receipt,sentByEmail)).

The predicate names are self explanatory.

Web Services Planning Engine: The planning engine of Π(P) is similar to any plan-
ning engine implemented using ASP. It consists of different types of rules, divided into
groups as follows.

– Initial state: The rule translates information given in S0 to indicate that the data is
available at time step 0. For example, credit card(valid,enough balance) is
translated to
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Listing 1.2. Initial State

1 init(credit_card,have(credit_card,valid)).
2 init(credit_card,have(credit_card,enough_balance)).
3 exists(X,F,0) :- init(X,F).

– Planning: In this listing, T denotes a step in the workflow; DI /DO the input and out-
put type of a service, respectively; and occ(A,T ) says that A occurs at step T . Lines
1–2 enforce the precondition of a service. Lines 3–6 define g m which indicates that
an input I (type DI) of A is provided by an output O (type DO) at time T1 ≤ T . Line
7 defines match/4, which says that the input I of A is available at step T . Lines 8–
10 generate action occurrences and make sure only actions whose preconditions are
satisfied can be executed. Lines 11–15 define map/8 which maps between outputs
produced at one step to inputs at later steps.

Listing 1.3. Planning Engine

1 {executable(A,T)} :- operation(A).
2 :- executable(A,T), input spec(A,I,N,D),not match(A,I,D,T).
3 p_m(A,I,DI,T,O,DO,T1):- operation(A),T1≤T,
4 input spec(A,I,NI,DI), exists(O,DO,T1),
5 subclass(O,I), subclass(DO,DI).
6 1{g_m(A,I,DI,T,O,DO,T1):p_m(A,I,DI,T,O,DO,T1)}1 :- step(T1).
7 match(A,I,DI,T) :- g_m(A,I,DI,T,_,_,_).
8 1{occ(A,T) : operation(A)}1.
9 :- occ(A,T), not executable(A,T).
10 exists(O,DO,T+1) :- occ(A,T), output spec(A,O,NO,DO).
11 map(A,I,DI,T,B,O,DO,T1):- occ(A,T),T>=T1,
12 occ(B,T1-1),g_m(A,I,DI,T,O,DO,T1),
13 input spec(A,I,NI,DI), output spec(B,O,NO,DO).
14 map(A,I,DI,T,initG,O,DO,0):- occ(A,T),
15 g_m(A,I,DI,T,O,DO,0), input spec(A,I,NI,DI).

The program Π(P) will also contain a generic rule of the form “:- not

goal(n)” where goal(n) indicates that the goal is satisfied at step n. For a constant
n, Π(P,n) denotes the program Π(P) with steps taken values in {1, . . . ,n} with the
goal checking rule at n. Answer sets of Π(P,n) represent workflows solving P . The
current execution and monitoring system of the Phylotastic project is responsible for
the execution of workflows generated by Π(P,n). It stops whenever a failure occurs.
Π(P,n) is enhanced as follows.

Repairing Method 1: Planning from Failed State. We encode the available resources
at the failed state by ASP atoms of the form res gen/4. We alter the execution and
monitoring system to record this information. To plan from the failed state, we only
need to add the available resources to the initial state, remove the failed services by
encoding them as f ailed(op, ) to prevent Π to consider these services in the planning
phase. Let F(P) denote the set of facts of the form res gen/4 or f ailed/2 that is
supplied by the execution monitoring system when a failure occurs.



On Repairing Web Services Workflows 47

To compute the amount of reused resources, we add the rules1 in Listing 1.4 to
Π(P). In Listing 1.4, the first rule (Lines 1–2) records the successful execution of
operation X at step T and defines res prod, the resource R named N has been produced
by an operation X at step T . The lines 3–5 define the predicate res reuse, which says
that the resource R named N of the type DR and data DataR is reused. Line 6 counts
the number of reused resources. Line 7 enables the identification of answer sets with
maximal number of reused resources and Line 8 prevents reuse of failed services.

Listing 1.4. Planning From Failed State (Πpff)

1 res_prod(R,N,DR):- res_gen(R,N,DR,DataR),
2 output spec(X,R,N,DR), occ(X,T).
3 res_reuse(R,N,DR,DataR) :- occ(X,T),
4 res_gen(R,N,DR,DataR), not res_prod(R,N,DR),
5 map(X,I,DI,T,initG,R,DR,0).
6 reused(V) :- V = #count{R,N,DR,DataR : res_reuse(R,N,DR,DataR

)}.
7 #maximize{V : reused(V)}.
8 :- failed(F,T), is_used_op(F).

Let Π f
1 (n) = Π(P,n)∪Πpff ∪F(P). We can show the following:

Proposition 1. If A is an answer set of Π f
1 (n) then A encodes a workflow solution of

P that does not include any failed service and reuses the maximal number of resources
specified in F(P).

Proof. The fact that A satisfies Π(P,n) indicates that A encodes a workflow solution
of P . The rules on Lines 6–8 (Listing 1.4) ensure the other properties of the solution.

�

Repairing Method 2: Replanning with Successful Services. Let Gst be the workflow
whose execution fails. We assume that Gst and the services that have been executed
successfully are encoded by a program F(Gst), which consists of facts of the form
old occ exe/2 or old map exe(S, I,DI ,T1,S0,O,DO,T0). We add to Π(P,n) a new set
of rules Πrss (Listing 1.5) and F(Gst) and generate new solution G′ for P such that
score(Gst ,G′) is maximal. In addition, F(Gst) also records failed services.

The program Πrss (Listing 1.5) implements the function 
→. The first rule (Line
1) says that we will map the initial state of Gst to the initial state of G′. Other rules
defined ϕ (Lines 2–6, 7–11) extend the 
→ relation whenever possible. In these rules,
s equal(Y,Y’) represents the fact that two servicesY andY ′ are equivalent in terms of
functionality. The rules defining π (Lines 12–14) compute the value of π as defined in
Eq. 1. Πrss computes the number of reused services, instructs the solver to find answer
sets containing the maximal number of reused services (Lines 15–16), and makes sure
that the generated workflow G′ does not include failed services (Line 17–18).

1 The rules have been simplified somewhat for readability.
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Fig. 3. Recovery workflow (Web Shopping Domain): Replanning from Failed State

Listing 1.5. Replanning with Successful Services (Πrss)

1 ϕ(initG,0,initG’,0).
2 ϕ(Y,T1,Y’,T3) :- ϕ(initG,0,initG’,0),
3 old_occ_exe(Y,T1), occ(Y’,T3),
4 old_map_exe(Y,I,DFI,T1,initG,O,DFO,0),
5 map(Y’,I,DFI,T3,initG’,O,DFO,0),
6 s_equal(Y,Y’).
7 ϕ(Y,T1,Y’,T3) :- ϕ(X,T2,X’,T4),
8 old_occ_exe(Y,T1), occ(Y’,T3),
9 old_map_exe(Y,I,DFI,T1,X,O,DFO,T2+1),
10 map(Y’,I,DFI,T3,X’,O,DFO,T4+1),
11 T1>=T2+1,T3>=T4+1,s_equal(Y,Y’).
12 π(initG’,0).
13 π(Y’,0) :- occ(Y’,T3), not ϕ(_,_,Y’,T3).
14 π(Y’,1) :- occ(Y’,T3), ϕ(_,_,Y’,T3).
15 score(Vϕ) :- Vϕ = #sum{VY ′,Y’ : π(Y’, VY ′)}.
16 #maximize{Vϕ : score(Vϕ)}.
17 :- failed(F,TF), occ(F,T), not succ(F,T).
18 succ(F,T) :- failed(F,TF), occ(Y,T), Y = F, ϕ(F,_,Y,T).

Proposition 2. If A is an answer set of Π f
2 (n) = Π(P,n) ∪ Πrss ∪ F(Gst) then A

encodes a workflow solution of P that does not include any failed service and reuses
the maximal number of services specified in F(Gst).

Proof. Similar to Proposition 1. �
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Fig. 4. Recovery workflow (Web Shopping): Replanning with Successful Services (Color figure
online)

4.3 Experimental Evaluation

Web Shopping Domain. We experimented the approaches with the problem described
in the second section2. A failure of service (checkout(cart shop A)) is injected dur-
ing the execution of the workflow generated in Fig. 1. Figure 3 shows a new workflow
generated by Π f

1 (3) that uses the planning from the failed state method (0.5 s). Figure 4

shows a new workflow generated by Π f
2 (7) that uses the replanning with successful ser-

vices method (2 s). Observe that the repaired workflow on the left, generated by Π f
1 (3),

utilizes the available resources and is simpler comparing to the original one. On the
other hand, the workflow on the right, generated by Π f

2 (7), contains new services that
replace the failed service and is able to reuse the majority of the executed services.

In Fig. 3, the new initial state includes all concrete resources which have been
produced successfully before failure point when executing the original workflow. For
example, ai book(on cart(shop B)) is the concrete resource produced by ser-
vice addToCard when executing the original workflow. Program Π f

1 (3) generated a
new workflow from new initial state to original goal state and reused concrete resource
ai book(on cart(shop B)). In Fig. 4, the gray background eclipse nodes and
their links simulate whole or a part of executed structure Gst while repairing services
are represented by blue text nodes.

Phylotastic Domain. We did further experimental evaluation to evaluate the two repair-
ing methods with problems in the Phylotastic domain as well. The detail information
about Phylotastic domain is described in [8]. Basically, the Phylotastic Ontology is

2 We used a computer running Ubuntu 16.4 LTS, 8GB DDR3, 2.5GHz Intel-Core i5, and ASP
solver clingo.
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Fig. 5. Generating a chronogram and its metadata from free plain text

a services repository that deals with the manipulation of services (e.g., names, species,
phyloreferences) and representations of evolutionary knowledge (e.g., taxonomies, phy-
logenies). There are some primary classes of services such as names operation,
tree operation, taxon operation, etc. The results of repairing in Phylotastic
domain are discussed below.

– Use case 1: From Free Plain Text to a Chronogram and its Metadata. We
experimented with a WSC problem in the Phylotastic domain, aimed at creating
a chronogram, a scaled species phylogeny with branch lengths, in newick for-
mat, along with its metadata, from a plain text document. The initial state sup-
plies a FreeText (more precisely, an object of the type FreeText) to the ser-
vice FindSciNames Text GRND V1 (type of names extraction text) and a
string (phylo method) to the service Get Chronogram ScaledTree DL V2 (type
of tree transformation), which also needs a speciesTree in newick format
to produce the chronogram, etc. A workflow solving for this problem is given in
Fig. 5. In this experiment, we consider two scenarios: (S1) The service convert

tree to newick fails; and (S2) the service Get Chronogram ScaledTree DL

V2 fails. The workflows generated using the two methods are depicted in Fig. 6. The
two workflows on the left are generated from the failed state. Available resources are
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listed in the gray box. The reused resources are highlighted in Blue. In both scenar-
ios, the new workflow differs significant from the original one (e.g., new services are
used). The two workflows on the right are generated by replanning using successful
services. The new services that need to be inserted are highlighted in Blue. As it can
be seen, almost a half of all executed services are reused in (S1) and only a few are
added in (S2).

– Use case 2: Compare Species Trees from Different Sources. In this use case, an
user provides inputs data including a document (PDF format), and a Web address
(http URL format). Each document contains information about a phylogeny tree.
The requirement is to examine whether or not the two phylogeny trees generated
from these inputs sources (document and Web-page content) have the same phy-
logeny structure (Fig. 7). There are two concrete services that are used more than
one time in the workflow: Resolve Names OT V2 and convert tree to newick.
They are drawn with a number next to it (1 and 2) in Figs. 7 and 8 in order to iden-
tify which service will be executed before another in the execution ordering3. For
example, Resolve Names OT V2(1) and Resolve Names OT V2(2) describe the
same service and Resolve Names OT V2(1) is executed before Resolve Names

OT V2(2). Again, we inject two different service failures in two scenarios: (S1) The
failure is at the very end of the process (CompareTrees Sym Dendropy V1); and
(S2) The failure is at convert tree to newick(2) (meaning that the first execu-
tion of the service convert tree to newick succeed while the second execution
fails). Figure 8 depicts the four recovery workflows for use case 2. The left two
are workflows generated from the failed state while the right ones are generated by
replanning with using successful services.

Comparison Between Two Methods. We close this section with a brief discussion on
the advantages and disadvantages of the two methods for repairing failed workflows.
Clearly, both aim at reusing as much as possible the results obtained from the incom-
plete execution of the workflow but with a slight different focus. Method 2 (Replanning
with Successful Services) attempts to take advantage of the information in the original
workflow and Method 1 (Planning from Failed State) ignores this information. This
leads to the following main differences:

3 The ordering is done so we can experiment with the failure of the services. It is also possible
for the order to be reverse.
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Fig. 8. Repaired workflows: Phylotastic compare species trees from different sources

– Planning from Failed State. In this method, the replanning process often starts from
a state that is richer in resources than the initial state of the original problem. This is
due to the fact that the execution of a service does not remove the outputs of services
that have been successfully executed earlier. Given that the original workflow is
minimal under certain metric (e.g., shortest plan) then the new initial state is closer
to the goal than the original one. Therefore, Method 1 could be faster than Method
2—it can be observed in the experiment.

– Replanning with Successful Services. The replanning in this method is more com-
plex than Method 1. It involves the generation of a new workflow (G′) and then a
subgraph isomorphism between the new workflow and the partial executed work-
flow (G′ and Gst). In our implementation, this is done in a single ASP program. This
is the added overhead and is the main reason for Method 2 to take longer to find a
new plan as in the experiments. On the other hand, as suggested in [7], maintaining
the skeleton of the original workflow is a desirable feature of the replanning process.

5 Conclusion, Discussion, and Future Work

We formally defined the notion of a WSC problem that enables the introduction of
two methods for repairing a workflow whose execution fails when a services fails. The
most interesting feature of the two new methods lies in the precise definition of the
rather relative statement of reusing as much as possible what has been executed. In one
method, the focus is on the available resources that have been produced by the executed
services and a new workflow is generated from the failed state. In another method, the
focus is on reusing the original workflow in generating the new one. We experimentally
evaluate the proposed methods in the shopping domain by integrating them into an
existing WSC framework. (Available online at: http://workflow.phylotastic.org)

We note that the WSC problem defined in this paper inherits several characteristics
of a WSC problem defined in the literature (e.g., as in [6]), which views the WSC
problem as a planning problem and its solution is generally a graph (a workflow) and
not a sequential plan. On the other hand, due to fact that web services need resources
to start their execution but do not usually remove them, the replanning problem with

http://workflow.phylotastic.org
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respect to a WSC problem is different from replanning in general. Our first method
of replanning relies on this property of WSC problems. Last but not least, we are not
aware of any comparableWSC system that we could use in our experiments. The several
WSC systems reviewed in the introduction are no longer functional or inaccessible. Our
intermediate goal is to identify potential applications that could benefit by the proposed
methods and allows us to experiment and validate the scalability of the proposed system.
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Abstract. AQuA (ASP-based Question Answering) is an Answer Set
Programming (ASP) based visual question answering framework that
truly “understands” an input picture and answers natural language ques-
tions about that picture. The knowledge contained in the picture is
extracted using YOLO, a neural network-based object detection tech-
nique, and represented as an answer set program. Natural language pro-
cessing is performed on the question to transform it into an ASP query.
Semantic relations are extracted in the process for deeper understand-
ing and to answer more complex questions. The resulting knowledge-
base—with additional commonsense knowledge imported—can be used
to perform reasoning using an ASP system, allowing it to answer ques-
tions about the picture, just like a human. This framework achieves
93.7% accuracy on CLEVR dataset, which exceeds human baseline
performance. What is significant is that AQuA translates a question
into an ASP query without requiring any training. Our framework for
Visual Question Answering is quite general and closely simulates the
way humans operate. In contrast to existing purely machine learning-
based methods, our framework provides an explanation for the answer it
computes, while maintaining high accuracy.

Keywords: Answer set programming · Visual question answering ·
Commonsense reasoning · Natural language understanding

1 Introduction

Answering questions about a given picture, or Visual Question Answering
(VQA), is a long-standing goal of Artificial Intelligence research. To answer ques-
tions about a picture, humans generally first recognize the objects in the picture,
then they reason with the questions asked using their commonsense knowledge.
To be effective, we believe a VQA system should work in a similar way. Thus,
to perceive a picture, ideally, a system should have intuitive abilities like object
and attribute recognition and understanding of spatial-relationships. To answer
questions, it must use reasoning. Natural language questions are complex and
ambiguous by nature, and also require commonsense knowledge for their inter-
pretation. Most importantly, reasoning skills such as counting, inference, com-
parison, etc., are needed to answer these questions.
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To build VQA systems, researchers have created several datasets such as
[3,12,13,22,25,33]. However, according to Johnson et al. [9] approaches based
on neural network-based models tend to “cheat” while answering the questions
by exploiting the correlations between word occurrences instead of truly under-
standing the content. CLEVR [9] is a recent VQA dataset of 100k rendered
images along with complex and challenging questions over them. The images
depict simple 3D shapes which makes recognition task easy, however, to answer
the questions, a system should be able to perform logical reasoning over object
attributes and their relationships.

The experiments conducted by Johnson et. al. in [9] suggest that approaches
based on end-to-end training of neural network models perform poorly on
CLEVR, no matter how sophisticated the architecture is. The state-of-the-art
neural-based VQA systems incorporate convolutional layers, recurrent/LSTM
models, and attention networks. Also, some models translate questions into inter-
mediate functional units that are either programmed or are trainable neural
modules.

Surveys of state-of-the-art neural-based VQA systems can be found elsewhere
[27,30]. The main point to note is that none of these systems follow the method-
ology that humans use: recognize images via pattern recognition while answer
questions through reasoning. In this paper we propose the AQuA framework
that attempts to emulate a human for VQA. We strongly believe that AQuA’s
method is the most effective approach for VQA and does not suffer from the flaws
(discussed later) found in all purely neural network-based approaches. What is
more, AQuA can provide full justification for the answers it computes, something
that is not possible for neural network-based methods because of their “black
box” nature.

AQuA replicates a human’s VQA behavior by incorporating commonsense
knowledge and using ASP for reasoning. VQA in the AQuA framework employs
the following sources of knowledge: (i) knowledge about objects extracted using
the YOLO algorithm [21], (ii) semantic relations extracted from the question,
(iii) query generated from the question, and (iv) commonsense knowledge. AQuA
runs on the query-driven, scalable s(ASP) [15] answer set programming system
that can provide a proof tree as a justification for the query being processed.

AQuA processes and reasons over raw textual questions and does not need
any annotation or generation of function units such as what is employed by
several approaches proposed for the CLEVR dataset [10,29,32]. Also, instead of
predicting an answer, AQuA augments the parsed question with commonsense
knowledge to truly understand it and to compute the correct answer (e.g., it
understands that block means cube, or shiny object means metal object).

This paper makes the following novel contributions: (i) presents a fully
explainable framework to handle VQA that outperforms existing neural-based
systems in terms of accuracy and explainability, (ii) demonstrates that a general
(i.e., not domain specific), scalable VQA system can be built without training,
(iii) understands textual knowledge with the help of commonsense knowledge,
and (iv) provides a method that guarantees a correct answer as long as the
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objects in the picture are recognized correctly and syntactic & semantic process-
ing of the question yields a correct query.

2 Background

Answer Set Programming (ASP): An answer set program is a collection of
rules of the form -

l0 ← l1, ... , lm, not lm+1, ... , not ln.

Classical logic denotes each li is a literal [4]. In an ASP rule, the left hand
side is called the head and the right-hand side is the body. Constraints are ASP
rules without head, whereas facts are without body. The variables start with an
uppercase letter, while the predicates and the constants begin with a lowercase.
We will follow this convention throughout the paper. The semantics of ASP is
based on the stable model semantics of logic programming [5]. ASP supports
negation as failure [4], allowing it to elegantly model common sense reasoning,
default rules with exceptions, etc., and serves as the secret sauce for AQuA’s
sophistication.

s(ASP) System: s(ASP) [15] is a query-driven, goal-directed implementation of
ASP. This is indispensable for automating commonsense reasoning, as traditional
grounding and SAT-solver based implementations of ASP are not scalable. There
are three major advantages of using s(ASP): 1. s(ASP) does not ground the
program, which makes AQuA framework fast and scalable, 2. it only explores
the parts of the knowledge base that are needed to answer a query, and 3. it
provides justification tree for an answer.

YOLO Object Detection Model: Redmon et. al. [20,21] proposed a con-
volutional neural network architecture to detect multiple objects from different
categories in a given image and to simultaneously draw bounding boxes around
them. The novelty of this method lies in the fact that it combines the classifica-
tion and regression tasks together by only using the extracted features from deep
convolutional layers in a single step which makes real-time predictions possible.

The AQuA framework utilizes YOLO to extract characteristics of interest
in the form of logical predicates from images. These predicates are then used
by ASP engine to perform all sorts of reasoning on different relations between
objects. In CLEVR domain these characteristics are shape, size, material, color,
and spatial relationships between objects such as front, left, right, etc. Figure 3
shows an example of the predicates found by YOLO that are used by the s(ASP)
engine to answer questions.

Stanford CoreNLP Tools: Stanford CoreNLP [14] is a set of tools for natural
language processing. AQuA only uses Parts-of-Speech (POS) tagger and Depen-
dency Parser from this set. Based on the context, POS tagger generates the
necessary parts of speech such as noun, verb, adjective, etc., for each question.
It identifies the question type (e.g., what, where, how) and disambiguated words
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(e.g., block as a verb vs. block as a noun). On the other hand, dependency graph
provides the grammatical relations between words in the sentence. Dependency
relations follow enhanced universal dependency annotation [24]. Figure 1 shows
an example of POS tagging and dependency graph of a question.

Fig. 1. Example of POS tagging and dependency graph

3 Technical Approach

In this section, we propose AQuA, a framework to perform visual question
answering following a process used by us humans. AQuA represents knowledge
using ASP paradigm and it is made up of five modules that perform the following
tasks: (i) object detection and feature extraction using the YOLO algorithm [21],
(ii) preprocessing of the natural language question, (iii) semantic relation extrac-
tion from the question, (iv) Query generation based on semantic analysis, and
(v) commonsense knowledge representation. AQuA runs on the query-driven,
scalable s(ASP) [15] answer set programming system that can provide a proof
tree as a justification for a query being processed.

Figure 2 shows AQuA’s architecture. The five modules are labeled, respec-
tively, YOLO, Preprocessor, Semantic Relation Extractor (SRE), Query Gener-
ator, and Commonsense Knowledge.

3.1 Preprocessor

This module extracts information from the question by using Stanford CoreNLP
parts-of-speech (POS) tagger and dependency graph generator. The lemma and
the POS are fetched for every word along with the dependency graph of the
sentence. Using this information, AQuA translates a question to a sequence of
predicates that would encode the natural language question as an ASP query.
Also, this information is used to infer the question type: how many, what number,
is there, etc., using which the answer types (such as boolean, numeric, value, etc.)
are determined. The output of the Preprocessing module will be consumed by
the Query Generator and the Semantic Relation Extraction (SRE) modules.

AQuA transforms natural language questions to a logical representation
before feeding it to the ASP engine. This logical representation module is inspired
by Neo-Davidsonian formalism [2], where every event is recognized with a unique
identifier. Similarly, AQuA maintains an identifier for each word (a simple posi-
tion index in the question). It identifies each object, even if there are two objects
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Fig. 2. System architecture

with the same name (e.g., “How many matte blocks are behind the red block?”,
here question refers to two different blocks: the queried object and the referenced
object).

3.2 SRE: Semantic Relations Extractor

Semantic relation labeling is the process of assigning relationship labels to two
different phrases in a sentence based on the context. To extract semantic rela-
tions from the passage, we have created default logic rules with exceptions [26].
These rules utilize the POS and the dependency graph of the sentence from
the Preprocessing step. To understand the CLEVR dataset questions, AQuA
requires two types of semantic relations (i.e., quantification and property) to be
extracted (if they exists) from the questions.

Quantification: In the AQuA framework, all the existential questions are con-
sidered as a special type of numeric comparison questions. Considering all the
filters given in the question for the queried object, the ASP engine counts the
number of queried object from the picture and compares the object count with
the number given in the question. The compared number from the question
is captured using quantification semantic relation in the form of quantifica-
tion(number, object). For example, quantification(1, cube 4) semantic relation
(the suffix 4 is the identifier of the word cube) is extracted from the question
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“Are there any cubes?”. Quantification relation also helps in covering existential
questions beyond CLEVR dataset such as “Are there greater than five objects?”

Property: In the CLEVR dataset questions, objects (POS: noun) are accom-
panied with none/one/many attribute values (POS: adjective). ASP engine uses
these values as filters to search the object(s) in a given picture. Therefore, to
capture this object-value pairs, AQuA extracts the property relationship in the
form of property(value, object) using the amod relations expressed in the depen-
dency graph. For example, AQuA automatically adds property(big 4, ball 6) and
property(red 5, ball 6) semantic relation to the knowledge base for the question
“Is there a big red ball?”

3.3 Query Generator

Based on the knowledge from a question, AQuA generates a list of ASP clauses
with the query, which runs on the s(ASP) engine to find the answer. In general,
questions with one-word answer are categorized into: (i) yes/no questions, and
(ii) attribute/value questions. In particular, CLEVR question bank has yes/no
questions in the form of existential questions (Is there a red ball? ) and those
that compare values (Is the ball same color as the cube? ), and attribute/value
questions in the form of counting objects (How many red balls are there? ) and
querying object attributes (What is the color of the shiny cylinder? ). To handle
each type of question, AQuA generates a set of ASP clauses. For example, the
following set of clauses are generated to tackle the yes/no question: “Is there a
big ball?”

(1) query(Q, A) :- question(Q), answer(Q, A).
(2) answer(‘is there a big ball ?’, yes) :- find ans (‘is there a big ball ?’).
(3) answer(‘is there a big ball ?’, no) :- not find ans(‘is there a big ball ?’).
(4) find ans(Q) :- question(Q), find all filters(ball, 5, L),

list object(L, Ids), list length(Ids, C),
quantification(N, ball 5), gte (C, N) .

(5) question(‘is there a big ball ?’).

In the code above, clause (1) captures the answer of the question (Q) in the
variable A. Clause (2) says that if find ans predicate succeeds, return yes to the
answer variable A from clause (1). Whereas, if find ans fails, clause (3) produces
no as an answer to the clause (1)’s answer variable A. If all the sub-goals from
the body of the clause (4) succeed then find ans becomes true, false otherwise.
Lastly, fact (5) represents the natural language question.

Similar to the yes/no question, the following set of clauses are generated for
the attribute/value question: “What color is the cube ?”
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(1) query(Q, A) :- question(Q), answer(Q, A).
(2) answer(‘what color is the cube ?’, A) :-

find ans(‘what color is the cube ?’, A).
(3) find ans(Q, A) :- question(Q), find all filters(cube, 5, L),

list object(L, Ids), get att val(Ids, color, A) .
(4) question(‘what color is the cube ?’).

Here, clauses (1) and (4) are identical to clauses (1) and (5) for the yes/no
question discussed above. Clause (2) stores the answer in variable A and passes
it to clause (1). Clause (3) captures the answer in the head variable A that is
defined in the body.

3.4 Commonsense Knowledge

Similar to a human, AQuA requires commonsense knowledge to correctly com-
pute answers to questions. For the CLEVR dataset questions, AQuA needs to
have commonsense knowledge about properties (e.g., color, size, material), direc-
tions (e.g., left, front), and shapes (e.g., cube, sphere). AQuA will not be able
to understand question phrases such as ‘... red metal cube ...’, unless it knows
red is a color, metal is a material, and cube is a shape. In some cases, AQuA
requires deeper knowledge to understand the questions. For example, phrase like
‘... shiny object ...’ requires two step inferences: (i) shiny refers to metal, and,
(ii) metal is a material. Commonsense knowledge can be categorized in two dif-
ferent parts based on the type: (i) commonsense facts, which are grounded and
always true. (ii) commonsense rules, which are required for reasoning tasks (i.e.,
counting, spatial reasoning, etc.).

Commonsense Facts: For CLEVR, commonsense facts are of two types: (i)
attribute values (e.g., red is a color, cube is a shape), and, (ii) similar values (e.g.,
block and cube). Thus, these facts are represented using two types of relational
predicates:

is property(V, A): This relationship stores the attribute value pair, V and A.
For example, red is a color will be represented as is property(red, color).

is similar(X1, X2): This relationship stores two similar words, X1 and X2,
one of which can be used in place of the other without changing the meaning.
For example, big is similar to large is represented as is similar(big, large).

We humans incrementally augment/refine our commonsense knowledge from
information we encounter in everyday life. Thus, we add/remove facts as our
knowledge evolves. If we want to add another shape (such as pyramid), we only
need to add another is property relation. The system will automatically incor-
porate this knowledge and be able to handle questions involving pyramids.

Commonsense Rules: Commonsense rules deal with all the reasoning
tasks that AQuA needs to handle. Depending on the CLEVER dataset
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question, AQuA executes several sub-tasks (e.g., list-length, list-union, numeric-
comparison such as greater-than-equal, less-than) underneath the primary rea-
soning tasks (e.g., sorting a list of object from left to right based on its spatial
position) required to answer a question. Following is an example of a set of rules
required to filter a list of objects that match a specific attribute-value pair. The
code is straightforward as it recursively traverses the list.

(1) filter( , , [], []).
(2) filter(Att, Val, [Id | T1], [Id | T2]) :- property(Id, Att, Val),

filter(Att, Val, T1, T2).
(3) filter(Att, Val, [Id | T1], T2) :- not property(Id, Att, Val),

filter(Att, Val, T1, T2).

3.5 ASP Engine

ASP engine is the brain of our system. All the knowledge (image representation,
commonsense knowledge, semantic relations) and the query in ASP syntax are
executed using the query-driven s(ASP) system. Depending on the query it only
explores part of the knowledge which is needed to compute the answer. Also,
s(ASP) does not do unnecessary grounding which saves lots of memory. Due to
this benefit, we are able to test all the questions in the same iteration without
facing any memory overflow issues.

An AQuA query in s(ASP) is always of the form “?- query (Q, A)” where Q
represents the question and A the computed answer.

4 Experiments and Results

AQuA is a novel, general framework for visual QA. Questions are answered in
this framework through the use of commonsense reasoning rather than with
machine learning. If the questions are correctly parsed and correctly converted
into a query, the answer computed by AQuA is always correct. Unlike other
neural-based systems, AQuA does not need training over questions. Thus, the
question bank provided in the dataset for testing is of no use to AQuA. Instead,
the validation QA set is directly used to compute an answer and compare it to
the actual answer given in the validation QA dataset to generate the results.

We tested our AQuA framework on the CLEVR dataset. The validation set
for CLEVR contains 149,991 questions and 15,000 images. We simplified the
testing process slightly by limiting the question length to 15 words. We built
this system for natural language questions answering over the CLEVR image set
using the AQuA framework without focusing on any particular question type.
As mentioned earlier, we also did not use the functional programs/units given
for each question in the validation set since AQuA performs its own parsing and
semantic analysis. We ran AQuA on 45,157 questions that fit the selection criteria
imposed (e.g., questions with 15 words or less) to generate ASP queries. An
accuracy of 93.7% was achieved with 42,314 correct answers. This performance
is beyond the average human accuracy [9].
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Table 1. Performance results

Question type Accuracy (%)

Exist 96

Count 91.7

Compare value Shape 87.42 92.89

Color 94.32

Size 92.17

Material 96.14

Compare integer Less than 97.7 98.05

Greater than 98.6

Equal NA*

Query attribute Shape 94.01 94.39

Color 94.87

Size 93.82

Material 94.75

* Equality questions are minuscule in number so
currently ignored.

We have extensively studied the 2,843 questions that produced erroneous
results. 2,092 questions out of 2,843 do not match the correct answer and other
751 questions throw ASP exceptions. Our manual analysis showed that mismatch
happens mostly because of errors caused by the YOLO module: failing to detect a
partially visible object, wrongly detecting a shadow as an object, wrongly detect-
ing two overlapping objects as one, etc. Eliminating these errors through manual
intervention resulted in another 2,626 questions out of the 2,843 questions being
answered correctly. Only 217 incorrectly answered questions remained. Further
analysis indicated that these could be attributed to wrong parsing or oversimpli-
fied spatial reasoning. As an example of parsing error, block sometime is parsed
as a verb instead of a noun. With respect to oversimplification of spatial rea-
soning, note that objects in CLEVR have 3D shapes, but we only considered X
and Y coordinates to calculate relative positioning of referenced objects (e.g., for
behind the block concept). In the future, we can eliminate such errors by using
more sophisticated spatial reasoning.

Even with these errors, our results are very promising as AQuA outperforms
many state-of-the-art ML based methods on the CLEVR dataset illustrating
the advantage of our approach that uses both machine learning and reasoning.
Quantitative results for each question type are summarized in Table 1.

5 Example

To illustrate the AQuA framework further, we next discuss a full-fledged VQA
example showing the data-flow and intermediate outputs from each step.
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Fig. 3. Object detection using YOLO.

Image: Figure 3 shows an image from the validation set. Objects in the image
are detected and labeled with its attribute. The decimal number at the end
of each label shows the correctness probability of that object using the YOLO
model.

Object representation: All the detected objects from the Fig. 3 are converted
to ASP facts. Every object has a unique id number. Five attributes are detected
for each object: shape, color, material, size, and coordinates.

object(1, cylinder, cyan, rubber, small, 246, 185).
object(2, cube, red, metal, small, 270, 130).
object(3, cube, gray, metal, small, 79, 191).

Question: Now, from the question set we have the following question for the
image shown in Fig. 3.

‘Is there a matte thing in front of the metallic thing behind the gray cube?’

Parsed Output: The question is parsed using the Stanford CoreNLP parser to
get the lemma, POS, and dependency graph. Figure 4 shows the parser’s output.

Fig. 4. POS tagging and dependency graph.

Semantic Relations: The following semantic relations are next extracted by
applying default ASP rules. The word index is given for each word followed by a
‘ ’ (underscore). The lemma ‘thing’ occurs twice in the question each occurrence
representing a different object. Thus, the two occurrences are given distinct
identifiers.
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quantification(1, thing 5).
property(matte 4, thing 5).
property(metallic 10, thing 11).
property(gray 14, cube 15).

Commonsense Knowledge: The following figure shows the necessary com-
monsense knowledge needed to understand this question.

is property(cube, shape).
is property(cylinder, shape).
is property(metal, material).
is property(rubber, material).
is property(small, size).
is property(red, color).
is property(cyan, color).
is property(gray, color).
is similar(matte, rubber).

Query: This question involves transitive referential reasoning: (i) matte thing
in front of the metallic thing, and (ii) metallic thing behind the gray cube. Our
framework can handle any level of transitivity. The query generated for this
question is shown below. For these type of questions, a human will always start
reasoning from the final referenced object. Similarly, our automatically generated
query will perform spatial reasoning starting out from the cube. After resolving
all the reference relations, it checks whether the desired object exists or not.

find ans(Q) :- question(Q), get all id(L1), find all filters(cube, 15, L2),
filter all(L2, L1, [H0|T0]), get behind list(H0, L3),
find all filters(thing, 11, L4), filter all(L4, L3, [H1|T1]),
get front list(H1, L5), find all filters(thing, 5, L6),
filter all(L6, L5, Ids), list length(Ids, C),
quantification(N, thing 5), gte(C, N).

Answer: The given answer matches with actual answer, which is yes.

Justification: As stated earlier, because of its query driven nature, s(ASP) will
automatically generate a justification for any answer it computes [15]. A justifica-
tion essentially is an explanation of how the answer is computed. Unfortunately,
details are omitted due to lack of space.

6 Discussion

Our goal is to create a VQA framework that can answer questions based on
logical reasoning, in a manner similar to how humans answer questions. Humans
use pattern recognition for understanding pictures (akin to using neural net-
works to detect and localize objects in a picture) and commonsense reasoning
for answering question about them. We believe that this is the most effective
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way for VQA. Our experiments demonstrate that if knowledge from the pic-
ture is represented correctly, and the question is parsed/processed properly, the
AQuA framework will not fail in obtaining the correct answer. Our goal is to
reach 100% accuracy (simulate an unerring human). The object detection model
we use has around 5.3% error rate. Upgrading to state-of-the-art neural-based
object detection models [8,32] can increase our accuracy to nearly 100%. Simi-
larly, if the error rate for Stanford CoreNLP tools is reduced, we can reach even
higher accuracy.

AQuA has many other advantages as well, which other machine learning-
based methods do not. As explained earlier, the AQuA framework provides
explanation for a computed answer. Explainability is an important considera-
tion for any intelligent system. The AQuA framework is also interpretable. Unlike
neural network based methods, our AQuA framework is completely transparent.
This means that the system can be well understood, debugged and improved.
The AQuA framework is quite general, i.e., it can be applied to any type of
VQA with reasonable effort. Thus, our framework can be used for any other
visual question answering domain with minimal changes, unlike current machine
learning approaches. A particular machine learning model can only work well in
a specific narrowed down domain like CLEVR. But, that model cannot be used
in any other similar domain without training it again with new data or without
transferring the learning from another model. In contrast, the AQuA framework
based on commonsense reasoning can be applied to other domains without much
change.

Also, our approach is incremental in nature. AQuA can be easily expanded
with more question types which will lead to greater accuracy. On the contrary,
expanding the capabilities of a machine learning system often requires hyper-
parameter tuning, which often results in reduced accuracy.

Table 2. Question type wise summarized result from various state-of-the-art neural-
network based model for CLEVR

Method Count Exist Compare

number

Compare

attribute

Query

attribute

Overall

Humans [10] 86.7 96.6 86.4 96.0 95.0 92.6

CNN+LSTM+SAN [10] 59.7 77.9 75.1 70.8 80.9 73.2

N2NMN [7] 68.5 85.7 84.9 88.7 90.0 83.7

Dependency Tree [1] 81.4 94.2 81.6 97.1 90.5 89.3

CNN+LSTM+RN [23] 90.1 97.8 93.6 97.1 97.9 95.5

IEP [10] 92.7 97.1 98.7 98.9 98.1 96.9

CNN+GRU+FiLM [19] 94.5 99.2 93.8 99.0 99.2 97.6

DDRprog [29] 96.5 98.8 98.4 99.0 99.1 98.3

MAC [8] 97.1 99.5 99.1 99.5 99.5 98.9

TbD+reg+hres [16] 97.6 99.2 99.4 99.6 99.5 99.1

NS-VQA [32] 99.7 99.9 99.9 99.8 99.8 99.8
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7 Contribution and Related Works

The main contribution of this paper is an effective, efficient, and robust frame-
work to handle any type of visual question answering. This framework is inter-
pretable, expandable, scalable and explainable.

Significant research has been done on VQA, however, most of the recent work
has been based on using neural network technology. For example, Stacked Atten-
tion Networks (CNN + LSTM + SA) [31], Relation Networks (CNN + LSTM +
RN) [23], and Feature-wise Linear Modulation (CNN + GRU + FiLM) [19] com-
bine the CNN-extracted image features with LSTM-extracted question features
and pass them through multi-layer perceptron network. N2NMN [7], Dependency
Tree [1] and TbD+reg+hres [16] assemble a graph of trained neural modules on
the fly, each responsible for performing a single unit of computation to answer a
question. IEP [10], DDRprog [29] and NS-VQA [32] construct intermediate func-
tional units that unlike N2NMN are handcrafted programs. The latter incorpo-
rates segmentation techniques to achieve more accurate vision results. MAC [8]
proposes differentiable reasoning units of recurrent neural network that would
decompose the reasoning task to multiple small steps. A common issue in all
these systems is that they heavily rely on supervised training which is computa-
tionally expensive and requires huge amount of annotated data. Moreover, the
black-box nature of neural networks does not allow any justification as to why a
model arrives at a certain answer. With the exception of TbD+reg+hres, which
provides partial transparency via visualization of attention regions, other propos-
als are not explainable. In addition, a mechanism to incorporate commonsense
knowledge is completely absent from all neural-based proposals.

Unlike AQuA, in many practical question-answering situations, it is impos-
sible to understand the semantics of the question without making background
assumptions from a commonsense knowledge base. Bypassing the natural lan-
guage processing part, neural-based models are trained on domain-specific ques-
tions to map a question to a sequence of functional units. Thus, these models are
not generalized enough to be trivially applied to other domains. Furthermore,
they even fail to answer questions from the same domain in case of natural
language sophistication (e.g., syntactic variation, co-referenced words)

Table 2 shows the summarized result for various state of the art neural net-
work models for CLEVR dataset. First, neural-based methods for VQA have
several deficiencies: they require training even for the natural language part
(questions), models are inscrutable blackboxes, impossible to debug, etc. Use of
training not only involves expensive computation, it requires laborious annota-
tion of the data for questions. In contrast, the AQuA framework emulates meth-
ods employed by humans and answers questions through commonsense reasoning
while providing explanation for the answer. Second, many of the methods such
as NS-VQA [32] have more than 99% accuracy, however, these results are mis-
leading as these methods are not general. They construct intermediate functional
units that are handcrafted programs. In contrast, no such handcrafting is needed
in AQuA. Commonsense knowledge is accumulated and can be transferred from
one domain to another. Third, neural-based systems are not composable in the
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sense that if we introduce a new shape in the CLEVR dataset (e.g., a pyramid),
then they will have to be retrained from scratch. In contrast, in AQuA all we
have to do is to add small amount of new knowledge (e.g., a pyramid is also a
shape) for the system to answer questions about the new object added.

8 Future Work

One obvious future work will be to be able to handle a broader class of questions,
i.e., be able to parse them and turn them into ASP queries that are correctly
answered. Also, as discussed earlier, we can use better, state-of-the-art neural
network models for object detection that will almost remove every error from
the picture processing end.

All the natural language or visual question answering systems suffer from
NLP errors such as parsing issues (wrong parsing). We have used Stanford
CoreNLP parser, which shows many wrong POS tagging and dependency graph
errors. Researchers have created many other state-of-the-art parsers like Spacy
[6], dependency parsing from AllenNLP [11], etc. In the future, we can have a
voting mechanism between different parsers thereby increasing our accuracy.

For CLEVR dataset, only a limited amount of commonsense knowledge is
needed: only few commonsense facts (about color, shape, material, size, and sim-
ilarities) and commonsense reasoning rules (about counting, comparing, sorting,
and spatial relationships) are needed. Reasoning rules are general and can be used
for other datasets. However, commonsense facts are very specific to this dataset.
Currently, we are manually putting the commonsense facts in ASP format. As
future work, we plan to automate the commonsense facts generation process:
based on the context, AQuA will fetch the knowledge from online sources such
as WordNet [17], ConceptNet [28], etc., and will represent it in ASP format [18].
This will make the system more robust and flexible. Adding more commonsense
knowledge and improving the ability to handle a broader class of questions is
akin to a human acquiring more knowledge and learning to answer more complex
questions. In this regard our approach is identical to how humans do VQA and,
indeed, we are exploring practical and more advanced applications of the AQuA
framework.

9 Conclusion

We presented an ASP-based VQA framework called AQuA and applied it to the
CLEVR dataset with excellent results. AQuA automatically transforms visual
knowledge to logical facts using the YOLO model. We also showed how AQuA
automatically crafts the ASP query from a natural language question. We used
the query driven s(ASP) engine to perform commonsense reasoning to obtain the
answer. Our approach always finds the correct answer, if adequate knowledge is
present and the natural language analysis works correctly. The AQuA framework
not only gives promising results on the CLEVR dataset, it also enjoys other
benefits such as explainability, generalizability, and interpretability.
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Abstract. In this paper we describe our work towards automating diag-
nosing failures of data processing pipelines at Google Inc. using action
language Hybrid ALE . We describe Diagnostic Modeling Library - a
component providing a novel abstraction layer on top of Hybrid ALE ,
describe the requirements and give an overview of our system, which has
been deployed on a limited number of data processing pipelines.

Data processing pipelines (pipelines, for short) are software systems that pro-
cess collections of data and produce either transformed data, aggregated data
or some other output. Industrial pipelines can consist of hundreds of jobs, with
outputs of some jobs consumed as inputs by others within the pipeline. In addi-
tion, pipelines themselves can have input dependencies on other pipelines. When
working well, this architecture allows efficient and effective processing of large
amounts of data. When a malfunction occurs, it can stop data processing tasks,
causing a set of cascading failures. The failures can cause an alert being dis-
patched to on-call engineers (on-calls, for short).

For the on-calls, an alert is a diagnostic challenge, as it can point to one of the
later, rather than an earlier among the cascading failures. The earlier failures
have to be found before the underlying problem can be resolved. Moreover,
multiple possible causes of failure may have to be investigated. Automating
the diagnosing process can decrease the time required to fix failures, and thus,
improve the fault tolerance of the system and increase on-calls productivity.

Action languages [5] allow to formalize reasoning about effects of actions
in dynamic domains. Constructing a mathematical model of an agent and its
environment based on the theory of action languages has been studied and has
applications to planning and diagnostic problems, see [3] for an overview. In [1]
an action language Hybrid ALE was introduced in order to facilitate the devel-
opment of diagnostic programs for the industrial pipelines. Hybrid ALE provides
a mechanism for accessing outside data sources with user-provided algorithms.
This feature of Hybrid ALE allows Hybrid ALE programs to gather informa-
tion about pipelines from the outside sources in order to provide an accurate
diagnosis. Unlike most other action languages that translate to ASP [4], Hybrid
ALE translates to Hybrid ASP (H-ASP) [2] - an extension of ASP that allows
ASP-like rules to interact with outside sources.
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In this paper we describe our work at Google Inc. on automating diagnos-
ing of pipeline failures using Hybrid ALE . Our diagnostic system is deployed
on a limited number of pipelines. We start by specifying the requirements and
by motivating the use of an action language based approach in general and
Hybrid ALE in particular. We then review Hybrid ALE , and introduce Diag-
nostic Modeling Library - a component providing an abstraction layer on top of
Hybrid ALE . The use of Diagnostic Modeling Library simplifies model creation.
We then discuss generating explanations and suggestions and give an overview
of our system.

1 Requirements

Once on-calls receives a notification of a pipeline’s failure, they typically have
to perform the following tasks:

1. Determine the (most likely) causes of failure.
2. Obtain a detailed description of the failure, including possibly error messages

produced by the failed job and other relevant information.
3. Understand why the failure has occurred.
4. Determine how to repair the failure.
5. Proceed with the repair.

Determining the causes of failure is only the first step in the repair process. An
ideal system for helping on-calls would automate steps 1–5. In our work we focus
on automating steps 1–4.

On-calls often operate at the description level of individual jobs, jobs’ inputs
and outputs. This is the lowest description level where failure and success can be
quickly and effectively determined. This fact determines the types of models we
focus on. Such a model can be represented as an acyclic digraph (dependency
graph), where vertices are jobs and an edge from A to B represents the fact
that some of the outputs of A are inputs of B. For such a model, the process
of diagnosing the source of failure consists of starting with vertices without in-
edges, and performing a breadth-first search to determine the earliest set of
vertices whose corresponding jobs have failed.

We now formulate the following engineering requirements for our system:

1. Provide a mechanism facilitating efficient creation of diagnostic models capa-
ble of the following: identifying pipeline jobs, describing dependencies between
jobs, describing jobs’ termination status.

2. Provide a mechanism for determining termination status of individual jobs
(based on the external data sources)

3. Provide a mechanism for describing multiple possible diagnoses
4. Provide a mechanism for explaining the diagnoses in a user understandable

form (possibly by gathering information from external data sources)
5. Provide a mechanism for generating suggestions for repairing the failures

(possibly by gathering information from external data sources)
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These requirements don’t necessitate an action language based approach.
We could create a library for describing dependency graphs that would model
the pipelines. We could then provide mechanisms for association callbacks with
graph vertices to determine the termination status of the corresponding jobs
based on the external data sources. Our library would use the dependency graph
to identify sources of failure. We could provide additional mechanisms for asso-
ciating callbacks to generate explanations and suggestions. In the cases when
uncertainty exists, multiple trajectories would be examined.

There are two main reasons for choosing an action language based approach:

1. Availability of necessary functionality.
(a) Answer set semantics provides a convenient mechanism for reasoning

about multiple trajectories.
(b) Action languages provide an elegant formalism for describing actions

and their consequences, thus facilitating model creation.
2. Extensibility.

(a) Typically, requirements of the software systems change over time.
Because of that, a diagnostic system has to be easily extensible. Using
formal languages as the basis for creating diagnostic models facilitates
extensibility vs. an ad-hoc system.

Hybrid ALE provides an additional convenience: a principled way to com-
bine arbitrary algorithms with the ASP-like rules, and a principled way to pass
arbitrary data between such algorithms.

2 Hybrid ALE

We now review action language Hybrid ALE . A key concept related to action
languages is that of a transition diagram, which is a labeled directed graph, where
vertices are states of a dynamic domain, and edge labels are subsets of actions.
An edge indicates that the simultaneous execution of the actions in the label of
an edge can transform a source state into a destination state. The transformation
is not necessarily deterministic, and for a given source state there can be multiple
edges having different destination states, labeled with the same set of actions.
In Hybrid ALE, one considers hybrid transition diagrams, which are directed
graphs with two types of vertices: action states and domain states. A domain
state is a pair (A,p) where A is a set of propositional atoms and p is a vector
of sequences of 0s and 1s. We can think of A as a set of Boolean properties of a
system, and p as a description of the parameters used by external computations
called domain parameters and time. We let q|domain denote a vector of domain
parameters only. An action state is a tuple (A,p, a) where A and p are as in the
domain state, and a is a set of actions. An out edge from a domain state must
have an action state as its destination. An out edge from an action state must
have a domain state as its destination. Moreover, if (A,p) is a domain state that
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has an out-edge to an action state (B, r, a), then A = B and p|domain = r|domain.
We note that there is a simple bijection between the set of transition diagrams
and the set of hybrid transition diagrams.

In Hybrid ALE, there are two types of atoms: fluents and actions. There
are two types of parameters: domain parameters and time. The fluents are par-
titioned into inertial and default. A domain literal l is a fluent atom p or its
negation ¬p. The domain parameters are partitioned into inertial and default.

A domain algorithm is a Boolean algorithm P such that for all generalized
positions q and r, if q|domain = r|domain, then P (q) = P (r). An action algorithm
is an advancing algorithm A such that for all q and for all r ∈ A(q), time(r) =
time(q)+1. For an action algorithm A, the signature of A, sig(A), is the vector
of parameter indices i1, ..., ik of domain parameters fixed by A.

Hybrid ALE allows the following types of statements.

1. Default declaration for fluents: default fluent l
2. Default declaration for parameters: default parameter i with value w
3. Causal laws: a causes 〈l, L〉 with A if p0, ..., pm : P ,
4. State constraints: 〈l, L〉 if p0, ..., pm : P ,
5. Noconcurrency condition: impossible a0, ..., ak if p0, ..., pm : P ,
6. Allow condition: allow a if p0, ..., pm : P ,
7. Trigger condition: trigger a if p0, ..., pm : P ,
8. Inhibition condition: inhibit a if p0, ..., pm : P

where l is a domain literal, i is a parameter index, w is a parameter value, a
is an action, A is an action algorithm, i0, ..., ik are parameter indices, L and P
are domain algorithms, p0, ..., pm are domain literals, and a0, ..., ak are actions
k ≥ 0 and m ≥ −1. If L or P are omitted then the algorithm T is substituted.

A default declaration for fluents declares a default fluent and specifies its
default value. If l is a positive literal, then the default value is true, and if l
is a negative fluent then the default value is false. A default declaration for
parameters declares that i is a default parameter and that w is its default value.
A causal law specifies that if p0, ..., pm hold and P is true when a occurs, then l
holds and L is true after the occurrence of a. In addition, after a occurs, the values
of the parameters sig(A) are specified by the output of the action algorithm A. A
state constraint specifies that whenever p0, ..., pm hold and P is true, l also holds
and L is true. A noconcurrency condition specifies that whenever p0, ..., pm hold
and P is true, a0, ..., ak cannot occur concurrently pairwise. An allow condition
specifies that whenever p0, ..., pm hold and P is true, an action a can occur
(although not necessarily so). A trigger condition specifies that whenever p0,
..., pm hold and P is true, an action a necessarily occurs (unless inhibited). An
inhibition condition specifies that whenever p0, ..., pm hold and P is true, action
a cannot occur. A system description SD is a set of Hybrid ALE statements.

We omit the definition of semantics of Hybrid ALE for brevity. Interested
readers are encouraged to consult [1].
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3 Diagnostic Modeling Library

While creating diagnostic models using Hybrid ALE we have noticed repeated
modeling patterns. In addition, requiring engineers to learn Hybrid ALE restricts
the adoption of our diagnostic system. The Diagnostic Modeling Library encap-
sulates several modeling patterns expressed in Hybrid ALE , and provides a con-
venient interface requiring a minimal understanding of action languages that
focuses on a job as a basic modeling unit.

job := DeclareJob(job name, job prereqs): declares a job job name.
job prereqs specifies job’s dependencies. The function specifies a single action
do(job name), which is triggered if the prerequisites job prereqs are satisfied. In
order to add failure modes, AllowFailure or TriggerFailure functions need to be
used in addition to DeclareJob. It’s Hybrid ALE translation is:

default fluent finished default(job name)
do(job name) causes finished default(job name)
finished(job name) if finished default(job name)
trigger do(job name) if job prereqs, -finished(job name)
succeeded(job name) if finished default(job name), -failed(job name)

job.AllowFailure(failure type, failure prereqs, FailureCheck, Failure-
Callback): specifies that a failure of type failure type for the job can occur
if failure prereqs are satisfied and FailureCheck domain algorithm returns true.
If the failure occurs, then the parameters in the consequent state are partly
determined by FailureCallback action algorithm. The Hybrid ALE translation
is:

allow failure type(job.job name) if job.job prereqs, failure prereqs,
-finished(job.job name): FailureCheck

failure type(job.job name) causes failure(job.job name) with FailureCallback

job.TriggerFailure(failure type, failure prereqs, FailureCheck, Failure-
Callback): specifies that a failure of type failure type for the job is triggered
if failure prereqs are satisfied and FailureCheck domain algorithm returns true.
If the failure occurs, then the parameters in the consequent state are partly
determined by FailureCallback action algorithm. The Hybrid ALE translation
is:

trigger failure type(job.job name) if job.job prereqs, failure prereqs,
-finished(job.job name): FailureCheck

failure type(job.job name) causes failure(job.job name) with FailureCallback

job.ValidateSuccess(invalidation prereqs, InvalidationAlg): allows to
invalidate a trajectory in case of job’s success. In particular, if the job succeeds
and invalidation prereqs are satisfied and InvalidationAlg - a domain algorithm
returns true, the trajectory becomes invalid. The Hybrid ALE translation is:
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FALSE if finished default(job.job name), succeeded(job.job name),
invalidation prereqs: InvalidationAlg

Here FALSE is a special fluent that results in the trajectory becoming invalid.

job.ValidateFailure(invalidation prereqs, InvalidationAlg): allows to
invalidate a trajectory in case of job’s failure. In particular, if the job fails
and invalidation prereqs are satisfied and InvalidationAlg - a domain algorithm
returns true, the trajectory becomes invalid. The Hybrid ALE translation is:

FALSE if finished default(job.job name), failed(job.job name),
invalidation prereqs: InvalidationAlg

This is an incomplete interface. Nevertheless, the five functions above are the
most commonly used.

As an example the library usage, let’s suppose that our pipeline consists of
three jobs: A, B and C. Job B is dependent on job A, and job C is dependent on
job B. Suppose that it is possible to determine whether job A has failed by using
AFailureCheck algorithm, and it is possible to determine whether job C failed
by using CFailureCheck algorithm. It is not possible to determine whether job
B failed by any readily available algorithm. Nevertheless, we know that if job
C succeeds, then job B must have succeeded. We can capture this information
in the following model, with lines started with ‘#’ indicating comments, and
symbol ‘ ’ indicating an empty argument:

# Declare job A with no prerequisites
jobA := DeclareJob(A, )
# Specify that AFailureCheck identifies A’s failure
jobA.TriggerFailure(failure, , AFailureCheck, )
# Declare job B dependent on job A
jobB := DeclareJob(B, finished(A))
# Specify that job B can fail
jobB.AllowFailure(failure, , , )
# Declare job C dependent on job B
jobC := DeclareJob(C, finished(B))
# Specify that CFailureCheck identifies C’s failure
jobC.TriggerFailure(failure, , CFailureCheck, )
# Specify that job C’s success invalidates job B’s failure
jobC.ValidateSuccess(failed(B), )

4 Generating Explanations and Suggestions

Repairing the failures of pipelines can be facilitated if the diagnostic software
provides explanations or other relevant information about the source of the fail-
ure, and if the diagnostic software provides the suggestions for repairing.

Both the explanations and the suggestions can be specific to a trajectory and
to a failure. We did not attempt to solve the problem of automatic generation of
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explanation and suggestions based on the formal model of a diagnosed system.
Nevertheless, we have made some initial steps in providing useful additional
information about the failures and possible ways to repair them to on-calls.

Our approach uses a combination user-generated information and informa-
tion from outside sources about the failure. Often, engineers familiar with a
pipeline can provide a short list of failure descriptions and another list with sug-
gestions for repairing. These can be integrated with the diagnostic model with
the help of lookup tables. In the tables, both explanations and suggestions are
keyed by an action representing a failure or by a specific fluent generated during
a failure. Messages in the tables can be automatically customized based on the
date or other parameters specific to the particular diagnosing evaluation, thus
making them more helpful to on-calls.

Additional information about the failures can be retrieved from the outside
data sources using action algorithms. In the modeling diagnostic library, both
AllowFailure and TriggerFailure functions can be evoked with FailureCallback
action algorithm. FailureCallback algorithm can retrieve information, such as
error messages generated by the failed job and use it to generate an explanation
recorded in explanation(job name) parameter in the consequent state. When a
diagnosis is reported, the value of explanation(job name) parameter is reported
as well. A similar mechanism can also be used to generate suggestions based
on the information from outside sources. Such an explanation or a suggestion is
reported together with an associated action or a fluent, thus providing a more
meaningful description of the failure.

5 Job Termination Status and Automatic Model
Generation

Data processing pipelines at Google are typically run using Borg system [6].
This provides several advantages. First, data processing pipelines are described
using BCL configuration files [6]. A BCL description of a pipeline contains a
description of all the jobs in the pipeline as well as the dependencies. Second,
in many cases, it is possible to determine whether a particular job run failed or
succeeded using the Borg monitoring system, and in some cases to retrieve error
messages generated by the failed jobs as well as other relevant information.

We have used these features of the Borg system for the following:

1. To facilitate automatic creation of basic diagnostic models using the Model
Diagnostic Library

2. To automatically determine job’s run’s termination status as well to auto-
matically generate failure explanations by retrieving error messages generated
during job’s run

3. When the automatically generated model is insufficient, it can serve as a
skeleton for a more detailed manually enhanced model.

This architecture is illustrated in Fig. 1. Pipeline configuration is used by
model generator to create a model. The automatically created model contains
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Fig. 1. Diagnostic system architecture.

callbacks that access data relevant for determining jobs’ termination status.
The model can then be refined with the help of the engineers familiar with
the pipeline. The model is expressed using diagnostic library. Diagnostic library
translates the model into a Hybrid ALE description, and Hybrid ALE description
is further translated into Hybrid ASP. Hybrid ASP solver then uses the model
to generate diagnoses, and possibly explanations and suggestions.

6 Conclusion

In this paper we discussed our work on a system deployed on a limited number
of pipelines at Google Inc. for automating diagnosing of pipeline failures using
action language Hybrid ALE . We specified the requirements that guided our
work, and motivated the use of Hybrid ALE . To simplify model creation we
introduced Diagnostic Modeling Library - a component providing an abstrac-
tion layer on top of Hybrid ALE . We discussed initial progress in extending the
functionality of a diagnostic system to include explanation and suggestion gener-
ation - the functionality that makes a diagnostic system more useful for on-calls.
We reviewed the architecture of our system: from automatic model generation,
and manual model refinement to generating diagnosis based on the model and
external data. Our approach is generally applicable and is not Google-specific.
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Abstract. Answer Set Programming (ASP) is a dominant programming
paradigm in Knowledge Representation. It is used to build intelligent
agents – knowledge-intensive software systems capable of exhibiting intel-
ligent behaviors. It is found that ASP can also be used to teach computer
science in middle and high schools. However, the current ASP systems
do not provide direct support for a programmer to produce an intelligent
agent that a general user can directly interact with, which may greatly
compromise the potential attraction of ASP to the secondary school stu-
dents. In this paper, we propose a Virtual Reality (VR) programming
environment called VRASP that allows a student to produce an avatar
(agent) in a virtual world that is able to answer questions in spoken nat-
ural language from a general user. The VR application is accessible from
anywhere so that the students’ friends can interact with the agent. As a
result, it gives the students a feeling of achievement and thus encourages
them to solve problems using ASP. VRASP was evaluated with 10 users.
Results of these studies show that students are able to communicate with
the environment intuitively with an accuracy of 78%.

Keywords: ASP solver · Virtual Agent · Virtual Reality · SPARC
programming

1 Introduction

Answer Set Programming (ASP) is a promising language paradigm for teach-
ing Computing and for the integration of teaching Computing and STEM (i.e.,
science, technology, engineering, and mathematics) in K-12 (for kindergarten to
12th grade). ASP is a language for developing intelligent agents – knowledge-
intensive software systems capable of exhibiting intelligent behaviors, and allows
students to write the mathematical model underlying those agents. With a well-
developed theory, efficient reasoning systems (which are usually called ASP
solvers) and representation methodology, ASP has found numerous applica-
tions [2]. It is also found that ASP can be used to teach computing and its
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integration with other subjects in middle and high schools [16,17]. However,
the-state-of-the-art ASP programming environments stop at the mathematical
models, i.e., ASP programs, queries and getting answer sets. As a result, the K-
12 ASP students can only show their friends or parents a mathematical model,
instead of a direct interactive intelligent agent. In this regard, it is difficult for
their friends or parents to quickly appreciate their programs. Therefore, the stu-
dent’s motivation might not be as high as ASP allows. Many studies in the liter-
ature have shown that students’ performance in terms of computational think-
ing, problem-solving, productivity and creativity will be improved in accordance
with the increasing motivation [12]. This motivation can be affected by student’s
friends, peers or parents. For example, a previous research conducted by Resnic
and colleagues [12] described a case study where a 13-year-old girl developed a
series of how to programming projects when she was motivated by her follow-
ers by using Scratch - a visual programming environment that allows children
(primarily ages 8 to 16) to learn computer programming. Her astonishing pro-
ductivity thus did influence, inspire, and propagate to other young students in
the long run. Yet, to achieve this result, an easy to use supporting environment
plays a critical role for helping students to transcribe an idea to a production
work. To motivate K-12 students to learn Computing through ASP and address
the issue mentioned before, we design and implement a prototype of a web-based
programming environment VRASP. Using VRASP, the student is able to create
an intelligent agent inside a virtual reality (VR) environment. Specifically, the
students can use an editor in VRASP to develop an ASP program for the agent
using the ASP syntax, customize the default VR environment, and “run” the
VR environment. Once they are happy with the agent and its environment, they
can publish the artifact through a URL link. A general user with this link can
interact with the agent, through the VR environment, by asking questions in
spoken English. Our main motivation in this study was to leverage the advan-
tages of VR technology with an affordable Head Mounted Display headset (i.e.,
Google Cardboard). We expect the development of this new artifact will help
motivate students’ interests in learning Computing through ASP and help them
to obtain a feeling of accomplishment through the sharing of their products with
their friends or parents without any knowledge in Computing. We carried out a
very preliminary evaluation of this web-based programming environment using
10 real users.

The remainder of the paper is organized as follows: Sect. 2 summarizes similar
work. Section 3 addresses theoretical foundations underlying VRASP and the
system design and simulation process. The evaluation design and results are
reported in Sect. 4 and we conclude our paper with future work in Sect. 5.

2 Related Work

The use of VR has proven to be an effective means in education in many studies
[3]. They showed increase in both students’ motivation and test scores. Exist-
ing studies pose several challenges for adapting VR technology widely in K-12
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sector such as: (1) the lack of HMD devices to suite the needs of students, (2)
the complexity of creating virtual world, which requires a dedicated 3D soft-
ware, making it difficult for children to learn and share their work. Thus, to
fill this gap there is a need to have a friendly programming environment that
enables users to create, manipulate and share their work with ease, especially in
the context of learning declarative programming. Recently, web-based VR has
emerged as a new trend to bring VR experience to a larger audience [10,13]. Kao
and Harrell [4] presented a research on the impact of the avatar types on stu-
dent performance and engagement. Alice [1] is a visual programming language
with an integrated development environment (IDE). It allows the programmers
to use drag-and-drop to create computer animations using 3D models. Stud-
ies show that Alice helps to improve both retention rate and students’ learning
outcomes. Recently, Vosinakis et al. [15] proposed a programming environment
– MeLoISE – for students to learn PROLOG, a classical Logic Programming
language. In this environment, the students can create scenarios in a 3D virtual
world. For every scenario created, the programming environment automatically
generates a PROLOG program to represent the scenario. The students can edit
the program, ask queries to this program and see the answers in window.

3 The VRASP Design

Our web-based system is an extension of onlineSPARC [7]. onlineSPARC pro-
vides an online programming environment for SPARC, a recent ASP variant
with type. However, onlineSPARC does not provide a materialized agent that a
general user can interact with. Our proposed application is positioned as a sup-
plemental learning/teaching material rather than replacing it. We assume that
students have basic knowledge of ASP program before using the VR application.

Theoretical Foundations: The design of VRASP is influenced by three areas
of theoretical frameworks. The first one is learning by design [5]. Designing an
intelligent agent to solve daily life or STEM problems is at the core of the Logic
Programming based approach to learning Computing and STEM [16]. VRASP
is designed to directly support this approach, by materializing an intelligent
agent into an avatar in a virtual reality. Therefore, instead of using traditional
way to ask students to choose from a list of avatars, we require students to
design the avatars and related rules by himself to promote their learning of
practical skills (e.g., computational thinking design, visual design, and art). Sec-
ond, our research also broadly resides in embodied cognition [6] where students
are embodied as an avatar to interaction with the virtual environment. Such
embodiment has been shown to improve students’ learning in various settings
and contexts [11]. Third, we also trace back our design to classical multimedia
learning theories [8]. In addition to the dynamic visual presentation of the avatar
and its VR environment to the student, we also implement the audio interaction
between the student and VRASP.
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The Intelligent Agent Design: The design of the materialized intelligent
agent is as follows: (a) The agent is an avatar inside a virtual reality environment,
and in spoken English, a general user can ask questions to the agent which will
answer in turn.

Fig. 1. The VRASP learning interface. (1) ASP editor, (2) sharing with a URL, (3)
sharing with a QR code, (4) VR editor, and (5) changing between VR and 3D mode

The default VR programming environment is a virtual room shown in Fig. 1
where the intelligent agent is the avatar. Users can navigate the room and inter-
act with the agent using natural spoken English. The navigation is performed
by using keyboard arrow buttons on a traditional computer or by hand moving
actions on devices with a touch screen. When a user moves to a location close
enough to the agent, the agent will say some random welcome sentences that
are pre-defined by users to indicate that it is aware of the user and is ready to
answer questions. When a user moves far away from the agent, his/her speech
will not be able to raise the attention of the agent.

The VRASP Interface Design: The VRASP has two components:

– Programming component: an editor for students to create and edit an ASP
program, and an interface for editing the agent avatar and its VR environ-
ment.
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– Avatar and VR environment enacting component: once a student completes
the ASP program and the design of the VR environment, VRASP is able to
create the environment and the agent so that an end user can interact with
them. The resulting VR environment is shareable to anyone through an URL
link or a QR code.

The VRASP programming environment is shown in Fig. 1. The programming
component is achieved through the two buttons (1) (for editing the ASP pro-
gram) and (4) (for editing the visual aspect of the VR environment) in Fig. 1.
The ASP editor (see Fig. 2a) allows students to create the ASP program.

Figure 2b illustrates the VR editor where students can leverage their creative
design to add new 3D objects to the scene, modify objects’ appearance (e.g.,
texture, color), and position them in the scene.

Fig. 2. (a) The ASP editor for students to edit their SPARC programs, (b) the VR
editor which allows users to customize the virtual 3D environment such as adding
model, change position, location, and scale of a 3D object

Once students end the edits and save the results, VRASP enacts the intelli-
gent agent and its VR environment for students to test them. When the students
are satisfied with their agent and VR environment, they can share it by clicking
button (2) to get an URL for it or button (3) a QR code. A user simply uses
their mobile device to scan the QR code, and the browser will automatically
navigate to the URL of the intelligent agent. With a modern cell phone and an
affordable headset (e.g., Google Cardboard), users are able to experience the
Virtual Reality by enabling the VR mode as in button (5) of Fig. 1.

The Design for Implementing VRASP: To implement VRASP (see demo
at [9]) programming environment, the following modules were developed: (1) the
main control algorithm - the user interface of VRASP (Fig. 1) can be thought of
as a menu system, the main control algorithm is straightforward. For example,
when the ASP editor is clicked, the editing interface (Fig. 2a) will show up and
once the editing is finished, the system will show the main user interface. (2)
edit ASP program and VR environment - the ASP editor we use is a HTML text



VRASP: A Virtual Reality Environment 87

editor and (3) enact the avatar and its VR environment. The avatar behavior
can be carried out by the following steps:

– Get the question input as a voice and translate the speech into text t. We
use the Web Speech API to achieve this translation. The speech recognition
service will check the speech input against a list of grammar. When a word
or phrase is successfully recognised, it is returned as a result as a text string.

– The question in text will be translated into an ASP query q. Details can be
found in the following section.

– The SPARC solver will be called with the ASP program for the agent and
the query q. The SPARC solver will return the answer(s) to q.

– The answer(s) will be translated into text which in turn is translated into
audio via Speech Synthesis. Generally speaking, the synthesized speech is cre-
ated by concatenating pieces of recorded speech that are stored in a database.

Translate Questions in Text to ASP Queries: We will use a very rudi-
mentary method for our prototype implementation of VRASP. The translation
is based on a dictionary that consists of pairs (S,Q) where S is a string repre-
senting an “abstract” question and Q is the ASP query for S. The “abstract”
questions represent the substantives of the variations of a question in text. For
example, consider the relation of friend(X,Y ). We will answer only two type
of questions: yes/no-questions and what question. In the yes/no questions, we
extract the objects and the relations among them from the question text. For
what-questions, we also need to extract the variables. These questions are in a
rather regular text format. But the form of the questions from different people
may still vary. Consider the program in Fig. 2a, we can have questions such as
“Is Alex a friend of Lino?” or “Who are the friends of Alex?” The substance in
the first question is Alex, friend and Lino. So, the “abstract” question for the
first one is “alex, friend, lino”. The query for this question is friend(alex, lino).

So, a dictionary example could be

("alex friend lino": friend(alex, lino)).
("lino friend alex": friend(lino, alex)).
("Who friend alex": friend(X, alex)).

To build the dictionary, we extract all relations (i.e., predicates) from
the ASP program. For each relation we figure out the abstract questions
for yes/no and what questions on this relation and the queries for such
questions. For any question in text, we will compare it with each abstract
question in the dictionary using cosine similarity (a measure of similar-
ity between two non-zero vectors with a score from 0 to 1). For compar-
ison, each string has to be translated into a component vector - a vec-
tor of string. For example, the component vector A of “alex friend lino” is[
-al,ale, lex, ex , x f, fr, fri, rie, ien, end, nd , d l, lin, ino, no-

]
.

Let the cv be the function mapping a string to its component vector. The
cosine similarity between two strings defined as follows:
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Score(A,B) =
cv(A).cv(B)

||cv(A)||||cv(B)|| (1)

where A and B are two strings. α.β is the dot product of vectors α and β, and
||α|| is the norm/magnitude of vector α. Our pattern matching based algorithm
to convert text to ASP query has a limitation in dealing with negations in a
sentence. For example, if one asks “Isn’t Alex a friend of Lino?”, it will syntac-
tically match “Is Alex a friend of Lino?”, which is the complete opposite; in the
future, we will work on solving this issue.

To translate a question in text to a query, we compare it with the “abstract”
questions in the dictionary and find the one with the highest cosine similarity
or randomly select the one with the same ranked score. Then we use the query,
for this “abstract” question, as the translation of the question given in text.

4 Evaluation

4.1 Evaluation Design

Users in our study can be defined as the end users who experience the prod-
uct (i.e., family members, friends, etc.) and communicate with the system via a
natural spoken language. Thus, the system’s ability to create an uninterrupted
communication channel plays an important role in contributing to the com-
pleteness of the application. To measure how likely the proposed system can
meet the desired goal. In this experiment, we seek to answer the research ques-
tions, namely (1) to what extent the application can response accurately to the
questions posed by users? The term accuracy is defined as whether a speech is
mapped correctly to its query. (2) Which part of the proposed application needs
to improve?

We recruited 10 volunteers, including seven males and three females from the
Computer Science Department to participate in this study. Eight of them are
PhD students and the other two are pursuing master degree. All participants
were introduced the purpose of the study, the type of information collected,
the application design and how it works. Each user will be given approximated
30 min in the study. There are two phases in our study design, the first phase
involves training stage where users get to know the system by editing simple
SPARC program. When users finished the training process, they moved to the
second phase. In this stage, participants were given a set of questions proposed
by the evaluator to communicate with the system. The proposed questions were
based on the SPARC program shown in Fig. 2a.

4.2 Result

Table 1 shows the results of the speech-to-query transcribing accuracy. It can
be seen that the Web Speech API can recognize a majority of different voices,
except for the first, third and fourth questions. Overall, the API can correctly
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recognize 78/100 speeches (accounted for 78%). After analyzing the transcript
(speech to text) for each user, we found that the API misinterprets the word
“whom” with “home” and “lino” with “selena” or “lee no”.

Table 1. Accuracy results in testing phase (
√

is for the correct answers, empty is for
incorrect answers)

Users Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

User 1
√ √ √ √ √ √ √

User 2
√ √ √ √ √ √ √ √

User 3
√ √ √ √ √ √ √ √

User 4
√ √ √ √ √ √

User 5
√ √ √ √ √ √ √ √ √

User 6
√ √ √ √ √ √ √

User 7
√ √ √ √ √ √ √ √ √ √

User 8
√ √ √ √ √

User 9
√ √ √ √ √ √ √ √ √

User 10
√ √ √ √ √ √ √

Total
√

answer 1 10 4 5 8 9 10 9 10 10

User’s Feedback: To further improve and iterative refine the proposed applica-
tion, we asked users for feedback on the application design in terms of the visual
layout design, interactivity, and ease of use. Responses from users suggest that
the study should revise and rephrase the questions and choose words in such a
way that the Web Speech API would be able to recognize the speech easier.

5 Conclusion and Future Work

In this paper, we introduced VRASP, a programming environment that allows
students of ASP to build intelligent agents as avatars in a VR environment,
capable of answering questions from general users using spoken English. The pro-
gramming environment is expected to offer students a more concrete feeling of an
intelligent agent and a feeling of achievement by building and sharing an intelli-
gent agent capable of interacting with the general audience. We would argue that
by sharing the programming environment with their peers, students’ motivation
would be increased and thus the learning performance would be amplified.

In future work, we will apply more sophisticated methods including machine
learning and natural language processing techniques to improve speech recogni-
tion accuracy and the formulation of queries from the text. We note the work
on the translation of text to formal languages, e.g., [14] providing a NL2KR
platform for this purpose. However, these systems usually need training. Our
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translation method is simple and no training is needed, but translation accu-
racy might not be the as competitive as the existing work. In the future, we
will develop more robust and easy to use translation algorithms based on the
existing work.
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Abstract. We present a region-based memory management scheme
with support for generational garbage collection. The scheme is imple-
mented in the MLKit Standard ML compiler, which features a compile-
time region inference algorithm. The compiler generates native x64
machine code and deploys region types at runtime to avoid write barrier
problems and to support partly tag-free garbage collection. We mea-
sure the characteristics of the scheme, for a number of benchmarks, and
compare it to the Mlton state-of-the-art Standard ML compiler and con-
figurations of the MLKit with and without region inference and genera-
tional garbage collection enabled. Although region inference often serves
the purpose of generations, we demonstrate that, in some cases, genera-
tional garbage collection combined with region inference is beneficial.

Keywords: Region inference · Generational garbage collection

1 Introduction

Region-based memory management allows for programmers to associate the life-
times of objects with so-called regions and to reason about how and when such
regions are allocated and deallocated. Region-based memory management, as it
is implemented for instance in Rust [2], can be a valuable tool for constructing
critical systems, such as real-time embedded systems [25]. Region inference dif-
fers from explicit region-based memory management by taking a non-annotated
program as input and producing as output a region-annotated program, includ-
ing directives for allocating and deallocating regions [27]. The result is a pro-
gramming paradigm where programmers can learn to write region-friendly code
(by following certain patterns [28]) for essential parts of a program and perhaps
retain a combination of region inference and garbage collection [17] for programs
(or the parts of a program) that are not time critical.

Both region-inference and generational garbage collection have been shown
to manage short-lived values well. In this paper we present a framework that
combines these techniques, and discuss the effects of the integration.
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The region-based memory management scheme that we consider is based on
the stack discipline. Whenever e is some expression, region inference may decide
to replace e with the term letregion ρ in e′ end, where e′ is the result of
transforming the expression e, which includes annotating allocating expressions
with particular region variables (e.g., ρ) specifying the region each value should
be stored in. The semantics of the letregion term is first to allocate a region
(initially an empty list of pages) on the region stack, bind the region to the
region variable ρ, evaluate e′, and, finally, deallocate the region bound to ρ (and
its pages). The region type system allows regions to be passed to functions at run
time (i.e., functions can be region-polymorphic) and to be captured in closures.
The soundness of region inference ensures that a region is not deallocated as long
as a value within it may be used by the remainder of the computation. When
combining region inference and reference-tracing garbage collection, to remedy
for the sometimes overly static approximation of liveness, we must be careful
to rule out the possibility of deallocating regions with incoming pointers from
live objects. Luckily, it turns out that such pointers can be ruled out by the
region type system [8], which means that we can be sure that a tracing garbage
collector will not be chasing dangling pointers at run time.

Our generational collector associates two generations with each region. It has
the feature that an object is promoted to the old generation of its region (during
a collection) only if it has survived a previous collection. Compared to the earlier
non-generational collection technique [17], we may run a minor collection by only
traversing (and copying) objects in the young generations.

The contributions of this paper are the following:

1. We present a technique for combining region-based memory management with
a generational (stop the world) garbage collector, using a notion of typed
regions, which allows us to deal with mutable data in minor collections and
for tag-free representations of certain kinds of values such as tuples.

2. To demonstrate the absolute feasibility of the technique, we show empiri-
cally that the MLKit generates code that, in many cases, is comparable in
performance to executables generated with the Mlton compiler (v20180207).

3. We demonstrate empirically that the combination of generational garbage
collection and region-based memory management can lead to improved per-
formance over using non-generational garbage collection but also that the
increased memory waste (unused memory in region pages), caused by hav-
ing multiple generations associated with each region, sometimes leads to an
overhead compared to when a non-generational collection strategy is used.

4. We demonstrate empirically that when combined with generational garbage
collection, region inference will take care of reclaiming most of the data in
young generations with the effect that minor collections occur less often.

The study is performed in the context of the MLKit [28]. It generates native
x64 machine code for Linux and macOS [9] and implements a number of tech-
niques for refining the representations of regions [4,27], including dividing regions
into stack allocated (bounded) regions and heap allocated regions.
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The paper is organised as follows. In Sect. 2, we present the generational
garbage collection algorithm and how the algorithm is extended to work with
mutable and large objects. In Sect. 3, we present a number of experimental
results. In Sect. 4, we describe related work, and in Sect. 5, we conclude.

2 Generational Garbage Collection

A region descriptor represents an unbounded region and consists of a pointer to
the previous region descriptor on the stack (p), a generation descriptor for the
young generation (gy), a generation descriptor for the old generation (go), and a
list (L) for large objects, which are objects that do not fit in a region page; see
Fig. 1. Each generation descriptor (g) consists of a pointer to a list of fixed-sized
region pages (fp) and an allocation pointer (a).

L

fpo

ao

fpy

ay

p

go

gy

Fig. 1. A region descriptor on the down-growing stack. Region descriptors are linked,
through “previous pointers” (p), hold generation descriptors (gy and go), and hold a
linked list of large objects (L).

The garbage collector we describe is a generational collector, which supports
both minor and major collections. In a minor collection, only reachable objects
allocated in young generations are traversed and evacuated (i.e., copied); those
allocated in old generations are left untouched. In a major collection, all reach-
able objects are traversed and evacuated. In a minor collection, only reachable
objects allocated in young generations are traversed, but a minor collection does
not differentiate between in which region an object is stored, as there can be
pointers from objects in newer regions to objects in older regions.

Consider a region r2 above a region r1 on the stack, with two generations
each. This scenario allows for deep pointers from r2 pointing to objects in region
r1 as shown in Fig. 2 (labeled 1 to 4) and shallow pointers pointing from objects
allocated in region r1 into objects allocated in region r2 (labeled 5 to 8). Shallow
pointers only exist between regions allocated in the same letregion construct,
which is a sufficient requirement to rule out the possibility of dangling pointers
[8,17]. The scheme that we first describe does not allow for pointers to point
from an old generation to a young generation (i.e., the pointers labeled 3 and 7);
mutable objects, which may violate this principle, are treated later in Sect. 2.3.

When an object in a young generation of a region is evacuated, the object
may be promoted to the old generation of the region. The collector implements



98 M. Elsman and N. Hallenberg

1
2

3
4

5
6

7
8

r1
fpy

fpo

r2
fpy

fpo

Fig. 2. Possible and impossible pointers. Impossible pointers are those that are dashed.
The stack grows downwards. Shallow pointers (e.g., pointers from values in r1 to values
in r2) are allowed only between regions that are allocated and deallocated simultane-
ously (e.g., a list’s elements are stored independently from the spine of the list.)

the following promotion strategy, which guarantees that only long-living values
are promoted to old generations:

Definition 1 (Promotion Strategy). Promote objects when they have sur-
vived precisely one collection. The first time a value in a region r is evacuated,
the value stays allocated in the young generation. During the following garbage
collection, the value is promoted (moved) to the old generation of r.

During a minor garbage collection, objects that have survived one collec-
tion must be promoted to the old generation, whereas objects that have not yet
survived a collection should remain in the young generation. However, the imple-
mentation must preserve a generation upward-closure property, which states
that, after a collection, whenever a value v has been promoted to an old gener-
ation, all values v′ pointed to by v are also residing in old generations.

Figure 3 shows two regions and their young generations. The black areas con-
tain objects that have survived one collection. The white areas signify objects
that have been allocated since the last collection. Objects allocated in the black
areas will be promoted to an old generation and objects allocated in the white
area will stay allocated in a young generation. Figure 3 shows different combi-
nations of pointers from white and black areas into white and black areas.

1

2

3
4

5 6

r1
fpy

fpo

r2
fpy

fpo

Fig. 3. The black areas contain objects that have survived one collection and white
areas contain objects allocated since the last collection.
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To implement the promotion strategy, the generation upward-closure invari-
ant must disallow values in black areas to point at values in white areas (pointers
5 and 6 in Fig. 3):

Definition 2 (Generation Upward-Closure). If a value resides in an old
generation and points to a value v′ then v′ resides in an old generation. If a
value resides in a black area in a young generation and points to a value v′ then
v′ resides in an old generation or in a black area in a young generation.

We now argue that the promotion strategy satisfies the Generation Upward-
Closure invariant. The argument is a case-by-case analysis of the possible point-
ers shown in Fig. 3 (pointers 1, 2, 3, and 4), where each pointer takes the form
v2 → v1 and where v2 is allocated in r2 and v1 is allocated in r1:

Pointer 1. Both v2 and v1 reside in black areas, which means that, given v2 is
live, they will both be promoted to old generations according to the promotion
strategy. The possibly promoted pointer will thus trivially satisfy Definition 2,
part 1.

Pointer 2. If v2 is live then it will be promoted to the black area of the young
generation while v1 is promoted to the old generation. The possibly promoted
pointer will trivially satisfy Definition 2, part 2.

Pointer 3. Both v2 and v1 reside in white areas of young generations, which
means that, given v2 is live, they will both be promoted to black areas in
young generations. Again, the possibly promoted pointer will trivially satisfy
Definition 2, part 2.

Pointer 4. Similar to pointer 3.

Pointer 3 gives rise to some considerations because v1 is allocated in a region
page containing both a black and a white area. How do we mark v1 as being
allocated in a white area? One possibility is that we mark each object as being
white or black, which will require that all objects are stored with a tag. A less
costful solution, which we shall pursue, is to introduce the notion of a region page
color pointer (colorPtr), which points at the first white value in the region page.
Given a value v located at a position p in a region page and the color pointer
colorPtr associated with the region page, if p < colorPtr then v is allocated in
the black area of the region page; otherwise, v is allocated in the white area.1

Notice, that color pointers are updated and referenced only during a garbage
collection; it does not change when allocating new values.

For the scheme to be sound, we need to make sure that pointers of the
form of pointer 5 and pointer 6 never occur as the promotion strategy would
otherwise lead to pointers from old generations to young generations, which
would violate Definition 2. As we have shown, the garbage collector will never
introduce such pointers and, luckily, neither will the mutator, except due to
mutable data assignment, which we will treat in Sect. 2.3.

1 In the implementation, the color pointer associated with a region page is located in
the header of the page. If colorPtr points past the page, the entire page is black.
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An alternative to the implemented promotion strategy is to add additional
generations and let a minor collection traverse all objects except those in an
oldest generation. Such a solution, however, could introduce a large amount
of unused memory in region pages. Another promotion strategy would be to
promote objects when they have survived a number (N ≥ 0) of collections,
which generalises the implemented promotion strategy, but is intractable as it
requires tracking of the number of times each object in a young generation has
survived a collection.

2.1 Evacuating Objects

The evacuation process copies live objects into fresh pages so that the copied-
from pages can be reclaimed, including the parts of the pages that hold unreach-
able values. Definition 2 is implemented as follows. During a major collection,
the collector will evacuate objects from old generations into old generations.
During a minor collection, however, old generations will be left untouched and
the collector will not attempt at traversing values stored in old generation pages.
During a major or a minor collection, the collector will evacuate objects in young
generation white areas into young generation black areas. Moreover, the collec-
tor will evacuate objects in young generation black areas into old generations.
The evacuation strategy is implemented by marking all region pages in old gen-
erations black, which means that the same algorithm can be used to evacuate
objects in minor and major collections. All objects in black areas are copied
into black areas in old generations. All objects in white areas are copied into
black areas in young generations. All objects allocated between two collections
are allocated in white areas in young generations.

Before a major collection, all region pages are assembled to form the from-
space as shown in Fig. 4. For a minor collection, from-space is formed from all
young generation pages. After a collection (minor or major), the from-space
pages are added to the free-list of pages.

old old young young young

Fig. 4. From-space contains black region pages from old generations, black region pages
from young generations, white region pages from young generations, and partly-white
region pages from young generations. No white region pages from old generations exist.

To distinguish pointers from non-pointers, integers and other unboxed values
(e.g., booleans and enumeration datatypes) are represented as tagged values with
the least significant bit set. Records are represented as a vector of values with a
prefix tag word, which is used by the collector to identify the number of record
components. Pairs and triples, however, are represented without a prefix tag
word. Given a pointer to a value in a region page, the collector can determine
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that the value is a pair or a triple by inspecting the region type associated with
the region in which the object resides. In practice, the implementation works
with the region types rty bot, rty pair, rty triple, rty double, rty ref,
rty array, and rty top. Here the region type rty top is used for specifying
regions that can contain values of arbitrary type, except those associated with
the other region types. The region type rty bot never occurs at run time, but is
used for specifying type and region polymorphic functions. The region unification
algorithm will fail to unify two regions with different types (except if one of the
region types is rty bot), which provides the guarantee that values stored in a
region at run time are classified according to the region type of the region. For
efficiency, the region type for a region is stored both in the generation descriptor
for the old generation and in the generation descriptor for the young generation.

Values stored in finite regions on the stack are traversed by the garbage
collector, but never copied or collected.

2.2 The GC Algorithm

The GC algorithm makes use of a series of auxiliary utility functions:

– in_oldgen_and_minor(p): Returns true if the collection is a minor collec-
tion and p points to an object in a region page for which the old-generation
bit is set. Returns false otherwise.

– is_int(p): Returns true if the least-significant bit in p is set. Returns false
otherwise.

– tag_is_fwd_ptr(w): Returns true if the tag word w is the reserved forward
pointer tag, which is different from other tags used for tagged objects. Returns
false otherwise.

– is_pairregion(r): Returns true if the runtime type associated with the
region descriptor r is region pair. Returns false otherwise.

– in_tospace(p): Returns true if p points to an object in a region page for
which the to-space bit is set. Returns false otherwise.

– acopy_pair(r,p): Allocates a pair in the region associated with the region
descriptor r and copies into the newly allocated memory the two pointers (or
integers) contained in the pair pointed to by p.

– obj_sz(w): Returns the size of the object in words, given its tag word.
– gendesc(p): Returns the generation descriptor for the generation in which

the object pointed to by p resides. Each region page in the generation has
associated with it a generation pointer, pointing at the generation descriptor
for the generation. Generation pointers are installed when a new region page
is associated with a generation.

– push_scanstack(a): Pushes the allocation pointer a onto the scan stack.
– pop_scanstack(): Pops and returns the top scan pointer from the scan stack.

Returns null if the scan stack is empty.
– target_gen(g,p): Returns the old generation associated with g’s region

unless g is a young generation and p appears in a white area in g, in which
case it returns g.
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A central part of the GC algorithm is the function evacuate, shown in Fig. 5,
which copies live values under consideration from-space into to-space. It takes a
pointer p and copies the value pointed to into to-space provided it is not already
copied and that it is a prospect (i.e., under a minor collection, values in old
generations are not copied.) For brevity, only pairs are treated specially; the
implementation also treats regions of type rty triple and rty ref specially,
as also triples and references are represented unboxed.

void* evacuate(void* p) {
if ( is_int(p) ||

in_oldgen_and_minor(p) )
return p;

g = gendesc(p);
gt = target_gen(g,p);
if ( is_pairregion(g) ) {

if ( in_tospace (*(p+1)) )
return *(p+1); // fwd -ptr

a = acopy_pair(gt,p);
*(p+1) = a; // set fwd -ptr

} else {
if ( tag_is_fwd_ptr (*p) )

return *p;
a = acopy(gt,p);
*p = a; // set fwd -ptr

}
if ( gt->status == NONE ) {

gt->status = SOME;
push_scanstack(a);

}
return a;

}

Fig. 5. The function evacuate assumes
that the argument p points to an object
and that it perhaps resides in from-
space and needs to be copied to to-
space. After copying, a forward-pointer
is installed.

void cheney(void* s) {
g = gendesc(s);
if ( is_pairregion(g) ) {

while ( s+1 != g->a ) {
*(s+1) = evacuate (*(s+1));
*(s+2) = evacuate (*(s+2));
s = next_pair(s,g);

}
} else {

while ( s != g->a ) {
for ( i=1; i<obj_sz (*s); i++ )

*(s+i) = evacuate (*(s+i));
s = next_value(s,g);

}
}
g->status = NONE;

}

Fig. 6. The function cheney assumes
that the argument scan pointer s points
to a value that has already been copied
to to-space but for which the components
have not yet been evacuated. The func-
tion is named cheney because it degen-
erates to Cheney’s algorithm if multi-
generations are disabled.

Another central function is the cheney function, which takes care of scanning
the values that have been copied into to-space. During scanning, the cheney
function may call evacuate on values that have themselves not yet been copied,
which may cause an update to the generation allocation pointer. Once, for all
regions, the scan-pointer reaches the allocation pointer, the collection terminates.
The cheney function is shown in Fig. 6. Notice, again, that special treatment is
required for dealing with untagged values (only the case for pairs is shown).

The main GC function, called gc is shown in Fig. 7. It evacuates all values
in the root set and continues by calling the cheney function on all values on
the scan stack. Notice that the evacuate function pushes values that have been
copied to to-space onto the scan stack for further processing (the gt->status
field is used to ensure that the scan pointer is pushed at most once).
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void gc(void** rootset) {
while ( p = next_root(rootset) ) *p = evacuate (*p);
while ( p = pop_scanstack () ) cheney(p);

}

Fig. 7. The main GC function evacuates each of the values in the root set after which
the cheney function is called with scan pointers from the scan stack as long as there
are scan pointers on the stack.

To determines whether a minor or a major collection is run, a so-called heap-
to-live ratio is maintained, which by default is set to 3.0. Whenever the size of
the free-list of pages becomes less than 1/3 of the total region heap, garbage
collection is initiated upon the next function entry (i.e., safe point). After each
collection, it is ensured that the number of allocated region pages is at least
3.0 times the size of to-space (given the heap-to-live ratio is 3.0). The following
rules are deployed for switching between major and minor collections, allowing
an arbitrary number of minor collections between two major collections:

1. If the current collection is a major collection, the next collection will be a
minor collection. The region heap is enlarged to satisfy the heap-to-live ratio.

2. If the current collection is a minor collection and the heap-to-live ratio is not
satisfied after the collection, the next collection will be a major collection.

2.3 Mutable Objects and Large Objects

In the presence of mutable objects, the generation upward closure invariant may
be violated during program evaluation. In particular, a reference cell (which are
rare in a functional language) residing in an old generation, may be assigned
to point at a value residing in a young generation. We refine the generation
upward-closure condition as follows:

Definition 3 (Refined Generation Upward-Closure). For all values v, if
v is non-mutable and resides in an old generation then for all values v′ pointed
to from v, v′ resides in an old generation.

The refined generation upward-closure invariant is safe, if each minor collec-
tion traverses all reachable mutable values (even those that reside in old genera-
tions). For minor collections we extend the root set to contain, not only live values
on the stack, but also all references and tables allocated. How does the collector
locate all references and tables? Simply by arranging that such values are stored
in regions with distinguished region types. During a minor collection, the region
stack is traversed and objects in regions of type rty ref and rty array are
traversed. Thus, we avoid the implementation of the usual “remembered set”
of mutable values that have been updated since the previous collection. This
strategy can potentially be more costly than if a proper “remembered set” is
maintained, which we leave to future work.

Concerning the treatment of large objects, there are several options. In the
implementation, we are currently treating large objects without associating with
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being either young or old. Large objects are kept in one list associated with a
region descriptor. Following this strategy, large objects are not associated with a
particular generation (nor need they be associated with a color) and may there-
fore only be deleted during major collections. However, large objects should be
traversed (not copied), when reached, both during major and minor collections.

3 Experimental Results

In this section, we describe a series of experiments that serve to demonstrate the
relationship between region inference, non-generational garbage collection, and
the generational garbage collection algorithm presented in Sect. 2.

The experiments are performed with MLKit version 4.4.1 and Mlton
v20180207. MLKit version 4.4.1 generates native x64 machine code, which is
also the case for Mlton v20180207. The two compilers are very different. Whereas
Mlton is a whole-program highly-optimising compiler, MLKit features a smart-
recompilation system that allows for quick rebuilds upon modification of source
code.

All benchmark programs are executed on a MacBook Pro (15-inch, 2016)
with a 2.7 GHz Intel Core i7 processor and 16 GB of memory running macOS.
Times reported are wall clock times and memory usage is measured using the
macOS /usr/bin/time program. Measurements are averages over 10 runs. We
use m to specify memory usage (resident set size) and t to specify wall clock exe-
cution time (in seconds). Subscripts describe the mode of the compiler, with ∗r
signifying region inference enabled, ∗g signifying garbage collection enabled, and
∗G signifying generational garbage collection enabled. Thus, trG specifies wall
clock execution time with region inference and generational garbage collection
enabled. We use mmlton and tmlton to signify memory usage and wall clock exe-
cution time for executables running code generated by Mlton. The benchmark
programs span from micro-benchmarks such as fib37 and tak (7 and 12 lines),
which only use the runtime stack for allocation, to larger programs, such as vliw
and mlyacc (3676 and 7353 lines), that solve real-world problems. The program
msort-rf has been made region-friendly by the programmer.

By disabling region inference, we mean instructing region inference to allocate
all values that would be allocated in infinite regions in global regions (collapsed
according to their region type). Then not a single infinite region is deallocated
at run time and the non-generational garbage collection algorithm essentially
reduces to Cheney’s algorithm. Disabling region inference does not change the
property that many values are allocated in finite regions on the stack.

3.1 Comparison with Mlton

In this section, we present base numbers for running the benchmark programs
using the MLKit compiler with region inference and non-generational garbage
collection enabled. Figure 8 shows wall clock time for MLKit generated executa-
bles relative to wall clock time for Mlton (version v20180207) generated exe-
cutables. We see that for some of the programs, Mlton outperforms the MLKit
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(with and without garbage collection enabled). Mlton’s whole-program compi-
lation strategy, efficient IO-operations, and optimised instruction selection for
the x64 architecture, are good candidates for an explanation. Raw numbers for
the configurations are shown in Fig. 9, which also shows memory usage for the
different configurations. Even though the performance of all but one benchmark
is better with region inference alone, for some of the benchmark programs (i.e.,
those with numbers marked in bold in Fig. 9), region inference alone does not
suffice to obtain good memory performance.
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Fig. 8. Wall clock execution times for MLKit generated executables relative to exe-
cution times for Mlton generated executables (the dashed red base line). The orange
(left) bars show measurements for MLKit with only region inference enabled. The yel-
low (right) bars show measurements for when both region inference and GC is enabled.
(Color figure online)

3.2 Generational Garbage Collection

Measurements showing the effect of non-generational and generational garbage
collection in concert with region inference is shown in Fig. 10. First, notice
that region inference has a positive influence or no effect on performance in
all but one of the benchmarks, namely the Knuth-Bendix completion program,
for which region inference adds an excessive number of region parameters to the
main mutually recursive functions (explaining the slowdown). Second, genera-
tional garbage collection alone (without region inference) performs better than
or equivalent to (in all but one case) non-generational garbage collection (the
red line). Finally, for six or seven of the benchmarks, the combination of region
inference and generational garbage collection performs better than the combi-
nation of non-generational garbage collection and region inference. The results
are arguably quite sensitive to the heap-to-live ratio (a fair comparison should
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Program tmlton tr trg mmlton mr mrg

kbc 0.10 0.22 0.28 2.5M 6.9M 3.4M
simple 0.26 0.24 0.26 6.4M 2.6M 3.4M
mandelbrot 0.09 0.22 0.24 978K 1.4M 1.6M
life 0.54 0.91 1.11 2.6M 14M 1.6M
msort 1.09 0.83 1.53 427M 410M 137M
msort-rf 0.81 0.70 1.03 652M 102M 124M
mpuz 0.34 0.88 1.11 950K 1.2M 1.3M
barnes-hut 0.14 0.85 1.05 2.2M 284M 2.4M
logic 0.11 0.54 0.75 2.4M 276M 2.4M
DLX 0.51 0.19 0.23 33M 6.7M 6.9M
professor 0.37 0.66 0.54 1.6M 10M 1.4M
lexgen 0.21 0.41 0.57 18M 50M 8.1M
tsp 0.14 0.22 0.25 11M 8.3M 13M
vliw 0.05 0.09 0.11 8.4M 9.7M 4.6M
mlyacc 0.19 0.20 0.24 7.0M 66M 6.6M
zebra 0.51 2.18 2.54 1.6M 132M 1.3M
ratio 0.35 1.98 2.08 50M 38M 10M
fib37 0.32 0.38 0.38 937K 1.1M 1.1M
tak 0.68 1.23 1.26 938K 1.1M 1.1M

Fig. 9. Wall clock execution times and maximum resident memory usage for Mlton
generated executables and for MLKit generated executables with only region inference
enabled and with both region inference and non-generational GC enabled (averages of
10 runs). Numbers in bold highlight benchmarks for which region inference alone does
not suffice to obtain good memory behavior.
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perhaps allow the combination of generational garbage collection and region
inference to work with a higher heap-to-live ratio).

Figure 11 shows the garbage collection counts (crg, crG, cg, and cG) for the
different configurations. Notice that the garbage collection counts (and times)
are smaller when region inference is enabled. Notice also that the percentage of
memory reclaimed by the garbage collector is (close to) invariant to whether the
garbage collector is generational or not.

The MLKit features a region profiling tool [16], which allows for showing a
program’s use of regions over time. Figure 12 shows region profiles of MLY-
acc computations for four different MLKit runtime configurations. The pro-
files show that generational garbage collection combined with region inference
often requires more memory than when region inference is combined with non-
generational garbage collection, but also, that the profile obtained alone with
generational garbage collection is similar to the profile obtained with region infer-
ence and non-generational garbage collection enabled. The figure also demon-
strates a crucial point, namely that the global regions are often those that needs
to be collected by the reference tracing collector, which means that schemes that
attempt at collecting only the top-most regions will probably fail to be effective.

3.3 Memory Waste

Region inference combined with generational garbage collection results in more
memory waste (unused memory in region pages) than when combined with non-
generational garbage collection (up to 17% points more). The reason is that, with
generational garbage collection, each infinite region contains two lists of region
pages (one list for each generation), each of which may not be fully utilised.
Figure 13 gives memory waste percentages for the configurations wrg (region
inference and non-generational garbage collection), wrG (region inference and
generational garbage collection), wg (non-generational garbage collection), and
wG (generational garbage collection). As expected, the waste is high for the
region inference configurations. We also see that generational garbage collection
combined with region inference gives rise to the highest degree of waste.

4 Related Work

Most related to this work is the previous work on combining region inference and
garbage collection in the MLKit [17]. Compared to the earlier work, the present
work investigates how generational garbage collection can be combined with
region inference and how the concept of typed regions can be used to implement
a generation write barrier. There is a large body of related work concerning
general garbage collection techniques [19] and garbage collection techniques for
functional languages, including [7,18,23,29].

Incremental, concurrent, and real-time garbage collection techniques for func-
tional languages have recently obtained much attention. In particular, the pres-
ence of generations has been shown useful for collecting parts of the heap
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Fig. 12. The top-left MLYacc region profile shows the memory usage over time for a
runtime configuration with region inference enabled and reference tracing GC disabled
(denoted r). The top-right region profile shows the memory usage for a configura-
tion where non-generational GC is combined with region inference (denoted rg). The
configuration for the bottom-left region profile combines generational GC with region
inference (denoted rG) whereas the configuration for the bottom-right region profile is
using generational GC only (denoted G).

wrg wrG wg wG

Program (%) (%) (%) (%)
kbc 42 57 4 8
simple 13 30 2 6
mandelbrot 0 0 0 0
life 8 17 4 9
msort 2 5 2 4
msort-rf 3 6 2 4
mpuz 69 82 47 65
barnes-hut 10 18 2 5
logic 3 6 3 6
DLX 23 32 1 2

wrg wrG wg wG

Program (%) (%) (%) (%)
professor 25 38 10 17
lexgen 10 18 1 2
tsp 7 12 5 7
vliw 13 28 1 3
mlyacc 8 21 1 2
zebra 31 38 10 22
ratio 5 7 1 2
fib37 0 0 0 0
tak 0 0 0 0

Fig. 13. Memory waste. The numbers show the average percentage of region waste
(unused memory in region pages) measured at each collection.
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incrementally and in a concurrent and parallel fashion [3,21,22]. We leave it
to future work to investigate the use of regions and generations in the MLKit
for supporting concurrency and parallelism in the language.

A particular body of related work investigates the notion of escape analysis
for improving stack allocation in garbage collected systems [5,24]. Region infer-
ence and MLKit’s polymorphic multiplicity analysis [4] allow more objects to be
stack allocated than traditional escape analyses, which allows only local, non-
escaping values to be stack allocated. Other work investigates the use of static
prediction techniques and linear typing for inferring heap space usage [20].

Cyclone [26] is a region-based type-safe C dialect, for which, the programmer
can decide if an object should reside in the GC heap or in a region. Another
region-based language is Gay and Aiken’s RC system, which features limited
explicit regions for C, combined with reference counting of regions [15]. A modern
language for system programming is Rust, which is based on ownership types
for controlling the use of resources, including memory [2]. Ownership types are
also used for real-time implementations of Java [6]. None of the above systems
are combined with techniques for automatic generational garbage collection.

Also related to the present work is the work by Aiken et al. [1], who show how
region inference may be improved for some programs by removing the constraints
of the stack discipline, which may cause a garbage collector to run less often.
Region inference has also been used in practical settings without combining it
with reference-tracing garbage collection. In particular, it has been used as the
primary memory management scheme for a web server [10,11,13,14].

5 Conclusion and Future Work

We have presented a technique for combining region inference and generational
garbage collection in a functional language. Whereas generational collection by
itself is shown (in most cases) to be beneficial compared to a simple Cheney-style
non-generational collector, when generational collection is combined with region
inference, it turns out that region inference will take care of reclaiming much
of the memory that generational garbage collection would otherwise reclaim.
There are, however, potential benefits of a generational collector, which, in a
few cases, also leads to improved performance. For a more detailed description
of the implementation, consult the companion technical report [12].

As a first obvious candidate for future work, the x64 code generator can
be improved to generate more efficient code. Second, for making the technique
useful for applications that make heavy use of mutable objects, a proper imple-
mentation of a “remembered set” would be an appropriate next step. Finally, an
obvious candidate for future work is to investigate the possibility of combining
region inference and, perhaps, generations, with features for concurrency and
parallelism.
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Abstract. There is a growing interest in leveraging functional program-
ming languages in real-time and embedded contexts. Functional lan-
guages are appealing as many are strictly typed, amenable to formal
methods, have limited mutation, and have simple, but powerful con-
currency control mechanisms. Although there have been many recent
proposals for specialized domain specific languages for embedded and
real-time systems, there has been relatively little progress on adapting
more general purpose functional languages for programming embedded
and real-time systems. In this paper we present our current work on lever-
aging Standard ML in the embedded and real-time domains. Specifically
we detail our experiences in modifying MLton, a whole program, opti-
mizing compiler for Standard ML, for use in such contexts. We focus
primarily on the language runtime, re-working the threading subsystem
and garbage collector. We provide preliminary results over a radar-based
aircraft collision detector ported to SML.

Keywords: Real-time systems · Predictable GC · Functional
programming

1 Introduction

With the renewed popularity of functional programming, practitioners have
begun re-examining functional programming languages as an alternative for pro-
gramming embedded and real-time applications [8,9,15,27]. Recent advances in
program verification [2,14] and formal methods [1,16] make functional program-
ming languages appealing, as embedded and real-time systems have more strin-
gent correctness criteria. Correctness is not based solely on computed results
(logic) but also the predictability of execution (timing). Computing the correct
result late is as serious an error as computing the wrong result.

Functional languages can provide a type-safe real-time implementation that,
by nature of the language structure prevents common errors and bugs from
being expressed, such as buffer under/over flow and null pointer dereferenc-
ing. Programmers can thus produce higher fidelity code with lower programmer
effort [11]. Additionally, functional programming languages are easier to analyze
c© Springer Nature Switzerland AG 2020
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statically than their object oriented counter parts, and significantly easier than
C. As such, they purport to reduce time and effort from a validation and verifi-
cation perspective. Since many embedded boards are now multi-core, advances
in parallel and concurrent programming models and language implementations
for functional languages are also appealing as lack of mutable state often results
in simpler reasoning about concurrency and parallelism.

There are, however many challenges that need to be addressed prior to being
able to leverage a functional language for developing a real-time system. Func-
tional languages must exhibit deterministic behavior under resource constraints,
have runtimes that can be bounded in space and time, provide predictable and
low latency asynchronous responsiveness, as well as provide a robust concur-
rency model, to name a few [9]. We surveyed the current state of the art of
functional languages and their suitability for developing real-time systems [19],
by assessing metrics like the predictability of the language runtime, threading
and concurrency support, as well as the ability for the programmer to express
real-time constraints. We observed that all of the languages exhibited unpre-
dictable behavior once competition for resources was introduced, specifically in
their runtime architectures. The major challenges in providing a predictable
language runtime performance for the languages surveyed was their lack of a
real-time garbage collection (RTGC) mechanism (predictable memory manage-
ment).

In this paper we introduce a predictable language runtime for Standard ML
(SML) capable of executing real-time applications [17]. We use MLton [18], a
whole program optimizing compiler for SML, as a base to implement the con-
structs necessary for using SML in an embedded and real-time context. We
discuss adding a new chunked object model for predictable allocation and non-
moving real-time garbage collector with a reservation mechanism. We leverage
our previous experience with Multi-MLton [24] and the Fiji real-time virtual
machine [21] in guiding our modifications to MLton. Our changes sit below the
MLton library level, providing building blocks to explore new programming mod-
els. Our system supports running programs built using this system on RT-Linux,
a real-time operating system. We present performance measurements, indicat-
ing the viability of our prototype, which is publicly available for download at:
https://github.com/UBMLtonGroup. This paper is an extension of our previous
short workshop paper [15], to which we have added a detailed description of the
MLton runtime, the consequences of the design decisions adopted by MLton, and
the details of our chunked, concurrent, reservation based real-time GC algorithm.
We present additional benchmarks, including a full evaluation of our system on
a radar based aircraft collision detector.

2 MLton Architecture and Consequences for Real-Time

MLton is an open-source, whole-program optimizing SML compiler that gener-
ates very efficient executables. MLton has a number of features that are well
suited for embedded systems and that make it an interesting target for real-time
applications.

https://github.com/UBMLtonGroup
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2.1 MLton Threads

MLton compiled programs consist of only a single OS level thread, over which
many green threads are multiplexed. There is a set of three process-wide stack
pointers, distinct from the system stack and stored in a monolithic global struc-
ture called GC State, that point to the stack bottom, top and limit of the cur-
rently running computation. A thread in MLton is therefore a lightweight data
structure that represents a paused computation consisting primarily of a pointer
to the thread’s stack as well as an index into the stack to allow for unwinding
in the case of an exception.

When a thread is paused, the amount of stack space in use is saved from
the current process-wide stack to the thread’s stack structure (the other two
fields are essentially constants and would only change if the stack was moved or
grown by the GC). When a thread is resumed, the stack pointers are restored
to the process-wide stack fields and computation continues. Thus, thread con-
text switching at its most basic level consists of a pointer swap. An advantage
of this implementation is that context switches occur rapidly, and SML stack
operations, again being distinct from the system stack, are relatively cheap and
facilitate deep recursion. However, this comes at a cost when trying to move to
a parallel implementation. The thread runtime semantics are deeply embedded
into the compiler and many assumptions are made that are unsafe in a parallel
architecture.

MLton provides a logical ready queue from which the next runnable thread
is accessed by the scheduler. This is a regular FIFO queue with no notion of pri-
ority, however the structure is implicit, relying on continuation chaining and is
embedded in the thread switching code itself. This means that there is no single
data structure that governs threads nor is there an explicit scheduler. Threading
and concurrency libraries (e.g. CML and ACML) build on top of the MLton
threading primitives, therefore, introduce their own threading primitives, sched-
uler, policy, as well as structures for managing ready, suspended, and blocked
threads. This layering of low level threading constructs and higher level schedul-
ing constructs opens up a variety of possibilities with respect to rapidly exploring
different scheduling models without needing significant compiler retrofitting.

Consequences for Real-Time. The concept of prioritization is useful for
ensuring high priority tasks execute accordingly. When adding prioritization to
thread scheduling, one approach is to utilize the underlying OS for scheduling.
However, as noted in the section above, mapping pools of green threads to OS
threads leads to concurrency issues due to MLton’s use of a single global struc-
ture for state tracking. Another approach is to implement prioritization at the
green thread layer. This is not preferable for two reasons. First, there is no notion
of pre-emption at the green thread layer. As noted above, MLton threads are
essentially chained continuations, and so a thread switch is entirely at the dis-
cretion of the currently running thread. While one might argue that this could
open the way to the compiler generating a very finely calculated schedule, it
would also lead to unacceptable pauses due to I/O.



116 B. Shivkumar et al.

For example, if syntax is available for specifying timing constraints, then
a pre-determined (and validated) schedule can be generated [25], obviating the
need for specifying priorities. However, if one of the green threads in the schedule
attempts I/O, the underlying OS would pause the entire process until the I/O
completes. Therefore, we believe that it is necessary for the compiler’s runtime
to offer a clean, and safe, mapping of green threads to OS threads so that, for
example, I/O operations can be isolated onto a separate OS thread without
affecting high priority computations.

2.2 GC Architecture

MLton adopts a hybrid garbage collector that calls upon the runtime memory
utilization to decide the strategy it needs to use for collection. All SML objects
are allocated in a contiguous heap. All objects are initially allocated in the
Nursery section of the heap in bump pointer fashion until the nursery runs
out of space, upon which the garbage collector is called. If the ratio of bytes
live to nursery size is greater than a predetermined nursery ratio, the runtime
uses a minor Cheney copy GC [4]. A minor GC copies objects from nursery to
the beginning of the To space (i.e. appending to end of old generation) thus
increasing the old generation size and reducing To space and nursery size. When
there is no space in the nursery to allocate a new object, a major GC is triggered.
It is worthy to note that when there is no memory pressure, the To space is zero
size and old generation has the objects that have survived a collection. Therefore,
the generational GC isn’t triggered until the memory utilization is fairly large,
but the garbage collector can still be called for various other tasks like growing
the stack.

Major garbage collection is performed in one of the two strategies. If there is
enough space to allocate a new heap, the same size of the current heap, then a
Cheney copy GC is performed. If there is not enough space for the second semi
space, a mark compact GC is performed. The compaction aids in de-fragmenting
the heap as well as freeing up more space. After the mark compact phase, the
GC falls back to the minor GC for subsequent collections, until it again needs
to call a major GC.

MLton’s GC architecture is one that implements a “stop the world” (STW)
approach. In this approach, all computation threads pause while the garbage
collector runs. This design decision was made keeping in mind the single com-
putation model of MLton, that the heap is more prone to corruption if multiple
threads are accessing the heap when the GC is copying objects or doing a com-
paction. Pause times vary depending on the strategy being used for collection,
it follows that minor GC takes less time than a major GC. There are four kinds
of ML objects: Normal (fixed size) objects, weak objects, arrays and stacks. The
arrays and stacks are generally allocated in the old generation as they are more
likely to persist longer than the other two kinds of objects. Normal and weak
objects are bump pointer allocated in the nursery and then moved to the old
generation based on their longevity.
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Consequences for Real-Time. In a real-time setting the use of a STW GC
is a deal breaker. The cost of performing this GC is directly proportional to the
utilization of the heap, and if done during the tasks that have a tight deadline, it
could lead to deadline misses. Pre-empting the GC when it runs out of time could
make it real-time compatible but it will be useless as it could not be guaranteed
that collection would always complete. This could be addressed by implementing
incremental collection [20] strategies, but would require the GC to run as a sep-
arate thread which is contrary to MLton’s single threaded computation model.
The multiple GC strategies utilized by MLton further complicates the case by
making the maximum pause time more unpredictable, as the strategy used for
collection depends on the state of the heap when a collection is triggered.

3 Real-Time Extensions to MLton

To create a version of MLton that supports a real-time computation, we must
address the limitations described in the Sect. 2. At a high level, this includes mov-
ing concurrency to the OS level, with potential to support parallelism, extend-
ing the MLton threading model to support priorities and multiplexing over OS
threads, and redesigning the GC to be real-time aware.

3.1 Concurrency and Threading

The first step to having a threading model that supports OS-level concurrency
is to split the green threads multiplexed over a single OS thread over multiple
OS-level threads. More over, to support real-time execution we also must split
green threads based on their priority. In the most simple case there exists at
most one green thread (computation) for any given priority supported by the
system1. Figure 1 shows our concurrency model. An OS-level thread is created
for each priority the system supports. Currently we expose only the priorities
that the underlying OS or Real-time Operating System (RTOS) expose.

Main

MLton
thread 

MLton
thread

GC

MLton
Thread

PRI 0 PRI 1 PRI 2 PRI N

...

POSIX threads

Fig. 1. Priority Based OS/Green Thread Relationship Model

1 Most real-time systems have a specific set of priorities they support.



118 B. Shivkumar et al.

Migrating to a runtime system that leverages multiple OS-level threads,
requires re-engineering how MLton keeps track of the state of the system
using the GC State structure. This structure has numerous fields that store
the current position of frontier, current executing green thread, current Stack-
Top/StackBottom among others and all these values are accessed at any time by
offsetting a pointer to this structure. The decision to use one single structure for
storing all the global state was to make the access fast by caching the entire struc-
ture on a register. When there is a single thread of execution, there is no need to
worry about concurrent access to the GC State and thus the integrity of the state
is maintained. Introducing multiple threads of execution brings in a plethora of
changes including the necessity to differentiate between the thread of execu-
tion to which the value being stored belongs. Needless to say, threads must also
have controlled access to the shared fields in this structure. In RTMLton, we’ve
decided to keep GC State as a single structure, but implement arrays within it
where appropriate. This allows us to be more efficient when it comes to memory
utilization – an important consideration when targeting embedded systems. For
example, finding the current green thread running within the OS thread, we
would refer to the index GC State->currentThread[osthreadnumber].

3.2 Creating a Real-Time GC

To implement concurrent GC, it is necessary to have the garbage collector exe-
cute in its own thread so that it can work independently to mutator threads
(program threads). Multi-core implementations of SML like MultiMLton take
a different route in handling this separation. They use a per thread heap and
thus have a per thread GC which stays coupled to the execution thread. Multi-
ple heaps may pose other complexities (like read/write barrier overheads, global
synchronization) in an embedded or real-time system, which is why we chose a
single shared heap.

A shared heap implementation is easier but brings us back to the difficult
task of pulling out the GC onto a separate thread. In doing so, we need to make
sure each thread is responsible for growing its own stack and allocating objects it
requires. Although the GC can scan and collect while mutator threads execute,
mutator threads must be paused to scan their stacks and construct a root set.
This is necessary because MLton stores temporary variables on the stack and
if the GC were to run before the stack frame is fully reified, the results would
be unpredictable. MLton also will write into a newly created stack frame before
finalizing and recording the size of the frame. Without the identification of safe
points to pause the threads, the heap will be malformed with potentially live
objected considered dead. Fortunately, MLton identifies these safe points for us.
GC safe points in MLton are points in code where it is safe for the thread running
the code to pause allowing the GC to scan stacks.

Although GC safe points are pre-identified for us, the code generated by
the compiler assumes a single threaded model and so we found problematic
constructs such as global variables and reliance on caching important pointers
in registers for performance. We needed to rework these architectural decisions.
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As discussed above, MLton tracks a considerable amount of global state using
the GC State structure so we must refactor this structure, in particular, to make
it thread-aware. MLton also uses additional global state, outside of GC State
structure, to implement critical functionality.

Handling Fragmentation. The design of a real-time garbage collector should
ensure predictability. To eliminate GC work induced by defragmentation and
compacting the heap, we make sure that objects are allocated as fixed-size chunks
so that objects will never need to be moved for defragmentation through the use
of a hybrid fragmenting GC [22]. This chunked heap is managed by a free list.

Normal and weak objects are represented as linked lists. Since object sizes in
MLton are predictable at compile time, we achieve constant access time when
allocating these objects by sizing our chunks to fit an object. Arrays are rep-
resented as trees, in which each node is fixed-size. Internal nodes have a large
number of branches (32 in our implementation), which keeps access time log32(n)
and is close to constant. MLton constantly allocates small sized arrays and even
zero sized arrays. We represent such arrays as a single leaf to eliminate the over-
head of finding the immediate child of the root. During collection, the GC first
marks all fixed-size chunks that are currently live. Then it sweeps the heap and
returns all unmarked chunks to the free lists. This completely eliminates the
need for compaction in order to handle fragmentation.

Heap Layout: In MLton, the size of normal objects, arrays and stacks vary
significantly. Since one objective of a unified chunked heap is to prevent moving
during GC, we need to have all chunks be of the same size. This does lead to
space wastage in each chunk as object sizes vary. However, this opens up room for
potential optimizations where we can further explore packing of multiple MLton
objects into chunks either based on object sizes or their lifetimes, making the
GC much more efficient.

Object Layout: MLton already tries to pack small objects into larger ones.
In our empirical study, most normal MLton objects are around 24 bytes and
arrays are close to 128 bytes. We choose 154 bytes as the chunk payload that
carries MLton object along with an extra 12 bytes overhead associated with
normal object chunk management and an extra 56 bytes to manage array chunks.
Normal objects that are larger than 154 bytes are split into multiple chunks. In
our current implementation, we limit normal objects to two chunks each even
though we haven’t noticed objects that are greater than 64 bytes. The object
layout is depicted in Fig. 2.

In MLton, arrays are passed around using a pointer to its payload. The
header and length of an array are retrieved by subtracting the header size and
array length size from current pointer. We stick to this representation as much as
possible. Array nodes are represented in Fig. 2. Internal nodes carry 32 pointers
to their children. We pass an array around via a pointer to its first leaf. A root
pointer and a next pointer is embedded in the leaf node. The leaf pointer connects
all leaves that actually carry payloads for potential linear traversal optimization.
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MH Payload CH CO Next Payload

MH = MLton Header CH = Chunk header CO = Chunk Offset 
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Internal pointers
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MAL=MLton Array Length 
MAH = MLton Array Header 
NC= No. of Chunks
FO = Fan Out

PayloadMH
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Fig. 2. Chunked object layout

For an array that is 128 bytes or less, we can fit it into 1 leaf chunk. For arrays
that span multiple chunks, we construct trees. When accessing an element of an
array, we first follow the root pointer to retrieve the root node and then access
the array in a top down manner, in which we determine the branch in current
node by index % FO, then we follow the branch to an alternative internal node.
The process is repeated until we finally arrive at a leaf.

Array Limitations. Flattening refers to the multiple optimization passes in
MLton that reduces the overhead for accessing nested objects. Unfortunately,
it is difficult to reliably decide on an array element size after flattening that
can be used at the time of allocation, since tuples can carry elements that dif-
fer in size. Our tree-structured array has no information about flattening and
the access scheme generated from MLton after flattening cannot work with our
chunked array model. Hence, we need to disable some of the flattening opti-
mization passes. We first tried disabling all the flattening passes including local
flatten and deep flatten. But in our later investigation, only deep flatten will try
to flatten objects in arrays. The local flatten passes are totally compatible with
our implementation.

GC Model. For collection, our concurrent GC leverages a traditional non-
moving, mark and sweep scheme with a Dijkstra’s incremental update write
barrier [6]. It is needless to say that our GC thread runs on its own OS thread
and operates independently of the mutator, repeating the steps below. Each loop
signifies a GC Cycle:

Wait for Synchronization - In this phase, the GC is waiting for all the
mutator threads to synchronize at the GC checkpoints so that it can continue
with its work in a safe manner. MLton performs complicated data flow and
control flow analysis to insert GC checkpoints to minimize the number of garbage
collections needed. However, the data flow and control flow analysis assumes a
single heap model and objects are calculated by number of bytes required (and
not chunks), which is incompatible with our model. One solution is to patch up
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each path in the GC check flow, redirecting all GC checks to our GC runtime
function and let the C runtime function decide whether a garbage collection is
needed. This method has high overheads in the form of preparing the code to
jump to a C call which involves having to save all the temporaries currently live
onto the stack as local variables and adding a C FRAME marker onto the stack
all of which not only increases the stack size but also affects overall runtime of
the program. In RTMLton, we currently add an optimization pass (gc-check)
which sums up the allocations in a block and inserts a check to see if there are
adequate chunks left. If the block does not allocate objects at all, we ignore
it. Such a check only introduces a branch and an inlined integer comparison,
which is much faster and more efficient than the former method. Since arrays
are allocated by the C runtime, MLton ensures the stack is completely prepared
before jumping into GC arrayAllocate. We can thus safely make GC checks in
the array allocation.

Currently, each thread walks its own stacks and marks all chunks that are
immediately reachable from its stacks using a tricolor abstraction. All the chunks
that are immediately reachable from the stack are marked black (meaning reach-
able and explored) and the children of the black chunks are shaded gray (reach-
able but unexplored) and then put into a worklist. It follows that any chunk
marked white, or unmarked, is not reachable and hence would be eventually col-
lected. This model where each thread scans only the root set from the stacks and
the GC scans the rest and sweeps concurrently, is different from that of MLton’s
monolithic GC model, in that the mutator doesn’t have to wait till the entire
heap is scanned. By having each thread scan its own stack, at the end of its
period, also contributes to making the GC work incrementally which would give
good mutator performance. When all the mutators have finished marking their
own stacks at their GC Checkpoints they set a bit to indicate that they have
synced and the last mutator to do so would signal the GC to start its process in
parallel as all the mutators go about doing their respective jobs.

Start Marking - The GC starts marking the heap when it receives the all
synced signal from mutators. All object chunks in the worklist are gray at this
point and the GC starts by marking all reachable chunks from each worklist item.
Each time a worklist object is picked up, it is marked black and when it has been
fully explored, it is removed from the worklist. Marking proceeds as before with
the chunk being marked black when reachable and all the chunks immediately
reachable from it are shaded gray. The GC aims to collect all reachable objects
without wrongfully collecting objects in use. But with the mutator allocating
while the GC is marking, it could lead to a rearrangement of the heap by the
mutator that invalidates our marking. Which is why we make use of a Dijkstra
style incremental update barrier which enforces the strong tricolor invariant.
The strong tricolor invariant states that there should be no pointers from black
objects to white objects. The write barrier is inserted by the compiler on any
pointer store on the heap, and upholds the strong invariant by shading gray, any
pointer store that moves a white chunk into a black chunk. The write barrier
is made to selectively perform this operation (turned on) only when the GC is
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running in parallel and at other times only does an atomic comparison to see if
it the GC is running or not. When the write barrier is turned on, all new object
chunks are allocated gray so as to protect them from collection. Marking phase
ends when the worklist is empty.

Sweep - Once the marking is done the GC traverses the heap contiguously and
reclaims any unmarked chunks back to the free list. While it sweeps the heap,
the GC also unmarks any chunk that is marked in order to prep it for the next
GC cycle. Adding a chunk back to the free list is done atomically and involves
some small book keeping work like clearing out the chunk headers. Since we are
using a chunked heap, we do not need to perform any defragmentation and the
addition of chunks back to free list makes it available for reuse almost instantly.

Cleanup and Book Keeping - Before the GC goes back to waiting for syn-
chronization phase, it does some clean up and book keeping like clearing out the
sync bits and waking up any mutator that is blocked while waiting for the GC
to complete its cycle. In a typical scenario no mutator will be paused while the
GC is running except initially to scan its own stack but when the memory is
very constrained it may so happen that the mutator does not have enough free
chunks to satisfy its allocation requests. Ideally, RTGCs rely on efficient schedul-
ing policies to ensure that the GC runs enough to make sure these scenarios are
avoided, but in the absence of such policies we currently block the mutator if it
doesn’t have enough chunks free and the GC is running. The GC decides to die
with an Insufficient memory message when it has made no progress(all mutators
are blocked) in 2 consecutive GC cycles.

Memory Reservation Mechanism. MLton generated C code is split into
basic blocks of code with each block containing multiple statements and ending
with a transfer to another code block. These code blocks are translated from the
SML functions and an SML function can span multiple C code blocks. When
an allocation is done, the allocated objects are pushed into stack slots if the
transfer out of the code block has the potential to invoke the GC, failing which
may result in the newly allocated object being wrongfully collected. In vanilla
MLton, GC can be invoked only from GC safepoints, which ensure that the
allocated objects are pushed into appropriate stack slots before the GC runs. In
RTMLton however there are two possible places where the GC can be invoked:
One, at GC safepoints and two, during allocation when there are no free memory
chunks available.

When the GC is invoked at the point of allocation in RTMLton, it leads to
an edge case where any previously allocated chunk might be wrongfully collected
in very tight memory scenarios, because they were not pushed into stack slots.
An allocation statement is not a transfer in MLton’s design and therefore it does
not expect a GC to happen at that point. Consider the scenarios in Fig. 3:

Scenario 1 and 2 show the cases when the GC is running (i.e. write barrier
is turned ON) and Scenario 3 and 4 show the cases when the GC is not running
(i.e. write barrier turned OFF). In Scenario 1, you have a code block with 2
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Fig. 3. Allocation scenarios

sequential allocations and there are more than 2 free chunks available. Since
the write barrier is ON, both objects are allocated gray and since there is more
than 2 free chunks available, no GC is triggered. In Scenario 2, there is just 1
free chunk available. So the first object is allocated gray and when the second
allocation happens, the GC is triggered. But since the GC was already running,
the first object in shaded and is not wrongfully collected by the GC. Scenario 3
shows the execution when there are more than 2 free memory chunks available.
Since the write barrier is turned off, both objects are allocated white. Since
there are enough memory chunks available, GC isn’t triggered and execution
completes normally. When there is only one free chunk available in memory, it
leads to the case as in Scenario 4. Since the write barrier is turned OFF (GC
isn’t running), Alloc1 is allocated white. When control reaches Alloc2, there is
a need to invoke the GC as there are no free chunks left. But this time, Alloc1
is not shaded as in the case of Scenario 2 and is therefore wrongfully collected
by the GC.

One possible solution to this issue is to convert all allocation into transfers
(calls to C functions) and then let MLton appropriately protect all previous
allocations by pushing them into stack slots before the next allocation happens.
This would involve splitting up each of the C basic blocks further into multiple
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blocks with each block containing only allocation. We found that this however
involves a considerable overhead in terms of the code size as well as the stack
space since the number of allocations done by a program isn’t trivial.

Fig. 4. Reservation mechanism snippet

Another way, which we find more efficient, is to guarantee that when a basic
block is being executed, it will either receive all the memory chunks it requests
for allocation or it will not execute at all. Thus guaranteeing that the GC won’t
be invoked from an allocation point. MLton already has information about the
number of chunks allocated (except allocations by runtime methods) in every
block at compile time. We can use this to our advantage by leveraging the gc-
check pass we put in to do a little more than insert the GC checkpoints. At the
point where we insert the GC check, we reserve the number of memory chunks
the next code block needs. Reservation is done by atomically incrementing a
counter before executing the block and then decrementing it when the object is
actually allocated. Figure 4 summarizes the logic involved in reserving allocations
before a block is executed.

If the number of free chunks available is lesser than what is already reserved
and what is required by the next block, a GC checkpoint is inserted by the
optimization pass and the mutator is blocked preventing the execution of the
next block until woken up by the GC. If there are enough free chunks available,
we simply increment the reserved count by the number of chunks the mutator will
need and any subsequent mutator that tries to allocate will know that those many
chunks have already been reserved from the free list. It is to note that the pass
does not consider array allocations and other allocations like a new thread object
or new stack frames since these are decided at runtime. But as discussed before,
MLton appropriately manages the stack before transferring into such runtime
functions, making it safe to have the runtime do the reservation in these cases
thus adhering to the policy of “No allocation without reservation”. In contrast
to the other method of splitting each block to have only one allocation, this
method incurs no specific overhead except that of the statements to increment
and decrement the reserved count. Currently this check and reservation is done
at a per block level but it opens up potential to incorporate some of MLton’s
complex control and dataflow analysis to find a better place to reserve memory
chunks as part of future work.
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4 Evaluation

Comparing RTMLton to MLton using the MLton benchmark suite, indicates
that RTMLton performs similarly to MLton in tests that do not employ arrays
extensively (less than 15% overhead) and performance degrades in tests, like
matrix multiplication, that make use of arrays heavily without amortizing these
costs. Thus the matrix multiplication benchmark exhibits the worst case perfor-
mance of our system due to array access overhead (roughly 2x slow down) [15].
We expect to be able to address this overhead by adjusting our array layout in
future revisions of our system and reworking MLton’s optimization strategies
to be real-time compliant. Raw performance, however, is not how real-time sys-
tems are evaluated. Predictability is paramount in the system and overheads,
as long as they can be accounted for, are ok if the system can meet its target
deadlines. We evaluate the predictability of RTMLton on an SML port of a real-
time benchmark, the aircraft Collision Detector (CDx) [13]. CDx is an airspace
analysis algorithm that detects potential collisions between aircrafts based on
simulated radar frames and used to evaluate the performance of C and Java
based real-time systems. CDx consists of two main parts namely the Air Traffic
Simulator (ATS) and the Collision Detector (CD). The ATS generates radar
frames, which contain important information about aircraft, like their callsign
and position in 3D space. The ATS produces a user defined number of frames.
The CD analyzes frames periodically and it detects a collision in a given frame
whenever the distance between any two aircrafts is smaller than a predefined
proximity radius. The algorithm for detecting collisions is given in detail in the
original paper [13]. The CD performs complex mathematical computations to
discover potential collisions and benchmarks various properties of the system
like deadline misses and response time for operation. CD processes frames dif-
ferently based on how far apart planes are in the frames. It does a simple 2D
analysis when planes are further away and does a more complicated 3D calcula-
tion of relative positions when a collision is imminent. At its core, the benchmark

Fig. 5. Performance of RTMLton and MLton on CDx.
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is a single periodic task that repeats the collision detection algorithm over the
subsequent radar frames.

We run the CDx benchmark using a period of 50ms for the CD and leverage
a workload that has heavy collisions and measure the computation time for
each release of the CD thread. We gather numbers over 2000 releases of the CD
thread and graph out the distribution of the computation times and compare
it with the deadline for the task. For readability and due to space constraints
we highlight a representative 200 releases. To measure the predictability of each
system we rerun the same benchmark with a noise making thread, which runs a
computation that allocates objects on the same heap as the CD thread. The noise
thread is scheduled along with the CD thread. In RTMLton the noise making
thread is executed in a separate POSIX thread which allows the OS real-time
scheduler to schedule threads preemptively and based on their priority. In vanilla
MLton the noise making thread is just a green thread that is scheduled non
preemptively (co-operatively) with the CD thread. Thus, in MLton all jitter in
the numbers is isolated to the runtime itself as the noise making thread can never
interrupt the computation of the CD thread. If the noise making thread would
be scheduled preemptively the jitter would increase further since MLton does
not have a priority mechanism for threads. All benchmarks are run on an Intel
i7-3770 (3.4 GHz) machine with 16 GB of RAM running 32-bit Ubuntu Linux
(16.04) with RT-Kernel 4.14.87.

We expect RTMLton to perform more predictably than MLton under mem-
ory pressure as the RTMLton GC is concurrent and preemptible. Figure 5 shows
the results of running the benchmark on RTMLton and MLton respectively. As
expected, RTMLton does not distort the computation time by more than the
deadline when the noise thread is running, but does exhibit overhead compared
to MLton as we saw in the regular benchmarks. The computation time with
the noise thread is a little more than without noise in RTMLton due to the
increase in frequency of the CD thread having to mark its own stack, but it
is never exceeds the task deadline of 50 ms. When used with a scheduling pol-
icy which does incremental GC work, by forcing the mutator to mark its own
stack at the end of every period, we expect to the runtime be more uniform
irrespective of noise. We leave exploration of such scheduling policies as part
of future work. In the case of MLton, we can see that the computation time
varies up to a maximum of over 400 ms, when it has to compact the heap in
order to make space for CD to run. Such unpredictability is undesirable and
leads to a huge impact in terms of missing deadlines and consequently jitter on
subsequent releases. The graphs also show that with no memory pressure vanilla
MLton performs better than RTMLton. This is expected as our system does
induce overhead for leveraging chunked objects. Similarly, we have not yet mod-
ified MLton’s aggressive flattening passes to flatten chunked objects. Operations
that span over whole arrays are implemented in terms of array random access
in MLton’s basis library. In MLton’s representation, this implementation is fast;
accessing each element incurs O(1) cost. But this implementation induces over-
head in RTMLton due to O(log(n)) access time to each element. In this case,
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the logarithmic access time is a trade off – predictable performance for GC for
slower, but still predictable, array access times2. Another source of overhead for
RTMLton is the per-block GC check and reservation mechanism. In comparison
MLton performs its GC check more conservatively, as discussed in Sect. 3.2, but
crucially relies on a lack of OS level concurrency for the correctness of this opti-
mized GC check. Figure 5 shows some frames in RTMLton taking a lot more time
than the others even under no memory pressure; these computations represent
the worst case performance scenario for RTMLton on the CD benchmark as they
are computationally more intensive (due to imminent collisions in the frame) and
do significantly more allocations as well, thereby increasing the number of times
the mutator needs to scan its stack. Although the benchmark triggers the worst
case, RTMLton is still able to meet the task deadline for CD.

To better understand the predictability of object allocation in RTMLton,
we implemented a classic fragmentation tolerance benchmark. In this test we
allocate a large array of refs, de-allocate half of it, and then time the allocation
of another array which is approximately the size of holes left behind by the
deallocated objects. Figure 6 shows that when we move closer to the minimum
heap required for the program to run, MLton starts takes a lot more time for
allocating on the fragmented heap whereas RTMLton, with its chunked model, is
more predictable. Since we are allocating arrays in the fragmentation benchmark
we expect the high initial overhead of RTMLton as multiple heap objects are
allocated for every user defined array since they are chunked. Another reason for
the default overhead is because we portray the worst case scenario for RTMLton
by having our mutator scan the stacks on every GC checkpoint, irrespective
of memory pressure. Despite these overheads, RTMLton manages to perform
predictably when heap space is constricted and limited. MLton, however, is
inherently optimized for the average case and so the allocation cost degrades
when heap pressure is present. We note that most embedded systems run as close
to the minimal heap as possible to maximize utilization of memory. Predictable
performance as available heap approaches an application’s minimum heap is
crucial and is highlighted in the shaded region of the Fig. 6.

5 Related Work

Real-Time Garbage Collection: There are roughly three classes of RTGC:
(i) time based [3] where the GC is scheduled as a task in the system, (ii) slack
based [22] where the GC is the lowest priority real-time task and executes in the
times between release of higher priority tasks, and (iii) work based [23] where
each allocation triggers an amount of GC work proportional to the allocation
request. In each of these RTGC definitions, the overall system designer must
take into consideration the time requirements to run the RTGC. We currently
2 Almost all dynamically allocated arrays are small and fit into one chunk making

them O(1) access and large arrays are statically allocated and their size known up
front so the O(log(n)) access time can be taken into consideration when validating
the system.
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Fig. 6. Fragmentation tolerance

have adopted a slack based approach in the context of real-time MLton, though
a work based approach is also worth exploring.

Other Languages with Real-Time Capabilities: Our survey [19] of existing
functional languages and their real-time adaptability showed us that most lan-
guages we reviewed were found to be lacking in at least one of the key areas we
identified in order to provide a predictable runtime system. However, some func-
tional Domain Specific Languages (DSL) were found to be very suitable for hard
real-time applications. DSLs, by their nature, offer a reduced set of language and
runtime functionality and so are not suitable for general purpose real-time appli-
cation development. Also notable are efforts such as the real-time specification
for Java (RTSJ) [7] and safety critical Java (SCJ) [12], which provide a general
purpose approach but burden the developer with having to manage memory
directly. For example, both provide definitions for scoped memory [10], a region
based automatic memory management scheme where the developer manages the
regions. There is also research available on how to lessen the burden by auto-
matically discovering how to infer scoped regions [5]. Finally, there is research
in applying a region based memory management approach, while avoiding the
use of a GC, in the context of SML [26].

6 Conclusion

In this paper we discussed the challenges of bringing real-time systems program-
ming to a functional language and presented the GC specific implementation
challenges we faced while adapting MLton for use on embedded and real-time
systems. Specifically, we discussed our chunked model and how it leads to more
predictable performance, which is critical for real-time applications, when heap
utilization is high. We used an aircraft Collision Detector (CDx) to benchmark
the predictability of our system relative to general purpose MLton and show in
our evaluation section that our worst case GC impact is constant which is an
important objective to achieve in a real-time language. We observe that while
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we are slower than generic MLton, it is due to conservative design decisions that
can be addressed in future revisions of our system. We believe our biggest con-
tribution in this paper is the integration of a real-time suitable garbage collector
into a general purpose, functional language to allow for the targeting of real-time
systems.
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References

1. Arts, T., Benac Earle, C., Derrick, J.: Development of a verified erlang program
for resource locking. Int. J. Softw. Tools Technol. Transf. 5(2), 205–220 (2004)

2. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009). Special Issue on Mathematics of Pro-
gram Construction (MPC 2006)

3. Bacon, D.F., Cheng, P., Rajan, V.T.: Controlling fragmentation and space con-
sumption in the metronome, a real-time garbage collector for Java. In: Proceed-
ings of the 2003 ACM SIGPLAN Conference on Language, Compiler, and Tool for
Embedded Systems, LCTES 2003, pp. 81–92. ACM, New York (2003)

4. Cheney, C.J.: A nonrecursive list compacting algorithm. Commun. ACM 13(11),
677–678 (1970)

5. Deters, M., Cytron, R.K.: Automated discovery of scoped memory regions for
real-time Java. In: Proceedings of the 3rd International Symposium on Memory
Management, ISMM 2002, pp. 132–142. ACM, New York (2002)

6. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-
the-fly garbage collection: An exercise in cooperation. Commun. ACM 21(11),
966–975 (1978)

7. Gosling, J., Bollella, G.: The Real-Time Specification for Java. Addison-Wesley
Longman Publishing Co., Inc., Boston (2000)

8. Hammond, K.: The dynamic properties of Hume: A functionally-based concurrent
language with bounded time and space behaviour. In: Mohnen, M., Koopman,
P. (eds.) IFL 2000. LNCS, vol. 2011, pp. 122–139. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45361-X 8

9. Hammond, K.: Is it time for real-time functional programming? In: Gilmore, S.
(ed.) Revised Selected Papers from the Fourth Symposium on Trends in Functional
Programming, TFP 2003, Edinburgh, United Kingdom, 11–12 September 2003.
Trends in Functional Programming, vol. 4, pp. 1–18. Intellect (2003)

10. Hamza, H., Counsell, S.: Region-based RTSJ memory management: State of the
art. Sci. Comput. Program. 77(5), 644–659 (2012)

11. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107
(1989)

12. JSR 302: Safety Critical Java Technology (2007)
13. Kalibera, T., Hagelberg, J., Pizlo, F., Plsek, A., Titzer, B., Vitek, J.: CDX: A family

of real-time Java benchmarks. In: Proceedings of the 7th International Workshop
on Java Technologies for Real-Time and Embedded Systems, JTRES 2009, pp.
41–50. ACM, New York (2009)

https://doi.org/10.1007/3-540-45361-X_8


130 B. Shivkumar et al.

14. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: A verified implemen-
tation of ML. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2014, pp. 179–191. ACM, New
York (2014)

15. Li, M., McArdle, D.E., Murphy, J.C., Shivkumar, B., Ziarek, L.: Adding real-time
capabilities to a SML compiler. SIGBED Rev. 13(2), 8–13 (2016)
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Abstract. Programming with explicit timing information is often
tedious and error prone. This is especially visible in music programming
where, when played, the specified durations of notes and rests must be
shortened in order to compensate the actual duration of all surrounding
processing. In this paper, we develop the notion of timed extension of
a monad that aims at relieving programmers from such a burden. We
show how, under simple conditions, such extensions can be built, and
how useful features of monad programming such as asynchronous con-
currency with promises or data-flow programming with monadic streams
can be uniformly lifted to the resulting timed programming framework.
Even though presented and developed in the abstract, the notion of
timed extension of a monad is nevertheless illustrated by two concrete
instances: a default timed IO monad where programmers specify dura-
tions in microseconds, and a musically timed IO monad, where program-
mers specify durations in number of beats, the underlying tempo, that is,
the speed of the music in beats per minute, possibly changed whenever
needed.

1 Introduction

Timed programming. The simplest example of timed programming is prob-
ably a program that plays some music. Assume a function f :: Int → Note that
tells which note is to be played at any instant n from start. Assume that we want
to play each of these notes for one second, with one second of silence (or rest)
between each note. With duration arguments expressed in seconds, in Haskell’s
IO monad, one could expect that the program:

playMusic :: (Int → Notes) → Int → IO ()
playMusic f n = do {playNote (f n) 1; delay 1; playMusic f (n + 1)}

realizes such an expected behavior when launched by playMusic f 0. While this
program should be correct, for it is defined with the correct timing specification,
it is actually not, for it relies on the false assumption that every other computa-
tions but those that are specified with a given duration are instantaneous.

More precisely, one can define the time drift of this program as the difference
between the actual instant a note is played and the specified instant it should
have been played. Then one can observe that, when ran, the time drift of the
program above is unbounded. Indeed, it increases, note after note, at least by
c© Springer Nature Switzerland AG 2020
E. Komendantskaya and Y. A. Liu (Eds.): PADL 2020, LNCS 12007, pp. 131–147, 2020.
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the actual duration of the computation of each note. In other words, such a
program, when run in the IO Monad yields a time leak. Playing correctly such
a music requires at least reducing the specified duration of each note or rest
by the actual duration of the surrounding computations, implicitly but wrongly
assumed to be of neglectable duration, not mentioning the time inaccuracy of
actions such as delays.

Though simple, the explicit programming of such reductions in order to
achieve a correct scheduling in time is repetitive, tedious and therefore error
prone. We aim at relieving programmers from such a burden. One way to achieve
this is to treat the program above as correct, for it specifies correct specified dura-
tions, and, instead, to change the way it is executed at runtime, that is, to change
the underlying monad.

A Timed IO Monad. It is a well established fact that, thanks to monad
modeling, pure functional programming can be safely extended to programming
with side effects [15,19]. Observing that passing time is a side effect, we thus aim
at designing some timed monad that freely allows the programmer to assume
that many actions are instantaneous, even if they certainly are not, and assume
that all other actions have a specified positive duration, even if their actual
durations will be shortened for achieving a correct scheduling.

This can be done by extending monads to timed monads in such a way that
there is a clean distinction between:

(1) the specified temporal scheduling, automatically derived from the specified
durations of the timed actions contained in a program,

(2) the actual temporal scheduling observed when running that program in the
underlying monad, induced by the actual durations of these timed actions,

in such a way that, if possible and within reasonable bound, the actual temporal
scheduling matches the specified temporal scheduling.

Observe that such a distinction between specified and actual temporal
scheduling is fairly standard in music. The specified scheduling is described in
the music score, as written by the composer, the actual scheduling is observed
during the music performance, as defined by the musicians.

Organization of the Paper. The notion of timed extension of a monad is
defined in Sect. 2 via a type class and some equational properties every instance
of that class shall satisfy. We also discuss the validity of these equations, fairly
sensitive in presence of measured time.

In Sect. 3, we show how a monad can be uniformly extended into a timed
monad as soon as it is equipped with basic timing primitives. This is achieved
by extending the (implicit) monad state by an (explicit) timestamp that refers
to the expected or specified timestamp in that state. Under simple conditions of
the existing basic timing primitives, the time drift is provably positive in any
state. Applied to the IO monad, this yields a timed IO monad with duration
measured in microseconds.

Considering multi-scales approach, we provide in Sect. 4 another uniform
timed extension of a monad, with basic timing primitives defined over one dura-
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tion type, that yields a timed monad extension defined over another duration
type. Applied to the IO monad, this yields a musically timed IO monad with
duration measured in number of beats, a dynamically changeable tempo defining
the beat rate w.r.t. to the underlying physical duration type.

Last, we show how various monadic programming features, when available
in the underlying monads, can be lifted to their timed extensions. This includes
asynchronous concurrent programming with promises (Sect. 5), or data-flow pro-
gramming with monadic streams (Sect. 6). Related works are then discussed in
Sect. 7 before examining some potential followups in Sect. 8.

2 Timed Monad Class

We describe below the notion of timed extension of a monad. The monads we
shall consider are assumed to be strict, that is, when executing a bind m >>= f ,
the action m is always evaluated before evaluating f on the returned value, i.e.
the bind is strict in its first argument.

2.1 Timestamp, Duration, Time Scale and Time Drift

We briefly review here (our encoding of) basic timed concepts. A timestamp is
defined here as the duration elapsed from some fixed but unknown initial time.
We expect timestamps, therefore durations as well, to be totally ordered in a
time scale. In Haskell, this is done by putting:

newtype Time d = Time d deriving (Eq ,Ord)
where d is the duration type and Time d is the timestamp type. While the sum
of two durations makes perfect sense, the sum of two timestamps does not, so
we (only) equip timescales with the following primitives:

duration ::Num d ⇒ Time d → Time d → d
duration (Time d1) (Time d2) = (d1 − d2)
shift ::Num d ⇒ Time d → d → Time d
shift (Time d1) d2 = Time (d1 + d2)

that measures the (relative) duration between two timestamps, and that shifts
a timestamp by some duration.

As already mentioned in the introduction, a key point of our proposal lays
in the distinction between:

(1) expected timestamps used for scheduling specification,
(2) actual timestamps observed along scheduling realization.

This distinction induces a timing performance measure: the time drift defined
as the difference between the actual timestamp and the expected timestamp.

It is a desirable property that, in a running timed program, the time drift
is kept positive so that no action is actually scheduled before its specified time,
and bounded so that any specified duration above that bound can accurately be
handled by the underlying scheduler.
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2.2 Timed Monad

Simply said, a timed monad is a monad where every action has some specified
(possibly dynamic) duration. The interface of a timed monad is detailed by the
following type class:

class (Ord d ,Num d ,Monad m,Monad t)
⇒ TimedMonad m d t | t → m, t → d where
now :: t (Time d)
drift :: t d
delay :: d → t ()
lift ::m a → t a
run :: t a → m a

that describes a timed monad t :: ∗ → ∗ that extends a monad m :: ∗ → ∗ with
duration measured over some type d :: ∗. There, the functional dependencies
t → m and t → d ensure that both the initial monad m and the duration space
d are uniquely determined by the timed monad t .

The meaning of these primitives is detailed below. Let us mention however
that now shall return the current specified timestamp, drift shall return the
current time drift, the actual or real timestamp being defined by the following
derived action:

realNow :: TimedMonad m d t ⇒ t (Time d)
realNow = do {t ← now ; d ← drift ; return (shift t d)}

insisting again, if ever needed, on such a crucial distinction we are making
between specified and actual timing information.

We provide below some equational laws that every timed monad instance
shall satisfy. For such laws to be stated smoothly enough, we define the following
timed monad action that, parameterized by a timed action m, returns its specified
duration, that shall always be positive.

dur :: TimedMonad m d t ⇒ t a → t d
dur m = do {t0 ← now ; ← m; t1 ← now ; return (duration t1 t0)}
Observe that computing such a specified duration implies running the action

together with its side-effects but dropping its returned value. This means that,
in practice, it shall be of little use. We will later see, in Sect. 5, another way to
retrieve the specified duration of a running timed action for using it elsewhere
in a program.

2.3 Timed Monad Laws

The semantics of timed primitives is detailed more formally by the following
invariant laws that shall be satisfied by any monad m extended into a timed
monad t over a duration type d . The reader shall keep in mind that dur measures
specified durations, not real ones, most of the laws being obviously false when
precise enough real durations are considered.
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Monad primitives. First, since the timed monad t is first a monad, the usual
monad laws shall be satisfied:

return a >>= f ≡ f a (1)

m >>= return ≡ m (2)

(m >>= f ) >>= g ≡ m >>= (λx → f x >>= g) (3)

with the following duration laws for monad primitives:

dur (return a) ≡ return 0 (4)

dur (m >> m ′) ≡ dur m >>= λd → dur m ′ >>= λd ′ → return (d + d ′) (5)

for every value a :: a, action m :: t a, action m ′ :: t b and function f :: a → t b.
In other words, return actions take no time and the duration of two actions
composed by the bind operator is the sum of the durations of these actions. As
a derived law, since fmap f m = m >>= (return ◦ f ), we also have:

dur m ≡ dur (fmap f m) (6)

for every action m ::t a and function f ::a → b. In other words, in a timed setting,
functors preserve specified durations, time measurement acting over types as a
fibration [10].

Current (Specified) Time and Drift. The action now shall instantaneously
return the current specified timestamp as evaluated by accumulating the spec-
ified durations of the action performed before that one. The action drift shall
instantaneously return the current time drift, that is, the difference between the
actual timestamp (as measured by the underlying runtime) and the specified
timestamp (as stored in the underlying timed monad state). By instantaneous,
we mean that the following equations shall be satisfied:

dur (now) ≡ return 0 (7)
dur (drift) ≡ return 0 (8)

These equations also imply that neither now nor drift have any side effect.

Delays. The action delay d shall wait until the current specified timestamp (as
returned by now) shifted by the given positive duration d is eventually passed
for real therefore, in optimal cases, reducing the time drift to a minimal value.
The following laws shall be satisfied:

dur (delay d) ≡ delay d >> return d (9)

delay (d1 + d2) ≡ delay d1 >> delay d2 (10)

delay (−d) ≡ return () (11)

for every positive duration d d1 d2 :: d . The first law states that the speci-
fied duration of delay d is the parameter d, the second one states that delay
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restricted to positive durations is additive with respect to bind, the third one
states that delays with negative durations have no effects at all. As we shall
observe in Sect. 5.3, as safer assumption could be that a delay of negative dura-
tion creates a temporal causality error.

Instantaneous Lift. The function lift shall turn an action of the underlying
monad m to an action in the timed monad t with the following laws that shall
be satisfied:

lift ◦ return ≡ return (12)

lift (m >>= f ) ≡ lift m >>= (lift ◦ f ) (13)

dur (lift (m)) ≡ lift m >> return 0 (14)

for any m :: m a and f :: a → m b. The first two laws are the usual laws for
monad transformers. Any instance (TimedMonad m d t) is a transformation of
the monad m into the monad t . However, we have not specified here a monad
transformer since only specific monads, equipped with some timing primitives,
can be transformed this way. The third law states that, by definition, the specified
duration of the timed action lift m :: t a with m :: m a is zero, regardless of the
actual duration of the action m.

In practice, this assumption means that lift shall only be used on actions that
are reasonably instantaneous, e.g. printChar c in the IO monad, but should not
be used on actions that are visibly not instantaneous, e.g. getChar in the IO
monad as this would immediately yield an unbounded time drift. As we shall
see below a timed lift function is available for that latter case.

Runs. The function run allows for moving a timed action back into the under-
lying untimed monad with:

run ◦ lift ≡ id (15)

i.e. lift preserves the essence of the actions it lifts. Observe that over timed
actions, the reverse direction does not hold since we have

lift (run m) �≡ m (16)

as soon as the timed action m has a non-zero duration.

Timed Lift. Deriving from these primitives, we can lift any monad action from
the underlying monad to the timed monad taking into account its actual dura-
tion1 by:

timedLift :: TimedMonad m d t ⇒ m a → t a
timedLift m = do {a ← lift m; d ← drift ; delay d ; return a }
Such a timed lifting is then applicable to visibly non-instantaneous such as

blocking actions, e.g. getChar in the IO monad.
1 A careful reading of this code shows that the resulting specified duration of a timed

lifted action is, more precisely, the actual duration of its execution minus the existing
time drift right before its execution.
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2.4 On the Validity of Timed Monad Extensions

One may wonder if there exists any timed extension of a monad at all that fulfills
the properties stated above. Strictly speaking, with unrestricted usage of drift
combined with an accurate measurement of physical time, the answer is no !
Indeed, given two distinct but equivalent timed actions m1 and m2, we have:

m1 >> drift �≡ m2 >> drift (17)

unless m1 and m2 have the same actual duration, which is very unlikely.
This suggests that, unless measuring time drift for testing purposes, the func-

tion drift shall not be used. However, such a suggestion is not applicable for,
as seen above, the function timedLift , necessarily defined with drift , is needed
for lifting monad action with unbounded real duration. In other words, when
extending an untimed monad into a timed one, there necessarily are functions
such as timedLift that do not preserve (untimed) monad action equivalence. This
implies that the validity of all timed equations but (15) shall only be observed in
a timed setting. In some sense, timed and untimed worlds shall be kept distinct
and incomparable, each of them being equipped with its own induced action
equivalence.

3 Default Timed Monad Instances

We provide below a default instance of a timed extension of a monad that can
be defined as soon as that monad admits enough primitives for time handling.

3.1 Monads with Timer

Monads with timing informations are defined by the following class type:

class (Ord d ,Num d ,Monad m) ⇒ HasTimer m d where
getRealTime ::m (Time d)
waitUntil :: Time d → m ()
getDrift :: (Time d) → m d
getDrift t = do {r ← getRealTime; return (duration r t)}

where getRealTime shall return the real timestamp measured over the duration
type d , waitUntil shall wait until the specified time stamps is passed (for real),
and the derived action getDrift shall therefore compute the difference between
the real current timestamp and the one passed in parameter. Any monad with
timing information shall satisfy the following properties:

(1) Time monotonicity: for every action m :: m a, the action

getRealTime >>= λt1 → m >> getRealTime >>= λt2 → return (t0, t1)

shall return (t1, t2) with t1 � t2,
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(2) Coherent waits: for every timestamp t1 the action

waitUntil t1 >> getRealTime

shall return t2 with t1 � t2.

The first property states that time shall flow from the past to the future. The
second one states that a waitUntil action shall never resume before the expected
timestamp is actually passed for real.

The IO Example. As an instance example, thanks to the System.Clock and
Control .Concurrent libraries in Haskell, one can put:

newtype Micro = Micro Int deriving (Show ,Eq ,Ord ,Num)
getSystemTime :: IO (Time Micro)
getSystemTime = do {t ← getTime Monotonic;
(return ◦ Time ◦ fromInteger) (div (toNanoSecs t) 1000)}

instance HasTimer IO Micro where
getRealTime = getSystemTime
waitUntil (Time d) = do {Time r ← getSystemTime;
(threadDelay ◦ fromInteger ◦ toInteger) (d − r)}

where Micro is a type of durations measured in microseconds.

3.2 Derived Timed Monad Instance

Deriving a timed monad instance from a monad with timing information can then
be achieved by extending the (implicit) monad state by an explicit timestamp.
More precisely, we define the timed action data type:

data TA m d a = TA (Time d → m (Time d , a))

over a monad m :: ∗ → ∗ and a duration type d :: ∗, from which we derive:

instance (Monad m,HasTimer m d) ⇒ Monad (TA m d) where
return a = TA (λs → return (s, a))
TA m >>= f = TA (λs → m s >>= λ(s1, a) → let (TA m1) = f a in m1 s1)

and

instance (Monad m,HasTimer m d)
⇒ TimedMonad m d (TA m d) where

now = TA (λs → return (s, s))
drift = TA $ λs → getDrift s >>= λd → return (s, d)
delay d | d � 0 = return ()
delay d | d > 0 = TA $ λs → do

{dr ← getDrift s;waitUntil (shift s (d − dr)); return (shift s d , ())}
lift m = TA $ λs → m >>= λa → return (s, a)
run (TA m) = getRealTime >>=m >>= λ( , a) → return a
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This eventually provides the expected default timed monad extension of a
monad m with timing information.

The correctness of such a construction, that is, the fact that laws (1)–(15)
are satisfied by TA m d under the restriction described in Sect. 2.4, can easily
be proved from the above code and the hypothesis made on m, d and t . More
precisely, the standard monad laws follow directly from the fact that TA m d is
a simple variation on a classical state monad transformer. Thanks to property
(1) assumed for getRealTime, durations are always positive. Then, timed laws
follow from the way all the above defined functions act on timestamps.

3.3 More on Temporal Correctness Issues

One can observe that run initializes the time drift with a positive (if not zero)
value since the initial specified timestamp is set to the actual timestamp. Thanks
to property (2) on waitUntil , one can also observe that delays always resume
after the specified timestamp is actually passed for real. It follows that the time
drift after a delay is always positive. Since every other primitive timed action
has an actual duration greater than its specified duration, it follows that:

(1) the time drift is always positive,

as easily proved by induction on the syntactic complexity of timed monad actions
built from timed monad primitives. In other words, the action scheduling in the
default instance is made in such a way that no action is actually scheduled before
its specified scheduling time.

Temporal correctness also requires that such a time drift is bounded. Here,
we can only observe that, obviously, in the general case:

(2) nothing ensures the time drift is bounded.

Indeed, as already mentioned, lifting a blocking IO action as an instantaneous
one immediately induces an unbounded time drift. We shall discuss such an issue
in the conclusion.

The IO Example. As a particular case, the default timed extension of the IO
monad, we call TIO, is simply defined by:

type TIO = TA IO Micro
with the instance TimedMonad IO Micro TIO deriving from the above instance
HasTimer IO Micro.

4 Symbolic Timed Extension of a Monad

We consider now the case of a time scale for the programmer distinct from the
timescale of the underlying monad. More precisely, given an inner time scale, e.g.
the physical time, measured by some inner duration type i, we aim at offering a
symbolic timescale measured by some outer duration type o. This requires having
some type s for measuring the possible speed (or tempo) of outer durations w.r.t.
to inner durations.
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4.1 Inner and Outer Durations with Tempi

The relationship between duration types i , o and tempo s, when time speed is
assumed to be piecewise constant, is conveniently modeled by the following type
class:

class (Num i ,Num o,Num s) ⇒ ScaleChange i o s | s → i , s → o where
initialSpeed :: s
step :: s → i → o
backStep :: s → o → i

where initialSpeed is some fixed initial speed value, step s i that essentially
computes the outer duration obtained by “multiplying” the speed s by the
inner duration i , and backStep s o that essentially computes the inner dura-
tion obtained by “dividing” the outer duration o by (some non zero) speed s.

The way these “multiplication” and “division” are actually performed shall
depend on the chosen types. In the abstract, the following equations shall be
satisfied by any instances:

backStep s (step s i) ≡ i (18)
step d (backStep d o) ≡ o (19)

for any inner duration i , outer duration o and non zero speed s, up to the
possible rounding errors due to changes of numerical types.

As a consequence, the function mapping the inner timescale Time i to the
outer timescale Time o shall be bijective (up to rounding) and, in case step and
backStep functions are truly implemented as some multiplication and division,
piecewise linear.

The IO Example. As an instance example, one can define:

newtype Beat = Beat Double deriving (Eq ,Ord ,Show ,Num)
newtype BPM = BPM Double deriving (Eq ,Ord ,Show ,Num)
instance ScaleChange Micro Beat BPM where

initialSpeed = BPM 60
step (BPM t) (Micro d) = Beat $ t ∗ ((fromInteger ◦ toInteger) d)/ratio
backStep (BPM t) (Beat d) = Micro $ fromInteger (floor (d ∗ ratio/t))

with ratio = 60∗106, the time speed being expressed in beats per minutes (bpm).

4.2 Derived Symbolic Timed Monad Instance

A symbolic timed extension of a monad can then be built quite like the default
timed extension described above. Indeed, we define symbolic timed states by:

data ST i o s = ST {innerTime :: Time i , outerTime :: Time o, speed :: s }

with symbolic timed actions defined by:
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data STA m i o s a = STA (ST i o s → m (ST i o s, a))

This eventually yields the instance TimedMonad m o (STA m i o s), defined
essentially like the instance of TA m d , taking care however to maintain coherent
inner and outer timestamps in every symbolic timed state. This can be done
without any real difficulty, laws (18)–(19) ensuring, for a given time speed s,
coherent back and forth translation between duration types i and o.

The IO Example. As a particular case, the promised musically timed exten-
sion of the IO monad is defined by:

type MusicIO = STA IO Micro Beat BPM

The underlying tempo can be changed at any time by the following parameter-
ized timed action:

setTempo :: BPM → MusicIO ()
setTempo t | t � 0 = error $ "setTempo : forbidden negative tempo"
setTempo t

= STA $ λs → let ST ti to = s in return (ST ti to t , ())

Given function f :: Int → Note, our initial example can then simply and
correctly be encoded by:

playInIO = run playMusic
playMusic :: (Int → Notes) → Int → MusicIO ()
playMusic f n

= do { lift (playNote (f n)) 1; delay 1; playMusic f (n + 1)}
playNote ::Note → Beat → MusicIO ()
playNote n d = startNote n >> delay d >> stopNote n

By construction, the tempo has been initialized to 60 bpm, that is, one beat
per second.

5 Timed Promises

One may ask how robust our constructions of timed monads are, or, more pre-
cisely, to which extent additional features of a given monad can be lifted to its
timed extension. We shall describe here the case of asynchronous concurrent
promises that can uniformly be lifted from any monad where they are defined
to its (default) timed extension when there is one.

5.1 Monad References

Since the 70s, there is the concept of promises that successfully extends func-
tional programming to asynchronous concurrent features. Simply said, a promise
is a place holder returned by a forked program that is eventually fulfilled by the
value returned by that program [6].
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In Haskell, the notion of promise is conveniently replaced by the notion of
monad references [11] specified as follows:

class Monad m ⇒ MonadRef m where
type Ref m :: ∗ → ∗
fork ::m a → m (Ref m a)
read :: Ref m a → m a
tryRead :: Ref m a → m (Maybe a)
parRead :: Ref m a → Ref m b → m (Either a b)

where the action fork m shall fork the monad action m and immediately returns
a reference to that action, the action read r shall return the value produced by
the running action referenced by r as soon as it is available, the action tryRead r
shall be a non blocking version of read r and the action parRead r1 r2 shall take
two monad references r1 and r2 as parameters and return the value of the first
referenced action that terminates, or either of the values if both are already
terminated or are terminating at the same (or indistinguishable) time.

The basic (non-concurrent) semantics of monad reference basic primitives is
governed by the following laws:

(fork m) >>= read ≡ m (20)

fork ◦ read ≡ return (21)

fork (m >>= f ) ≡ (fork m) >>= λr → fork (read r >>= f ) (22)

for every m :: m a, f :: a → m b. Other laws, specifying the expected concurrent
semantics of monad references are detailed in the companion article [11].

5.2 Timed Monad References

Equipping a timed extension of monad by monad references, as soon as the
underlying monad itself has references, is (almost) easy as shown by the following
instance:

data TRef m d a = TRef (Time d) (Ref m (Time d , a))
instance (MonadRef m,HasTimer m d) ⇒ MonadRef (TA m d) where
type Ref (TA m d) = TRef m d
fork (TA m) = TA $ λs → do {r ← fork (m s); return (s,TRef s r)}
read (TRef r) = TA $ λs → do {(t , a) ← read r ; return (max s t , a)}
tryRead (TRef r) = TA $ λs → do {c ← tryRead r ; case c of

Nothing → return (s,Nothing)
Just (t , a) → return (max s t , Just a)}

parRead (TRef r1) (TRef r2) = TA $ λs → do {c ← parRead r1 r2;
case c of {Left (t , a) → return (max s t ,Left a);

Right (t , b) → return (max s t ,Right b)}}
One can observe that in all read actions above, variable t refers to the (specified)
timestamp at which the referenced action is eventually completed while variable
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s refers to the (specified) timestamp at which the read action is called. As these
two timestamps refer to independant events, we need to compute the (specified)
timestamp max s t right after which these two events have occured. Then,
one can check that equations (20)–(22) are satisfied, even though this requires
equivalent actions to also have the same (specified) duration.

Remark. With the above proposed instance, nothing ensures the function
parRead returns the value of the soonest terminated action as specified by ter-
mination timestamps. Indeed, the function parRead is non deterministic in two
cases, the first one being when two referenced actions are already terminated, the
second one being when there are terminating almost at the same time. Clearly,
the first case can easily be solved by performing a tryRead on the second refer-
ence right after the first one is received and, if terminated, sorting the returned
values according to their timestamp. However, the second case is more tricky to
solve. One solution is to ensure that function tryRead returns Nothing only in
the case the referenced action provably terminates later than the specified time
at which tryRead is launched. Such a possibility is however yet not implemented.

5.3 Time Specific Action on Timed Monad References

The reader may have observed that, in the code above, we do not use the times-
tamp recorded in a timed reference when forking an action. Its relevance appears
in the function durRef given below, from which various timed specific actions
are derived.

durRef :: TRef m d a → TA m d d
durRef (TRef t0 r)

= TA (λs → do {(t , ) ← read r ; return (max s t , duration t t0)})
replayRef :: TRef m d a → TA m d a
replayRef r = do {t1 ← now ; d ← durRef r ; a ← read r ; t2 ← now ;

delay (d − duration t2 t1); return a }
expandRef :: (d → d) → TRef m d a → TA m d a
expandRef f r = do {t1 ← now ; d ← durRef r ; a ← read r ; t2 ← now ;

let d1 = f d − duration t2 t1 in delay d1; return a }
where durRef returns, when finished, the specified duration of a referenced
action, replayRef replays the referenced action from start, with the same dura-
tion but no side effect, and expandRef replays a referenced action but expanding
(or shrinking) its duration by appliying some function parameter f .

Observe that all these actions can be used as soon as their parameters are
available therefore even before the referenced actions are terminated and there
specified durations are known. This means that shrinking a duration may fail to
be done correctly as illustrated by fork m >>=expandRef ( /2) that unsucessfully
tries to replay twice faster a just forked action. Such a resulting action is not
temporal causal or, equivalently, duration d1 in the code of expandRef is strictly
negative hence no delay is applied. Executing a negative delay is here a clear
sign of a causality error, an error that could well be raised as such.
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As already observed in music experiments conducted along a previous model-
ing of interactive music by temporal tiles [1], programming interactive music sys-
tems, these functions yield a completely new branch of realtime musical effects,
such has repeating every note with its same duration, an effect that is essentially
not available in the existing reactive music application software.

6 Data Flow Programming with Timed Monad Streams

Defining data flows by means of nested monad actions is a technique that is
getting more and more popular for data-flow-like programming within generic
functional programming languages as illustrated by Snoyman’s Conduit library.
Following the (simpler) definition of monad streams recently (re)defined and
developed for audio processing and control [12], there is the type constructor:

newtype Stream f a = Stream {next :: f (Maybe (a,Stream f a))}
either defining monad streams with f = m for some monad m, or defining
references to (running) monad streams with f = Ref m for some monad m with
references [11]. Then, as a derived function example, we have:

merge ::MonadRef m
⇒ Stream m a → Stream m b → Stream m (Either a b)

that merges two monad streams by order of arrival of their elements. Applied
to timed monad and timed monad references, these kind of functions have
clear application in timed data flow programming, especially for handling asyn-
chronous control flows as recently illustrated [12].

In other words, timed data flow programming automatically derives from
timed monads and timed monad references. This somehow illustrates the funda-
tional nature of these two concepts that both extend monads.

7 Related Works

In functional programming languages, there already are many proposals for pro-
gramming timed reactive concurrent systems ranging from the synchronous lan-
guage family [18], possibly extended with modern polymorphism as with Reac-
tive ML [14], to the many variants of functional reactive program (FRP) series
initiated with FRAN [3,4,20]. However, to the best of our knowledge, most of
these approaches consider a qualitative timing, as defined by series of events,
instead of a quantitative timing, as proposed here, a quantitative timing the
programmer may specify and refer to.

More precisely, the synchronous language approach mostly aims at defin-
ing timed programs over symbolic time scales (series of clock ticks) for which
the actual duration between any two ticks is provably bounded. This eventu-
ally led to the successful development of programming languages such as Lus-
tre or Esterel [18] that allows programmers to implement (provably correct)
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synchronous realtime applications. Yet, programming timed applications with
weaker but quantitative time specification seems to go out of the application
scope of these languages, despite interesting extensions toward polymorphic and
higher-order timing mechanisms [2].

The FRP approach, somewhat more theoretical, aims at defining an ade-
quate API for programming with timed signal. Initially designed to cope with
arbitrary timescale [3], concrete implementations of FRP are mostly limited to
reactive programming, though with some exceptions [16]. In practice, timescales
are defined by event arrivals, that act as qualitative clock ticks, function between
signals being restricted to Mealy machines. There, the initially proposed API
with signals defined as functions from timestamps to values yields (fairly eas-
ily) memory leaks which are avoided by such a restriction, either by syntactic
means [17] or by modal type mechanisms [13]. Our timed extension of monads,
with derived timed monad streams, brings back qualitative time measurement
between clock ticks without the associated time leaks.

The multitime scale approach, presented in Sect. 4 is an example of a fairly
simple (piece-wise linear and locally finite) hybrid (bijective) signal. Along the
lines proposed in [16], it can probably be extended for defining more general
hybrid signals, with their associated monitoring actions.

Our approach is also influenced by Hudak’s aim at defining temporal objects
by means of the properties their combinators shall satisfy [7]. Though our pro-
posal eventually diverges from Hudak’s polymorphic temporal media, it never-
theless inherits from its underlying intention to bridge the gap between theory
and practice, as already illustrated by Euterpea [9].

Last, the initial motivation for the present development of timed monads
was to define an efficient and more generic programming interface for encoding
temporal tiles [1,8]. As a matter of fact, all interactive music experiments con-
ducted with such a model are easily and more efficiently re-implemented within
the proposed timed monad framework.

8 Conclusion

Along these pages, we have proposed and instantiated a fairly generic notion of
timed extension of a monad. We have also shown how additional programming
features of monads can simply be lifted into these extension. This timed extension
relies on distinguishing specified and actual duration: a distinction already put in
practice in interactive music systems, the musician and the computer interacting
one with the other [1]. Of course, the topic is far from being closed, how to
add timing information into interactive programs being a vast subject. Several
issues remain to be solved. On the positive side, our proposal allows for clearly
identifying what are the yet unsolved timing problems and where to look for
solutions.

As already observed in Sect. 3.3, nothing ensures that the time drift is
bounded in a timed monad action. The reader might be disappointed by such
a fact. However, ensuring that a given program has a bounded time drift is a
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well-known tricky issue, undecidable in the general case. What restrictions on
programs may yield timed actions with provably bounded time drift is a long
standing research problem [18]. Clearly, recursively defined action shall only be
allowed when each recursive call is both terminal, in order to avoid memory
leaks, and guarded by some sufficient long delays, in order to avoid time leaks.
One possibility could be to extend modal types [13] with quantified durations.
Existing results in quantitative temporal logic may help. Also, extending the
underlying monad actions type by some bound on their actual durations might
help as well. This would allow checking that actions are properly lifted with
adequate delays. Indeed, as already observed, lifting a blocking action as an
instantaneous action is nonsense. Similar techniques should probably be used
for detecting temporally non causal transformations as illustrated in Sect. 5.3
example.

As also observed in Sect. 2.4, two actions in a base monad m can be equivalent
while their timed lifting is not. Indeed, with durations measured in microseconds,
it is very unlikely that two distinct but equivalent actions have the same duration.
Real time measurement is a property killer. One partial solution might be to
measure time drift with less accuracy. In a music system, with symbolic time,
such a problem is well-known. It arises when aiming at translating back realtime
performances into music scores, as in score followers [5]. Rephrased in terms of
timed monad, the implementation of drift is the key to handling such a problem.
Is there any time drift between two different musicians performing the same
score? Measurements say yes, but listeners say no. The measurement of the time
drift should follow listeners.

Of course, developing programming languages towards application in music
may sound a bit pointless compared to applications with more economical impact
such as, say, autonomous vehicles or connected objects. Is that so ? Clearly,
experiments are easier to conduct in music than in most other application fields,
with less dramatic consequences in case of errors. Moreover, time is known and
handled by musicians for centuries. As illustrated throughout, various musical
concepts can be generalized or abstracted into useful timed programming con-
cepts. Moreover, our approach is abstract enough to be potentially applicable to
other areas. Timed programming, with its need for automatic handling of time
drift, is surely in the close neighborhood of spacetime programming, with its
need for automatic handling of spacetime drift.

References

1. Archipoff, S., Janin, D.: Structured reactive programming with polymorphic tem-
poral tiles. In: ACM Workshop on Functional Art, Music, Modeling and Design
(FARM). ACM Press (2016)

2. Colaço, J.-L., Girault, A., Hamon, G., Pouzet, M.: Towards a higher-order syn-
chronous data-flow language. In: International Conference on Embedded Software
(EMSOFT), pp. 230–239. ACM (2004)

3. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming (ICFP). ACM (1997)



A Timed IO Monad 147

4. Elliott, C.M.: Push-pull functional reactive programming. In: Symposium on
Haskell, pp. 25–36. ACM (2009)

5. Giavitto, J.-L., Echeveste, J., Cont, A., Cuvillier, P.: Time, timelines and temporal
scopes in the Antescofo DLS v1.0. In: International Computer Music Conference
(ICMC) (2017)

6. Halstead Jr., R.H.: Multilisp: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. 7(4), 501–538 (1985)

7. Hudak, P.: An algebraic theory of polymorphic temporal media. In: Jayaraman, B.
(ed.) PADL 2004. LNCS, vol. 3057, pp. 1–15. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24836-1 1

8. Hudak, P., Janin, D.: From out-of-time design to in-time production of temporal
media. Research report, LaBRI, Université de Bordeaux (2015)
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P.-L., Abramsky, S., Pitts, A.M., Poigné, A., Rydeheard, D.E. (eds.) CTCS 1991.
LNCS, vol. 530, pp. 138–139. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0013462

16. Nilsson, H., Peterson, J., Hudak, P.: Functional hybrid modeling. In: Dahl, V.,
Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 376–390. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36388-2 25

17. van der Ploeg, A., Claessen, K.: Practical principled FRP: forget the past, change
the future, FRPNow! In: International Conference on Functional Programming
(ICFP), pp. 302–314. ACM (2015)

18. de Simone, R., Talpin, J.-P., Potop-Butucaru, D.: The synchronous hypothesis and
synchronous languages. In: Embedded Systems Handbook. CRC Press (2005)

19. Wadler, P.: Comprehending monads. In: Conference on LISP and Functional Pro-
gramming (LFP), New York. ACM (1990)

20. Winograd-Cort, D., Hudak, P.: Settable and non-interfering signal functions for
FRP: how a first-order switch is more than enough. In: International Conference
on Functional Programming (ICFP), pp. 213–225. ACM (2014)

https://doi.org/10.1007/978-3-540-24836-1_1
https://doi.org/10.1007/978-3-540-24836-1_1
https://doi.org/10.1007/978-3-030-02508-3_13
https://doi.org/10.1007/978-3-030-02508-3_13
https://doi.org/10.1007/BFb0013462
https://doi.org/10.1007/BFb0013462
https://doi.org/10.1007/3-540-36388-2_25


Reasoning and Efficient Implementation



Exploiting Database Management
Systems and Treewidth for Counting

Johannes K. Fichte1(B) , Markus Hecher2,3(B) , Patrick Thier2(B),
and Stefan Woltran2(B)

1 TU Dresden, Dresden, Germany
johannes.fichte@tu-dresden.de

2 TU Wien, Vienna, Austria
{hecher,thier,woltran}@dbai.tuwien.ac.at
3 University of Potsdam, Potsdam, Germany

hecher@uni-potsdam.de

Abstract. Bounded treewidth is one of the most cited combinatorial
invariants, which was applied in the literature for solving several count-
ing problems efficiently. A canonical counting problem is #Sat, which
asks to count the satisfying assignments of a Boolean formula. Recent
work shows that benchmarking instances for #Sat often have reasonably
small treewidth. This paper deals with counting problems for instances
of small treewidth. We introduce a general framework to solve count-
ing questions based on state-of-the-art database management systems
(DBMS). Our framework takes explicitly advantage of small treewidth
by solving instances using dynamic programming (DP) on tree decompo-
sitions (TD). Therefore, we implement the concept of DP into a DBMS
(PostgreSQL), since DP algorithms are already often given in terms of
table manipulations in theory. This allows for elegant specifications of DP
algorithms and the use of SQL to manipulate records and tables, which
gives us a natural approach to bring DP algorithms into practice. To the
best of our knowledge, we present the first approach to employ a DBMS
for algorithms on TDs. A key advantage of our approach is that DBMS
naturally allow to deal with huge tables with a limited amount of main
memory (RAM), parallelization, as well as suspending computation.
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1 Introduction
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number of solutions to problems by means of mathematical expressions, e.g.,
generating functions [18]. One particular counting problem, namely model count-
ing (#Sat) asks to output the number of solutions of a given Boolean formula.
Model counting and variants thereof have already been applied for solving a
variety of real-world applications [8,10,19,44]. Such problems are typically con-
sidered rather hard, since #Sat is complete for the class #P [3,35], i.e., one
can simulate any problem of the polynomial hierarchy with polynomially many
calls [41] to a #Sat solver. Taming this high complexity is possible with tech-
niques from parameterized complexity [12]. In fact, many of the publicly avail-
able #Sat instances show good structural properties after using regular prepro-
cessors like pmc [29], see [23]. By good structural properties, we mean that graph
representations of these instance have reasonably small treewidth. The measure
treewidth is a structural parameter of graphs which models the closeness of the
graph to being a tree and is one of the most cited combinatorial invariants stud-
ied in parameterized complexity [12], and subject of recent competitions [15].

This observation gives rise to a general framework for counting problems
that leverages treewidth. The general idea to develop such frameworks is indeed
not new, since there are both, specialized solvers [9,23,25], as well as general
systems like D-FLAT [5], Jatatosk [4], and sequoia [31], that exploit treewidth.
Some of these systems explicitly use dynamic programming (DP) to directly
exploit treewidth by means of so-called tree decompositions (TDs), whereas oth-
ers provide some kind of declarative layer to model the problem (and perform
decomposition and DP internally). In this work, we solve (counting) problems
by means of explicitly specified DP algorithms, where essential parts of the DP
algorithm are specified in form of SQL SELECT queries. The actual run of the DP
algorithm is then delegated to our system dpdb, which employs database man-
agement systems (DBMS) [43]. This has not only the advantage of naturally
describing and manipulating the tables that are obtained during DP, but also
allows dpdb to benefit from decades of database technology in form of the capa-
bility to deal with huge tables using limited amount of main memory (RAM),
dedicated database joins, as well as query optimization and data-dependent exe-
cution plans.

Contribution. We implement a system dpdb for solving counting problems based
on dynamic programming on tree decompositions, and present the following con-
tributions. (i) Our system dpdb uses database management systems to handle
table operations needed for performing dynamic programming efficiently. The
system dpdb is written in Python and employs PostgreSQL as DBMS, but can
work with other DBMSs easily. (ii) The architecture of dpdb allows to solve
general problems of bounded treewidth that can be solved by means of table
operations (in form of relational algebra and SQL) on tree decompositions. As a
result, dpdb is a generalized framework for dynamic programming on tree decom-
positions, where one only needs to specify the essential and problem-specific parts
of dynamic programming in order to solve (counting) problems. (iii) Finally, we
show how to solve the canonical problem #Sat with the help of dpdb, where
it seems that the architecture of dpdb is particularly well-suited. Concretely, we
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compare the runtime of our system with state-of-the-art model counters, where
we observe competitive behavior and promising indications for future work.

2 Preliminaries

We assume familiarity with terminology of graphs and trees. For details, we refer
to the literature and standard textbooks [16].

d a

b c {a, b, c}
t1

{a, d}
t2

{a}t3

Fig. 1. Graph G (left) with a TD T of graph G (right).

Boolean Satisfiability. We define Boolean formulas and their evaluation in the
usual way, cf., [26]. A literal is a Boolean variable x or its negation ¬x. A CNF
formula ϕ is a set of clauses interpreted as conjunction. A clause is a set of
literals interpreted as disjunction. For a formula or clause X, we abbreviate by
var(X) the variables that occur in X. An assignment of ϕ is a mapping I :
var(ϕ) → {0, 1}. The formula ϕ(I) under assignment I is obtained by removing
every clause c from ϕ that contains a literal set to 1 by I, and removing from
every remaining clause of ϕ all literals set to 0 by I. An assignment I is satisfying
if ϕ(I) = ∅. Problem #Sat asks to output the number of satisfying assignments
of a formula.

Tree Decomposition and Treewidth. A tree decomposition (TD) [12,27] of a given
graph G is a pair T = (T, χ) where T is a rooted tree and χ is a mapping
which assigns to each node t ∈ V (T ) a set χ(t) ⊆ V (G), called bag, such that
(i) V (G) =

⋃
t∈V (T ) χ(t) and E(G) ⊆ {{u, v} | t ∈ V (T ), {u, v} ⊆ χ(t) }; and

(ii) for each r, s, t ∈ V (T ), such that s lies on the path from r to t, we have
χ(r) ∩ χ(t) ⊆ χ(s). We let width(T ) := maxt∈V (T ) |χ(t)| − 1. The treewidth
tw(G) of G is the minimum width(T ) over all TDs T of G. For a node t ∈ V (T ),
we say that type(t) is leaf if t has no children and χ(t) = ∅; join if t has children t′

and t′′ with t′ �= t′′ and χ(t) = χ(t′) = χ(t′′); intr (“introduce”) if t has a single
child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)| + 1; rem (“removal”) if t has a single
child t′, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)| + 1. If for every node t ∈ V (T ),
type(t) ∈ {leaf, join, intr, rem}, then the TD is called nice.

Example 1. Figure 1 depicts a graph G and a TD T of G of width 2. The
treewidth of G is also 2 since G contains a complete graph with 3 vertices [27].

�

Relational Algebra. We use relational algebra [11] for manipulation of rela-
tions, which forms the theoretical basis of the database standard Structured
Query Language (SQL) [43] on tables. An attribute a is of a certain finite
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Algorithm 1. Table algorithm S(t, χ(t), ϕt, 〈τ1, . . . , τ�〉) for #Sat [36] using
nice TD.

In: Node t, bag χ(t), clauses ϕt, sequence 〈τ1, . . . τ�〉 of child tables. Out: Table τt.
1 if type(t) = leaf then τt := {〈∅, 1〉}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt := {〈J, c〉 | 〈I, c〉 ∈ τ1, J ∈ {I+

a�→0, I
+
a�→1}, ϕt(J) = ∅}

4 else if type(t) = rem, and a �∈ χ(t) is removed then
5 τt := {〈I−

a , Σ〈J,c〉∈τ1:I
−
a =J−

a
c〉 | 〈I, ·〉 ∈ τ1}

6 else if type(t) = join then
7 τt := {〈I, c1 · c2〉 | 〈I, c1〉 ∈ τ1, 〈I, c2〉 ∈ τ2}

S−
e :=S \ {e �→ 0, e �→ 1}, S+

s :=S ∪ {s}.

domain dom(a). Then, a tuple r over set att(r) of attributes is a set of pairs
of the form (a, v) with a ∈ att(r), v ∈ dom(a) s.t. for each a ∈ att(r), there is
exactly one v ∈ dom(a) with (a, v) ∈ r. A relation R is a finite set of tuples r
over set att(R) := att(r) of attributes. Given a relation R over att(R). Then, we
let dom(R) :=

⋃
a∈att(R) dom(a), and let relation R projected to A ⊆ att(R) be

given by ΠA(R) := {rA | r ∈ R}, where rA := {(a, v) | (a, v) ∈ r, a ∈ A}. This
concept can be lifted to extended projection Π̇A,S , where we assume in addition
to A ⊆ att(R), a set S of expressions of the form a ← f , such that a ∈ att(R)\A,
and f is an arithmetic function that takes a tuple r ∈ R, such that there is at
most one expression in S for each a ∈ att(R)\A. Formally, we define Π̇A,S(R) :=
{rA ∪ rS | r ∈ R} with rS := {(a, f(r)) | a ∈ att(r), (a ← f) ∈ S}. Later, we use
aggregation by grouping AG(a←g), where we assume A ⊆ att(R), a ∈ att(R) \ A
and a so-called aggregate function g, which takes a relation R′ ⊆ R and returns
a value of domain dom(a). Therefore, we let AG(a←g)(R) := {r∪{(a, g(R[r]))} |
r ∈ ΠA(R)}, where R[r] := {r′ | r′ ∈ R, r ⊆ r′}. We define renaming
of R given set A of attributes, and a bijective mapping m : att(R) → A s.t.
dom(a) = dom(m(a)) for a ∈ att(R), by ρm(R) := {(m(a), v) | (a, v) ∈ R}.
Selection of rows in R according to a given Boolean formula ϕ with equal-
ity1 is defined by σϕ(R) := {r | r ∈ R,ϕ(rE) = ∅}, where rE is a truth
assignment over var(ϕ) such that for each v, v′, v′′ ∈ dom(R) ∪ att(R) (1)
rE(v ≈ v′) = 1 if (v, v′) ∈ r, (2) rE(v ≈ v) = 1, (3) rE(v ≈ v′) = rE(v′ ≈ v),
and (4) if rE(v ≈ v′) = 1, and rE(v′ ≈ v′′) = 1, then rE(v ≈ v′′) = 1. Given
a relation R′ with att(R′) ∩ att(R) = ∅. Then, we refer to the cross-join
by R × R′ := {r ∪ r′ | r ∈ R, r′ ∈ R′}. Further, a θ-join (according to ϕ)
corresponds to R �	ϕ R′ := σϕ(R × R′).

3 Towards Relational Algebra for Dynamic Programming

A solver based on dynamic programming (DP) evaluates the input I in parts
along a given TD of a graph representation G of the input. Thereby, for each
node t of the TD, intermediate results are stored in a table τt. This is achieved
1 We allow for ϕ to contain expressions v≈v′ as variables for v, v′ ∈ dom(R) ∪ att(R),

and we abbreviate for v ∈ att(R) with dom(v) = {0, 1}, v≈1 by v and v≈0 by ¬v.
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Fig. 2. Selected tables obtained by DP on T ′ for ϕ of Example 2 using algorithm S.
(Color figure online)

by running a so-called table algorithm A, which is designed for a certain graph
representation, and stores in τt results of problem parts of I, thereby considering
tables τt′ for child nodes t′ of t. DP works for many problems P as follows.

1. Construct a graph representation G of the given input instance I.
2. Heuristically compute a tree decomposition T = (T, χ) of G.
3. Traverse the nodes in V (T ) in post-order, i.e., perform a bottom-up traversal

of T . At every node t during post-order traversal, execute a table algorithm A
that takes as input t, bag χ(t), a local problem P(t, I) = It depending on P,
as well as previously computed child tables of t and stores the result in τt.

4. Interpret table τn for the root n of T in order to output the solution of I.

For solving problem P = #Sat, we need the following graph representation.
The primal graph Gϕ [36] of a formula ϕ has as vertices its variables, where two
variables are joined by an edge if they occur together in a clause of ϕ. Given
formula ϕ, a TD T = (T, χ) of Gϕ and a node t of T . Sometimes, we refer to the
treewidth of the primal graph of a given formula by the treewidth of the formula.
Then, we let local problem #Sat(t, ϕ) = ϕt be ϕt := { c | c ∈ ϕ, var(c) ⊆ χ(t) },
which are the clauses entirely covered by χ(t).

Table algorithm S as presented in Algorithm 1 shows all the cases that are
needed to solve #Sat by means of DP over nice TDs. Each table τt consist
of rows of the form 〈I, c〉, where I is an assignment of ϕt and c is a counter.
Nodes t with type(t) = leaf consist of the empty assignment and counter 1, cf.,
Line 1. For a node t with introduced variable a ∈ χ(t), we guess in Line 3 for
each assignment β of the child table, whether a is set to true or to false, and
ensure that ϕt is satisfied. When an atom a is removed in node t, we project
assignments of child tables to χ(t), cf., Line 5, and sum up counters of the same
assignments. For join nodes, counters of common assignments are multiplied, cf.,
Line 7.

Example 2. Consider formula ϕ := {
c1

︷ ︸︸ ︷
{¬a, b, c},

c2
︷ ︸︸ ︷
{a,¬b,¬c},

c3
︷ ︸︸ ︷
{a, d},

c4
︷ ︸︸ ︷
{a,¬d}}.

Satisfying assignments of formula ϕ are, e.g., {a �→ 1, b �→ 1, c �→ 0, d �→ 0},
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Algorithm 2. Alternative table algorithm SRAlg(t, χ(t), ϕt, 〈τ1, . . . , τ�〉) for
#Sat.

In: Node t, bag χ(t), clauses ϕt, sequence 〈τ1, . . . τ�〉 of child tables. Out: Table τt.
1 if type(t) = leaf then τt := {{(cnt, 1)}}
2 else if type(t) = intr, and a ∈ χ(t) is introduced then
3 τt := τ1 ��ϕt {{([[a]], 0)}, {([[a]], 1)}}
4 else if type(t) = rem, and a �∈ χ(t) is removed then
5 τt := χ(t)Gcnt←SUM(cnt)

(Πatt(τ1)\{[[a]]}τ1)

6 else if type(t) = join then

7 τt := Π̇χ(t),{cnt←cnt·cnt′}(τ1 ��∧
a∈χ(t)[[a]]≈[[a]]′ ρ⋃

a∈att(τ2)
{[[a]] �→[[a]]′}τ2)

{a �→ 1, b �→ 0, c �→ 1, d �→ 0} or {a �→ 1, b �→ 1, c �→ 1, d �→ 1}. In total, there are
6 satisfying assignments of ϕ. Observe that graph G of Fig. 1 actually depicts
the primal graph Gϕ of ϕ. Intuitively, T of Fig. 1 allows to evaluate formula ϕ
in parts. Figure 2 illustrates a nice TD T ′ = (·, χ) of the primal graph Gϕ and
tables τ1, . . ., τ12 that are obtained during the execution of S on nodes t1, . . . , t12.
We assume that each row in a table τt is identified by a number, i.e., row i cor-
responds to ut.i = 〈It.i, ct.i〉.

Table τ1 = { 〈∅, 1〉 } has type(t1) = leaf. Since type(t2) = intr, we construct
table τ2 from τ1 by taking I1.i∪{a �→ 0} and I1.i∪{a �→ 1} for each 〈I1.i, c1.i〉 ∈ τ1.
Then, t3 introduces c and t4 introduces b. ϕt1 = ϕt2 = ϕt3 = ∅, but since
χ(t4) ⊆ var(c1) we have ϕt4 = {c1, c2} for t4. In consequence, for each I4.i of
table τ4, we have {c1, c2}(I4.i) = ∅ since S enforces satisfiability of ϕt in node t.
Since type(t5) = rem, we remove variable c from all elements in τ4 and sum
up counters accordingly to construct τ5. Note that we have already seen all
rules where c occurs and hence c can no longer affect interpretations during
the remaining traversal. We similarly create τ6 = {〈{a �→ 0}, 3〉, 〈{a �→ 1}, 3〉}
and τ10 = {〈{a �→ 1}, 2〉}. Since type(t11) = join, we build table τ11 by taking
the intersection of τ6 and τ10. Intuitively, this combines assignments agreeing
on a, where counters are multiplied accordingly. By definition (primal graph and
TDs), for every c ∈ ϕ, variables var(c) occur together in at least one common
bag. Hence, since τ12 = {〈∅, 6〉}, we can reconstruct for example model {a �→
1, b �→ 1, c �→ 0, d �→ 1} = I11.1 ∪ I5.4 ∪ I9.2 of ϕ using highlighted (yellow) rows
in Fig. 2. On the other hand, if ϕ was unsatisfiable, τ12 would be empty (∅). �

Alternative: Relational Algebra. Instead of using set theory to describe how tables
are obtained during dynamic programming, one could alternatively use relational
algebra. There, tables τt for each TD node t are pictured as relations, where τt

distinguishes a unique column (attribute) [[x]] for each x ∈ χ(t). Further, there
might be additional attributes required depending on the problem at hand, e.g.,
we need an attribute cnt for counting in #Sat, or an attribute for modeling
costs or weights in case of optimization problems. Algorithm 2 presents a table
algorithm for problem #Sat that is equivalent to Algorithm 1, but relies on
relational algebra only for computing tables. This step from set notation to
relational algebra is driven by the observation that in these table algorithms one
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1. Build graph of Store results
in table t E

Apply ARAlg to
local prob. (t, )

E2. Create TD of

2b.Create DB Tables done?
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Visit next node t
of in post-order

4. Specify Output
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3. Dynamic Programming for

Fig. 3. Architecture of Dynamic Programming with Databases. Steps highlighted in
red are provided by the system depending on specification of yellow and blue parts,
which is given by the user for specific problems P. The yellow “E”s represent events
that can be intercepted and handled by the user. The blue part concentrates on table
algorithm ARAlg, where the user specifies how SQL code is generated in a modular way.
(Color figure online)

can identify recurring patterns, and one mainly has to adjust problem-specific
parts of it (highlighted by coloring in Algorithm1). In particular, one typically
derives for nodes t with type(t) = leaf, a fresh initial table τt, cf., Line 1 of
Algorithm 2. Then, whenever an atom a is introduced, such algorithms often
use θ-joins with a fresh initial table for the introduced variable a representing
potential values for a. In Line 3 the selection of the θ-join is performed according
to ϕt, i.e. corresponding to the local problem of #Sat. Further, for nodes t
with type(t) = rem, these table algorithms typically need projection. In case
of Algorithm 2, Line 5 also needs grouping in order to maintain the counter, as
several rows of τ1 might collapse in τt. Finally, for a node t with type(t) = join, in
Line 7 we use extended projection and θ-joins, where we join on the same truth
assignments, which allows us later to leverage advanced database technology.
Extended projection is needed for multiplying the counters of the two rows
containing the same assignment.

4 Dynamic Programming on TDs Using Databases
and SQL

In this section, we present a general architecture to model table algorithms by
means of database management systems. The architecture is influenced by the
DP approach of the previous section and works as depicted in Fig. 3, where
the steps highlighted in yellow and blue need to be specified depending on the
problem P. Steps outside Step 3 are mainly setup tasks, the yellow “E”s indicate
events that might be needed to solve more complex problems on the polynomial
hierarchy. For example, one could create and drop auxiliary sub-tables for each
node during Step 3 within such events. Observe that after the generation of a
TD T = (T, χ), Step 2b automatically creates tables τt for each node t of T ,
where the corresponding table schema of τt is specified in the blue part, i.e.,
within ARAlg. The default schema of such a table τt that is assumed in this
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Listing 3. Template of ARAlg(t, χ(t), It, 〈τ1, . . . , τ�〉) of Figure 3 for problem P.

In: Node t, bag χ(t), instance It, sequence 〈τ1, . . . τ�〉 of child tables. Out: Table τt.
1 if type(t) = leaf then τt := #εTab#
2 else if type(t) = intr, and a ∈ χ(t) is introduced then

3 τt := Π̇χ(t),#extProj#(τ1 ��#localProbFilter# #intrTab#)
4 else if type(t) = rem, and a �∈ χ(t) is removed then
5 τt := χ(t)G#aggrExp#

(Πatt(τ1)\{[[a]]}τ1)

6 else if type(t) = join then

7 τt := Π̇χ(t),#extProj#(τ1 ��∧
a∈χ(t)[[a]]≈[[a]]′ ρ⋃

a∈att(τ2)
{[[a]] �→[[a]]′}τ2)

section foresees one column for each element of the bag χ(t), where additional
columns such as counters or costs can be added.

Actually, the core of this architecture is focused on the table algorithm ARAlg

executed for each node t of T of TD T = (T, χ). Besides the definition of table
schemes, the blue part concerns specification of the table algorithm by means
of a procedural generator template that describes how to dynamically obtain
SQL code for each node t thereby oftentimes depending on χ(t). This generated
SQL code is then used internally for manipulation of tables τt during the tree
decomposition traversal in Step 3 of dynamic programming. Listing 3 presents a
general template, where parts of table algorithms for problems that are typically
problem-specific are replaced by colored placeholders of the form #placeHolder#,
cf., Algorithm 2. Observe that Line 3 of Listing 3 uses extended projection as in
Line 7. This is needed for some problems requiring changes on vertex introduc-
tion.

Note, however, that the whole architecture does not depend on certain nor-
malization or forms of TDs, e.g., whether it is nice or not. Instead, a table algo-
rithm of any TD is simply specified by handling problem-specific implementations
of the placeholders of Listing 3, where the system following this architecture is
responsible for interleaving and overlapping these cases within a node t. In fact,
we discuss an implementation of a system according to this architecture next,
where it is crucial to implement non-nice TDs to obtain higher efficiency.

4.1 System dpdb: Dynamic Programming with Databases

We implemented the proposed architecture of the previous section in the proto-
typical dpdb system. The system is open-source2, written in Python 3 and uses
PostgreSQL as DBMS. We are convinced though that one can easily replace
PostgreSQL by any other state-of-the-art relational database that uses SQL. In
the following, we discuss implementation specifics that are crucial for a perfor-
mant system that is still extendable and flexible.

Computing TDs. TDs are computed mainly with the library htd version 1.2
with default settings [2], which finds TDs extremely quick also for interesting
instances [23] due to heuristics. Note that dpdb directly supports the TD format
2 Our system dpdb is available under GPL3 license at github.com/hmarkus/dp on dbs.

https://github.com/hmarkus/dp_on_dbs/releases/tag/v1.001-pre
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of recent competitions [15], i.e., one could easily replace the TD library. It is
important though to not enforce htd to compute nice TDs, as this would cause a
lot of overhead later in dpdb for copying tables. However, in order to benefit from
the implementation of θ-joins, query optimization and state-of-the-art database
technology in general, we observed that it is crucial to limit the number of child
nodes of every TD node. Then, especially when there are huge tables involved,
θ-joins among child node tables cover at most a limited number of child node
tables. In consequence, the query optimizer of the database system still has a
chance to come up with meaningful execution plans depending on the contents
of the table. Note that though one should consider θ-joins with more than just
two tables, since such binary θ-joins already fix in which order these tables shall
be combined, thereby again limiting the query optimizer. Apart from this trade-
off, we tried to outsource the task of joining tables to the DBMS, since the
performance of database systems highly depends on query optimization. The
actual limit, which is a restriction from experience and practice only, highly
depends on the DBMS that is used. For PostgreSQL, we set a limit of at most 5
child nodes for each node of the TD, i.e., each θ-join covers at most 5 child
tables.

Towards non-nice TDs. Although this paper presents the algorithms for nice
TDs (mainly due to simplicity), the system dpdb interleaves these cases as pre-
sented in Listing 3. Concretely, the system executes one query per table τt for
each node t during the traversal of TD T . This query consists of several parts
and we briefly explain its parts from outside to inside. First of all, the inner-most
part concerns the row candiates for τt consisting of the θ-join as in Line 7 of List-
ing 3, including parts of Line 3, namely cross-joins for each introduced variable,
involving #intrTab# without the filtering on #localProbFilter#. Then, there are
different configurations of dpdb concerning these row candidates. For debugging
(see below) one could (1) actually materialize the result in a table, whereas
for performance runs, one should use (2) common table expressions (CTEs or
WITH-queries) or (3) sub-queries (nested queries), which both result in one nested
SQL query per table τt. On top of these row candidates, projection3 and group-
ing involving #aggrExp# as in Line 5 of Listing 3, as well as selection according
to #localProbFilter#, cf., Line 3, is specified. It turns out that PostgreSQL can
do better with sub-queries, where the query optimizer oftentimes pushes selec-
tion and projection into the sub-query if needed, which is not the case for CTEs,
as discussed in the PostgreSQL manual [1, Sec. 7.8.1]. On different DBMS or
other vendors, e.g., Oracle, it might be better to use CTEs instead.

Example 3. Consider again Example 2 and Fig. 1. If we use table algo-
rithm SRAlg with dpdb on formula ϕ of TD T and Option (3): sub-queries, where
the row candidates are expressed via a sub-queries. Then, for each node ti of T ,
dpdb generates a view vi as well as a table τi containing in the end the con-
tent of vi. Observe that each view only has one column [[a]] for each variable a
of ϕ since the truth assignment of the other variables are not needed later. This

3 Actually, dpdb keeps only columns relevant for the table of the parent node of t.
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keeps the tables compact, only τ1 has two rows, τ2, and τ3 have only one row.
We obtain the following views.

CREATE VIEW v1 AS SELECT a, sum(cnt) AS cnt FROM

(WITH intrTab AS (SELECT 1 AS val UNION ALL SELECT 0)

SELECT i1.val AS a, i2.val AS b, i3.val AS c, 1 AS cnt

FROM intrTab i1, intrTab i2, intrTab i3)

WHERE (NOT a OR b OR c) AND (a OR NOT b OR NOT c) GROUP BY a

CREATE VIEW v2 AS SELECT a, sum(cnt) AS cnt FROM

(WITH intrTab AS (SELECT 1 AS val UNION ALL SELECT 0)

SELECT i1.val AS a, i2.val AS d, 1 AS cnt FROM intrTab i1, intrTab i2)

WHERE (a OR d) AND (a OR NOT d) GROUP BY a

CREATE VIEW v3 AS SELECT a, sum(cnt) AS cnt FROM

(SELECT τ1.a, τ1.cnt * τ2.cnt AS cnt FROM τ1, τ2 WHERE τ1.a = τ2.a)
GROUP BY a �

Parallelization. A further reason to not over-restrict the number of child nodes
within the TD, lies in parallelization. In dpdb, we compute tables in parallel along
the TD, where multiple tables can be computed at the same time, as long as the
child tables are computed. Therefore, we tried to keep the number of child nodes
in the TD as high as possible. In our system dpdb, we currently allow for at most
24 worker threads for table computations and 24 database connections at the
same time (both pooled and configurable). On top of that we have 2 additional
threads and database connections for job assignments to workers, as well as one
dedicated watcher thread for clean-up and connection termination, respectively.

Logging, Debugging and Extensions. Currently, we have two versions of the dpdb

system implemented. One version aims for performance and the other one tries
to achieve comprehensive logging and easy debugging of problem (instances),
thereby increasing explainability. The former for instance does neither keep inter-
mediate results nor create database tables in advance (Step 2b), as depicted in
Fig. 3, but creates tables according to an SQL SELECT statement. In the latter
we keep all the intermediate results, we record database timestamps before and
after certain nodes, provide statistics as, e.g., width, number of rows, etc. Fur-
ther, since for each table τt, exactly one SQL statement is executed for filling this
table, we also have a dedicated view of the SQL SELECT statement, whose result
is then inserted in τt. Together with the power and flexibility of SQL queries, we
observed that this helps in finding errors in the table algorithm specifications.

Besides convenient debugging, system dpdb immediately contains an exten-
sion for approximation. There, we restrict the table contents to a maximum
number of rows. This allows for certain approximations on counting problems or
optimization problems, where it is infeasible to compute the full tables. Further,
dpdb foresees a dedicated randomization on these restricted number of rows such
that we obtain different approximate results on different random seeds.

Note that dpdb can be easily extended. Each problem can overwrite existing
default behavior and dpdb also supports problem-specific argument parser for
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each problem individually. Out-of-the-box, we support the formats DIMACS sat
and DIMACS graph [32] as well as the common format for TDs [15].

4.2 Table Algorithms With dpdb for Selected Problems

The system dpdb allows for easy protyping of DP algorithms on TDs. This covers
decision problems, counting problems as well as optimization problems. As a
proof of concept, we present the relevant parts of table algorithm specification
according to the template in Listing 3 for a selection of problems below4. To
this end, we assume in this section a not necessarily nice TD T = (T, χ) of
the corresponding graph representation of our given instance I. Further, for
the following specifications of the table algorithm using the template ARAlg in
Algorithm 2, we assume any node t of T and its child nodes t1, . . . , t�.

Problem #Sat. Given instance formula I = ϕ. Then, specific parts for #Sat
for node t with ϕt = {{l1,1, . . . , l1,k1}, . . . , {ln,1, . . . , ln,kn

}}.

– #εTab#: SELECT 1 AS cnt
– #intrTab#: SELECT 1 AS val UNION ALL 0
– #localProbFilter#: (l1,1 OR . . . OR l1,k1) AND . . . AND (ln,1 OR . . . OR ln,kn

)
– #aggrExp#: SUM(cnt) AS cnt
– #extProj#: τ1.cnt * . . . * τ�.cnt AS cnt

Observe that for the corresponding decision problem Sat, where the goal is to
decide only the existence of a satisfying assignment for given formula ϕ, #εTab#
returns the empty table and parts #aggrExp#,#extProj# are just empty since
there is no counter needed.

Problem #o-Col. For given input graph I = G = (V,E), a o-coloring is a
mapping ι : V → {1, . . . , o} such that for each edge {u, v} ∈ E, we have ι(u) �=
ι(v). Problem #o-Col asks to count the number of o-colorings of G. Local
problem #o-Col(t,G) is defined by the graph Gt := (V ∩χ(t), E ∩ [χ(t)×χ(t)]).

Specific parts for #o-Col for node t with E(Gt) = {{u1, v1}, . . . , {un, vn}}.

– #εTab#: SELECT 1 AS cnt
– #intrTab#: SELECT 1 AS val UNION ALL . . . UNION ALL o
– #localProbFilter#: NOT ([[u1]] = [[v1]]) AND . . . AND NOT ([[un]] = [[vn]])
– #aggrExp#: SUM(cnt) AS cnt
– #extProj#: τ1.cnt * . . . * τ�.cnt AS cnt

Problem MinVC. Given input graph I = G = (V,E), a vertex cover is a set of
vertices C ⊆ V of G such that for each edge {u, v} ∈ E, we have {u, v} ∩ C �=
∅. Then, MinVC asks to find the minimum cardinality |C| among all vertex
covers C, i.e., C is such that there is no vertex cover C ′ with |C ′| < |C|. Local
problem MinVC(t,G) := Gt is defined as above. We use an additional column
card for storing cardinalities.

Problem MinVC for node t with E(Gt) = {{u1, v1}, . . . , {un, vn}} and χ(t) =
{a1, . . . , ak} can be specified as follows.
4 Implementation for problems #Sat as well as MinVC is readily available in dpdb.
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– #εTab#: SELECT 0 AS card
– #intrTab#: SELECT 1 AS val UNION ALL 0
– #localProbFilter#: ([[u1]] OR [[v1]]) AND . . . AND ([[un]] OR [[vn]])
– #aggrExp#: MIN(card) AS card
– #extProj#: τ1.card + . . . + τ�.card - (Σ�

i=1|χ(ti) ∩ {a1}| - 1) *
τ1.[[a1]] - . . . - (Σ�

i=1|χ(ti) ∩ {ak}| - 1) * τ1.[[ak]]

Observe that #ExtProj# is a bit more involved on non-nice TDs, as, whenever
the column for a vertex a is set to 1, i.e., vertex a is in the vertex cover, we have
to consider a only with cost 1, also if a appears in several child node bags.

Note that concrete implementations could generate and apply parts of this
specification, as for example in #localProbFilter# only edges involving newly
introduced vertices need to be checked.

Similar to MinVC and #o-Col one can model several other (graph) prob-
lems. One could also think of counting the number of solutions of problem
MinVC, where both a column for cardinalities and one for counting is used.
There, in addition to grouping with GROUP BY in dpdb, we additionally could use
the HAVING construct of SQL, where only rows are kept, whose column card is
minimal.

5 Experiments

We conducted a series of experiments using publicly available benchmark sets
for #Sat. Our tested benchmarks [22] are publicly available, and our results are
also on github at github.com/hmarkus/dp on dbs/padl2020.

Fig. 4. Runtime for the top 15 solvers over all #Sat instances. The x-axis refers to
the number of instances and the y-axis depicts the runtime sorted in ascending order
for each solver individually.

https://github.com/hmarkus/dp_on_dbs/tree/padl2020
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Table 1. Number of solved #Sat instances, preprocessed by pmc and grouped by
intervals of upper bounds of the treewidth. time[h] is the cumulated wall clock time in
hours, where unsolved instances are counted as 900 s.

solver 0-20 21-30 31-40 41-50 51-60 >60 best unique
∑

time[h]
pr
ep

ro
ce
ss
ed

by
pm

c
[2
9]

miniC2D 1193 29 10 2 1 7 13 0 1242 68.77
gpusat2 1196 32 1 0 0 0 250 2 1229 71.27
d4 1163 20 10 2 4 28 52 1 1227 76.86
countAntom 12 1141 18 10 5 4 13 101 0 1191 84.39
dpdb 1159 19 5 2 0 0 2 1 1185 100.99
c2d 1124 31 10 3 3 10 20 0 1181 84.41
sharpSAT 1029 16 10 2 4 30 253 1 1091 106.88
gpusat1 1020 16 0 0 0 0 106 1 1036 114.86
sdd 1014 4 7 1 0 2 0 0 1028 124.23
sts 927 4 8 7 5 52 73 21 1003 128.43
dsharp 853 3 7 2 0 0 83 0 865 157.87
cnf2eadt 799 3 7 2 0 7 328 0 818 170.17
approxmc 3 794 3 7 2 0 6 10 0 812 173.35
bdd minisat all 791 4 1 0 0 0 99 0 796 175.09
cachet 624 3 8 2 3 24 3 0 664 209.26
approxmc 2 447 3 0 0 0 0 1 0 450 265.31
sharpCDCL 340 3 0 0 0 0 0 0 343 289.17

5.1 Setup

Measure & Resources. We mainly compare wall clock time and number of time-
outs. In the time we include preprocessing time as well as decomposition time
for computing a TD with a fixed random seed. For parallel solvers we allowed
access to 24 physical cores on machines. We set a timeout of 900 s and limited
available RAM to 14 GB per instance and solver.

Benchmark Instances. We considered a selection of overall 1494 instances from
various publicly available benchmark sets #Sat consisting of fre/meel bench-
marks5(1480 instances), and c2d benchmarks6 (14 instances). However, we con-
sidered instances preprocessed by regular #Sat preprocessor pmc [29], similar
to results of recent work on #Sat [23], where it was also shown that more than
80% of the #Sat instances have primal treewidth below 19 after preprocessing.

Benchmarked system dpdb. We used PostgreSQL 9.5 for our system dpdb, which
was available on our benchmark described hardware below. However, we expect
major performance increases if higher versions are used, which was not available
on our benchmark machines. In particular, parallel queries, where a query is
evaluated in parallel, were added and improved in every version greater than
9.6.

Other benchmarked systems. In our experimental work, we present results for the
most recent versions of publicly available #Sat solvers, namely, c2d 2.20 [13],

5 See: tinyurl.com/countingbenchmarks.
6 See: reasoning.cs.ucla.edu/c2d.

http://reasoning.cs.ucla.edu/c2d/download.php
http://tinyurl.com/countingbenchmarks
http://reasoning.cs.ucla.edu/c2d/results.html
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d4 1.0 [30], DSHARP 1.0 [33], miniC2D 1.0.0 [34], cnf2eadt 1.0 [28],
bdd minisat all 1.0.2 [42], and sdd 2.0 [14], which are all based on knowl-
edge compilation techniques. We also considered rather recent approximate
solvers ApproxMC2, ApproxMC3 [7] and sts 1.0 [20], as well as CDCL-based
solvers Cachet 1.21 [37], sharpCDCL7, and sharpSAT 13.02 [40]. Finally, we also
included multi-core solvers gpusat 1.0 and gpusat 2.0 [23], which both are based
on dynamic programming, as well as countAntom 1.0 [6] on 12 physical CPU
cores, which performed better than on 24 cores. Experiments were conducted
with default solver options.

Benchmark Hardware. Almost all solvers were executed on a cluster of 12 nodes.
Each node is equipped with two Intel Xeon E5-2650 CPUs consisting of 12
physical cores each at 2.2 GHz clock speed, 256 GB RAM and 1 TB hard disc
drives (not an SSD) Seagate ST1000NM0033. The results were gathered on
Ubuntu 16.04.1 LTS machines with disabled hyperthreading on kernel 4.4.0-
139. As we also took into account solvers using a GPU, for gpusat1 and gpusat2
we used a machine equipped with a consumer GPU: Intel Core i3-3245 CPU
operating at 3.4 GHz, 16 GB RAM, and one Sapphire Pulse ITX Radeon RX 570
GPU running at 1.24 GHz with 32 compute units, 2048 shader units, and 4 GB
VRAM using driver amdgpu-pro-18.30-641594 and OpenCL 1.2. The system
operated on Ubuntu 18.04.1 LTS with kernel 4.15.0-34.

5.2 Results

Figure 4 illustrates the top 15 solvers, where instances are preprocessed by pmc,
in a cactus-like plot, which provides an overview over all the benchmarked #Sat
instances. The x-axis of these plots refers to the number of instances and the
y-axis depicts the runtime sorted in ascending order for each solver individually.
Overall, dpdb seems to be quite competitive and beats most of the solvers, as for
example gpusat1, sharpSAT, dsharp, approxmc as well as cachet. Surprisingly,
our system shows a different runtime behavior than the other solvers. We believe
that the reason lies in an initial overhead caused by the creation of the tables that
seems to depend on the number of nodes of the used TD. There, I/O operations
of writing from main memory to hard disk seem to kick in. Table 1 presents
more detailed runtime results, showing a solid fifth place for dpdb as our system
solves the vast majority of the instances. Assume we only have instances up to
an upper bound8 of treewidth 35. Then, if instances with TDs up to width 35
are considered, dpdb solves even slightly more instances than countAntom.

6 Final Discussion and Conclusions

We presented a generic system dpdb for explicitly exploiting treewidth by means
of dynamic programming on databases. The idea of dpdb is to use database
7 See: tools.computational-logic.org.
8 These upper bounds were obtained via decomposer htd in at most two seconds.

http://www.cril.univ-artois.fr/KC/d4.html
https://bitbucket.org/haz/dsharp
http://reasoning.cs.ucla.edu/minic2d/
http://www.cril.univ-artois.fr/KC/eadt.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://reasoning.cs.ucla.edu/sdd/
https://bitbucket.org/kuldeepmeel/approxmc
http://cs.stanford.edu/~ermon/code/STS.zip
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
http://tools.computational-logic.org/content/sharpCDCL.php
https://sites.google.com/site/marcthurley/sharpsat
https://github.com/daajoe/GPUSAT/releases/tag/v0.815-pre
http://tools.computational-logic.org/content/sharpCDCL.php
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management systems (DBMS) for table manipulation, which makes it (1) easy
and elegant to perform rapid prototyping for problems, and (2) allows to leverage
from decades of database theory and database system tuning. It turned out that
all the cases that occur in dynamic programming can be handled quite elegantly
with plain SQL queries. Our system dpdb can be used for both decision and
counting problems, thereby also considering optimization. We see our system
particularly well-suited for counting problems, especially, since it was shown
that for model counting (#Sat) instances of practical relevance typically have
small treewidth [23]. In consequence, we carried out preliminary experiments
on publicly available instances for #Sat, where we see competitive behavior
compared to most recent solvers.

Future Work. Our results give rise to several research questions. First of all, we
want to push towards PostgreSQL 12, but at the same time also consider other
vendors and systems, e.g., Oracle. In particular, the behavior of different systems
might change, when we use different strategies on how to write and evaluate our
SQL queries, e.g., sub-queries vs. common table expressions. Currently, we do
not create or use any indices, as preliminary tests showed that meaningful B*tree
indices are hard to create and oftentimes cost too much time to create. Further,
the exploration of bitmap indices, as available in Oracle enterprise DBMS would
be worth trying in our case (and for #Sat), since one can efficiently combine
database columns by using extremely efficient bit operations.

It might be worth to rigorously test and explore our extensions on limiting the
number of rows per table for approximating #Sat or other counting problems,
cf., [8,19,39]. Another interesting research direction is to study whether efficient
data representation techniques on DBMS can be combined with dynamic pro-
gramming in order to lift our solver to quantified Boolean formulas. Finally, we
are also interested in extending this work to projected model counting [21].
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26. Kleine Büning, H., Lettman, T.: Propositional Logic: Deduction and Algorithms.
Cambridge University Press, Cambridge (1999)

27. Kloks, T.: Treewidth: Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

28. Koriche, F., Lagniez, J.M., Marquis, P., Thomas, S.: Knowledge compilation for
model counting: affine decision trees. In: IJCAI 2013. The AAAI Press (2013)

29. Lagniez, J., Marquis, P.: Preprocessing for propositional model counting. In: AAAI,
pp. 2688–2694. AAAI Press (2014)

30. Lagniez, J.M., Marquis, P.: An improved decision-DDNF compiler. In: IJCAI 2017,
pp. 667–673. The AAAI Press (2017)

31. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Evaluation of an MSO-solver. In:
Proceedings of ALENEX. pp. 55–63. SIAM/Omnipress (2012)

32. Liu, J., Zhong, W., Jiao, L.: Comments on “the 1993 DIMACS graph coloring
challenge” and “energy function-based approaches to graph coloring”. IEEE Trans.
Neural Netw. 17(2), 533 (2006)

33. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: fast d-DNNF compi-
lation with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) AI 2012. LNCS (LNAI),
vol. 7310, pp. 356–361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30353-1 36

34. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In:
IJCAI 2015, pp. 3141–3148. The AAAI Press (2015)

35. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302
(1996)

36. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

37. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: SAT 2004 (2004)

38. Sang, T., Beame, P., Kautz, H.: Performing Bayesian inference by weighted model
counting. In: AAAI 2005. The AAAI Press (2005)

39. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: a scalable probabilistic exact
model counter. In: IJCAI, pp. 1169–1176. ijcai.org (2019)

40. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 38

41. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),
865–877 (1991)

42. Toda, T., Soh, T.: Implementing efficient all solutions SAT solvers. ACM J. Exp.
Algorithmics 21, 1–12 (2015). special Issue SEA 2014

43. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. II. Com-
puter Science Press (1989)

44. Xue, Y., Choi, A., Darwiche, A.: Basing decisions on sentences in decision diagrams.
In: AAAI 2012. The AAAI Press (2012)

https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/11814948_38


Whitebox Induction of Default Rules
Using High-Utility Itemset Mining

Farhad Shakerin(B) and Gopal Gupta

The University of Texas at Dallas, Richardson, TX 75080, USA
{farhad.shakerin,gopal.gupta}@utdallas.edu

Abstract. We present a fast and scalable algorithm to induce non-
monotonic logic programs from statistical learning models. We reduce
the problem of search for best clauses to instances of the High-Utility
Itemset Mining (HUIM) problem. In the HUIM problem, feature values
and their importance are treated as transactions and utilities respec-
tively. We make use of TreeExplainer, a fast and scalable implementation
of the Explainable AI tool SHAP, to extract locally important features
and their weights from ensemble tree models. Our experiments with UCI
standard benchmarks suggest a significant improvement in terms of clas-
sification evaluation metrics and training time compared to ALEPH, a
state-of-the-art Inductive Logic Programming (ILP) system.

Keywords: Inductive logic programming · Machine learning ·
Explainable AI · Negation as failure · Answer set programming · Data
mining

1 Introduction

The FOIL algorithm by Quinlan [14] is a popular ILP algorithm that incor-
porates heuristics from information theory called weighted information gain to
guide the search for best clauses. The use of a greedy heuristic makes FOIL fast
and scalable. However, scalability comes at the expense of losing accuracy if the
algorithm is stuck in a local optima and/or when the number of examples is
insufficient. Figure 1 demonstrates how the local optima results in discovering
sub-optimal rules that does not necessarily coincide with the real underlying
sub-concepts of the data.

Unlike FOIL, statistical machine learning algorithms are bound to find the
relevant features because they optimize an objective function with respect to
global constraints. This results in models that are inherently complex and can-
not explain what features account for a classification decision on any given data
sample. The Explainable AI techniques such as LIME [15] and SHAP [10] have
been proposed that provide explanations for any given data sample. Each expla-
nation is a set of feature-value pairs that would locally determine what features
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Fig. 1. Optimal sequential covering with 3 Clauses (Left), Sub-Optimal sequential
covering with 4 Clauses (Right)

and how strongly each feature, relative to other features, contributes to the clas-
sification decision. To capture the global behavior of a black-box model, however,
an algorithm needs to group similar data samples (i.e., data samples for which
the same set of feature values are responsible for the choice of classification)
and cover them with the same clause. While in FOIL, the search for a clause
is guided by heuristics, in our novel approach, we adapt High Utility Item-set
Mining (HUIM) [5]—a popular technique from data mining—to find clauses. We
call this algorithm SHAP-FOLD from here on. The advantage of SHAP-FOLD
over heuristics-based algorithms such as FOIL is that:

1. SHAP-FOLD does not get stuck in a local optima
2. SHAP-FOLD distinguishes exceptional cases from noisy samples
3. SHAP-FOLD learns a reasonable number of non-monotonic rules in the form

of default theories
4. SHAP-FOLD is fast and scalable compared to conventional ILP algorithms

This paper makes the following novel contribution: We present a new ILP algo-
rithm capable of learning non-monotonic logic programs from local explana-
tions of black-box models provided by SHAP. Our experiments on UCI stan-
dard benchmark data sets suggest that SHAP-FOLD outperforms ALEPH [17]
in terms of classification evaluation metrics, running time, and providing more
concise explanations measured in terms of number of clauses induced.

2 Background

2.1 The FOIL Algorithm

FOIL is a top-down ILP algorithm that follows a sequential covering scheme to
induce a hypotheses. The FOIL algorithm is summarized in Algorithm 1. This
algorithm repeatedly searches for clauses that score best with respect to a subset
of positive and negative examples, a current hypothesis and a heuristic called
information gain (IG).

The inner loop searches for a clause with the highest information gain using
a general-to-specific hill-climbing search. To specialize a given clause c, a refine-
ment operator ρ under θ-subsumption [13] is employed. The most general clause
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Algorithm 1. Summarizing the FOIL algorithm
Input: target, B, E+, E−

Output: Initialize H ← ∅
1: while (|E+| > 0) do
2: c ← (target :- true.)
3: while (|E−| > 0 ∧ c.length < max length) do
4: for all c′ ∈ ρ(c) do
5: compute score(E+, E−, H ∪ {c′}, B)
6: end for
7: let ĉ be the c′ ∈ ρ(c) with the best score
8: E− ← covers(ĉ, E−)
9: end while

10: add ĉ to H
11: E+ ← E+ \ covers(ĉ, E+)
12: end while
13: return H

is the following: p(X1, ...,Xn) ← true., where the predicate p/n is the predicate
being learned and each Xi is a variable. The refinement operator specializes the
current clause h ← b1, ...bn. This is realized by adding a new literal l to the
clause yielding h ← b1, ...bn, l. The heuristic based search uses information gain.

2.2 SHAP

SHAP [10] (SHapley Additive exPlanations) is a unified approach with founda-
tions in game theory to explain the output of any machine learning model. Given
a dataset and a trained model, the SHAP framework computes a matrix of the
shape (#samples,#features) representing the Shapley value of each feature for
each data sample. Each row sums to the difference between the model output for
that sample and the expected value of the model output. This difference explains
why the model is inclined to predict a specific class outcome.

Example 1. The UCI heart dataset contains features such as patient’s blood
pressure, chest pain, thallium test results, number of major vessels blocked, etc.
The classification task is to predict whether the subject suffers from heart dis-
ease or not. Figure 2 shows how SHAP would explain a model’s prediction over
a data sample. For this sample, SHAP explains why the model predicts heart
disease by returning the top features along with their Shapley values (importance
weight). According to SHAP, the model predicts “heart disease” because of the
values of “thalium test” and “maximum heart rate achieved” which push the
prediction from the base (expected) value of 0.44 towards a positive prediction
(heart disease). On the other hand, the feature “chest pain” would have pushed
the prediction towards negative (healthy), but it is not strong enough to turn the
prediction.
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Fig. 2. Shap values for a UCI heart prediction

2.3 High-Utility Itemset Mining

The problem of High-Utility Itemset Mining (HUIM) is an extension of an older
problem in data mining known as frequent pattern mining [1]. Frequent pattern
mining is meant to find frequent patterns in transaction databases. A transac-
tion database is a set of records (transactions) indicating the items purchased by
customers at different times. A frequent itemset is a group of items that appear
in many transactions. For instance, {noodles, spicy sauce} being a frequent item-
set, can be used to take marketing decisions such as co-promoting noodles with
spicy sauce. Finding frequent itemsets is a well-studied problem with an effi-
cient algorithm named Apriori [2]. However, in some applications frequency is
not always the objective. For example, the pattern {milk,bread} may be highly
frequent, but it may yield a low profit. On the other hand, a pattern such as
{caviar, champagne} may not be frequent but may yield a high profit. Hence, to
find interesting patterns in data, other aspects such as profitability is considered.

Mining high utility itemsets can be viewed as a generalization of the frequent
itemset mining where each item in each transaction has a utility (importance)
associated with it and the goal is to find itemsets that generate high profit when
for instance, they are sold together. The user has to provide a value for a thresh-
old called minimum utility. A high utility itemset mining algorithm outputs all
the high-utility itemsets with at least minimum utility profit. Table 1 shows a
transaction database consisting of 5 transactions. Left column shows the trans-
action Identifier. Middle column contains the items included in each transaction
and right column contains each item’s respective profit. If the minimum utility
is set to 25, the result of a high utility itemset mining algorithm is shown in

Table 1. Left: an HUIM Problem Instance. Right: Solution for minutil = 25

Transactions Items Profits

T0 a b c d e 5 10 1 6 3

T1 b c d e 8 3 6 3

T2 a c d 5 1 2

T3 a c e 10 6 6

T4 b c e 4 2 3

High Utility Itemsets

{a, c}: 28 {a, c, e}: 31

{a, b, c, d, e}: 25 {b, c}: 28

{b, c, d}: 34 {b, c, d, e}: 40

{b, c, e}: 37 {b, d}: 30

{b, d, e}: 36 {b, e}: 31

{c, e}: 27
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the right table in Table 1. In order to rank the high utility itemsets, Top-K High
Utility Itemset (THUI) mining problem [18] is incorporated in SHAP-FOLD.

3 SHAP-FOLD Algorithm

SHAP-FOLD learns a concept in terms of a default theory [16]. In Logic Pro-
gramming, default theories are represented using negation-as-failure (NAF)
semantics [3].

Example 2. The following default theory “Normally, birds fly except penguins
which do not”, is represented as:

flies(X) :- bird(X), not ab_bird(X).
ab_bird(X) :- penguin(X).

The SHAP-FOLD algorithm adapts the FOIL style sequential covering
scheme. Therefore, it iteratively learns single clauses, until all positive exam-
ples are covered. To learn one clause, SHAP-FOLD first finds common patterns
among positive examples. If the resulted clause (default) covers a significant
number of negative examples, SHAP-FOLD swaps the current positive and neg-
ative examples and recursively calls the algorithm to learn common patterns
in negative examples (exceptions). As shown in Example 2, the exceptions are
ruled out using negation-as-failure. Learning exceptions allow our SHAP-FOLD
algorithm to distinguish between noisy samples and exceptional cases.

To search for “best” clause, SHAP-FOLD tightly integrates the High Utility
Itemset Mining (HUIM) and the SHAP technique. In this novel approach, the
SHAP system is employed to find relevant features as well as their importance.
To find the “best” clause SHAP-FOLD creates instances of HUIM problem. Each
instance, contains a subset of examples represented as a set of “transactions” as
shown in Table 1. Each “transaction” contains a subset of feature values along
with their corresponding utility (i.e., feature importance). The feature impor-
tance φi ∈ [0, 1] for all i distinct feature values. Therefore, a high-utility itemset
in any set of “transactions” represents strongest features that would contribute
to the classification of a significant number of examples, because, otherwise, that
itemset would not have been selected as a high-utility itemset. To find the item-
set with highest utility, the HUIM algorithm Top-K [18] is invoked with K set
to 1.

SHAP-FOLD takes a target predicate name (G), a tabular dataset (D) with
m rows and two different labels +1 and −1 for positive examples and negative
examples respectively. E+ and E− represent these examples in the form of target
atoms. It also takes a “transaction” database. Each row of T contains a subset
of an example’s feature-values (zi) along with their Shapley values (φi). This
“transaction” database is passed along to create HUIM instance and find the
itemset with highest utility every time Top-K algorithm is invoked. The summary
of SHAP-FOLD’s pseudo-code is shown in Algorithm 2.

In the function FOIL (lines 1–8), sequential covering loop to cover positive
examples is realized. On every iteration, a default clause (and possibly multiple
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Algorithm 2. Summary of SHAP-FOLD Algorithm
Input: G: Target Predicate to Learn

B: Background Knowledge
D = { (x1, y1), ..., (xm, ym)} : yi ∈ {−1, +1}
E+ = { xi | xi ∈ D ∧ yi = 1} : Positive Examples
E− = { xi | xi ∈ D ∧ yi = −1}: Negative Examples
T = { (zi, φi) | zi ⊆ xi ∧ xi ∈ D ∧ φi is zi’s Shapley values }

Output: D = { C1, ..., Cn} � default clauses
AB = { ab1, ..., abm} � exceptions/abnormal clauses

1: function FOIL(E+, E−)
2: while (|E+| > 0) do
3: Cdef+exc ← Learn One Rule(E+,E−)
4: E+ ← E+ \ covers(Cdef+exc, E

+, B)
5: D ← D ∪ {Cdef+exc}
6: end while
7: return D, AB � returns sets of defaults and exceptions
8: end function
9: function Learn One Rule(E+, E−)

10: - let Item-Set be {(f1, ...fn), (φ1, ..., φn)} ← Top-K(K=1,E+,T)
11: Cdef ← (G :- f1, ..., fn)
12: FP ← covers(Cdef , E−) � FP denotes False Positives
13: if FP > 0 then
14: Cdef+exc ← LEARN EXCEPTIONS(Cdef , E−, E+)
15: end if
16: return Cdef+exc

17: end function
18: function LEARN EXCEPTIONS(Cdef , E+, E−)
19: {C1, ..., Ck} ← FOIL(E+, E−) � Recursive Call After Swapping
20: ab index ← GENERATE UNIQUE AB INDEX()
21: for i ← 1 to k do
22: AB ← AB ∪ {abab index :- bodyof(Ci)}
23: end for
24: return Cdef+exc ← (headof(Cdef ) :- bodyof(Cdef ), not(abab index))
25: end function

exceptions) - denoted by Cdef+exc - is learned and added to the hypothesis. Then,
the covered examples are removed from the remaining examples. In the function
LEARN ONE RULE (lines 9–17), Top-K algorithm with k = 1 is invoked and
a high-utility itemset (i.e., a subset of features-values and their corresponding
Shapley values) is retrieved. These subset of features create the default part
of a new clause. Next, if the default clause covers false positives, the current
positive and negative examples are swapped to learn exceptions. In the func-
tion LEARN EXCEPTIONS (lines 18–25), the algorithm recursively calls itself
to learn clauses that would cover exceptional patterns. When the recursive call
returns, for all learned clauses, their head is replaced by an abnormality pred-
icate. To manufacture the complete default theory, the abnormality predicate
preceded by negation-as-failure (not) is added to the default part. Example 3
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shows how SHAP-FOLD learns a concise logic program from an XGBoost trained
model.

Example 3. The “UCI Cars” dataset contains 1728 different cars and their
acceptability based on features such as buying price, maintenance cost, trunk
size, capacity, number of doors, and safety. SHAP-FOLD generates the following
program from a trained XGBoost model:

DEF(1): acceptable(A):- safety(A,high), not ab0(A).

EXCEPTIONS(1): ab0(A):- persons(A,2).

ab0(A):- maintenance(A,very_high).

DEF(2): acceptable(A):- persons(A,4), safety(A,medium), not ab1(A).

EXCEPTIONS(2): ab1(A):- price(A,very_high), trunk(A,small).

ab1(A):- price(A,high), maintenance(A,very_high).

DEF(3): acceptable(A):- trunk(A,big), safety(A,medium),

persons(A,>5).

On first iteration, the clause DEF(1) is generated. Since it covers a signif-
icant number of negative examples, E+ and E− are swapped and algorithm
recursively calls itself. Inside LEARN EXCEPTIONS, the recursive call returns
with EXCEPTIONS(1) clauses. The head predicate ab0 replaces their head and
finally in line 24, the negation of abnormality is appended to the default to cre-
ate the following default clause: “A car is considered acceptable if its safety is
high, unless it only fits two persons or its maintenance cost is high”.

4 Experiments

In this section, we present our experiments on UCI standard benchmarks [8].1

The ALEPH system [17] is used as a baseline. We set ALEPH to use the heuristic
enumeration strategy, and the maximum number of branch nodes to be explored
in a branch-and-bound search to 500K. We also configured ALEPH to allow
up to 50 false examples covered by each clause while each clause is at least 80%
accurate. We use precision, recall, accuracy and F1 score to compare the results.

The SHAP-FOLD requires a statistical model as input to the SHAP tech-
nique. While computing the Shapley values is slow, there is a fast and exact
implementation called TreeExplainer [9] for ensemble tree models. XGBoost [4]
is a powerful ensemble tree model that perfectly works with TreeExplainer. Thus,
we trained an XGBoost model for each of the reported experiments in this paper.
Table 2 presents the comparison between ALEPH and SHAP-FOLD on classifi-
cation evaluation of each UCI dataset. The best performer is highlighted with
boldface font. In terms of the running time, SHAP-FOLD scales up much bet-
ter. In case of “King-Rook vs. King-Pawn”, while ALEPH discovers 283 clauses
in 836 seconds, SHAP-FOLD does much better. It finishes in 8 seconds discov-
ering only 3 clauses that cover the knowledge underlying the model. Similarly,
in case of “UCI kidney”, SHAP-FOLD finds significantly fewer clauses. Thus,

1 Full implementation is available at: https://github.com/fxs130430/SHAP FOLD.

https://github.com/fxs130430/SHAP{_}FOLD
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Table 2. Evaluation of SHAP FOLD on UCI datasets

Algorithm

Aleph SHAP-FOLD

Data set Shape Precision Recall Accuracy F1 Time (s) Precision Recall Accuracy F1 Time (s)

Cars (1728, 6) 0.83 0.63 0.85 0.72 73 0.84 0.94 0.93 0.89 5

Credit-a (690, 15) 0.78 0.72 0.78 0.75 180 0.90 0.74 0.84 0.81 7

Breast-w (699, 9) 0.92 0.87 0.93 0.89 10 0.92 0.95 0.95 0.93 2

Kidney (400, 24) 0.96 0.92 0.93 0.94 5 0.93 0.95 0.93 0.94 1

Voting (435, 16) 0.97 0.94 0.95 0.95 25 0.98 0.98 0.95 0.96 1

Autism (704, 17) 0.73 0.43 0.79 0.53 476 0.96 0.83 0.95 0.89 2

Ionosphere (351, 34) 0.89 0.87 0.85 0.88 113 0.87 0.91 0.85 0.89 2

Heart (270, 13) 0.76 0.75 0.78 0.75 28 0.76 0.83 0.81 0.80 1

kr vs. kp (3196, 36) 0.92 0.99 0.95 0.95 836 0.92 0.99 0.95 0.95 8

not only SHAP-FOLD’s performance is much better, it discovers more succinct
programs. Also, scalability is a major problem in ILP, that our SHAP-FOLD
algorithm solves: its execution performance is orders of magnitude better.

SHAP-FOLD almost always achieves a higher Recall score. This suggests
that the proper use of negation-as-failure leads to better coverage. The absence
of negation from ALEPH hypothesis space forces the algorithm to create too
specific clauses which leaves many positive examples uncovered. In contrast,
our SHAP-FOLD algorithm emphasizes on better coverage via finding high-
utility patterns of important features first. If the result turns out to cover too
many negative examples to tolerate, by learning exceptions and ruling them out
(via the same algorithm applied recursively), SHAP-FOLD maintains the same
coverage as it rules out exceptional negative examples.

5 Related Works and Conclusions

A survey of ILP can be found in [12]. In ILP community, researchers have tried to
combine statistical methods with ILP techniques. Support Vector ILP [11] uses
ILP hypotheses as kernel in dual form of the SVM algorithm. kFOIL [7] learns
an incremental kernel for SVM algorithm using a FOIL style specialization.
nFOIL [6] integrates the Naive-Bayes algorithm with FOIL. The advantage of
our research over all of the above mentioned research work is that, first it is model
agnostic, second it is scalable thanks to the fast and scalable HUIM algorithm
and SHAP TreeExplainer, third it enjoys the power of negation-as-failure which
is absent from the above mentioned works.

In this paper, we presented a fast and scalable ILP algorithm to induce
default theories from statistical machine learning models. In this novel approach,
irrelevant features are filtered out by SHAP, a technique from explainable AI.
Then, the problem of searching for “best” clause is reduced to a High-Utility
Itemset Mining problem. Our experiments on benchmark datasets suggest a
significant improvement in terms of the classification evaluation metrics and
running time.
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Abstract. We present an approach for explaining dynamic program-
ming that is based on computing with a granular representation of values
that are typically aggregated during program execution. We demonstrate
how to derive more detailed and meaningful explanations of program
behavior from such a representation than would otherwise be possible.
To illustrate the practicality of this approach we also present a Haskell
library for dynamic programming that allows programmers to specify
programs by recurrence relationships from which implementations are
derived that can run with granular representation and produce explana-
tions. The explanations essentially answer questions of why one result
was obtained instead of another. While usually the alternatives have
to be provided by a user, we will show that with our approach such
alternatives can be in some cases anticipated and that corresponding
explanations can be generated automatically.

1 Introduction

The need for program explanations arises whenever a program execution pro-
duces a result that differs from the user’s expectation. The difference could be
due to a bug in the program or to an incorrect expectation on part of the user. To
find out, a programmer may employ a debugger to gain an understanding of the
program’s behavior [1,2]. However, debugging is very costly and time consuming
[3]. Moreover, the focus on fault localization makes debuggers not the most effec-
tive tools for program understanding, since they force the user to think in terms
of low-level implementation details. In fact, debuggers typically already assume
an understanding of the program by the programmer [4]. The work on customiz-
able debugging operations is additional testimony to the limitations of generic
debugging approaches [5,6]. Finally, debugging is not an option for most users
of software, simply because they are not programmers. Therefore, to generate
program explanations we need to consider alternative methods.

One approach to producing explanations is to track data that is aggregated
during a computation and keep the unaggregated representation that can later
be queried to illustrate the effects of the performed computation. Specifically, as
we illustrate in Sect. 2 we can maintain value decompositions of those data that
are the basis for decisions in computations that might require explanations.

This work is partially supported by DARPA under the grant N66001-17-2-4030 and by
the National Science Foundation under the grant CCF-1717300.
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Since our goal is to facilitate systematic explanations of decisions made by
dynamic programming algorithms, we show in Sect. 3 how dynamic programming
algorithms can be expressed as recurrence equations over semirings, and we
present a Haskell implementation to demonstrate that the idea is feasible in
practice. In Sect. 4 we demonstrate how to use this implementation to operate
with value decompositions and produce explanations.

Value decompositions produce explanations for decisions. Specifically, they
are used to answer questions such as “Why was A chosen over alternative B?”
Alternatives against which decisions are to be explained are typically provided
by users, but as we demonstrate in Sect. 5, sometimes they can be anticipated,
which means that comparative explanations can be generated automatically.
Finally, we compare our approach with related work in Sect. 6 and present some
conclusions in Sect. 7. The main contributions of this paper are as follows.

– A framework based on semirings for expressing dynamic programming algo-
rithms that supports the computation with value decompositions.

– An extension of the framework for the automatic generation of explanations.
– A method for the automatic generation of examples in explanations.
– An implementation of the approach as a Haskell library.

2 Explaining Decisions with Value Decompositions

Many decision and optimization algorithms select one or more alternatives from
a set based on data gathered about different aspects for each alternative. For
example, to decide between two vacation destinations one may rank weather
(W ), food (F ), and price (P ) on a point scale from 1 (poor) to 10 (great) and
compute a total point score for each possible destination and then pick the one
with the highest score.

This view can be formalized using the concepts of value decomposition and
valuation. Given a set of categories C, a mapping v : C → R is called a value
decomposition (with respect to C). The (total) value of a value decomposition
is defined as the sum of its components, that is, v̂ =

∑
(c,x)∈v x. A valuation

for a set S (with respect to C) is a function ϕ that maps elements of S to
corresponding value decompositions, that is, ϕ : S → R

C . We write ϕ̂(A) to
denote the total value of A’s value decomposition. In our example scenario lets
consider two destinations S = {X,Y } with the respective value decompositions
vX = {W �→ 7, F �→ 8, P �→ 1, } and vY = {W �→ 4, F �→ 4, P �→ 9, }, which
yields the valuation ϕ = {X �→ vX , Y �→ vY }.

The elements of S can be ordered based on the valuation totals in an obvious
way:

∀A,B ∈ S. A > B ⇔ ϕ̂(A) > ϕ̂(B)

When a user asks about a program execution why A was selected over B, the
obvious explanation is ϕ̂(A) > ϕ̂(B), reporting the valuation totals. However,
such an answer might not be useful, since it ignores the categories that link the
raw numbers to the application domain and thus lacks a context for the user to
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interpret the numbers. In our example, destination Y would be selected since
ϕ̂(Y ) = 17 > ϕ̂(X) = 16, which might be surprising because X seems clearly so
much better than Y in terms of weather and food.

If the value decomposition is maintained during the computation, we can
generate a more detailed explanation. First, we can rewrite ϕ̂(A) > ϕ̂(B) as
ϕ̂(A) − ϕ̂(B) > 0, which suggests the definition of the valuation difference
between two elements A and B as follows.

δ(A,B) = {(c, x − y) | (c, x) ∈ ϕ(A) ∧ (c, y) ∈ ϕ(B)}

The total of the value difference δ̂(A,B) is given by the sum of all components,
just like the total of a value decomposition. In our example we have δ(Y,X) =
{W �→ −3, F �→ −4, P �→ 8}. It is clear that the value difference generally
contains positive and negative entries and that for δ(A,B) > 0 to be true the
sum of the positive entries must exceed the absolute value of the sum of the
negative entries. We call the negative components of a value difference its barrier.
It is defined as follows.

β(A,B) = {(c, x) | (c, x) ∈ δ(A,B) ∧ x < 0}

The total value β̂(A,B) is again the sum of all the components. In our example
we have β(Y,X) = {W �→ −3, F �→ −4} and β̂(Y,X) = −7.

The decision to select A over B does not necessarily need as support all of the
positive components of δ(A,B); any subset whose total is larger than |β̂(A,B)|
will suffice. We call such a subset a dominator :1

Δ(A,B) = {D | D ⊆ δ(A,B) ∧ D̂ > |β̂(A,B)|}

The only dominator in our toy example is Δ(Y,X) = {P �→ 8}.
The smaller a dominator, the better it is suited as an explanation, since it

requires fewer details to explain how the barrier is overcome. We therefore define
the minimal dominating set (MDS) as follows.

Δ(A,B) = {D | D ⊆ Δ(A,B) ∧ D′ ⊂ D ⇒ D′ /∈ Δ(A,B)}

Note that Δ may contain multiple elements, which means that minimal domi-
nators are not unique. In other words, a decision may have different minimally
sized explanations. Again, due to the small size of our example, the only dom-
inator is also the MDS in this case. Nevertheless, it captures the explanation
that Y is preferred over X due to the extreme price difference.

1 This definition allows dominators to contain negative components, which are counter-
productive to the goal of dominators. However, the definition of minimal-size domi-
nators will never produce a dominator with a negative component, so that the general
definition does not hurt.
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3 Dynamic Programming with Semirings

We show how to represent dynamic programming (DP) algorithms by semirings
in Sect. 3.1 and how such a representation can automatically generate efficient
implementations from recursive specifications in Haskell in Sect. 3.2. We illus-
trate the use of the library with an example in Sects. 3.3 and 3.4.

3.1 Semirings and Dynamic Programming

A semiring is an algebraic structure (S,⊕,⊗,0,1), which consists of a nonempty
set S with binary operations for addition (⊕) and multiplication (⊗) plus neutral
elements zero (0) and one (1) [7]. Figure 1 lists the axioms that a semiring
structure has to satisfy and several semiring examples.

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c
a ⊕ b = b ⊕ a
a ⊕ 0 = 0 ⊕ a = a

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c
a ⊗ 1 = 1 ⊗ a = a

a ⊗ (b ⊕ c) = a ⊗ b ⊕ a ⊗ c
(a ⊕ b) ⊗ c = a ⊗ c ⊕ b ⊗ c

a ⊗ 0 = 0 ⊗ a = 0

⊕ ⊗ 0 1

{true, false} ∨ ∧ false true

N + × 0 1
R

+ ∪ {∞} min + ∞ 0
R

+ ∪ {−∞} max + −∞ 0
[0, 1] max × 0 1

Fig. 1. Semiring axioms and examples.

A semiring (S,⊕,⊗,0,1) with a partial order ≤ over S is monotonic if
∀s, t, u ∈ S, (s ≤ t) ⇒ (s⊗u ≤ t⊗u) and (s ≤ t) ⇒ (u⊗s ≤ u⊗t). A monotonic
semiring ensures the so-called optimal subproblem property, which says that the
optimal solution of a dynamic programming problem contains the optimal solu-
tions of the subproblems into which the original problem was divided. This can
be seen as follows [8]. Suppose the values s and t correspond to two solutions of
a subproblem such that s is a better solution than t (that is, s ≤ t). Further,
suppose that u is the optimal solution of a set of subproblems that does not
include the subproblems producing the values s and t. The monotonicity prop-
erty ensures that s combined with u (and not t combined with u) always results
in the optimal solution when the aforementioned subproblem is combined with
the set of subproblems.

Dynamic programming algorithms can be described by recursive equations
that use operations of a particular kind of semiring, and since monotonic semir-
ings satisfy the optimal substructure property, the computations produce correct
solutions. Note that we can slightly weaken the requirements for the optimal
subproblem property. Since monotonicity doesn’t depend on the absorption rule
(which requires a ⊗ 0 = 0 ⊗ a = 0), the optimal subproblem property holds
for DP algorithms that are based on what we call quasi-semirings, which are
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semirings for which the absorption rule doesn’t hold. We will make use of this
property later in Sect. 3.4 where we define a quasi-semiring for computing values
“alongside” the values of a semiring.

3.2 A Haskell Library for Dynamic Programming

We have implemented a library for dynamic programming and semirings that is
based on the DP library by Sasha Rush.2 The first component is a representation
of semirings. The semiring structure can be nicely captured in a Haskell type
class. Of course, the required laws cannot be expressed in Haskell; it’s the pro-
grammer’s obligation to ensure that the laws hold for their instance definitions.

Several Haskell packages exist that already define a type class (some
of which are defunct). In general, previous approaches have the advantage that
they integrate the class more tightly into the existing Haskell class
hierarchy. For example, and are essentially and of the
class . Mainly for presentation reasons we decided to define the
type class independently, since it allows the definition of instances through a
single definition instead of being forced to split it into several ones.

To see how this library is used, consider the following implementation for
computing Fibonacci numbers, which uses the Counting semiring, obtained by
defining a number type as an instance of the class in the obvious way.3

The semiring recurrence representation is very similar to the well-known
recursive definition, except for two notable differences are: First, recursive calls
are made by a function to indicate when intermediate results of recursive
calls should be stored in a table. Second, the implementation consists of two
parts, (a) the definition of the recurrence relation that denotes a table-based,
efficient implementation ( ), and (b) an interface that simply executes the
table-based implementation ( ).

2 See http://hackage.haskell.org/package/DP. The code has not been maintained in
some time and doesn’t seem to work currently. Our implementation is available at
https://github.com/prashant007/XDP.

3 Note that the Counting semiring is not monotonic. The implementation of Fibonacci
numbers is still correct, since the ⊕ function isn’t used to select among different
alternatives.

http://hackage.haskell.org/package/DP
https://github.com/prashant007/XDP
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This examples illustrates some of the major building blocks that are provided
by the dynamic programming library.

– The functions and correspond to semiring addition (⊕) and multipli-
cation (⊗), respectively.

– The type represents a dynamic programming computation. Param-
eter represents the argument, corresponding to the table index on which
recursion occurs, and represents the result type of the computation.

– The function takes an index as input. The index can be thought of as
the input to the smaller subproblems that need to be solved while solving a
dynamic programming problem; it is the quantity on which the algorithm is
recursively invoked. With a subproblem for a given input value is solved
only once, and the result is stored in a table for potential reuse.

– The function (used later) turns any semiring value (different from 0 and
1) into a value.

– The function executes a dynamic programming specification that
works on tables indexed by a type by producing a function that computes
results of type from an initial value of type .

3.3 Computing the Lengths of Shortest Paths

In its simplest form, a shortest path algorithm takes a graph together with a
source and destination node as inputs and computes the length of the shortest
path between the two nodes.

In the following, we show how a program for computing shortest paths can
be systematically extended to support the generation of explanations in addition
to the computed answers. We use the Bellman-Ford algorithm [9], which can be
concisely described by the following recurrence relation in which SP denotes the
length of the shortest path in a graph between the start node s and any other
v with at most i number of edges. This algorithm works only for graphs with
non-negative edge weights. We directly show the definition using the operations
from the Min-Plus semiring (see Fig. 1): ⊕ represents min, ⊗ represents numeric
addition, and the constants 0 and 1 represent the additive and the multiplicative
identity and stand for ∞ and 0, respectively.

SP(v, i) =

⎧
⎨

⎩

1 i = 0 ∧ v = s
0 i = 0 ∧ v �= s
SP(v, i − 1) ⊕ ⊕

(u,v)∈E(SP(u, i − 1) ⊗ w(u, v)) otherwise
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Here E is the set of edges in the graph, and w(u, v) denotes the weight of edge
(u, v). This algorithm incrementally updates connection information between
nodes. When all edge labels in a graph with n nodes are positive, the shortest
path contains at most n−1 edges. Therefore, the shortest path to a node t can be
obtained by the expression SP(t, n). In each step the algorithm considers nodes
that are one more edge away from the target node and updates the distance of
the currently known shortest path.

Note that this formulation of the algorithm is actually more general than the
original, since the operations can be taken from different semirings to express
different computations. We will later take advantage of this generality by gener-
ating, in addition to the shortest path value, decomposed values, the path itself,
and explanations.

Next we show how the shortest path algorithm can be expressed as a dynamic
programming algorithm in our library. The Min-Plus semiring is implemented
in Haskell through a class instance definition for the type constructor that
adds ∞ to a number type. We need ∞ to represent the case when there isn’t a
path between two nodes.

The instance definitions for , , and are all straightforward
(they are basically the same as for ), and we omit them here for brevity.
One subtle, but important, difference between and is that
is defined as the second constructor in the data definition, which makes it the
largest element of the data type when an instance is derived.

For the Haskell implementation of the algorithm, we represent edges as pairs
of nodes and a graph as a list of edges paired with their lengths, see Fig. 2. We
use a multi-parameter type class to facilitate a generic implementation of the
shortest path function that works for different edge label types (type parameter
) and types of results (type parameter ). As in the Fibonacci example, the

implementation consists of two parts: (a) a recurrence specification of the DP
algorithm (the function ) and (b) the function for actually run-
ning the described computation. Both functions have a default implementation
that doesn’t change for different class instances. The class consists of an addi-
tional member that turns labeled edges into values of the DP result type
. The definition of the function is directly derived from the semiring repre-

sentation of the Bellman-Ford recurrence relation. Note that the function
in the definition of takes pairs as input and effectively denotes a recursion
of the function, memoizing the output of each recursive call for later reuse.
The second argument of the function in the recursive case of the function
implements the part

⊕
(u,v)∈E(SP(u, i − 1) ⊗ w(u, v)) of the recurrence relation.

The function takes a list of values, namely all incoming edges at node ,
and combines these using the semiring addition function . Finally, the actual
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computation of a shortest path between two nodes is initiated by the function
through calling and passing the number of nodes of the graph

as an additional parameter (computed by the helper function ).

Fig. 2. Generic shortest path implementation.

To execute the function for producing path lengths for graphs
with non-decomposed edge labels, we need to create an instance of the
type class with the corresponding type parameters. Since the functions and

are already defined, we only need a definition for .

The result of running the shortest-path algorithm on the non-decomposed
graph shown on the left of Fig. 3 produces the following output.

Specifying the result type ( ) to be selects the implementation
in which the function maps a labeled edge to the DP result type as shown.
In addition to the length of the shortest path we may also want to know the
path itself. We develop a solution based on semirings next.

3.4 Computing Shortest Paths

To compute shortest paths in addition to their lengths, we need an instance of
for the type . A first attempt could be to define

pairs of semirings as semirings. This would require both components to be semir-
ings themselves, but since there is not a straightforward instance of lists as
semirings, we have to adopt a different strategy.
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Fig. 3. An edge-labeled graph ( ) and its version with decomposed edge-labels ( ).

If we look at this example more closely, we can observe that the DP com-
putation of a shortest path is solely driven by the first component of the pair
type and that the paths are computed alongside. This means that the path type
doesn’t really need to support the structure. We can exploit this fact
by defining a semiring instance for pairs that relies for its semiring semantics
only on the semiring instance of its first component. To handle the combination
of values in its second component, we require that the type be a monoid and
use the binary operation in the instance definition for the function. The

function acts as a selector of the two values, and the selection is controlled
by a selection function that the first type parameter has to support through
a corresponding instance definition for the class . The function
implements a selection decision between two values; it returns if the first
argument is selected and otherwise. The code is shown in Fig. 4.

Note that is not a semiring, because the absorption rule (a ⊗ 0 =
0 ⊗ a = 0) doesn’t hold. However, that is not a problem, since the monotonicity
property, which ensures the correctness of DP implementation, is not affected
by that.

With the help of this view quasi-semiring structure we can now obtain a DP
algorithm that computes the paths alongside the lengths. To this end, we repre-
sent a path and its length as a value so that the length provides a
view on the path on which the DP computation operates.

The shortest path algorithm results from an instance of the type class for
the result type , which again only requires the definition of
the function to map labeled edges to the DP result type.

The result of running the shortest-path algorithm on the non-decomposed
graph produces the following output. Again, we specify the result type of the
DP computation to select the appropriate implementation of and thus

.
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Fig. 4. The quasi-semiring.

This is the correct result, but we don’t get an explanation why it is faster
than, say, the more direct path .

4 Explanations from Value Decomposition

To use the generic DP programming framework with value decompositions, we
have to define a type for decomposed values and define its and type class
instances. Both definitions use the sum of the elements of the lists contained in
the constructors to perform the comparison.

These definitions ensure that decomposed values are compared based on their
sums.

To use value decompositions in the shortest path computation, we need a
instance for the data type, which is straightforward to define, except
that we need a flexible interpretation of the semiring constants that depends
on the number of value components. For example, in the Min-Plus semiring we
expect 1 to denote [0, 0] in the context of [1, 2]⊗1, while it should denote [0, 0, 0]
in the context of [1, 2, 3] ⊗ 1. We can achieve this behavior by defining the
instance to be singleton lists by default that will be padded to match the length
of potentially longer arguments.
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Next we can obtain two more versions of the shortest path algorithm as an
instance of the type class, one for computing lengths only, and one for com-
puting paths alongside lengths. The type of the edge labels is to reflect
the decomposed edge labels in the input graphs. The result types for the DP
computations are either the path lengths represented as decomposed edge labels
or the view of paths as decomposed values. Here are the corresponding instance
definitions.

The shortest-path algorithms use the graph with decomposed edge labels.

We can compute valuation differences and minimally dominating sets to com-
pare the results with alternative solutions. For example, the decomposed length
of the alternative path (1, 3), (3, 4) between nodes 1 and 4 is . Since

and are instances, we can compute the valuation differ-
ence with respect to the shortest path to be . To implement
a function for computing minimally dominating sets, we have to extract the
decomposed values (of type ) from the semiring values (of
type ) produced by the shortest path function. More-
over, when sorting the components of the valuation difference into positive and
negative parts, we need to decide which parts constitute the barrier and which
parts are supporting components of the computed optimal value. This decision
depends on the semiring on which the computation to be explained is based.
In the shortest path example, we have used the Min-Plus semiring for which
positive value differences constitute barriers and negative values overcome the
barrier. In general, a value s is a supporting value (for overcoming a barrier)
if s ⊕ 1 = s. We can realize both requirements through a (multi-parameter)
type class that relates semiring types with the types of values used in
decompositions, see Fig. 5.4

With this type class we can directly implement the definition of Δ from
Sect. 2 as a function for computing the smallest sublist of supporting values
whose (absolute) sum exceeds the sum of the barrier, in this case it’s the single-
ton list . Since the number itself doesn’t tell us what category provides this
dominating advantage, we assign meaning to the bare numbers through a data

4 The additional argument of type for is required to keep the types
in the multi-parameter type class unambiguous. Moreover, we can’t unfortunately
simply give the generic definition for indicated by the equation, since
that would also lead to an ambiguous type.
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Fig. 5. Minimal dominators and explanations.

type that pairs values with strings. Creating a instance for
allows us to assign labels to the individual numbers of a value and
apply the computation of dominating sets to work with labeled numbers, result-
ing in the function . If is the result of the shortest path function
shown above and is the corresponding value for the alternative path consid-
ered, then we can explain why is better than by invoking the function.

The result says that, considering traffic alone, has an advantage over ,
since the traffic makes the path of faster by .

The generation of explanation for other DP algorithms works in much the
same way: First, identify the appropriate semiring for the optimization problem.
The quasi-semiring facilitates variety of computations that produce results
on different levels of detail. Second, implement the DP algorithm as a type class
that contains the main recurrence, a wrapper to run the described computa-
tion, plus the function that ties the DP computation to different result
types. Finally, define a value decomposition for the result type. The function

can then compare optimal results with alternatives and produce
explanations based on value categories.
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5 Proactive Generation of Explanations

At this point, a user who wants an explanation has to supply an alternative
as an argument for the function . Sometimes such examples can be
automatically generated, which means that user questions about solutions can
be anticipated and proactively answered.

In the case of finding shortest paths, a result may be surprising—and there-
fore might prompt the user to question it—if the suggested path is not the
shortest one in terms of traveled distance. This is because the travel distance
retains a special status among all cost categories in that it is always a determin-
ing factor in the solution and can never be ignored. This is different for other
categories, such as traffic or weather, which may be 0 and in that case play no
role in deciding between different path alternatives.

In general, we can therefore distinguish between those categories that always
influence the outcome of the computation and those that only may do so. We call
the former principal categories and the latter minor categories. We can exploit
knowledge about principal and minor categories to anticipate user questions by
executing the program with decomposed values but keeping only the values for
the principal categories. If the result is different from the one produced when
using the complete value decomposition, it is an alternative result worthy of an
explanation, and we can compute the minimal dominating set accordingly.

Unfortunately, this strategy doesn’t work as expected, because if we remove
minor categories to compute an alternative solution, the values of those cate-
gories aren’t aggregated alongside the computation of the alternative and thus
are not available for the computation of minimal dominating sets. Alternatively,
instead of changing the underlying decomposition data, we can change the way
their aggregation controls the DP algorithm. Specifically, instead of ordering
decomposed values based on their sum, we can order them based on a primary
category (or a sum of several primary categories). In Haskell we can achieve this
by defining a new data type , which is basically identical to
but has a different instance definition.

We also need a function that can map data into data
within the type of the semiring to get two values that can be com-
pared and explained by the function . To compute the main result
(calculated using all the categories), and the alternative result (calculated using
just the principal categories) simultaneously we can use a pair semiring, which
is defined component-wise in the obvious way. With these preparations we can
define the function that takes an instance of the function to be explained.
The function outputs a pair of values whenever they
differ, which can then be explained as before using the function
(Fig. 6).

To use in our example, we have to create another instance for the
class that works with the pair of types, captured
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Fig. 6. Generating automatic explanations.

in the type synonym . We also have to create an instance for the function
so that we can turn data into data inside the

type.

Finally, to be able to apply we have to normalize the argument type
of the shortest path function into a tuple.

When we apply , it will in addition to computing the shortest path
also automatically find an alternative path and explain why it is not a better
alternative.

Of course, the output could be printed more prettily.

6 Related Work

In [10,11] we proposed the idea of preserving the structure of aggregated data
and using it to generate explanations for reinforcement learning algorithms based
on so-called minimum sufficient explanations. That work is less general than
what we describe here and strictly situated in a machine learning context that
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is tied to the framework of adaptation-based programming [12]. Value decom-
position and minimal dominating sets are a general approach to the generation
of explanations for a wider range of algorithms. A different concept of “mini-
mal sufficient explanations” was also used in related work on explanations for
optimal Markov Decision Process (MDP) policies [13]. That work is focused
on automated planning and on explaining the optimal decision of an optimal
policy. Those explanations tend to be significantly larger than explanations for
decisions to select between two alternatives. Also, that work is not based on
value or reward decompositions.

Debugging can be viewed as a specific form of explanation. For example,
Delta debugging reveals the cause-effect chain of program failures, that is, the
variables and values that caused the failure [14]. Delta debugging needs two runs
of a program, a successful one and an unsuccessful one. It systematically narrows
down failure-inducing circumstances until a minimal set remains, that is, if there
is a test case which produces a bug, then delta debugging will try to trim the
code until the minimal code component which reproduces the bug is found. Delta
debugging and the idea of MDSs are similar in the sense that both try to isolate
minimal components responsible for a certain output. An important difference
is that delta debugging produces program fragments as explanations, whereas
an explanation based on value decompositions is a structured representation of
program inputs.

The process of debugging is complicated by the low-level representation of
data processed by programs. Declarative debugging aims to provide a more high-
level approach, which abstracts away the evaluation order of the program and
focuses on its high-level logical meaning. This style of debugging is discussed in
[15] and is at the heart of, for example, the Haskell debugger Buddha. Obser-
vational debugging as used in the Haskell debugger Hood [16] allows the obser-
vation of intermediate values within the computation. The programmer has to
annotate expressions of interest inside the source code. When the source code
is recompiled and rerun, the values generated for the annotated expressions are
recorded. Like value decomposition, observational debugging expects the pro-
grammers to identify and annotate parts of the programs which are relevant to
generate explanations. A potential problem with the approach is that the num-
ber of intermediate values can become large and not all the intermediate values
have explanatory significance.

The Whyline system [17] inverts the debugging process, allowing users to ask
questions about program behavior and responding by pointing to parts of the
code responsible for the outcomes. Although this system improves the debugging
process, it can still only point to places in the program, which limits its explana-
tory power. In the realm of spreadsheets, the goal-directed debugging approach
[18] goes one step further and also produces change suggestions that would fix
errors. Change suggestions are a kind of counter-factual explanations.

Traces of program executions can explain how outputs are produced from
inputs. While traces are often used as a basis for debugging, they can support
more general forms of explanations as well. Since traces can get quite large,
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focusing on interesting parts poses a particular challenge. Program slicing can
be used to filter out irrelevant parts of traces. Specifically, dynamic slicing has
been employed to isolate parts of a program that potentially contribute to the
value computed at a point of interest [19]. Using dynamic slicing for generating
explanations of functional program execution is described in [20]. This approach
has been extended to imperative functional programs in [21]. Our approach
does not produce traces as explanations. Instead, value decompositions maintain
a more granular representation of values that are aggregated. Our approach
requires some additional work on the part of the programmers in decomposing
the inputs (even though in our library we have tried to minimize the required
effort). An advantage of our approach is that we only record the information
relevant to an explanation in contrast to generic tracing mechanisms, which
generally have to record every computation that occurs in a program, and require
aggressive filtering of traces afterwards.

7 Conclusions and Future Work

We have introduced an approach to explain the execution of dynamic programs
through value decompositions and minimal dominating sets: Value decomposi-
tions offer more details about how decisions are made, and minimal dominating
sets minimize the amount of information a user has to absorb to understand an
explanation. We have put this idea into practice by integrating it into a Haskell
library for dynamic programming that requires minimal effort from a program-
mer to transform a traditional, value-producing program into one that can also
produce explanations of its results. The explanation component is modular and
allows the explanations for one DP algorithm to be specialized to different appli-
cation domains independently of its implementation. In addition to producing
explanations in response to user requests, we have also shown how to anticipate
questions about results and produce corresponding explanations automatically.

In future work, we will investigate the applicability of our approach to more
general algorithmic structures. An open question is how to deal with the aggre-
gation of data along unrelated decisions. Our approach works well for dynamic
programming algorithms because all the decisions involved in the optimization
process are compositionally related through a semiring. For algorithms that don’t
fit into the semiring structure, the data aggregation for producing explanations
must be achieved in a different way.
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Abstract. Expressing linear integer constraints and assertions over integer
ranges—as becomes necessary when reasoning about arrays—in a legible and
succinct form poses a challenge for deductive program verification. Even simple
assertions, such as integer predicates quantified over finite ranges, become quite
verbose when given in basic first-order logic syntax. In this paper, we propose
a domain-specific language (DSL) for assertions over integer ranges based on
Reynolds’s interval and partition diagrams, two diagrammatic notations designed
to integrate well into linear textual content such as specifications, program anno-
tations, and proofs. We extend intervalf diagrams to the more general concept
of mapping diagrams, representing partial functions from disjoint integer inter-
vals. A subset of mapping diagrams, colorings, provide a compact notation for
selecting integer intervals that we intend to constrain, and an intuitive new con-
struct, the legend, allows connecting colorings to first-order integer predicates.
Reynolds’s diagrams have not been supported widely by verification tools. We
implement the syntax and semantics of partition and mapping diagrams as a DSL
and theory extension to the Why3 program verifier. We illustrate the approach
with examples of verified programs specified with colorings and legends. This
work aims to extend the verification toolbox with a lightweight, intuitive DSL for
array and integer range specifications.

1 Introduction

Deductive program verification is the activity of establishing correctness by mathemat-
ically proving verification conditions (VCs) extracted from a program and its speci-
fication. If all VCs are proved, the program is guaranteed to terminate in a state sat-
isfying its postcondition for all inputs satisfying the precondition. While much of the
mechanics of program verification is automated by VC generators and automatic the-
orem provers, the construction of correct programs by this method remains a largely
interactive task. In the case of total correctness verification of sequential programs, VC
generation relies on supplying a pre- and postcondition specification of each subrou-
tine (procedure, method), and verification of a subroutine in turn requires intermediate
assertions and loop invariants to be inserted into the routine. Producing these asser-
tions requires both familiarity with a formal state description language and the ability
to express the assertions in it succinctly. Such languages are usually based on first- or
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E. Komendantskaya and Y. A. Liu (Eds.): PADL 2020, LNCS 12007, pp. 196–212, 2020.
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higher-order logic, and like programming languages general-purpose. While concise at
expressing basic mathematical relations, constraints over arrays and integer ranges tend
to require verbose expressions, obfuscating the original notion. Indeed, for array con-
straints, pictures often provide a more intuitive grip on the problem. For instance, given
the textbook verification exercise of specifying the loop invariant of a binary search
routine that determines the presence of the value x in a sorted array a (indexed from 0
to n−1), we may start by jotting down a box diagram similar to the following:

a[i] �= x a[i] �= x

0 l u n

This diagram captures the pertinent assertions over the mutable state of binary search:
that the loop variables l and u partition the array into three disjoint subarrays, and that
the value x is not present in the leftmost or rightmost subarray. Once these relationships
have been understood, we may then refine the diagram into a logic formula. A possible
rendition of the above in first-order predicate logic is:

0 ≤ l ≤ u+1 ≤ n ∧ ∀i(0 ≤ i< l∨u< i< n ⇒ a[i] �= x)

It is easy to see that the formula lacks the legibility of the diagram, but is it actually
more formal, as to make us accept this tradeoff? If we stipulate that the juxtaposition of
the indexes (0, l, u and n) and the vertical lines denotes order constraints, and that the
propositions written inside the shaded ranges are universally quantified over the corre-
sponding subarrays, the diagram becomes semantically equivalent to the predicate logic
formula. Hence, if the diagram incurs no loss of information, but appears more closely
connected to our understanding of the domain, reasoning with the diagram directly
could benefit both precision and legibility. As Dijkstra notes, “the purpose of abstrac-
tion is not to be vague, but to create a new semantic level in which one can be absolutely
precise” [8]. However, unlike diagrams, predicate logic carries with it a collection of
formula manipulation rules. Only given similar rules for diagrams like the above, may
we consider them a worthy alternative to predicate logic for writing specifications and
proofs. This is precisely the motivation behind Reynolds’s interval and partition dia-
grams, introduced 40 years ago [16] together with a set of abstractions for reasoning
about arrays. Reynolds argues “Of course, an equivalent assertion can be given in the
predicate calculus, but this sacrifices the intuitive content of the diagram [...] A better
approach is to formalize and give rigorous meaning to the diagram itself.”

Approaching diagrams as formal specifications in their own right rather than as step-
ping stones, we do observe some rough edges in the box diagram: multiple occurrences
of the expression a[i] �= x and the ad hoc assumption that i is quantified over the indexes
of the shaded subarrays, while a and x, on the other hand, are free. To avoid the redun-
dancy and clarify variable binding in the shaded subarrays, we redraw the diagram as
follows:

i : a[i] �= x 0 l u n

The revised diagram consists of two components: a legend asserting a[i] �= x over a
single shaded element at index i, and a box diagram specifying the constraints on l, u
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and n as well as the extent of the shading. Following Reynolds, we also place the parti-
tion bounds inside the boxes rather than below them, as this convention both conserves
space and increases legibility of a bound’s position relative to its adjacent vertical line.
Our intention with this example so far has only been to demonstrate that box diagrams
are sufficiently precise for formal specification. As we will see through examples in the
sequel, legends extend naturally to properties involving multiple indexes, such as sort-
edness (which we omitted for brevity in the above example). We give a detailed syntax
and semantics of these diagrams, and present tool support for verifying programs spec-
ified with such diagrams.

Reynolds’s Diagrams as a DSL. Domain-specific languages (DSLs), mini-languages
tailored for a particular application, are commonly used in software engineering to raise
the level of abstraction. The degree of sophistication range from substitution macros to
rich high-level languages. A DSL should be easy to both use and opt out of if not
deemed beneficial. Following the DSL approach, we decided to add diagram support to
an existing language satisfying the following desiderata:

– Established in the verification community and supported by state-of-the-art, open-
source tooling for VC generation and automatic theorem proving.

– Able to lexically combine box diagrams with the language’s own syntax.
– Able to represent diagrams as data types, avoiding error-prone lexical translation
stages and enabling use of diagrams in proofs.

– Tooling supports automatic reduction of VCs containing diagrams into their logical
equivalences, e.g., by rewrite rules.

Consequently, we chose Why3 [11], an open-source platform1 for deductive pro-
gram verification consisting of a specification language, an ML-like programming lan-
guage, and a common interface to multiple automatic theorem provers—including SMT
solvers, the workhorses of modern program verification.

Contribution. We generalize Reynolds’s interval diagrams to mapping diagrams, for-
mally partial functions from a set of disjoint integer intervals to any type. Colorings
constitute a subset of mapping diagrams, labeling intervals from a finite set (“palette”)
of colors. We introduce the legend construct for attaching interpretation to colorings.
Intuitively, colorings specify labeled selections, e.g., “all integers between 0 and l are
red” and “all indexes in the array are green”, while legends express quantified predi-
cates like “x is not among the red elements”, “all red elements are greater than all green
elements” and “all green elements are sorted”. We show that colorings and legends are
automatically reducible to universally quantified predicates. We have implemented an
extension to the Why3 theorem prover to support diagrams similar to those shown in the
introduction. The extension consists of a DSL allowing partition and mapping diagrams
to be used in Why3 theories and programs, and a Why3 theory encoding partition and
mapping diagrams as a data type together with the functions and predicates defining
their semantics. The diagram syntax is character-based and does not require sophisti-
cated editor support. All properties have been mechanically proved in Why3 using its
underlying theorem provers. We demonstrate the DSL by verified code examples.

1 Binary, source, and documentation available at https://why3.lri.fr.

https://why3.lri.fr
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Notational Conventions. We give the semantics of diagrams in first-order predicate
logic with partial expressions. While the Why3 logic is total and requires a parametric
data type (option) for expressing partiality, we describe the general semantics using
partial expressions for brevity. We denote by the operator def definedness of a partial
expression, and by =∃ the existential equality relation between two partial expressions
e1 and e2 satisfying

e1 =∃ e2 ≡̂ def e1 ∧def e2 ∧ e1 = e2

In syntax definitions we adopt the convention that the meta-variables A and B stand for
integer expressions, Q stands for Boolean expressions (predicates), E and F stand for
expressions of other types, and X stands for identifiers. Subscript variables (e.g., A1, A2)
are considered separate meta-variables of the same class. For sequences of identifiers,
we write X̄ . We write E? to indicate that an expression may be omitted in a syntactic
context, and we semantically handle absence by partiality. We indicate by E[X ] that X
is a free variable in E. When E[X ] occurs as a subexpression we assume that adjacent
subexpressions do not contain free occurrences of X ; for instance, in the syntax defini-
tion Q1[X ]∧Q2, the Boolean expression Q1 may contain free occurrences of X whereas
Q2 may not. We write λX(E[X ]) for the anonymous function of variable X to value E.
Other logic and arithmetic operators are the standard ones.

Overview of Paper. The rest of the paper is structured as follows. Section 2 describes
interval and partition diagrams. Section 3 generalizes interval diagrams to mapping dia-
grams and colorings. Section 4 introduces the legend notation for assertions over col-
ored intervals. Section 5 describes a tool extension allowing diagrams to be used inWhy
specifications. We illustrate use of this tool by example in Sect. 6. We review related
work in Sect. 7 and conclude the paper with a discussion of lessons learned so far and
possible future research directions in Sect. 8.

2 Interval and Partition Diagrams

Reynolds [16] introduces two interpretations for the pictogram A2A1 : as an inter-
val diagram, standing for the (possibly empty) integer interval {x | A1 < x≤ A2}, and as
a partition diagram, standing for the predicate A1 ≤ A2. This dual interpretation reflects
the close semantical relationship between intervals and partitions. As diagrams are for-
mulas, the intended meaning can in practice always be determined from the context:
in a set-theoretic context it is an interval diagram, whereas in a logical context it is a
partition diagram. Note that when A1 = A2 the partition diagram is universally true and
the interval diagram represents the empty interval.

The form A2A1 is called the normal form of an interval or partition diagram,
where both bounds are written to the left of the corresponding adjacent vertical lines,
called dividing lines. Alternatively, either or both bounds of a diagram may be written to
the right of the dividing line to offset the bound by 1. This means that the bound “A−1|”
can be equivalently written as “|A”. Below we list the alternative forms together with
the corresponding normal forms and meanings as interval and partition predicate:
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diagram equiv. normal form integer interval partition predicate
A1 A2 A2 −1A1 {x | A1 < x< A2} A1 < A2

A1 A2 A2 −1A1 −1 {x | A1 ≤ x< A2} A1 −1 ≤ A2 −1
A1 A2 A2A1 −1 {x | A1 ≤ x ≤ A2} A1 −1 ≤ A2

Note that when interpreted as partition diagrams, A2A1 and A1 A2 are
equivalent, whereas when interpreted as interval diagrams, they represent different
intervals. As a shorthand, we may write A to denote the singleton interval contain-
ing only A:

A AA−1 {x | x= A} A−1 ≤ A

When considered a partition diagram, A is a tautology. However, the singleton form
is still useful as a component of general partition diagrams. These consist of multiple
chained partition diagrams that share dividing lines so that the right bound of the pre-
decessor becomes the left bound of the successor. The following definition formalizes
this notion.

Definition 1. A general partition diagram is a sequence of n (where n ≥ 1) component
partition diagrams, with n+1 integer bounds A0, . . . ,An, asserting that these partition
the total interval AnA0 into n disjoint and connected component intervals:

A1A0 A2 . . . An−1 An =̂
n−1∧

j=0

(
Aj ≤ Aj+1

)

(Here the fragment . . . An−1A2 is meta-syntax standing for any number of inter-
mediate component intervals; it is not part of the actual diagram syntax).

While each component diagram in Definition 1 is given on normal form (where each
component interval bound is written to the left of the dividing line), as with the basic
partition diagrams, a bound may be written on the opposite side of the dividing line to
offset it by 1. We illustrate this with two examples.

Example 2.1. The partition diagram corresponding to the partial binary search invari-
ant discussed in Sect. 1, 0 l u n , has the equivalent normal form

l−1−1 u n−1 and stands for the predicate 0 ≤ l ≤ u+1 ≤ n (equiva-
lently −1 ≤ l−1 ≤ u ≤ n−1).

Example 2.2. The partition diagram 0 k n has the equivalent normal form

k−1−1 k n and stands for the predicate 0 ≤ k ≤ n (equivalently −1 ≤
k−1 ≤ k ≤ n).

We note that Definition 1 is stricter than Reynolds’s original definition, which considers
the diagram true also when A0 ≥ A1 ≥ ·· · ≥ An. I.e, in the original notation an empty
partition may be specified with a left bound exceeding the right bound (i.e., Ai > Ai+1).
Reynolds calls such diagrams irregular representations of the empty interval. Our def-
inition allows only for what Reynolds refers to as regular representations of empty
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intervals (i.e., Ai = Ai+1), and a partition diagram is always false if any Ai > Ai+1.
The stricter interpretation has the advantages that the basic partition diagram with two
bounds A2A1 constitutes a meaningful assertion by itself (rather than a tautol-
ogy), and that the cardinality of an interval diagram is A2 −A1 when its corresponding
partition diagram is true. Unlike for partition diagrams, Reynolds does not define a
chained form for interval diagrams.

3 Mapping Diagrams and Colorings

Next we introduce mapping diagrams, a generalization of interval diagrams to partial
functions from the integers. A mapping diagram consists of a sequence of mapping
components. A mapping component X → #E[X ] A2A1 , where E is a total expres-
sion over the integer parameter X to some type T , stands for the function λX(E) from
the domain A2A1 to the range T .

Definition 2. A general mapping diagram is a sequence of mapping components that
stands for the union of the corresponding functions:

X → #E0[X ]? A1A0 . . . An−1
#En−1[X ]? An

=̂
⋃n−1

i=0

{
(x,λX(Ei)(x)) | x ∈ Ai+1Ai ∧def Ei

}

We note that when the corresponding partition diagram A1A0 . . . An−1 An

is true, the union of tuples is a partial function (as the domains of the component func-
tions are disjoint). This is a side condition of the definition that we always verify when
introducing a mapping diagram. In the diagram, an expression Ei may be omitted to
indicate that the mapping is undefined on the interval Ai+1Ai .

Property 3.1. A mapping diagram with bounds A0, . . . ,An and expressions E0, . . .En−1

is well-defined in each point of each interval i where Ei is present, and undefined in
each point on each interval j where Ej is absent as well as in each point outside of the
total interval AnA0 .

Example 3.1. The mapping diagram k → # − k ba c #k d stands for the

following partial piecewise defined function: λk

{
−k if a< k ≤ b

k if c< k ≤ d
. The function is

undefined on the interval cb .

Definition 3. A coloring is a mapping diagram where each component interval is either
unmapped, or mapped to a member of a set of labels (colors) C:

#E?
0 A1A0 . . . An−1

#E?
n−1 An

In the above, each Ei ∈C if def Ei.
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The term coloring reflects the use of colors for marking intervals of interest in box
diagrams. In particular, we will use colorings to assert a given predicate (specified with
the legend construct described in the next section) over one or more intervals.

Property 3.2. A coloring col with component bounds A0, . . . ,An maps each point in an
interval with a defined color to that value. That is, for each interval j, 0 ≤ j < n:

∀k(
Aj < k ≤ Aj+1 ∧def Ej ⇒ col(k) = Ej

)

Example 3.2. The coloring 0 #R l u #R n stands for the following piece-

wise defined partial function: λk

{
R if 0 ≤ k < l

R if u< k < n
.

4 Legends

A legend defines the interpretation of a coloring by a parametric, universally quantified
assertion over all intervals colored in accordance with the legend.

Definition 4. A legend is a binding expression over a sequence of integer variables X̄
associating a coloring with bounds A0[X̄ ], . . . ,An[X̄ ] and colors E0, . . . ,En−1 of type C
to a predicate Q[X̄ ]:

X̄ : #E?
0 A1[X̄ ]A0[X̄ ] . . . An−1[X̄ ] #E?

n−1 An[X̄ ] → Q[X̄ ]

It stands for the following parametric predicate where the parameter r ∈ Z →C:

∀X̄
(

n−1∧

j=0

(
Aj+1Aj ∧ (def Ej ⇒ ∀k(k ∈ Aj+1Aj ⇒ r(k) =∃ Ej))

)
⇒ Q

)

Informally put, the legend states that Q is true for a partitioning if the parameter func-
tion r returns the prescribed color value in every point of each colored component (on
uncolored component intervals, the value of r is ignored).

Example 4.1. The legend “i : i #R → a[i] �= x” stands for the following parametric
predicate over r:

∀i (i−1 ≤ i∧ (def R ⇒ ∀k(i−1< k ≤ i ⇒ r(k) =∃ R)) ⇒ a[i] �= x)
≡ { tautology elimination, singleton quantification domain }

∀i (r(i) =∃ R ⇒ a[i] �= x)

Example 4.2. The legend “i j : i #B j #B → a[i] ≤ a[ j]” is equivalent to the fol-
lowing parametric predicate over r (the predicate has been simplified):

∀ i j (i< j∧ r(i) =∃ B∧ r( j) =∃ B ⇒ a[i] ≤ a[ j])

Informally, Example 4.1 states that x is not among the elements of the array a colored
R, while Example 4.2 states that the elements of a at ordered index pairs i, j colored B
are sorted in nondecreasing order (regardless of coloring of interjacent indexes). To use
a legend in expressing a state assertion, we apply it to a coloring function over the state
space of the program we are specifying.
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Example 4.3. Applying the legend given in Example 4.1 to the coloring 0 #R l
reduces to an assertion that the subarray a[0], . . . ,a[l−1] does not contain the value x:

(i : i #R → a[i] �= x)( 0 #R l )
≡ { Definition 4, β -reduction }

∀ i (( 0 #R l )(i) =∃ R ⇒ a[i] �= x)
≡ { definition of =∃ }

∀ i (0 ≤ i< l ⇒ a[i] �= x)

An important design consideration has been that using legends and colorings when
writing assertions should not result in formulas that make automatic verification more
difficult compared to equivalent assertions written in traditional quantifier notation. As
the inner quantification in the legend definition and the color type C are syntactic arti-
facts of the DSL, they should preferably be eliminated from the correctness formula
before applying SMT solvers or other ATPs. To achieve this, our tool applies to each
formula an elimination rule that rewrites terms of the form lgd(col), where lgd is a
legend and col is a coloring. The following proposition formalizes the elimination rule.

Proposition 1. Given the legend

lgd = X̄ : #E?
0 A1[X̄ ]A0[X̄ ] . . . An−1[X̄ ] #E?

n−1 An[X̄ ] → Q[X̄ ]

and the coloring

col= #F?
0 B0B0 . . . Bm−1

#F?
m−1 Bm

the following equivalence holds for the application lgd(col):

lgd(col) ≡ ∀X̄
(

n−1∧

j=0

(
Aj ≤ Aj+1 ∧ (def Ej ⇒ contains (Aj,Ej,Aj+1,col))

) ⇒ Q

)

where contains is defined recursively on the structure of mapping diagrams:

contains (a,e,b, #EA B ) =̂ (rec. case)
b ≤ a

∨ (A ≤ a ≤ B∧ (A= B∨ e=∃ E)∧ contains (B,e,b, B ))
∨ contains (a,e,b, B )

contains (a,e,b, #E BA ) =̂
b ≤ a

∨ (A ≤ a ≤ B∧ (A= B∨ e=∃ E))

(base case)

Proof. ⇐ by structural induction on col and Property 3.2, ⇒ by transitivity of contains
and induction over an integer interval.

Note that the definition of contains involves only Boolean connectives, integer com-
parison, and color terms of the form e =∃ E. When e and E are literal color values (or
absent), the equality e =∃ E can be immediately evaluated, reducing the inner quan-
tification of the legend to a propositional formula where the atoms are linear integer
constraints.
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5 Diagram Extension to the Why3 Verification Platform

We have developed a prototype extensionWhy3 supporting mechanically proving meta-
properties like Proposition 1 as well as specifying programs with partition and map-
ping diagrams. We first briefly present relevant features of the Why3 platform and then
describe our implementation. The implementation is available in source form at https://
gitlab.com/diagrammatic/whyp.

The Why3 Platform. The Why3 specification language is a first-order logic extended
with polymorphic types and algebraic data types. Theorems can be proved using over a
dozen supported automatic and interactive theorem provers. Users interact with Why3
in batch mode through a command-line interface, or interactively through a graphi-
cal IDE. In addition to the purely logical specification language, programs with loops,
mutable variables, and exceptions can be written in the WhyML language. Why3 gen-
erates VCs from WhyML programs based on weakest preconditions. A good example-
driven tour of Why3 is given by Bobot et al. [6]. Why3 provides a set of transformations
on verification tasks, including definition inlining, application of rewrite rules and log-
ical inference rules. The Why3 drivers for external theorem provers employ these to
transform the sequent into a form amenable to automation, for instance by eliminating
language features that are not supported by the target prover (e.g. algebraic data types).
Other transformations are intended to be used interactively to reduce a goal into one or
more subgoals, e.g., proof-by-cases, instantiation, and induction. Why3 is designed to
both be a backend for other tools as well as an extensible verification platform. It comes
with a standard library of theories which can be reused through an importing mecha-
nism. The platform itself can be extended with different kinds of plug-ins adding new
input formats, prover drivers and other extensions. The core of Why3 is implemented in
OCaml and is offered as a software library for programmatic access to all platform func-
tionality, including parsing, typing, transformations, and invocation of external theorem
provers.

Extension Architecture. The extension to Why3 consists of two components: a set of
Why3 theories formalizing partition diagrams and mappings, and a syntactic prepro-
cessor (written in OCaml) that translates the concrete diagram syntax into Why3 terms.
Figure 1 shows the data flow when the user asks the tool to check a theory contain-
ing diagrams (indicated by the theory existing in a file with the suffix .whyp). The
preprocessor parses the input theory and translates all partition diagrams, mapping dia-
grams and legends into normal form and then into instances of a data type defined in
the theory extension. The resulting AST is dispatched to Why3 for typing, inclusion of
standard library theories, task generation, and external theorem prover execution. From
here onwards the data flow is identical to that of checking a normal Why3 theory. Next,
we describe the concrete diagram syntax and the embedding of the diagrams in the
Why3 logic.

DSL Syntax and Semantics. The DSL follows the ASCII-based lexical rules of Why3
[5]. A partition diagram must be enclosed in square brackets ‘[’ and ‘]’, and vertical
dividing lines are written as ‘|’. The leftmost or rightmost vertical line may be omitted

https://gitlab.com/diagrammatic/whyp
https://gitlab.com/diagrammatic/whyp
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Fig. 1. Processing pipeline of Why3 extension

when it would be adjacent to a square bracket. The bounds themselves follow the syntax
of Why3 terms. Mapping diagrams must be enclosed in ‘[X→[’ and ‘]]’ (the binder X
may be omitted for colorings). The ellipsis ‘...’ separates bounds inside a component,
and in mapping diagrams may be followed by ‘#’ and an expression. The following are
examples of accepted ASCII partition and mapping diagrams and their diagrammatic
equivalents:

ASCII syntax diagrammatic syntax

[a| ... b] ba

[a| ... |b] a b

[f a ... | f b | ... f c] f (a) f (b) f (c)
[x → [a| ...#(-x) |b ...#(x) c]] x → # − xa b #x c

[[a| ... #R |b ... c]] #Ra b c

Partition and mapping diagrams may occur in a Why3 theory anywhere a term is
expected. After parsing, both types of diagrams are translated into instances of the poly-
morphic data type diag:

type diag α = P int (option α) (diag α) | L int (option α) int

The data type represents partition diagrams in normal form; the preprocessing hence
includes a normalization stage, converting each ‘|e’-fragment into ‘e-1|’ and each
‘|e|’-fragment into ‘e-1|...e|’, before finally converting the result into an instance
of the above data type. The option data type from Why3s standard library is used to
handle partiality. It has two constructors, None and Some α. For partition diagrams, the
second parameter is always None. For mapping diagrams, it is Some α for each interval
associated with an expression of type α, otherwise None. The semantics of partition
diagrams is given by the predicate partitioning:
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predicate partitioning (d:diag α) = match d with
| P a _ ((P b _ _ | L b _ _) as r) → a≤b ∧ partitioning r
| L a _ b → a≤b
end

meta ‘‘rewrite_def’’ predicate partitioning

and for mapping diagrams by the function mapping:

function mapping (d:diag α) (i:int) : option α = match d with
| P a e ((P b _ _ | L b _ _) as r) → if a<i≤b then e else mapping r i
| L a e b → if a<i≤b then e else None
end

meta ‘‘rewrite_def’’ function mapping

Themeta declarations instruct Why3 to use the above definitions as rewrite rules when
transforming a proof task in preparation for sending it to an external theorem prover.
The rewrites are applied recursively and exhaustively, viz. partitioning is rewritten
into a conjunction sequence and mapping into a nested if-else-expression. This is
normally desirable when using diagrams for specification; only when proving meta-
theorems about partition and mapping diagrams may we want to suppress automatic
rewriting.

A legend is declared with the legend keyword followed by an identifier, a sequence
of parameters and a semicolon-separated list of coloring-to-predicate mappings. The
preprocessor translates the legend into a conjunction of universally quantified state-
ments according to Definition 4. For example, the legend:

type col = R | G
legend lgnd(a: array int)(x:int) of col =
i : [[i#R]] → a[i] �=x;
i,j : [[i| ... #G j]] → a[i]≤a[j]

is translated by the preprocessor into the following Why3 predicate:

predicate lgnd(a:array int)(x:int)(~r:int→option col) =
(forall i:int. i-1≤i ∧ (forall ~k:int. i-1<~k≤i → ~r ~k = Some R) → a[i]�=x) ∧
(forall i,j:int. i≤j ∧ (forall ~k:int . i<~k≤j → ~r ~k = Some G) → a[i]≤a[j])

For automatic elimination of the inner quantification and color-typed terms in a leg-
end applied to a coloring, as described in Sect. 4, the partitioning theory includes the
following lemma declared as a rewrite rule:

lemma mapping_to_contains [@rewrite]:
forall a,b:int, c:α, d: diag α.
(forall k:int. a<k≤b → mapping d = Some c) ↔ contains a b c d

Here contains is defined as in Proposition 1. The rewrite is automatically
applied (from left to right) by Why3 when executing the compute_specified and
compute_in_goal transformations on a goal. The default strategy of the extended
Why3 verifier applies these transformations prior to invoking the user’s back-end theo-
rem prover of choice.
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Listing 1. Dutch National Flag

type col = B | W | R

legend flag(a: array col) =
i: [[i#B]] → a[i] = B;
i: [[i#W]] → a[i] = W;
i: [[i#R]] → a[i] = R;

let dutch_national_flag (a: array col) : unit
ensures { exists b r: int . flag a [[0 ...#B |b ...#W |r ...#R |length a]] }
ensures { permut_all (old a) a }

=
let b = ref 0 in
let i = ref 0 in
let r = ref (length a) in
while !i < !r do

invariant { [0 ... |!b ... |!i ... |!r ... |length a] }
invariant { flag a [[0 ...#B |!b ...#W |!i ... |!r ...#R |length a]] }
invariant { permut_all (old a) a }
variant { !r - !i }
match a[!i] with
| B → swap a !b !i; b := !b + 1; i := !i + 1
| W → i := !i + 1
| R → r := !r - 1; swap a !r !i
end

done

6 Verified Code Examples

In this section we present three formally specified and verified procedures where the
pre- and postconditions and loop invariants are expressed as diagrams. The procedures
are specified in the WhyML language with the diagram extensions described in Sect. 5,
and all VCs were proved automatically by a combination of Z3 [7], CVC4 [3] and
Alt-Ergo [4] after preprocessing by our tool.

A classical example of using the coloring analogy in verification is the Dutch
National Flag problem introduced by Dijkstra [9]. It is a simplified sorting prob-
lem: an array containing, in random order, any number of each of the three values
blue (B), white (W), and red (R) should be rearranged so that the blue elements pre-
cede all the white elements, which in turn precede all the red elements (i.e., the final
order is B, W, R). Listing 1 shows an adaptation of an existing Why3 solution2, in
which we have replaced the textual postcondition (ensures clauses) and loop invariant
(invariant clauses) with diagrammatic equivalents. The procedure executes in time lin-
ear to the size of the array and mutates the array by pairwise compare and swap. The
loop invariant consists of three components: a partition diagram constraining the values

2 Part of a gallery of verified programs available at http://toccata.lri.fr/gallery/why3.en.html.

http://toccata.lri.fr/gallery/why3.en.html
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Listing 2. Binary search

type sorted_col = SO

legend sorted (a: array int) of sorted_col =
i,j: [[i#SO| ... |j#SO]] → a[i] ≤ a[j] ;

type found_col = NE | EQ

legend found (a: array int) (x:int) of found_col =
i: [[i#NE]] → a[i] �= x ;
i: [[i#EQ]] → a[i] = x

let binary_search (a: array int) (x: int) : int
requires { sorted a [[0 ...#SO |length a]] }
ensures { [0 ... |result| ... |length a] }
ensures { found a v [[result#EQ]] }
raises { Not_Found → found a x [[0 ...#NE |length a]] }

=
let l = ref 0 in
let u = ref (length a - 1) in
while !l ≤ !u do

invariant { sorted a [[0 ...#SO |length a]] }
invariant { [0 ... |!l] ∧ [!u ... |(length a)-1] }
invariant { found a x [[0 ...#NE |!l ... !u| ...#NE |length a]] }
variant {!u - !l}
let m = !l + div (!u - !l) 2 in
if a[m] < x then l := m + 1
else if a[m] > x then u := m - 1
else return m

done;
raise Not_Found

of the loop variables b, i and r; a coloring mapping the intervals 0 b , b i
and r length a to B, W and R, respectively; and a (non-diagrammatic) assertion
that the modified array is a permutation of the original. The swap operation and the
permut_all predicate are imported from the Why3 array library together with the prop-
erty that the former maintains the latter. The program is atypical in that the color values,
represented by the datatype col, are not pure specification constructs but also occur in
the computation itself. The legend flag is trivial due to the nature of the program; it
simply asserts that a is elementwise equal to the coloring on the intervals on which the
latter is defined.

Listing 2 shows a verified implementation of binary search with a diagrammatic
postcondition and loop invariant similar to the invariant discussed in the introduction.
The procedure binary_search determines the presence of the value x in the sorted input
array a. It has two exits, one normal and one abnormal. If x is found in a, the procedure
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Listing 3. Insertion sort

type col = SO | I

legend sorting (a: array int) of col =
i,j: [[i#SO| ... |j#SO]] → a[i] ≤ a[j] ;
i: [[i#I|i+1#SO]] → a[i] ≤ a[i+1]

let insertion_sort (a: array int)
ensures { sorting a [0 ...#B |length a] }
ensures { permut_all a (old a) }

=
let m = ref 0 in
while !m < length a do

invariant { [0 ... |!m| ... length a] }
invariant { sorting a [[0 ...#SO |!m]] }
invariant { permut_all a (old a) }
variant { length a - !m }
let k = ref !m in
while !k > 0 && a[!k-1] > a[!k] do

invariant { [0 ... |!k| ... !m] }
invariant { sorting a [[0 ...#SO |!k#I| ...#SO !m]] }
invariant { permut_all a (old a) }
variant { !k }
swap a !k (!k - 1);
k := !k - 1

done;
m := !m + 1

done;

exits normally returning an index containing x (in Why3, normal return values are rep-
resented by the result variable in the postcondition specification). If x is not found in
a, the procedure exits abnormally in the Not_Found exception carrying the associated
postcondition that all elements of a are different from x. To express the specification and
invariants diagrammatically, we introduce two legends for the specification of binary
search: sorting, expressing sortedness of the SO-colored range; and found, expressing
existence (EQ) or absence (NE) of the sought element x.

The final example, Listing 3 shows an implementation of a simple sorting algo-
rithm, insertion sort. The procedure insertion_sort sorts the input array by maintain-
ing two partitions, one sorted partition ranging from index 0 to m, followed by one
unsorted partition ranging from m to the end of the array. Each iteration of the outer
loop extends the sorted partition by one element, until the whole array is sorted. The
outer loop invariant is expressed by the partition diagram 0 !m length a and

the coloring 0 #SO !m . The first component of the legend sorting for SO-colored
intervals is identical to the one introduced in Listing 2. In order to achieve sortedness
of the first interval after incrementing m, the inner loop moves the element at index m
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backwards into its final position in the sorted partition by repeatedly swapping it with
its predecessor using the loop counter k. During the execution of the inner loop, the
outer loop invariant is temporarily invalidated: the interval 0 !m is almost sorted,
but with the exception of a single potential inversion of elements at indexes k-1 and k.
Diagrammatically, this is expressed by the index k being colored by I, and the second
component of the sorting legend specifying that any I-colored element followed by an
SO-colored element constitutes a sorted pair.

7 Related Work

Partition and interval diagrams were originally proposed by Reynolds [16], who used
them extensively in the specification and verification of several array-manipulating pro-
grams in his textbook The Craft of Programming [17]. Notably, Reynolds gives a for-
mal syntax and a set of manipulation rules for the diagrams to facilitate their use as
terms in calculational correctness proofs. Reynolds writes universally quantified invari-
ants using the standard ∀-operator and gives the quantification domain as an interval
diagram, rather than making the quantification implicit in the diagrammatic notation
itself. Many textbooks, e.g. [12,18], use similar box diagrams (termed “array pictures”
or “array diagrams”) in the presentation of assertions over both array indexes and array
elements, but most of them do not formalize their semantics fully. Astrachan [1] sug-
gests diagram representations for arrays and linked lists, emphasizing the role of dia-
grams in comprehension. Generating visual representations from textual specifications
has been addressed in the context of the Z language [14]. Similar diagrams have also
been proposed for visualizing array VCs [13], as an aid to proof and debugging. Wicker-
son et al. [19] employ partition-like diagrams in the visual proof notation called ribbon
proofs for separation logic. Pearce [15] explores through a number of examples how
array-based programming is enhanced by languages which support specifications and
invariants over arrays. Invariant-based programming [2] is a correct-by-construction
formal method aimed at teaching in which programs and their proofs are constructed
diagrammatically, often with the aid of partition diagram-like pictures during the ini-
tial stages of construction. The idea of colorings and legends also originates from the
authors’ previous joint work with R-J. Back [10]. We are not aware of existing work on
integrating partition or interval diagrams into a general-purpose program verification
platform.

8 Conclusions and Future Work

This paper approaches box diagrams from the viewpoint that they can serve as an
expressive formal mini-language—a DSL—rather than being restricted to their tradi-
tional role of ephemeral pre-code sketches and post-code visualizations. We have intro-
duced an extension to Reynolds’s original partition and interval diagrams for piecewise
definition of partial functions over integer intervals, and a legend construct for asserting
a predicate over a sequence of labeled (“colored”) intervals. We have extended Why3
to read diagrammatic syntax and formalized its semantics in a Why3 theory.
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We believe that the value of a formal specification is largely dependent on its legibil-
ity, as the specification cannot be proved correct (only checked for internal consistency),
but is instead subject to human assessment of fitness for purpose (validation). Also,
although significant advances have been made in automatically synthesizing invariants
from the code, such techniques cannot discover difficult invariants, meaning that the
same requirement of legibility applies to these as well. Good notation makes writing
readable assertions more tractable, and while notation by itself may not be the primary
challenge of verification, it is nevertheless held in high regard among verification prac-
titioners. In particular, we have observed a tendency among the experienced to write
integer range and array predicates following idioms that serve similar organizational
purposes as the diagrams proposed herein, such as chaining relational operators and
maintaining increasing order of bounds from left to right, preferring the relations <
and ≤ over > and ≥. Formalizing such idioms is where a DSL and tool support can
be of value. However, diagrammatic languages requiring sophisticated tool support and
considerable learning investments from users are hard to justify for niche domains. The
authors believe that the DSL presented here achieves a sensible compromise between
expressive power and ease of integration. During implementation of the tool support,
we came to appreciate both the semantically rich Why3 and WhyML languages and
the extensibility of the Why3 platform through its API. The one feature we missed was
a way to extend the Why3 language in a modular fashion, e.g., by adding new term
productions while leaving the rest of the grammar intact, rather than by modifying its
parser.

Finally, we emphasize that our goal has not been to address all aspects of array
reasoning. The authors have found the DSL useful when writing array invariants that
involves partitioning, but do not make further claims regarding its general applicability.
There are classes of array invariants for which the DSL is not a sensible choice: clearly,
assertions not involving partitions may have little to gain, and assertions with multiple
nested quantifications may find the legibility advantage being lost. A lightweight DSL
has the advantage that we can restrict its use to specification tasks for which we deem
it beneficial, and fall back to standard FOL notation in other cases. Hence we believe
the DSL’s primary role is to ease writing of certain classes of array and integer range
properties, viz. those that involve partitioning and universal quantification. We surmise
that the class of programs involving such properties is large enough that a DSL like the
one presented here could justify its place in the modern verification toolbox.

Future Work. There is scope for much further work on partition, interval and mapping
diagrams, both in improving tool support and in generalizing the notation itself. The tool
is in the first prototype stage and has so far only been tested on a small collection of
toy examples. We have identified enhancements and optimizations that will be required
to address real-world requirements. For instance, the diagram syntax is currently not
supported in the Why3 IDE during interactive proofs. Also, the contains rewrite should
be optimized, as it currently expands a diagram into a formula that is exponential in the
length of the diagram chain (this has not been an issue in practice with typical diagrams,
but prevents larger diagrams from being processed). More experiments will be needed to
gain more experience with the notation and identify potential pitfalls, and a comparative
study with real users is necessary to experimentally assess the merits of the DSL over
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regular FOL notation. Finally, we are also looking into extending the diagram notation
beyond the domain of integers, in particular to non-linear structures in order to reason
about multi-dimensional arrays, trees and graphs.
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Abstract. Variability-aware computing is the efficient application of
programs to different sets of inputs that exhibit some variability. One
example is program analyses applied to Software Product Lines (SPLs).
In this paper we present the design and development of a variability-
aware version of the Soufflé Datalog engine. The engine can take facts
annotated with Presence Conditions (PCs) as input, and compute the
PCs of its inferred facts, eliminating facts that do not exist in any valid
configuration. We evaluate our variability-aware Soufflé implementation
on several fact sets annotated with PCs to measure the associated over-
head in terms of processing time and database size.

Keywords: Variability-aware programming · Product-line
engineering · Soufflé

1 Introduction

A Datalog engine is used to infer knowledge from a set of facts given some infer-
ence rules. There are cases though where we need to apply the same rules to
different sets of facts coming from different worlds, or different configurations.
For example, the Doop [2] pointer analysis framework encodes its logic as Dat-
alog rules, and applies them to facts extracted from Java programs. Doop can
only work on a single software product at a time. However, it is common for
software engineers to develop a whole family of products, a Software Product
Line (SPL) [5], as one project, exploiting the commonality across those prod-
ucts. Different variants (products) implement different sets of features. Since
each feature can be either present or not in a variant, the number of variants is
usually exponential in the number of features.

To use a framework like Doop on an SPL, we need to apply it to each of the
variants individually. This is infeasible in most cases because of the exponential
number of variants. Also, it involves a lot of redundancy because it does not
leverage the commonality across variants. To mitigate those drawbacks, some
program analyses have been lifted to efficiently work on SPLs instead of single
products [1,4,6,9–11,14]. This lifting process usually invovles reimplementing
the analysis to be variability-aware.

Our prior work [12] outlines an approach to apply Doop (and similar frame-
works) to the whole SPL at once, showing orders of magnitude of savings in
c© Springer Nature Switzerland AG 2020
E. Komendantskaya and Y. A. Liu (Eds.): PADL 2020, LNCS 12007, pp. 213–221, 2020.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39197-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-39197-3_14


214 R. Shahin and M. Chechik

Fig. 1. Motivating example.

computation time and storage space compared to running on each variant sep-
arately. One building block of that work was modifying the Soufflé [8] Datalog
engine to be variability-aware, i.e., taking fact variability into consideration when
inferring new facts. One fundamental advantage of our approach is that lifting
a Datalog engine to be variability-aware automatically lifts all analyses that use
it. In addition, variability-aware inference can be widely applied beyond pro-
gram analysis. In any application domain, it is possible for different facts to be
present only in specific situations, configurations, or in some constrained worlds.
Instead of modeling each of those variants separately, it makes sense to model
them together since inference rules are orthogonal to variability.

The rest of this paper starts with some background definitions and a motivat-
ing example (Sect. 2), followed by the design of variability-aware Soufflé (Sect. 3).
We then present the results of our evaluation experiments (Sect. 4), and finally
conclude and suggest some future directions (Sect. 5).

2 Background and Motivating Example

In this section we define some Datalog and variability terms, illustrating them
on the motivating example in Fig. 1. We then briefly introduce the architecture
of the Soufflé Datalog engine.

2.1 Datalog and Variability

Datalog is a declarative data definition and query language that combines rela-
tional data manipulation and logical inference [3]. A Datalog program is a set
of inference rules, collectively referred to as the Intentional Dataabse (IDB).
For example, the Datalog program in Listing 1.1 computes directed paths given
graph edges.

A program takes facts, referred to as the Extensional Database (EDB), as
input, and by repeatedly applying the inferrence rules to the input facts new
output facts are generated. Listings 1.2 and 1.3 are examples of input and output
facts respectively.

Variability-aware computing is the ability to efficiently compute over values
from different worlds at the same time. A set of worlds is defined in terms of a
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Fig. 2. Soufflé architecture.

set of features F . A world is defined by a configuration ρ, where each feature can
be either present or absent. A set of worlds is defined by a propositional formula
over features.

Each software artifact can be labeled with a Presence Condition (PC): a
propositional formula specifying the set of worlds in which this artifact exists.
Datalog facts are an example of artifacts. If we are modeling a set of worlds
defined by three features: Land, Air and Sea, facts can be labeled by PCs as
seen in Listing 1.2. The ‘@’ symbol is syntactically used to separate the fact
predicate from its PC. We use the symbols ‘!’ for negation, ‘\/ ’ for disjunction,
and ‘/\ ’ for conjunction. Parenthesis can be also used to override operator
precedence.

Usually not all feature combinations are valid. For example, the expression
(Land∧Sea) states that we have an edge that is both overland and marine, which
does not make sense. To rule out invalid feature combinations, a product line
usually has a feature model FM: a propositional formula over features specifying
their valid combinations (valid worlds). A configuration ρ is valid only if ρ∧FM
is satisfiable. Our example’s feature model is

(Air ∨ Land ∨ Sea) ∧ ¬(Air ∧ Land) ∧ ¬(Land ∧ Sea) ∧ ¬(Sea ∧ Air)

Now a variability-aware Datalog engine needs to take both the feature model
and the presence conditions of facts into consideration when inferring new facts.
Whenever a new fact is inferred, its Presence Condition (PC) should be the con-
junction of the PCs of its resolvent facts together with the feature model. If this
PC is not satisfiable, the inferred fact does not belong to any valid configuration
(world), and can be removed.

Listing 1.3 shows the results of applying our variability-aware Datalog engine
to the program and facts aforementioned. Crossed-out facts are the ones removed
because their presence conditions are not satisfiable (in general or with respect
to the feature model).

Formal syntax and semantics of variability-aware Datalog, together with cor-
rectness criteria of the lifted inference algorithm, and proof of correctness are
presented in [12].
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Fig. 3. BNF syntax of Soufflé clauses and presence conditions.

Fig. 4. Modifications and additions to Soufflé syntax and parsing classes.

2.2 Soufflé

Soufflé [8] is an optimized Datalog engine, with a Datalog interpreter in addition
to the option of compiling programs into native C++ code (Fig. 2). Soufflé first
compiles Datalog into Relational Algebra Machine (RAM) programs, which are
then either interpreted or compiled. RAM is a relational algebra language with
a fixpoint operator.

Soufflé employs a semi-naive Datalog evaluation algorithm to compile Dat-
alog into RAM. Elaborate data indexing techniques and multi-threaded query
processing are then used to evaluate RAM programs. These techniques, in addi-
tion to the ability to compile RAM into C++, and subsequently into optimized
native machine code, result in high-performance exeuction of Datalog programs.

3 Variability-Aware Soufflé

We modified the Soufflé engine to support variability-aware Datalog inference.
Soufflé runs in two modes: interpreter mode and compilation (code synthesis)
mode. We only support the interpreter mode at this time.

3.1 Syntax Extension

We extend the Soufflé fact syntax (Fig. 3) with an optional Presence Condition
(PC) before the period (‘.’) at the end. A presence condition is prefixed with the
‘@’ symbol, and has the syntactic structure of a propositional formula.

The Soufflé grammar (Lex and Yacc files) is extended accordingly, and
Abstract Syntax Tree (AST) classes are added to the code-base for Presence
Conditions (Fig. 4). AstPresenceCondition is an abstract class inheriting from
AstNode. Concrete subclasses of AstPresenceCondition are Primitive (for True,
Falseand atomic propositional symbols), Negation, and BinOp (for conjunction
and disjunction).
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Fig. 5. Modifications and additions to RAM interpreter classes.

The syntactic category of presence conditions can appear in Soufflé programs,
and also in CSV files. While the Soufflé parser takes care of programs, we had to
implement a separate parser for PCs appearing in CSV files (the PresenceCondi-
tionParser class). It identifies a PC as an optional field prefixed with ‘@’ coming
at the end of a fact. If a PC exists, it is parsed into an AstPresenceCondition
object.

The AstClause class is now extended with an AstPresenceCondition field.
Unless a PC is provided for a clause, the default value is the Trueproposition
(indicating that the fact is present in all configurations). AstTranslator has a
method called translateClause that compiles an AstClause into a RamStatement.
This method is modified to translate the PC of the clause as well.

The propositional symbols used in PCs come from a syntactic category dif-
ferent from that of Soufflé variables and constants. To avoid name collisions, we
store those symbols in a separate symbol table (featSymTable). An AstTransla-
tionUnit now has two symbols tables: one for Datalog symbols and the other for
propositional symbols (feature names).

Soufflé performs some optimizations on the AST before it is translated into a
RAM program. For example, in the MinimiseProgramTransformer class, areBi-
jectivelyEquivalent is a method that checks if two clauses are bijectively equiv-
alent. We extend this method to compare the PCs of the clauses as well. If the
PCs are not syntactically the same, we consider the two clauses not equivalent.

3.2 RAM

The AST of a Soufflé translation unit is compiled into a Relational Alge-
bra Machine (RAM) program, encapsulated in a RamTranslationUnit object
(Fig. 5). Similar to AstTranslationUnit, we need to carry the feature symbol
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table (featSymTable) over to RAM as a part of the translation unit. A Ram-
Program is contained within a translation unit, and it consists of a set of Ram-
Statement objects. A RamFact is a special kind of RamStatement, and we add
a PresenceCondition object as a field to it.

A syntactic AstPresenceCondition is compiled into a PresenceCondition
object, which encapsulates a representation of the PC propositional formula.
We store PCs as Binary Decision Diagrams [7], and we use CUDD [13] as a
BDD engine. To keep the number of PC objects at a minimum, we also main-
tain a hash-table mapping BDDs to PC objects. This way a new PC object is
created only if no other object with the same BDD already exists in memory.

Soufflé stores RAM relations as tables of numbers. String values are stored
elsewhere, and their corresponding numeric identifiers are the values actually
stored in relations. This keeps relations homogeneous, easy to access and index.
Since we now need to add a PC for each RAM record, the easiest way is to extend
relations with an extra field for the PC. To keep the relation data-structure
homogeneous, instead of storing a PC object, we store its address, which is a
64-bit numeric value, pretty much like other fields. This way our extra PC field is
opaque to the rest of the RAM subsystem. We had to take special care of nullary
relations, i.e., relations of zero fields. They have special semantics in Soufflé, and
to preserve the semantics, we consider a relation of a single field (the PC) to be
nullary.

3.3 Interpreter

The Soufflé interpreter runs a program on the fly, keeping a context of type
InterpreterContext, and manipulating a set of RAM relations. To avoid getting
into the details of how relations are stored, and how data indices are maintained,
we decided not to modify InterpreterRelation and InterpreterIndex. Instead, we
wrap InterpreterRelation in LiftedInterpreterRelation. The wrapper maintains
the same interface, but adds the semantic manipulation of the PC field.

Another significant difference between LiftedInterpreterRelation and Inter-
preterRelation is existence checking of records. In Soufflé checking if a record
exists in a relation is straightforward using the full index of the relation, return-
ing true if the record exists in the index and false otherwise. With PCs existence
checking is more subtle because the record we are looking for might exist but
with a different PC. To accommodate for this, we add a PC output parameter to
exists, the existence checking method of LiftedInterpreterRelation. Now instead
of just returning a boolean indicating whether a record exists in a relation, we
also return a pointer to the stored PC of the record (if the record exists).

Now whenever two records are resolved by the interpreter, their PCs need to
be conjoined, and the conjunction (if satisfiable) becomes the PC of the result-
ing record. If on the other hand the conjunction is not satisfiable, the result can
be safely ignored because an unsatisfiable PC indicates an empty set of con-
figurations in which this record exists. Satisfiability checking is a constant-time
operation on BDDs (although BDD construction might take exponential time
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Fig. 6. Time and space overhead due to variability-aware inference for five different
fact sets and three sets of rules.

Table 1. Inference time for three different Datalog programs applied to five differ-
ent fact sets. For each fact base we report the number of features (R), number of
facts with PCs other than True (FPC), inference time (T), database size (S), non-
variabality-aware inference time (TN), and non-variability-aware database size (SN).
Time is reported in milliseconds, and space is reported in Kilobytes.

in the number of variables). Because clause resolution might take place recur-
sively, we add a PC field to InterpreterContext, which keeps track of the PCs of
intermediate results.

When inserting a record into a relation, again we need to take the PC into
consideration. If that record already exists in the relation with the same PC, then
we do not need to add it again. If on the other hand it exists with a different
PC, we now need to disjoin that with the new PC because we are expanding the
set of configurations where this record exists into that of the union of the two
PCs. If the record does not exist at all, we just add it with its new PC.

We had to modify the I/O subsystem of Soufflé to make sure we correctly
read and write PCs together with records from/to CSV files. PresenceCondi-
tionParser is used to parse PCs on input, and logic for serializing PCs is added
to the PresenceCondition class. At this point, we do not support storing facts
to SQLite databases.

4 Evaluation

We evaluate the performance of our implementation of variability-aware Soufflé
in terms of time and space overhead. In particular, the research question we
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are trying to answer is how much of an overhead in terms of inference time
and database size is attributed to our modifications to Soufflé. To answer this
question, we compare the performance of Soufflé on a fact set annotated with
PCs against its performance on the same set with the PCs removed.

We use the same dataset used in [12], which is comprised of five fact sets
extracted from Java programs, and three program analyses (implemented as
Datalog rules) applied to each of them. Table 1 summarizes the number of fea-
tures (R) and number of facts annotated with PCs (FPC) for each of the five
benchmark fact sets. In addition, for each of the three Datalog rule sets (insens,
1Type+Heap, taint-1Call+Heap) it outlines the inference time (T), database size
after inference (S), and the corresponding values when the fact set with no PC
annotations is used (TN and SN respectively). Time is measured in milliseconds,
and space is measured in Kilobytes.

Figure 6a shows the inference time overhead when applying each of the three
Datalog programs to each of the five fact sets. Overhead is calculated as a ratio
between the time taken by variability-aware inference to standard Datalog infer-
ence. There are a few cases of overhead values less than 1.0, which can be con-
sidered as outliers due to other factors affecting overall processing time (e.g.,
I/O). From this graph, we can conclude that the overhead is relatively small
(7% was the maximum reported for taint-1Call+Heap on Lampiro). We still can
not see a direct correlation between the time overhead and fact set attributes
(e.g., feature count, percentage of facts annotated with PCs).

Similarly, Fig. 6b shows the database size overhead when applying the same
Datalog programs to the fact sets, where the ratio here is between database
sizes. Soufflé databases are stored as text files, and since variability-aware facts
(including inferred ones) might have PCs, and those PCs are stored as text,
it is natural that a variability-aware fact database takes more space than a
plain databse with no PCs. We can see from this graph that the database size
overhead grows roughly with the percentage of PC-annotated input facts. This
overhead reaches almost 34% for GPL, where about 60% of the input facts are
PC-annotated.

Please recall that the rationale behind variability-aware computing is to run
a program only once on values from all configurations, as opposed to running the
program on each configuration separately. Since the number of configurations is
typically exponential in the number of features, the marginal overhead we see
here is negligible compared to the savings due to running the program only once.
More details on our experiment setup and evaluation results can be found in [12].

5 Conclusion and Future Work

In this paper we presented the design and development of the variability-aware
Soufflé Datalog engine. The engine can take Datalog facts annotated with pres-
ence conditions as input, and compute the presence conditions of its inferred
facts, eliminating facts that do not exist in any valid configuration.

We evaluated the overhead of our variability-aware Datalog inference in terms
of inference time and size of the fact database, showing that time overhead
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is marginal, and space overhead grows with the percentage of PC-annotated
input facts. This overhead is acceptable compared to the brute force approach
(each configuration running separately), where the number of configurations, and
accordingly the overhead, is exponential in the number of variability features.

For future work, we plan to extend our variability-aware inference implemen-
tation to the Soufflé C++ code generator. We also plan to extend our theoretical
foundations and implementation to support presence conditions on rules. This
would allow for variability of inference logic in addition to data.
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