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Abstract Agent-based modelling and simulation (ABMS) is an essential tool
which allows to explore the role of social phenomena via computer simulation.
Large scale social simulations of HPCs—also known as parallel and/or distributed
agent-based simulation (PDABS)—play a key role in the emerging field of com-
putational global systems sciences (GSS). Agent-based models (ABMs) in GSS are
characterized by highly non-uniform spatial distribution of agents and importance of
long distance social interactions. Over the last two decades, researchers proposed a
number of approaches to effectively address these traits of ABMs. Such approaches
are driven by data available for scientists. In many GSS applications, the data
partially come in raster formats. Yet, case of raster inputs for GSS applications
is barely studied in literature and not supported sufficiently in the state-of-the-art
ABMS frameworks. In this paper, we propose a graph-based approach to represent
ABMs with raster inputs on HPCs. This approach naturally leads to a space-
relationships-based work partitioning strategy which allows to improve performance
of PDABS.

1 Introduction

Large scale social simulations play a key role in the emerging field of computational
global systems sciences (GSS) which deals with providing “scientific evidence to
support policy-making, public action, and civic society” [1]. to provide scientific
evidence to support policy-making, public action and civic society to collectively
engage in societal action. “The behaviour of many social systems requires that
they be modelled at the level of individual people” [2], which is usually achieved
by agent-based modelling and simulation (ABMS). On the one hand, since GSS
applications analyze society on global or country level, individual-based view on

S. Gogolenko (�)
High Performance Computing Center Stuttgart (HLRS), Stuttgart, Germany
e-mail: gogolenko@hlrs.de

© Springer Nature Switzerland AG 2020
M. M. Resch et al. (eds.), Sustained Simulation Performance 2018 and 2019,
https://doi.org/10.1007/978-3-030-39181-2_16

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39181-2_16&domain=pdf
mailto:gogolenko@hlrs.de
https://doi.org/10.1007/978-3-030-39181-2_16


206 S. Gogolenko

the global systems naturally leads to computationally expensive large scale ABMS
runs. On the other hand, the modeler obtains flexibility in addressing heterogeneity
in agents, non-linearity in their responses, and other complex model assumptions.
This flexibility enables ABMS to capture emergent social phenomena overlooked by
macro- and meso-scale models [3], as well as to outperform conventional machine
learning techniques in some cases [4].

At the same time, agent-based models (ABMs) for GSS have many peculiarities.
In [5], authors list three major traits of ABMs in GSS, which differ them from ABMs
encountered in other scientific domains such as computational biology or ecology.
These are heterogeneity of agents, highly non-uniform spatial distribution of agents
in the environment, and important role of long distance (social) interactions.
Heterogeneity of agents reflects diversity of actors involved into GSS models.
Non-uniform spatial distribution of agents is caused by urbanization processes,
obstacles imposed by nature, etc. ABMs in GSS often encompass two types of
communications—short distance communications representing interactions due to
spatial proximity of agents, and long distance interactions standing for social
relationships. In many cases, the latter dominate over the former.

Over the last two decades, researchers proposed a number of models and data
structures to effectively address traits of ABMs in GSS on HPC clusters. These
models and data structures are driven by data available for scientists. The data about
environment may come in vector or raster format. ABMs with inputs in vector
formats cover the majority of GSS use cases. Examples of recent developments
focused on inputs in vector formats include, but not limited to hierarchical (tree-like)
models [6, 7], directed probabilistic social networks [8], social contact networks [9],
urban geo-social networks [10]. At the same time, in many applications the global
system scientists use the data about ABM environment available in raster formats
from popular open data sources like NASA’s Socioeconomic Data and Applications
Center [11] and others. In this paper we propose an HPC compliant model and
corresponding data structure for this situation.

The rest of the paper is organized as follows. Section 2 briefly reviews state-
of-the-art HPC compliant ABMS software for global system scientists, as well
as approaches to model spatial environment and distribute workload implemented
in these tools. Section 3 presents graph-based HPC compliant model and cor-
responding data structure for ABMs with raster inputs and strong long distance
interactions between agents. Section 4 illustrates performance of our solution on the
toy benchmark implementing Axelrod’s model of dissemination of culture. Finally,
Sect. 5 discusses conclusions and direction for further work.

2 Previous Work

During the last decade, a number of HPC compliant ABMS codes were developed
[12–14]. These developments vary from domain specific tools to general purpose
ABMS frameworks.



Large Scale Agent Based Social Simulations 207

Although domain specific tools usually target individual use cases, they address
traits of particular GSS applications very effectively. Moreover, many ideas imple-
mented in such tools have generic nature and can be applied to a broader number
of use cases. The remarkable examples of the domain specific tools are FluTE [7],
EpiFast [8], EpiSimdemics [9]. FluTE [7] represents the model of iterations in
society as a multi-level tree. The root of the tree corresponds to the whole
society, while the lower levels of the tree represent elements of society with finer
granularity until reach the level of individual households as leaves. The probability
of interactions between agents is dictated by the distance to the closest common
parent. EpiSimdemics [9] implements a so-called social contact network (SCN)
model. In SCN, society is represented by an affiliation (bipartite) graph with agents
on one side and loci of their interactions (environment) on the other. This affiliation
graph is accompanied with a schedule of interactions. Both SCN and tree-like
models take into account only short range interactions between agents. Urban Geo-
Social Network Model (UGSN) proposed in [10] addresses this limitation by further
development of the SCN idea. It represents the society by SCN and additional
multilayer network [15] of direct social connections between agents for modelling
long distance communications.

Noticeable examples of the HPC compliant general purpose ABMS frameworks
are RepastHPC [16], D-MASON [17], Flame-GPU [18], and Pandora [19]. Despite
the wide choice, these frameworks fail to address all common traits of GSS appli-
cations effectively. Being implemented in Java, D-MASON has limited potential
for use and porting on state-of-the-art large-scale HPC clusters. FlameHPC and
Pandora lack proper support for simulation of social connections between agents.
Although RepastHPC has formally all components required to build ABMs in GSS,
it demands significant HPC expertise and advanced programming skills from the
modeler (due to intricate and verbose API). Moreover, latest version of RepastHPC
still ignores recent advances in high performance data structures such as new
techniques for handling evolving graphs, modern fast implementations of hash
tables, etc.

The common bottleneck for the majority of general-purpose ABMS frameworks
is a naïve approach to model spatial environment and distribute workload. Many
popular frameworks—including Flame-GPU, RepastHPC, and Pandora—model
environment topology by cartesian grids. In 2D case, environment attributes are
represented by dense matrices of the same size. Indices of the matrices correspond
to the spatial coordinates and define locations of the grid vertices. During the
distributed simulations, cartesian grid is split evenly between processes (Fig. 1a).
This approach is often referred as uniform partitioning [20]. Since amount of
computational work in agent based simulation step is proportional to the number
of agents, uniform partitioning results in a significant load imbalance if agents
are distributed very non-uniformly in space. As a result, this approach allows to
reach reasonably good performance for many classical ABMS applications, but
gives poor performance in situations with non-uniform spatial distribution of agents
which is a case of GSS applications where agents are highly concentrated in the
urban areas and sparsely distributed outside the settlements. D-MASON tackles this
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(a) (b)

Fig. 1 Approaches to partition the rasters. (a) Uniform partitioning. (b) Non-uniform (tree codes
based) partitioning

limitation by introducing a space-based non-uniform work partitioning approach
based on tree codes (multi-scale meshes) [20]. This approach extends idea of the
quad-tree Barnes-Hut algorithm, widely used in n-body simulations, to the agent-
based models [21]. In particular, in [20], authors propose to use a so called bounded
pseudo quad-tree (Fig. 1b). Even though the space-based work partitioning approach
significantly reduces load imbalance, it does not take into account the situation
when long distance communications play an important role in social simulations.
As discussed in Sect. 1, the latter refers to the vast majority of GSS applications.

3 Graph-Based Model for Sparse Raster Inputs

Concept
Figure 2 illustrates typical organization of inputs for ABMs where data about
environment comes in raster format. The information from the rasters can be
combined into sparse spatial graph. Vertices of the spatial graph correspond to
the non-empty pixels of the rasters and represent sites populated by agents. Each
site is attributed with a tuple of pixel values in the corresponding position for all
raster. Edges of the spatial graph stand for spatial proximity between sites and
serve to model short distance communications. Agents are linked into a multilayer
network of direct social connections. In addition, each agent is assigned to the site
corresponding to its spatial location. This results into internal representation where
agents linked into multilayer network of social connections GA = (VA,EA) are
mapped on the sites linked into spatial graph GS = (VS,ES) (see right side of
Fig. 2).

In order to keep workload balanced, the spatial graph should be distributed
between processes taking into account the number of agents in sites, as well as
short and long distance communications between agents. It can be achieved if
we map multilayer network of social connections on the spatial graph to obtain
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Fig. 2 Internal representation of ABMs with raster inputs

a computational graph Gc = (Vc,Ec) with vertices v ∈ Vc corresponding to
sites and edges e ∈ Ec corresponding to short and long distance communications.
In this graph, weight of the vertex wv equals the number of agents located at
the corresponding site, while weight of the edge we between vertices equals the
total number of agents in both vertices if sites are spatialty connected or the
number of social links between agents assigned to these vertices if sites are distant.
Optimal partitioning of the computational graph gives balanced distribution of
agents between processors.

However, if rasters have high resolution, this approach cannot be used directly
in distributed HPC environments since the number of sites becomes too big to
address them effectively and to perform a balanced partitioning of the computational
graph. This obstacle can be overcome by grouping sites into the chunks and
partitioning the computational graph built upon the chunks of sites instead of
individual sites. Nevertheless, even spatial partitioning of the sites into chunks might
significantly disbalance the number of agents assigned to chunks. The better way
is to build chunks upon tree codes—quad-trees or bounded pseudo quad-trees—
using approaches discussed in [20]. The latter leads to a graph-based model and
corresponding data structure illustrated in Fig. 3a. Note that this model uses the data
structure similar to the data structure behind combination of USGN model with
hierarchical tree-like model (see Fig. 3b). According to the taxonomy of PDABS
work partitioning strategies proposed in [20], the corresponding work partitioning
approach belongs to the class of space-relationships-based strategies.

Software for Implementation
Neither of the data structures depicted in Fig. 3 can be implemented in existing
HPC compliant ABMS frameworks without dramatic changes in their cores. In
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Fig. 3 Comparison of data structures of fine grained graph-based models designed for ABMs with
sparse raster inputs and with vector inputs. (a) Graph-based with sparse raster inputs. (b) UGSN
+ hierarchical

Table 1 Support of short distance and long distance interactions between agents in Pandora and
RepastHPC

Pandora RepastHPC

Social relationships representation

Type of model None Directed multilayer network

Evolving social graphs +

Edge weights +

Multiplicity +

Implementation Native (ptrs)

Spatial component representation

Format std::map of dense matrices Grid projector with vector of
dense matrices (value layers)

Boundary conditions Von Neumann Von Neumann, Moore

GIS support Rasters with GDAL None

order to support this claim, Table 1 compares the most advanced HPC compliant
frameworks written in C++—Pandora and RepastHPC—with respect to coverage
of features necessary to implement the approach discussed above. This comparison
shows that Pandora does not support multilayer network of social connections,
whereas RepastHPC has insufficient number of instruments to implement spatial
graphs.

In order to implement the approach without ABMS frameworks, one needs
a graph partitioning tool and a general purpose graph library, which provides
functionality sufficient to model social relationships.
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The most appropriate general purpose graph libraries are Snap [22], PBGL,
and GraphLab/PowerGraph[23]. PBGL (Parallel Boost Graph Library) is a rather
lightweight package which supports most of the features required to model mul-
tilayer network of social connections and spatial graph. Even though interface of
PBGL is designed for the users with advanced CS-skills, VTK library provides easy-
to-use wraps over native PBGL interfaces. PowerGraph is an advanced distributed
framework which implements graph-based gather-apply-scatter (GAS) program-
ming model [23]. On the one hand, concept of the graph-based ABM simulation
maps perfectly on the GAS programming model. In particular, “apply” phase allows
to specify behaviour of the agents, and “gather” phase allows to collect suitable
information from neighbours. On the other hand, PowerGraph does not support
dynamic changes in the graph structure (vertices removal, etc). The latter strongly
limits potential use of PowerGraph for ABMS. Both PBGL and PowerGraph assume
that all vertices must have the same attributes. Nevertheless, the effect of versatility
in vertex attributes can be achieved with variant types.

The incomplete list of remarkable graph partitioning packages developed over
the last decades includes PT-Scotch, ParMETIS, PaGrid, Chaco, JOSTLE, Min-
iMax, ParaPART, DRUM, etc. But two of them—METIS and Scotch—gained
much more popularity than others and are often referred as load balancing tools of
choice in sophisticated time-consuming parallel numerical simulations. While both
packages fit well to the needs of graph-based approach, ParMETIS is preferable
since it allows to repartition distributed graph dynamically.

4 Benchmark for a Proof-of-Concept Implementation

In order to assess performance of our solution, we prepared a toy benchmark that
implements Axelrod’s model of dissemination of culture. This model was proposed
in 1996 by R. Axelrod [24] and immediately gained broad popularity among social
scientists. Nowadays, it is considered as one of the most well studied ABMs—both
theoretically and empirically [25, 26],—which motivated us to choose Axelrod’s
model for benchmarking.

The model defines agents and rules for their interactions as follows. Agents
model individuals in culture dissemination process. Each agent is endowed with
F integer attributes called cultural traits, which are meant to model different beliefs,
opinions, and other properties of agents. The model allows only a limited number
of values for each cultural trait fi = (0, 1, . . . , qi − 1). In the dynamic step, each
agent randomly selects one neighbour and the agent interacts with the neighbour
with some probability proportional to the overlaps between the agent-neighbour
pairs (the overlap is computed as a number of equal features). The interaction
consists in assigning to one of the agent’s trait the value of its neighbour trait. In
other words, these rules make interacting agents more similar, but the interaction
happens more often if agents already share many traits and it never happens if
agents have no trait in common. This suggests that Axelrod’s interaction rules allow
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Fig. 4 Scalability of Axelrod’s model implemented with the Amos framework on Hazelhen cluster

to model two cultural mechanisms—social influence and homophily. In order to
fit Axelrod’s model to the graph-based approach discussed in Sect. 3, we slightly
modified Axelrod’s notion of neighbours. In our implementation, we consider as
neighbours all agents located at the same spatial site, as well as the agents that have
direct links in the social graphs.

The benchmark was performed on the Hazelhen cluster at HLRS. Hazelhen is
composed of CRAY XC40 nodes and has peak performance 7.4 Pflops. The cluster
includes 41 Cray cascade cabinets with in total 7712 dual socket compute nodes.
Each node is equipped with 2 12-core Intel Haswell E5-2680v3 CPUs and 128 GB
of DDR4 RAM. The type of interconnect is Cray Aries. It uses Lustre storage
and operates with the Cray Linux Environment. In our implementation, we used
Snap 3 library as a back-end general-purpose graph library, and METIS as a graph
partitioning tool. We compiled all components with GCC 6.4. Input files were pre-
processed into CSV-format.

In our benchmarks, we used two networks from [22]—Brighkight and Gowala—
for representing long-range interactions. The number of agents was artificially
adjusted to the number of vertices in the networks. In order to create sites for their
allocation, we used a 240×290 pixel raster with a gridded population density heat
map of the Faroe islands from NASA’s SEDAC. Agents were initialized with three
cultural features each taking random values between 0 and 9.

Figure 4 summarizes results of the benchmark. Its subplots contain line chart with
confidence intervals for measured elapsed times of data input and 100 simulation
iterations of Axelrod’s model. In these plots, we compare performance of the
simulation iterations against embarrassingly parallel data input on both social
networks. By embarrassingly parallel CSV input, we mean a naïve embarrassingly
parallel implementation of the CSV reader which assumes that the user split the
input data and prepared CSV files for each MPI process separately. For both
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networks, the scalability of the simulation iterations is better than the scalability
of embarrassingly parallel input.

5 Conclusions and Further Work

The case of raster inputs for GSS applications is barely studied in literature and not
supported sufficiently in the state-of-the-art ABMS frameworks. In this paper, we
proposed a new graph-based model and corresponding data structure for efficient
implementation of ABMs with raster inputs on HPC clusters. This model combines
ideas of UGSN model, hierarchical models, and tree codes. State-of-the-art ABMS
frameworks do not provide sufficient features to implement such model out-of-the-
box. Nevertheless, we have shown that the model can be efficiently implemented
with the general-purpose graph libraries and graph partitioning tools.

In the future, we plan to include support of this model in one of the ABMS
frameworks, as well as to assess performance of our model on the large scale real
world use cases.
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