
Sustained Simulation
       Performance

1 23

2018
2019

Michael M. Resch
Yevgeniya Kovalenko
Wolfgang Bez · Erich Focht
Hiroaki Kobayashi  Editors



Sustained Simulation Performance 2018 and 2019



Michael M. Resch • Yevgeniya Kovalenko •
Wolfgang Bez • Erich Focht • Hiroaki Kobayashi
Editors

Sustained Simulation
Performance 2018 and 2019
Proceedings of the Joint Workshops
on Sustained Simulation Performance,
University of Stuttgart (HLRS) and Tohoku
University, 2018 and 2019



Editors
Michael M. Resch
High Performance Computing Center
(HLRS)
University of Stuttgart
Stuttgart, Germany

Yevgeniya Kovalenko
High Performance Computing
University of Stuttgart
Stuttgart, Germany

Wolfgang Bez
Europe GmbH
NEC High Performance Computing
Düsseldorf, Germany

Erich Focht
Europe GmbH
NEC High Performance Computing
Stuttgart, Germany

Hiroaki Kobayashi
Cyberscience Center
Tohoku University
Sendai, Japan

ISBN 978-3-030-39180-5 ISBN 978-3-030-39181-2 (eBook)
https://doi.org/10.1007/978-3-030-39181-2

Mathematics Subject Classification (2010): 65-XX, 65Exx, 65Fxx, 65Kxx, 68-XX, 68Mxx, 68Uxx,
68Wxx, 70-XX, 70Fxx, 70Gxx, 76-XX, 76Fxx, 76Mxx, 92-XX, 92Cxx

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-39181-2


Preface

Sustained simulation performance is becoming an ever more important issue in
High Performance Computing (HPC). Hardware is moving towards the Exaflop,
and we will see such systems in the near future in China, Europe, Japan, and the
USA. However, sustained performance is lagging behind substantially. Experts are
worried that the level of sustained performance will stay as low as 1% of peak
performance for typical applications.

The workshop series on sustained simulation performance has set out 15 years
ago to tackle this problem. The papers presented here are hence looking into
a variety of issues that have an impact on sustained simulation performance in
HPC.

The starting point for any such investigation is hardware architecture. The
key problem of modern HPC systems is the lack of speed in communication
mainly for the main memory. The currently only vector architecture which has
the potential to overcome this problem in HPC is the NEC Aurora. Several of
the articles in this volume refer to this architecture and its potential for HPC
simulation. Based on an excellent architecture, basic software plays a vital role.
This includes a variety of topics like operating systems, compilers, schedulers,
IO-systems, and programming models. Hardware and software are important for
sustained performance, but in the end it is mathematical algorithms that have to
be implemented and hence finally decide on how well hardware and software are
used. In the coming decades, the optimization of mathematical algorithms might
replace Moore’s Law as the main driving force in sustained performance on HPC
systems.

The contributions in this volume show that the number of problems in sustained
simulation performance is high. Some solutions can be seen but for many problems
we still have to invest a lot of research. However, if HPC in general and Exaflops
systems in particular want to be successful in the coming decades the focus of
attention will have to shift from hardware to software and algorithms and funding
will have to go into these fields in order to make sure HPC systems do not become
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heroes with feet of clay. This book aims to make a contribution not only to make
readers aware of the problem but also to put some potential solutions on the
table.

Stuttgart, Germany Michael M. Resch
September 2019
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Future HPC Challenges



R&D of a Quantum-Annealing Assisted
Next Generation HPC Infrastructure
and Its Killer Applications

Hiroaki Kobayashi

Abstract As the silicon technology driven by so called Moore’s law is facing
the physical limitation, we are now moving to the post-Moore’s era in the design
of the next generation high-performance computing infrastructures. Under such
a situation, Quantum Annealing is expected to be one of emerging information
processing technologies in the Post-Moore’s era, which is especially work well
for combinatorial optimization problems. In this article, we present our on-going
project entitled, “R&D of a Quantum-Annealing Assisted Next Generation HPC
Infrastructure and its Applications,” which aims to integrate the quantum annealing
information processing into a conventional HPC system as an accelerator for com-
binatorial optimization problems. We also show the designs of target applications
that integrate computational science and data science approaches to be installed on
the underlying infrastructure, which are expected to play a key role in the realization
of the smart city (also named Society 5.0 in Japan).

1 Introduction

In the last several decades, thanks to the silicon technology development so
called Moore’s Law, computer performance has been improved exponentially.
However, as the physical limitation in the silicon fabrications is approaching, we
are facing the end of Moore’s Law. Under such a circumstance, post-Moore’s
information processing technologies such as Quantum computing, Brain-Inspired
computing etc. is drawing much attention as emerging ones to make a break-
through in computing. In such a trend, quantum annealing is considered one of
promising information processing mechanisms in the Post-Moore’s era, because it is
commercially realized and available right now, although solvable problems are still
small. The quantum annealing is a metaheuristic for finding the global minimum

H. Kobayashi (�)
Tohoku University, Sendai, Japan
e-mail: koba@tohoku.ac.jp
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4 H. Kobayashi

of a given objective function over a given set of candidate solutions (candidate
states), by a process using quantum fluctuations. The D-Wave system, a Canadian
startup company, has developed the first transverse magnetic field type quantum
annealing Chip and System in the world. By using the commercial systems, many
research teams of Google, NASA, Volkswagen, Lockheed, Tohoku University etc.
get involved in R&D of emerging applications using quantum annealing especially
that need solving combinatorial problems, and successfully show its possibility that
could outperform classical HPC systems toward the post-Moore’s era.

Quantum-annealing shows a great potential, however, it is not a universal solution
to the general-purpose high performance computing. Therefore, even though the
performance of quantum-annealing machines reaches the practical level in a couple
of the next decades, it still needs classical high performance computing platforms
to satisfy a wide variety of computing demands from the practical general-purpose
applications. Thus, toward the Post-Moore’s era, we are conducting a new research
project for the realization of a quantum-computing and classical computing hybrid
infrastructure just like a hybrid car with an electrical engine and combustion engine.
In this project, we try to realize a transparent access to hybrid computing engines
based on the demands from applications, while so called Moore’s-type traditional
high-performance computing engines are enhanced in a domain-specific fashion
such as computing-memory performances balanced architectures, e.g., vector-
engines, for memory-intensive applications, dense-computing engines, e.g. GPU,
for computation-intensive applications, and de-facto standard computing engines,
e.g., X86, for controlling these underlying heterogeneous computing engines
including the quantum annealing hardware and providing standard programming
environments to install commonly-used open-source applications.

At the same time, we are also interested in co-design and co-development
of emerging applications with the quantum-annealing and classical computing
hybrid infrastructure. In particular, such applications are expected to be essential
for the realization of the Smart City, which is also named Society 5.0 in Japan.
According to the 5th Science and Technology Basic Plan 2016–2020 by Japanese
Government, the Society 5.0 is defined as a human-centered society that balances
economic advancement with the resolution of social problems by a system that
highly integrates cyberspace and physical space. To realize the Society 5.0, we
have to deploy a cyber-physical system into the society, which realizes a close
interaction and convergence between the physical space (real society) and the
cyber space (virtual world on a computer) as a social infrastructure. The recent
remarkable improvement of AI and ML (machine learning) can exploits higher-
order information from the large amount of data collected from the real world
through the IoT technology in a practical time, however, the simulation also
plays an important role in generating the effective data for AI-ML, because high-
quality data could be generated by the high performance simulation with several
scenarios, which are not available from the real data due to danger, disruption,
and/or serious fatality to our life and systems. On the other hand, to improve the
simulation significantly, it needs AI-ML. In the AI-ML steering simulation that we
are investigate in this project, AI-ML analyzes the simulation results, optimizes the
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simulation model, and then steers the simulation effectively. This AI-ML steering
simulation definitely become a core technique to realize the cyber-physical system.
Therefore, the next generation applications should also be designed based on the
integration of traditional computational science approach and AI-based data science
approach.

In this article, we present our on-going project entitled, “R&D of a Quantum-
Annealing Assisted Next Generation HPC Infrastructure and its Applications,”
which aims to integrate the quantum annealing information processing mechanism
into a conventional HPC system as an accelerator for combinatorial optimization
problems. Section 2 describes our system design concept of a new computing
infrastructure toward the Post-Moore’s era by the integration of classical HPC
engines and a quantum-annealing engine. In Sect. 3, we present target applications
that would be solutions to the realization of the Society 5.0. Here, we define a
workflow for the integrated applications of simulation and AI-ML approaches.
Based on the workflow, we discuss two applications: a real-time Tsunami Inundation
Damage Forecasting and Optimal Evacuation Planning from Tsunami inundation,
and a Digital Twin of a Turbine for power-generator systems. Section 4 summarizes
the article.

2 Quantum-Annealing Assisted Next Generation HPC
Infrastructure

Figure 1 show a stack representation of the target infrastructure to be developed in
this project. At the lowest layer, hardware platforms are configured, and we place the
D-wave machine as a quantum-annealing engine and NEC SX-Aurora TSUBASA
as classical computing engines.

NEC SX-Aurora TSUBASA is the latest vector system and consists of an X86
engine and a vector engine. The vector engine is composed of a vector proces-
sor and a memory subsystem. On the vector processor, eight high performance
cores are integrated, and are connected to the memory subsystem at a 1.22 TB/s.

Fig. 1 A stack representation of the target infrastructure
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Each core provides 307.2 Gflop/s for double-precision (DP) and 614.4 Gflop/s for
single-precision (SP) floating-point calculations. As a result, a VE processor with
eight cores provides up to 2.45 Tflop/s (DP) and 4.91 Tflop/s (SP) floating-point
performances. This high vector processing capability supported by a high memory
bandwidth is expected to realize high-sustained performance in a wide variety of
science and engineering applications, especially memory-intensive applications.
At the same time, an X86 engine named Vector Host, which is equipped with
a Xeon processor, is attached to the vector engine. As the vector host provides
the standard LINUX programming environment and OS functions, the LINUX
system calls are automatically offloaded from the vector engine to the vector
host in program execution as needed. As a result, SX-Aurora TSUBASA have a
great potential of high performance vector processing capability, while providing
a standard programming environment. At the same layer, we introduce a D-Wave
2000Q as a quantum annealing engine. Program kernels for solving combinatorial
problems could be offloaded to this engine through the programming interfaces
implemented at the upper level of this layer.

On the hardware engines layer, we construct two fundamental computing
environments: a deductive computing environment and an inductive computing
environment. The deductive computing environment is prepared to accelerate
conventional simulations in the fields of computational science and engineering,
and is highly-optimized for exploiting the potential of SX-Aurora TSUBASA. In
this environments, effective vector computing-scalar computing hybrid is realized
by heterogeneous computing of vector-engines and X86 engines (vector host).
We also construct the inductive computing environment for AI-based data science
applications at the same level. The inductive computing environment basically
consists of application interfaces to the quantum-annealing engine for combinatorial
problems and several standard AI-ML platforms such as Tensorflow and SPARK,
where the latter ones are highly-optimized for SX-Aurora TSUBASA. Moreover,
as it is reported that the quantum-annealing works well in Boltzmann learning
and clustering, we try to bring its potential to the AI-ML environment to provide
the best choice to users based on their demands in the program development.
In this project, we will intensively evaluate performances of quantum-annealing
and classical computing as an accelerator for combinatorial problems and AI-
ML applications, and figure out their best mix through the R&D of inductive
computing and deductive computing integrated applications. Finally, over the these
environments, we construct a transparent interface to access these environments
in a unified fashion, and build two emerging applications to be presented in the
following section as examples of simulation-AI-ML integrated applications, which
will contribute to the realization of the Society 5.0.
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3 Computational Science-Data Science Integrated
Applications

Before describing target applications to be implemented on the quantum-annealing-
assisted next generation HPC infrastructure, we define workflow models of
simulation-AI-ML integrated applications. Figure 2 depicts the workflow that we
define for application developments. There are three models: AI-Driven Simulation
model, Simulation-Driven AI model, and their integration model. The AI-Driven
simulation model shows a workflow in which simulation is steered by AI-based
analysis. After the simulation results are obtained, AI analyzes the results and
improves the simulation scenario and the simulation model to effectively proceed
the simulation, resulting in the minimization of the user interaction during the
simulation process. In the Simulation-Driven AI model, the simulation supports
AI by preparing supplemental data, named simulation database, which cannot
be or hardly obtained from physical systems. For example, the simulation can
generate data by using several scenarios of serious situations in natural disaster
and malfunctions of machinery, which we rarely observe but give fetal damage to
the society and systems if they happen. The last one is the combination of the AI-
Driven Simulation and Simulation-Driven AI in a serial fashion. While simulation
effectively steered by AI generates the simulation database, AI analyzes the data
from the simulation database as well as real physical data obtained by sensor
IoTs, in order to exploit higher order information and/or optimal solutions in the
simulation-driven AI model. In the following subsections, we describe our target
applications based on these workflow models.

Fig. 2 A workflow of computational science-data science integrated applications
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3.1 Real-Time Tsunami Inundation Damage Analysis
and Optimal-Evacuation Planning System

The first application we are developing is a Real-Time Tsunami Inundation Damage
Forecast and Optimal-Evacuation Planning System. Eight years ago, there was a
big earthquake named the 2011 East-Japan Great Earthquake. The earthquake gave
us a serious damage, and most of around 20,000 victims were due to the huge
Tsunami generated by the earthquake. To prevent and mitigate Tsunami damages
caused by big earthquakes, we started a research and development of a real-time
Tsunami inundation damage forecasting system in 2014 and have completed the
development of the system in 2018. The system can provide the damage estimation
of a 6-h Tsunami Inundation in coastal areas around Japan at the 10 × 10 m mesh
resolution in less than 20 min: 10 min for the fault model identification and another
10 min for the Tsunami Inundation simulation on our supercomputer SX-ACE of
Tohoku University. The system has already been installed as a part of the disaster
analysis system operated by Cabinet Office, Government of Japan in a 24/7 fashion.

In this project, we will be enhancing the performance of the fault modeling by
using quantum annealing. The sampling capability of the most likelihood, second,
third . . . etc. by quantum fluctuation of quantum annealing could be used to evaluate
the certainty/uncertainty of the obtained optimal solution in the fault identification.
By reflecting this information to the Tsunami inundation simulation, we can derive
the worst case scenario of the Tsunami inundation damage. At the same time, we
are also extending the use of the inundation damage forecast information to the
evacuation path planning from the inundation. Because the optimal path planning
is a kind of combinatorial optimization problems, we try to combine the enforce
learning to obtain the first, second and third shortest paths to the safe place with
the quantum annealing to obtain the globally optimal path from the combinations
of these possible candidates. Of course, we are continuing further optimization of
the Tunami code for the latest vector computer SX-Aurora TSUBASA. Figure 3
shows the process mapping of three stages: Fault estimation, Tsunami simulation,
and optimal evacuation planning. Purple-colored boxes show the range of hardware
engines to be implemented. For example, the first stage “Fault estimation with
Quantum-Annealing-enhanced MCMC (Markov Chain Monte Carlo) is on the
combination of SX-Aurora TSUBASA and D-wave machine. The second one
“Tsunami Inundation Simulation” is implemented solely on SX-Aurora TSUBASA,
because the vector processing works well for the Tsunami inundation simulation as
a memory-intensive application. The last stage of optimal evacuation planning with
quantum annealing is again mapped on the combination of SX-Aurora TSUBASA
and D-wave machine. Figure 4 show the workflow of the system. The first and
second stages are categorized into the AI-driven simulation, and the last stage is
categorized into the simulation-driven AI. As these three stages are coupled in a
serial fashion, the total system is categorized into the integration model of the Ai-
Driven Simulation model and Simulation-Driven AI model.
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Fig. 3 An organization of a tsunami inundation damage forecasting and optimal evacuation
planning system

Fig. 4 A workflow of a tsunami inundation damage forecasting and optimal evacuation planning
system
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3.2 A Digital Twin of a Real-Turbine by Using a Numerical
Turbine

The other target application that we are developing in this project is a digital
twin of a real turbine. As turbine systems of power plants are a part of important
social infrastructures to support our life, their malfunctions and/or failures give a
serious damage to the life. Therefore, they need predefined periodical maintenance
to keep the systems safe and stable conditions. If we can estimate internal conditions
such as aging status of blades from the outside, we can make much more optimal
maintenance plans based on the predicted conditions, resulting in a significant
cost reduction for the maintenance. To react this demand, we try to realize a
virtualized turbine on a supercomputer as a digital twin of the real one. So far,
we have successfully realized a virtual turbine named numerical turbine on a SX-
ACE supercomputer running at Tohoku University, which can simulates the internal
pressure field in the turbine. Therefore, by using several blade conditions such as
new one and its gradually aged ones, we can generate internal flows and pressure
fields as simulation results of the numerical turbine As the variances in the pressure
field represent the degree of aging of blades, and are also expected to be measured
as a noise from real turbines, we can estimate the blade conditions by using the
numerical turbine. Figure 5 shows a concept of a digital twin of a real turbine by
using the numerical turbine. The numerical turbine is used to generate a simulation
database with many cases of blade conditions, as well as to design the turbine itself.
By combining simulation database and real data obtained by IoT sensors of a real
turbine, AI estimates the internal conditions of the real turbine. If AI trained by the
simulation database detects the aged blades that needs the maintenance by analyzing

Fig. 5 A realization of a digital twin of a real turbine by using a numerical turbine
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Fig. 6 A workflow of a digital twin of a real turbine by using a numerical turbine

acoustic noises from a real turbine, it could suggest the maintenance before the
failure of the turbine system. Figure 6 show a workflow of a digital twin of a real
turbine. The first half of the digital twin is classified into the AI-driven simulation
model, in which the numerical turbine generates a simulation database with the
support of AI to optimize the turbine simulation. The last half is classified into the
simulation-driven Ai model, in which AI uses the simulation database for learning
the internal states of the turbine, and detects the internal states from IoT-collected
data from the real turbine generated by aged blades that needs the maintenance.

4 Summary

This article briefly describes our on-going project for design and development
of a future HPC infrastructure, which incorporates quantum-annealing as a post-
Moore’s information processing mechanism into the classical high performance
computing infrastructure. Our design is based on the latest vector supercomputer
system SX-Aurora TSUBASA and its successors, but for the specific kernels to
handle combinatorial problems, they are offloaded to a quantum annealing machine
in a transparent fashion from the user point of view. We are also developing
two killer applications for this quantum-annealing assisted HPC infrastructure: a
real-time Tsunami inundation damage forecasting and optimal evacuation planning
system and a digital twin of a real turbine. These applications are designed based
on the combination of simulation and AI-based data processing approaches. This
5-year project started in 2018, and every year we will make progress reports at
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the workshop on sustained simulation performance to be held twice a year in
HLRS and Tohoku University and publications of the post-workshop books as well.
After this project completed in 2022, we believe these new generation computing
infrastructure and its simulation-AI hybrid applications contribute to the realization
of the smart city, so called Society 5.0.

Acknowledgements Many colleagues get involved in this project, and great thanks go to faculty
members of the Tohoku-NEC Joint Lab. at Cyberscience Center of Tohoku University. This project
is supported by the MEXT Next Generation High-Performance Computing Infrastructures and
Applications R&D Program.



Mastering Exascale Challenges
for Engineering Applications

Bastian Koller, Ralf Schneider, Andreas Ruopp, and Dimitris Liparas

Abstract This chapter will present the European approach for establishing Centres
of Excellence in High-Performance Computing (HPC) applications, ensuring best
synergies between participants in the different European countries. Those Centres
are user-centric and thus driven by the needs of the respective community stake-
holders.

Within this chapter, the focus will lie on the respective activity for the Engi-
neering community. It will describe what the aims and goals of such a Centre of
Excellence are, how it is realized and what challenges need to be addressed to
establish a long-term impacting activity in Europe.

1 The Race for Exascale

The race towards Exascale Computing is open and coming to a point in time, where
political and technical decisions impact the availability and especially usability of
the next level of performance supercomputers. Whilst the US, China and Japan
announced their initial plans to make Exascale systems available as soon as possible
quite early on, Europe joined this race later, but with a clear and focused strategy.
This strategy is embedded and executed by a Joint Undertaking (JU1)—EuroHPC2

which was established at the end of 2018 and will be operational until the year 2026.
The aim of the Joint Undertaking is to steer European developments in hardware and
software and lead to world-wide competitive European Exascale systems, available
for (European) users.

1Definition of a Joint Undertaking—https://eur-lex.europa.eu/summary/glossary/joint_ undertak-
ing.html.
2EuroHPC—Leading the way in the European Supercomputing—https://eurohpc-ju.europa.eu/.
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Fig. 1 The European HPC
ecosystem—applications,
hardware and access to
infrastructures

Now, whilst one important pillar for a European HPC Strategy is the hardware
development, one of Europe’s strengths still lies in the area of applications. Thus,
besides the development of European hardware, such as the European Processor,3

the aim is also to push applications towards Exascale performance, and thus enable
European Scientists to access available systems with optimized applications in a
best manner.

Figure 1 presents a high-level overview of the EuroHPC strategy, reaching from
developments in technology and applications up to the provisioning of access
to infrastructures, e.g. as provided nowadays by the Partnership for Advanced
Computing in Europe—PRACE.4 The aim of a European Centre of Excellence for a
specific HPC community is thus to identify the potentials of the community codes,
to support the communities in the evolution of the codes and finally to showcase
what those codes can achieve, once Exascale Computers are available in Europe.

2 European Centers of Excellence

The journey towards the establishment of Centres of Excellence started already
in 2015 in Europe. In a first call for proposals, a set of nine community-driven
Centres of Excellence was identified. Those targeted the domains of Biomedicine
(BioExcel, CompBioMed), Energy (EoCoE), Material Science (MAX, NOMAD, E-
CAM), Global Systems Science (CoeGSS), Weather and Climate (EsiWACE), and
Performance Optimization (POP).5

3European Processor Initiative—https://www.european-processor-initiative.eu/.
4PRACE—http://www.prace-ri.eu/.
5Overview of the funded CoEs in 2015—https://www.top500.org/news/Centres-of-excellence-
europes-approach-to-ensure-competitiveness-of-hpc-applications/.

https://www.european-processor-initiative.eu/
http://www.prace-ri.eu/
https://www.top500.org/news/Centres-of-excellence-europes-approach-to-ensure-competitiveness-of-hpc-applications/
https://www.top500.org/news/Centres-of-excellence-europes-approach-to-ensure-competitiveness-of-hpc-applications/
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Whilst those funded Centres were in average active for 3 years, not all of them
were extended in a second call, which was published in 2018. In addition, within
this call, topics that had not been addressed so far were identified and addressed.
Especially the engineering domain was highlighted as a need, as the European
Industry is very strong in that domain and can benefit from a supportive European
Activity.

3 Engineering as a Target for Exascale Developments

The European engineering industry consists of 130,000 companies of diverse sizes.
Overall, these companies employ over 10.3 million people, with high levels of
qualifications and skills. Together they generate an annual output of around EUR
1840 bn and about 1/3 of all exports from the EU. The European engineering
industry plays a key role in realising the goal of increasing the industrial production
value above 20% GDP by 2020.6 To achieve this aim and meet the challenges of
the fourth wave of industrialisation, it is essential to support European engineering
companies in their use of HPC and High-Performance Data Analytics (HPDA), thus
increasing the industrial competitiveness of Europe.

The EXCELLERAT project7 was created to address the requirements of the
engineering community with respect to the move towards computing resources with
Exascale capabilities. Thus, the aim of the EXCELLERAT Centre of Excellence
(CoE) is to boost the competitiveness of European engineering through excellent
research that addresses grand challenges of complex applications using cutting-edge
HPC technologies and leading to Exascale readiness.

Therefore, the aim of a European Centre of Excellence in Engineering can only
be to support the engineering community at a level that no single HPC provider can
do and to ensure that the European knowledge in this domain is used synergistically
to provide the best possible support.

3.1 The Questions to Be Answered: The Challenges to Be
Addressed

In general, EXCELLERAT is designed to become an operative legal entity, acting as
a Centre of Excellence for Engineering in Europe (and beyond). Whilst the technical
excellence is given by the set-up of the consortium behind this activity, business
aspects will also need to be addressed during the implementation and evolution of
the Centre.

6http://www.eesc.europa.eu/m?i=portal.en.ccmi-opinions.34832.
7https://www.excellerat.eu/.

http://www.eesc.europa.eu/m?i=portal.en.ccmi-opinions.34832
https://www.excellerat.eu/
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Fig. 2 The EXCELLERAT vision

That implies that the consortium will face many more challenges than merely
technological ones. Nonetheless, this subchapter will focus on how EXCELLERAT
will tackle technological challenges, whilst the business impacts will be discussed
in Sect. 4.2.

Figure 2 presents the approach of EXCELLERAT to tackle the challenges
of evolving engineering applications towards the best possible use of Exascale
capabilities in Europe. This will enable, amongst others:

• Simplified access to knowledge
• Simplified access to data
• Simplified access to systems
• Clear understanding of benefits from the use of HPC
• Tailored training and education activities

Thus, the Centre aims to act as a single access point to technology and expertise.
Academia and industry shall avoid overlapping investments by making use of the
knowledge pool of EXCELLERAT. The desire is to give all parties the chance to
free up their own resources to drive niche innovations specific to a particular code.

3.2 Addressing the Whole Engineering Life Cycle

The overall approach towards the realization of the Centre of Excellence on
Engineering applications is based on the Engineering Work flow, as defined in Fig. 3.
EXCELLERAT has chosen the approach of addressing the full engineering work
flow, where four different phases and corresponding activities exist. This implies
bringing together experts, code owners and stakeholders from various areas and
providing expertise on development aspects in interconnected domains. Thus, the
EXCELLERAT work force consists of consortium members, bringing together all
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Fig. 3 A high-level view of the Engineering Work flow

the necessary expertise to fulfill the mission.8 Hence, EXCELLERAT will focus
on setting up the necessary mechanisms, which will ensure support to developers
and application end users working within every phase of the engineering simulation
work flow. These mechanisms will use the tailored services of the Centre and
provide links to already existing services from other initiatives and individual HPC
Centres. Note that generally speaking, simulations are employed in the product
development cycle in engineering to identify design measures and solve issues with
the current product configuration, or handle optimization tasks.

4 EXCELLERAT: The European Center of Excellence
for Engineering

To implement EXCELLERAT successfully and to future-proof it, we decided to
follow an application-driven approach to ensure the “real-world” applicability of the
Centre’s outputs and services. As the driving applications, six reference applications
from different engineering domains have been selected (namely Nek5000, Alya,9

AVBP,10 Fluidity,11 FEniCS and Coda (aka FLUCS12)).

8https://www.excellerat.eu/wp/about/partners/.
9https://www.bsc.es/research-and-development/software-and-apps/software-list/alya.
10http://www.cerfacs.fr/avbp7x/.
11http://fluidityproject.github.io/.
12https://www.excellerat.eu/wp/engineering-applications/codes/.

https://www.excellerat.eu/wp/about/partners/
https://www.bsc.es/research-and-development/software-and-apps/software-list/alya
http://www.cerfacs.fr/avbp7x/
http://fluidityproject.github.io/
https://www.excellerat.eu/wp/engineering-applications/codes/
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One major criterion for the selection of the applications was their already proven
efficient deployment on current Petascale HPC-Systems. Along with each core code
at least one use-case of an end user of this application has been selected, each
of which, together with the respective reference application, creates requirements
in terms of technical (e.g. porting to new architectures) and/or intellectual (e.g.
algorithmic improvements) developments to unfold its full usability and impact on
Exascale HPC systems.

These requirements will be evaluated from the algorithmic, as well as the
hardware point of view to initiate an iterative co-design process tailored to engi-
neering applications. This process will lead to improved implementations and new
methodologies in terms of software and hardware that will enable the engineering
community to successfully master the technical challenge of harvesting a maximum
of efficiency of novel Exascale HPC-systems.

With the main overarching goal of strengthening the European excellence and
technological leadership, we apply efficient mechanisms for software development
and validation, quality assurance and support in the project. All functionalities will
be developed or integrated incrementally, continuously evolving the EXCELLERAT
Centre of Excellence and service portfolio and being immediately available for the
reference applications and further uptake by other engineering applications.

As EXCELLERAT will not only provide technical solutions, but a full Centre of
Excellence, a variety of other, not necessarily plain technical activities is provided
as (so-called “side services”), to complement the focus on applications and to get
fully functional as a Centre.

Finally, a path towards sustainability of the Centre and its services is of utmost
importance and the path towards a full understanding on what sustainability means
is part of the overall activity.

4.1 The Questions to Be Answered: The Challenges to Be
Addressed

As mentioned before, the work within EXCELLERAT will not be successful, if the
Centre focuses solely on sub-parts of the engineering application life cycle. Thus, a
clear identification of the challenges in the life cycle and technological parts of the
applications is needed and subsequently needs to be addressed to ensure Exascale
capabilities of codes.

Furthermore, the overarching goal shall not only be to support proper execution
of applications on future Exascale systems, but also to be able to deal with so-
called side services, which are intended to support users, e.g. with secured data
transfer capabilities or visualization of results. Figure 4 shows some of the activities,
which we see as being challenged by the move towards new and more complex
supercomputers. As this is just a subset of the so-far identified challenges, we expect
this to be a living list that will be updated and extended on the basis of further
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Fig. 4 A deeper view on the Engineering Work flow

expertise gained when working with the aforementioned six reference applications.
EXCELLERAT focuses its developments and thus the evolution of the reference
applications on a set of twelve use cases, which represent challenges within the
applications. Thus, it is ensured that whatever is produced, is steered by and made
for the enhancements of the reference applications.

For example, innovations are foreseen on topics in the areas of adjoint methods,
meshing algorithms, multilevel discretization strategies, data reduction algorithms,
matrix free solution methods, node and system level performance engineering.
Furthermore, the porting to new architectures and the usage of new programming
models and paradigms will be elaborated. In addition to pure optimization, focus
will also be given to enhance the capabilities of the core codes, so that new
simulations can be enabled.

EXCELLERAT will introduce advanced in-situ data analytics methodologies
into selected codes, in particular with a view on the advanced statistical, mode and
comparative analysis of simulation runs approaching Exascale. The analytics ser-
vice will be based on an innovative data management approach, including reduced
features that capture the essential behavior, which are stored and later employed for
further analysis. In addition, the integration with data visualization allows for the
complete (visual) exploration of a computed, data-driven design space.

For co-design, existing relationships will be built on and expanded across the
EXCELLERAT Centre, and new ones developed with HPC stakeholders in order to
ensure that the co-design stack is considered in its entirety, from the circuits on the
CPU to the high-level engineering application.
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4.2 The EXCELLERAT Strategy

To summarize, the global strategy (cf. Fig. 5) of EXCELLERAT focuses on a user-
centred view, namely, in our case, the six different reference applications. Based
on those, developments related to diverse technical topics, such as Node-Level
Performance Optimization, System-Level Performance Optimization, Advanced
Meshing or Data Handling and support activities in the areas of Co-Design,
Visualization, Data Analytics or Data Management are performed, elaborated and
established as part of the service portfolio of the Center of Excellence.

Nonetheless, the developments and the final strategy on which services will be
really offered within the Centre will also need to take into account the business
aspects, to ensure sustainability of the Centre beyond the point that the funding from
the European Commission ends. This includes activities to ensure that the market
for the service offerings of the Centre is understood, that a proper business model is
developed and that a sustainable operation is set up. This will allow to implement the
necessary structures for a sustainable operation: the management, the development
of the products/offerings, the continuous operation and the communication activities
that are necessary to attract potential users and convince them to participate in and
make use of the offerings of the Centre.

Specifically, the development activities for services, as well as products will be
advised so that they correspond to the market needs. Finally, the legal frame of
the operation of EXCELLERAT will be developed and set up in the best possible
manner, to allow the development of a stable cooperation of all partners involved
and to address important aspects, such as protection of the intellectual properties of
the active partners.

Fig. 5 The EXCELLERAT strategy
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4.3 Increasing Impact: Introducing the Concept of Interest
Groups

As described in Sect. 3, sustainability is one of the implementation goals of
EXCELLERAT. Whilst one part is the development of the business model, the
other part is to understand the market, especially with regard to potential end-users,
but also potential new partners for the Centre of Excellence. Thus, it is of utmost
importance to increase the impact of the Centre by reaching out to external entities
already in the EXCELLERAT set-up phase.

For that purpose, the concept of Interest Groups was developed, which is
the mechanism to integrate externals into the EXCELLERAT evolution and thus
completes the potentially focused view of the consortium members by enlarged
knowledge and advise (cf. Fig. 6). The Interest Groups will be set up at the beginning
of the project and consist of selected representatives from external entities (external
to the consortium) which are integrated into the EXCELLERAT evolution process.
As members of these groups, they will get first-hand access to the project results
(partially under NDA) and will be able to deliver quick feedback from their own
perspective.

The participation in the Interest Groups is on an invitation only basis to ensure
that focused discussions are possible. In terms of entities, four interest groups are
foreseen, which can provide the viewpoints of the different roles of the Centre’s
value chain: Code Developers/ISVs, Industrial End Users, Scientific Experts and
Technology Providers.

In a long term, the Interest Groups shall also act as an exchange forum to identify
common problems and thus, build community support to develop ideas for potential
satellite activities.

Fig. 6 The EXCELLERAT
Interest Group concept
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5 Conclusions

This book chapter has reported about the ongoing activity of establishing a European
Centre of Excellence in Engineering—EXCELLERAT. At a glance, the major ideas
behind the envisaged activity have been sketched and the goals and strategy of
the work to be performed have been outlined. In addition, it is clear that with
respect to long-term sustainability, one will only be able to succeed, when not
only technological issues are addressed, but also business aspects are taken into
account. The same level of importance will have an early outreach to potential
future customers of the Centre’s services, which will be manifested within the
implementation of the Interest Group concept.
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Some Thoughts on Processor and HPC
Hardware Technology

Thomas Bönisch

Abstract Having the end of Moore’s law and the end of Dennard scaling in mind,
this paper looks into current developments in the hardware market. Based on this, it
shows the impact of this development on sustained application performance and
gives some hints, where future hardware architectural improvements might help
engineering applications for a better sustained performance.

1 Motivation

For some years now, we can recognize, that Moore’s law [1, 2] is coming to its end.
This law, saying that every 24 months the number of transistors per area is doubling,
was valid for nearly half a century and it has guaranteed an increase in processor
performance as the frequency was increasing as well. This is nicely visible in the
development of the top500 [3]. In Fig. 1 one can see the flattening in the performance
development in the last years compared to the decades before. To show this, looking
at the system ranked 500 is even more valid than the number 1 system, as the
number one system is also influenced by political decisions. A second important
law was the Dennard Scaling [4], saying that the power usage is linear with the used
chip area. This law is not working any more, too. And this imposes an even more
severe issue on the hardware developers and the computing centers, as this directly
influences the costs for power supply and cooling. TSMC, one of the foundry
operators, announced [5], that for the upcoming 5 nm process a power degradation
by 20% is estimated compared to the current 7 nm process, by not changing the
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Fig. 1 The performance development in the Top500 list [3]

chip frequency nor the chip complexity. At the same time, they can put about 80%
more transistors into the same area. Calculating this for a future processor in 5 nm
technology, it means about 80% more performance compared to a 7 nm processor
with the same chip size. But at the same time, power and cooling demand increase
by a factor of approx. 1.44. Thinking this further to a 3.5 nm process, if this will
happen, we can make a best case estimate for performance and power consumption.
This would mean a performance increase by about a factor of 3.2. At the same time
power requirement would go up by a factor of 2.1. Seeing this, we can recognize,
that performance improvements just by improving the chip manufacturing process
are quite limited for the future. However, the chip manufacturing process is not the
only parameter for a good sustained performance of the running applications on a
computer or a supercomputer. There are several more factors influencing sustained
performance. Of course one important factor is the style of programming which
might easily lead to bad application performance if not done well. On the other
side, there are several hardware developments which have made getting a good
application performance quite hard in the last years. So I propose hardware support
for a good application performance within this paper. In Sect. 3, I will sum up some
recent developments. In this chapter, I will discuss the performance issues with those
developments and I will make some proposals about what should be improved for
higher sustained performance. Section 4 concludes this paper.
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2 Recent Developments

2.1 Server CPUs

In the last years, the server CPU market has been dominated by one company.
Performance improvements in processors have been obtained by three major
developments:

• increasing the number of cores
• increasing the vector length to eight double values
• increasing the number of memory channels

Of course there have been several architectural improvements in addition, but they
have not been as performance relevant as the mentioned three. Clock frequency has
been mostly stable, so there has been no performance improvement by just clocking
up the CPU. Moreover, in several cases the clock frequency went down compared
to predecessors to be able to run the higher number of cores. Depending on the
hardware vendor, there have been slightly different design decisions out of the three
major development directions. On one hand, we see processors with a core count
of up to 64 but a vector length of four double precision values and providing eight
memory channels of the latest speed. On the other hand, we have processors with
up to 28 cores and a vector length of eight and six memory channels. In addition,
there are also modules, where two of those chips have been bounded together.

2.2 Accelerators

The accelerator market has been developing fast in the recent years. But this
development in the area of GPGPUs headed mainly in the direction of machine
learning and deep learning. The key features here are tensor units with half and
single precision accuracy which cannot be used that much in current engineering
applications. Nevertheless, there are quite a number of double precision units
available which lead to peak performance values that are unreached by general
purpose server CPUs.

In addition, there is a vector accelerator available. This card works mainly like
an independent CPU which is taking over the compute intensive applications from
the host. In addition, there is an offload mode available.

2.3 Main Memory

On the memory side, high bandwidth memory (HBM) has been developed, which is
now available in its second generation. This memory provides a quite high memory
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bandwidth with up to 256 GB/s per stack. But, its capacity is limited by the stack
size of 8 GB. In addition, there is no latency improvement compared to standard
DDR4 memory, the latency is even a bit higher. In addition, the cost of HBM is not
negligible.

2.4 NVRAM

In the moment, we see the advent of non-volatile memory (NVRAM). This memory
can be used as byte addressable memory or as block addressable storage. Using it
in memory style allows for a quite high memory layout per node as one module
already provides up to 512 GB capacity. However, memory bandwidth is less and
memory latency is much higher compared to standard DDR4 RAM.

2.5 Network

In the field of high performance networking, network bandwidth went up in the
last years. Meanwhile we see networks with up to 200 Gbit data rate per link. In
addition, several topologies are supported. However, network latency has not been
increasing.

3 Prospects and Issues

What does those developments now mean for sustained performance. Here we
mainly have a look to engineering applications as they are the main focus of HLRS.

3.1 Server CPUs

Actually, the current vector facilities deployed in micro processors have their limits.
First, the vector length is rather short. Second, to fully make use of the units, the
data has to be vector register length aligned. This means, the beginning elements of
a vector which does not start at a proper memory location will be handled differently
and with less performance. Same for the last elements of a vector as long as they do
not fit completely into the vector register. An additional problem is, that the current
processors get their performance out of a high core count in combination with
the vector units. Typically, applications try to benefit from the high core count by
shared memory parallelization. This now means, that with vectorization and shared
memory parallelization the parallelization of the same loop structures are addressed.
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Depending on the application and the used numerical scheme for simulation, there is
potentially not enough meat in the loops to fully vectorize the loop and to parallelize
the loop structure to more than 100 cores. In these both cases properly setup vector
units with flexibility concerning the vector access and the data dependencies in a
loop could be of help. Another issue with the high core count working in a shared
memory parallel fashion in the codes is the effort for synchronization and global
structures like global sums, critical sections or loops. As these structures are often
unavoidable, some hardware support at least at a socket level would be desirable.
Probably, there is the possibility to provide something like a shared register or a
directly addressable fast piece of memory for that on the die which can quickly be
accessed by all cores of a socket more or less directly.

3.2 Accelerators

Up to now, GPGPUs have not played a big role in HPC in the engineering field.
The SIMD style of programming is not so helpful, the memory transfer speed to
the host is limited by the bus and programming in CUDA for best performance is
complicated e.g. with the large CFD applications containing millions of code lines.
This might change, if the GPGPU gets closer to the processor, i.e. it can directly
access the host memory with full speed. Then, it is possible to offload parts of
an application more efficiently to the accelerator. This would allow for using the
accelerator only in selected parts of the application where there is benefit from its
usage.

The new vector accelerator Aurora-Tsubasa from NEC is also a step in the right
direction. However, today’s engineering applications are not so easy to vectorize
as in former times. This is mainly due to the fact that those applications do quite
some work in organizing the mesh hierarchy and the overlay meshes. In addition,
the resulting load imbalances have to be handled. Potentially, bringing the vector
accelerator closer to the CPU would help here, too.

3.3 Memory

With the current and the potential future memory structure, there are quite some
issues, too. First problem is indirect memory access. This kind of memory access
happens often in today’s engineering applications, e.g. when using unstructured
meshes. Another source of indirect memory access is the usage of adaptive mesh
refinement or overlay meshes. All those are state of the art programming techniques.
However, memory latency is really an issue for this kind of system usage. First
we hoped for a better memory latency with the further development of the HBM
memory. But meanwhile, we have understood, that memory latency is not a
development focus for HBM3 and later versions. So, we cannot expect less memory
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Fig. 2 Assumed memory hierarchy on a future HPC system node

latency with this technology. Potentially, DDR5 memory might help here a bit. But
this depends on the used RAM and so it is not clear, whether there will be less
memory latency in the future. Nevertheless, there might be an additional solution for
this problem. Even though the memory access is indirect and in a sense unstructured,
the access pattern in our cases do not change much in between different access
epochs like a time iteration. Therefore learning the access pattern might help here.
Probably, there is some hardware in the future which can take advantage from this.

A second issue in the memory field is the future memory hierarchy. Figure 2
shows how the future memory layout of a node might look like. Unfortunately, all
three types of memory are required as they have different characteristics:

• HBM: high bandwidth but limited capacity and quite some latency
• regular DDR4/5 memory: less bandwidth than HBM, but better latency and more

capacity
• NVRAM: besides persistency, it offers high capacity compared to HBM and

DDR memory, but providing much longer latency and much less bandwidth.

The question is, how this new hierarchy will be made accessible for the user:

• by compiler directives for placement (only)
• by some hardware support like the caches are managed today
• by intelligent placement algorithms powered by machine learning

All those solution options will definitely need more elaboration and development.
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3.4 Network

In the field of HPC networks, we have one major issue. In the last years there has
been no latency improvement at all. Bandwidth went up, but on the latency side there
was no further reduction available. On the other side, several engineering applica-
tions send a high amount of rather small messages especially if the application is
still an MPI-only implementation. Meanwhile, we have seen applications spending
70% of their time within MPI. So, a further reduction of the HPC network latency
would be desirable. One solution for that might be to bring the HBA/HCA closer to
the CPU. This would mean an integration of the network adapter on the interposer or
even directly on the die as some Systems on a chip (SoC) do it already for Ethernet.
Such a solution would help a larger class of applications a lot.

3.5 I/O

The I/O field is unfortunately often ignored by the programmers and users of
scientific applications. When making a ranking of topics where programmers are
working to optimize their HPC applications, there is first scalability. If they are
interested, they spend additional time in single node and single core performance.
I/O performance comes last and it is mainly ignored. In the best case applications are
using an I/O library like HDF5 and programmers think that this is the solution for
their issues. Unfortunately, this does not per se help for I/O performance especially
when running the application on a huge number of nodes. We have seen applications
using 50% of their run time in I/O after having done quite some optimization
already. What might help here in the future is the use of NVRAM when reading
and writing data from the application. The data transfer from NVRAM to disk or
another storage with long term persistency is then done before application start and
after the application has ended. To make this happen quite some effort is required.
It has to be clarified, where the NVRAM is best located in a system: at the nodes
or in a central part of the system or probably distributed over a number of NVRAM
nodes/NVRAM islands. A further decision is the connection of the NVRAM to
the processors: by usual DDR memory channels or by a standard interface like
OpenCAPI or CCIX or by a special kind of interconnect. All those solutions have
their pros and cons which need to be further investigated. A third requirement is the
availability of an appropriate software which supports this I/O usage model.

4 Conclusions

As we have seen, there are many approaches to taggle the performance issues of
today’s engineering applications by improving the hardware, mainly in the hardware
architectural field. Doing so, the end of Moore’s law might even be an advantage.
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As the processor performance is not automatically doubling every 2 years because
of technical progress in the fabrication process of the processor, there is potentially
much more time to develop and test architectural improvements. In addition, and this
is most probably much more important, a developed processor architecture might
sell not only about 1.5 years but much longer. This means the number of potentially
salable processors of a type is becoming higher. This opens the door for architectural
improvements which help only a class of users or applications and not the whole
community.

With the changes in hardware, a second point is the availability of appropriate
software in all required fields, from the operating system level over the middleware
up to compilers and tools. This is required to fully elaborate the hardware potential.
How, for example, can an improved processor unit or an improved instruction set be
of use, if a compiler is not able to make use of it? Or how can an improved network
help, if the middleware is not able to handle it properly? This means, the solution
of our problem is not only hardware improvement, but, it also requires a co-design
approach over all hardware and software layers. Such, it could be decided together
which issue to handle where and in what way, finding the best solution for a system.
This is most probably the hardest problem as it requires a lot of communication and
understanding. This means not only technical understanding but speaking the same
language, using the same terms for the same thing and the will to work together.
Nevertheless, this is the only way to make progress to a high absolute performance
of future (scientific) applications. And this is a requirement for further scientific
progress in the different disciplines which depend on simulation technology.
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Overall Project View at HLRS
as the Basis for Optimizing Applications

Björn Dick, Thomas Beisel, and Manuela Wossough

Abstract HLRS, the High Performance Computing Center in Stuttgart, runs one
of the most powerful HPC systems in Europe. As HPC systems are expensive
resources, one of the main objectives of HLRS is to maximize scientific profit
and progress from their usage. In order to achieve this, HLRS wants to ensure an
efficient utilization of the HPC resources and advises its users in order to do so.
In addition, HLRS committed to improve its sustainability. For data centers, this
can be done by optimizing the power consumption. Since performance optimization
shortens computing time, it is in a sense transferable to saving energy. Also, in
future computer architectures, performance optimization will no longer be achieved
by new hardware. Performance bottleneck detection and performance optimization
of codes and applications therefore is one of the key challenges in HPC.

1 Lifecycle of Projects Using HPC Resources at HLRS

At HLRS, computing time is used by industrial research projects as well as EU
research projects and projects in context with solution centers. However, the major
share of computing time is used by academic research projects. All academic
research projects go through a well-defined lifecycle which consists of

• project proposal submission and evaluation
• production phase of the computing time project including training and support

for users
• project evaluation
• publishing project results

Submitted project proposals contain basic information on technical details like
requested resources, scientific details like the description of the scientific problem
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and the approach towards its solution as well as information about previous work in
this field. Also information on preliminary studies which show the scaling behavior
as well as serial behavior of the program codes under production conditions is highly
required. This includes typical parameter sets and problem sizes of the planned
project. Furthermore, a detailed description of the I/O behavior, e.g. number and size
of files generated during typical runs, the used I/O strategy as well as an estimate
of overall storage requirements is mandatory. The latter is necessary since I/O is
getting more and more important these days. The applicants must have the know-
how which is necessary for efficient usage of high-end computing systems, proven
e.g. by presenting work done on smaller computing systems, scaling studies etc.

After submission, project proposals are evaluated with respect to different
aspects. Apart from assessing scientific goals and challenges, also technical aspects
of the simulation code (like parallelization strategy, scalability and efficiency) as
well as data management (e.g. I/O and data transfer strategy) are considered while
deciding on computing time to be granted.

Proposal evaluation therefore figures out projects which meet the basic require-
ments to run efficiently on the HPC resources.

Within the production phase, projects are reviewed by assessing their annual
reports. Outstanding project results are presented in the annual HLRS Results
and Review Workshop. Furthermore, there is a project evaluation after the end
of the project. Both reviews mainly focus on scientific results in the respective
application domain (computational fluid dynamics, material science, chemistry,
etc.). However, in the future HLRS will provide key performance indicators for the
project evaluation to enable also aspects of efficient usage of the HPC resources like
code performance, I/O performance and filesystem usage to be assessed. Moreover,
HLRS encourages its users to also include aspects related to the efficient usage of
HPC resources when publishing project results.

2 Current State of Efficiency Optimization Measures

The aim of all the efficiency optimization measures currently implemented at HLRS
is to raise the algorithmic as well as parallel as well as serial efficiency of user codes
and their I/O. It’s worth noting this since the majority of the HPC community these
days focuses on algorithmic and parallel efficiency only.

Furthermore, HLRS is interested in fostering the efficiency of actual production
jobs, as opposed to versions that have been stripped down for benchmark purposes.

As efficiency optimization is a time-consuming task, one has to decide whom to
serve first. HLRS does this based on the remaining unused computing time of the
projects. This is due to the fact that unused computing time can still be used in an
efficient manner in case of efficiency enhancements.
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2.1 Training

The first pillar of efficiency optimization measures currently implemented at HLRS
is a series of optimization workshops established in 2016. The workshops are
held twice a year with a duration of 5 days each. The idea of the workshops is
to bring together application as well as hardware expertise in the shape of users
and HLRS staff. In order to do so, every participating project is getting fulltime
support by an HLRS employee during the workshop. Those tiger teams start with
an analysis of the code’s runtime behavior. Based on the results, requirements of
the user (flexibility, portability, maintainability, etc.) as well as those of HLRS
(efficiency) are intensively discussed in order to figure out a balanced solution.
We believe this to be essential, since otherwise users will neither accept nor use
the optimization to be developed. Afterwards HLRS staff will help the user with
implementing the optimization found. This process is repeated again and again in
order to address multiple bottlenecks. The HLRS staff involved consists of experts
in fields like node-level performance, MPI and I/O, but also experts in computational
fluid dynamics, molecular dynamics, quantum chromo dynamics etc. are involved to
ease communication of HPC and domain experts. Furthermore, project supervisors
are involved because they are aware of the project history (problems already tackled
before, potential boundary conditions not mentioned by users, etc.), which might be
beneficial in order to develop effective optimization strategies.

Apart from this workshop, further courses and trainings with respect to efficient
usage of HPC resources are offered by HLRS.

2.2 Continuous Collaboration with Users

At HLRS, user support is available during the entire production phase. This includes
not only basic support regarding system usage (e.g. access to systems, workflow,
etc.), but also support to foster efficient execution of the code. In order to do so,
the tiger teams mentioned above are continued after the optimization workshops if
required.1

2.3 Automated Performance Tracking

Collecting performance information on codes is necessary and helpful in order to
identify those codes which run inefficient and need improvement.

1This is possible due to kind funding by the Ministerium für Wissenschaft, Forschung und Kunst
Baden-Württemberg via the project SiVeGCS as well as by the European Union via the project
HLST (High-Level-Support-Teams).
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Performance analysis tools provided by Cray and—with introducing the next
generation super computer—HPE are used to gather performance relevant measured
values and analyze parallel/serial efficiency and I/O of the relevant application.

On the Cray XC40 system at HLRS, huge amount of performance data is
captured using a Cray software called LDMS. This software is able to read node
level performance data (e.g. cache misses, memory bandwidth, usage of CPU
functional units) as well as energy usage and performance counters of the high
speed network. The sampling rate of 5 s and the system size (7700 nodes, 180,000
cores) produce about 1 TB data per day. Users get an extract of their job related
performance data written in the HOME directory. To reduce the amount of disk
space required to store this performance data, data is kept for 12 weeks only.

Apart from that, a tool called Ludalo has been developed by HLRS to analyze
I/O usage on Lustre filesystems. The performance data is collected in a centralized
database. In order to do so, the Lustre OST servers send performance data using
socket connections to the data collector process which is running on the database
server. Afterwards, the latter inserts the measured values into the database. Within
the database, also job information collected by the batch system is available. Users
and system administrators can access I/O usage at runtime and display those of
already finished jobs using a graphical interface (Fig. 1).

SAIO, a Semi-Automated I/O Tuning Framework developed at HLRS, uses a
machine learning approach to determine the optimum configuration of Lustre stripe
counts, stripe size and MPI collective read and write for a given application. This
tool is designed to be portable across multiple HPC platforms and requires little
knowledge of parallel I/O optimization. As a wrapper for the MPI-IO library, it is
compatible with the parallel HDF5 and parallel NetCDF libraries.

2.4 Hardware Failures

With exascale on the horizon, it’s important to handle hardware failures in a way so
that overall system performance is not affected. HLRS hence also cares about this.
With respect to the current flagship system (Cray XC40, codename “Hazel Hen”),
hardware faults will be repaired by Cray onsite staff and all failures will be logged
into a Cray-internal DB while HLRS can get a copy of HLRS related incidents.
With respect to the cluster systems operated by HLRS, hardware logs are placed in a
section of the trouble ticket system. For the next generation supercomputer system,
all hardware failures will be logged locally. The correlation of incidents with the
accounting data may provide useful information to find applications which produce
heavy load on nodes or subsystems and hence trigger failures. This applications
(or similar testcases) may be used for stability tests to improve the overall system
reliability.
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Fig. 1 The Ludalo GUI provides information for the 10 active jobs consuming most I/O resources.
The X-axis describes the job size, number of I/O calls as well as read and write operations. The
Y-axis displays the relative usage of the resources. A click on the job name will open a window to
display the I/O usage of this job over time

3 Future Plans

In the future, HLRS plans to collect all performance related data (usage of CPU,
memory subsystem, network and I/O as well as job and hardware failure data
shown in Fig. 2) in a unified database. (In order to do so, an important task will
be to implement data reduction due to the high data rate generated by different
performance data collection systems. This might be done by a combination of round
robin databases and aggregation of smaller unimportant jobs. To be able to get
a system wide overview, deletion is not an option.) Such a system improves user
support and enables system wide performance analyses as described below.

Improve System Configuration: By means of the overall performance data
collection in the unified database, it will be possible to identify bottlenecks of the
system configuration if a large number of jobs suffers due to a common bottleneck.



38 B. Dick et al.

Fig. 2 HLRS plan to collect different performance data sources, reduce the amount of data and
create relation to user jobs

Improve System Stability: By correlating job, performance and hardware failure
data from the unified database, it will be possible to detect situations where
computing load triggers hardware failures (HLRS already faced this in the past),
and hence improve system stability. If there are applications which cause extreme
load to system resources, the respective users will be asked to provide a simple test
case to enable regression tests. By doing so, a test suite will arise over time which
allows to check (e.g. at the end of a maintenance) whether all components work
as expected and none will fail even under heavy load conditions. Within such a
regression test, also performance values of system components can be compared to
expected values (cf. below).
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Analyze Performance: A major purpose of the unified database will be to analyze
the performance of user jobs in order to figure out those to be optimized. By doing
so, one can investigate the performance of actual production jobs instead of artificial
benchmark cases with non-representative characteristics. In order to do so, HLRS
plans to deploy data analytics as well as artificial intelligence/machine learning
approaches. Aspired usage scenarios include, but are not limited to:

• Learn performance characteristics of a specific user or code and trigger a
notification if a job deviates from those. Such an alarm might inform users
about performance degradations introduced by a code patch, but also system
administrators about performance impacts of patches to the operating system,
hardware, etc.

• If information on code patches (especially optimizations) is also integrated to the
unified database in an appropriate high-level description, it might be possible to
state on their impact to performance based on data analytics. This will be valuable
to decide on further similar modifications with respect to this and other codes.

• At runtime, it might be possible to analyze the first iterations of a job and deduce
assumptions about the future behavior. Such information might be fed into the
scheduler in order to

– adapt priorities of jobs competing for a shared resource (favoring one might
decrease his runtime but not increase the runtime of others)

– run competing jobs with offset in order to allow for interleaved utilization of
a shared resource

• Rating computational progress is a hard problem. This is due to the fact that
performance is limited by inherent characteristics of an algorithm or application
domain (such as ratio of required data and operations done on this data) while
other algorithms and domains can achieve a better performance. Furthermore,
algorithmic improvements might decrease metrics like Flop/s, memory B/W,
IPC, etc. but decrease time to solution at the same time. It’s unclear to us whether
data analytics and/or artificial intelligence can help to tackle this problem.
However, we plan to investigate this in the future. A starting point might be
to automatically cluster similar jobs/codes in order to figure out those with a
performance much worse compared to the mean of the cluster.

As mentioned above, the HLRS user support team proactively invites users to
join optimization workshops and get continuous support. This is done according
to their remaining computing time budget. Based on the unified database and
analyses mentioned above, it will furthermore be possible to focus on applications
with suboptimal performance, hence improving impact of efficiency enhancement
activities.

Provide Performance Feedback to Users: For project admin purposes, users are
able to check the status of their project via a web interface. This mechanism will
be extended to give the project a “management level overview” (e.g. excellent
performance, good performance, performance should be improved, lousy perfor-
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mance) based on the unified database. Using the same interface, more data will
be provided and users with knowledge in programming and sufficient optimization
skills may get information which section of the application should be improved
(actual computation, communication, I/O, etc.). Of course, all users may request
support to do so.
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of Performance Variations of HPC
Applications
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Abstract Supercomputers are synonymous with maximum performance, and thus
one would expect that each run of an parallel applications would yield the same
runtime provided that input parameters and data are unchanged. Practice, however,
clearly demonstrates that this is not the case. Supercomputers are built with
multi-user usage in mind, meaning that typically several hundred applications run
simultaneously on a multitude of compute nodes. Although these compute nodes are
assigned exclusively to users, network and data storage is shared among all; interfer-
ences between applications are inevitable. In this paper, we evaluate application runs
on a Cray XC40 system. The objective is to identify so-called aggressor applications
having a negative impact on the performance of simultaneously running applications
resulting in unforeseeable longer runtimes. We discuss in this paper characteristics
of aggressors and victims, as well as introduce several detection strategies to identify
these victims, and thus also potential aggressors. Finally, a study demonstrates the
effectiveness of the approach by identifying an aggressor and optimizing the source
code, which resulted in less interference.

1 Introduction

High Performance Computing (HPC) is a key driving factor for both academic
and industrial innovation. Its technology is well-established and actively applied
in various areas of applications that are due to their complexity infeasible to be
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executed in a reasonable time on laptops or workstations. Common examples are
climate modelling and weather predictions, crash tests, and pandemic simulations.
HPC systems, however, are optimized for embarrassingly parallel tasks, and thus
are first choice when executing these complex simulations. An HPC system serves
simultaneously a multitude of users that perform a diverse set of applications on
different groups of compute nodes. Although groups of compute nodes are assigned
exclusively to users, applications still interfere with each other due to network traffic
and access to shared file systems. These interferences can be severe, resulting in
apparent performance variations; an application that runs usually for 10 h on 1000
compute nodes might require significantly longer to complete when affected. Since
HPC centers usually have fees on a cost per node-hour, users attempt to keep
costs low by minimizing required node-hours. As a result, users reserve compute
nodes only for the required runtime of an application. If an application has not
yet finished in the given time, progress made and data not saved is lost. Thus,
HPC centers should guarantee that interferences with other applications running
simultaneously on the large-scale system are kept at a minimum or, even better, be
avoided altogether.

We face several challenges while trying to identify potential harmful applications
that induce performance variations onto other applications. Ideally, an algorithm
returns a set of affected applications, where each one is associated with a set
of potential harmful applications or vice versa. Due to the fact that harmful
applications are not impacted by performance variations, they do not emit any
irregular characteristics to be identified. Harmful applications, which we will from
now on call aggressors, are therefore hidden within the deep lake of all applications
ever executed on the system, and thus are not readily detectable. Taken another
approach, we are able to identify—by means of pure statistical methods such as
outlier detection—thousands of potential affected applications, so-called victims.
However, finding an outlier only indicates that a given application took sometimes
significant longer to complete as on average. Another issue is that finding victims is
therefore anything but an indicator for a reason why the application took longer
than expected. Thus, we are in a poor starting situation: We would like to find
aggressors and victims likewise, but we have a priori no insights about features to be
looking for. And even if we would assume a given set of features (such as outliers),
we would be limited to identify victims based on the assumed characteristics,
likely missing victims that are affected in a yet unknown way. Another issue with
using pure statistical methods is that initial experiments return a set of thousands
of potential victims, which is infeasible to be manually analyzed by domain
experts.

That remainder of this paper is organized as follows: Sect. 2 gives a focused
overview about state-of-the-art in the domain of performance analysis and HPC
job variations, while Sect. 3 then presents an exploratory analysis of past and
current jobs ran on HLRS’s Hazel Hen. Section 4 describes the methodology to
identify job variations on production systems; identification strategies are discussed
based on pure statistical methods and more contemporary AI techniques such as
machine learning based. Section 5 then continues with the experiment setup and
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first results obtained in a small but representative study. Finally, Sect. 6 concludes
with a summary and an outlook.

2 Related Work

The state of the art in evaluating performance variabilities in HPC workloads can be
classified into three main approaches:

1. conducting experiments on a production system or test bed using real applica-
tions [1, 2],

2. evaluating the behavior of HPC workloads by means of benchmarks running on
a production system or test bed [3], and

3. simulation of the underlying interconnect to predict characteristics of competing
applications [4].

It should be noted that experiments in the latter two cases are, to the best of
our knowledge, always performed in an isolated manner to avoid any further
interference with real applications running simultaneously. In comparison to related
work presented next, this paper focuses solely on the identification of real-world
application performance variabilities in a production environment.

2.1 Evaluation of Performance Variations Based
on Benchmarks

Skinner and Kramer [3] are one of the first to raise the issue of performance
variability in HPC. The authors claim that without a proper understanding of the
performance variability of a given application on a specific infrastructure, effective
performance cannot be measured. Thus, Skinner et al. investigate several causes for
performance degradation such as resource contention, MPI message sizes, OS jitter
such as kernel process scheduling, overall system activity (e.g. monitoring), and
finally so-called cross-application contention. Experiments were performed on four
different HPC systems including a Cray T3E and an IBM SP with our 2500 sample
runs using two benchmarks: LU and FT from the NAS Parallel Benchmarks (NPB)
suite. Here, the coefficient of variance ranges from 2.62% to 15.58% for LU, and
from 1.07% to 11.33% for runs of FT; the most performance variability was revealed
on the Cray T3E system. Skinner et al. conclude that resource contention (e.g. over
shared network paths or access to shared storages) and process scheduling are the
main causes for performance variability. Furthermore, the authors suggest the use
of monitoring tools to enable fine-grained profiling of applications. Still, they are
aware of the fact that this is an impractical solution for production systems, where
maximum performance is required at all times.
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2.2 Evaluation of Performance Variations Based
on Real-World Applications

Bhatele et al. [1] investigate potential causes for performance degradations of
parallel application on HPC systems; causes include, besides the interference of
parallel applications due to using the same network, OS jitter, job placement,
and possible contention while multiple applications access a shared parallel file
system such as Lustre. Bhatele et al. argue that performance variability of HPC
jobs does not only impact the development of HPC applications (e.g. by making
it more difficult to reproduce code changes with respect to performance), but also
the overall resource allocation (e.g. estimating required resource reservation times).
Experiments performed by Bhatele et al. on a Cray XE6 system revealed that the
execution times of applications can range from 28% faster to 41% slower than
the average observed performance. If conflicting jobs use the interconnect heavily,
meaning that they are communication intensive, then performance degradations are
likely to occur on a Cray XC40 system. This is in stark contrast to results obtained
on IBM Blue Gene systems, which always assign a private network exclusively to
a job, which is a trade-off between preventing job interferences and lower overall
resource allocation. The work also concludes that job interferences are the dominant
factor to performance variability.

Groves et al. [2] evaluate the impact of network traffic on the performance
degradation of competing workloads. Specifically, the work reviews a subset
of 25 Aries counters obtained per node and router. Since the authors rely on
using PAPI to collect those counters, counters are limited to allocated compute
resources for the currently running job. As a result, this approach does not obtain
a global view of the entire infrastructure, and thus lacks accuracy. Furthermore,
Groves et al. focus on a single application—MPI Allreduce. Allreduce is an MPI
operation often used by HPC applications. It is shown that Allreduce is sensitive
to noise, and therefore it is deemed to be appropriate to study the effects of
performance variability of HPC jobs. Groves et al. evaluate the performance of
Allreduce while running on up to 512 compute nodes; results show that Aries
counters such as flit and stall are a good index of performance degradation of
competing workloads. Still, these counters accounts for 70% of the variability in
the slowest 10% of Allreduce communication. Although results of this paper are
promising, the focus on a single application is not representative for the wide
spectrum of complex applications running on HPC systems. Furthermore, the
selection of PAPI to collect Aries network counters results in being limited to fabric
counters previously assigned to a given job. As a consequence, it is not possible
to obtain a global view of the entire system while trying to evaluate performance
degradation. The work by Groves et al. was performed on a production system (Cray
XC40).
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2.3 Relying on Simulations to Identify HPC Workload
Variabilities

Bhatele et al. [5] simulate network throughput for competing parallel workloads
using the simulation tool Damselfly [6]. Here, simulation allows to circumvent a
key challenge immanent with monitoring and evaluating real systems: calculating
link traffic of individual jobs in a shared environment; well-known network counters
such as Cray Aries counters do not differentiate between traffic of different
applications at the link level. As a consequence, gathering network throughput on a
real system always results in aggregated measurements per counters. Furthermore,
simulating network traffic renders the need for having installed a monitoring tool
at each link, router, or node as obsolete. Having (fine-grained) monitoring support
for a HPC production system is not common: maximum performance is key, and
thus each extra utility running in the background degrades performance per se.
Bhatele et al. study interferences of parallel workloads by means of five different
communication patterns implemented with MPI. Experiments on up to 131,072
cores were performed using a mix of five different MPI communication patterns to
simulate parallel workload. Average and maximum traffic per job is then compared
for different types of links (green, black, and blue); results obtained are then set side
by side with runs of individual jobs. Whereas Groves et al. focus on the identification
of network counters that could be good indicators for network congestion and
thus performance degradation, Bhatele et al. analyze the impact of changes of
the network topology as well modifications to job scheduling, job placement,
and routing policies. The authors show that—depending on the communication
pattern—either inter-group (i.e. blue) or intra-group (i.e. green) links are likely to
cause congestion; black links do not have any impact on performance degradation.
Although Bhatele et al. demonstrate that simulation can help to make design
decisions during procurement, installation and configuration of supercomputers, we
deem that simulation of a small set of communication patterns is not adequate
to represent real-world HPC applications, which are often composed of mix of
communication patterns. Nevertheless, results obtained propose to have a more
detailed look at green and blue links when dealing with Dragonfly typologies.

2.4 Summary

When reviewing literature on performance variations, it becomes obvious that the
Cray, and in particular also the Aries interconnect with its Dragonfly topology,
is linked more often to interferences between simultaneous running jobs than
other interconnects [1–3]. The main reason mentioned in several publications for
performance degradation is the network interconnect and the resulting network
congestion [1–3, 5]. At the High Performance Computing Centre (HLRS), we also
observe these performance variations on a Cray XC40 system, which are described
and analyzed in more detail in the remainder of this paper.
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3 Insights into Hazel Hen

The goal of this work is to develop a generalized method which can detect and
identify applications that have negative impacts on other applications on HPC.
However, due to the large amount of applications running and the high cost, a try-
and-error method is not practically impossible on the production system. Thus, a
question arose: what type of HPC jobs impact the performance of other jobs?

3.1 Overview of Hazel Hens Jobs

The dataset which is utilized to support this study is consisted of Hazel Hen logs
that are collected on the Cray System Management Workstation (SMW) in 2016.
The Hazel Hen super computer, which is a Cray XC40 system and composed of
more than 7700 compute nodes interconnected through Aries, is hosted at HLRS.
Each diskless compute node of Hazel Hen has two sockets with an Intel Haswell
processor, yielding nearly 185,000 cores. Furthermore, each compute node has
128 GB of random access memory (RAM) installed [7].

The log files used for study contain necessary information regarding all the
applications running on the machine. However, the information contained in the
Hazel Hen logs is quite sparse, namely: user id, job id, commandline, start time, end
time, runtime, node list and the energy consumption. Other logs containing network
traffic information and consumer information are currently not accessible. The total
number of HPC application logs is 3,695,241, starting from “2016-01-01 18:58:18
CET” to the end time of log records at “2016-12-31 20:57:37 CET“; it originates
from 220,225 unique jobs executed by 539 users.

Table 1 reveals the summary information about the energy consumption, number
of nodes and runtime of all Hazel Hen jobs. In Fig. 1, the users are grouped into
several categories by the number of submissions they have made in 2016. The
users who submitted above 100,000 submissions are assumed to be administrators,
and most of the actions they made are system operations. However, the system
operations cannot be ignored in this study though the number is extremely large,
as these actions are also probably the reason to cause performance variances.

Figure 2 shows the average number of jobs run in each day of the week. As one
would expect, the number of events are higher throughout the work days and slightly
less during the weekends. For the weekdays, although the jobs run on Tuesday

Table 1 Statistics of Hazel Hen’s logs in 2016

Id Description Mean Max Min

0 Number of nodes 1.04 6656 1

1 Energy consumption 15,884,460 105,376,900,000 37

2 Runtime (min) 1115.6 630,136 0
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Fig. 1 User groups by job submissions

Fig. 2 Average number of jobs by days of the week
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Fig. 3 Number of jobs by month of a year

and Thursday are slightly higher than other workdays, there is no big gap among
them. Figure 3 indicates that unlike the expectation of most people, July, beginning
from the end of which month most Germans choose to go out for holiday, has an
exceptionally high number of jobs. A possible explanation is that most of the system
operations are made on July.

The phenomenon observed above is helpful: it not only provides the intuitive
insights into the data, but also reveals the complex correlations between jobs.

4 Approaches for HPC Variance Detection

In this section, an assumption is proposed to simplify the complex problem into
an outlier detection and classification problem. To solve these two problems, two
methods: “statistic analysis” and “machine learning” are investigated.

4.1 Assumptions

The initial assumption is that some potential harmful applications induce the per-
formance variations on other applications. Ideally, an algorithm could be developed
to return a set of harmful applications, where each one is associated with a set of
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potential harmful applications or vice versa. To better understand this problem, the
following terminology is developed:

Victims HPC jobs/applications that show high runtime variability.

Aggressors HPC jobs/applications potentially causing the variability.

Understanding the nature of victims and aggressors is crucial for developing a
detection strategy. Then the problem cloud be stated as:

Given an HPC job x ∈ X, for each job x, retrieve a set of all identical jobs
that were already executed in the past with the same configuration and allocation of
resources, Xhist .

Assume that x is a victim, xv . Find the set of HPC jobs Y = x ∈ X composed
of potential aggressors. If Y = ∅, then declare x as an aggressor, xa . Then identify
features that label x either as a victim or as an aggressor. And classifying x as a
victim is straightforward: Y �= ∅.

A straight forward strategy is to identify the aggressors, However, when trying to
follow this strategy and directly detect the aggressors, there exist several challenges.
Due to the fact that the harmful applications’ performances are not impacted by
others, they do not emit any irregular characteristics to be identified. Aggressors are
hidden within the deep lake of all applications ever executed on the system, and thus
are not readily detectable.

Therefore, the other approach is taken. As the victims always show high
variances in their runtime, and statistic method and machine learning algorithms
are powerful in outlier detection, thus we will explore the two methods to identify
the victims.

4.2 Statistic Method

The target of this section is to describe the statistic method adopted in this study
to detect the victims. As a victim has the characteristic of showing great variances
in its runtime. Therefore, those applications running on Hazel Hen, whose runtime
has great differences from others, are regarded as outliers. Then, the problem of
detecting victims is converted to outlier detection.

An Outlier is statistically defined as: One that appears to deviate markedly from
other members of the sample in which it occurs [8]. A common approach to detect
outliers from a data set consists in using the interquartile range (IQR), which is
defined as the difference between the third and first quartile [9]. A quartile, is value
which divides the dataset into four equal groups according to the distribution of
values of a particular variable. The first quartile Q1 is defined as the middle number
between the smallest number and the median of the data set, and the second quartile
(Q2) is the median of the data. The third quartile Q3 marks the beginning of the
last 25%. Generally, every value being smaller than Q1 − 1.5 IQR or larger than
Q3 + 1.5 IQR is regarded as outlier [10].
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Based on the simplification of this problem, the approach can then be divided
into three main steps:

1. Data Aggregation: Different logs from different sources need to be collected
and combined together. After that, the initial data we have at hand needs to be
preprocessed so as to keep only the useful, correct information, the operations
includes data combination (e.g.: identify logs of the same job and combine
them), data clean (e.g.: remove null value, remove bad lines, discard lines with
incomplete commands, disregard application runs that are too short probably
because of errors, etc.), and so on.

2. Explorative Analysis: The goal of this step is to summarize the main charac-
teristics of the data with visual and statistical methods. With this manipulation,
it is intuitive to see what the data can tell us beyond the formal modeling or
hypothesis testing task. Figures 1, 2, and 3 are generated from this step.

3. Outlier Detection: In this step, the changing geographies of point patterns based
on runtime is examined to detect the outliers. The idea is to place a symmetrical
surface over each point and then evaluating the distance from the point to a
reference location based on a mathematical function and then summing the value
for all the surfaces for that reference location [11]. During this process, IQR
stated above is adopted to detect the outliers.

Through the procedure described above, the victims hidden behind the large
amount of HPC tasks are identified and can thus be passed for further processing.
However, although this method is quite effective in detection of victims, it can only
be done on a single HPC job. For the huge variety of HPC jobs, it is too time and
cost consuming to do this manipulation on the jobs one by one. Thus, a faster and
more practical technique which enables the batch operation shall be developed.

4.3 Machine Learning

An alternative approach is to rely on machine learning. Machine learning, specif-
ically classification, enables to train a model based on a given set of features and
given target classes on a given set of data, and then apply this model to predict
target classes for previously unseen data. Employing classification then would allow
to consider a large set of features compared to the pure statistical outlier detection
approach. Although this approach might be more suitable for the given problem
statement, it comes again with some drawbacks. Classification algorithms such as
SVM or Random Forests associate classes to data using complex statistics, and thus
it is no longer reproducible what decisions were made by the algorithm to yield
the given results. Moreover, such a classification might find victims and aggressors
with high accuracy, but we still do not know which features or feature combinations
are responsible for detecting an application as a victim or an aggressor. Feature
ranking methods could be applied, but those would just rank the most important
features that a model uses. Even if the algorithm declares that an application is an
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aggressor, we can neither be certain that the application is actually harmful nor do
we know how this application interferes with other applications. Finally, training
classification models require both a training set with manually labeled classes to be
learnt. This is not given, and thus directly applying classification algorithms is not
applicable.

When dealing with the unlabeled data, unsupervised algorithms such as an
autoencoder has proven its great performance. An autoencoder [12] is an artificial
neural network, which performs basically a dimensionality reduction on the given
data. Typically use cases for autoencoders are image search, data compression, and
topic modeling. This approach can be used, for example, to identify victims based
on the fact that an application mostly behaves similar, but sometimes has different
characteristics (which are yet unknown to us).

There are a variety of clustering models which are always jointly applied together
with autoencoder, e.g. K-means [13], DBSCAN [14], OPTICS [15] and so on. In this
study, K-means is experimented. K-means is a method of vector quantization, which
aims to partition n observations into k clusters in which each observation belongs to
the cluster with the nearest mean, serving as a prototype of the cluster. [16]

After the clustering of the Hazel Hen jobs, visualization of the 2 clusters can help
check the quality of the clustering. For this purpose, T-distributed Stochastic Neigh-
bor Embedding (t-SNE) is implemented. t-SNE can visualizes high-dimensional
data by giving each data point a location in a two or three-dimensional map. And t-
SNE is better than existing techniques at creating a single map that reveals structure
at many different scales [17].

This approach can be summarized into three main steps:

1. Apply autoencoder to do dimension reduction and feature extraction
2. Use K-means to do clustering
3. Visualize the cluster result in 2D and 3D space
4. Go back to step 1 and adjust the model

Figure 4 shows the result of clustering for Hazel Hen jobs in a 2D space and
the visualization of clustering result in 3D space is shown in Fig. 5. The blue
point represents the tasks which are not affected, while the red points represent
the victims.

4.4 Aggressors Detection

Sections 4.2 and 4.3 described two strategies for detecting victims. Standing on
the victims we get by these two manners, all the applications which are running at
the same time can be regarded as the potential aggressor set. To justify if a job is
aggressor or not, the frequency of this job is taken as an important index, the higher
the frequency, the higher probability it is an aggressor. Besides, two other significant
features are paid attention to when analyzing, the number of nodes that a task runs
on and the time overlap of the potential aggressors with the victims.
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Fig. 4 Hazel Hen jobs into two clusters in 2D space

Fig. 5 Hazel Hen jobs into two clusters in 3D space
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5 Experiment and Result

The experiment setup and implementation are described in this section. Further-
more, the results we gained from experiments will be demonstrated and analyzed.

5.1 Experiment Setup

The experiment is conducted at the high-performance data-analytics (HPDA) sys-
tem, a Cray Urika-GX [18] at HLRS. The HPDA system including x86 processors,
Ethernet interconnects, and local disk-based storage solutions provide the basis
for common data analytics clusters. Hadoop Distributed File System (HDFS), the
dominant file system used in the domain of data analytics, is also enabled by local
storage. On top of HDFS, various frameworks and tools are installed at HPDA
system including Apache Hadoop [19] and Spark [20]. Apache Hadoop originates
form the MapReduce paradigm, which always store the intermediate data on the
disk, thus the read and write speed is accelerated. Besides, Spark enables in-memory
processing. Consequently, the processing of data sets can be done in a much more
efficient manner.

The statistics analysis and machine learning approaches are implemented with
python, with utilization of libraries like sklearn, tensorflow, matplotlib, pandas,
pyspark, keras and so on.

5.2 Implementation and Result

The analysis was run by CRAY on an initial dataset reflecting HLRS applications
spanning 2 weeks. Based on it, 472 victims and 2892 potential aggressors were
detected through this process. Among them, 7 of those potential aggressors were
running on more than 1000 nodes and 3 of them were found repeatedly.

To further explore it, the test was also run on a larger dataset (SMW data over 3
months), and 3215 victims, 67,908 aggressors were identified by the same process,
17 of the 67,908 aggressors using more than 1000 nodes. The analysis took 268 s on
300 cores on the HPDA system.

Putting into a more practical environment, together with CRAY, a small test
application called “canary” was created to run on Hazel Hen. The idea behind it
is to create a practical application which enables the verification of a aggressor.
It is continuously running an all-to-all test on 4 nodes of a cabinet group, which
utilizes 64 bytes small messages and running only on the first socket of each node.
Therefore, it is particularly sensitive to network interferences. When running on
Hazel Hen, only one cabinet group is dedicated to running small jobs, and on the
other 20 cabinet groups of Hazel Hen, a single canary job which uses 4 nodes is
running.
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Fig. 6 Average number of jobs by month of a year

Figure 6 illustrates the performance of the canary, where x-axis represents the
output timestamp and the y-axis represents the latency at a given timestamp of the
20 running canaries. As can be seen, the normal latency is about 100 μs, while a
significant higher latency indicates the disturbance from aggressors. For example,
two applications A and B were tested together with the canary output. The start-
and end time of 6 A jobs are plotted on the y = 1600 axis (black and red line),
where the red line indicates a job running very slowly. And the application B was
running on a high number of nodes and plotted the start- and end-times of these jobs
at y = 1700. It is quite clear that application B has a great influence on the latency
of other canary tasks. Thus, application B is verified as the aggressor.

6 Conclusions and Future Work

Estimating the runtime of an HPC job is crucial for HPC customers and resource
managers. The former has to plan ahead and reserve sufficient compute resources
and time, whereas the latter requires an accurate prediction of resources becoming
free to optimize the overall resource usage of a system. It is a challenging task,
in particular for new HPC customers to assess the overall runtime of a job—it is
more often than not trial and error. And yet, assessing the total runtime is critical
with respect to cost spend on resources and potential data loss if a job should
run longer than initially planned. Here, we observe, specifically at HPC centers,
where hundreds of jobs run simultaneously and share the underlying network links,
that unexpected runtime variations occur. In order to investigate the issue of HPC
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application performance variabilities, we rely on the methodology introduced in
Hoppe et al. [7] to classify jobs as so-called victims and aggressors. The ultimate
goal is then to identify aggressors in order to assist application owners to optimize
their code to be less intrusive in future.

To achieve this ambitious goal, we introduced in this paper two strategies: a pure
statistic approach and machine learning techniques to identify in a first instance
potential victims. However, both have their limitations. Where the statistic method
based on outlier detection successfully detects unusually long runtimes, it does not
provide any further insights about why the job ran longer, and it also does not
link the outlier to potential aggressors. The machine learning approach has the
advantage to be based on features to be trained for a model to classify jobs into
victims or aggressors. With the help of feature ranking methods, one would be
able to identify the most relevant features that are characteristic for a victim or an
aggressor. However, since no gold standard is available on a production system,
applying supervised learning algorithms such as SVM or RandomForests is not
applicable, and thus we have to rely on unsupervised methods such as Clustering
techniques. With an ensemble method consisted of autoencoder, k-means and t-
SNE, the tested Hazel Hen tasks are clustered into two groups, and visualized by
red and blue points in 2D and 3D spaces, where the 428 red points represent the
victims while the 4953 blue points stand for the 4953 unaffected jobs. Evidently,
this method show its advantages over statistic method as it provides the ability to
batch process data in a faster and more practical way. Still, due to the complicated
inner network structure and data compression, it is far more difficult to justify and
explain the decisions made by the algorithm.

Finally, to get better insights into characteristics of HPC jobs, a test application
named “canary” was executed on a small cluster with the goal of better identi-
fying aggressors. Based on the canary output, we started analyzing the workload
and latency while running two test applications. With this process, the potential
aggressors are successfully justified.

As future work, we foresee to include more log information into the analysis (e.g.
Aries counters need to be link to individual jobs), as well as to investigate in more
detail the potential of unsupervised methods to identify victims and aggressors.
Performing this analysis on a production system limits monitoring capabilities, and
on other hand, provides new opportunities to set up eventually an AI-based live job
monitoring system for the identification of victims and aggressors.
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Using the NEC Aurora TSUBASA
for High-Order Discontinuous-Galerkin
in Ateles

Harald Klimach and Sabine Roller

Abstract High-Order schemes are attractive for modern computing systems as they
can achieve accurate representations of solutions with relatively little memory. In
this work we look into the usage of the NEC Aurora TSUBASA system for a high-
order discontinuous Galerkin solver. The NEC Aurora TSUBASA system is a vector
architecture that is transparently combined with a scalar host system. We explore
this unique environment for development and execution, as well as providing some
first performance observations with our discontinuous Galerkin solver Ateles.

1 Introduction: High-Order Discontinuous Galerkin

One of the limiting factors in modern computing is the memory and memory
bandwidth of a system. Due to the different rate in growth of computing oper-
ations and memory operations, access to memory is by now slow in relation
to the computations [1]. Numerical algorithms with small memory footprint and
bandwidth requirements are, therefore, attractive for efficient computations on
modern systems. High-order schemes offer high quality representations of solutions
with few degrees of freedom. However, there is a strong interaction between
all the degrees of freedom in the high-order approximation, which hurts parallel
computations. This can be addressed by decomposing the computational domain
into individual elements that are coupled less tightly. The discontinuous Galerkin
scheme is a method that enables exactly this setup. A mesh with non-overlapping
elements is used to discretize the computational domain and the solution in each
element is approximated by some function, usually a polynomial expansion series.
Between elements only surface fluxes need to be exchanged. In our implementation
of this method in the solver Ateles, we use Legendre polynomials as a basis to

H. Klimach (�) · S. Roller
University of Siegen, Siegen, Germany
e-mail: harald.klimach@uni-siegen.de; sabine.roller@uni-siegen.de

© Springer Nature Switzerland AG 2020
M. M. Resch et al. (eds.), Sustained Simulation Performance 2018 and 2019,
https://doi.org/10.1007/978-3-030-39181-2_6

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39181-2_6&domain=pdf
mailto:harald.klimach@uni-siegen.de
mailto:sabine.roller@uni-siegen.de
https://doi.org/10.1007/978-3-030-39181-2_6


58 H. Klimach and S. Roller

represent the solution and transform this modal representation into nodal data for
nonlinear terms.

The data within single elements is strictly structured as the multidimensional
polynomials are obtained by a tensor product of onedimensionals. This opens the
possibility to use a dimension-by-dimension strategy in the numerical algorithms,
greatly reducing the computational effort. In contrast the mesh of elements is orga-
nized with greater flexibility. Ateles utilizes an octree representation, but the overall
geometrical shape of the considered computational domain may have an arbitrary
shape and explicit neighbor information is obtained from the octree structure. This
setup is not too different from block-structured meshes when considering the data
organization. It enables the flexibility of unstructured meshes while also providing
chunks of highly structured data. For a vector system like the NEC Aurora TSUBASA
a viable strategy then emerges from vectorizing the operations within elements,
while maintaining all the flexibility in the outer unstructured mesh.

The total number of degrees of freedom within an element (per state variable) in
three dimensions is given by the polynomial degree plus one cubed. In general the
number of degrees of freedom (N) for an approximation with a polynomial series
of maximal degree q in d dimensions is given by:

N = (q + 1)d (1)

While there are few operations that can be done independently for all the degrees
of freedom, most algorithms have a dependency in one dimension. This is a direct
consequence of the dimension-by-dimension strategy followed in the tensor product
representation of the polynomials. Thus, the number of independent degrees of
freedom available for straight forward vectorization (M) is found by

M = (q + 1)d−1 (2)

We are here aiming for a high-order with q > 11. This is a threshold that
we found Ateles to work most efficiently at on typical scalar x86 systems. With
a polynomial degree of q = 15 there is a sufficient number of independent degrees
of freedom to completely fill the vector data registers of the NEC Aurora TSUBASA
that have a length of 256. This high-order discontinuous Galerkin scheme should,
therefore, nicely fit the vector system and we report some first experiences with this
newly available system.

While the mesh is organized unstructuredly with an arbitrary shape of the
computational domain, the state variables are stored in a single array for all
elements with the same internal structure. This array has three dimensions. The first
dimension represents the elements. The second dimension represents the degrees
of freedom describing the multidimensional polynomial and the third dimension
represents the different state variables of the equation system. For the interaction
between elements surface data is required. This is in a secondary data structure and
a mapping from the volumetric to the surface data is required.
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2 Ateles Software Environment

Ateles is an application mostly written in modern Fortran. The largest part is actually
restricted to the Fortran 95 standard, however it heavily relies on the ISO-C-Binding
introduced in Fortran 2003. Some other features from the Fortran 2003 standard
are also utilized, but the code tries to avoid object oriented features as they were
not deemed sufficiently stable in the compilers for a long time. Features from the
Fortran 2008 standard are only used in optional functionality that can be switched
off at compiler time, if the compiler does not support them.

Configuration and compilation is realized with the waf [2] build tool that requires
Python. waf can detect the compiler of the platform automatically during the
configuration phase for the build process. The necessary script for the automatic
adaption was easily obtained by adapting existing detectors. Support for this
automatic detection of the nfort compiler was added to the official waf in release
2.0.14. It should be noted that the automatic configuration of the project may utilize
compiling test executables and running them on the fly to detect available features.
With the transparent execution model of the NEC Aurora TSUBASA this poses no
problem at all.

To pre-process the Fortran code we make use of the conditional compilation
program CoCo [3] from Daniel Nagle that implements the preprocessing once
described in the Fortran standard as an extension. For the description of settings
Ateles uses Lua scripts and, thus, relies on this library. It is written in C and built
automatically within Aotus, our Fortran library that encapsulates the interaction with
Lua via the ISO-C-Binding available with the Fortran 2003 standard.

Other than these tools there is only a dependency on an MPI library and
optionally the FFTW may be utilized, but this is not considered here.

3 Porting to NEC Aurora TSUBASA

The NEC Aurora TSUBASA system provides a scalar x86 vector host that takes
care of system calls like IO. Attached to this vector host are one or multiple
vector engines that provide vectorized computations with a vector length of 256.
Executables compiled for the vector engine are loaded onto them from the vector
host and executed there transparently. Each vector engine provides four cores and
the system installed at ZIMT at the University of Siegen is equipped with two vector
engines.

As described above in Sect. 2 there are only few dependencies required to build
the solver. Compilation of the Fortran 2003 code base worked straight away without
any issues with the nfort compiler in version 1.6. However, when running our
testsuites we encountered some problems. We use waf to perform unit tests during
compilation. Thanks to the transparent execution this works without a hassle on
the NEC Aurora TSUBASA system with the restriction that executables that call
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Listing 1 Loop broken by aggressive optimization

do orig=1,nModes
sign_factor = mod(orig,2)*2 - 1
do m=1, orig-1
split_matrix(orig, m) = sign_factor * split_matrix(m,

orig)
sign_factor = -sign_factor

end do
end do

Listing 2 Split loop avoiding problems with aggressive optimization

do orig=1,nModes
sign_factor = mod(orig,2)*2 - 1
!$NEC ivdep
do m=1, orig-1, 2
split_matrix(orig, m) = sign_factor * split_matrix(m,

orig)
end do
!$NEC ivdep
do m=2, orig-1, 2
split_matrix(orig, m) = -sign_factor * split_matrix(m,

orig)
end do

end do

MPI_Init also need to be called with mpiexec, even if only a single process
is used for the execution. Some of these unit tests failed. One minor issue that
we found was that the spacing function for Fortrans tiny values of reals did not
work properly. Another was that a loop with alternating signs was broken by more
aggressive optimizations than level 1. Both issues got resolved by later compiler
versions.

The loop construct that got broken by more aggressive optimizations is shown in
Listing 1.

The alternation of the sign is better achieved by splitting the loop as shown in
Listing 2. With the split loop the aggressive optimization does not cause any other
issues in our unit tests.

The gamma function available in the Fortran 2008 standard is provided by
nfort. It provides minimally different values than GCC’s gfortran within numerical
accuracy.

Aside from the unit tests run by waf during compilation, we maintain a testsuite
with setups to check the results of overall program execution. For those we did not
find any variations from the reference results on the NEC Aurora TSUBASA even
when using the most aggressive optimization flags. All in all the porting did not
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prove difficult and we found the system with its transparent execution on the Vector
Engines to be convenient for the building and testing process.

4 Tuning for the Vector System

There are two main classes of equation systems that we need to consider for the
performance of Ateles. The first class are linear equation systems like Maxwell
or linearized Euler. They can be computed in a purely modal approach and their
most important computational work load is the multiplication with the mass and
stiffness matrices. With the chosen polynomial basis these matrices can be computed
efficiently without increased costs per degree of freedom for higher order discretiza-
tion. The second class are nonlinear equation systems like the Euler equations for
compressible inviscid flows. For those systems a transformation to a nodal basis is
required for the computation of the nonlinear terms [4]. This transformation gets
increasingly expensive in terms of necessary operations with increasing polynomial
degree. With the dimension by dimension approach we follow, we expect the
required operations per degree of freedom to grow linearly with the polynomial
degree of the discretization. As a comparison for the performance we will use
the cluster system Horus installed at ZIMT at the University of Siegen. It is
equipped with two 6 core Intel Sandy Bridge (Xeon X5650) processors in each
node operated with 2.66 GHz. As a performance measure that allows us to compare
the performance for different scheme orders and mesh sizes, we use a measure
of million degree of freedom updates per second (MDUPs). The more degree of
freedom updates per second we can achieve, the faster our simulations will be
computed.

4.1 Linear Equation System

Figure 1 shows the single core performance for the linear Maxwell equations
achieved on the Aurora system in comparison to the performance on the Horus
system without tuning for the vector system.

It should be noted, that the code actually had already been somewhat vectorized
for the NEC SX ACE. The compiler directives where easily converted for the new
nfort compiler on Aurora. Other than that there was no further tuning effort for this
run. We can observe a relatively high single core performance on the NEC Aurora
TSUBASA with the code as it is, but there are strong degradations in the performance
for specific scheme orders. These are most pronounced for multiples of 16 but also
for smaller powers of two we can observe a degradation. To analyse the nature of
this performance degradation, we look into the ftrace for the run with a scheme
order of 48. The most important routines for this run turns out to be the projection
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Fig. 1 Serial performance for the Maxwell equations with 64 elements on Aurora compared to
Horus

Table 1 Excerpt from the tracing of Ateles for Maxwell equations and a discretization with
polynomials of degree q = 47 and 64 elements

Procedure MFLOPS V. OP% V. LEN Port confl. Stride

PrjFluxZ 636.7 99.97 230.3 0.571 64 × 48 × 48

PrjFluxY 3845.7 99.97 230.3 0.125 64 × 48

PrjFluxX 6110.8 99.97 230.3 0.048 64

of the fluxes to the test functions. This needs to be done for each direction, which
come with different strides in the memory access.

Table 1 shows the ftrace information for this routine with the three different
directions. It shows that the vector operation ratio and the average vector length
is reasonable high, but we get long times spent in port conflicts for the Z and Y

directions where strides are multiples of 1024. We could avoid this by introducing
some paddings, but it can as easily be avoided by increasing the scheme order if
a stride of 1024 would be encountered. Table 2 shows the performance for the
same three routines when a scheme order of 49 is used instead of 48. Here the
strides are not multiples of 1024 and the observed port conflict times are small for
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Table 2 Excerpt from the tracing of Ateles for Maxwell equations and a discretization with
polynomials of degree q = 48 and 64 elements

Procedure MFLOPS V. OP% V. LEN Port confl. Stride

PrjFluxZ 7000.0 99.97 240.1 0.075 64 × 49 × 49

PrjFluxY 6893.9 99.97 240.2 0.075 64 × 49

PrjFluxX 6438.5 99.97 240.4 0.047 64

all three directions. In this case the computationally most expensive routine is the
multiplication with the inverse of the mass matrix.

Aside from the performance degradations due to the bank conflicts with bad
memory access strides, we find that the number of degree of freedom updates
increases with the order and for scheme orders above 16 we find reasonable
performance. A scheme order of 16 is the point where the vector length of 256
can be completely filled by most of the algorithms. On the scalar system of horus
we see the opposite trend, where the performance decreases with increasing scheme
order. A higher performance can be observed where the elements are sufficiently
small to fit into the cache, up to a scheme order of 11–12. For higher scheme orders
the performance drops significantly up to scheme order 16 and afterward keeps on
slowly declining. It can also be noted, that the performance slightly decreases for
multiples of 16 in the scheme order, similar to the behaviour on the NEC Aurora
TSUBASA.

4.2 Nonlinear Equation System

We use the Euler equation system for inviscid compressible flows to assess the
performance of the Aurora for nonlinear equations in Ateles. The performance
without any tuning is shown in Fig. 2. For the nonlinear equation system we expect
increasing operations per degree of freedom update and, therefore, decreasing
degree of freedom updates per second with increasing scheme order. For the scalar
system in Horus this can be nicely observed after the initial cache region with
increased performance. Similarly a slight decrease in the performance can be
observed on the NEC Aurora TSUBASA system, though it is less pronounced and
only takes effect for scheme orders larger than 40. Peak performance is achieved for
a scheme order of 39.

Similarly to the behaviour for the linear equations we observe a drop in
performance for multiples of 16 in the scheme order. Though the effect is less
pronounced. Again we look at the ftrace for the run with a scheme order of 48.
The most important routines are shown in Table 3. Similar to the linear case we
note that the projection of the flux appears here and we find a large time spent in
port conflicts. But the inverse of the mass matrix is nevertheless taking most of the
compute time with a low floating point operation rate. This is due to the short vector
length of 8 that is utilized in this routine. Obviously the vectorization is here done
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Fig. 2 Serial performance for the Euler equations with 8 elements on Aurora compared to Horus

Table 3 Excerpt from the
tracing of Ateles for Euler
equations and a discretization
with polynomials of degree
q = 48 and 8 elements
without tuning

Procedure MFLOPS V. OP% V. LEN Port confl.

InvMassMat 257.4 60.88 8 0

Conv2Overs 0.0 46.18 17.6 13.19

PrjFluxZ 1403.0 99.97 230.2 14.89

L2 project 205,627.0 99.97 227.8 0

over the number of elements, not the degrees of freedom inside the element. The
Conv2Overs is a pure memory copy routine that allows the use of more points
in the nodal representation to avoid aliasing errors. No floating point operations
are done in this routine. The final routine in this excerpt is the L2 Project that
takes care of projection the modal space to the nodal space. It boils down to a
matrix-matrix multiplication, which is recognized by the compiler and replaced by
an optimized kernel, yielding the high sustained performance of 205 GFLOPs. This
is the part that needs to be computed in addition for the nonlinear equation systems
when compared to linear ones and is responsible for the increased computational
effort for higher polynomial degrees.
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Table 4 Excerpt from the tracing of Ateles for Euler equations and a discretization with
polynomials of degree q = 49 and 8 elements without tuning

Procedure MFLOPS V. OP% V. LEN Port confl.

InvMassMat 257.3 60.91 8 0

L2 project 194,735.0 99.09 227.8 2.63

Conv2Overs 0.0 46.18 17.6 0.02

Listing 3 Array syntax with vectorization only over the first index

subroutine compute( nTotal, nDofs, nScalars, state,
state_der)

integer, intent(in) :: nTotal, nDofs, nScalars
real(kind=rk), intent(inout) :: state(nTotal, nDofs,

nScalars)
real(kind=rk), intent(in) :: state_der(:,:,:)

state = state + state_der(:nTotal, :nDofs, :nScalars)
end subroutine compute

Again, the port conflict issue can be avoided by using a different scheme
order, where we do not end up with bad strides. In Table 4 the most important
computational routines are shown for the run with a scheme order of 49. For this
scheme order the port conflict times vanish and the projection of the fluxes consumes
only a small fraction of the overall time.

The short vector length was a little surprising as we did not experience this on
the NEC SX ACE system. However, it is easily resolved by collapsing the loop over
elements and the loop of the independent degrees of freedom. With this collapse the
average vector length for the 49th order simulation gets up to 252.7, allowing the
code to actually utilize the vector instructions.

We also found short vectors surprisingly in array syntax statements with multiple
dimensions with the compiler in version 1.6 as in the example shown in Listing 3.
Even though all operations are completely independent we only observe a vector
length given by the first index of the multidimensional array.

Using a manually collapsed loop instead with a compiler directive overcomes
this shortcoming and we achieve an average vector length of 255.4 for this routine.
However, please note that this shortcoming has been fixed in newer compiler
versions.

After fixing the short loops we now achieve an overall performance of 67
GFLOPs for the 49th order scheme. With a theoretical peak of 268.8 GFLOPs for a
single NEC Aurora TSUBASA core, this means a sustained performance of around
25%. Table 5 shows all the routines with more than 5% of the overall running time.

Figure 3 compares the performance with long vectors for scheme orders up to
100 compared to the variant without the tuning and short vectors. We now observe
a performance that gets close to the linear equation system in its peak between
spatial scheme order 32 and 50. With the improved performance also the degrading
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Table 5 Performance of the routines with more than 5% of the overall running time for Euler
equations with a scheme order of 49 and 8 elements

Procedure Time (%) MFLOPS V. OP% V. LEN Port confl.

L2 Project 32.2 197,256.0 99.09 216.5 7.082

InvMassMat 10.8 4469.4 99.72 252.7 0.003

Vol2FaceY 7.8 1235.4 99.81 255.4 0.003

Vol2FaceZ 6.7 1448.8 99.80 255.4 0.003

Vol2FaceX 6.4 1502.1 99.80 255.4 0.001

Timest.RK4 6.0 827.8 99.77 255.4 0.001
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Fig. 3 Serial performance for the Euler equations with 8 elements on Aurora after fixing short
vectors compared to before

number of degree of freedom updates for higher scheme orders, due to the additional
operations gets more visible.

Figure 4 shows how the full NEC Aurora TSUBASA node with both vector
engines and 8 cores compares to a single node of Horus with 12 Intel Xeon X5650
(SandyBridge) cores. For sufficiently high scheme orders, this single NEC Aurora
TSUBASA node achieves a factor of 10 and higher in performance. Thus, the vector
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Fig. 4 Single node performance for the Euler equations with 64 elements on Aurora using 8 cores
compared to a single node of Horus with 12 processes

engine is especially attractive for all settings with a high scheme order. In the case
of high scheme orders we usually have only few elements, which limits the number
of processes on which we can distribute the simulation. Strong but few processors
with a high memory bandwidth appear to be an ideal match for the numerics of
high-order discontinuous Galerkin schemes.

5 Conclusion

Ateles was easily ported to the NEC Aurora TSUBASA system. Only some minor
quirks needed be overcome for the nfort compiler in version 1.6. The setup with
the vector host and transparent execution on the vector engines proved to be very
convenient for the deployment of the application. With high-order discretizations we
achieve a high sustained performance on the vector system with an overall sustained
performance of around 25%, yielding ten times the performance that we get from
the scalar processors in the cluster.
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Performance Evaluation of SX-Aurora
TSUBASA by Using Benchmark
Programs

Kazuhiko Komatsu and Hiroaki Kobayashi

Abstract This paper evaluates the basic performance of the latest vector super-
computer, SX-Aurora TSUBASA, in order to clarify its potential. First, the memory
bandwidth, which is one of the features of SX-Aurora TSUBASA, is evaluated by
using the Stream benchmark. Next, the performances of the Himeno benchmark
and the HPCG benchmark are examined. From these evaluations, it is clarified that
the high sustained memory bandwidth can be achieved. It is also clarified that the
high memory bandwidth of SX-Aurora TSUBASA can achieve the high sustained
performance in other benchmarks compared to SX-ACE.

1 Introduction

Recently, supercomputers have been used not only in many fields of cutting-edge
researches but also in various industrial fields such as engineers. Supercomputers
have played an important role not only as research infrastructure but also as
social infrastructure. Thus, the computational requirements for supercomputers
are increasing. To meet such high computational requirements, the computing
performance of supercomputers have been improved.

The multi and many-core technology, which integrates multiple or many cores
into one processor, is used in various processors. In addition, vector technology
that calculates multiple elements simultaneously by one instruction is widely
adopted not only to vector processors but also to Intel-based scalar processors and
accelerators such as GPUs. Due to these technological innovations, the computing
performance of supercomputers has improved by about 2600 times over the past
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15 years [1]. The theoretical performance of the world’s highest performance
supercomputer has reached 200 Pflop/s.

However, the improvement in memory performance is relatively low compared
to that in computational performance of supercomputers, called as the memory wall
problem. Thus, the gap between theoretical performance and sustained performance
is increasingly widespread. In other words, only the computation-intensive appli-
cations can benefit from the high theoretical performance. The memory-intensive
applications that require high memory performance cannot use the high theoretical
performance of supercomputers, and then the sustained performance is limited by
memory performance.

Vector supercomputers such as the SX series developed by NEC are known
as supercomputers that have higher memory performance than the other super-
computers. The vector supercomputers can achieve high sustained performance in
applications that require high memory performance [2, 3]. Although vector super-
computers are a minority in the list of TOP 500 that measures only computational
capability, the vector supercomputers achieved high sustained performance in the
HPCG benchmark, which is developed to be close to practical applications [4, 5].
In the HPCG benchmark, although the efficiencies of supercomputers equipped
with scalar processors and accelerators are 1.0–4.8%, the efficiency of vector
supercomputer SX-ACE reaches more than 10%.

As not only computational performance but also memory performance has
attracted attention, a new vector supercomputer SX-Aurora TSUBASA has been
released with the world’s highest memory performance. SX-Aurora TSUBASA is a
vector supercomputer that inherits and improves the advantages of the previous SX
series.

SX-Aurora TSUBASA has been developed under two important concepts; high
usability and high sustained performance. To meet these two concepts, a new system
architecture and high bandwidth memory are adopted in SX-Aurora TSUBASA. For
high usability, SX-Aurora TSUBASA adopts a new system architecture that consists
of Vector Engine (VE) with vector processor and Vector Host (VH) with a standard
x86 processor. Although it is similar to the traditional system architecture of
accelerators, the concept is different. In SX-Aurora TSUBASA, whole applications
are basically executed by VE while only OS functions such as system calls are
offloaded to VH.

By these system architecture and execution model, there are two major advan-
tages over conventional accelerators. The first advantage is that data transfer
between VE and VH, which tends to be a bottleneck in the conventional model of
accelerators, can be avoided. Since only data that is required for OS related functions
is transfered between VE and VH, the data transfer of computation results can be
reduced. As a result, the bottleneck by the data transfer can be avoided. The second
advantage is that no special programming is required to develop an application for
VE. As the conventional SX series, the compiler performs automatic vectorization
and automatic parallelization. Thus, programs can be executed on vector processors
without special programming.
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In addition, SX-Aurora TSUBASA can provide a high memory bandwidth by
integrating six HBM modules (high bandwidth memory) into a VE in cooperation
with TSMC, Broadcom, and NEC. The six HBM module integration enables
high memory bandwidth corresponding to the high computing performance of the
multi-vector cores. As the high memory bandwidth and the high computational
performance are balanced, it is possible to achieve a high sustained performance,
especially in applications that require memory performance.

This paper evaluates the basic performance of the latest vector supercomputer
SX-Aurora TSUBASA. First, memory performance, one of the features of SX-
Aurora TSUBASA, is measured using the stream benchmark. Then, the basic
performances of SX-Aurora TSUBASA are clarified compared with SX-ACE,
Xeon Gold, Tesla V100, and KNL using the Himeno benchmark and the HPCG
benchmark.

2 Overview of SX-Aurora TSUBASA

From SX-1 developed in 1983 to SX-ACE, the previous SX series of vector
supercomputers have been pursuing high sustained performance, especially for
applications that requires high memory bandwidth. Handing over the SX series
of DNA, SX-Aurora TSUBASA, a new vector supercomputer equipped with a
newly designed vector processor, was announced in October 2017. SX-Aurora
TSUBASA is more efficient in terms of power and space than SX-ACE. SX-
Aurora TSUBASA achieves 1/5 power consumption and 1/10 floor area at the same
computing performance of SX-ACE.

The system architecture of SX-Aurora TSUBASA is different from the previous
SX series. SX-Aurora TSUBASA consists of one VH and one or more VEs. By
adopting standard Linux as the OS of VH instead of SUPER-UX, which is the
original OS for the SX series, the usability of Linux is obtained. By migrating a
usual Linux environment to VH, a programmer can use SX-Aurora TSUBASA in a
familiar environment. In addition, an OS for VE called VEOS is executed on VH to
control VE from VH.

VE is implemented as a PCI express card with a newly designed vector processor.
Three types of VE are available depending on the frequency and memory capacity of
the vector processor. SX-Aurora TSUBASA can be flexibly configured not only as
large-scale supercomputers but also as personal computer. SX-Aurora TSUBASA
has three product lines: A100 series, A300 series, and A500 series. A100 is a
workstation model with a minimum configuration consisting of one VH and one
VE. A300 is a standard rack model that uses air cooling. A300 can be integrated up
to 8VE. A500 is designed for large-scale supercomputers that use the water and air
cooling. A500 can be mounted up to 8VE per 1VH and up to 8VH per rack.
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Fig. 1 A vector processor in
a VE (provided by NEC)

2.1 Architecture of Vector Engine

A vector processor installed in VE is designed to achieve high sustained per-
formance with appropriate power efficiency in applications that require memory
bandwidth performance.

Figure 1 shows the CPU package of a VE. The VE processor in the shape of a
rectangle is placed at the center of the package. Six HBM2 memories are arranged
on both sides of the processor. This implementation of six HBM2s per processor
is the world’s first and was developed in collaboration with NEC, the Taiwan
Semiconductor Manufacturing Company Ltd. (TSMC), and Broadcom using the
TSMC chip on wafer on substrate (CoWoS) technology [6]. Due to such a cutting-
edge technology, the package provides the world’s highest memory bandwidth of
1.22 TB/s per processor.

The vector processor mainly consists of 8 vector cores, a 16 MB last level cache
(LLC), a 2D mesh memory network, and six HBM2 memory interfaces. In VE
Type 10A, each core operates at a frequency of 1.6 GHz, which achieves 614.4
Gflop/s for single-precision floating-point operations and 307.2 Gflop/s for double-
precision floating-point operations. The 16 MB LLC is connected to each core
with a 2D mesh. The bandwidth of LLC realizes 3.0 TB/s. Each HBM2 memory
interface is connected to HBM2 at a bandwidth of 204.8 GB/s. The vector processor
is connected to VH and DMA engines through the PCI express Gen3 interface.
The DMA engine transfers data between VE and VH. The vector processor is
manufactured by a 16 nm FINFET process, and about 4.8 billion transistors are
integrated in an area of 14.96 × 33.00 mm. The power of VE and HBM2 memory is
designed to 300 W or less for a single VE card.

2.2 Execution Model of SX-Aurora TSUBASA

In SX-Aurora TSUBASA, applications are executed on VE. VH is responsible
for OS functions such as process scheduling and system call processing from
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applications. Fundamentally different from the execution model of accelerators such
as GPU, the execution model of SX-Aurora TSUBASA can minimize data transfers
between VE and VH since an application is executed on VE. Furthermore, as OS
related functions such as system calls are automatically offloaded to VH, no special
specification is not necessary for the offloading.

Moreover, as GNU C library (glibc) has been ported to VE, the standard
programming environment can be used. In other words, no special programming
is required to develop an application for SX-Aurora TSUBASA. A standard
programming language such as C/C++ and Fortran can be used for SX-Aurora
TSUBASA. This achieves the high usability as the previous vector supercomputers.

3 Evaluation

This section evaluates the basic performance of SX-Aurora TSUBASA using three
benchmark programs; the Stream benchmark, the Himeno benchmark, and the
HPCG benchmark.

3.1 Experimental Environments

For the evaluation, SX-Aurora TSUBASA A300-2 with one VE Type 10B was
used. Table 1 shows the specifications of VE and VH of SX-Aurora TSUBASA
used for the evaluation. Since the frequency of VE is 1.40 GHz, the single-precision
and double-precision floating-point performances become 4.30 Tflop/s and 2.15
Tflop/s, respectively. The memory bandwidth is 1.22 TB/s and the cache bandwidth
is 2.66 TB/s. For VH, Intel Xeon Gold 6126 processor is used. The single-precision
and double-precision floating-point performances are 1996.8 Gflop/s and 998.4
Gflop/s, respectively. The memory bandwidth is 128 GB/s. For comparison, SX-
ACE, Tesla V100, Xeon Phi 7290 are used as also shown in Table 1.

The Stream benchmark for measuring memory bandwidth performance [7], the
Himeno benchmark for Jacobian calculation that frequently used in scientific and
technical calculations [8], the HPCG benchmark developed as a benchmark close to
the behavior of practical applications [9] are used.

3.2 Performance Evaluation of SX-Aurora TSUBASA

Figure 2 shows the sustained memory bandwidth measured by using the Stream
benchmark. The horizontal axis shows the processors. The vertical axis shows the
sustained memory bandwidth. Figure 2 shows that SX-Aurora TSUBASA achieves
a high memory bandwidth performance of about 1.0 TB/s. On the other hand,
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Fig. 2 Performance of the Stream benchmark
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Fig. 3 Performance of the Himeno benchmark

SX-ACE, Skylake, Tesla V100, and KNL have achieved memory bandwidths of
211 GB/s, 85 GB/s, 727 GB/s, and 446 GB/s, respectively. By using the six HBM2
integration technology, the sustained memory bandwidth of SX-Aurora TSUBASA
is about 4.7, 11.4, 1.37, and 2.23 times higher than those of SX-ACE, Skylake,
Tesla V100, and KNL, respectively. The efficiencies of SX-Aurora TSUBASA, SX-
ACE, Skylake, and V100 for the theoretical memory bandwidth are 81.8%, 83%,
and 66%, and 81%, respectively. It is shown that SX-Aurora TSUBASA and SX-
ACE, which are vector type supercomputers, achieve higher efficiency than Skylake.
This is because vector supercomputers are designed with emphasis on memory
performance.

Figure 3 shows the performance of the Himeno benchmark. The horizontal axis
shows the processors. The vertical axis shows the performance of the Himeno
benchmark. Figure 3 shows that the performance of SX-Aurora TSUBASA is higher
than that of SX-ACE, Skylake, Tesla V100, and KNL. The Himeno performance
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of SX-Aurora TSUBASA is about 3.71, 8.66, 1.01, and 2.26 times higher than
those of SX-ACE, Skylake, Tesla V100 and KNL, respectively. This is because
the high memory bandwidth of SX-Aurora TSUBASA contributes to the high
sustained performance. The Himeno benchmark is well-known as a benchmark
that requires high memory bandwidth. Thus, the highest memory bandwidth of SX-
Aurora TSUBASA contributes to the higher performance than other processors.

Figure 4 shows the results of the HPCG benchmark. The horizontal axis shows
the grid size that can be configured when executing the HPCG benchmark. The
vertical axis shows the performance of the HPCG benchmark. This result shows
that the performance of SX-Aurora TSUBASA is higher than that of SX-ACE.
Comparing the highest performance of SX-Aurora TSUBASA and SX-ACE, SX-
Aurora TSUBASA achieves about 2.34 times higher performance than SX-ACE
at maximum. Since the HPCG benchmark is also known to be a benchmark that
requires memory bandwidth, the high memory bandwidth of SX-Aurora TSUBASA
has achieved high performance.

4 Conclusions

This paper evaluates the basic performance of the latest vector supercomputer SX-
Aurora TSUBASA.

First, by measuring the sustained memory performance of SX-Aurora TSUB-
ASA using the Stream benchmark, it is clarified that a high sustained memory
bandwidth can be achieved. Then, the performances of SX-Aurora TSUBASA were
investigated using more practical benchmarks such as the Himeno benchmark and
HPCG benchmark. As a result, SX-Aurora TSUBASA can achieve higher sustained



Performance Evaluation of SX-Aurora TSUBASA by Using Benchmark Programs 77

performance than SX-ACE and other scalar processors due to the its high memory
bandwidth.

For future work, more performance and power evaluations using real applications
need to be conducted to further clarify the potential of SX-Aurora TSUBASA.
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Raghunandan Mathur, Osamu Watanabe, and Akihiro Musa

Abstract Tropical cyclones cause immense damage with destructive winds, storm
surges, and heavy rainfall with flooding in coastal regions. The intensity and
frequency of tropical cyclones are expected to increase as a result of climate change.
Therefore, the impact of high-intensity tropical cyclones, i.e., supertyphoons under
the climate change needs to be researched. Our goal is to study the characteristics
of supertyphoons under different conditions using a scientific application, named
Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST), and to opti-
mize COAWST to predict the probable damage with proper warning and adequate
accuracy on the NEC SX-ACE vector supercomputer. COAWST was developed
by the US Geological Survey (USGS) to understand coastal changes caused by
natural processes, and SX-ACE is a modern supercomputers with powerful vector
cores, and is widely used to solve the large scale issues related to climatology
and meteorology. In this paper, we proposed some vectorization strategies on SX-
ACE that improve the computational performance of COAWST. Our proposed
vectorization strategies have improved performance of COAWST up to 62.7% as
compared to its original version for simulation. This paper aims to showcase the
importance of the vectorization technology in order to speedily and accurately
simulate supertyphoons related to coastal disasters.
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1 Introduction

Tropical cyclones cause immense damage with destructive winds, storm surges,
heavy rainfall and flooding in coastal regions. The high intensity tropical cyclones
i.e. supertyphoons are expected to increase as a result of climate change [1–
3]. Supertyphoons affect people and infrastructure in coastal regions. With rapid
urbanization of coastal regions, it is very important to research for faster simulation
of such supertyphoons in order to help the governments and local administrative
bodies of at-risk areas to mitigate the risk of damage and take preventive measures
to minimize the severe impact in coastal regions.

The supertyphoon Haiyan, one of the strongest supertyphoons recorded in last
few decades, caused enormous damage to the coastal regions of the Philippines,
Vietnam, and nearby areas in November 2013 [2]. its minimum central pressure was
895 hPa, and maximum peak gust speed was over 90 m/s [2]. According to the final
report of the National Disaster Risk Reduction and Management Council 2013, this
enormous supertyphoon resulted in 6300 fatalities, 28,688 injured and 1062 missing
[2].

The faster and more accurate computer simulations of such supertyphoons
are a big challenge because they require high-performance computational power.
Therefore, in our research, we use a NEC SX-ACE vector supercomputer (hereafter
SX-ACE) to perform a high-speed and accurate numerical simulation of a Haiyan-
like supertyphoon case using the Coupled Ocean-Atmosphere-Wave-Sediment
Transport (COAWST) modeling system. COAWST is an open source scientific
application designed for understanding coastal changes caused by natural processes.

Typhoon Haiyan continued for 5 days. In our earlier research [4], we attempted to
perform a computer simulation for 3 days of Typhoon Haiyan in 24 computational
hours using COAWST on the earth simulator. We achieved this with 38% faster
COAWST compared with original performance. In this research paper, we attempt
to complete a simulation of 5-day Haiyan test case with two-level nested domains of
the computational grid size of (1334×667×56) and (2002×703×56) to be executed
within 24 computational hours using vectorization of COAWST on SX-ACE.

2 Characteristics of SX-ACE

SX-ACE is a NEC SX series vector supercomputer. Its processor is comprised of
four cores, which can provide a double-precision floating point operating rate of
256 Gflop/s with a memory bandwidth of 256 GByte/s, and a memory capacity
of 64 GByte [5]. Each SX-ACE core is composed of three major components: a
Scalar Processing Unit (SPU), a Vector Processing Unit (VPU), and a large capacity
Assignable Data Buffer (ADB) [6, 7]. Each core is connected to Memory Control
Unit (MCU) at a bandwidth of 256 GB/s through the memory crossbar, and four
cores of one processor share the memory bandwidth, as shown in Fig. 1.
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Fig. 1 SX-ACE architecture [8]

The VPU is a major component of the SX-ACE core that is connected with the
vector cache ADB. It can process up to 256 vector elements (vector length of VPU)
with a single vector instruction. The ADB is implemented to avoid the frequent
memory access of vector load operation by retaining the reusable data on a chip.

The functionality of SPU is very limited in SX-ACE. It decodes all instructions,
processes the scalar instructions, and transfers all vector instructions to the VPU,
which processes the vector instructions.

The FORTRAN90/SX is a Fortran compiler with language specifications that
conform to the international standard (ISO/IEC 1539-1:1997). It provides advanced
automatic vectorization and optimization functions. The MPI/SX is the imple-
mentation of message-passing interface (MPI) version 3.0, and is available for
parallel programming, which uses shared memory functions for communications
within a node, and directly uses the inter node crossbar switch (IXS) functions for
communications between nodes to achieve high-performance communication.
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3 Overview of COAWST

The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Model-
ing System is composed of four components models: ocean model (Regional
Ocean Modelling System (ROMS)), atmosphere model (Weather Research Forecast
(WRF)), wave model (Sea Wave Simulating Near Shores (SWAN)), and Sediment
Transport Model. In our current research, we do not use the Sediment Transport
Model. COAWST uses a coupler Model Coupling Toolkit (MCT) to enable the
component models to exchange data field with each other as shown in Fig. 2 [9].

ROMS is an incompressible, hydrostatic, primitive equation model with a free
sea surface, horizontal curvilinear coordinates, and a generalized terrain-following
vertical coordinate, which can be configured to enhance resolution at the sea surface
[10]. ROMS contains various preprocessing options to enable/disable the various
physical and numerical options. SWAN is a third-generation numerical wave model
to compute random, short-crested waves in coastal regions with shallow water
and ambient currents. This model is based on the advection equation with source-
sink term [11]. WRF is based on the incompressible Navier–Stokes equation with
physical processes: cloud micro physics, radiation, and so on [12]. All three models
(ROMS, SWAN, WRF) are coupled together in COAWST and exchange data fields
by using the MCT coupler. MCT is a fully parallel toolkit and can be used to couple
message-passing parallel models in order to create a parallelized coupled model
[13].

Table 1 shows the vector performance of ROMS, SWAN, and WRF in the original
COAWST. ROMS has a vector operation ratio of 98.00% and average vector length
of 186.0. SWAN and WRF have vector operation ratio of 86.00 and 92.00% with
shorter vector length of 132.0 and 90.0, respectively. Therefore, ROMS is highly
vector friendly but SWAN and WRF are not. So, WRF and SWAN cannot achieve
high performance on SX-ACE. We propose some vectorization strategies on SX-
ACE to reduce the computation time of the individual models in COAWST.
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Table 1 Vector
characteristics of original
COAWST

Model name Vector operation ratio Average vector length

ROMS 98.00% 186.0

SWAN 86.00% 132.0

WRF 92.00% 90.0

4 Optimization Strategies

As mentioned in Sect. 2, VPU is the most important component of SX-ACE. Thus,
the performance of an application highly depends on its vector operation ratio
and average vector length. In our earlier research paper [4], we proposed four
vectorization strategies to improve the vector operation ratio and average vector
length of subroutines. In addition, we propose some more optimization strategies in
this paper.

4.1 To Increase Vector Operations

The high number of vector operations in a vectorized do-loop will result in better
performance on the vector processor of SX-ACE. In this section, we discuss some
vectorization strategies to increase the vector operations.

1. Removal of RAW Data Dependencies
The Read-After-Write (RAW) data dependency inhibits the vectorization of do-
loops. This issue occurs when a statement in a do-loop accesses a data element of
array in ith iteration and accesses the same data element in next iterations of the
same do-loop. These data dependencies can be resolved by restructuring the do-
loop. If a RAW dependency is unknown to the compiler, then we can analyze the
loop structure and instruct the compiler with a compiler directive (e.g., “!CDIR
NODEP”) to resolve such data dependencies.

2. Removal of I/O Statements from Computational Do-Loops
The I/O statements are important in programming language for transferring data
to or from I/O devices but the I/O statement inside a do-loop is a vector inhibitor.
Therefore, the I/O statement inside a computation intensive vectorized do-loop
affects its performance on a vector processor. In such cases, we divide do-loop
into two parts to separate the I/O intensive code and computation intensive code
of the original do-loop. The compiler can vectorize the computation intensive
code. In this way, we can improve the overall performance of the do-loop.

3. Removal of Subroutine Calls from Computational Do-Loops
The user defined subroutine and unvectorizable intrinsic function call inside a
do-loop are vectorization inhibitor. The modern compilers can perform the inline
expansion of the user defined subroutine for vectorization. However, if a callee
subroutine contains attributes like NAMELIST, DATA, and SAVE etc., then the
compiler cannot perform the inline expansion of the callee in the caller do-loop
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for vectorization. In the case of variable with a DATA attribute, we can move
the variable from the callee subroutine to the caller subroutine and pass the
variable as an argument. In other cases, if the inline expanded image of the
callee subroutine in a do-loop contains the allocate/deallocate statements, then
the compiler cannot vectorize such a loop even after the inline expansion of the
callee subroutines. In this case also, we can allocate the array from the callee
subroutine into the caller subroutine and pass the array as argument to the callee
subroutine. These type of manual code modifications can vectorize the do-loops
with subroutine and improve the vector operations in application.

4.2 To Increase Loop Length

As one vector core of SX-ACE processor can process up to 256 elements in
one operation, sufficient loop length of vectorized code increases the effect of
vectorization. In this section, we explain some optimization strategies to increase
the loop length of a nested do-loop structure.

1. Loop-Interchange
If a vectorized two level nested do-loop performs calculation along the small
dimensions of an array, then a loop-interchange can be done to perform cal-
culation along the large dimensions and improve the loop length of vectorized
do-loop. In the case of a three-dimensional array, when a subroutine performs
calculation on small dimension and subroutine calls is implemented inside a
two-level nested do-loop on large dimensions, then loop interchange is not a
simple optimization strategy. In this case, we can move the do-loop on large
dimension of array from the caller subroutine to the callee subroutine and the
calculation on large dimension in the callee subroutine is vectorized. In this way,
we can increase the vector length of a vectorized calculation loop in the callee
subroutine.

2. Loop-Collapse
The loop-collapse is an important optimization strategy to increase the loop
length of small length nested do-loop structure by collapsing nested do-loop
in to a single level do-loop. The compilers can perform the loop-collapse
automatically by judging the loop length of a nested do-loop. However, when
indices of a nested do-loop are stored in a work-array, then the compiler cannot
judge the loop indices. In this case, code needs to be manually modified for loop
collapse to increase the vector length of the loop structure.
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4.3 To Optimize IF-ELSE Branch in a Do-Loop

An IF-ELSE statement in a vectorized nested do-loop structure degrades the
performance of the do-loop. If the condition of the IF-ELSE statement does not
depend on the loop variable, we can split the computation of complete do-loop in
two separate code sections on the basis of the IF-ELSE condition. After splitting
the computation, we can keep the corresponding code section in the IF and ELSE
section. In this way, we can optimize the computation of a do-loop.

4.4 To Optimize the Memory Allocation

The allocation and deallocation of data structure includes keeping track of the
state of allocated blocks, searching for a free memory block, fragmentation of
memory block etc. These hidden tasks affect the performance of a processor. Thus,
the dynamic memory allocation is a high-cost statement. The large number of
allocations and deallocations reduces the performance of an application. Therefore,
we can re-use the already allocated memory block at different stages of calculation
and reduce the overhead of allocation and deallocation.

5 Optimization Examples

In this section, we discuss the implementation of optimization strategies. The
implementations of optimization strategies (Sects. 4.1–4.3) are described in our
earlier research paper [4]. In this research paper, we discuss the implementation
of optimization strategy (Sect. 4.4).

5.1 To Optimize Memory Allocation

The WRF model uses an intermediate domain that has a resolution equal to the
inner domain for the data exchange as shown in Fig. 3. The WRF model performs
the data exchange from the outer domain to the inner domain and vice versa after
every timestep via the intermediate domain as shown in data exchange order 1©, 2©,
3©, and 4© in Fig. 3. WRF allocates and deallocates intermediate domains and their

member data structure before and after every data exchange. At each data exchange,
WRF allocates an approximately 1200-member data structure of the intermediate,
which is a very high-cost operation. To eliminate this overhead, we can allocate the
intermediate domain at the first data exchange and keep it allocated till the end of
the simulation. In this way, we can reduce the overhead of the number of allocations
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Fig. 3 Domain orientation and two-way data exchange between nested domains in WRF. The
number 1©, 2©, 3©, and 4© show the data exchange order in WRF. The data exchange order 1© and

2© happens after calculation in the outer domain and 3© and 4© happens after calculation in the
inner domain

and deallocations from (1200 × n timesteps) to (1200 × 1 timestep), which is large
performance improvement. Here, n denotes the number of timesteps.

6 Performance Evaluation

In this section, we discuss the performance evaluation of the original and optimized
COAWSTs on the Haiyan dataset.

6.1 Description of Haiyan Data

Our Haiyan dataset has one domain each in ROMS, and SWAN and two domains
in WRF. The outer domains of ROMS and SWAN have the same resolution as the
outer domain of WRF. The grid spacing is 3 km for the outer domain and 1 km
for the inner domain in WRF. The simulation domain covers 109.2◦ East to 150.75◦
East and Equator to 20◦ North. The numbers of grid points in the domains of ROMS,
SWAN, and WRF are shown in Table 2.

On the basis of the computation ratio of each model in COAWST, we evaluated
the performance of the original and optimized versions of COAWST using 353
nodes of SX-ACE: 3 nodes (12 MPI processes) for ROMS, 100 nodes (400
MPI processes) for SWAN, and 250 nodes (1000 MPI processes) for WRF for a
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Table 2 Computational domain size of Haiyan dataset

Model Domain no.
Domain size in
X-direction

Domain size in
Y -direction

Domain size in
Z-direction

ROMS Domain 1 1334 667 40

SWAN Domain 1 1334 667 –

WRF Domain 1 1334 667 56

Domain 2 2002 703 56

simulation time of 3 days on the Haiyan dataset. We used an SX-ACE profiler ftrace
to measure the evaluation parameter of the original and optimized COAWSTs.

6.2 Original and Optimized Subroutines

We have examined two parameters (the vector operation ratio (Vec. ratio) and the
average vector length (Avg. vec. length)) using SX-ACE profiler to evaluate the
performance of high-cost subroutines before and after optimization on SX-ACE for
a small simulation time of 6 h, as shown in Table 3. As calculated in Table 3, we have
achieved the Vec. ratio of more than 97.0% for 13 out of 18 optimized subroutines.
As a result of optimization, the Avg. vec. length is increased to more than 100 for
14 out of 16 optimized subroutines, out of which Avg. vec. length of 7 subroutines
is more than 200. This improvement in vector performance reduced the execution
time for 12 out of 18 optimized subroutines by over 75.0% of the original execution
times, as shown in Fig. 4.

Subroutine gls_corstep_tile of ROMS, swsnl3, adddis, swpsel of SWAN, and
clphy1d, advect_scalar_pd of WRF were very calculation intensive and high-
cost in the original COAWST. The 3.9% improvement in the Vec. ratio of the
optimized gls_corstep_tile reduced the execution time by 65.8% of the original
gls_corstep_tile. The execution time of the highest cost subroutine swsnl3 of SWAN
is reduced by 89.7% with respect to the original swsnl3 because of improvement
in vec. ratio and Avg. vec. length. The optimized clphy1d has a Vec. ratio of
98.1% and Avg. vec. length of 98.0. Despite the small improvement in Avg. vec.
length in the original clphy1d, the execution time of the optimized clphy1d was
reduced by 80.0% of the original clphy1d because of the increase in Vec. ratio.
The execution time of optimized advect_scalar_pd was reduced by 87.2% of the
original advect_scalar_pd due to the improvement in its Vec. ratio. The Vec. ratio
and Avg. vec. length of the original subroutine strsd, strsxy, w_damp were all 0.00%
and 0.0 respectively. The performance of these optimized subroutine is improved
by over 84.0% as a result of improvement in the Vec. ratio and their Avg. vec.
length is improved to over 98.0%. These performance statistics confirm that our
vectorization-specific optimization strategies are suitable to improve the executional
performance of high-cost subroutines in COAWST on SX-ACE.
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Table 3 Improvement in vectorization metrics with optimization strategy using Haiyan data for a
simulation time of 6 h

Model Subroutines

Original Optimized

Exec. Vec. ratio Avg. vec. Exec. Vec. ratio Avg. vec.

time (s) (%) length time (s) (%) length

ROMS gls_corstep_tile 954.943 95.17 168.3 327.027 99.08 168.3

SWAN swsnl3 613.958 31.39 45.3 63.074 97.99 120.3

adddis 528.187 21.83 8.1 105.038 97.63 212.0

swpsel 358.681 4.21 47.4 163.349 95.51 145.2

strsd 218.984 0.00 0.0 33.053 99.77 225.9

strsxy 204.574 0.00 0.0 32.801 99.56 228.4

sintgrl 173.966 93.54 112.4 76.052 94.98 95.6

sprosd 133.869 2.22 36.0 27.094 98.92 154.6

swcap 117.148 9.94 31.4 67.877 91.85 193.2

ssurf 100.183 76.19 45.2 22.721 99.23 224.4

rescale 96.947 97.01 127.2 50.925 98.82 193.8

filnl3 92.684 75.76 51.6 18.877 99.61 227.2

swind3 84.419 4.33 25.0 19.693 99.54 225.4

philim 68.370 95.86 107.0 24.174 99.41 219.4

WRF clphy1d 464.231 62.64 91.0 92.618 98.11 98.0

advect_scalar_pd 316.012 78.41 81.5 40.315 98.74 79.6

w_damp 192.939 0.00 0.0 21.949 98.40 155.2

in_use_for_config 1242.136 0.00 0.0 0.928 0.00 0.0

Fig. 4 Performance improvement of optimized subroutines in COAWST using Haiyan data for
simulation time of 6 h
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6.3 Original and Optimized COAWST

The overall execution time of the COAWST involves some inter-model waiting
time for data exchange after a fixed interval of simulation time because of different
computational loads of ROMS, SWAN, and WRF. Thus, to demonstrate the actual
computational gain in the COAWST, only computation time of each model is
considered by subtracting their individual waiting times from their individual
execution times. From the performance results shown in Fig. 5, the execution time of
ROMS, SWAN, and WRF are reduced by 22.13%, 56.53%, and 67.3%, respectively,
in comparison to their respective original versions on SX-ACE for a simulation time
of 6 h using the Haiyan data. As we aimed to complete a simulation of 5 days within
24 h computation time, the optimized COAWST completed the simulation of 5 days
in 21.69 h computation time, whereas the original COAWST completed the same
simulation in 34.96 h on SX-ACE. Hence, we have achieved aim to optimize the
COAWST to complete the simulation of 5 days of the Haiyan dataset within 24 h
computation time on the vector supercomputer SX-ACE.

7 Summary

Tropical cyclones cause immense damages with destructive winds, storm surges,
and heavy rainfall with flooding in coastal regions. The intensity and frequency
of tropical cyclones is expected to increase due to climate change. The number
of high-intensity typhoons, i.e., supertyphoons, is expected to increase. Therefore,
such supertyphoons must be researched, and a faster model for their simulations
must be developed. In our research, we used an open source coupled application
named Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) that is
composed of Regional Ocean Modelling System (ROMS) as an ocean model, Sea
Wave Simulating Near Shores (SWAN) as a wave model, and Weather Research
Forecast (WRF) as an atmospheric model and couples them by using a Model
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Fig. 5 COAWST performance improvement using Haiyan data for a simulation time of 6 h
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Coupler Toolkit (MCT). In our earlier research [4], we optimized the COAWST
model by 38% to its original COAWST for a simulation on the Haiyan dataset. In a
continuation of our earlier research, we further optimized COAWST by 62.7% of its
original performance for a simulation of 5 days on the Typhoon Haiyan dataset.
Our current optimized COAWST is faster than the COAWST version presented
previously [4].

Our research continues to improve the computation time of COAWST with a
vectorization strategy and evaluation of the optimized COAWST on other single
instruction, multiple data (SIMD) architectures.
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VEO and PyVEO: Vector Engine
Offloading for the NEC SX-Aurora
Tsubasa

Erich Focht

Abstract The SX-Aurora Tsubasa Vector Engine (VE) is NEC’s latest instantiation
of their long vector architecture for high performance computing and AI with large
HBM2 memory of 48 GB and high memory bandwidth of 1.2 TB/s. It is completely
different from the previous mainframe-sized product generations and comes as a
PCIe card pluggable into normal Linux servers, where the VE integrates seamlessly
into the Linux environment and runs native VE programs compiled with C, C++ or
Fortran transparently, from the command line. This report introduces Vector Engine
Offloading, VEO, the base mechanisms used to extend the programming model of
the VE to an accelerator style offloaded model somewhat similar to OpenCL or
CUDA. This programming model extends the scope of the VE and simplifies the
porting of applications which have already been adapted to using accelerators like
GPGPUs. The PyVEO Python bindings furthermore simplify accessing the power
of the VE even from scripts and interactive notebooks.

1 Introduction

NEC has reimplemented its traditional SX long vector high bandwidth architecture
into a completely new form, the SX-Aurora Tsubasa Vector Engine (VE). Instead
of mainframe-sized cabinets with proprietary and custom made hardware, storage,
operating system, interconnect, one can now build a vector machine with PCIe
accelerator cards plugged into off-the-shelve Linux servers connected with Infini-
band interconnect. The development of system software and tools has been opened
up and the low entry barrier for the vector machines promises a much larger set of
users and use cases for the machines.

The NEC SX-Aurora vector engine (VE) is a long vector processor which
combines SIMD and pipelining. It has up to 48 GB 3D stacked HBM2 memory
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accessible with very high bandwidth of 1.22 TB/s and is packaged as a PCIe card
pluggable into Linux servers. Each of the eight cores has a vector processing
unit featuring 64 vector registers of the length of 256 * 64 = 16,384 bits, three
vector fused multiply-add (FMA) units, two integer ALUs and a SQRT/DIV vector
pipeline. The clock frequency of the VE is either 1400 or 1600 MHz, the higher
frequency variant being water cooled. Each core delivers up to 307 GFLOPS (double
precision)/614 GFLOPS (single precision, packed) and a memory bandwidth to the
shared 16 MB last level cache of 409 GB/s [1, 2].

While the VE looks like a classical accelerator, it offers a wider range of
programming models:

1. Native VE programming in C, C++, Fortran. Programs are running purely on
the VEs and can use OpenMP and MPI with PeerDirect communication between
VEs over PCIe or Infiniband for parallelization. Also they can call almost any
Linux system call which is forwarded and executed on the vector host (VH)
server.

2. Native VE programming with reverse offloading (VHcall). This is an extension
of the native mode and allows VE programs to offload parts of the program to
the VH, executing them on the x86_64 host system.

3. Main program running on VH with offloaded kernels running on the VE. This is
the classical accelerator model as provided by CUDA, OpenCL and others. The
VH program can use MPI and OpenMP, he offloaded kernels can use OpenMP
and issue Linux system calls.

4. Hybrid MPI program with processes running on VH and VE, sharing one
communicator.

This article focuses on the third programming model in the list above, its mecha-
nisms and API.

With VEO NEC provides the base infrastructure for offloading parts of a
VH program onto the VE. The API is somewhat similar to the 10 years old
OpenCL (Open Computing Language), a framework for executing programs on
heterogeneous hardware [3]. Like OpenCL, VEO explicitly sets arguments of called
functions, the calls them asynchronously. But VEO does not contain mechanisms for
just in time compilation of code and has a plain C API instead of being an extension
of C++ requiring a separate compiler, like OpenCL.

Another widely used language for accelerator offloading is CUDA for nVIDIA
GPGPUs [4]. It is an extension of the C++ language and requires a special compiler.
The language uses special attributes to declare and address device memory and
accelerator kernels and passes arguments to accelerator kernels similar to function
call arguments. OpenCL and CUDA accelerator kernels are not supposed to use
system calls and are not supposed to return any results, i.e. are of void type.

While OpenCL and CUDA require coding the heterogeneous part of the code
rather explicitly, i.e. heavily changing the original source code, OpenMP [5] and
OpenACC [6] take another approach: add compiler directives (pragmas in C/C++)
which guide the compiler to “do the right thing”, separate the accelerator code,
create glue code that calls an accelerator specific runtime, create a “fat binary”
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which contains the host code and the accelerator code. These approaches simplify
a lot the hybridization of existing applications. Of course, they require changing
compilers and some underlying offloading framework they can build on. VEO is
such a framework for the SX-Aurora Tsubasa VE.

The first VEO version was implemented as a C prototype in June 2015 by Erich
Focht and tested on SX-Aurora Tsubasa simulators. After the vector engine silicon
was available Teruyuki Imai re-implemented VEO in the currently available C++
and C form in October 2017. Since then VEO is being continuously developed
and improved while its API is kept as stable as possible. The code is available on
github [7] under the LGPL 2.1 license.

The next section of this article introduces the VE operating system VEOS and
some peculiarities of running VE programs. It is followed by a description of VEO
implementation details, then by a section describing the API of VEO. The PyVEO
object oriented Python bindings to VE offloading follow with an architecture
discussion and a short example. Finally the conclusion and outlook section lists
a set of projects using VEO and provides an outlook to further developments.

2 Vector Engine OS

Initially, the primary intended usage mode for the SX-Aurora was the native VE
mode for programs ported to run entirely on the VE. These programs are supposed to
do IO, communicate and interact with the operating system, and “feel” as if they’re
running on a Linux system. With the difference that the VE has no Linux kernel
running underneath, and actually has no kernel at all. VE register space is mapped
onto the VH processors and accessible from kernel space, where it is controlled by
the ve_driver kernel module. The VE operating system (VEOS) is a daemon running
with root privileges which provides operating system services for a VE. Each VE in
a system has its own instance of VEOS.

Figure 1 sketches the components involved in managing a VE and running user
processes on it.

• The VEOS daemon is responsible for process management, scheduling, memory
management and interfacing a user process to functionality provided by the
ve_driver kernel module.

• ived is a daemon managing inter-VE communication resources.
• vemmd manages the mappings needed for VE communication over infiniband.
• mmm monitoring and maintenance manager brings up and controls the state of

the VEs.
• The pseudo-process runs as a user process, manages the loading of the VE

program into the accelerator and acts as an exception and syscall handler while
the VE program is running.

With VEOS running on the VH decisions about the virtual memory layout of VE
processes as well as scheduling are taken on the VH. VE processes can use 2 and
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Fig. 1 VEOS components and VE process overview

64 MB page sizes for their virtual memory in multi-user and multi-processing mode,
but are limited to real memory mode. Due to the very high memory bandwidth and
internal parallelism the VE lacks precise interrupts, therefore a running process must
have all pages in place as well as all virtual address translations set. Page faults or
TLB misses can not be recovered on the VE.

A context switch on the VE implies copying the context over to the VH into the
memory of the responsible VEOS daemon instance. Because the 64 long vector
registers contribute to the context with 2 kB each, context switches are rather
expensive and have large latency. For long running compute workloads with few
system calls the VE operating system offloading bears the positive effect of keeping
OS jitter away. On the other hand heavily multithreaded programming patterns with
more threads than cores perform significantly slower than on a CPU with OS kernel
under the hood.

The opposite of the native VE usage model is the accelerator model with truly
hybrid VH-VE programs, where the main program runs on the VH along with
multiple other VH threads and offloads one or more compute kernels to the VE
(Fig. 2). Many programs have been ported to run this way since GPGPUs have
become popular.

VEOS has low level mechanisms for helping a user process to interact with the
VE, but there is no easy way to start VE processes and communicate with them, as
an accelerator model would need. VEO provides the basic mechanisms for this.
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Fig. 2 VE as an accelerator: sketch of the hybrid VH-VE usage model with multiple VH threads,
including the main thread, which offload VE kernel calls to multiple VE cores

3 Vector Engine Offloading Implementation

For an application programmer VEO consists of a library libveo.so which he
links with the VH side program and which provides the API described in Sect. 4.
Furthermore the user will need to split out the VE kernel functions, group and
compile them into one or more dynamically shared objects for the VE.

Figure 3 is a rough sketch of the architecture of VEO. The VH program is
creating a ProcHandle object which is used to control one vector engine. When
the ProcHandle is created a veorun helper is loaded and started into the designated
VE. This helper is providing the VE side mechanisms needed by VEO and runs as
a program of the user owning the VH program. Internally and exposed as a C API
to the user, ProcHandle has methods to load shared objects into the veorun helper
process, allocate and free memory on the VE and start/stop ThreadContexts on the
VH.

A ThreadContext object represents an additional thread on the VH which is
associated to a worker thread on the VE. When a ThreadContext is instantiated
the veorun helper is creating a worker thread on the VE by calling clone(), which

Fig. 3 The VEO architecture
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is sharing its memory space. A ThreadContext has a command queue and a result
queue. Asynchronous VE function calls are issued by enqueueing commands to
the command queue. Once the corresponding worker thread is ready to execute a
command, the parameters of the command are transfered to the VE, the function
arguments and, if needed, the stack for the VE function are prepared, and finally the
VE kernel function is invoked by the worker thread. After finishing execution the
result is transfered into the result queue on the VH and the VH application can pick
it up. Requests in a command queue are executed strictly in the submission order
and will never be reordered.

ProcHandle methods are executed synchronously, e.g. allocating and freeing
memory on the VE, loading dynamic shared objects or transferring data between
memory buffers on VE and VH. ThreadContext methods are asynchronous: VH-VE
memory transfers as well as VE kernel function calls.

4 Vector Engine Offloading API

This section describes the concrete mechanisms that a VEO program can use. First,
it requires an include file:

#include <ve_offload.h>

The version of the VEO API is an integer and can be queried as follows:

int version = veo_api_version();

At the time of writing this article the API version is 4 and the VEO package version
is 2.1.1.

4.1 Proc Handle and Contexts

A ProcHandle object is referenced in the VEO C API by a pointer to an opaque
structure which is created as follows:

struct veo_proc_handle *proc;
proc = veo_proc_create(nodeid);

The parameter nodeid specifies the VE card ID on which the VEO process (the
veorun helper binary) will be started. Enumerating the VE nodes is not in the scope
of VEO, this can be done with the libveosinfo library.

An own veorun helper can be linked statically with the mk_veorun_static
and replace the default binary. Its path can be either specified in the VEORUN_BIN
environment variable or as second argument of the alternative proc creation call:

proc = veo_proc_create_static(nodeid, veorun_path);
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After being finished with VEO the proc handle can be destroyed:

int rc = veo_proc_destroy(proc);

This operation is not mandatory because VEOS will clean up and kill the veorun
helper process when the VH main process dies, anyway.

A ThreadContext object is also addressed in the C API by a pointer to an opaque
structure. Contexts are created or opened inside procs by doing

struct *veo_thr_ctxt = veo_context_open(proc);

This creates a thread on the VH which controls the corresponding worker thread
on the VE and becomes its “pseudo process” while VE kernels are executed. The
VE worker thread is identified by the same TID as the VH thread. A user can
chose to create multiple contexts, eg. one for each VE core, or just one context
per VE. OpenMP VE kernels span multiple cores, therefore the interaction between
worker threads and OpenMP threads should be carefully managed in order to avoid
overcommitment of the VE cores.

A context can be closed by calling

int rc = veo_context_close(ctxt);

Contexts go through multiple states and under certain circumstances it can be useful
to query them:

int res = veo_get_context_state(ctxt);

The result is one of

• VEO_STATE_UNKNOWN—the context has not yet been initialized, yet,
• VEO_STATE_RUNNING—the context is currently running a request,
• VEO_STATE_SYSCALL—the context is blocked for executing a syscall

offloaded to the VH,
• VEO_STATE_BLOCKED—the context is currently stopped, with no request

running,
• VEO_STATE_EXIT—the context’s thread is exiting,

and should be interpreted with care due to the volatility of some of the states.

4.2 Libraries and Symbols

A shared library with VE kernels is loaded into the veorun process as follows:

uint64_t lib_h = veo_load_library(proc, lib_path);

The call returns a library handle that is needed for locating functions and symbols
inside the library. The call is basically a dlopen() call on the VE side issued from
inside the veorun helper.

Symbols inside the loaded libraries can be located as shown below:

uint64_t addr = veo_get_sym(proc, lib_h, sym_name);
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The return value is the VE virtual address of the symbol inside the specific instance
of the veorun helper. When using multiple proc instances, the addresses may be
different for each of them.

When the veorun helper was linked statically, one can locate functions the same
way as in a “normal” library but the lib_h argument must be set to zero.

4.3 Memory Buffer Allocation and Transfer

Allocating and freeing memory buffers are synchronous operations which require
the proc handle as first argument. The memory is allocated in the address space
of the veorun helper by calling malloc(), the buffer therefore lands on the VE
processes heap.

uint64_t ve_addr;
int rc = veo_alloc_mem(proc, &ve_addr, len_bytes);
...
rc = veo_free_mem(proc, ve_addr);

In order to transfer data between some buffer on the VH and a memory buffer on
the VE we can use two synchronous calls:

rc = veo_read_mem(proc, vh_buff, ve_addr, len);

and

rc = veo_write_mem(proc, ve_addr, vh_buff, len);

The function names are from the perspective of the VH program, i.e. veo_read
_mem() transfers data from VE to VH while veo_write_mem() does it in
the opposite direction. The asynchronous variants of these functions take as first
argument the context and return a request ID:

req1 = veo_async_read_mem(ctxt,vh_buff,ve_addr,len);
req2 = veo_async_write_mem(ctxt,ve_addr,vh_buff,len);

These requests are queued into the context command queue the same way as
asynchronous VE kernel calls and executed in the order determined by the enqueued
requests although they are actually not VE kernels but VH functions.

Waiting for a request or querying its state is done the same way as described
in Sect. 4.5.

4.4 VE Kernel Function Arguments

The arguments of an asynchronous VE function call are represented by a pointer to
an opaque structure which is, respectively, allocated and freed by

struct veo_args *args = veo_args_alloc();
...
veo_args_free(arg);
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The arguments object must be kept in memory until the result of the call has been
collected. After the corresponding request was finished the arguments object can be
reused after clearing it with

veo_args_clear(arg);

With one exception the asynchronous request arguments are prepared in a similar
way to OpenCL: by setting each of them with a type specific function, for example:

rc = veo_args_set_u64(args, argnum, u64);
rc = veo_args_set_i64(args, argnum, i64);
rc = veo_args_set_float(args, argnum, float_f);
rc = veo_args_set_double(args, argnum, double_d);

argnum is the position of the argument in the called function and the last argument
is its value. The functions ending with u64 and i64 are for 64 bit integer arguments
and have corresponding equivalents for 32, 16 and 8 bit integers. The functions
return zero when successful.

The Aurora Tsubasa VE ABI allows passing up to 8 arguments in registers. When
a function has more than 8 arguments, they are all passed on the stack and the
first 8 are also available in registers. Currently VEO is limited to passing up to 32
arguments to functions, but this limit might be increased in future.

The notable exception from OpenCL is the more complex function below:

rc = veo_args_set_stack(args,intent,argnum,buff,len);

It copies the content of a buffer buff with length len onto the VE caller stack,
reserved for local variables of the caller function and passes the pointer to this copied
buffer as the argnumth argument. The value of intent can be VEO_INTENT_IN,
VEO_INTENT_OUT and VEO_INTENT_INOUT, the buffer will be accordingly
copied in before the kernel execution, copied out after the kernel execution or copied
in before and out after. This option can be used to easily pass in and out more
complex arguments by reference, or to call Fortran functions which by default use
“by reference” arguments passing.

4.5 Asynchronous VE Kernel Function Call

Finally, after all preparation, we can call the VE function asynchronously:

uint64_t req = veo_call_async(ctxt, addr, args);

The first argument is the context, the second is the address of the function in the
context, i.e. the proc instance, as located with veo_get_sym(), and the third argument
is the prepared arguments object, described in the previous section. The function
returns a request ID which is incremented and starts with zero. In case of failure of
the async request enqueueing the function returns VEO_REQUEST_ID_INVALID.
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A more comfortable variant of the asynchronous function call does not require
finding the function address before the call but takes the library handle lhdl and the
function name as a string argument. The function’s address on the VE is determined
on the fly and cached in a hash:

req = veo_call_async_by_name(ctxt, lhdl, fname, args);

The status of a request can be queried non-blockingly:

int rc = veo_call_peek_result(ctxt, req, &result);

The result of this query is one of the values:

• VEO_COMMAND_OK—the function has finished normally,
• VEO_COMMAND_EXCEPTION—the function threw an exception on the VE,
• VEO_COMMAND_ERROR—execution error on VH side,
• VEO_COMMAND_UNFINISHED—the function did not finish, yet.

The result variable must be a 64 bit entity that will contain the value returned by the
VE function. This is different from OpenCL and CUDA: VEO kernels can return
values. Note that returning (Fortran) complex values is not supported by VEO,
although defined in the ABI.

In order to block and wait for the request to finish, call

int rc = veo_call_wait_result(ctxt, req, &result);

5 PyVEO

This section describes an implementation of Python bindings to VEO which enable
users to use VE offloading easily from inside Python programs. It extends the
reach of VE accelerator programs to scripts and even interactive use. With PyVEO
one can write interactive notebooks (e.g. Jupyter notebooks) with VE code that is
interactively executed on a VE.

The Python module is available at github [8] and is implemented in Cython. It
supports NumPy arrays and therefore VE acceleration can be integrated easily with
packages used frequently in Python like SciPy.

PyVEO includes a class that facilitates building VE kernels from inside Python,
thus has slightly extended functionality compared to VEO.

5.1 VE Offloading Objects and Methods

The Python bindings for VEO are not a one-to-one mapping of the C-API. Instead
they are embedded into a Python object hierarchy that reflects to some extent the
dependencies between the entities, as depicted in Fig. 4. IDs and VE addresses are
wrapped into objects with appropriate methods.
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Fig. 4 Architecture of PyVEO. The VeBuild class is used for creating VE shared objects or
statically linked veorun helpers including offload kernels. VeoProc is the initial class for VE
offloading support

The VeoProc object corresponds to one running instance of the veorun helper
program that controls one address space on a VE and enables its user to offload VE
kernels. This object wraps the proc handle described in Sect. 4.1.

A VeoLibrary object represents a loaded dynamically shared object inside a
VeoProc and is created by invoking its load_library() method.

A VeoFunction object represents a VE kernel (function) inside a VeoLibrary.
Functions can be located inside a library by invoking explicitly the VeoLibrary
object’s find_function() method, or implicitly, by accessing an attribute of the
VeoLibrary that is named like the expected function.

Memory buffers can be allocated inside the VeoProc, they are represented by
VEMemPtr objects. These objects can be passed as arguments to synchronous
or asynchronous VE-VH memory copying calls. Symbols inside VeoLibrary
libraries loaded into the VeoProc can also be represented as VEMemPtr
objects.

Inside the VeoProc process one or more VeoCtxt objects correspond to the actual
worker threads on the VE. These objects are created through the open_context()
method of VeoProc and wrap the opaque context structure described in Sect. 4.1.

A VeoFunction invoked on a VeoCtxt returns a VeoRequest object. The Veo-
Request can be waited for (synchronous wait) with the method wait_result() or
“peeked” at for asynchronous checks with peek_result(). The asynchronous VE
function invocation is more seamless than in VEO’s C-API, without the usage of
the arguments object. The first argument of a function is the context on which it
shall be executed, followed by the function’s arguments. Due to the ambiguity of the
Python data types, the argument and result types must be declared by the function’s
args_type and ret_type methods.
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With OnStack objects it is possible to pass in and out arguments that need to be
accessed by reference. Python objects that support the buffer interface are supported
as arguments of OnStack. The initialization syntax is:

OnStack(buff, [size=...], [inout=...])

with the arguments:

• buff: is a python object that supports the buffer interface and is contiguous in
memory.

• size: can limit the size of the transfer. If not specified, the size of the buffer is
used.

• inout: the scope of the transfer, can be VEO_INTENT_IN, VEO_INTENT_OUT
or VEO_INTENT_INOUT.

5.2 Building VE Offloadable Kernels

Simple VE kernels can be represented as strings inside Python and use the VeBuild
class for compiling and building the dynamically shared VE library or veorun helper
executable. This is an easy way to start experimenting with code on the Vector
Engine.

After instantiating a VeBuild object one can define an arbitrary number of
VE kernel source fragments by calling the methods set_c_src(), set_cpp_src() or
set_ftn_src() for, respectively, C, C++ and Fortran sources. Each method takes the
arguments

• label—a string with a unique label for the code fragment, e.g. its function name,
• content—a string containing the source code,
• flags—optional argument with compiler flags specific to the current code

fragment,
• compiler—optional argument specifying the path to the compiler for the current

code fragment.

In order to keep the current directory clean, one can specify a build directory by
calling the set_build_dir() method. Finally, building the dynamically shared object
is being done by invoking the build_so() method, which again allows for specifying
compiler flags, libs, or a linker. Building a statically linked veorun helper is done by
build_veorun(). Both build methods return the path to the built library or executable,
which can be passed to the VeoProc methods.
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5.3 PyVEO Example

The following example is a trivial piece of code using many of the PyVEO features.
A VE kernel that computes the average of an array of doubles is defined in a
VeBuild object. A shared object is created and its path is returned in the variable
ve_so_name.

An offloading process and context are created in proc and ctxt, then the VE
shared object is loaded and represented by the lib object. The average VE kernel’s
argument and result types are set in the following two lines.

A random numpy array is created in the variable a, it’s average is computed and
printed on the VH with the numpy average method, then an asynchronous request
req is created and submitted to the VE. The content of the array a is transfered
over the stack and passed into the VE kernel by reference through OnStack.

Finally the result avg is retrieved by waiting synchronously for the request to
finish.

1 import os
2 from veo import *
3

4 bld = VeBuild()
5 bld.set_build_dir("_ve_build")
6 bld.set_c_src("_average", r"""
7 double average(double *a, int n)
8 {
9 int i;

10 double sum = 0;
11

12 for (i = 0; i < n; i++)
13 sum += a[i];
14

15 return sum / (double)n;
16 }
17 """)
18 ve_so_name = bld.build_so()
19

20 # VE node to run on, take 0 as default
21 nodeid = os.environ.get("VE_NODE_NUMBER", 0)
22

23 proc = VeoProc(nodeid)
24 ctxt = proc.open_context()
25 lib = proc.load_library(os.getcwd()+"/"+ve_so_name)
26 lib.average.args_type("double *", "int")
27 lib.average.ret_type("double")
28

29 n = 100000 # length of random vector: 100k elements
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30 a = np.random.rand(n)
31 print("VH numpy average = %r" % np.average(a))
32

33 # submit VE function request
34 req = lib.average(ctxt, OnStack(a), n)
35

36 # wait for the request to finish
37 avg = req.wait_result()
38 print("VE kernel average = %r" % avg)
39 del proc

6 Conclusion and Outlook

With VEO the SX-Aurora Tsubasa has received the basic mechanisms to expand
the pool of usage models to a pure accelerator model with asynchronous VE kernel
offloading while the VH is running the main program’s threads. This report has
introduced the implementation and API of VEO, which is in some extend similar to
OpenCL and CUDA, but differs for example in the detail that offloaded VE kernels
can call almost any systemcall. This detail makes the porting and hybridization
of programs much easier because it allows for rather feature-rich offloaded code
fragments.

VEO has been picked up by a set of projects which are either using it or
implement different offloading paradigms with its help.

The TENSORFLOW port for VE [9] is offloading the neural networks compu-
tations to the VE while keeping the frontend of TENSORFLOW on the VH. This
made porting much easier than a full native VE port.

Another AI application is SOL [10] which optimizes neural networks for
PyTorch, TENSORFLOW and MXNET, compiles the optimized nets just-in-time
for the VE and uses VEO for offloading the heavy neural network work while
keeping unmodified plain x86_64 frontends on the VH. Right now SOL enables
the VE to use three major AI frameworks without actually modifying them.

The Heterogeneous Active Messages (HAM) project [11] implements a C++
template library that uses VEO and VH-SHM mechanisms on the vector engine
for implementing a low latency and high bandwidth framework for hybrid program-
ming.

Work is being done to support the OpenMP target directive to offload to VE
targets [12] by using VEO, which makes hybrid programming for C only require
some additional #pragma directives.

Python bindings for VEO are available with the PyVEO project [8] and enable
users to call VE kernels from inside Python programs.

This first implementation of VEO brought novel functionality to the SX-Aurora
Tsubasa and helped porting various applications. At the same time it uncovered
limitations in VEOS as well as in the implementation design, itself. Just recently,
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with VEOS 2.1.3, we were able to remove the limitation that proc instances could
only be created from the main VH thread, not from child threads. The VEOS
development is on the way to enable the simultaneous use of multiple VEs from one
VEO process. In a project we work at improving the VH-VE transfer performance
by switching to user DMA descriptors. Finally, the latency penalty due to the VEO
request queue being placed on the VH side will need to be tackled soon, the HAM
project showed a possible and promising approach.
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Potential of LLVM for SX-Aurora

Simon Moll, Matthias Kurtenacker, and Sebastian Hack

Abstract The NEC SX-Aurora TSUBASA is a high-performance vector CPU for
sustained simulation performance. The existing compiler toolchain for the SX-
Aurora is comprehensive but also proprietary restricting its use in research and
confining its development to internal teams at NEC. In recent years, the open
source LLVM compiler infrastructure has seen significant support and contributions
by major players such as NVIDIA, AMD, ARM, Intel, Apple and Google. These
employ LLVM in their official toolchains, GPU driver stacks and mission-critical
infrastructure. Likewise, many compiler research labs have adopted LLVM for its
accessibility, robustness and permissive license. Recently, the LLVM community
has been discussing an extension for scalable vector architectures (LLVM-SVE),
which feature an active vector length just as the SX-Aurora does. In this paper, we
will discuss the potential of LLVM for the NEC SX-Aurora. The Compiler Design
Lab at Saarland University is working with NEC on an LLVM-SVE backend for the
SX-Aurora.

1 Introduction

The NEC SX-Aurora TSUBASA (SX-AT) stands in a long line of Vector CPUs
since the first Cray vector processors. Vector processing is getting more traction
beyond SX-AT. It is the processing model of recent ARM ISAs (Helium, SVE,
SVE2) and the RISC-V V extension.

This renewed popularity is driven mostly by two factors: the energy efficiency of
the vector processing paradigm and the abundance of parallelism in modern HPC
and Machine Learning codes.

The programming environment and tooling for SX-Aurora has been proprietary,
hindering innovation by parties outside of NEC. This has recently changed with
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LLVM IRC++ SX-AT
Frontend

(eg Clang)

Backend

Transformations
(eg Vectorization)

Fig. 1 Basic compilation pipeline of LLVM

a new interest by NEC to open up the SX-Aurora ecosystem for open source
development. To this end, an open-source compiler backend for SX-Aurora is
currently under development [5] NEC is co-operating with the Compiler Design
Lab at Saarland University to build an LLVM backend for the NEC SX-Aurora
Vector CPU.

The backend is based on the production-quality and open-source LLVM compiler
infrastructure.

In this paper, we will discuss the opportunities and challenges of adopting the
LLVM compiler for SX-AT development.

2 The LLVM Compiler Infrastructure

LLVM [7] is one of the leading open source compiler frameworks in terms of
adoption by industry and research. LLVM has a library-based design and is intended
to mesh well with applications that want to leverage compiler technology [6].

The main program representation of LLVM is the LLVM Intermediate Repre-
sentation (LLVM IR). Static compiler pipelines based on LLVM follow a simple
structure as shown in Fig. 1. Compiler frontends translate high-level program code
into IR, a pipeline of transformations to optimize the program in IR and finally
backends translate IR into target machine code. LLVM has been successfully
employed for targeting a diverse set of architectures, ranging from x86 and ARM
CPUs to FPGAs and GPU architectures (NVIDIA, AMD). As of writing, the official
LLVM repository alone ships backends for 18 different architectures.1

C,C++ Support
LLVM supports C and C++ through Clang, the official LLVM frontend for C-like
languages in the LLVM project. The Clang frontend currently supports C++17 [3].
Clang is open source just like LLVM and also follows a modular design.

1https://github.com/llvm/llvm-project/tree/master/llvm/lib/Target.

https://github.com/llvm/llvm-project/tree/master/llvm/lib/Target
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Fortran Support
Fortran is currently supported through the Flang project, which was open sourced
after initial closed development by NVIDIA/PGI. The Flang project describes its
current status as “production quality” with support for “Fortran 2003, some features
from Fortran 2008, and OpenMP.” [4]. Due to its origins in a proprietary code base
and development, the current Flang compiler does not offer the same modularity
and clean design as the Clang frontend.

Motivated by the short comings of current Flang, F18, a clean slate re-design
was proposed. F18 was chosen to become the official Fortran compiler of LLVM.
Different to current Flang, F18 is an open source project from the start and
coordinates closely with the LLVM community. The expectation is that F18 will
replace current Flang by 2020, by which time F18 will also be re-named to Flang.

3 Challenges in Bringing LLVM to SX-Aurora

The development of LLVM was driven by support for processors with short SIMD
instructions, such as ARM NEON, IBM AltiVec and x86 SSE/AVX. This has lead
to limitations when targeting Vector CPUs with LLVM at its current state.

LLVM IR has a builtin fixed-length vector type that supports SIMD operations
as shown in Fig. 2. For example, <8 x double> is the LLVM IR type for a
double vector with eight elements. All arithmetic instructions operate on scalar
types as well as on vector types. For example %x = fadd double %x, %y is a
scalar addition and %a = fadd <8 x double> %b, %c is the element-wise
addition of two 8 element vectors.

However, there are three major limitations in this design when targeting SX-
AT.

1. Native LLVM vector instructions do not support predication. Basically all vector
instructions on SX-AT support a mask argument. This is also true for more recent
SIMD ISAs such as x86 AVX512. Vector masking is a hard requirement to
support side-effecting operations such as memory accesses or trapping arithmetic
(division).

2. Native LLVM vector instructions do not feature an Active Vector Length (AVL).
As for predication, SX-AT supports an Active Vector Length on almost every
vector instruction. This also holds for the RISC-V V extension [15]. As for vector
masking, proper modeling of the AVL in LLVM is critical for side-effecting
operations.

1 %x = fadd double %y, %z

(a)

1 %x = fadd <8 x double> %y, %z

(b)

Fig. 2 Native SIMD types and operations in LLVM. (a) Scalar IR. (b) SIMD IR
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3. There is a read-only register in SX-AT that provides vector length of hardware
registers, the Maximum Vector Length (MVL). Future versions of SX-AT could
double the vector length and the value of MVL would double as a result. The SX-
AT ISA allows for vector programs that exclusively rely on MVL to determine
the hardware vector length at runtime. Programs of that kind are called vector-
length agnostic since they do not require any fixed vector length (e.g. 256 for
current-generation SX-AT).

SX-AT shares this property with the ARM Scalable Vector Extension (SVE)
and also the RISC-V V extension [14]. ARM proposed LLVM-SVE to enable
vector-length agnostic programming in LLVM. This could also be used for SX-
AT, if vector-length agnostic programming is desired. Given that for current SX-
AT MV L = 256, LLVM-SVE support is not strictly necessary to fully support
SX-AT in LLVM.

4 LLVM-VP: Vector Predication for LLVM

Current LLVM IR does not natively support vector instructions with neither masking
nor an active vector length.

There is a simple approach that promises to offer a short-cut to Active Vector
Length support in LLVM. The idea is to add a compiler builtin, and intrinsic, to
LLVM IR that sets the current Active Vector Length. Any vector instructions after
the call should then operate under the AVL that was last set before it. We show an
example of this in Fig. 3a.

1 call @set_avl(256)
2 %c = fadd <256 x double> %a, %b
3 call @set_avl(128)
4 %e = fdiv <256 x double> %d, %c

(a)

1 call @set_avl(256)
2 %c = fadd <256 x double> %a, %b
3 %e = fdiv <256 x double> %d, %c
4 call @set_avl(128)

(b)

1 %c = fadd <256 x double> %a, %b
2 %e = fdiv <256 x double> %d, %c
3 call @set_avl(256)
4 call @set_avl(128)

(c)

Fig. 3 Arithmetic instructions in LLVM IR can move freely across functions call. (a) AVL
setting before arithmetic as intended by the programmer or IR generator. (b) A legal re-ordering.
The division is additionally performed on elements 128–255 with implications to floating-point
exceptions (division by zero) and performance (latency of vector instructions depend on AVL). (c)
Another legal re-ordering. The values of %c and %e entirely depend on the (unknown) initial state
of AVL
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1 %c = llvm.vp.fadd.v256f64(%a, %b, %m, i32
2 %e = llvm.vp.fdiv.v256f64(%y, %z, %m, i32

256)
128)

Fig. 4 LLVM-VP version of snippet Fig. 3a. The AVL and masks are passed as arguments. Legal
re-orderings can not affect the AVL or mask argument

There is a problem with that approach. Arithmetic instructions in LLVM IR do
not depend on the system state in any way, they are pure. Hence, transformations
in LLVM may freely move arithmetic instructions around any functions calls,
including calls set_avl. This results in IR programs that are legal re-orderings
but that are invalid from the point of intended semantics as shown in Fig. 3b, c.

The Vector Predication extension for LLVM (LLVM-VP) [8] is a proposal to
add support for both. LLVM-VP introduces a set of compiler intrinsics (builtin
functions) to LLVM IR. There is one intrinsic per vector instruction. Different to
the vector instructions, every LLVM-VP intrinsic has an explicit value argument for
the Active Vector Length and the vector mask. The implicit dependence on the AVL
register turns into an explicit value dependence (Fig. 4).

5 The Region Vectorizer

The Region Vectorizer [9] (RV) is a vectorization plugin for LLVM IR. RV is
available on github.2 RV is an enabling technology that can be used to build
vectorizing compilers based on LLVM. For example, RV can be used to implement
a vectorizing OpenCL driver similar to the Intel OpenCL Implicit Vectorization
Module [10, 13].

RV vectorizes outer-loops and whole functions. In case of an outer-loop, it
performs outer-loop vectorization. For the latter, it vectorizes entire scalar functions
to process vector inputs. RV supports arbitrary reducible control-flow within those
loops or functions. By that virtue, RV enables a programming model in C,C++ code
that is ISPC-like [12] and similar to programming CUDA kernels [11].

In contrast, the vectorizers that are part of LLVM (LoopVectorizer and Unroll-
and-jam) do not support any control-flow inside the vectorized region.

We provide a case study to demonstrate the implications of standard RV for SX-
AT. Beyond this paper, there already exists published work on multi-dimensional
vectorization for SX-AT using TensorRV, a version of the Region Vectorizer.

2Region Vectorizer. https://github.com/cdl-saarland/rv.

https://github.com/cdl-saarland/rv
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Fig. 5 Wavefront intrinsics 1 int foo(double v) {
2 double v = A[i];
3 if (any(v < 0.0)) {
4 // branch taken if for any thread v < 0.0
5 return -1;
6 } else {
7 return 1;
8 }
9 }

10

11 int foo_v2(double2 v) { /* generated by RV */
12 // foo_v2(<-1.0, 0.0>) = -1
13 // foo_v2(<1.0, 2.0>) = 1

}

5.1 Case Study: Tree Traversal Codes

The Region Vectorizer vectorizes arbitrary reducible control-flow and supports
wavefront intrinsics (horizontal operations). In this case study, we will demonstrate
the performance implications of these two capabilities.

Wavefront intrinsics [2] are functions that are compute one result for all threads
that enter them. Consider the example in Fig. 5. The any function is an intrinsic
that evaluates to true for all threads if its argument is true holds for any thread.
In this example, the function foo is vectorized for two threads into a new function
foo_v2. The scalar argument double becomes double2. Each lane holds the
value of v for the respective thread. The examples below the vector function
signature foo_v2 show how the vectorized version behaves.

Figure 6 shows a simple binary tree search for elements of the array Q in the tree
given by node. In the classic thinking of loop vectorization, we would write a loop
around the binary tree search kernel and hope for the compiler to vectorize it. We
can force the compiler to vectorize the loop with the use of pragmas (e.g. OpenMP
#pragma omp simd)>.

As we can see, the vectorized code will contain slow vector gather accesses. This
is because the threads traverse the tree depending on the element they are querying.
Therefore the access behavior on the tree structure is highly data-dependent.

We will now see how wavefront intrinsics and vectorizing with control-flow can
be used to create an optimized binary tree search. Figure 7 shows the code. There
are two key differences. First, the new algorithm maintains a stack, which might
be surprising given that this is not necessary for the regular binary tree search. The
stack is used as a worklist to keep track of all the nodes that still need to be visited.

Second, the algorithm uses the any-wavefront intrinsic. If any thread needs to
visit a left or right child of the current node, that node is put on the stack for all
threads to visit. The advantage lies in the fact that the binary tree nodes can be
handled entirely in scalar registers. In the RV-generated version, vector code is only
used in connection with the different query elements (elem).

Figure 7 is an example of a speculative traversal code [1].
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1 // Binary tree node
2 struct Node {
3 double data;
4 int left;
5 int right;
6 };
7

8 // [..]
9

10 // Binary tree search
11 #pragma omp simd
12 for (int tid = 0; tid < 256; ++tid) {
13 int next = 0; // vector value
14 const double elem = Q[tid]; // vector load
15

16 while (next >= 0) {
17 double label = nodes[next].data; // vector gather
18 if (elem < label) {
19 next = nodes[next].left; // vector gather
20 } else if (label < elem) {
21 next = nodes[next].right; // vector gather
22 } else {
23 Result[tid] = next; // vector store
24 continue;
25 }
26 }
27 Result[tid] = -1; // vector store
28 }

Fig. 6 Binary tree search for 256 elements. Annotated is the kind of memory accesses that will be
used when the loop is vectorized

The while loop in Fig. 6 will take as many iterations as the longest path taken
by any thread. Figure 7 version will execute the while loop once for every node
that will be visited.

The traversal of the binary tree is handled by the Scalar Processing Unit (SPU),
which has an L1 cache one core. In contrast, the traversal of the data structure is
handled entirely by the Vector Processing Unit (VPU) in Fig. 6. It uses less efficient
memory accesses and the VPU has no cache close to core.

If the threads visit almost the same nodes in the traversal, Fig. 7 can outper-
form the standard loop version because of its more efficient traversal scheme. If
the threads diverge too early in their traversal, the speculative version becomes
inefficient because it does not benefit from the node stack anymore. In the extreme
case, the speculative version degrades to scalar performance. Then, every iteration
of the while will only be relevant for a single lane since only one thread actually
needs to visit that node.

5.1.1 Results

We evaluate the performance of tree traversal codes [9] with control-flow and
wavefront intrinsics on SX-AT. For these experiments, we use the LLVM-VP
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1 // SPMD binary tree search with speculative traversal.
2 void
3 search(Node * nodes, double * Q, int * Result, int tid) {
4 // traversal stack
5 int stack[512]; // shared across threads
6 stack[0] = 0; int top = 1;
7

8 const double elem = Q[tid]; // vector load
9 int result = -1;

10

11 while (top > 0) {
12 int next = stack[--top]; // scalar load
13 double label = nodes[next].data; // scalar load
14 int right = nodes[next].right; // scalar load
15 int left = nodes[next].left; // scalar load
16

17 if (label == elem) {
18 result = next;
19 break;
20 }
21 if (any(elem < label) && left > 0)
22 stack[top++] = left; // scalar store
23 if (any(label < elem) && right > 0)
24 stack[top++] = right; // scalar store
25 }
26 Result[tid] = result; // scalar store
27 }
28

29 // Vectorized binary tree element search for 256 elements.
30 void
31 search_v256(Node * nodes, double * Q, int * Result, int tid
32 // Generated by RV from LLVM IR of "search" function.
33 }

) {

Fig. 7 The Region Vectorizer enables ISPC-like programming in any language that translates to
LLVM IR

versions of the Region Vectorizer [9] and the experimental SX-AT backend.3 The
traversal codes operate on double-type data.

Platforms

All results are for a single core on either the Vector Host (VH) or the SX-AT Vector
Engine (VE).

• VE A single NEC Aurora TSUBASA Vector Engine 10B model, with 1.4 GHz
clock frequency.

• VH Intel(R) Xeon(R) Gold 6126 CPU (Vector Host).

3https://github.com/cdl-saarland/llvm-aurora-dev/tree/develop_cdl.

https://github.com/cdl-saarland/llvm-aurora-dev/tree/develop_cdl
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Configurations and Compilers

We tested the following configurations for each benchmark:

• VH-GCC GCC 7.3.1, relying on automatic loop vectorization (no wavefront
intrinsics or speculative traversal).

• VH-Clang Clang (based on Clang/LLVM repositories as of March, 2019). Using
LLVMs own vectorizers.

• VH-Clang + RV LLVM + Clang + RV. (Wavefront intrinsics and speculative
traversal).

• VE-NCC NCC 2.1.1, relying on automatic loop vectorization (no wavefront
intrinsics or speculative traversal).

• VE-Clang LLVM-VE backend + Clang. Scalar traversal codes (LLVM can
not vectorize the outer-loops by its own means, no wavefront intrinsics, no
speculative traversal).

• VE-Clang + RV LLVM-VE backend + LLVM-VP + Clang + RV. Tree traversal
codes vectorized by RV (Wavefront intrinsics and speculative traversal).

Benchmarks

The traversal codes and inputs comprised the following:

• bintree Binary tree search as in Fig. 7 for the wavefront version and Fig. 6 for
the loop version. 218 tree elements.

• kmeans-kd Kmeans algorithm for 128 clusters on 106 many random 2D
coordinates. The kd-Tree is built for the 128 cluster centers to accelerate the
1-NN search.

• nn-kd 1-NN search over 106 many random 2D coordinates using a kd-tree.
• pc-kd Point Correlation search over 106 random 2D coordinates (kd-Tree).
• nn-vp 1-NN search over 106A random 2D coordinates (Vantage Point tree).
• xsbench Inner loop of the DoE SXBench proxy application (nuclide grid option).

Binary tree search on an array of 107 elements.

Figure 8 shows the results normalized to speedups over the VH-GCC configura-
tion. We make the following observations:

Speculative traversal can enable significant speedups on both platforms, VH and
VE. We see speedups of up to ×10.1 for kmeans-kd on the VH and up to ×1.78 on
the VE.

However, the speculation does not always pay off. The speculative RV-versions
of NN-VP perform worse than the scalar version on the VH. Also, the scalar VE-
Clang code is less efficient than the code that NCC generates.

GCC does not seem to vectorize the traversal loops. We know that the VH-Clang
version does not vectorize the traversal loops and performance is close to GCC.

The difference between scalar code and speculative vector code is more pro-
nounced on the VE than on the VH. This is unsurprising given the smaller vector
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Fig. 8 Performance evaluation on tree traversal codes

size on the VH (16 double elements) whereas the VE has the potential to process
256 queries at once.

The results show that the VE-Clang+RV programming model is able to outper-
form the classic NCC outer-loop vectorization model. RV operates on speculative
traversal codes, whereas NCC is given the loop version, which puts NCC at a
disadvantage in this benchmark. However, it should be noted that NCC does not
support the wavefront programming model the way RV enables it for LLVM.

6 Conclusion

LLVM is a state of the art compiler framework for static compilation. In this paper,
we discuss the potential as well as the challenges that need to be addressed to fully
leverage LLVM for SX-AT development.

The LLVM ecosystem benefits from its modular structure. It feature the state-
of-the-art Clang frontend for C and C++ as well as serious efforts to bring Fortran
support to LLVM.

At the same time, the SIMD support in current LLVM is insufficient to fully
target the vector ISA of SX-AT. Efforts such as the LLVM Vector Predication
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extension show that these concerns are being addressed. The existence of proposals
like LLVM-VP shed light on the benefits of an open source compiler infrastructure.

We show in a study of tree traversal codes that the Region Vectorizer for LLVM
enables a new programming model for SX-AT. The speculative programming model
of RV unlocks performance on SX-AT that is inaccessible from the proprietary NEC
compiler toolchain.
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Bad Nodes Considered Harmful: How
to Find and Fix the Problem

Marco Seiz, Johannes Hötzer, Henrik Hierl, Stefan Andersson,
and Britta Nestler

Abstract Large, distributed systems of computing units are the current state of
the art for conducting high-performance computing. With large systems comes an
increasing chance of failure of any component in the system, necessitating research
as how to cope with failure. Failures may manifest as compute nodes shutting down,
but also in differing performance among compute nodes. This chapter concerns itself
with investigating a recent occurrence of the latter and how to avoid this in large
scale runs.

1 Overview of the Problem

High-performance computing is used to accelerate the development of various
applications ranging from weather predictions over medical imaging to materials
simulations. In order to calculate large domains in reasonable times, many (dis-
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tributed) compute units are necessary. Each compute unit however has its own
individual error probability p, with the error manifesting as e.g. complete shutdown
or performance deficits. With N connected compute units, the probability of at least
one error occurring is 1 − (1 −p)N , hence the chance of at least one error occurring
sharply rises with the system size N . Schroeder and Gibson [1] investigated the
node shutdown failures of different large systems over multiple years, ranging
from 3 to 0.1 failures per year per processor. Consider the probability of at least
one error occurring on any day reaching 50%, then we would require between
84 processors and 2530 processors for the systems investigated by Schroeder and
Gibson. The HLRS Hazel Hen system considered in this chapter has a failure rate of
less than 0.000 56 failures per year per processor. Applying the same consideration
for the Hazel Hen, this would require 451 796 processors. The estimates based
on Schroeder and Gibson’s data are likely below the number of processors in the
considered systems, implying daily failures, but for the Hazel Hen the number of
processors is very roughly about three times the number of available processors, i.e.
a failure would occur only every 3rd day.

When node shutdown occurs, parallel applications employing the message
passing interface (MPI) will usually terminate the parallel application. To safeguard
against this and continue the programs regular checkpoints can be stored to disk.
Recently extensions to MPI have been discussed under the umbrella of resilience to
recover the program execution [2–4].

Besides node shutdown, nodes may also perform below specifications. When
such nodes are connected, their inhomogeneous performance can impact total
performance as well as scalability. The performance deficit incurred by inhomo-
geneously performing compute units has been investigated previously by Acun et
al.[5, 6]. Therein they showed that environmental conditions such as temperature
or power draw induce clock frequency variations due to Turbo Boost. Mitigations
for clock frequency variation suggested by Acun et al. include disabling Turbo
Boost, frequency pinning and dynamic load balancing. In his PhD thesis, Acun [7]
investigated the reasons for frequency variation more closely, concluding that both
chip temperature and power draw are significant factors. Inadomi et al. [8] consid-
ered performance variation under the lens of power constraints and manufacturing
variability. As not all chips are born equal, the chips get binned according to their
performance characteristics after manufacturing. When a power draw constraint is
imposed on chips of such a bin, performance is affected drastically [9]. Further
investigations include [10, 11].

These kinds of performance variations can also be observed on the HLRS Hazel
Hen system, as shown in the histogram of node performance in Fig. 1. While the
variation seems to be limited with around ±30 GFLOP/s (±4%) around the median
in these measurements, the worst compute units may be much worse than this. Case
in point being the weak scaling results depicted in Fig. 2, which is based on a
3D domain decomposition of the explicit time integration of two coupled partial
differential equations. While the efficiency is almost ideal up to 100,000 cores,
a sharp drop occurs beyond this. In the rest of this chapter, we will specify the
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Fig. 1 Histogram of per-node HPL performance results on the Hazel Hen. The minimal per-
formance is 801 GFLOP/s and the maximal performance is 861 GFLOP/s with the median
performance at 828 GFLOP/s

Fig. 2 Weak scaling behavior on the Hazel Hen for a forward time central space scheme of a
system of two coupled partial differential equations. After almost ideal scaling up to 100,000 cores
there is a sharp drop in efficiency. This chapter is concerned with the reason for this sudden drop

experimental conditions for this, analyze the root cause of this performance drop
and show solutions for this kind of problem.

2 Environment

In this section we will specify the computing environment as well as the code used
for the experiments.
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2.1 The HLRS Cray XC40 Hazel Hen

For our measurements we used the Hazel Hen supercomputer [12] located at the
High-Performance Computing Center Stuttgart (HLRS). The Cray XC40 system
consists of 7712 nodes with 2 sockets each with a 12 core Intel Xeon CPU E5-
2680 v3, each of which has a theoretical peak performance of 480 GFLOP/s per
socket. For the interconnect four nodes share a Cray Aries network chip which are
connected using a DragonFly network topology. Hazel Hen employs the Application
Level Placement Scheduler to map parallel applications onto compute nodes with
the aprun command.

For the Hazel Hen system, Cray uses several tools to monitor the system and
pro-actively removes any suspicious node from the production pool before it causes
problems. These tools either monitor the whole system, like the ‘Lightweight Log
Manager’ which collects all log files from the nodes or a monitor, which constantly
checks the number of ECC error of the DIMMS on all nodes. Other tools work on
a job level, like the ‘Node Health Checker’ (NHC), which performs several health
checks at the end of a job. The combination of all these efforts is that Hazel Hen, on
average, experiences less than 2 nodes failures on running jobs per week. Assuming
that the whole machine is in full use this translates to a failure rate of less than
0.00056 failures per year per processor as mentioned in the introduction.

2.2 The PACE3D Framework

The massive parallel framework PACE3D [13] is a multi-physics solver to study
materials science processes with the phase-field method [14]. Parallelization of the
code is achieved with the message passing interface (MPI). Each rank is assigned
its own rectangular subdomain with ghost layers depending on the discretization.

For the measurements shown in this work, two coupled partial differential
equations (φ, μ) are used based on the model in [15]. In Algorithm 1 the
general structure of the calculation and communication is shown. The equations
are implemented as separate sweeps using a src field of the current time step and
dst field to store the new time step. Discretizing these with the classical forward-
time-central-space scheme requires one cell thick ghost layers in each direction.
Each equation update depends on the direct neighboring cells (D3C7) of its own
src field as well as the center cell (D3C1) of the other field. Due to this kind of
dependency, calculation and communication of both equations can be overlapped,
which is realized with non-blocking sends.

Additionally to the parallelization with MPI and overlapping communication,
optimizations on various levels are performed, with the entire application showing
up to 32.5% of the theoretical single core peak performance. The code was compiled
with GCC 8.2.0 with cray-mpich 7.7.4 providing the MPI implementation.
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Algorithm 1 Time step with overlapping communication

1: END: COMMUNICATION GHOST LAYERS (φsrc)

2: φdst ← φ-calculation
(
φsrc, μsrc

)
//Stencil dependencies: D3C7 (φsrc) and D3C1 (μsrc)

3: BOUNDARY CONDITIONS(φdst)
4: START: COMMUNICATION GHOST LAYERS (φdst)
5: END: COMMUNICATION GHOST LAYERS(μsrc)

6: μdst ← μ-calculation
(
μsrc, φsrc, φdst

)
//Stencil dependencies: D3C7 (μsrc), D3C1 (φsrc)

and D3C1 (φdst)

7: BOUNDARY CONDITIONS (μdst)
8: START: COMMUNICATION GHOST LAYERS (μdst)
9: SWAP φsrc ↔ φdst and μsrc ↔ μdst

Timers based on clock_gettime() are employed to measure runtimes.
These are set around the φ computation, the μ computation, the waits on the non-
blocking communication, the initialization, as well as around the entire application.
The sum of the individual timers compares reasonably with the timer for the
entire application. Per-process timing results are stored in an SQL database.
During the scaling runs no data was written to disk. By appropriate construction
of the simulation domain, the processes were ensured to be load balanced. A
sufficient number of iterations was calculated to reach steady-state performance.
The frequency of the processors was pinned to 2.5 GHz.

3 Analysis of the Problem

To analyze the performance drop of Fig. 2 we used the individual timer data
stored in the SQL database. In Fig. 3 the total time for the φ calculation, the μ

calculation, the φ communication and the μ communication are plotted over the
ranks. Approximately in the middle of the plot a clear increase of the two calculation
times can be seen. The magnification in Fig. 3b reveals that exactly 24 cores are
affected by this.

By employing the environment variable MPICH_RANK_REORDER_DISPLAY,
which shows the mapping between rank IDs and the physical compute nodes, the
24 cores were found to be located on a single bad node. In a joint analysis with
the HLRS it was found that this node was running at the minimum frequency of
1.2 GHz. As this was not considered an error by the system software at the time, it
was not reported.

Once the bad node was determined, it was excluded from following runs by
employing the aprun option--exclude-node-list to exclude it and allocating
an additional node to compensate for the potentially bad node.
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Fig. 3 Runtimes for the two kernels (φ calc, μ calc) and the two ghost layer exchanges (φ comm,
μ comm) over the full machine and magnified around the peak. The timings show a clear increase
of the calculation time for 24 cores which correspond to 1 node. This increase of calculation time
causes all other communication time to increase dramatically. (a) Runtimes for all processes by
application part. (b) Zoomed-in view of (a) around the abnormal processes

4 Solution

Following this manual solution, the bad node was excluded from the node pool at
HLRS. In order to be resilient against further bad nodes, a script to detect these bad
nodes was developed. A small benchmark (e.g. HPL) is calculated on each node,
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giving performance information per node (Pi) in terms of FLOP/s. The median of
the performance (Pm) is determined and the relative difference in performance �P

is given by:

�P = (Pi − Pm)/Pm (1)

If �P is negative and deviates by more than a threshold percentage from the median,
the node is excluded. Algorithm 2 shows pseudocode for the principal design of a
script to realize this.

Algorithm 2 Algorithm for filtering out bad nodes
thresh ← −0.2
for node in NODES do

execute benchmark on each node, write to PERFFILE
end for
determine median performance Pm

for node, perf in PERFFILE do
�P = (perf − Pm)/Pm

if �P < thresh then
print node to file

end if
end for
execute parallel application without bad nodes

Whenever this approach is applied, the job resources must contain more nodes
than required for the application, as some nodes may be excluded by this method.
When too many nodes are outside of this performance window, the parallel
application may fail to start.

5 Conclusions

In this work we have shown how bad nodes can impact the performance as well
as scalability of parallel codes. Based on per-process timers the bad node was
identified and excluded in further runs. With this experience, a benchmark script
was developed together with the HLRS to automatically exclude bad nodes. Finally,
Cray has defined a test to check against nodes running at abnormally low frequency,
allowing the HLRS to exclude these bad nodes without requiring user intervention.
In the case that the computing center is not testing for performance errors, it is
advisable to manually test large scale jobs for bad nodes.
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vTorque: Introducing Virtualization
Capabilities to Torque

Nico Struckmann

Abstract The flexibility and portability commonly known from Clouds provide
many benefits to users, software developers, administrators and data-center owners.
With emerging technologies addressing today’s major bottleneck of virtualization
technologies, the virtual I/O, incentives for adoption of virtualization in HPC
infrastructures arise. The advantages are manyfold for virtualization in HPC. Users
can be served with flexible customized environments. Software developers can
package applications with best matching dependencies. Administrators can upgrade
or change their HPC infrastructure, i.e. the operating system, without impact on
the applications served. Data-center owners can serve conflicting user groups and
increase overall resource utilization by consolidating workloads with opposite
characteristics. vTorque is an non-intrusive approach to introduce virtualization
capabilities to the PBS based batch-system resource manager Torque. For traditional
HPC infrastructures it enables cloud-like features, e.g. flexibility and portability,
while maintaining the ability to run jobs on bare metal. vTorque further integrates
available optimizations for virtual I/O throughout the whole stack, from the
hypervisor to the guest level, as optional components.

1 Introduction

HPC and Clouds are quite opposite compute environments serving different pur-
poses, having disjunct pros and contras.

HPC is usually a static environment in terms of operating system, kernel version,
compute resource provisioning, and site specific properties, such as paths for homes
and intermediate storage. Often needs of different user groups are in conflict to each
other, e.g. the best matching kernel version. Additionally, HPC applications often
require adaptation for each HPC environment. Resource allocation is usually user-
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exclusive and may not provide best overall utilization. Compared to clouds HPC
environments provide a higher performance, especially for parallel applications and
thus reduce the time to result.

Cloud on the other hand is highly flexible and has no restrictions other than
compatibility of the CPU architecture (e.g. ARM, x86). Developers can prepackage
their applications with best matching dependencies. Applications are portable and
can run without any adaptation in any other cloud environment as long as the CPU
architecture matches. Another aspect of Cloud is, resources are usually shared and
so workloads with different characteristics such as I/O intensive vs. CPU intensive
vs. memory intensive applications could be deployed onto the same resources. Such
consolidations increase resource utilization. Fault resiliency is provided by the help
of automatic migration of running instances to another host, as well as suspend and
restart of applications and services. This flexibility and resiliency, however, has its
price in the shape of virtualization overheads.

The motivation for vTorque is to combine the best of both worlds, introduce
the benefits of Clouds into HPC, with the target to gain high flexibility, to increase
overall resource utilization, reduce administration and maintenance efforts, provide
ability to serve conflicting user groups, while preserving the highest possible
performance. While vTorque focuses in first place on introducing virtualization
capabilities into HPC batch system resource manager Torque [1], several I/O
optimizations provided by optional external components are supported.

2 vTorque

vTorque introduces virtualization capabilities to PBS based HPC resource manager
Torque. It is comprised of a collection of non-intrusive bash scripts and several
templates for user level script wrappers and virtual guests files. Plugins for
various virtualized I/O optimizations are supported. It is integrated with Torque
by the help of various root level and user level hooks for different phases of the
workload management, as well as templates for virtual guest definitions and system
customization.

Further, vTorque introduces two new command line interface (cli) tools, one for
virtual job submission (vsub) and the other one for virtual guest image management
(vmgr). Due to its non-invasive nature, it works smoothly with all recent and
current Torque versions out of the box. vTorque’s vsub supports qsub’s cli and
in addition comes along with various additional command line options related to
virtual execution environment. The vsub cli has overriding capabilities for default
values provided by admins, such as the image to use or default resource assignments.
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2.1 Features

vTorque is covering all basic needs to run jobs as used to with Torque. For future
work see Sect. 5, it outlines additional sophisticated features and functionality. The
list of features comprise:

• Deploys job scripts transparently to the user in customized virtual compute node
environments.

• Virtual node allocations have same hostname as their bare-metal node, but
prefixed with a ‘v’, suffixed with the local vm number, e.g. ‘−1’.

• Multiple VMs per node supported.
• Pinning of virtual CPUs, including support for automated pinning with numad.
• Contextualization and customization of guests during instantiation by the help of

NoCloud metadata technology.
• Root and user level VM pro/epilogue script support (for standard Linux guests)

as known from Torque for bare metal compute nodes.
• Abstraction layer for environment specific properties to be defined by administra-

tors, such as network adapters or file-system mount points, enabling portability
between HPC and Cloud compute environments.

• Administrators define min/max and default values for their users, i.e. amount of
virtual CPUs.

• Bare metal nodes and virtual guests share the same (network) file-systems for
e.g. /home and workspace.

• Clusterwide installations (usual in /opt) are mounted as /opt-hpc in guests to
enable applications to make use of proprietary libs and commercial tools, as far
as binary compatibility is given.

• Supports for different guest operating systems

– Debian based Linux
– RedHat based Linux
– Unikernel OSv

• Several optional components available, e.g. for full stack monitoring and I/O
optimizations. Please refer to Sect. 2.6.

• Configurable logging provided by Log4Bsh with several log levels (ERROR/
WARN/INFO/DEBUG/TRACE), filterable by component to debug and optional
live console output.

• Compatible with Torque setups where a dedicated scheduler, e.g. Moab, is
deployed.

2.2 Workflow

vTorque’s non-invasive integration with Torque uses various script files run by
Torque during workload deployment. These steps are used to prepare the compute
node environment prior to a job allocation, as well as to clean it up afterwards. There
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Fig. 1 Job submission with vTorque

are root level scripts provided for administrators, and also user level scripts hooks
exist to execute logic before and after a batch job’s execution.

Figure 1 illustrates Torque’s runtime sequences for a batch job’s deployment and
execution, and how vsub comes into play for virtualized workloads.

1. User submits batch job script, but uses vsub instead of Torque’s qsub cli.
2. Cli vsub generates first set of wrapper files for the user jobscript and user

prologue. And subsequently passes the job submission request on to Torque,
including all other received qsub arguments
qsub -l prologue=<vmPrologue.sh> <other arg received> <jobscriptwrapper>
At first vsub generates a random unique identifier (RUID) and wrapps the actual
user job-script. This RUID is used to identify generated artifacts for each job
during succeeding steps of the life-cycle. Torque’s job ID is not yet assigned at
that point in time.

3. Torque’s qsub sends the wrapped job submission request to the pbs_server
running on the head node.

4. Torque schedules the job.
5. And assigns the resource allocation.
6. Torque’s compute node daemon pbs_mom deploys and executes the wrapped job.

The files generated by vsub cli are executed during different phases of Torque’s
deployment workflow. Since those wrappers are replacing wrapped Torque’s orig-
inal scripts, obviously they get executed also for bare-metal jobs. And add few
seconds timeout overheads to each deployment, while waiting for VM job related
files written by vsub on the frontend to appear on the shared file-system polled.

Figure 2 illustrates Torque’s run-time sequences among allocated compute nodes
rank_0 - rank_n+1 for workload deployment and execution, and how those are
wrapped by vTorque to enable virtualization capabilities.
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Fig. 2 vTorque workflow

1. Torque’s root level prologue.parallel script is wrapped by vTorque’s one and
executed on all nodes, but the first (rank_0). It executes as first the original script
to maintain all original functionality, followed by the initialization of optional
modules. At the end it forks and returns the control flow, while waiting for the
user level scripts to prepare contextualization of virtual guests.

2. The root level wrapper script for the first node (rank_0) is executed with same
functionality as the prologue.parallel wrapper script.

3. User level wrapper script vmPrologue.sh is executed, which was submitted
to Torque’s qsubby vTorque’s vsub. It copies VM images to and generates
metadata files on the compute nodes, by the help of an additional script
vmPrologue.parallel.sh executed on all nodes, including rank_0. A flag file is
written indicating the forked root level prologue scripts, guests can now be
instantiated. The vmPrologue.sh blocks until all VMs are reachable via SSH,
creates the nodesfile for the guest environment and runs optional user prologues
wrapped on baremetal and VM level.

4. Torque starts the wrapped job-script, which fetches Torque environment variables
and adapts those as far as needed for the virtual guest. This comprises for
example the PBS_NODELIST variable pointing to the nodes file with all
hostnames allocated for the job. In a succeeding step, the job-script is executed
via SSH on the first virtual node (representing rank_0 in the virtual environment)
and blocks until the job has finished.

5. Torque’s optional user epilogue is run, no vTorque wrappers are involved.
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6. Root level wrapper script epilogue is executed on the first node (rank_0) and
resets the compute node. It stops the virtual guest(s), removes all optionally
loaded components, removes temporary files and runs Torque’s original epilogue
script.

7. Root level wrapper script epilogue is executed on the other nodes with same
functionality, except cleaning up on the shared file-system.

The virtual layer mirrors the concept of prologue and epilogues on root level, as
it is available for the bare metal environment. By the help of metadata the scripts
get executed during their instantiation and shutdown phase.

2.3 Artefacts

vTorque wraps Torque’s scripts, such as the root prologue script, hooked into
Torque’s workflow to accomplish the management of virtual nodes within batch
job life-cycles. vTorque’s wrapper scripts contain various placeholders, populated
at run-time during the workload deployment when required properties are present.
Those populations depend on various PBS run-time environment variables, job
script and vsub cli arguments, as well as administrator settings. As example the node
list, amount of nodes, cpus per host, memory per host, guest image and optional
components to load. In addition, there are XML domain template files [10] to
define and customize virtual guest environments, based on qemu, libvirt and KVM.
VM template files provide definitions of guest’s devices, like file-system mount
points and available devices to pass through. Combined with NoCloud metadata
technology [9] for contextualization, for example to create the user’s account and
install security updates during VM instantiation, it is a flexible solution, utilizing
state of the art Cloud technologies. vTorque offers a configuration file, enabling
administrators to define default resources for job execution, dis/enable optional
modules and overriding of particular values on the submission command line,
configure mappings of file-system paths, and other environment specifics.

Wrapper Scripts
Wrapper scripts are put in place instead of the original Torque scripts, but execute
those as well to maintain previously given functionality. There are several of these
hook up points, for each phase of the workload management. For a description of
tasks carried out during the different phases of job deployments by those wrapper
scripts, please refer to Sect. 2.2.

The root level scripts are executed on the bare metal hosts and prepare the
virtual guests. They are used by vTorque to prepare and cleanup compute node
environments with administrator privileges and to instantiate the guests.
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Root Level Wrappers

• prologue
• prologue.parallel
• epilogue
• epilogue.parallel

Another set of wrapper scripts is executed in the user space on bare metal and
take care of the actual vm preparations and job start in the virtual guest environment
when instantiated by the other root wrapper scripts.

User Level Wrappers

• prologue
• prologue.parallel
• jobscript

Last set of scripts are executed within the virtual guest with administrator
privileges. These scripts are hooked into the VM life-cycle by the help of NoCloud
metadata and mirror bare metal functionality of Torque in the virtual environment.
The scripts are skeletons with logging where additional functionality can be added.

VM Root Level Scripts

• prologue
• prologue.parallel
• epilogue
• epilogue.parallel
• epilogue.precancel

Template Files
There are two categories of templates provided by vTorque. Script templates with
placeholders populated during different phases of a batch job’s life-cycle. And
VM templates for domain definitions and contextualization of virtual guests during
instantiation. Both set of files can be modified by administrators according to their
infrastructure and user needs.

User level scripts, populated at the time of job submission, are used to prepare
the virtual guest instantiation.

User Level Hooks

• vmPrologue.parallel.sh
• vmPrologue.sh
• jobwrapper.sh

While the VM template files are defining the virtual guest machine properties
and also customize the virtual guest environment during boot, such as user accounts
and installation of security related updates. Placeholders are populated with global
configuration values.
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VM Template Files

• domain definitions
• domain fragments
• metadata files

Configuration File
vTorque’s global configuration file enables administrators to define, besides default
resources for virtual job environments, file-system paths mounted into the guests,
networking, and mandatory software packages, also to dis- and enable particular
features, such as optional components for virtual I/O optimization or workload
monitoring. For a full reference, see the configuration file config.sh, there is for
each parameter a header comment https://github.com/mikelangelo-project/vTorque/
blob/master/src/common/config.sh.

2.4 Command Line Interfaces

vTorque introduces two new command line interfaces (cli). One for end users to
submit jobs named vsub transparently to a virtualized compute environment. The
other cli is for administrators to manage virtual guest images more conveniently
and to provide users an overview about available ones, and is named vmgr, similar
to Torque’s queue manager qmgr.

vsub
The cli vsub is the counterpart of Torque’s qsub cli [1], compatible with all Torque
command line arguments. Torque command line options are passed on without
modifications, but sanity checks if, for example, the vCPU count exceeds a provided
bare metal resource request. In addition to full qsub command line compatibility[2],
it provides numerous virtual resource definition capabilities. Such as an user level
prologue for the virtual environment, the amount of virtual cores and memory per
guest, NUMA pinning map, guest image to use and more.

usage: qsub [-a date\_time] [-A account_string]
[-b secs] [-c [ none | { enabled | periodic |
shutdown | depth=<int> | dir=<path> |
interval=<minutes>}... ]

[-C directive_prefix] [-d path] [-D path]
[-e path] [-h] [-I] [-j oe|eo|n] [-k {oe}]
[-K <kill delay seconds>] [-l resource_list]
[-m n|{abe}] [-M user_list] [-N jobname] [-o path]
[-p priority] [-P proxy_user [-J <jobid]] [-q queue]
[-r y|n] [-S path] [-t number_to_submit]
[-T type] [-u user_list]
[-w] path [-W additional_attributes]
[-v variable_list] [-V ] [-x] [-X] [-z]

usage:
vsub [<qsub_arguments>] [-gf] -vm <vm_parameters>

[script]

https://github.com/mikelangelo-project/vTorque/blob/master/src/common/config.sh
https://github.com/mikelangelo-project/vTorque/blob/master/src/common/config.sh
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Table 1 vsub argumentsa

Argument Default value Description

img Any *.img/*.qcow2 file VM image file for the job execution

ram In K/M/G/T Amount of memory per guest, i.e. 15G

distro debian/ubuntu/redhat/centos/osv Distro of the image, i.e. debian, redhat,
osv

arch Refer to KVM docs, please CPU architecture, must match compute
nodes

vcpus Positive number Amount of vCPU assigned to each guest

vcpu_pinning true/false/<pinning_file> Use vCPU pinning or not

vms_per_node Positive number Amount of VMs per allocated physical
node

vm_prologue An executable file Optional user prologue script run in
standard Linux guests

vm_epilogue An executable file Optional user epilogue script run in
standard Linux guests

vrdma Enabled True

UNCLOT Enabled True

UNCLOT_shmem In K/M/G/T Amount of memory per guest for
ivshmem, i.e. 1024M

iocm Enabled True

iocm_min_cores Positive number Define minimum amount of dedicated
IOcm cores

iocm_max_cores Positive number Define maximum amount of dedicated
IOcm cores

fs_type sharedfs/ramdisk File-system type, shared fs or ram disk

Disk Any *.img/*.qcow2 file Optional persistent disk, mounted at the
first VM (rank 0)

aComplete list of vsub arguments, extending Torque’s qsub command line interface

Please refer to Table 1 for an overview and description of vsub’s cli extensions
(<vm_parameters>). For all settings there are defaults defined (by administrators)
in the global configuration file config.sh. The additional argument -gf prevents job
submission after first set of files has been generated, useful for debugging purposes
only.

Additionally, environment variables can be set to override the log level or print a
live log on the console, useful for debuggin purposes only. Please refer to Log4Bsh’s
readme [11] for the full documentation.

vmgr
Second vTorque’s cli name vmgr provides to administrators simple virtual guest
image management capabilities. The name is choses as Torque’s queue manager is
called qmgr [3]. The vmgr cli tool copies under the administrator’s user virtual guest
images to the image pool directory and allows to store guest image descriptions in
flat files.
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usage:
vmgr show config
vmgr show images
vmgr show image <name>
vmgr show suspended --job=<jobID> | --user=<userName>
vmgr add <image> [<description>]
vmgr update <image> <description>
vmgr delete image <name>
vmgr delete suspended --job=<jobID>|--user=<userName>

2.5 HPC Infrastructure Abstraction

Each HPC location requires some adaptation of applications. This comprises linking
with available libraries, kernel compatibility, file-system paths, CPU and memory
optimizations. On an abstract level as it is provided by virtualization, the most com-
mon aspects are: a shared home among compute nodes, a fast intermediate storage
for computations (workspace), installation paths of libraries and applications, batch
system related compute node environment variables, high speed interconnects (e.g.
Infiniband/Omnipath), support for further infrastructure services (IP/DNS/NTP).

These data-center infrastructure specifics are abstracted in Clouds, enabling high
flexibility and portability. vTorque adapts this approach by the help of NoCloud
metadata technology [9] and XML definitions [10] for virtual guests managed by the
help of libvirt. The metadata file allows administrators to customize virtual guests
and adapt them to their environment. vTorque takes care of mapping and adapting
batch-system environment variables in the guests virtual job execution environment,
such as the (virtual) compute node list.

For compatibility reasons, vTorque relies on these file-system abstractions and
it is mandatory for application developer or guest image providers to consider
following mount-point mappings:

• user $HOME mounted as /home
• non-persistent workspace for intermediate data as /workspace
• cluster wide applications installation path (optional) as /opt-hpc

Customization of virtual environments, by the help of metadata and XML domain
definitions, comprise further to pass through particular hardware devices, such as
accelerator cards or GPUs from bare metal host to virtual guest access, or to provide
networking adapters like high-speed interconnects.

2.6 Optional External Modules

vTorque does not offer a plug-in architecture, however offers integration with a
few external modules. As external optimizations and applications differ too much,
vTorque does not provide a generic way for administrators to add new ones easily.
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Except those do not need to be supported on the vsub command line, but can simply
be loaded and removed during pro- and epilogue phases.

Today’s drawbacks of virtualization are in first place I/O related overhead. Since
HPC targets high performance, this virtualization overhead is a crucial aspect for
adoption and must justify the costs to be paid for higher flexibility. Within the EU
funded H2020 Project MIKELANGELO, besides vTorque also several components
addressing virtualization I/O overheads have been developed and integrated with
vTorque.

Each of these external I/O optimizations can be dis/enabled by vTorque adminis-
trators, a list of hosts can be defined which are capable of the functionality, as well
as default settings for vTorque users can be configured.

vRDMA
Huawei’s virtualized RDMA (vRDMA) introduces abstraction infiniband cards and
provides RDMA capabilities to multiple VMs running on the same host, e.g. each
one in its own NUMA domain [6]. For multiple VMs per host a simple pass-through
would make the adapter available to exactly one guest, only.

IOCM
Intel’s I/O core manager (IOCM) optimizes throughput of virtual I/O by allocating
dedicated cores on the bare metal host system, and is implemented as vhost kernel
module. The amount of dedicated cores can be assigned as a static count or dynamic
range. It has however the requirement of several kernel configuration options to be
set and modified, besides being available for Linux Kernel version 3.18 [4].

UNCLOT
XLAB’s development, UNikernel Cross Level cOmmunication opTimisation in
short UNCLOT enables virtual guests on the same host to communicate via shared
memory (ivshmem), rather than via loop back devices with additional overhead and
higher latency [5].

Snap-Telemetry Monitoring
Intel’s Snap-Telemtry service allows to measure application performance from
host over guest level to application level. It provides a flexible plug-in framework
and plenty plug-ins for various performance metrics. Snap-Telemetry can be used
with vTorque to analyze overheads, identify bottlenecks and fine-tune application
behavior, to optimize resource utilization by consolidating workloads of disjunctive
resource consumption characteristics [7].

Guest Operating System Support
vTorque supports as guest operating system standard Linux guests (debian and
red hat family). Additionally, it supports OSv a single process, single user context
switch free lightweight unikernel operating system [8]. OSv images are usually built
for exactly one application and have a small footprint, very short booting times and
memory consumption. Additional operating systems to be supported would require
modification of vTorque’s scripts, NoCloud metadata and domain XML template
files, there is no generic plug-in approach.
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3 vTorque Deployment

vTorque extends Torque, thus a working Torque installation is needed in first
place. Other dependencies exist for the management of virtual guests, besides
requirements towards the compute environment infrastructure.

3.1 Requirements

vTorque relies on available virtualization capabilities known from Clouds, provided
by Qemu and KVM. Additionally, there are infrastructure services required:

• Shared filesystem, for example NFS or Lustre
• DHCP server for VM IPs including a sufficient range

Following software packages are required to be installed on the submission hosts
providing vsub and on the compute nodes.:

• coreutils
• net-tools
• openssh-client
• cloud-utils
• bash (>= v4.0)
• qemu-kvm
• libvirt-bin
• numad (optional; for automatic vCPU pinning)
• pdsh (optional; for setup.sh script)

On the compute nodes following needs to be ensured:

• disabled SSH known hosts file (since VM ssh server keys are generated during
boot)

• command ‘arp -an‘ is executable by users (used to determine IP of VMs)
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Further, a shared file-system is required for several directories defined in
vTorque’s configuration file:

• the image pool dir VM_IMG_DIR
• user homes VM_NFS_HOME
• a fast workspace for intermediate data VM_NFS_WS
• cluster wide software installations VM_NFS_OPT

3.2 Installation

vTorque comes along with an installation script (setup.sh), which is taking care of
the deployment in an automated manner, by the help of parallel SSH (PDSH) used
to connect to all nodes. The actual deployment does not comprise many tasks and
can also be carried out manually. The following steps outline the deployment carried
out by the script in detail:

1. Clone vTorque git repository recursively
2. Server setup:

(a) copy /lib, /src/* (, /test, /doc) dirs to your target installation directory
(b) copy /contrib/99-mikelangelo-hpc_stack.sh to /etc/profile.d/
(c) define network setup for VMs in vTorque’s config file

3. Compute node setup:

(a) rename all prologue and epilogue scripts in /var/spool/torque/mom_priv/
to *.orig

(b) copy as next vTorque’s wrappers as pro/epilogue* scripts

4. as last ensure permissions are correct

(a) owner of target dir should be root
(b) permissions for pro/epilogue* wrapper scripts must have chmod 500
(c) all other files are recommended to be set to chmod 444

3.3 Precautions

There are several properties of vTorque which must be understood for secure
operations and assessment of vTorque’s overall costs introduced for bare metal jobs.
As well as environmental dependencies in order to optimize its overhead for the
management of virtual guests.

Security
The most crucial aspect is to prevent users from booting images themselves, and not
allow users to make use of uploaded VM images as it may provide root access
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on VMs. The default setting prevents it and should not be changed, except the
impact on user’s data privacy is fully understood. Can be useful for development
environments with trusted users, but poses a high risk for daily operations. The
NoCloud metadata file, used to customize virtual guests during instantiation, is write
protected to prevent users from gaining root access, installing vulnerable packages
they intend to exploit, or to break their own privacy by accident. The metadata
template file should be edited by admins with high caution, as it may have a major
impact on the HPC environments security and data privacy. Further, virtual guest
must not be accessible to any other user accounts than the ones allowed to connect
to the bare-metal node while the allocation is in place, exception are administrators.

Performance
vTorque has overall costs, due to its non-invasive wrapper concept, alongside the
virtualization overhead. At submission time, files are generated and written onto a
shared directory, introducing first overhead for virtual jobs. The root prologue may
start too quickly and if file-system is asynchronous, it is required to wait for those
files to appear, which is in case of bare-metal jobs obviously always wasted time.
The corresponding configuration parameter for administrators is NFS_TIMEOUT.
Setting it too low results in failing jobs, setting it too high causes unnecessary costs
for each job’s life-cycle. The wrapper scripts are written in Bash and therefore
introduce, regardless of VM job or bare metal execution, some overhead during
deployment of jobs in both cases, bare metal and virtualized ones. In case of VM
jobs there is additional overhead, e.g. to copy VM images onto each compute node,
generate VM related files and wrappers, instantiate the guests and wait for them to
become available. Concerning virtualization overheads, the host operating system
needs resources to run, e.g. CPU and memory, and need to be fine-tuned in order to
decrease overhead costs for virtualized jobs.

Environment
Since the VMs comprising a job’s virtual compute node environment need an IP
address, and many VMs can be spawn over the day and in parallel, it is crucial to
have a sufficiently sized pool of (internal) IPs configured and available. Crashing
VMs (e.g. due to problems on the physical nodes) will not signal re-usability to
the DHCP server if not properly terminated by vTorque. Those IPs are blocked
until the lease time is over, which must be chosen by administrators accordingly
to their environment. Lack of IP will lead to failing VM instantiations, as required
networking cannot be provided to guests and time will be wasted until timeouts are
hit. Configuration of networkfile-systems can also influence operational overhead
costs for vTorque, e.g. async configuration demands root prologue to wait for files
to appear until a timeout is reached.
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4 Discussion

In summary vTorque introduces capabilities to run workloads in virtualized envi-
ronments, merges the benefits of Clouds into HPC. However, at additional costs for
virtualized compute node overheads. Image copying, preparation of contextualiza-
tion and instantiation of virtual guests. Under consideration of common security
measures for HPC environments, e.g. root access must be restricted.

A high level of flexibility, common in Cloud hosting and compute environments,
is gained with manifold advantages for all stakeholders. Data-center owners can
serve new user groups with conflicting needs, administrators can reduce the efforts
for providing new kernels or customized environments to particular user groups,
and so end users requirements can be satisfied in most cases. End users may be able
to share a physical node with another workload with different characteristics, e.g.
memory intensive and CPU intensive applications may be a good fit reducing costs
for job execution.

Further advantages for administrators are given by the introduced abstraction,
e.g. updates of the physical environment do not require a rebuild of the compute
node images provided to users, changing file-system paths do not require a recon-
figuration of all applications. Another added value for developers is, they can ship
their applications ready for use, prepackaged with the optimal combination of kernel
and libraries. Applications for HPC environment can be developed without the need
for anything else than commodity hardware, and those prepackaged applications run
out of the box in Cloud as in vTorque HPC environments.

On the other hand the overhead for the VM preparation phase is costly, and too
expensive for jobs with a short run-time. Also, costs increase at least linear with the
amount of nodes assigned, as onto each node a copy of the base image needs to be
staged onto. This may lead to network congestion and negatively impact even other
job’s performance if no dedicated network is used for VM image provisioning.

The optional I/O modules supported by vTorque, the IOCM, vRDMA, and
UNCLOT provide optimizations, but have their limitations, e.g. patch for particular
kernel version or Infiniband driver, and also their potential costs need to be
considered, e.g. reserved cores for I/O are not available to the guests. Also, their
deployment in a batch environment is more complex compared to vTorque.

Prepackaging of applications in a generalized way however cannot take environ-
ment specific optimizations into account, such as particular L1/L2/L3 cache size.
Also, in HPC environments often optimized compilers are provided, such as Intel
Compiler or Cray compiler. The use of commercial applications, debugging and
tracing tools, provided in the HPC environment for bare metal compute nodes, can
be used in virtual guests as well if binary compatibility given. These applications
and libraries are made available to the guest by mounting the global installation
directory as ‘/opt-hpc’. Environment specific license-servers, and generic hardware
support are not integrated, yet, and are part of future work.

Conclusion is, vTorque accomplishes its target of introducing Cloud-like vir-
tualization and flexibility into HPC environments with outlined benefits for all
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involved stakeholders, but at additional costs. Depending on an environment’s
general workload characteristics, virtualized applications could be consolidated on
available physical resources in a isolated way. And so increase the overall utilization
in the data-center, to reduce or even compensate virtualization costs.

5 Future Work

Future work surrounding vTorque may focus on supporting mixed resource requests,
global spare node capabilities in combination with node health monitoring and auto-
migration of running instances, suspend and resume functionality of virtual guests.
Suspend and resume capabilities require support on the middleware layer (e.g. MPI)
to handle timeouts of suspended and resumed communication between nodes.

On the virtualization layer future work may focus on further HPC infrastructure
support and abstraction, such as license-servers and capabilities to pass through any
hardware, e.g. accelerator cards. White-listed metadata targets provide users with
more customization capabilities of virtual guest images during instantiation, while
introducing potentially security risks.

The operating system can be stripped down to the basic functionality required
for virtualization, in order to gain more resources for the virtual layer, reduce
maintenance and testing efforts for upgrading the compute nodes and at the same
time reducing attack vectors on host level.

Guest operating system level can be extended with support for SUSE based Linux
derivatives, Docker and LXC containers.

A native upstream implementation would improve security and reduce overhead
further, e.g. for flag file polling. Interactive VM jobs are desirable as well for job-
script debugging purposes, however require modification of the source code. Since
Torque is no longer open-source as of June 2018 PBSPro can be extended instead.
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Integrating SDN-Enhanced MPI with Job
Scheduler to Support Shared Clusters

Keichi Takahashi, Susumu Date, Yasuhiro Watashiba, Yoshiyuki Kido,
and Shinji Shimojo

Abstract SDN-enhanced MPI is a framework that integrates the network pro-
grammability of Software-Defined Networking (SDN) with Message Passing Inter-
face (MPI). The aim of SDN-enhanced MPI is to improve MPI communication
performance by dynamically steering the traffic within the interconnect based
on the communication pattern of applications. A major limitation in the current
implementation of SDN-enhanced MPI is that multiple jobs cannot be executed
concurrently. This paper removes this limitation by integrating SDN-enhanced MPI
with the job scheduler of the cluster. Specifically, we have developed a plugin for
the job scheduler that collects and reports the job information to the interconnect
controller. A preliminary evaluation demonstrated that applications could gain up to
2.56× speedup in communication.

1 Introduction

The demand for high-performance computing (HPC) clusters has been ever-
growing. In fact, exascale machines are now on the horizon. To meet the sustained
growth of HPC clusters, the high-performance network that interconnects the com-
pute nodes composing a cluster, or interconnect, needs to be enhanced to achieve
larger scale, higher bandwidth and lower latency. As a result, the interconnect now
accounts for a significant portion of total financial cost and power consumption of
an HPC cluster [6].

Until today, the established strategy for designing an interconnect has been over-
provisioning, where extra bandwidth and routes are provisioned in the interconnect.
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The reason for adopting this design strategy is twofold. First, networking hardware
used in conventional interconnects do not allow administrators to change their
configurations on-the-fly. Therefore, the interconnect needs to be provisioned with
abundant bandwidth and routes so that a specific application does not suffer
from degradation of communication performance compared to others. Second, a
production HPC cluster is usually shared among many users where each user runs
different applications. Therefore, tailoring an interconnect to a single application
with a specific communication pattern is unrealistic.

However, an over-subscribed design is becoming increasingly challenging to
implement due to its rapidly rising financial cost and power consumption. Mean-
while, the long-standing assumption that interconnects are static and cannot be
reconfigured no longer holds with the recent emergence of networking technologies
that introduce network programmability. A prominent example of such networking
technology is Software-Defined Networking (SDN), which is a novel networking
architecture that allows administrators to dynamically and flexibly control network
devices like a software. We believe that dynamically controlling the traffic in the
interconnect in response to the communication pattern of an application can alleviate
traffic congestion in the interconnect and remove the need for excessive over-
provisioning.

Based on this idea, we have been developing SDN-enhanced MPI [3], a frame-
work that integrates Software-Defined Networking (SDN) into Message Passing
Interface (MPI) [7]. The goal of this framework is to mitigate congestion in
the interconnect and improve MPI communication performance by dynamically
steering the traffic in the interconnect based on the communication pattern of
application. To this end, we have demonstrated that individual MPI collectives
are accelerated by utilizing SDN [2, 9]. Furthermore, we have designed and
implemented a mechanism to synchronize the progress of an application and the
reconfiguration of the interconnect [10, 12]. Furthermore, we have developed a
toolset for facilitating the development of SDN-enhanced MPI that consists of a
profiler to extract communication pattern from applications and an interconnect
simulator to predict the traffic generated in an interconnect [11].

Although our work so far has successfully demonstrated that MPI applications
can be accelerated through the application of SDN, a limitation has still remained
towards the deployment of our framework on production clusters: our current SDN-
enhanced MPI framework does not support the concurrent execution of multiple
applications on a cluster. Since production clusters are usually shared by many
users, it is vital that our framework supports clusters running multiple jobs for the
practicality.

In this paper, we aim to lift this limitation by integrating our framework into
the job scheduler of a cluster. The rest of this paper is organized as follows.
Section 2 gives an overview of the key technologies behind our proposal and clarifies
the challenges to be tackled. Section 3 presents the architecture of the proposed
framework. Section 4 shows the preliminary evaluation result of the proposed
framework. Section 5 concludes this paper and discusses future work.



Integrating SDN-Enhanced MPI with Job Scheduler to Support Shared Clusters 151

2 Background

2.1 Software-Defined Networking (SDN)

Software-Defined Networking (SDN) [4] is a novel networking architecture that
brings programmability into the network and allows users to dynamically and
flexibly control the network as if the network was a software. In conventional
networking architectures, the control plane, which makes the decision on how to
handle packets, and the data plane, which forwards packets, are tightly coupled
together on a single networking device such as a switch. In contrast, SDN separates
these two planes into different hardware: the data plane is handled by each
networking device, whereas the control plane is handled by a centralized software
controller. Administrators are able to dynamically and flexibly control the network
by developing a controller that implements their desired network control policy.

The current de facto standard implementation of SDN is OpenFlow [5]. In an
OpenFlow network, the data plane is handled by OpenFlow switches, and the control
plane is handled by an OpenFlow controller. Each OpenFlow switch holds a flow
table, a collection of flow entries. A flow entry defines what action to perform on
what type of packets. The OpenFlow controller controls the traffic in the network
by installing and updating the flow table on each switch in the network. This paper
assumes that the interconnect of the cluster is built using OpenFlow switches.

2.2 Job Scheduler

As mentioned in Sect. 1, a production HPC cluster is a shared environment.
Therefore, the computing resources within the cluster need to be efficiently managed
and distributed among multiple users.

To achieve this goal, the administrator of a cluster usually deploys a job
scheduler. A job scheduler is a system that manages the computing resources such as
CPUs, GPUs and memories in a cluster. The job scheduler accepts job submissions
from users, which are requests to run applications on the cluster accompanied
by a set of resource requests to run the application. The job scheduler allocates
computing resources in the cluster and launches the application on the allocated
computing resources. If there are insufficient available resources in the cluster, the
job will be queued for later execution. Job schedulers used in production HPC
clusters include Slurm [13], PBS Professional,1 Torque2 and Grid Engine.3 In this

1https://www.pbspro.org/.
2https://www.adaptivecomputing.com/products/torque/.
3http://www.univa.com/products/.

https://www.pbspro.org/
https://www.adaptivecomputing.com/products/torque/
http://www.univa.com/products/
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Fig. 1 Architecture of Slurm

paper, Slurm is assumed to be deployed on the cluster since it is one of the most
widely adopted open-source job schedulers.

Figure 1 illustrates the architecture of Slurm. Slurm employs a master-worker
architecture like many other job schedulers. The master, slurmctld, oversees the
status of every compute node in the cluster. Each compute node runs a worker,
slurmd, that monitors the status of the compute node, communicates with slurmctld
and launches user applications when requested by slurmctld. Slurmctld receives job
submissions from users, allocates computing resources to the job and dispatches
the job by instructing the workers. Optionally, slurmdbd is used for logging and
accounting purposes. Users interact with slurmctld through utilities such as sbatch
(submits a job), srun (submits an interactive job) and squeue (list queued jobs).

2.3 Challenges

Even though a job scheduler is useful for both administrators and users of a cluster, it
causes a major challenge in SDN-enhanced MPI. The interconnect controller needs
to know several pieces of information about jobs to compute and install a routing to
the interconnect. This information includes:

• When a job starts and finishes
• Which compute nodes are assigned to a job
• How MPI processes are distributed across the allocated compute nodes

However, this job information is only known to the job scheduler and user
application. Therefore, the job information needs to be obtained from the job
scheduler or user application and then conveyed to the interconnect manager. In
addition, the mechanism should be transparent from the users so that they do not
need to invoke a special program from their application or link a library to their
application.
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3 Proposal

This section first briefly reviews the overall architecture of the proposed framework.
Subsequently, individual components of the framework are described in detail.

3.1 Overview

The basic idea behind the proposed framework is to integrate the SDN-enhanced
MPI framework with the job scheduler so that the reconfiguration of the interconnect
can be performed in accordance with the execution of jobs. Figure 2 illustrates
the overall architecture of the proposed SDN-enhanced MPI framework. The pro-
posed framework mainly consists of three components: (1) interconnect manager,
(2) scheduler plugin, and (3) OpenFlow controller. The interconnect manager is
responsible for computing optimized routes for each job. The scheduler plugin is
responsible for collecting and submitting the job information to the interconnect
manager when a job starts or finishes. The OpenFlow controller is responsible for
communicating with the OpenFlow switches and installing the routing generated by

slurmctld

slurmd

Application

(3) OpenFlow
Controller

DB

sbatch/srun

Head Node Interconnect Manager Node

Compute Node

(2) Scheduler
Plugin

(1) Interconnect
Manager

(2) Scheduler
Plugin

Fig. 2 Overall architecture of the proposed framework
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the interconnect manager. We reuse a generic OpenFlow controller provided by the
Ryu4 OpenFlow framework that provides a suite of REST APIs to install, query,
update and remove flows.

The scheduler plugin and the interconnect manager communicate with one
another using RPCs. Specifically, gRPC,5 which is an RPC framework built on top
of HTTP/2, is used. The main reason behind this design choice is because gRPC
can automatically generate server and client codes from an interface definition of
remote procedures. Therefore, using gRPC saves much development effort than
implementing our own protocol upon raw TCP/IP.

3.2 Scheduler Plugin

The scheduler plugin is responsible for collecting and sending information about a
job every time a job starts or finishes. As described earlier, the scheduler decides
when to run each job. Furthermore, the node allocation and process mapping are
unknown until the job starts. Therefore, a mechanism is needed to notify the
interconnect manager of this information.

For this reason, we utilize a built-in plugin mechanism of Slurm, which is
called Slurm Plug-in Architecture for Node and job Control (SPANK). SPANK
allows developers to easily customize the job startup and cleanup routines of Slurm.
SPANK plugins are not linked with Slurm itself and can be loaded during runtime.
In addition, SPANK allows developers to add new options to the job script and job
submission commands.

Our SPANK plugin is loaded by all Slurm components and performs the
following operations:

• sbatch/srun: When a job is submitted by a user via sbatch or srun, our plugin
sends the ID and name of the job, uid of the submitter, number of processes and
communication pattern of the application to the interconnect manager. Currently
the user needs to manually specify the communication pattern in the job script as
shown in Listing 1 (line 7).

• slurmd: When slurmd is about to launch an application on a compute node, our
plugin sends the ID and name of the job, compute node ID, and MPI rank number
to the interconnect manager. This is used by the interconnect manager to obtain
the node allocation and process mapping. After this information is sent over to
the interconnect manager, the plugin blocks until the routing are computed and
installed to the interconnect. Once the routing is setup, the plugin returns control
to Slurm. After that, the user application starts.

4https://osrg.github.io/ryu/.
5https://grpc.io/.

https://osrg.github.io/ryu/
https://grpc.io/
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1 #!/bin/bash
2 #
3 #SBATCH --job-name=cg-benchmark
4 #SBATCH --ntasks=128
5 #SBATCH --time=01:00:00
6 #
7 #SBATCH --comm-pattern=cg-c-128

Listing 1 An example of a job script

When a job finishes, the same information is sent over to the interconnect
manager and blocks until the routings are uninstalled from the interconnect. After
that, the rest of the cleanup is completed.

All of the above operations are performed transparently from the user application.
In other words, the user application does not need to be modified nor a special
program needs to be invoked.

3.3 Interconnect Manager

The primary purpose of the interconnect manager is to compute and install optimal
routing for each job.

To compute the optimal routing for a job, the interconnect manager needs
to know how the MPI processes constituting a job is laid out on the cluster.
This information is received from the scheduler plugin integrated into the Slurm
scheduler. Furthermore, the communication pattern of a job is also received from
the plugin if the user specifies the communication pattern. This job informa-
tion is persisted on an external database (currently SQLite6 is used) for fault-
tolerance.

Once the scheduler has received the job information, the interconnect manager
computes the optimal routing for the job. The actual routing algorithm itself is
pluggable and can be swapped out. The computed routing is then installed through
the OpenFlow controller to each switch in the interconnect.

4 Evaluation

In this section, we conduct a preliminary evaluation to assess if applications can be
accelerated using our proposed framework.

6https://www.sqlite.org/index.html.

https://www.sqlite.org/index.html
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4.1 Evaluation Environment

The evaluation experiment was conducted on a small-scale cluster composed of
20 compute nodes connected through a two-tier fat-tree interconnect (Fig. 3). Each
compute node is equipped with two quad-core Intel Xeon E5520 CPUs. In total,
there are 160 CPU cores in the cluster. A single NEC PF5240 OpenFlow switch is
divided into six virtual switches to compose a fat-tree topology. The switches are
controlled by the interconnect manager using the OpenFlow 1.0 protocol. D-mod-
K routing [8] was chosen as the representative example of a conventional routing
algorithm. D-mod-K routing statically distributes traffic flows across multiple paths
in the interconnect based on the destination of a flow.

We executed a set of benchmarks on a cluster and compared the communication
time of each benchmark with and without our framework. Table 1 shows the list
of communication benchmarks used in the evaluation. CG and FT are taken from
the NAS parallel benchmark suite [1]. Stencil2D, Stencil3D, Butterfly and SpMV
were developed by us. All benchmarks were executed using 160 processes. In other
words, we ran a single process for every CPU core in the cluster.

Spine Switches

Leaf Switches

spine2spine1

leaf1 leaf2 leaf3 leaf4

Compute Nodes

Fig. 3 Cluster used for evaluation

Table 1 Benchmarks used in the evaluation

Name Description

CG Solves a sparse linear system using the Conjugate Gradient method

FT Solves a partial differential equation using FFT and IFFT

Stencil2D A two-dimensional stencil kernel

Stencil3D A three-dimensional stencil kernel

Butterfly An Allreduce kernel commonly seen in deep learning

SpMV A sparse matrix-vector multiplication kernel
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4.2 Evaluation Result

Figure 4 shows the relative speedup of MPI communication when using our
framework. CG, Butterfly, and SpMV achieved 1.29×, 1.18×, and 2.56× speedup,
respectively. In contrast, FT, Stencil2D, and Stencil3D did not exhibit a clear
performance gain by using our framework.

We believe that this trend can be explained for the following reasons. FT
performs all-to-all communication between processes. This complete lack of
locality makes it challenging to efficiently map the communication pattern
into the interconnect. In contrast, Stencil2D and Stencil3D perform nearest
neighbor communication in a two-dimensional or three-dimensional process
grid. As a result, most of the communication happens within a compute node
or within a leaf switch, which makes the difference in routing algorithms
irrelevant.

The three benchmarks that benefited from our framework (CG, Butterfly and
SpMV) require both local and remote communication. Therefore, there is a chance
to improve the load balancing of flows by considering the communication pattern of
benchmarks.
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Fig. 4 Benchmark results using miniapps
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5 Conclusion

SDN-enhanced MPI aims to improve MPI communication performance by dynam-
ically steering the traffic in the interconnect based on the communication pattern of
applications. This paper tackled the limitation of SDN-enhanced MPI that multiple
jobs cannot be executed concurrently. Specifically, we integrated SDN-enhanced
MPI with the job scheduler. A preliminary evaluation conducted using benchmarks
demonstrated that our framework achieves up to 2.56× speedup in communication.
As a future work, we would like to evaluate our framework using a large job set
containing diverse real-world applications.

Acknowledgement This work was supported by JSPS KAKENHI Grant Number JP17K00168
and JP26330145.
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A Method to Reduce Load Imbalances
in Simulations of Solidification Processes
with Free Surface 3D

Johannes Müller, Philipp Offenhäuser, Martin Reitzle,
and Bernhard Weigand

Abstract The present work introduces a first step towards reducing load imbal-
ances in simulations of phase change processes with Free Surface 3D (FS3D). FS3D
is a program for the Direct Numerical Simulation (DNS) of multiphase flows. It is
able to simulate complex deformations of interfaces between phases by means of a
Volume-of-Fluid (VOF) method. The work is focused on the model for the phase
transition process from supercooled water to hexagonal ice. In order to investigate
complex phenomena with a high computational cost FS3D uses the computing
power of the supercomputer Cray XC-40 at the High Performance Computing
Center (HLRS). During the calculations, the computational costs for elements that
contain both the solid and the fluid phase is higher than for elements which contain
only one of the phases. If the computational domain is decomposed into equal
parts, the workload is inhomogeneously distributed among the cores. The presented
method is able to distribute the workload more homogeneously among the cores and,
therefore, enables an efficient use of the computational resources. Elements with
higher computational costs are identified by the Volume-of-Fluid (VOF) method.
Consequently these elements are associated with a higher computational load in
form of a weight. This information is passed to a recursive bisection algorithm which
performs the domain decomposition. The recursive bisection of the computational
domain considers the existing data structure of FS3D and provides contiguous
arrays. To realize the process communication, a nearest neighbour communication
was implemented with non-blocking Message Passing Interface (MPI) routines.
The diagonal elements are transported via a communication sequence in order to
avoid communication of small amounts of data which minimizes the communication
overhead.
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1 Introduction

Solidification processes play an important role in nature and many industrial
applications. This is why they have been studied intensively in recent decades. One
example is the naturally occurring phase transition of supercooled water droplets
(metastable condition with temperatures well below 0 ◦C) to ice in clouds [1]. The
strong coupling of the different length scales further complicates the development
of models: pressure and temperature distributions in clouds, as a consequence
of the macroscopical motion, influence the nucleation events (the spontaneous
aggregation of water molecules) on the nanoscale. This nucleus can then grow into
its supercooled melt while releasing latent heat which significantly influences the
temperature inside the droplet and hence impacts on the macroscopical motion
[2]. Describing the process as a whole is thus very difficult, if not impossible.
Understanding the process on the micro-scale is a first step towards developing
models for larger-scale simulations.

The numerical phase change model of water to hexagonal ice developed by
Reitzle et al. [3] is shortly summarized in Sect. 2. Here, a model for the anisotropic
solidification behaviour of water is coupled to the solution of the energy equation
which determines the speed with which the interface moves into its undercooled
melt and the amount of latent heat that is released at the interface. All models
and algorithms are implemented into the in-house software package Free Surface
3D (FS3D). For details on the numerical schemes and capabilities of the code,
the reader is referred to [4]. Different numerical methods exist to reproduce the
interface motion. For a summary of different numerical and analytical approaches
used to understand the phase transition process from liquid to solid the reader
is referred to [3]. Of course a high spatial and temporal resolution is necessary
to correctly describe the interface, its deformation, and possible branching. High
computing power is required to meet the requirements for accuracy and running
time. Current supercomputers generate there computing power by running hundreds
of thousands of cores in parallel. To make use of this computing power an efficient
parallelisation strategy is needed. The standard parallelisation strategy in FS3D
is a symmetric decomposition of the computational domain in equal parts. The
computational costs for elements that contain both the solid and the liquid phase
is higher than for elements which contain only one of the phases. This is due to
the geometrical reconstruction of the sharp interface and additional calculations
regarding phase change. The symmetric decomposition did not take account of the
different computational cost and hence load imbalances occurred. Therefore, we
present a new parallelisation strategy, based on a load balancing by recursive domain
decomposition in Sect. 3.3. This idea leads to different numbers of neighbouring
domains depending on the distribution of the interface in the computational domain.
The realization of the necessary process communication is addressed in Sect. 3.4.

The symmetric and new, weighted decomposition are compared for different test
cases in Sect. 4.2.1 where we discuss process communication. Finally, the results
are summarised in Sect. 5.
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2 Numerical Model for the Solidification Process

The basis for the work presented in this manuscript is the in-house software
package Free Surface 3D (FS3D). It allows Direct Numerical Simulations (DNS) of
multiphase flows by solving the incompressible Navier–Stokes equations in a Finite-
Volume formulation [5]. Different phases are captured by a Volume-of-Fluid (VOF)
method, where a scalar function f describes the volume fraction of the disperse
phase. Hence, we require

f =

⎧⎪⎪⎨
⎪⎪⎩

0 in the liquid phase,

]0, 1[ in interfacial elements,

1 in the solid phase.

(1)

A sharp interface is reconstructed by means of planes (PLIC—piecewise linear
interface calculation) in all control volumes containing an interface.

FS3D was originally designed to investigate droplet dynamics problems [5]
but was later extended in order to treat more complex physical problems. An
overview of the capabilities of FS3D is given in [4] which also include the
numerical modelling of phase change. Of special interest for the present work
is the phase change of a liquid to its solid state (solidification) for water. Here,
anisotropy effects need to be additionally taken into account. In the following, the
fundamental equations and corresponding numerical methods are presented. The
reader is referred to [3] for more details.

In the absence of any convective transport and for incompressible fluids, where
the densities of the liquid and solid are equal, the governing equation is conservation
of energy which in temperature form reads

∂ (ρcT )

∂t
= ∇ · (k∇T ) + q̇ ′′′ with

{
c = cp,l liquid

c = cs solid.
(2)

Here, T is the temperature, ρ the density, c the specific heat, k the thermal
conductivity, and q̇ ′′′ denotes a volumetric heat source. Separate temperature fields
are introduced for each phase which are coupled at the interface via the Gibbs-
Thomson temperature T� and a jump condition that ensures conservation of total
energy across the interface. The Gibbs-Thomson temperature in principal describes
the melting point depression at the interface due to curvature effects [6]

T� = Tm

(
1 − σ0Hγ

ρ�hsl

)
, (3)

where Tm is the melting temperature, σ0 a reference surface energy density, �hsl

the latent heat of solidification, and Hγ the anisotropic mean curvature. The latter
contains a model for the anisotropic behaviour of the solidifying substance. In the
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present case this is a hexagonal anisotropy in the basal plane. Information about this
model and its mathematical formulation can be found in [3]. During the evaluation
of Hγ the surface needs to be reconstructed locally as a graph, which is done by
means of a height-function technique [7].

The above mentioned jump condition is commonly known as Stefan condition
and can be expressed as

V�ρ
(
�hsl − (

cp,l − cs

)
(Tm − T�)

)
= −kl∇Tl · n� + ks∇Ts · n�, (4)

where V� represents the movement of the interface due to phase change in the
normal direction n� to the interface. Note that Fourier’s law of heat conduction
was used to model the heat fluxes. Finally, in order to realize the phase change,
an advection equation for the scalar VOF field f can be formulated where the
movement of the interface is interpreted as a flux across the control volume
boundaries, rather than a volumetric source term

∂f

∂t
+ ∇ · (v�f ) = f ∇ · v�. (5)

The auxiliary velocity field v� is constructed via a distribution procedure in the
region of the interface, which satisfies V� = v� · n� . A geometric unsplit advection
scheme is used to solve Eq. (5) and a Red-Black Gauss-Seidel algorithm in a
successive over-relaxation formulation for the solution of the system of linear
equations resulting from Eq. (2).

3 Load Balancing Methodology

3.1 Computer Architecture and Parallel Computing

All tests and benchmarks of the new load balancing strategy for FS3D were
performed on the supercomputer “Hazel Hen”, a Cray XC-40 system, at the High
Performance Computing Center Stuttgart. It consists of 7712 compute nodes that
are connected via the high-performance Cray Arias interconnect. Each node has 128
GiB of main memory and two sockets, each equipped with a 12-core Intel R© Xeon R©
E5-2680V3 (Haswell) processor with a base frequency of 2.5 GHz. The “Hazel
Hen” is a homogeneous, massively parallel system with 185,088 compute cores and
round about 987 TiB of main memory. To make use of the compute power of such
a massively parallel system, a suitable parallelisation and domain decomposition
strategy for the numerical approach is indispensable. Over the decades various
methods of domain decomposition were developed and we refer to Teresco et al.
[8] for an overview. The basic idea of all decomposition methods is to divide the
domain into NP sub-domains, where NP is the number of desired compute cores.
The resulting portions are then mapped to the hardware.



A Method to Reduce Load Imbalances in Simulations of Solidification Processes 167

3.2 Domain Decomposition and Load Imbalance in FS3D

Previously, the computational domain was divided into parts of equal length with
perfectly matching sub-domain interfaces. This allows for a very simple and robust
formulation of the communication between cores. This situation is depicted in
Fig. 1a. However, since the workload is concentrated on the discrete elements
around the solid-liquid interface, the workload of the parallel processes will only
be well balanced if the interface is homogeneously distributed through the different
sub-domains. An imbalance occurs for such a symmetric decomposition if the
interface is only located in specific zones of the computational domain and hence
only a couple of cores contain domains with interfacial elements. This situation is
illustrated in Fig. 1b, where only the sub-domains �4, �6 and �7 contain parts of the
interface.

The load balance of a parallelized program can be quantified by the Load Balance
Efficiency (LBE). It results from the average computing time t̄calc and the maximum
computing time of all processes max(tcalc)

LBE = t̄calc

max(tcalc)
. (6)

yP

xP

Interface

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

Γ7

Γ8

Γ9

y

x

(a) (b)

Fig. 1 (a) Symmetric domain decomposition: the computational domain is separated into four
sub-domains in each spatial direction. The sub-domains �n and their neighbourhood is depicted as
a slice in the xP −yP -plane. The communication partners are connected by ←→. All sub-domains
contain the same amount of elements. (b) Enlarged view of a symmetric domain decomposition.
The sub-domains �n are shown with their elements. Only the sub-domains �4, �6 and �7 contain
interface elements with a higher computational load. The workload is inhomogenously distributed
among the sub-domains
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For an optimal load balance there exists no load imbalance between the processes,
and hence LBE = 1. If, however, the load is not distributed equally among the
processes we have

max(tcalc) > t̄calc. (7)

For the example in Fig. 1b the calculation times tcalc for the sub-domains �4, �6
and �7 are longer and all the other processes have to wait. In order to overcome the
degradation of the parallel performance produced by such load imbalances, a new
method to decompose the domain is introduced in the following.

3.3 Balanced Domain Decomposition

The main steps of the balanced domain decomposition are listed below and
discussed in detail in the next sections. Note that step one and two are not repeated
for every timestep but rather after some user-defined number of cycles.

Main steps for the parallel load balancing strategy:
1: Assign a computational cost to each element
2: Create the domain decomposition
3: Calculate the VOF interface operations
4: Exchange the data between the sub-domains

3.3.1 Domain Decomposition by Recursive Bisection

Due to the fact that FS3D uses solely structured, rectangular grids, a recursive
bisection method is used in order to minimize cache-misses. Depending on the load
distribution given by the sum of the weights, the domain is split iteratively until
a given number of sub-domains (cores) is reached. The steps of the bisection are
shown in Algorithm 1: first of all, the domain with the highest load is determined
and the information of the index coordinates are saved. Afterwards, the size of this
domain in terms of number of elements is calculate from the index coordinates.
After this, the domain is split into two equal parts, where it is always first divided
along the slowest running array index in order to minimize the number of cache-
misses. With respect to the Fortran convention the domain is split in the order of:
k-index, j -index and i-index. Finally, the index coordinates of the new sub-domain
are saved, which describe the extent of a sub-domain, and which are called bisection
coordinates. The whole procedure of the bisection is visualized in Fig. 2.
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Algorithm 1 Recursive bisection for the domain decomposition
recursive bisection algorithm
while (number of subdomains < total number of subdomains)

1: determine domain with highest load
2: duplicate expansion of domain
3: calc number of elements in each direction
4: if (number of elements nk >= number of elements nj ) then
5: bisect number of elements nk for new domain
6: else if (number of elements nj >= number of elements ni ) then
7: bisect number of elements nj for new domain
8: else
9: bisect number of elements ni for new domain

10: end if
11: increase number of sub-domains by one

endwhile
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Γ2
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Γ4
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Γ4

Γ12

Γ11

Γ8

Fig. 2 Domain decomposition by recursive bisection. The computational domain is decomposed
into the sub-domains �n. The decomposition from left to right represent steps after three, seven
and eleven bisections. Through the bisection, in each case the domain with the highest workload is
divided into two sub-domains of equal size

3.3.2 Determination of Load Distribution

To provide the information of the current workload distribution to the bisection
algorithm the scalar field w(i, j, k) is introduced. It contains weights which
represent an estimation of the workload of the elements. If the weight per cell was
known, the computational load for any sub-domain is given by

L� =
∑N

1
w(i, j, k) (8)

where N is the number of elements of the sub-domain �. The optimal load per
sub-domain is the mean of the whole computational load

Lopt = Lmean =
∑N�

1 L�

N�

, (9)
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where N� is the total number of sub-domains. In computational elements containing
an interface additional calculations are necessary, e.g. determination of normal
vectors, curvature, interfacial velocity, and surface temperature. The position of
these elements in the domain is known by the volume fraction field (f −field). These
elements are associated with the weight ws(i, j, k), whereas for all other elements
the weight we(i, j, k) is used. We set

ws >> we. (10)

The values of these weights determine the quality of the load balancing. They
depend on the total number of elements, the number of surface elements, and the
number of processes involved. To determine the optimal weight a priori is therefore
not possible. It would have to be determined at runtime of the program. Instead,
the weight ws(i, j, k) is initially estimated. Since for the solution of the energy
equation the workload is the same for all elements, we set we(i, j, k) = 1. Figures 3
and 4 show decompositions for different weights ws(i, j, k) in a slice through a
three-dimensional case where a solid sphere is located in the centre. High weights
for ws(i, j, k) result in a low total number of sub-domains which contain surface
elements, and vice versa. Figure 3 shows a domain decomposition if the same weight
we(i, j, k) = ws(i, j, k) is used for all elements, and hence, all sub-domains have
the same number of elements. Figure 4 shows a decomposition, which occurs when
surface elements are assigned a higher computing load we(i, j, k) > ws(i, j, k).

Fig. 3 Domain
decomposition with an equal
number of elements for all
sub-domains. The assigned
weigh was for all elements
the same
ws(i, j, k) = we(i, j, k)
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Fig. 4 Domain
decomposition with different
numbers of elements for the
sub-domains. Elements which
contain the surface have been
assigned with a higher weight
ws(i, j, k) >> we(i, j, k)

3.4 Process Communication

The main steps to prepare the process communication are listed below and are
discussed in detail in the next sections. Note that steps one and two are only repeated
if a new domain decomposition was necessary.

Main steps to prepare the process communication
1: Construct the neighbourhood
2: Construction of the buffer coordinates for send and receive buffers
3: Exchange the data between the sub-domains

3.4.1 Constructing the Neighbourhood Relations

For the load balanced domain decomposition, as shown in Fig. 4, the sub-domains
have different sizes and can have multiple neighbouring sub-domains per side. All
sub-domains are cuboids with sides xl, xr, yb, yt, zb, zf . In order to exchange
values between these sub-domains, the processes need the information to which
other processes data should be sent. A process is identified by its rank p, the
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sub-domains are identified by the index n. Since in this work each process handles
one sub-domain, p = n. For the communication the following information is
needed:

• the neighbouring sub-domains of the sub-domain
• the direction on which side the neighbour touches the sub-domain
• the portion of values of the sub-domain to be exchanged

The neighbourhood information of a sub-domain is reconstructed with the infor-
mation of the bisection coordinates. This is exemplarily shown in Fig. 5 for the
side xl of sub-domain T which is oriented in negative x-direction. To determine
the sub-domains on the side xl for domain T , in a first step potential neighbours are
identified. They fulfill the criteria that they have the same bisection coordinates in x-
direction: cimin(T ) = cimax(R)+1. In the example these are the sub-domains R and
F . In a second step, which is depicted in Fig. 6, it is checked whether the potential
neighbours are true neighbours or not. This is done by testing if the domains share
a common side. Domain F for example does not share a side with domain T and
no data has to be exchanged. This is expressed by the criteria if the side is shifted
in y-direction: if cjmin(R) ≥ cjmax(T ) than F can be excluded as a neighbour.
With this two steps, all neighbours of a sub-domain in one direction can be found.

x

y

z

T

cimin(T ) = cimax(R) + 1

Fig. 5 Construction of potential neighbours for sub-domain T . The right side of the sub-domains
R and F are in the same plane as the left side of sub-domain T . Therefore, R and T are potential
neighbours
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x

y

z

T

cjmin(F ) ≥ cjmax(T )

Fig. 6 Construction of true neighbours for sub-domain T. The sub-domains R and F are potential
neighbours but the side of F (shaded in blue) is shifted in positive y-direction. Therefore, F can be
excluded as a neighbour form T . This is expressed with the criteria for the bisection coordinates
cjmin(R) ≥ cjmax(T )

With analogous criteria for the other sides of the sub-domain all neighbours of a
sub-domain can be determined.

3.4.2 Construct of the Buffer Coordinates for Send and Receive Buffers

If the neighbourhood relationships are known, values can be exchanged between
the processes. Since a 27-point stencil is needed for the construction of the normal
vectors, the diagonal element depicted in Fig. 7 (green) has to be exchanged as
well. However, the exchange of such small amounts of data should be avoided
because otherwise the time to start the exchange process outweighs the time for
the actual data transfer. The diagonal element is, therefore, not sent directly to the
corresponding domain, but transported with a communication sequence described in
Sect. 3.4.3. Thus, values to be exchanged come not only from the core partition, but
also from the halo element region, since the diagonal elements are transported via
this region. The indices of the elements where information needs to be exchanged
are called buffer coordinates. They define the set of values which have to be
exchanged between the domains. In Fig. 8 this set of values which have to be
exchanged from Source to Destination is indicated in red. Because one domain
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Fig. 7 Enlarged view of the
decomposition. Elements in
the core partition are white,
elements in the halo region
are grey. The exchange of
values is realized with a
communication sequence. In
step 1 the elements marked
red are send to the right (xr).
In step 2 the blue elements
are send to the top (yt). With
this sequence the diagonal
element indicated in green is
piggybacked and has not to
be exchanged directly

1

2

y

x

Fig. 8 Representation of
values to be exchanged
between two domains in
positive x-direction. The
bisection coordinates of the
source are indicated with the
index S and respectively with
the index D for the
Destination. The source is
shifted in positive y-direction
and has a smaller extension in
z-direction than the source.
The send coordinates which
span the red surface must be
calculated
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�AD
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�DS

•

can have multiple neighbours to one side three cases have to be distinguished for
the construction of these coordinates. These cases are depicted in Figs. 9, 10, and
11 and are exemplified for the construction of the minimum index coordinate in
y-direction:

For case 1 (Fig. 9) the side of the destination domain is shifted in positive y-
direction. This means that the bisection coordinate cjmin(Destination) of the lower
corner of the destination is larger than the bisection coordinate cjmin(Source) of
the lower corner of the source. The send coordinate sjmin results from the bisection
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Fig. 9 Case 1: the
destination is shifted in
positive y-direction. The send
coordinate sjmin(Source) is
calculated with the bisection
coordinate
cjmin(Destination)

y

x
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Fig. 10 Case 2: destination
and source are on the same
level. The calculation of the
send coordinate
sjmin(Source) is done with
the cjmin(Source)
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�DQ

�AZ

sjmin

coordinate of the destination cjmin(Destination). For the other two cases the send
coordinates are calculated by analogous criteria. The maximum index coordinates
for the x- and z-direction as well as the receiving coordinates can by calculated
according to the same principle.

3.4.3 Communication Routines

The development of an efficient process communication is fundamental for the
optimization of the runtime of a program as it can make up a significant part
of the total runtime of the program (communication overhead). Decisive for the
development of communication between processes is the communication pattern,
i.e. which process is exchanging data [9]. From a geometrical perspective the
domain decomposition allows for a communication pattern in form of a nearest



176 J. Müller et al.

Fig. 11 Case 3: the
destination is shifted in
negative y-direction. The
calculation is of
sjmin(Source) is done with
cjmin(Source)
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Algorithm 2 Communication routine for the exchange of data in xl-direction.
The same sequence follows for the exchange in xr-direction to have a complete
exchange of all domains in x-direction. Analogous routines are used for the
communication in y- and z-direction

exchange_xl
1: Read in all neighbours per direction
2: if neighbours in xl-direction exist then
3: for all neighbours in xl-direction do
4: fill send buffers (one dimensional array)
5: allocate receive buffers (one dimensional array)
6: CALL MPI_IRECV (receiving buffer (star_inx)),

length of receiving buffer(i), Source(i), . . . )
7: CALL MPI_ISEND (sendbuffer(start_inx)),

(length of send buffer(i), Destination(i), . . . )
8: end for
9: CALL MPI_WAITALL(number of MPI ranks, request)

10: for all neighbours do
11: write received buffers back to field
12: end for
13: end if

neighbour communication, since only values have to be exchanged with the direct
neighbours. However, an irregular virtual process topology results from the load
balanced domain decomposition, since the domains may not be mapped to cores
which are next to each other.

As was mentioned above, a communication sequence is introduced where the
exchange of small messages is avoided. It consists of three steps: an exchange
in x-, y-, and z-direction. The communication to the next spatial direction is not
started until the previous communication has been completed (see MPI_WAITALL
in Algorithm 2). This sequence allows to transport all diagonal elements in three
steps to their final destination.
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The implementation of these communication steps was split into three routines.
Algorithm 2 exemplarily shows the routine for the exchange in x-direction. The
non-blocking MPI calls MPI_ISEND to send values, and MPI_IRECV to receive
values were used. With these calls, data can be sent from one process to multiple
processes without waiting for one exchange to be finished. From a geometrical point
of view, this corresponds to the situation where all values that have to be exchanged
in one direction are sent one after the other from one sub-domain to all neighbours
in that direction. Although more processes need to communicate with each other,
this ensures that the communication overhead increases only slightly.

4 Results

In order to evaluate the new load balancing strategy, numerical test cases were
set up, where different load balanced decompositions were compared with the
corresponding symmetric one. This was done by timing the execution time for one
timestep and a detailed analysis of the calculation and communication time for a
routine with VOF calculations.

4.1 Numerical Test Cases

The test cases were inspired by a numerical investigation of the solidification
process of an ice seed right before the start of an unstable growth. The initial seed
has a diameter of 1.2158 ·10−6 m. This is the diameter from which instabilities (e.g.
dendritic structures) can grow on the surface of the seed [10]. The seed is located
in a computational domain with an edge length of five times the diameter in each
spatial direction. Since the seed grows with time, a seed with a doubled diameter is
initialized in the same computational domain for the second numerical test case. For
the third and fourth test case, the spatial resolution was increased to 256 elements
in each spatial direction, while keeping the initial diameters as in case one and two.
The seed has been initialized for all cases asymmetrical in the computational domain
as it is shown for case C128_0.37 in Fig. 12. All test cases are listed in Table 1. The
study of the optimal weight per surface element is presented in Sect. 4.2. All test
cases have been decomposed always into 16 sub-domains but with different weights
per surface element. This results in the different domain decompositions listed in
Table 2. In Sect. 4.3 we discuss the parallel efficiency with up to 256 sub-domains
by comparing a load balanced decomposition with the symmetric decomposition.
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#10#10#10#10#10#10#10

#11#11#11#####11#11#11#11########
#9#9#9#9#9#9#9#####9########9#######

#13#13#13#13#13#13#13############ #15#15#15#15#15#15#1511111111######3#3#3 ######111111111111111111111111##1##11111111111111#111
#5#5#5

#6#6#6

#1#1#1

#7#7#7 #8#8#8

#16#16#16 #2#2#2

Fig. 12 Visualized domain decomposition LB3 for Case C128_0.37. The computational domain
has 1283 elements with 0.37% of surface elements. Eight processes are used to calculate the
domains with surface elements indicated in blue. The different sub-domains are labeled in red.
The value of the weight per surface element ws was 150 times higher than we (ws = 150, we = 1)

Table 1 Numerical test cases with different interface configurations

Case name Number of surface elements Percentage of surface elements

C128_0.09 2,097,152 0.09%

C128_0.37 2,097,152 0.37%

C256_0.05 16,777,216 0.05%

C256_0.19 16,777,216 0.19%

4.2 Comparison of Domain Decompositions

In order to derive a criterion for an optimal weight per element, different domain
decompositions were compared. To this end, cases C128_0.09 and C128_0.37 have
been decomposed into the same number of sub-domains (Np = 16), but with differ-
ent weights associated to the surface elements. The characteristic parameters of the
resulting decompositions can be seen in Table 2. To compare the decompositions,
the parameters for a symmetric decomposition are additionally shown in column
“SYM”. Furthermore, “LB 1” represents a symmetric decomposition since the
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Table 2 Characteristics of different domain decompositions for Case128_0.09

SYM LB 1 LB 2 LB 3

ws : weight per surface element we = ws we < ws we << ws we << ws

Processes with surface elements 2 2 4 8∑
f3/process C128_0.09 901 901 451 225∑
f3/process C128_0.37 3897 3897 1949 975

% surface elements/process C128_0.09 0.04% 0.04% 0.02% 0.01%

% surface elements/process C128_0.37 0.19% 0.19% 0.09% 0.05%

Imbalance I 7 7 3 1

The domain is divided in different ways but always into 16 sub-domains.
∑

f3 is the total number
of surface elements

Fig. 13 Comparison of the
computing time for one time
step with the load balanced
decompositions and the
symmetric decomposition.
For case C128_0.37 with
0.37% of surface elements
the computing time can be
reduced by 50%

weights were equal for all elements. An increased weight for the surface elements
leads to decompositions “LB 2” and “LB 3”. This is also exemplarily depicted in
Fig. 12 for the decomposition “LB 3” of case C128_0.37. For the decomposition
“LB 3” of case C128_0.37 the scalar value of the weight per surface element ws

was 150 times higher than we (ws = 150, we = 1).

4.2.1 Analysis of the Runtime for Different Decompositions

In the following, the runtime is analysed for the different decompositions. To this
end, the time that is required for the calculation of one time step tLB is measured
and compared to the corresponding time tSYM of a symmetrical decomposition.
Figure 13 shows tLB related to tSYM for case C128_0.09 in black and for case
C128_0.37 in grey. The total percentage of surface elements is 0.09% and 0.37%,
respectively. A comparison of the same decomposition “SYM” and “LB 1”, but for
“LB1” with the new process communication, shows, that the new implementation
is about 0.04% slower. These additional costs are due to the implementation of the
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process communication. If the decompositions “LB 2” and “LB 3” are compared
with the symmetric decomposition, they are faster for both test cases. Note that case
C128_0.37 could be calculated in half the time with decomposition “LB 3” com-
pared to the symmetric case. The time for calculating a time step for case 128_0.09
with fewer surface elements can only be reduced by 10%. This means that the larger
the ratio of surface elements to the total number of elements, the more pronounced
is the load imbalance and a load balanced decomposition becomes effective.

4.2.2 Analysis of the Communication

The percentage of communication time is analysed in detail for one routine which
is performing operations on surface elements. These operations are called in the
following interface operations. The communication time consists of the time for the
actual data transfer and, due to the MPI_WAITALL in the communication routine,
also of the duration that processes wait for data from other processes. It can be seen
in Fig. 14 that if the load is better distributed among the processes, this waiting time
is reduced and hence the share of communication to the total time. This becomes
again particularly clear for case C128_0.37 were the share of communication drops
to 65%.

4.2.3 Quantification of Load Imbalance

If only routines with interface operations are considered the load imbalance can be
quantified in a geometrical way. Following Jofre et al. [11] it can be expressed as
the difference between the percentage of the process with the most surface elements
and the mean value of surface elements divided by the latter

I = %surface elements(Pmax) − %surface elements(Pmean)

%surface elements(Pmean)
. (11)

Fig. 14 Percentage of
communication time for the
different decompositions. The
communication time
comprises also the time how
long the processes have to
wait for the slowest process.
This is why it is reduced for
decompositions which
balance the load more equally
(“LB 2”, “LB 3”)
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It should be noted that the imbalance increases during the simulation because, as
the solidification proceeds, the number of surface elements increases. In contrast
to this, the imbalance decreases with a higher spatial resolution, since the total
number of elements in the computational area increases cubically and the number
of surface elements quadratic. Another aspect that has to be considered is that every
routine of the program has a different load balance efficiency. This means that, with
a symmetric decomposition, the load imbalance only exists for the routines with
interface operations but for routines which have a homogeneous work distribution
(e.g. the solution step of the energy equation) there is no load imbalance. Hence, an
imbalance is introduced in these routines that were perfectly balanced before. This
becomes apparent if the weight for the surface elements is chosen too high. The time
saved due to the reduction of the load balance in routines with interface operations
is over-compensated by the load imbalance introduced in other routines. This may
also lead to a longer overall execution time for one time step.

4.2.4 Detailed Analysis of the Program Run

The situation described in Sect. 4.2.1 is confirmed by a tracing of the program
run. Case C128_0.09 is calculated with a symmetric decomposition and a load
balanced decomposition. To compare these decompositions an excerpt of the
program trace is presented. The tracings excerpts in Figs. 15 and 16 show the 16
processes working on the same part of a routine with interface operations. For a
symmetric decomposition the tracing is shown in Fig. 15. Only the two processes
0 and 4 contain surface elements and perform operations on these surface elements
(indicated in green), the other processes have to wait (indicated in red) most of the
time. In contrast, Fig. 16 shows the balanced decomposition “LB 3” for the same
case and a much more evenly distributed workload.

Fig. 15 Tracing of program run for case C128_0.09 with a symmetric decomposition (“SYM”)
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Fig. 16 Tracing of program run for case C128_0.09 with a balanced decomposition (“LB 3”)

4.3 Parallel Efficiency

The parallel efficiency for a larger number of processes is examined for the cases
C128_0.37 and C256_0.19, since the load imbalance is too small for the two other
cases. The ideal speed-up results with the assumption that the execution time with
k processes is k-times faster. Since the representation selected here for the achieved
speed-up S refers to the base value for the calculation with 16 processes, the ideal
speed-up is

Sid = P

16
, (12)

where P denotes the number of processes. Figure 17 shows the speed-up for
case C128_0.37 with 1283 elements. The load balancing leads to a significant
acceleration for up to 128 cores. However, a maximum of 128 cores can be used
for this case, as otherwise the number of elements per process becomes too small.
Figure 18 shows the speed-up for case C256_0.19 with 2563 elements. Since
the imbalance is lower for this case, the balanced decomposition leads to lower
accelerations.
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Fig. 17 Comparison of the
speed-ups S for the
symmetric decomposition
“SYM” and the balanced
decomposition “LB 3” for
test case C128_0.37 with
1283 elements and 0.37%
surface elements

Fig. 18 Comparison of the
speed-ups S for the
symmetric decomposition
“SYM” and the balanced
decomposition “LB 3” for
test case C256_0.19 with
2563 elements and 0.37%
surface elements

5 Conclusion

In this paper, we have presented a method to reduce load imbalances in simulations
of solidification processes with the software package Free Surface 3D (FS3D).
Elements which contain an interface have higher computational costs due to
operations that are solely performed on the interface. Therefore, these elements
are associated with a higher weight compared to non-interface elements. This
allows to create a load map that is passed to a recursive bisection algorithm.
Therein, the recursive bisection of the computational domain considers the existing
data structure of FS3D and provides sub-domains consisting of contiguous arrays.
For the data exchange between processes, a nearest neighbour communication
was implemented with non-blocking Message Passing Interface (MPI) routines.
In order to communicate the diagonal elements, a communication sequence is
used to minimizes the communication overhead. The load imbalance occurring



184 J. Müller et al.

in FS3D could be quantified as a function of the percentage of surface elements.
Since the load imbalance occurs only in routines which perform calculations on
surface elements, different domain decompositions should be used in the future for
the different routines of the program. The reduction of the load imbalance was
investigated for different domain decompositions and a criterion for an optimal
weight per element can now be formulated based on this work. Furthermore, the
parallel efficiency of the load balanced domain decomposition was compared to
the original domain decomposition. For cases with a large number of interface
elements or an asymmetrical distribution of interface elements the simulations can
be significantly accelerated by the introduced method.
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Load Balancing for Immersed
Boundaries in Coupled Simulations

Neda Ebrahimi Pour, Verena Krupp, Harald Klimach, and Sabine Roller

Abstract The simulation of engineering problems usually involves different
physics and scales that need to be addressed appropriately. A monolithic
computation on the finest scale of such complex problems results in overly
expensive computations, unfeasible to solve even on today’s supercomputing
facilities. To facilitate accurate simulations of such problems we suggest a
partitioned coupling approach. The strategy is, to decompose the simulation domain
according to the physics into subdomains and solve each of them with the best
suited numerical approximation. All subdomains are weakly connected to each
other at the boundaries (coupling interface), while a coupling approach takes care
of the communication and the data-exchange between them. With that we can not
only address specific requirements of the physics individually but also reduce the
computational cost when compared to the monolithic scenario, where the entire
domain is treated with the same equations and numerical scheme. One drawback
we face in coupled simulations is the implied load imbalance, which is due to
the different treatment of each subdomain and the communication and interpolation
between them. These additional loads do not affect the complete domain equally and
a balancing strategy within the subdomains is required for efficient computation. To
represent geometries in our setups, we employ a penalization method that fits well
with high-order discretization schemes, but introduces volumes, where the solution
is not of interest. By reducing the scheme order selectively in those regions that
are not of interest, the impact of this strategy on the computational effort can be
minimized but this introduces another factor of load imbalance. In this work we
present observations on these load imbalances and how they can be balanced in the
coupled setup, enabling the efficient computation of complex setups as found for
example in direct aero-acoustic simulations.

N. Ebrahimi Pour (�) · V. Krupp · H. Klimach · S. Roller
University of Siegen, Siegen, Germany
e-mail: neda.epour@uni-siegen.de; verena.krupp@uni-siegen.de; harald.klimach@uni-siegen.de;
sabine.roller@uni-siegen.de

© Springer Nature Switzerland AG 2020
M. M. Resch et al. (eds.), Sustained Simulation Performance 2018 and 2019,
https://doi.org/10.1007/978-3-030-39181-2_15

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39181-2_15&domain=pdf
mailto:neda.epour@uni-siegen.de
mailto:verena.krupp@uni-siegen.de
mailto:harald.klimach@uni-siegen.de
mailto:sabine.roller@uni-siegen.de
https://doi.org/10.1007/978-3-030-39181-2_15


186 N. Ebrahimi Pour et al.

1 Introduction

Multi-scale and multi-physics problems are of complex nature, and hard to solve
numerically, as they often require the interaction of adapted methods for specific
parts of the overall setup. Therefore, a proper strategy is needed to simulate these
kinds of problems accordingly to not only represent the physics correctly but also
to keep the computational effort in a reasonable scope. For that, we consider
partitioned coupling, that allows the simulation of multi-scale and multi-physics
problems by decomposing the overall setup into spatially separate subdomains and
treating each part with the best suited numerical setup. Each subdomain can then
be solved individually, taking the physical requirements into account. This allows to
solve different equations with individual numerical schemes and the required spatial
resolution in each subdomain. With that we can ensure a tailored treatment of the
entire simulation domain. Due to the decomposition and the different treatment of
each subdomain, a coupling tool is needed to maintain the data-exchange between
them. We already showed how efficient this strategy is in terms of computational
time, when compared to a monolithic approach, where the entire domain is solved
for the same equations with the same numerical scheme and resolution. Even
though, this strategy not only reduces the computational time but also provides
accurate results [1–3], we face a new bottleneck due to the heterogeneity of the
computation. Since each domain is treated differently, load imbalances can be
foreseen and have to be addressed in order to use the available computational
resources efficiently. There are two problems to consider here. The one is the
balancing between subdomains accounting for the individual computational cost
in each them. The other is the balancing of unevenly distributed loads within
each subdomain. Both are important for large scale simulation runs. When a
geometry is involved, the second problem of balancing within each subdomain
gets even more important, as we utilize a penalization scheme here and reduce the
computational effort where possible. Hence, there are multiple factors influencing
the computational cost of individual elements, with the additional costs for the
interpolation at the coupling interface and the reduced effort within penalized areas
as the most important ones.

In this paper we address this problem for a three-field coupled simulation to
capture the aero-acoustics from the flow around an airfoil. The geometry of the
airfoil is placed in the innermost domain where the full compressible Navier–Stokes
equations are solved. This is surrounded by a subdomain to capture the flow where
viscous effects can be neglected and the inviscid Euler equations are solved. Finally,
a far-field to capture the emitted sound waves is embedding these. In the far-field
only the linearized Euler equations are solved, as no non-linearities are expected
in this acoustic field anymore. Due to its linear nature a high spatial scheme-order
can be employed in the far-field to reduce the memory that is required to cover the
large domain. Thus, each subdomain utilizes different spatial discretizations and
solves different equations. We present simulation results, showing the suitability of
our coupling strategy for multi-scale problems and investigate the resulting load
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imbalances in the partitioned coupling. Furthermore, we highlight how we model
the geometry in the high-order context and present how the performance can be
improved using load balancing available in our simulation framework.

2 Geometry Modelling in High-Order

For the simulation of engineering applications in fluid dynamics an appropriate
method is needed to model the geometry efficiently. When considering high-order
methods for the discretization of the flow domain, the geometry has to be modeled
in high-order as well to maintain the overall accuracy of the solution. Two methods
are used, to introduce the geometry in the flow domain. The first method is based
on adapting the mesh to the geometry and using special elements to account for
its surface. The other method leaves the mesh untouched but introduces additional
terms into the solved equations to address the geometry within the elements of the
mesh.

Using the immersed boundary method without touching the mesh is especially
useful for high-order discretizations with few elements or moving obstacles.
However, it results in volumes that are not of interest for the solution but still need
to be computed. We utilize this method to represent the geometry in our solver
and minimize the effect of the additional computed volumes by minimizing the
approximation where it is possible.

2.1 Immersed Boundary Method

The immersed boundary method is well suited for numerical simulations, to model
not just simple but also arbitrary complex geometries. One major and outstanding
advantage of this method is the possibility to employ elements independently from
the geometry. This allows the free choice of element forms and enables the use of
efficient numerical schemes. This enables us to utilize cubical elements that are
very well suited for parallelization and efficient computation. Figure 1 presents
the strategy used when considering the immersed boundary method to model the
geometry on a Cartesian mesh. As demonstrated in the figure, the geometrical
representation lives within the mesh, and no adaptation of the mesh towards the
geometry is required. This is also useful if the geometry is to be moved during the
simulation.

For our simulations the geometry is modeled via a Brinkman penalization [4],
where it is represented by a porous material. This has the advantage, that we just
need to include a few additional terms into our flow equations. The numerical dis-
cretization is based on the high-order modal discontinuous Galerkin method (DG),
which allows high accuracy of the solution and faster convergence of the solution
with less degrees of freedom (Dofs), when compared to a low order scheme. The
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Fig. 1 Immersed boundary method: Geometry modeled on the computational cartesian mesh

physical state of the solution is represented in the model space for all conservative
variables (mass, momentum and energy). Due to the low inherent dissipation and
dispersion properties of this scheme, this method is well suited for aero-acoustic
simulations. Furthermore, due to the integration of the geometry model into the
flow equations with the same discretization as the solution, we can maintain the
high accuracy of the overall solution and the high-order for our simulations. The
equations below represent the conservation of mass (Eq. 1), momentum (Eq. 2) and
energy (Eq. 3) for the compressible Navier–Stokes equations. The boxed part of the
equations represent the additional terms we need to consider for the modelling of
the geometry as a porous material. Where φ represents the porosity, χ the masking
function, which is either 1 or 0, indicating whether geometry is present or not, Uoj

the velocity of the obstacle, η the viscous permeability, ηT the thermal permeability
and To the temperature of the geometry.
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A major drawback of the immersed boundary method besides its several outstanding
advantages is the computation of the solution not just outside the geometry but also
inside of it, where it is not of any interest. Therefore, additional computation is
devoted to elements, which are out of interest for the overall solution. To tackle this
shortcoming, we introduce a method to reduce the computational effort depending
on the scheme order used and the number of elements, which are completely covered
by the geometry.

2.2 Mode Reduction Method

Computation inside the geometry is not desired and should be avoided to minimize
the computation effort. As mentioned in the above section, the modelling of the
geometry using the immersed boundary method implies computation inside the
geometry. Accordingly it would be better to cut out elements inside the geometry
from the computational domain. However, this is not always easily possible and
counters some of the benefits of this method, especially when considering moving
obstacles. Alternatively, we can reduce the computational effort in completely
immersed elements. We achieve this by a mode reduction in those elements. One
of the most compute intensive operations when considering high-order DG method
is the physical flux, since the computational effort of the physical flux computation
increases with increasing scheme order and has to be done several times for each
element. Therefore, we can decrease the computational cost, when taking this aspect
into account, and fall back to the first mode (integral mean) of the polynomial
representation of the state in elements that are completely inside the geometry. This
means when an element is completely covered by the geometry, we just consider this
first mode in the computation of the physical flux instead of computing all higher
modes as well.

To decide whether we can make use of mode reduction for specific elements,
we check the faces of the neighbouring elements and the element’s own faces and
check there, if the masking function χ has a value of 1 everywhere. In case the faces
of the neighbouring elements and the element’s own faces have the value 1 for χ

we consider only the first mode in the physical flux computation for this specific
element. With that we make sure, that we are not falling back in the accuracy
of the solution in the boundary layer area and are consistent in the computation.
Figure 2 gives a small overview how this new feature works in practice, when
considering a small test case with 4 elements. As demonstrated in the figure, the
blue element represents a fluid element, which is not covered by the geometry, while

Fig. 2 Reduction of mode
for the physical flux
computation, for elements
covered by the geometry

Geometry Element

Fluid Element

No No Yes Yes
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the red marked elements are completely covered by the geometry located there. The
mode reduction can only be applied for the last two elements, which have all faces
inside the geometry as well as their neighbouring elements. While the third element
is also completely covered by the geometry, but one of its faces has a neighbour
which is not. Further the boundary layer inside the material needs to be properly
resolved within this element. If we would reduce the spatial scheme order also in
this element, the modelling of the wall would be badly affected.

3 Load Balancing

Coupled simulations not only allow the reduction of the overall computational
effort for complex setups, but also enable the best-suited configuration for the
occurring physics in each of the subdomains. However, a drawback of this approach
is that load balancing gets more involved in this strategy. We can differentiate
between intra-subdomain and inter-subdomain load imbalance. Load imbalance
happening inside each subdomain (intra-subdomain), is due to the fact, that inside
the subdomain those elements involved in the coupling at the coupling interface,
for example, have more workload than other elements. Beside the computation of
the equations, those elements have to maintain the communication to the coupling
tool and exchange data (receive and provide) to update the state of the compu-
tational subdomain in each time step. Another example would be reduced costs
by the mode reduction method described above in the presence of geometries.
Since all subdomains have different sizes, solving different equations due to the
occurring physics and considering different scheme orders, the workload varies
from subdomain to subdomain, resulting in the need for inter-subdomain balancing.
The imbalance introduced by the coupling approach and the load balancing of it is
investigated in detail in [5].

The intra-partitioned workload stands even more out, due to additional load
imbalance caused by the presence of geometries, which can e.g. move. As men-
tioned in Sect. 2, we consider an immersed boundary method, to model the geometry
with the same accuracy as the underlying scheme. Due to the method used, we
compute the solution also inside the geometry, where it is not of interest, hence
resulting in additional computation. As mentioned in Sect. 2.2 by the means of the
modereduction feature we already counter the computational effort, but still need
to account for the load imbalances induced by it. The next subsections are devoted
to the differentiation of load imbalance (inter-subdomain and intra-subdomain) and
the methodology we consider to overcome load imbalances for our simulations.
The focus of this work is on intra-subdomain load imbalance and the workload
resulting from the immersed boundary method to model the geometry by means of
the mode reduction method.
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3.1 Intra-Subdomain Load Imbalance

One important issue we face for our simulations is the workload distribution inside
a subdomain. Figure 3 shows exemplarily intra-subdomain load imbalances and the
balancing of it. In each scenario, there are 4 MPI processes depicted by the solid
lines and 16 elements in total (four per MPI process) illustrated by the dotted lines.
In this illustration each process works for the exact same time on each of its elements
sequentially. At tsync the processes have to wait for each other for synchronization.
Figure 3a: ideally each process involved in the computation needs to have the same
workload, so that all processes of one subdomain finish the computation of one
time step at the same time. Each element in the domain has a defined workload,
which in principle depends on the numerical scheme or its location. Figure 3b:
coupled simulations are carried out via boundary conditions, resulting in surface
coupling. Due to the coupling, elements at the coupling interface have additional
load in terms of computation. At each time step, they have to provide the required
coupling data at the required points in space. This might be costly for the chosen
discretization. Further this data needs to be exchanged with the other subdomains
as well. Here, we have 1 coupling element (light blue shaded box) on 1 MPI-
process having additional coupling workload (blue box) and hence 3 MPI-process
are idling at tsync (gray shaded box) to wait for the coupling computation on the first
process. Figure 3c: using a re-partitioning approach to distribute the elements within
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Fig. 3 Example of intra-partitioned load imbalances and load balancing within a subdomain. Solid
lines depict 4 MPI-processes and the dotted lines illustrate 16 elements. (a) Ideal LB yielding
same number of elements with all having same workload. (b) Same number of elements on each
processes with one element involved in coupling. (c) Using re-balancing mechanics resulting in
good load balancing with one element involved in coupling
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a subdomain according to their workload. Here 1 expensive coupling element on 1
MPI-process and 5 elements on the 3 other MPI-processes.

The consideration of reduced workloads due to the described mode reduction

inside geometries results in similar imbalances within subdomains, contributing
to the heterogeneity of the workload distribution. Therefore, we need to consider
the load imbalance caused by the decomposition of the domain and the additional
imbalance due to the mode reduction feature accordingly, to improve the computa-
tional efficiency of the partitioned coupling setup. The concepts of load imbalances
explained for coupling in Fig. 3 can be transferred to any kind of load imbalances.
It has to be mentioned, that whenever intra-subdomain load imbalance is present,
the computation of the coupled scenario also influences the inter-subdomain load
imbalance, as waiting time for other subdomains (inter-subdomain load imbalance)
is inevitable.

3.2 Inter-Subdomain Load Imbalance

Besides intra-subdomain load imbalance, waiting times can also arise between
subdomains. Different equations, spatial domains and numerical discretizations lead
to different workloads in the individual subdomains. For example solving a non-
linear Euler flow with around 1000 fine elements and lower order has a different
workload than a linearized acoustic field with 500 coarse elements and a higher
order. Each subdomain receives before execution a predefined number of processes
that does not vary over runtime. For a good load balancing, the number of processes
should be according to the total workload (computation of the equation and spatial
order, coupling, geometry computation) of the subdomain. Inter-subdomain load
imbalances are not the focus of this work. However, it influences the overall
performance and needs to be taken into account as well. More information regarding
Inter-subdomain load imbalance due to coupled simulations and how to deal with
that can be found in [5].

4 Methodology

This work is done in our in-house simulation framework APES [6, 7], where the
integrated coupling approach APESmate [8] is included. To address load imbalances
in our simulations, we make us of the integrated space-filling curve based balancing
algorithm SPartA [9]. This feature is found in the common mesh library of APES
called TreElM [10]. SPartA is based on the space-filing curve and individual
weights which provides information regarding the actual load per element. This
algorithm is well suited for static meshes, in terms of re-partitioning. The weights
are determined by time measurements during runtime of the solver. Timers are
set before the general computation, which includes among others the physical flux
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computation and the projection onto the test function, which are the most expensive
operations. Additionally timers are included for elements involved in the coupling,
which have additional load to manage. The weights written out after a successful
run are independent from the number of processes used for the simulation, since
they provide information regarding the actual work each element has. Since timers
are used for the measurement, the workload has the time dimension and is given
in seconds [5]. Through the weights we ensure that the re-partitioning among the
processes is according to the actual work load, which includes all variations from
element to element.

5 Results

This section is devoted to simulation results as well as results showing the
performance of the coupled simulation when compared to the monolithic approach.
We also show how we can save computing time, when using the integrated load
balancing approach for a 3-field coupled simulation. The coupled scenario is
consisting of an innermost subdomain, where an airfoil (S834) profile is located,
which is modeled as a porous material (see Sect. 2). Here we consider the full
compressible Navier–Stokes equations, using a fine mesh and a low scheme order
to resolve small scales and consider the viscosity. Away from all viscous effects,
we simplify our equations and solve the compressible inviscid Euler equations
(middle subdomain), where a coarser mesh and a higher scheme order is used.
Further away from all nonlinearities we have the third subdomain, where we are only
interested in the propagation of acoustic waves. Therefore, we solve the linearized
Euler equations were an even coarser mesh and an even higher scheme order is
used. For all simulations we use the high-order Discontinuous Galerkin (DG) solver
Ateles and individual subdomains via APESmate. With this test case, we utilize
the properties of DG of low dissipation and dispersion error, which is of importance
for the transportation of information over larger distances. This strategy allows us to
reduce the computational effort and consider expensive equations where it is needed
and simplify the equations as soon as the physics allows.

5.1 Configuration of the Simulation

The simulation configuration for the 3-field coupling is shown in Table 1. From the
table it is clear that the smallest volume is covered by the innermost domain, where
we solve the expensive Navier–Stokes equations. At the same time this domain
contains the most elements. This is necessary to capture small scales, but also to
resolve the boundary layer at the geometry interface. Furthermore, the outermost
domain, where the linearized Euler equations are solved has the least elements,
while using a spatial scheme order of 9, which is the highest for this test case. Due
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Table 1 Setup for 3-field coupled simulation

Navier–Stokes domain Euler domain Linearized Euler domain

Inner domain Middle domain Outer domain

Domain length [x, y, z] [6, 4, 4] [12, 10, 4] [12, 5, 4]

Number of elements 450,420 24,576 3,840

Scheme order 4 6 9

to the high-order scheme we can make sure to have low dissipation and dispersion
over the large domain. The domain size is provided in Table 1. All lengths are
normalized by the cord length of the airfoil. In the Navier–Stokes domain a jet-
inlet is prescribed, which injects a direct stream on the airfoil geometry. The jet at
the inflow is located exactly in the middle and has a radius of 0.5 unit length. The
kinematic viscosity μ has a value of 10−7. The velocity at the jet-inflow is ramped
linearly over the time and has a value of velocity =[0.1 · √(γ · p/ρ), 0.0, 0.0], with
γ equal to 1.4, pressure p being 101,325 and density ρ = 1.0. The values for
pressure and density are also set as initial conditions for the middle domain and
as background values for the outer domain, while the perturbation is defined to be
0.0 initially for all state variables (pressure, density and velocity) for the outermost
subdomain.

Our purpose is, to show that we can obtain a much faster computation by
decomposing the simulation domain and using load balancing to distribute the
workload among available resources accordingly. Since this test case is too big
to be also computed monolithically for comparison, we reduce the domain size
in a way, that a comparison between the performance when computing the entire
simulation domain with the same equations, scheme order and spatial discretization
(monolithic) with the coupled scenario, is possible. Therefore, we consider Table 2
for the performance comparison. For the monolithic approach we use the same
domain size as for the coupled simulation, while solving the entire domain with
the Navier–Stokes equation, a scheme order of 4 and the same element size as in the
innermost subdomain of the coupled test case, hence resulting in 1,216,748 elements
and 389,359,360 degrees of freedom (nDof), which is more than what is used for the
coupled scenario, which is discretized with 43,291,520 degrees of freedom in total.
A more detailed look into the number of degrees of freedom reveals that the coupled
test case has 9 times less degrees of freedom than the monolithic test case. This

Table 2 Small setup for 3-field coupled simulation

Navier–Stokes domain Euler domain Linearized Euler domain

Inner domain Middle domain Outer domain

Domain length [x, y, z] [4, 2, 2] [12, 6, 2] [12, 3, 2]

Number of elements 94,516 8192 1152

Scheme order 4 6 9

nDof 30,245,120 8,847,360 4,199,040
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Fig. 4 (a) Monolithic test case and (b) coupled test case

is of importance, when considering the evolution of new supercomputing systems
towards decreasing memory per node and thus the increased importance of memory
consumption.

In Fig. 4 the test case is shown, while computing the entire domain in (a)
monolithically and in (b) decomposed. As mentioned previously a drawback of
coupled simulations is the fact, that load imbalances are introduced inside the
domain as well as from one domain to another one. In order to reduce computational
overhead, load balancing is indispensable and has to be addressed accordingly. The
first level of load imbalance that needs to be addressed is the different load each
element has to take care of (intra-subdomain load imbalance).

5.2 Weight Distribution

For load balancing purposes the load each element has to deal with depends on its
location as well as if e.g. source terms are available in them. In the coupled scenario
additional workload is also introduced at the coupling interfaces due to the necessary
interpolations. The weights are obtained by element timers that are placed around
compute intensive routines e.g. the physical flux computation or the evaluation of
the geometry and make use of MPI_Wtime. Figure 5 shows the weights for each
element of a small coupled test case exemplarily. The test case consists of an inner
domain solving the Navier–Stokes equations, where a cylinder is located in the
center of the domain with a radius of 1.0. The outer domain is solving the inviscid
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Fig. 5 Results of the workload for a small coupled scenario. Figures showing the inner domain
(Navier–Stokes) and the outer domain (Euler) in (a) weights, showing the dominant coupling
elements in the outer domain and (b) reduction of the weights for elements inside the geometry
when using mode reduction in the inner domain. The white frame depicts the coupling interface
between the two domains and the black line the cylinder location inside the inner domain
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Euler equations. In the inner domain the edge length of the elements is a fourth of
the edge length of the elements in the outer domain. As can be clearly seen, the
inner domain has mostly evenly distributed weights throughout the domain, while
the outer domain has very compute intensive elements at the coupling interface
(indicated by the white line). This is due to the information it has to provide to the
inner domain. Since the inner domain (Navier–Stokes) requires not only the state
variables, but also their gradients, those elements become even more computational
intensive. While the inner domain just needs to provide the state values to the outer
domain, and hence the additional computation is nearly invisible in the weights.
In the inner domain some regular pattern can be recognized, this regular pattern is
likely due to memory access patterns. The effect of the mode reduction discussed
in Sect. 2.2 can be seen in Fig. 5b, here the workload is clearly reduced within
the cylinder indicated by the black line. Figure 5a shows the weight distribution
if no mode reduction is used, illustrating a nearly even distribution of weights but
wasted computational effort within the geometry region.

Note that there are two different scales used in Fig. 5 to account for the different
element sizes. There are 16 elements in the inner domain covering the same area as a
single element in the outer domain. Thus, there is a factor of 16 used in the scales to
better illustrate the computational intensity per covered simulation volume. With the
knowledge obtained to this point we can conclude, that the coupling elements can be
computationally intensive. Furthermore, we can reduce the workload of the elements
inside the geometry by the newly implemented feature to address the unnecessary
expensive computation of elements located inside the geometry by reducing the
utilized polynomial modes in their computation to 1.

5.3 Performance Measurements

To investigate the performance of the mentioned test case in Sect. 5.1 and find
out how much performance improvement we can obtain by considering load
balancing, we compare the coupled simulation with and without load balancing
to the monolithic approach, where we consider both scenarios of load balancing
as well. In all cases we make use of the mode reduction feature, to neglect
the computation inside the airfoil. Furthermore, we consider the element timers
to write out weights during runtime, which then can be used to balance the load
using the SpartA algorithm and computing the number of cores each subdomain
needs for the computation in order to avoid idling overheads. The load balancing
is done considering intra- and inter-subdomain workload. The investigations were
done on the Noctua system, a Cray installation in Paderborn, Germany. Figure 6
illustrates the strong scaling measurements when considering up to 2560 processes
for the investigation, with each node having 40 processes for the execution of
the simulation. It is noticeable how much performance benefits we can obtain by
decomposing the domain and the different treatment. Even though the coupling
elements are very expensive when compared to the elements inside the domain,
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Fig. 6 Comparison of the strong scaling measurement for the 3-field coupled simulation-with and
without load balancing-and the monolithic test case

still the coupled scenario provides outstanding strong scaling results. We can
also observe, that since for the monolithic approach almost all elements have the
same workload, we can not gain much benefit from the load balancing used here,
since the geometry covers a small amount of elements, which are responsible for
additional load imbalance, when using mode reduction. While for the coupled
scenario the performance improvement using the introduced load balancing method
is significant and allows further performance improvement for the already very
efficient coupled simulation. For both coupled scenarios (with and without load
balancing) inter-subdomain load balancing is used, while for the not balanced
scenario the intra-subdomain load balancing was neglected. For inter-subdomain
load balancing we started with 36, 3 and 1 processes, where the innermost domain
ran on 36 processes, the middle domain on 3 and the outermost domain on 1 process.
This ratio was kept for strong scaling measurement. Hence for the run with 80
processes we used 72, 6 and 2 processes for each subdomain respectively.

5.4 Simulation Results of the Coupled Scenario

The simulation results from the coupled scenario are shown in Fig. 7. At the inlet a
jet-inflow is prescribed, which provides a stream around the airfoil located in the
most inner subdomain. From the figure it is clearly visible, that vortices in the
innermost subdomain are well resolved and travel from the inner to the middle
subdomain, hence passing the coupling interface without changing their properties
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Fig. 7 Results of the coupled simulation in (a) the velocity magnitude over the domain and (b) a
zoom-in at the coupling interface between the most inner domain (Navier–Stokes) and the middle
domain (Euler). The white frames mark the coupling interfaces between each subdomain

and still maintaining the physics correctly. The white lines represent the coupling
interface, where the data-exchange between the coupling domains occurs. Even
though each subdomain solves a different set of equations and the mesh resolution
as well as the scheme order are different (see Table 1), there is no shifting of
physical attributes or the traveling of wrong information from one domain to the
other observable. Further, vortices are well resolved in the inner domain, where it is
needed. It has to be mentioned, that the flow is still not completely evolved and has
to run further to see also the acoustics propagation into the outermost subdomain.
Due to the right choice of equations and the overall simulation setup, all scales can
be represented accurately. In the zoom-in picture we can not only see how well
the physics are preserved but also the change in the mesh resolution, which can be
addressed during the post-processing procedure.

6 Conclusion

Complex simulations involving multi-scale and multi-physics are still challenging
when considering engineering applications. Computing these setups in a monolithic
manner is not feasible from the computational perspective. In order to tackle this
problem, we make use of partitioned coupling, where we split the domain according
to the physical requirements and solve each of the domains with a tailored configura-
tion. Subdomains are weakly connected to each other via the boundaries, where the
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data-exchange between them takes place through a coupling tool. With this strategy
we can not only obtain accurate simulation results, but also enable runs in terms
of compute time. One drawback we face when considering partitioned coupling
is the increased complexity in the arising load imbalances. We can distinguish
here between two levels of load imbalance the intra- and inter-subdomain load
imbalance. The intra-subdomain load imbalance results from the different loads
each element inside a subdomain might have. For coupled simulations in particular,
this is caused due to the coupling elements at the coupling interface, which have to
maintain the communication between the coupling approach and are responsible
for providing and receiving data from and to the coupling tool. This drawback
is addressed in this paper. We described how we deal with both levels of load
imbalance and presented how we make use of element timers in the solver to obtain
weights per elements, which can then be used to balance the workload appropriately
among available processes. Furthermore, we presented how we model the geometry
for engineering applications by means of an immersed boundary method, where
the geometry is modeled as a porous material. With this method we can ensure
efficient and accurate simulation results, but need also to consider that the solution
is also computed inside the geometry, where it is not needed. By reducing the
spatial scheme order in those elements, this disadvantage can be minimized, but
again load imbalances are introduced within the domain. Furthermore, we presented
outstanding performance results for the coupled scenario by means of a 3-field
coupled simulation with an airfoil located inside the innermost domain. The strong
scaling measurements show how important the load balancing is for the scalability
of the coupled scenario. We also showed that we can simulate the physics according
to its need by the means of a 3-field coupled problem, where we decomposed the
entire simulation domain in three subdomains and solved them with the best-suited
numerical configuration.

The future work is devoted to the investigation of load imbalance, when consid-
ering not just stationary geometries but also moving ones. For moving geometries
the masking function of the penalization needs to be evaluated in every time step,
resulting in increased costs in domains with moving geometries. In addition we need
to further study how large the benefit from using the mode reduction feature for
moving geometries is, as well.
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Large Scale Agent Based Social
Simulations with High Resolution Raster
Inputs in Distributed HPC Environments

Sergiy Gogolenko

Abstract Agent-based modelling and simulation (ABMS) is an essential tool
which allows to explore the role of social phenomena via computer simulation.
Large scale social simulations of HPCs—also known as parallel and/or distributed
agent-based simulation (PDABS)—play a key role in the emerging field of com-
putational global systems sciences (GSS). Agent-based models (ABMs) in GSS are
characterized by highly non-uniform spatial distribution of agents and importance of
long distance social interactions. Over the last two decades, researchers proposed a
number of approaches to effectively address these traits of ABMs. Such approaches
are driven by data available for scientists. In many GSS applications, the data
partially come in raster formats. Yet, case of raster inputs for GSS applications
is barely studied in literature and not supported sufficiently in the state-of-the-art
ABMS frameworks. In this paper, we propose a graph-based approach to represent
ABMs with raster inputs on HPCs. This approach naturally leads to a space-
relationships-based work partitioning strategy which allows to improve performance
of PDABS.

1 Introduction

Large scale social simulations play a key role in the emerging field of computational
global systems sciences (GSS) which deals with providing “scientific evidence to
support policy-making, public action, and civic society” [1]. to provide scientific
evidence to support policy-making, public action and civic society to collectively
engage in societal action. “The behaviour of many social systems requires that
they be modelled at the level of individual people” [2], which is usually achieved
by agent-based modelling and simulation (ABMS). On the one hand, since GSS
applications analyze society on global or country level, individual-based view on
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the global systems naturally leads to computationally expensive large scale ABMS
runs. On the other hand, the modeler obtains flexibility in addressing heterogeneity
in agents, non-linearity in their responses, and other complex model assumptions.
This flexibility enables ABMS to capture emergent social phenomena overlooked by
macro- and meso-scale models [3], as well as to outperform conventional machine
learning techniques in some cases [4].

At the same time, agent-based models (ABMs) for GSS have many peculiarities.
In [5], authors list three major traits of ABMs in GSS, which differ them from ABMs
encountered in other scientific domains such as computational biology or ecology.
These are heterogeneity of agents, highly non-uniform spatial distribution of agents
in the environment, and important role of long distance (social) interactions.
Heterogeneity of agents reflects diversity of actors involved into GSS models.
Non-uniform spatial distribution of agents is caused by urbanization processes,
obstacles imposed by nature, etc. ABMs in GSS often encompass two types of
communications—short distance communications representing interactions due to
spatial proximity of agents, and long distance interactions standing for social
relationships. In many cases, the latter dominate over the former.

Over the last two decades, researchers proposed a number of models and data
structures to effectively address traits of ABMs in GSS on HPC clusters. These
models and data structures are driven by data available for scientists. The data about
environment may come in vector or raster format. ABMs with inputs in vector
formats cover the majority of GSS use cases. Examples of recent developments
focused on inputs in vector formats include, but not limited to hierarchical (tree-like)
models [6, 7], directed probabilistic social networks [8], social contact networks [9],
urban geo-social networks [10]. At the same time, in many applications the global
system scientists use the data about ABM environment available in raster formats
from popular open data sources like NASA’s Socioeconomic Data and Applications
Center [11] and others. In this paper we propose an HPC compliant model and
corresponding data structure for this situation.

The rest of the paper is organized as follows. Section 2 briefly reviews state-
of-the-art HPC compliant ABMS software for global system scientists, as well
as approaches to model spatial environment and distribute workload implemented
in these tools. Section 3 presents graph-based HPC compliant model and cor-
responding data structure for ABMs with raster inputs and strong long distance
interactions between agents. Section 4 illustrates performance of our solution on the
toy benchmark implementing Axelrod’s model of dissemination of culture. Finally,
Sect. 5 discusses conclusions and direction for further work.

2 Previous Work

During the last decade, a number of HPC compliant ABMS codes were developed
[12–14]. These developments vary from domain specific tools to general purpose
ABMS frameworks.
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Although domain specific tools usually target individual use cases, they address
traits of particular GSS applications very effectively. Moreover, many ideas imple-
mented in such tools have generic nature and can be applied to a broader number
of use cases. The remarkable examples of the domain specific tools are FluTE [7],
EpiFast [8], EpiSimdemics [9]. FluTE [7] represents the model of iterations in
society as a multi-level tree. The root of the tree corresponds to the whole
society, while the lower levels of the tree represent elements of society with finer
granularity until reach the level of individual households as leaves. The probability
of interactions between agents is dictated by the distance to the closest common
parent. EpiSimdemics [9] implements a so-called social contact network (SCN)
model. In SCN, society is represented by an affiliation (bipartite) graph with agents
on one side and loci of their interactions (environment) on the other. This affiliation
graph is accompanied with a schedule of interactions. Both SCN and tree-like
models take into account only short range interactions between agents. Urban Geo-
Social Network Model (UGSN) proposed in [10] addresses this limitation by further
development of the SCN idea. It represents the society by SCN and additional
multilayer network [15] of direct social connections between agents for modelling
long distance communications.

Noticeable examples of the HPC compliant general purpose ABMS frameworks
are RepastHPC [16], D-MASON [17], Flame-GPU [18], and Pandora [19]. Despite
the wide choice, these frameworks fail to address all common traits of GSS appli-
cations effectively. Being implemented in Java, D-MASON has limited potential
for use and porting on state-of-the-art large-scale HPC clusters. FlameHPC and
Pandora lack proper support for simulation of social connections between agents.
Although RepastHPC has formally all components required to build ABMs in GSS,
it demands significant HPC expertise and advanced programming skills from the
modeler (due to intricate and verbose API). Moreover, latest version of RepastHPC
still ignores recent advances in high performance data structures such as new
techniques for handling evolving graphs, modern fast implementations of hash
tables, etc.

The common bottleneck for the majority of general-purpose ABMS frameworks
is a naïve approach to model spatial environment and distribute workload. Many
popular frameworks—including Flame-GPU, RepastHPC, and Pandora—model
environment topology by cartesian grids. In 2D case, environment attributes are
represented by dense matrices of the same size. Indices of the matrices correspond
to the spatial coordinates and define locations of the grid vertices. During the
distributed simulations, cartesian grid is split evenly between processes (Fig. 1a).
This approach is often referred as uniform partitioning [20]. Since amount of
computational work in agent based simulation step is proportional to the number
of agents, uniform partitioning results in a significant load imbalance if agents
are distributed very non-uniformly in space. As a result, this approach allows to
reach reasonably good performance for many classical ABMS applications, but
gives poor performance in situations with non-uniform spatial distribution of agents
which is a case of GSS applications where agents are highly concentrated in the
urban areas and sparsely distributed outside the settlements. D-MASON tackles this
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(a) (b)

Fig. 1 Approaches to partition the rasters. (a) Uniform partitioning. (b) Non-uniform (tree codes
based) partitioning

limitation by introducing a space-based non-uniform work partitioning approach
based on tree codes (multi-scale meshes) [20]. This approach extends idea of the
quad-tree Barnes-Hut algorithm, widely used in n-body simulations, to the agent-
based models [21]. In particular, in [20], authors propose to use a so called bounded
pseudo quad-tree (Fig. 1b). Even though the space-based work partitioning approach
significantly reduces load imbalance, it does not take into account the situation
when long distance communications play an important role in social simulations.
As discussed in Sect. 1, the latter refers to the vast majority of GSS applications.

3 Graph-Based Model for Sparse Raster Inputs

Concept
Figure 2 illustrates typical organization of inputs for ABMs where data about
environment comes in raster format. The information from the rasters can be
combined into sparse spatial graph. Vertices of the spatial graph correspond to
the non-empty pixels of the rasters and represent sites populated by agents. Each
site is attributed with a tuple of pixel values in the corresponding position for all
raster. Edges of the spatial graph stand for spatial proximity between sites and
serve to model short distance communications. Agents are linked into a multilayer
network of direct social connections. In addition, each agent is assigned to the site
corresponding to its spatial location. This results into internal representation where
agents linked into multilayer network of social connections GA = (VA,EA) are
mapped on the sites linked into spatial graph GS = (VS,ES) (see right side of
Fig. 2).

In order to keep workload balanced, the spatial graph should be distributed
between processes taking into account the number of agents in sites, as well as
short and long distance communications between agents. It can be achieved if
we map multilayer network of social connections on the spatial graph to obtain
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Fig. 2 Internal representation of ABMs with raster inputs

a computational graph Gc = (Vc,Ec) with vertices v ∈ Vc corresponding to
sites and edges e ∈ Ec corresponding to short and long distance communications.
In this graph, weight of the vertex wv equals the number of agents located at
the corresponding site, while weight of the edge we between vertices equals the
total number of agents in both vertices if sites are spatialty connected or the
number of social links between agents assigned to these vertices if sites are distant.
Optimal partitioning of the computational graph gives balanced distribution of
agents between processors.

However, if rasters have high resolution, this approach cannot be used directly
in distributed HPC environments since the number of sites becomes too big to
address them effectively and to perform a balanced partitioning of the computational
graph. This obstacle can be overcome by grouping sites into the chunks and
partitioning the computational graph built upon the chunks of sites instead of
individual sites. Nevertheless, even spatial partitioning of the sites into chunks might
significantly disbalance the number of agents assigned to chunks. The better way
is to build chunks upon tree codes—quad-trees or bounded pseudo quad-trees—
using approaches discussed in [20]. The latter leads to a graph-based model and
corresponding data structure illustrated in Fig. 3a. Note that this model uses the data
structure similar to the data structure behind combination of USGN model with
hierarchical tree-like model (see Fig. 3b). According to the taxonomy of PDABS
work partitioning strategies proposed in [20], the corresponding work partitioning
approach belongs to the class of space-relationships-based strategies.

Software for Implementation
Neither of the data structures depicted in Fig. 3 can be implemented in existing
HPC compliant ABMS frameworks without dramatic changes in their cores. In
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Fig. 3 Comparison of data structures of fine grained graph-based models designed for ABMs with
sparse raster inputs and with vector inputs. (a) Graph-based with sparse raster inputs. (b) UGSN
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Table 1 Support of short distance and long distance interactions between agents in Pandora and
RepastHPC

Pandora RepastHPC

Social relationships representation

Type of model None Directed multilayer network

Evolving social graphs +

Edge weights +

Multiplicity +

Implementation Native (ptrs)

Spatial component representation

Format std::map of dense matrices Grid projector with vector of
dense matrices (value layers)

Boundary conditions Von Neumann Von Neumann, Moore

GIS support Rasters with GDAL None

order to support this claim, Table 1 compares the most advanced HPC compliant
frameworks written in C++—Pandora and RepastHPC—with respect to coverage
of features necessary to implement the approach discussed above. This comparison
shows that Pandora does not support multilayer network of social connections,
whereas RepastHPC has insufficient number of instruments to implement spatial
graphs.

In order to implement the approach without ABMS frameworks, one needs
a graph partitioning tool and a general purpose graph library, which provides
functionality sufficient to model social relationships.
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The most appropriate general purpose graph libraries are Snap [22], PBGL,
and GraphLab/PowerGraph[23]. PBGL (Parallel Boost Graph Library) is a rather
lightweight package which supports most of the features required to model mul-
tilayer network of social connections and spatial graph. Even though interface of
PBGL is designed for the users with advanced CS-skills, VTK library provides easy-
to-use wraps over native PBGL interfaces. PowerGraph is an advanced distributed
framework which implements graph-based gather-apply-scatter (GAS) program-
ming model [23]. On the one hand, concept of the graph-based ABM simulation
maps perfectly on the GAS programming model. In particular, “apply” phase allows
to specify behaviour of the agents, and “gather” phase allows to collect suitable
information from neighbours. On the other hand, PowerGraph does not support
dynamic changes in the graph structure (vertices removal, etc). The latter strongly
limits potential use of PowerGraph for ABMS. Both PBGL and PowerGraph assume
that all vertices must have the same attributes. Nevertheless, the effect of versatility
in vertex attributes can be achieved with variant types.

The incomplete list of remarkable graph partitioning packages developed over
the last decades includes PT-Scotch, ParMETIS, PaGrid, Chaco, JOSTLE, Min-
iMax, ParaPART, DRUM, etc. But two of them—METIS and Scotch—gained
much more popularity than others and are often referred as load balancing tools of
choice in sophisticated time-consuming parallel numerical simulations. While both
packages fit well to the needs of graph-based approach, ParMETIS is preferable
since it allows to repartition distributed graph dynamically.

4 Benchmark for a Proof-of-Concept Implementation

In order to assess performance of our solution, we prepared a toy benchmark that
implements Axelrod’s model of dissemination of culture. This model was proposed
in 1996 by R. Axelrod [24] and immediately gained broad popularity among social
scientists. Nowadays, it is considered as one of the most well studied ABMs—both
theoretically and empirically [25, 26],—which motivated us to choose Axelrod’s
model for benchmarking.

The model defines agents and rules for their interactions as follows. Agents
model individuals in culture dissemination process. Each agent is endowed with
F integer attributes called cultural traits, which are meant to model different beliefs,
opinions, and other properties of agents. The model allows only a limited number
of values for each cultural trait fi = (0, 1, . . . , qi − 1). In the dynamic step, each
agent randomly selects one neighbour and the agent interacts with the neighbour
with some probability proportional to the overlaps between the agent-neighbour
pairs (the overlap is computed as a number of equal features). The interaction
consists in assigning to one of the agent’s trait the value of its neighbour trait. In
other words, these rules make interacting agents more similar, but the interaction
happens more often if agents already share many traits and it never happens if
agents have no trait in common. This suggests that Axelrod’s interaction rules allow
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Fig. 4 Scalability of Axelrod’s model implemented with the Amos framework on Hazelhen cluster

to model two cultural mechanisms—social influence and homophily. In order to
fit Axelrod’s model to the graph-based approach discussed in Sect. 3, we slightly
modified Axelrod’s notion of neighbours. In our implementation, we consider as
neighbours all agents located at the same spatial site, as well as the agents that have
direct links in the social graphs.

The benchmark was performed on the Hazelhen cluster at HLRS. Hazelhen is
composed of CRAY XC40 nodes and has peak performance 7.4 Pflops. The cluster
includes 41 Cray cascade cabinets with in total 7712 dual socket compute nodes.
Each node is equipped with 2 12-core Intel Haswell E5-2680v3 CPUs and 128 GB
of DDR4 RAM. The type of interconnect is Cray Aries. It uses Lustre storage
and operates with the Cray Linux Environment. In our implementation, we used
Snap 3 library as a back-end general-purpose graph library, and METIS as a graph
partitioning tool. We compiled all components with GCC 6.4. Input files were pre-
processed into CSV-format.

In our benchmarks, we used two networks from [22]—Brighkight and Gowala—
for representing long-range interactions. The number of agents was artificially
adjusted to the number of vertices in the networks. In order to create sites for their
allocation, we used a 240×290 pixel raster with a gridded population density heat
map of the Faroe islands from NASA’s SEDAC. Agents were initialized with three
cultural features each taking random values between 0 and 9.

Figure 4 summarizes results of the benchmark. Its subplots contain line chart with
confidence intervals for measured elapsed times of data input and 100 simulation
iterations of Axelrod’s model. In these plots, we compare performance of the
simulation iterations against embarrassingly parallel data input on both social
networks. By embarrassingly parallel CSV input, we mean a naïve embarrassingly
parallel implementation of the CSV reader which assumes that the user split the
input data and prepared CSV files for each MPI process separately. For both
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networks, the scalability of the simulation iterations is better than the scalability
of embarrassingly parallel input.

5 Conclusions and Further Work

The case of raster inputs for GSS applications is barely studied in literature and not
supported sufficiently in the state-of-the-art ABMS frameworks. In this paper, we
proposed a new graph-based model and corresponding data structure for efficient
implementation of ABMs with raster inputs on HPC clusters. This model combines
ideas of UGSN model, hierarchical models, and tree codes. State-of-the-art ABMS
frameworks do not provide sufficient features to implement such model out-of-the-
box. Nevertheless, we have shown that the model can be efficiently implemented
with the general-purpose graph libraries and graph partitioning tools.

In the future, we plan to include support of this model in one of the ABMS
frameworks, as well as to assess performance of our model on the large scale real
world use cases.
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Affecting the Relaxation Parameter
in the Multifrontal Method

Tomoki Nakano, Mitsuo Yokokawa, Yusaku Yamamoto, and Takeshi Fukaya

Abstract Numerical solutions of a large sparse linear system of equations are often
appeared in numerical simulations. In many cases, the computational time to solve
it accounts for a large portion of the total simulation time. Thus, reducing its time is
very important. We studied a relaxed supernodal multifrontal method for the direct
method of symmetric positive definite linear systems, and numerical experiments on
test matrices from the University of Florida Sparse Matrix Collection are presented.
We implemented two codes. One is naive implementation which is called basic
code. The other is enhanced code which is modified from the basic code in terms
of reducing the number of data movement of frontal and update matrices. We
found two facts. Firstly, enhanced code is better than basic code in terms of
memory storage. Secondly, the performance of this method depends on a relaxation
parameter which coalesces the supernodes. Furthermore, this optimal parameter
depends on matrices, detailed implementation, and machine architecture.

1 Introduction

Numerical solutions of a large sparse linear system of equations are often appeared
in numerical simulations. Such systems arise mainly from discrete approximations
of partial differential equations. In many cases, the time to solve it accounts for a
large portion of the total simulation time. Thus, reducing its time is very important.
There are two kinds of methods, direct methods and iterative methods. There is a
vast variety in both methods. Whether each method is good or bad depends on size
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and property of matrices, and problem setting. Considering them, we must select the
optimal solution for the simulation. We studied direct methods for SPD (symmetric
positive definite) sparse linear systems [1–3].

The direct methods are suited for problems in which the coefficient matrix
doesn’t change during simulations, but right-hand side of a given system changes.
A procedure of solving Ax = b is decomposed into three steps:

1. a coefficient matrix A is factorized into the two factors LU , where L is a lower
triangular matrix and U is a upper triangular matrix,

2. a triangular system Ly = b is solved, and,
3. a triangular system Ux = y, is solved.

Step 1 is usually the most time-consuming part, whereas step 2 and step 3 are about
an order of magnitude faster. Moreover, step 1 doesn’t need to be applied more
than twice, where the coefficient matrix doesn’t change through the simulation.
Therefore, this problem is solved efficiently.

2 Numerical Method

2.1 Sparse Solver

In this section, we describe an overview of the sparse solver for SPD linear systems.
When the matrix is SPD, it can be factorized into A = LLT with no pivoting by
the Cholesky factorization. The solver is decomposed three phases: ANALYZE,
FACTORIZE and SOLVE. These phases are summarized in Fig. 1. ANALYZE
phase works on the sparsity pattern alone and involves no actual computation on
real numbers. FACTORIZE phase works on the coefficient matrix alone and is
independent of the right-hand side.

Fig. 1 Overview of the direct
sparse solver. Where the
nonzero pattern of the matrix
doesn’t change, ANALYZE
phase needs not to be
performed again (A). When
the matrix doesn’t change,
ANALYZE and FACTORIZE
phases don’t need to be
performed again (B)
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The direct methods for a linear system with a sparse matrix consider the fill-
in which is the introduction of new nonzeros in the factors that do not appear in
the corresponding positions in the matrix being factorized. The nonzero pattern of
the Cholesky factor L is determined by symbolic factorization which is carried out
before the actual numerical factorization. The various phases use an elimination
tree which provides information relevant to the sparse matrix factorization. The
elimination tree associated with the Cholesky factor L = (lij ) is the tree such that a
parent node of each node j is parent (j) where

parent (j) = min{i : i > j ∧ lij �= 0}. (1)

It is possible to find a permutation matrix P before factorizing, and solve a
reordered system

(PAP T)(Px) = Pb. (2)

Good permutation reduces the number of fill-in elements, computational complex-
ity, or memory storage.

2.2 Multifrontal Method

The multifrontal method[4, 5] recognizes the overall factorization of a sparse matrix
into a sequence of partial factorizations of dense smaller matrices. The process to
eliminate column j is as follows:

1. assemble the frontal matrix Fj from a∗j and the update matrices Ui for i ∈ Cj

where Cj is a set of j ’s child nodes in the elimination tree,
2. perform one step elimination for Fj , and
3. strip off the first column of Fj and store l∗j , leaving the update matrix Uj .

The assembly process can be done with indexed vector operations using local
indices[6], basically an _AXPYI operation which adds a scalar multiple of com-
pressed sparse vector to a full-storage vector.

This method can use Level 2 BLAS because the elimination is performed on
a dense matrix. However, it suffers from a disadvantage of allocating a working
storage for frontal and update matrices, and copying the update and frontal matrices
to and from the working storage.

Sequential multifrontal method is performed in postorder on the tree. In the
context of this method, it has the following additional desirable property: the update
matrices can be managed in a last-in-first-out basis. Therefore, we can manipulate
the sequence of update matrices using a stack. Liu[7] estimates the size of working
storage. In addition, he minimizes this size by reordering, but we don’t apply
this technique in this paper. Algorithm 1 captures the essence of the sequential
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Fig. 2 An example of the frontal and update matrices when performing the multifrontal method.
Black rectangles are denoted frontal matrices, and blue rounded rectangles are denoted update
matrices. Filled circle are nonzeros in A and open circle are fill-ins

multifrontal method. is to assemble the frontal matrix and the update matrix.
Figure 2 shows an example of the multifrontal method.

2.3 Supernode

A practical improvement to the multifrontal method is the use of supernodes.
Generally speaking, columns are grouped together to form a supernode if they can
be treated as one computational unit in the course of sparse Cholesky factorization.
A supernode is a maximal block of contiguous columns where the diagonal
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block is full triangular matrix, and these columns all have identical off-block-
diagonal column structures. The supernodal elimination tree is defined to be the
tree consisting of the supernodes. A fundamental supernode is a supernode such
that each column has only child in the elimination tree. Liu et al. [8] obtain the
fundamental supernode by O(η(A)) where η(A) is the number of nonzeros in A.

2.4 Supernodal Multifrontal Method

All columns in a supernode share the same frontal matrix and are eliminated
together. The total number of matrix assemblies during the factorization is reduced
from the number of columns to the number of supernodes. The process for
eliminating the p columns of a supernode J = (j1, . . . , jp) is as follows:

1. to assemble the frontal matrix FJ from a∗j for j ∈ J and the update matrices
UK for supernodes K ∈ CJ where CJ is a set of J ’s child supernodes in the
supernodal elimination tree,

2. to perform p steps elimination for FJ , and
3. to strip off the first p columns of Fj and store l∗j for j ∈ J , leaving the update

matrix UJ .

The supernodal multifrontal method has two advantages compared with the
(nodal) multifrontal method. One advantage is that it can use Level 3 BLAS because
of performing multi-step elimination. The other one is that the number of copying
update matrices from and to stack and the number of _AXPYI operations decrease.

2.5 Relaxed Supernode

There are computational advantages in having large supernodes. Ashcraft and
Grimes [9] suggest the amalgamation of nodes/supernodes to allow for larger
supernodes.

The decision on whether two supernodes are merged or not depends on the
number of zero entries introduced into the factorization for the merged supernode,
including any already existing zeros introduced in the two supernodes from previous
merges. We introduced the parameter, max_zero, to represent the number of allow-
able zero entries. The algorithm is as follows. When each supernode encountered
in a postorder traversal of the fundamental supernodal tree, the algorithm first
determines the subset of sons with each of which it can be merged without
generating a supernode with more than max_zero zeros in its data structure. It then
merges the son that adds the fewest number of zeros with the current supernode. This
process ensures that once a son is merged into a supernode, its sons (grandsons of
the supernode) do not need to be tested for a possible merge. If a supernode cannot
merge with its parent, it cannot merge with its grandparent when the grandparent
has absorbed the parent.
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2.6 Enhancements to the Supernodal Multifrontal Method

We use the following two techniques in [10] which are some enhancements to the
basic multifrontal method to implement our code. Firstly, their method compute the
new factor columns L∗,J in factor storage rather than in FJ and the compute only the
update matrix UJ within the frontal matrix FJ . This reduces the size of the working
storage and eliminates the need to move eliminated columns from the frontal matrix
to factor storage.

Secondly, the columns of UJ destined for L∗,P are assembled directly into factor
storage by using local indices and remainder of the update matrix only copy to the
stack. This has the same advantages as the first technique. In [10], this technique
doesn’t use only parent node, but also ancestor nodes. However, our code uses only
the parent node.

3 Performance Evaluation

In this section we compare the performance for using the different max_zero

parameters. In addition, we compare the working storage and time of the following
two multifrontal solvers:

1. basic-mf: basic multifrontal method, and
2. enhanced-mf: enhanced multifrontal method described in Sect. 2.6.

We conducted experiments on two systems, Intel Xeon Phi 7250 (Knights Landing)
and Intel Xeon E7-8857 (Ivy-Bridge). We use the following two libraries:

1. METIS: nested dissection ordering for fill-in reduction[11], and
2. MKL BLAS: high performance matrix operation.

Our solvers were coded in Fortran2003, and all floating-point operations were
performed in double precision. These were compiled by Intel Fortran Compiler with
“-fast” option for optimization on Xeon and Xeon Phi. “-fast” option is equivalent
to “-xHOST -O3 -ipo -no-prec-div -static -fp-model fast=2”.

3.1 Comparison of Required Working Storage

Several matrices from the University of Florida Sparse Matrix Collection [12]
were selected for the experiments and some of their characteristics are provided
in Table 1. Op. count in the fifth column in the table was obtained from the column
counts[1]:

n∑
j=1

|Lj |2 (3)
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Table 1 Characteristics of test matrices and the size of workstorages

Matrix n |A| |L| Op. count Wk-basic Wk-enhanced

apache1 80,800 542,184 10,245,999 5,499,074,179 2,734,497 1,937,429

bcsstk36 23,052 1,143,140 2,718,323 531,411,213 511,252 237,310

cfd1 70,656 1,825,580 19,236,449 10,835,799,583 3,561,677 1,882,160

gridgena 48,962 512,084 2,618,163 341,552,705 346,316 182,900

gyro 17,361 1,021,159 1,520,005 191,016,959 120,597 93,330

Pres_poisson 14,822 715,804 2,353,485 521,457,075 466,396 211,636

qa8fm 66,127 1,660,579 21,374,928 17,737,522,598 5,917,029 2,958,525

raefsky4 19,779 1,229,776 5,405,333 2,293,934,565 1,480,754 859,217

shallow_water1 81,920 327,680 1,961,034 306,449,950 529,600 405,007

vanbody 47,072 2,329,056 5,687,111 1,215,984,803 693,734 479,668

n: number of equations; |A|: number of nonzeros in A; |L|: number of nonzeros in L; Op.
count: number of floating-point operations required to compute L; Wk-basic: array size of
required working storage for basic-mf; Wk-enhanced: array size of required working storage
for enhanced-mf

where Lj is a set of the row indices of nonzero element in column j . Table 1 also
shows the size of required working storages for basic-mf and enhanced-mf.
For all matrices, the required size of working storage in enhanced-mf
is smaller than in basic-mf. The most reduction in the required size of
working storage of enhanced-mf over basic-mf is 53% for the matrix
bcsstk36.

3.2 Performance on Xeon Phi

The specification of Xeon Phi shows in Table 2[13]. This machine has DDR4
memories and MCDRAM memories. User selects the following three memory
modes:

1. cache mode: MCDRAM is a L3 cache for DDR,
2. flat mode: MCDRAM is treated like standard memory, and
3. hybrid mode: a portion of MCDRAM is L3 cache and the remainder is flat.

We select the flat mode because required the size of our code for any of matrices is
smaller than the sum of MCDRAM memories. User can also select the three cluster
modes: all-to-all, quadrant and SNC mode. We select all-to-all mode.

Table 3 shows the factorization times on Xeon Phi with basic-mf. The
optimal max_zero with respect to the factorization time range from 210 to 214.
The speedup over the max_zero = 0 case ranges from 1.28 to 3.29 times for
all matrices. Table 4 shows factorization times on Xeon Phi with enhanced-mf.
The optimal max_zero with respect to the factorization time range from 211 to
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Table 2 The specification of
Intel Xeon Phi 7250

Code name Knights landing

Number of clocks 1.40 GHz

Number of cores 68

L1 instruction cache 32 KB

L1 data cache 32 KB

Distributed L2 cache 1 MB×34

FLOPS/Clock 32

Theoretical peak operation performance 3.05 TFlops

DDR4 memory 64 GB×6 (90 GB/s)

MCDRAM 2 GB×8 (400 GB/s)

Table 3 Influence of max_zero: factorization times in seconds on Xeon Phi (basic-mf)

max_zero 0 27 28 29 210 211 212 213 214 215

apache1 1.633 1.000 0.936 0.873 0.845 0.831 0.826 0.828 0.872 0.971

bcsstk36 0.237 0.209 0.201 0.189 0.189 0.186 0.185 0.186 0.203 0.228

cfd1 1.795 1.407 1.366 1.333 1.300 1.269 1.248 1.214 1.223 1.285

gridgena 0.527 0.256 0.240 0.221 0.216 0.218 0.225 0.255 0.291 0.339

gyro 0.177 0.129 0.123 0.111 0.113 0.106 0.110 0.113 0.129 0.144

Pres_poisson 0.233 0.161 0.157 0.154 0.147 0.143 0.140 0.140 0.149 0.158

qa8fm 2.031 1.654 1.629 1.591 1.578 1.543 1.550 1.499 1.546 1.565

raefsky4 0.492 0.416 0.396 0.380 0.367 0.362 0.345 0.338 0.329 0.345

shallow_water1 0.848 0.316 0.288 0.264 0.258 0.267 0.296 0.335 0.428 0.502

vanbody 0.540 0.439 0.409 0.395 0.381 0.379 0.380 0.389 0.417 0.484

The bold number is the fastest in each matrix

Table 4 Influence of max_zero: factorization times in seconds on Xeon Phi (enhanced-mf)

max_zero 0 27 28 29 210 211 212 213 214 215

apache1 1.588 0.947 0.877 0.796 0.765 0.743 0.728 0.725 0.767 0.852

bcsstk36 0.220 0.188 0.182 0.169 0.165 0.160 0.154 0.159 0.173 0.193

cfd1 1.702 1.299 1.251 1.218 1.187 1.155 1.122 1.097 1.106 1.181

gridgena 0.512 0.243 0.218 0.191 0.184 0.181 0.182 0.202 0.233 0.277

gyro 0.165 0.118 0.110 0.100 0.097 0.092 0.091 0.097 0.109 0.122

Pres_poisson 0.205 0.143 0.137 0.137 0.130 0.121 0.120 0.121 0.123 0.136

qa8fm 1.922 1.563 1.525 1.491 1.468 1.444 1.412 1.392 1.392 1.432

raefsky4 0.456 0.379 0.361 0.348 0.330 0.334 0.317 0.305 0.295 0.311

shallow_water1 0.850 0.296 0.266 0.245 0.237 0.234 0.247 0.270 0.341 0.398

vanbody 0.506 0.402 0.373 0.351 0.331 0.322 0.321 0.331 0.358 0.403

The bold number is the fastest in each matrix

214. The speedup over the max_zero = 0 case ranges from 1.38 to 3.63 times
for all matrices. Except for the matrix shallow_water1 where max_zero = 0,
enhanced-mf is faster than basic-mf. However, the optimal max_zero is
different in basic-mf and enhanced-mf for some matrices. This turns out
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that the optimal max_zero doesn’t only depend on a matrix, but also detailed
implementation.

3.3 Performance on Xeon

The specification of Xeon shows in Table 5. Table 6 shows factorization times on
Xeon with enhanced-mf. The optimal max_zero with respect to the factorization
time range from 28 to 210. The speedup over the max_zero = 0 case ranges from
1.06 to 1.72 times for all matrices. The optimal max_zero on Xeon is smaller than
that on KNL for all matrices. It looks that the difference of the ratio of the speed
of dense vector operations to sparse vector operations between two processors. The
number of floating point operations per clock is 8 i.e. 4-wide AVX addition + 4-
wide AVX multiplication for Xeon. On the other hand, it is 32 i.e. two 8-wide FMA
instructions for Xeon Phi. We found out that the optimal max_zero depends on
machine architecture.

Table 5 The specification of
Intel Xeon E7-8857

Code name Ivy-Bridge

Number of clocks 3.0 GHz

Number of cores 12

L1 instruction cache 32 KB

L1 data cache 32 KB

L2 cache 256 KB

L3 cache 30 MB

FLOPS/Clock 8

Theoretical peak operation performance 288 GFlops

DDR3 memory 32GiB * 512

Table 6 Influence of max_zero: factorization times in seconds on Xeon (enhanced-mf)

max_zero 0 27 28 29 210 211 212 213 214 215

apache1 0.598 0.489 0.484 0.476 0.478 0.483 0.500 0.534 0.599 0.711

bcsstk36 0.084 0.078 0.077 0.075 0.076 0.079 0.086 0.098 0.115 0.143

cfd1 0.932 0.860 0.851 0.847 0.845 0.847 0.861 0.891 0.957 1.063

gridgena 0.104 0.073 0.071 0.071 0.074 0.082 0.094 0.115 0.146 0.187

gyro 0.050 0.040 0.040 0.039 0.039 0.041 0.046 0.053 0.067 0.083

Pres_poisson 0.080 0.065 0.064 0.063 0.063 0.065 0.068 0.075 0.083 0.102

qa8fm 1.289 1.222 1.217 1.213 1.214 1.216 1.228 1.254 1.310 1.417

raefsky4 0.231 0.212 0.209 0.206 0.204 0.206 0.208 0.219 0.233 0.265

shallow_water1 0.117 0.068 0.069 0.072 0.077 0.090 0.115 0.140 0.197 0.243

vanbody 0.192 0.169 0.165 0.162 0.163 0.171 0.182 0.206 0.243 0.304

The bold number is the fastest in each matrix
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4 Conclusion

We introduced the supernodal multifrontal method with relaxing supernodes,
and some enhanced techniques. On Xeon Phi and Xeon, we conduct perfor-
mance evaluations with the parameter, max_zero and compare the performance
between basic-mf and enhanced-mf. We have found the two facts. Firstly,
enhanced-mf can save the working storage compared to basic-mf. Secondly,
the optimal max_zero depends on solving matrix, a implementation, and a used
machine. From this fact, predicting the optimal max_zero is very difficult in
advance of calculation. One possible solution for this problem is automatic tuning.
This is the one of the future works. Another future work is parallelization of our
code for the multicore architecture.
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Enhancement of the GW Space-Time
Program Code for Accurate Prediction
of the Electronic Properties of Organic
Electronics Materials

Susumu Yanagisawa, Takeshi Yamashita, and Ryusuke Egawa

Abstract For large-scale efficiently parallelized electronic structure calculation
within the GW approximation, we modified the MPI-parallelized version of the GW

space-time program. To reduce the communication time required for computation of
the inverse of the complex dielectric matrix, which is one of the bottlenecks of the
program, the ScaLapack library codes employed for the LU-decomposition matrix
inversion was replaced with the Lapack counterpart implemented with the intranode
task parallelization. As a result, the elapsed time for matrix inversion significantly
reduced, along with improvement on the parallelization efficiency for the number
of nodes or cores. In addition, the intranode task parallelization for inversion with
OpenMP was found to show reasonable parallelization efficiency with respect to the
number of threads inside a node. Overall, the improvement in computation time will
allow us to investigate not only the electronic structure of bulk phases, but also those
of surfaces and interfaces of organic molecular crystals.

1 Introduction

Electronics device materials comprised of organic molecular solids have attracted
considerable attention as the next-generation flexible electronics because of the
advances such as their low-cost printing-like fabrication process and low power
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consumption. While the organic light-emitting diodes (OLEDs) are already on the
market, other devices such as the organic field-effect transistors (OFETs) and the
organic photovoltaics (OPVs) still remain to be commercialized. In terms of the
basic electronic properties, there is no consensus on the mechanism of the essential
electronic phenomena such as the carrier transport. For insights into the electronic
origins of the phenomena, roles of theoretical electronic structure simulations,
specifically the first-principles electronic structure methods, which do not depend
on specific experimental values or on empirical models, are becoming important.

To play a role in prediction or elucidation of the electronic properties such as
the barrier for carrier injection and the mobility of a carrier, quantitative accuracy
beyond the prevailing approximations to the density functional theory (DFTA)
is being required. These years, many-body perturbation theory within the GW

approximation[1, 2] has been a method of choice in prediction of the (quasiparticle)
energy levels of electrons and holes that are injected into organic molecular solids.
Its predictive power has been demonstrated for the fundamental band gap, band
structure, or barrier for charge injection of organic semiconductor crystals[3–9],
which has led us to insights into the induced polarization or the screening effect
upon the injected charge and the role of the electrostatic effects depending on the
molecular orientation at the surface.

The energy level alignment at organic-metal interface, one of the problems
of crucial importance dominating the barrier for charge injection from the metal
electrode to the organic layer, can be described well by the GW approximation
because of the inclusion of the screening effect induced by the image charge at the
conducting metal substrate[3, 4]. Using the same method, the long-ranged image
potential states at the metal surface can be correctly reproduced as well. However,
there have been a few publications reporting the result on the application of the GW

to describing electronic structures of organic semiconductor surfaces or organic-
metal interfaces[3, 4, 10–13]. One of the main reasons of the limited applications
seems to be the large computational resources required, whose computational
demand increases on the other of N4, where N is the number of atoms in the unit
cell, or the number of basis set[14].

In this study, to extend the applicability of the GW approximation, we pro-
moted computational efficiency of the GW space-time (GWST) program[15–17].
The program code was applied to theoretical determination of the fundamental
gap or the ionization energy/electron affinity of typical organic semiconductor
crystals[6, 9, 18–21]. Here, we significantly decreased the elapsed time by replacing
the ScaLapack library codes with the Lapack library ones in an inversion of the
complex dielectric matrix with the LU-decomposition. In addition, we employed
the intranode task parallelization of the matrix inversion with OpenMP. We found
that the parallelization efficiency increased reasonably.
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2 Computational Method

2.1 GWST Method

The detailed basic formalism and the physical background of the GWST method is
described elsewhere[15–17]. Here, we make a short summary of the methodology.
In the GWST method, one starts from the non-interacting one-body Green’s function
G(r, r′; iτ ) in real space (r, r′) and in imaginary time (iτ ) for propagation of the hole
(τ > 0) and the electron (τ < 0), respectively,

G(r, r′; iτ ) =
{

i�occ
nk φnk(r)φ∗

nk(r′)exp(εnkτ ) (τ > 0),

−i�unocc
nk φnk(r)φ∗

nk(r′)exp(εnkτ ) (τ < 0).
(1)

The Green’s function is constructed from eigenvalues εnk and wave functions φnk(r)
obtained with a mean-field approximation such as the density functional theory
within the local density or a generalized gradient approximation (DFT-LDA or
DFT-GGA), and k vectors denote those in the first Brillouin zone. Within the
random-phase approximation (RPA), the irreducible polarization in real space and
imaginary time is obtained as

P(r, r′; iτ ) = −2iG(r, r′; iτ )G(r′, r; −iτ ), (2)

which is Fourier transformed to PGG′ (k; iω) in reciprocal space and imaginary
frequency. The symmetrized dielectric matrix in reciprocal space ε̃GG′ (k; iω) is
described as

ε̃GG′(k; iω) = δGG′ − 4π

|k + G||k + G′|PGG′(k; iω). (3)

Then, one obtains the screened Coulomb potential W (r, r′; iτ ) by Fourier trans-
forming to real space and imaginary time the screened potential in reciprocal space
and imaginary frequency,

WGG′(k; iω) = 4π

|k + G||k + G′| ε̃
−1
GG′(k; iω). (4)

Finally, the self-energy operator is calculated by the product of the screened
potential and the Green’s function,

�(r, r′; iτ ) = iG(r, r′; iτ )W(r, r′; iτ ). (5)

Notice that the quantities in Eqs. 2–5 are obtained by simple multiplications,
without convolution in the frequency domain as required in the conventional
methodology of the GW approximation[15]. To retain simple multiplication without
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convolution throughout the codes, the arguments of the calculated quantities in
Eqs. 1–5, i.e., real space and reciprocal space vectors, and imaginary time and imag-
inary frequencies, are switched by the Fast Fourier Transformations (FFTs)[15].

The scaling in the conventional GW calculation involving convolution is the
fourth power of the number of the reciprocal space grid (NG) and quadratic with
that of the frequency grid. The number of multiplications required in Eqs. 2–5 of
GWST in general scales quadratically in the number of the real space grid (Nr ) or
NG, and linearly with respect to the number of the imaginary time grid (Nτ ) or the
imaginary frequency grid (Nω), thus implying an advantage in computational cost
over the conventional method. The sum over states involving the multiplication as
shown in Eq. 1 can be efficiently manipulated as a matrix product by using source
codes in Level 3 BLAS library[17].

2.2 Modification on the Program Code: Parallelization in
Inversion of the Dielectric Matrix

As described in Eq. 4, the inverse of the complex dielectric matrix is required. For
parallel algorithms, the matrices are distributed over the processing elements (PEs).
Parallelized inversion of the complex dielectric matrix, which is Hermitian, and is
in general not sparse, involved ScaLapack library codes for matrix inversion with
the LU decomposition[14]. There is a concern, however, on a possible decrease in
parallel efficiency during the computation, i.e. the time required for communication
between the PEs. We performed test calculations with or without ScaLapack library
codes, so as to check the scaling of the matrix inversion and the overall performance
of the program.

To facilitate comparison between the ScaLapack library-based inversion and the
non-ScaLapack inversion in terms of the communication time, we implemented a
code in which the Lapack library codes for the LU decomposition and inversion was
employed locally on each of the PEs. Given Eq. 4, the inversion can be performed
independently on each of the PEs by distributing the dielectric matrices over the
PEs with respect to k–points in the Brillouin zone and imaginary frequencies iω

(for schematics, see Fig. 1). In the test calculation (naphthalene crystal; see Fig. 2),
the 14 k–points and 16 imaginary frequency grids were used, for which sufficient
convergence of the calculated quasiparticle energies was confirmed in the previous
study[21]. Overall, we employed 224 PEs for MPI parallelization, and one core
per node was used on NEC SX-ACE. The number of the plane wave basis set or
G-vectors, which is equal to the rank of the dielectric matrix εGG′ , was set to 8279,
14,965, and 20,121, that corresponded to cutoff for the kinetic energy of plane waves
of 36 Ry, 54 Ry, and 65 Ry, respectively.

In addition, we checked the performance of the intranode task parallelization for
matrix inversion with OpenMP. To facilitate the OpenMP task parallelization, we
employed the Lapack library code as implemented in the MATHKEISAN numerical
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do iks = 1, Nks
     do i  = 1, Nω ω

     end do ! i
end do !  iks

ω

call pzgetrf
call pzgetri

A
0

A
1

AN-2
AN-1

node
0 1 N-1N-2

node nodenode

A A A A
(iks, i  ) = (1, 1)ω (1, 2) (Nks, N −1)ω (Nks, N )ω

(a)

(b)

call 

zhetrf

zhetri

call 

zhetrf

zhetri

call 

zhetrf

zhetri

call 

zhetrf

zhetri

........

node
0 1 N-1N-2

node nodenode........

........

Fig. 1 Schematics of the parallelized matrix inversion of the complex dielectric matrix used in
this work. (a) Use of the ScaLapack library codes. Notice that the submatrices distributed over all
the nodes or the processing elements (PEs) are denoted by Ai. (b) The modified code without the
ScaLapack library codes. The dielectric matrix to be inverted of each of the (k-point, iω) sets is
assigned to each of the node or the PEs. On each of the nodes or PEs, the inversion is locally done
with the Lapack library codes. With the codes allowing OpenMP parallelization, the intranode
parallelization is also available (see text)

library, so that up to four threads were used for the task parallelization in a node of
SX-ACE.

3 Results and Discussion

3.1 Performance of GWST Program Employing Complex
Matrix Inversion with the ScaLapack Library Code

Table 1 displays the overall performance of GWST using the ScaLapack library
code for the LU-composition and the following inversion of the dielectric matrices,
showing that the overall elapsed time does not scale linearly even when the number
of cores exceeds 50. Increase in proportion of the elapsed time for inversion relative
to the overall elapsed time in accordance with increase in the number of PEs
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Fig. 2 Overview of a naphthalene single crystal. The crystal unit cell consists of two molecules,
and solid lines display its edges. The smaller and larger spheres denote H and C atoms, respectively.
Some periodic replicas of the molecules are also displayed. The cell lengths and angles of the unit
cell and the atomic configurations come from those predicted by a van der Waals-inclusive first-
principles calculation [21]

Table 1 The overall elapsed time of the program code for GW calculation of naphthalene crystal
with GWST program code

Number of PEs
(cores)

Overall elapsed
time (s) Mat. Inv. (s) Proportion (%)

32 10, 836 1315 12.1

64 6061 995 16.4

128 3716 788 18.8

256 2554 702 27.5

512 1995 657 32.9

The third and the fourth columns indicate the elapsed time spent on inversion and its proportion
relative to the overall elapsed time, respectively. Notice that the elapsed time includes time spent
for communication between the processing elements. The rank of the complex dielectric matrix
is 8279. All the timing data were obtained with the performance analysis tool “FTRACE” as
implemented in NEC SX-ACE

(see third and fourth column in Table 1) implies that the low parallel efficiency
of the inversion with the ScaLapack library code affects the overall performance
of GWST. It is also found that the low parallel efficiency of the inversion comes
from its communication time required for the transfer of data between the PEs. The
communication time in the computation with 128–512 PEs covers 86–95% and 58–
74% of the elapsed time in the LU-decomposition (PZGETRF) and the following
inversion (PZGETRI), respectively. In case the rank of the complex dielectric matrix
changed into 20,121, the large portion of the communication relative to the overall
elapsed time retained. The situation might improve when a rank of the dielectric
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matrix larger by one order or more was taken into account. However, such a huge
sized matrix might not be treated by the program code at present, and, we thus would
like to leave it to future work to examine the performance for a dielectric matrix
with a higher rank. Nevertheless, notice that moderate energy cutoff or the number
of reciprocal space G vectors for polarizability or dielectric matrix is required for
organic molecular crystals in general[6, 22], and thus the performance test on the
matrix inversion with its rank of the order similar to the present work is required.
Next, we will describe possible improvement of the program code for the present
test set.

3.2 Parallel Efficiency of GWST with a Dielectric Matrix for
Each of the k-Point and Imaginary Frequency iω Grids
Owned by One PE

Table 2 shows the overall performance comparison of the GWST code with the
ScaLapack library code and that without ScaLapack. It was found that the inversion
with the non-ScaLapack code resulted in a decrease in overall elapsed time by
8 (15)% for 32 (64) PEs. The effective parallelism and parallel efficiency of the
GWST code based on the Amdahl’s law without ScaLapack (with ScaLapack) are
99.88% (99.58%) and 92.72% (79.11%), respectively, demonstrating improvement
on parallelism. Notice that the elapsed time in the non-ScaLapack inversion of 267 s
for 64-core parallelization, which is approximately three quarters of that for 32-core
parallelization rather than half of that, is due to 14 k-point × 16 imaginary frequency
grids, which is exactly divisible by 32, but is not divisible by 64. The present non-
ScaLapack inversion code linearly scales, without any communication between PEs
(see also Table 3). Performance in larger size test for a dielectric matrix whose rank
is 14,965 is displayed in Table 3. Here, the effective parallelism is improved up to
99.93%. The parallel efficiency is 86.77%.

Table 2 Comparison between the overall elapsed time with the GWST program code for
naphthalene crystal with ScaLapack or without ScaLapack

Number of PEs (cores) w/o ScaLapack (s) With ScaLapack (s)

32 9964 (464) 10,836 (1315)

64 5163 (267) 6061 (995)

The numbers of PEs or cores were 32 and 64, respectively. In parentheses are the elapsed time for
inversion of the dielectric matrix with the LU-decomposition. The rank of the complex dielectric
matrix is 8279. All the timing data were obtained with the performance analysis tool “FTRACE”
as implemented in NEC SX-ACE
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Table 3 The overall elapsed
time with the GWST program
code for naphthalene crystal
without ScaLapack, along
with the elapsed time for
inversion of the dielectric
matrix with the
LU-decomposition in
parentheses

Number of PEs (cores) w/o ScaLapack (s)

112 8727 (682)

224 4674 (345)

The numbers of PEs or cores were 112 and 224,
numbers exactly dividing 14 k-point × 16 imaginary
frequency points. The rank of the complex dielectric
matrix is 14,965. All the timing data were obtained
with the performance analysis tool “FTRACE” as imple-
mented in NEC SX-ACE

3.3 Intranode Task Parallelization of Matrix Inversion
with OpenMP

Finally, to facilitate the implementation of the MPI/OpenMP hybrid parallelization
for higher parallelization efficiency, we investigated the performance of the intran-
ode task parallelization in the inversion of the complex dielectric matrix. Here, the
MATHKEISAN Lapack library source codes for double complex matrix inversion
(ZGETRF, ZGETRI) as implemented in SX-ACE were task parallelized. Tables 4
and 5 demonstrate the performance of the parallelized matrix inversion for the
dielectric matrix with its rank of 14,965 and 20,121, respectively. It is found that
task parallelization of a matrix with a larger rank of 20,121 reasonably performs
better than that with 14,965. Specifically, in the LU-decomposition with ZHETRF,
the two- and four-thread calculations demonstrate acceleration by 1.8 and 3.2 times,
respectively, relative to a single thread. On the other hand, however, the inversion
with ZHETRI accelerates by only 1.9 times with four threads. More inspection
would be required for inversion of a matrix with higher rank.

Table 4 The elapsed time with the GWST program code for naphthalene crystal for the library
codes ZHETRF and ZHETRI, corresponding to LU-decomposition and inversion, respectively

ZHETRF (s) ZHETRI (s)

One thread 76.1 (1.00) 150.6 (1.00)

Two threads 42.7 (1.78) 134.2 (1.12)

Four threads 25.6 (2.97) 79.8 (1.89)

The numbers of nodes were 224, and up to four threads were employed in each of the nodes.
Values in parentheses are the elapsed time with one thread divided by that in question. The rank of
the complex dielectric matrix is 14,965. All the timing data were obtained with the performance
analysis tool “FTRACE” as implemented in NEC SX-ACE
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Table 5 The elapsed time with the GWST program code for naphthalene crystal for the library
codes ZHETRF and ZHETRI, corresponding to LU-decomposition and inversion, respectively

ZHETRF (s) ZHETRI (s)

One thread 181.3 (1.00) 361.1 (1.00)

Two threads 99.1 (1.83) 234.5 (1.54)

Four threads 57.5 (3.15) 194.9 (1.85)

The numbers of nodes were 224, and up to four threads were employed in each of the nodes. The
rank of the complex dielectric matrix is 20,121. The conventions is the same as that in Table 4

4 Conclusions

To enhance the performance of the GW space-time code for calculations of larger
systems on SX-ACE, we improved the parallelization efficiency of the inversion of
the complex dielectric matrix, which is one of the bottlenecks of the program. First,
we implemented the inversion code in which each of the matrices is manipulated
on each of the processing elements (PEs) without any communication between the
PEs during the inversion, as opposed to the ScaLapack library codes. Considerable
reduction in communication time resulted in a reduction of the overall elapsed time.
For the near-future implementation of the MPI/OpenMP hybrid parallelization,
performance of the intranode task parallelization of the matrix inversion was
investigated. For a matrix with its rank of 10,000–20,000, the code for the LU-
decomposition was reasonably accelerated. However, the task parallelization of the
following inversion was less efficient. Overall, the present modification of the codes
and implementation of the new features resulted in improvements on the elapsed
time, as well as the parallelization efficiency. Nevertheless, further tests of larger
scale calculation would be required.
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