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9.1 Introduction and Concepts

In addition to the multi-fidelity aspects in MDO discussed in Chapter 8, two
additional topics of interest to solve complex MDO problems are discussed in
this chapter: multi-objective MDO and mixed continuous/discrete variable design
optimization problems.

Firstly, in Section 9.2, multi-objective problems in MDO are introduced. The
design of complex aerospace systems often involves antagonist objectives that
require to find trade-off among them to identify a set of interesting design
candidates. Many aerospace design problems have competing objectives, for
instance the optimization of a wing lift and drag in aerodynamics or a wing structural
strength and weight. As a consequence, methodologies have been proposed that
combine multidisciplinary and multi-objective optimization techniques. Some
approaches consist in applying multi-objective optimization algorithms to the
formally described MDO formulations (see Chapter 1). Alternatively, some
strategies try to develop new MDO formulations to account for the decomposition of
the process into several disciplines and several objectives. In Section 9.2, a focus on
Bayesian Optimization (BO) for multi-objective is performed to solve optimization
problems involving computationally expensive functions. An extension of BO for
problems involving non-stationary phenomena is also discussed.

Secondly, in Section 9.3, the challenge of taking into account continuous,
discrete, and categorical design variables in the MDO process is introduced. Within
the framework of complex system design, it is often necessary to solve mixed
variable optimization problems, in which the objective and constraint functions can
depend simultaneously on continuous variables (e.g., structure sizing parameters,
combustion chamber pressure) as well as on discrete variables (e.g., number of
engines, number of rocket stages) and categorical variables (e.g., type of materials,
choice of technologies). Due to the complexity and computational cost of this type
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of problems, optimization algorithms commonly used in the presence of discrete
variables such as mixed variable Genetic Algorithm (Stelmack et al. 1998) and Mesh
Adaptive Discrete Search (MADS) (Audet and Dennis Jr 2006) are inadequate, as
they require a large number of function evaluations in order to converge. Alternative
methodologies relying on BO have to be used to solve this type of problems and are
presented in Section 9.3.

In order to tackle these two challenges, recent works focused on the use
of Gaussian processes (Emmerich and Klinkenberg 2008; Pelamatti et al. 2018;
Brevault et al. 2019; Hebbal et al. 2019). As presented in Chapter 3, Gaussian
processes have interesting properties in terms of prediction and estimation of the
associated prediction error that can be exploited for these MDO related issues. In
this chapter, after an introduction of the issues associated with multi-objective MDO
and mixed continuous/discrete optimization and a brief literature review of the
existing works, an example of work using Gaussian process is presented for the field
of Multi-objective and Mixed continuous/discrete optimization. One has to note
that the design optimization problems considered in this chapter are deterministic.
Moreover, only single discipline design problems are considered in this chapter.

9.2 Multi-Objective MDO

Aerospace vehicle design problems can ideally be modeled as multi-objective
and multidisciplinary optimization problems. Different antagonist and conflicting
objectives have to be considered in order to find an appropriate trade-off and identify
interesting design candidates. Taking into account several objectives make the MDO
problem solving more complex compared to single-objective MDO. For instance,
for a launch vehicle design, a set of objectives to optimize for a single vehicle
may be considered such as the Gross Lift-Off Weight (GLOW) and the payload
mass to inject into orbit. Alternatively, multiple quantities of interest for a family of
vehicles may be considered. Moreover, it is possible to design a vehicle for different
missions, for example, a reusable mission (partially reusable first stage using toss-
back, glide-back, or fly-back return strategies) and an expendable mission with the
same first stage and additional solid boosters. This multi-mission (which can be
defined as a multi-objective problem) offers the possibility to increase the flexibility
and adaptability to different target missions.

In Arias-Montano et al. (2012), a rich taxonomy of the applications of multi-
objective optimization in aerospace engineering is presented. For multi-objective
MDO problems, the existing MDO approaches in the literature combine the multi-
objective optimization algorithms with the existing MDO formulations presented
in Chapter 1. Multi-level formulations are particularly suited to the multi-objective
problems as they enable to decompose the problem according to the disciplines
and the objectives. Kurapati and Azarm (2000) proposed an immune network
system multi-objective genetic algorithm (MOGA) approach for MDO problems.
For each subsystem of the hierarchically decomposed multidisciplinary system,
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a MOGA which focuses on a specific set of design variables holds within the
subsystem population representation. Gunawan et al. (2003) proposed a MDO
method applicable to multi-objective optimization problems that can be decomposed
hierarchically into multi-objective subproblems and of which the objective functions
are either separable or additively separable. The method uses MOGA to optimize
the subproblems. Within the CO framework (Tappeta and Renaud 1997) proposed
a multi-objective MDO formulation, with the weighted sum technique to account
for multiple objectives. Exploiting also the CO formulation, McAllister et al.
(2005) used the linear physical programming to help the designers to express
their preferences for conflicting objectives using physically meaningful parameters.
Alternatively, multi-objective MDO integration methods have also been adapted to
the CSSO decomposition. Zhang et al. (2008) proposed a novel integration of the
adaptive weighted sum method within the CSSO framework to provide a relatively
uniformly spaced, widely distributed Pareto front. Huang (2003) and Huang et al.
(2007) developed the multi-objective Pareto CSSO in which each discipline has
substantial control over its own objective function during the MDO process, while
ensuring the responsibility for the constraint satisfaction in coupled subspaces.
Parashar and Bloebaum (2006) extended the previous work by developing a Genetic
Algorithm-based heuristic solution strategy for Multi-Objective CSSO approach, in
which several non-dominated candidates (Pareto solutions) are generated at each
cycle of the proposed algorithm, with subsequent update and refinement. Kang
et al. (2014) proposed to solve multi-objective optimization problems using Quasi-
Separable Decomposition (QSD) and Analytical Target Cascading (ATC) MDO
formulation. The objective function of QSD may be viewed as a weighted sum of
competing objectives of a multi-objective problem with equal weights. The authors
proposed to solve the multi-objective optimization problem formulated as a quasi-
separable MDO one using ATC. The aggregate objective function is decomposed
by formulating a subproblem for each objective and using an ATC formulation to
coordinate the candidate solution of the decomposed problem. Xiao et al. (2015)
presented a new methodology for the multi-objective MDO problems in non-
cooperative environments based on gene expression programming (Ferreira 2001)
(GEP) and the use of Nash equilibrium in the game theory. In this approach, the
GEP method is used as a surrogate model to build the approximate rational reaction
sets of the players in the Nash model.

Within the framework of launch vehicle design, multi-objective MDO
approaches have been proposed in the literature (Castellini and Lavagna 2012;
Fazeley et al. 2016; Fujikawa et al. 2015). Castellini and Lavagna (2012) proposed
a comparison of seven population-based algorithms (e.g. NSGA-II (Deb et al.
2000), MOPSO (Coello Coello and Lechuga 2002), PAES (Knowles and Corne
2000)) dealing with multi-objective problems and compared them on expendable
launch vehicle design problems. Two types of problem have been considered, ascent
trajectory optimization with a fixed launcher and launcher design optimization (with
optimization of architectures: number of boosters, type of propulsion, type of engine
cycle, etc.). In this work, MDF is carried out to couple the different disciplines and
conceptual design models are used. Fazeley et al. (2016) proposed to compare MDF
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and CO for the multi-objective optimization of a bi-propellant space propulsion
system design for an expendable launcher. Non-Sorted Genetic Algorithm II
algorithm is used to perform multi-objective optimization. In comparison, for
this specific problem, the authors concluded that MDF required less calls to the
disciplines than CO. Fujikawa et al. (2015) performed a conceptual design study
for a Two-Stage-To-Orbit space plane with ethanol-fueled rocket-based combined
cycle engine using a multi-objective MDO approach. AAO is employed in the
proposed process. Three objectives are considered for the problem: the payload
mass, the GLOW, and the take-off velocity. At each iteration, the multi-objective
problem is transformed into its relevant single-objective problem via min-max
goal programming, and is subsequently solved using a gradient-based optimization
method (SQP) (Fujikawa et al. 2013). Kosugi et al. (2011) used a multi-objective
genetic algorithm to design a hybrid rocket. The two considered objectives are
the GLOW and the maximal reached altitude by the sounding rocket and MDF is
carried out. Brevault et al. (2019) proposed a multi-level MDO approach to design
aerospace vehicles addressing a multi-mission problem.

These multi-objective design problems may be mathematically formalized as an
optimization problem characterized by q objectives optimized under m constraints
in a n-dimensional design space:

min y = f(z) = [f1(z), . . . , fq(z)
]

(9.1)

w.r.t. z ∈ R
n

s.t. gi(z) ≤ 0, i = 1, . . . , m (9.2)

zmin ≤ z ≤ zmax, (9.3)

where z = (z1, . . . , zn) ∈ Z ∈ R
n, and y = (y1, . . . , yq) ∈ Y ∈ R

q (here y

stands for the objective function response (and not the coupling variables like the
other chapters)). z is called the decision vector, Z the decision space, y the objective
vector, Y the objective space.

To solve this type of problems Multi-Objective Evolutionary Algorithms
(MOEAs) (Deb 2001) are classically used. Among the most popular MOEAs,
NSGA-II (Non-dominated Sorting Genetic Algorithm II) (Deb et al. 2000) or
SMPSO (Speed-constrained Multi-objective PSO) (Nebro et al. 2009) can be cited.
These algorithms present the advantages of using a population-based search and
diversity mechanisms making them less prone to be trapped in local minima.
Moreover, the use of simple operators for crossover and mutation allows the
handling of highly non-linear or non-differentiable functions. However, MOEAs
tend to need a consequent number of evaluations to converge to the exact Pareto
front which represents the set of solutions that are equivalently optimal with respect
to the different objectives in the sense of the Pareto dominance. MOEAs are not
suited for computationally expensive MDO problems, where the concern is to
minimize the number of discipline evaluations.
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To overcome this issue, Bayesian Optimization for multi-objective problems
using Efficient Global Optimization (EGO (Jones et al. 1998)) have been proposed
(Beume et al. 2007) by using new infill sampling criteria based on the concept
of Pareto-Dominance as the Expected HyperVolume Improvement (Wagner et al.
2010). In the following, EGO with Gaussian process for multi-objective problems
is briefly described.

9.2.1 Efficient Global Optimization for Multi-Objective
Problems

A variety of Bayesian algorithms to solve multi-objective optimization has been
proposed. These algorithms can be classified into the aggregation-based methods
(using EGO on a weighted sum of objective functions) (Knowles 2006; Zhang
et al. 2010) and the domination-based approaches (using new infill sampling criteria
based on the concept of Pareto-dominance) (Emmerich et al. 2006; Svenson and
Santner 2010). A focus on the dominance-based techniques is realized. Multi-
objective EGO shares the same structure as standard EGO, with the difference that
a surrogate model is built for each objective and constraint function, and an infill
sampling criterion based on the concept of Pareto-dominance is used as for instance
the Expected HyperVolume Improvement (EHVI) (Wagner et al. 2010).

EVHI is a derivation of the Expected Improvement (EI) described by Jones
et al. (1998) to the multi-objective case. Considering firstly, an unconstrained
multi-objective optimization and an initial DoE of size N, ZN = {

z(1), . . . , z(N)
}

the input data set and the corresponding objective function responses YN ={
y(1) = f

(
z(1)
)
, . . . , y(N) = f

(
z(N)

)}
. Let V = {

y ∈ R
q | yL ≤ y ≤ yU

}
be a

finite hypervolume of the objective space where all possible solutions lie, with
yL = [

minf1(z), . . . , minfq(z)
]

the ideal objective candidate and yU a chosen
upper point (nadir point). The dominated hypervolume HYN

of the DoE responses
YN is defined as:

HYN
=
{

y ∈ V | ∃i ∈ {1, . . . , N}, f
(

z(i)
)

≺ y
}

. (9.4)

HYN
is a subset of V whose points are dominated by the DoE responses YN (≺

refers to Pareto dominance). Considering a new candidate solution z(N+1), since
HYN

⊆ HYN+1 , the hypervolume improvement by adding this candidate is given by
IN
(
z(N+1)

) = |HYN+1 | − |HYN
|. The notions introduced previously are illustrated

for the two objective case in Figure 9.1.

Considering the set of GPs Ŷ =
{
Ŷ1 ∼ N (ŷ1, σ̂1), . . . , Ŷq ∼ N (ŷq , σ̂q)

}

modeling the exact functions f1, . . . , fq . The Expected HyperVolume Improvement
for a candidate solution z is given by
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Fig. 9.1 Hypervolume
improvement (hatched area)
in a two objective case

EHVIYN
(z) = E

[|HYN+1 | − |HYN
|] =

∫

V\HYN

P

[
Ŷ(z) ≺ p

]
dp. (9.5)

For constrained optimization problems, a constrained infill criterion can be
considered which combines EHVI with for instance the probability of feasibility
introduced by Schonlau et al. (1998) or the expected violation of the constraints
(Audet et al. 2000). The adaptation of the infill criterion to take into account
the constraints in multi-objective EGO is similar to single-objective EGO (see
Chapter 5). By multiplying this probability of feasibility Pf (·) to the Expected
HyperVolume Improvement, the magnitude of the resulting quantity tends to zero in
the design space areas where there is a low likelihood of constraint feasibility and it
tends to the EHVI value where there is a high likelihood of constraint feasibility.

At each iteration of the Multi-Objective EGO (MO-EGO), this infill criterion
C(z) = EHV I (z) × Pf (z) is maximized in order to identify the most promising
candidate. This latter is evaluated on the exact objective and constraint functions
and added to the DoE. All the surrogate models are updated and a new iteration can
start if the convergence criterion is not satisfied. The different steps of MO-EGO are
summarized in Figure 9.2.

The computation of EHVI for many objectives is a non-trivial problem. Several
methods (Emmerich and Klinkenberg 2008; Bader and Zitzler 2011) have been
proposed to calculate the EHVI formula, however, the complexity increases expo-
nentially with the number of objectives.

In many design optimization problems, the objective functions or the constraints
are non-stationary. Due to the abrupt change of a physical behavior depending
on the design space location, the simulation response may vary with a different
smoothness along the input space. GP is not adapted to predict these non-stationary
functions since it relies on a stationary covariance function which implies a uniform
smoothness of the prediction. To be able to approximate a non-stationary response,
different methods have been proposed. A first category of methods consists in
adapting existing covariance functions to non-stationary behaviors. For instance, the
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Fig. 9.2 Steps of Multi-objective EGO (MO-EGO)

squared exponential covariance function (Higdon et al. 1999) and the Matern covari-
ance function (Paciorek and Schervish 2006) have been adapted for non-stationary
modeling. However, these approaches are limited to low dimensional problems as
the adaptation becomes intractable for higher dimensions. Alternatively, approaches
combining multiple local stationary covariance functions have been proposed. Haas
(1990) presented a moving window technique where the training and prediction
regions move along the input space. Rasmussen and Ghahramani (2002) introduced
different stationary GPs in different subspaces of the input space to account for the
non-stationary behavior. An important issue with these approaches is their limitation
of the size the data set for the GP training in a computationally expensive problem.
Using a local surrogate model with sparser data may cause a poor approximation.
Finally, non-linear mapping methods have been proposed. Xiong et al. (2007)
introduced a piece-wise density function with parameterized knots to map the input
space with a deformed space to model the non-stationary response by a stationary
model. These techniques may not be adapted to high dimensional problems due to
the complexity of the non-linear mapping to catch the function behavior.

Recently, to handle the non-stationary issue, a new class of surrogate models
consisting of a functional composition of GPs called Deep Gaussian processes
(DGPs) (Damianou and Lawrence 2013) has been developed. DGPs are interesting
to model non-stationary functions when coupled with EGO for multi-objective
problems (Hebbal et al. 2019). In many design optimization problems, the objective
functions or the constraints may present non-stationary behavior. In fact, due to
the abrupt change of some physical properties, the response may vary with a
different smoothness along the input space. For example, in the structure discipline,
the stress–strain curve of a material can be non-stationary i.e. with a different
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trend in the elastic region, the strain hardening region and the necking region. In
aerodynamics, computational fluid dynamics (CFD) problems often have different
specific flow regimes due to separation zones, circulating flows, vortex bursts,
transitions from subsonic to transonic, supersonic, and hypersonic conditions. GP
regression may not be adapted to predict these non-stationary functions since it is
based on a stationary covariance function which implies a uniform smoothness of
the prediction. In the following section, a focus on DGP is done and its connection
with Bayesian Optimization is discussed.

9.2.2 Deep Gaussian Process for Multi-Objective Problems

A DGP (Damianou and Lawrence 2013) is a deep architecture developed by the
deep learning community where each layer is a GP. DGP takes the advantage of
Deep Neural Network (LeCun et al. 2015) and Gaussian process to provide a multi-
layer generalization of GP intrinsically enabling the modeling of complex (non-
stationarity) function behavior while providing the modeling uncertainty. The layers
are chained together by using the outputs of each layer as the inputs to the next
layer. The statistical relationship between the inputs and the responses is expressed
as a functional composition of several GPs. Each layer of DGP is composed of
several input nodes and output nodes with GPs mapping between them. DGP may
be formulated as Damianou and Lawrence (2013) (Figure 9.3):

y = fL(fL−1(. . . fl(. . . (f1(f0(z) + ε0) + ε1) . . .) + εl) . . . + εL−1) + εL (9.6)

with L the number of layers, fl(·) an intermediate GP and εl ∼ N (0, σ 2
l I) a

Gaussian noise introduced in each layer. Each layer l is constituted of an input node
hl , an output node hl+1 and a GP fl (·) connected the two nodes, leading to the

Fig. 9.3 A representation of the structure of a DGP
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Fig. 9.4 Example of a decomposed view of the structure of a DGP

recursive equation: hl+1 = fl(hl ) + εl . hl , hl+1 and fl (·) may be multidimensional
and therefore for each component hl+1,i of hl+1, a GP fli(·) maps between hl and
hl+1,i (Figure 9.4).

In order to train a DGP model, similarly as the GP regression (see Chapter 3 for
more details), the marginal likelihood p (y|Z ) is maximized using an optimization
algorithm (Equation 9.9).

p (y|Z ) =
∫

h1

. . .

∫

hl

. . .

∫

hL

p (y, h1, . . . , hl , . . . , hl |Z ) dh1 . . . dhL (9.7)

=
∫

{hl}L1
p
(

y, {hl}L1 |Z
)

d{hl}L1 (9.8)

=
∫

{hl}L1
p(y|hL)p(hL|hL−1) · · · p(h1|Z )d{hl}L1

with {hl}L1 the set of hidden layers {h1, . . . , hL}.
However, at the difference with standard GPs, the intermediate nodes in DGP

are latent variables, meaning that they are not observable, leading to the analytical
computation of the marginal likelihood intractable. It is a consequence of the
integration of the conditional probability p(hl+1|hl ) non-linearly involving the
latent variable hl inside the inverse of the covariance matrix Khlhl

+ σ 2
l I.

To bypass this problem, the marginal likelihood is approximated by a variational
tractable lower bound which is optimized (Damianou and Lawrence 2013). To
obtain this lower bound, two concepts are required. First, inducing variables are
introduced at each layer. Inducing variables have been introduced in the context
of sparse GP (Titsias 2009). It consists in augmenting by additional input-output
pairs X = {x1, . . . , xM } and u = f (X ), the latent space, where M << N .
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Fig. 9.5 Representation of the introduction of the inducing variables in DGPs

By introducing these variables, it avoids to compute the inverse of the covariance
matrix of the whole data set KZ ,Z ∈ MNN and instead estimate the inverse of
the covariance matrix of the inducing inputs KX ,X ∈ MMM . This modification of
standard GP allows to reduce the computational complexity in the training process
and prediction of a sparse GP. In DGP, inducing variables Xl = {xl1, . . . , xlMl

} and
ul = fl (Xl ) are introduced at each layer (Figure 9.5). Then, by marginalizing the
variables {ul}L1 , the marginal likelihood can be derived as:

p (y|Z ) =
∫

{hl ,ul}L1
p
(

y, {hl}L1 , {ul}L1 |Z , {Xl}L1
)

d{hl}L1 d{ul}L1 . (9.9)

Secondly, the variational approach employed by Titsias and Lawrence (2010)
for sparse GP can also be used in DGP. It consists in approximating the joint
distribution of the true posterior of the latent variables ul and hl by multivariate
Gaussian variational distributions q(ul , hl ) with the assumption of independency
between the layers (Damianou and Lawrence 2013):

q
(
{hl , ul}L1

)
=

L∏

l=1

q(hl )q(ul ).

This approximation of the posterior in the marginal loglikelihood log p(y|Z ) and
the use of the Jensen’s inequality allows to derive a variational lower bound on the
marginal likelihood:

log p(y|Z ) = log
∫

{hl ,ul}L1

q
({hl}L1 , {ul}L1

)

q
({hl}L1 , {ul}L1

)p
(

y, {hl}L1 , {ul}L1 |Z , {Xl}L1
)

d{hl}L1 d{ul}L1

≥ Eq({hl}L1 ,{ul}L1 )

[

log
p
(
y, {hl}L1 , {ul}L1 |Z , {Xl}L1

)

q({hl}L1 , {ul}L1 )

]

=L . (9.10)

Using some developments from the variational sparse GP (Titsias 2009), an
analytical tractable bound is obtained for kernels that are feasibly convoluted with
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the Gaussian density, as for instance the Automatic Relevance Determination (ARD)
exponential kernel. The analytical optimal form of q(ul ) as a function of q(hl ) is
obtained via the derivative of the variational lower bound L with respect to q(ul ).
By collapsing q(ul ) in the lower bound approximation by injecting its optimal form
(derived from the gradient of the lower bound) it is possible to obtain a tighter lower
bound depending on the following parameters:

• the kernel parameters: {�l}l=L
l=1 ,

• the inducing inputs {Xl}l=L
l=1 ,

• the variational distributions parameters {q(hl ) ∼ N (ml , Sl )}l=L
l=1 .

Therefore, training a DGP model comes back to maximize the lower bound with
respect to these parameters:

max L

w.r.t. {�l}l=L
l=1 , {Xl}l=L

l=1 , {ml}l=L
l=1 , {Sl}l=L

l=1 .

The number of hyperparameters to optimize in the training of a DGP is more
important than for a regular GP as only the kernel hyperparameters are considered.
Different methods for training a DGP have been proposed. In Dai et al. (2015)
instead of considering the hyperparameters of the variational posteriors q(hl )

as independent parameters, the authors considered them as a transformation of
observed data Y through multi-layer perceptron. Bui et al. (2016) proposed a
deterministic approximation for DGPs based on an approximated Expectation
Propagation energy function, and a probabilistic back-propagation algorithm for
learning. Salimbeni and Deisenroth (2017) developed the Doubly Stochastic tech-
nique in order to drop the assumption of independence between layers and the
restriction to special form of kernels. Indeed, the posterior approximation maintains
the exact model conditioned on ul :

q
(
{hl , ul}L1

)
=

L∏

l=1

p(hl |hl−1, ul )q(ul ).

Nevertheless, this approach results in the loss of the analytical tractability of the
lower bound L . The variational lower bound is then rewritten as follows (the
mention of the dependence on Z and X is omitted for the sake of simplicity):

L = Eq
({hl ,ul}L1

)

[

log
p
(
y, {hl}L1 , {ul}L1

)

q
({hl}L1 , {ul}L1

)

]

= Eq
({hl ,ul}L1

)

[

log
p
(
y|{hl}L1 , {ul}L1

)∏L
l=1 p(hl |hl−1, ul )p(ul )

∏L
l=1 p(hl |hl−1, ul )q(ul )

]
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= Eq
({hl ,ul}L1

)

⎡

⎣log

∏N
i=1 p

(
y(i)|f(i)L

)∏L
l=1 p(ul )

∏L
l=1 q(ul )

⎤

⎦

L =
N∑

i=1

E
q
(

h(i)
L

)
[
log p(y(i)|h(i)

L )
]

−
L∑

l=1

KL [q(ul ||p(ul )] . (9.11)

With KL[]̇ the Kullback-leibler divergence. This expression of the variational lower
bound enables a factorization over the training data Z ,Y offering the possibility
to make parallel steps in the training. The expected value of this bound is estimated
with Monte Carlo sampling using the propagation of each data sample z(i) through
all the GPs:

q(h(i)
L ) =

∫ L−1∏

l=1

q
(

h(i)
l |μμμl,���l, h(i)

l−1,Zl−1

)
dh(i)

l

with h(i)
0 = z(i). The optimization of this formulation of the bound is done according

to:

• the kernel parameters: {�l}l=L
l=1 ,

• the inducing inputs {Xl}l=L
l=1 ,

• the variational distributions of the inducing variables: {q(ul ) ∼ N (μμμl,���l)}l=L
l=1 .

The coupling of multi-objective and EGO with DGPs consists of a DGP surrogate
model for the objective functions and/or the constraints that can be potentially non-
stationary instead of a GP surrogate model. This coupling as in the single-objective
EGO induces some challenges that need to be solved.

9.2.3 DGPs and Bayesian Optimization

The deep architecture of a DGP increases the model capability compared to a
standard GP enabling to capture non-stationary phenomena (Figures 9.6 and 9.7).
Therefore, the optimization of non-stationary functions with DGP is a promising
framework. In fact, for single-objective optimization problems, experimentations in
Hebbal et al. (2018) showed that Bayesian Optimization (BO) coupled with DGPs
outperforms BO based on standard GPs and BO with non-linear mapping. For more
details on BO with DGPs for single-objective optimization, please refer to Hebbal
et al. (2019). This section is focused on multi-objective problems. Three concepts
are essential for BO with DGPs:

• Training approach: different methods have been proposed to train DGPs as
mentioned previously. In the first attempts to train DGPs in BO, the auto-encoded
variational technique was used. However, in order to keep the dependency
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Fig. 9.6 Approximation of the modified-Xiong function by a regular GP. The model cannot
capture the stability of the region [0.4, 1] and continues to oscillate

Fig. 9.7 Approximation of
the modified-Xiong function
by a DGP. The DGP model
appropriately capture the two
regions with different
smoothness
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between layers and increasing the robustness of the training, Hebbal et al. (2018)
used the doubly stochastic variational approach. The experimental results of
BO with DGPs using this type of training confirms this choice as it results in
more robust results with respect to the initial training set especially when the
architecture of the DGP gets deeper.

• Infill criterion: in single-objective BO with standard GPs, infill criteria such as
the Expected Improvement, the Probability of Improvement, or the Expected Vio-
lation are computed using closed analytic formulae. These formulae are obtained
based on the Gaussian distribution of the Gaussian process prediction. However,
in DGPs the overall process prediction is no longer Gaussian. Thus, in order to
use a valid approximation of the infill criteria, it is necessary to approximate
the distribution of the prediction by a Gaussian distribution, and if not, to use a



334 9 Multi-Objective and Mixed MDO

Fig. 9.8 The approximation of the prediction of a DGP model by a mixture of Gaussian
distribution. S samples are drawn from the first layer, then, each sample is propagated through
the whole network, with a realization at each hidden layer, until reaching the final layer where
the mean and the variance of the final GP are considered for each sample. Thus, the prediction is
approximated by a Gaussian mixture of the S samples

sampling technique for the prediction (Hebbal et al. 2018). In the multi-objective
case the closed form analytic equation of the EHVI in Equation 9.5 is also
derived with the assumption that the prediction of the objective functions follows
a Gaussian distribution. Hence, the same approximations in the prediction used
for the EI are necessary for the EHVI (Figure 9.8).

• Configuration of the architecture: the architecture of the DGPs concerns the
number of layers, the number of hidden units at each layer and the number
of inducing variables at each layer. DGPs tend to perform better (in terms
of prediction accuracy and variability) when getting deeper as experimentally
observed in Hebbal et al. (2018). The configuration of the architecture directly
influences the computational complexity of the evaluation of the lower bound
L given by O(N(M2

1D1 + · · · + M2
l Dl + · · · + M2

LDL)), where N is the
size of the data set, L is the number of layers, Ml is the number of inducing
inputs at the layer l and Dl is the number of hidden units at layer l. This is
more expensive in the multi-objective case when multiple objectives have to be
approximated. Therefore, a trade-off between the prediction performance and
the training computational cost has to be found. Moreover, the particularity of
using DGPs in a BO framework is that the number of data points changes at
each iteration. Thus, the configuration of the architecture has to be adapted
to the current iteration. In fact, in the early iterations when the datasize is
small a simple architecture (a standard GP, a 1-layer DGP) is sufficient. Then,
along the evolution of the size of the data set a more complex architecture can
be developed. If the stationary behavior is known a priori for some objective
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functions or constraints, one can use only GPs for some functions while using
DGPs for the unknown or non-stationary functions.

9.2.4 Application to Toy Case

The challenge in EGO using DGP is the choice of the architecture for the DGP in
terms of number of layers, number of nodes and number of the inducing variables.
This promising area has to be further explored to be applicable to complex aerospace
vehicle design.

In this section, experimentations on an analytical test problem are performed to
compare between standard EGO, NSGA II, and EGO using DGPs. The analytical
test case is a two objective problem with a non-stationary constraint. The problem
(P1) has been inspired by the TNK test problem (Deb et al. 2001) with a
modification on the constraint making it non-stationary. In fact, there are two regions
one where the function varies with a high frequency and the other where the function
varies slowly (Figure 9.9).

P1

∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣

min f1(z) = −z(1)

min f2(z) = −z(2)

s.t g1(z) = 0.5z(1)2 + 0.5z(2)2 − 0.2 × cos
(

20 × arctan
(

0.3 z(1)

z(2)

))
≤ 0

z = [z(1), z(2)
]

0 < z(1) < 1
0 < z(2) < 1

(9.12)

Fig. 9.9 Constraint function
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Fig. 9.10 Exact Pareto Front

Fig. 9.11 Exact Pareto Front
with constraint contour plot

The Pareto front given by this problem has three separated regions (Fig-
ures 9.10 and 9.11). The value of the hypervolume dominated in the rectangle
[[−1,−1], [0, 0]] is 0.752.

A population of five individuals is used for NSGA-II and it is run until 45
evaluations are reached. For standard EGO (using standard GP) and for EGO with
DGPs, 25 initial points are generated using a Latin Hypercube Sampling and 25
points are added using the EHVI with the probability of feasibility optimized with
a Differential Evolution algorithm (Qin et al. 2009). To evaluate the robustness of
each algorithm the experimentation is repeated for 10 different initial DoEs.

• For NSGA-II, a simulated binary crossover is used, with a distribution index
of 15, a probability of 0.9, and a polynomial mutation with a distribution index
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of 20 and a probability of 1/6. The constraint dominance is used to handle the
constraints.

• In standard EGO, an Automatic Relevance Determination (ARD) exponential

kernel (Jones et al. 1998) is used: k(z, z′) = exp{−∑n
i=1 θi

(
z(i) − z′(i)

)2}.
• In EGO with DGP, only the constraint is approximated by a DGP since the

objective functions are stationary. An ARD Gaussian kernel is used in each
layer. The training of the DGP is performed using the Doubly Stochastic training
approach (Salimbeni and Deisenroth 2017). Configurations with 1, 2, and 3 layers
are tested with a number of inducing inputs equal to the data set size (it evolves
along the iteration of EGO+DGP). The number of units in the hidden layers
is fixed to six. The prediction of the DGP is approximated with 500 samples
(Figure 9.12).

Table 9.1 displays the best hypervolume value, the worst hypervolume value, the
mean hypervolume and its standard deviation for each algorithm (“MO-DEGO l HL
qD” corresponds to MO-EGO with a DGP of l-hidden q-dimensional layers and a
number of inducing inputs that is equal to the size of the data set at each iteration).
Figure 9.13 gives the Pareto front of each algorithm in all ten repetitions.

As expected NSGA-II is the less efficient algorithm. It needs more evaluations
to converge to the optimal Pareto front and with only 45 evaluations, NSGA-II
is far from convergence, which explains the high dispersion of the Pareto fronts
according to the repetitions. BO with standard GP gives valuable results for some

Fig. 9.12 Convergence plot of BO with different architectures of DGPs and a regular GP. The
markers indicate the median of the hypervolume obtained while the errorbars indicate the first and
the third quartiles
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NSGA-II Pareto Fronts

Standard EGO Pareto Fronts

DGP 1HL Pareto Fronts

DGP 2HL Pareto Fronts

DGP 3HL Pareto Fronts

Fig. 9.13 Pareto fronts of the different repetitions for each algorithm. Each repetition corresponds
to a certain color
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repetitions, however it has an important variability among the repetitions. This
behavior is explained by the fact that the initial DoE for the worst repetitions is
concentrated in the region of high frequency and so the Gaussian process cannot
capture the region of low frequency and vice versa. BO with DGPs performs better
than standard GP regardless of the number of layers considered in the architecture. It
is also more robust to the initial DoE as shown in Figure 9.13 where each repetition
reaches the exact Pareto front. The convergence plot of the different BO shows a
separation between BO with GP and with DGPs, and this can be noticed since the
early iterations. The trade-off between computational complexity in the training of
a DGP and the capability of representation is important to be considered. In fact, in
this problem there is no clear difference between the three considered configurations
of DGPs. Hence, the capacity of the DGP with only one layer is sufficient to capture
the non-stationarity of this problem, and there is no need to go deeper.

In the context of Bayesian Optimization using DGP, open issues concern the
development of an adaptive framework for the configuration of the DGP according
to the problem at hand. Also the training duration of the DGP can be problematic
with complex models, an interesting direction of research is to investigate ways
to accelerate the training process. Finally, here in the multi-objective case the
objectives were considered independent, one may gain some information by creating
a dependence between the objectives using the concept of multi-output GPs and co-
regionalization.

9.3 Mixed Continuous/Discrete MDO

In complex engineering system, the early stages of design involve making numerous
decisions that ultimately define the final architecture of the system. These choices
include the technology selection for all the subsystems and components, the
operational modes, etc. For instance, in the design of a launch vehicle, there
are propulsion type choices (liquid bi-propellant, solid propellant, hybrid engines,
etc.), architectural choices (number of stages, presence of booster or not, number
of engines, etc.), or thermal control operational modes (active, passive). These
selections form an architecture design space of discrete variables. In addition, each
architecture and technology selection has different configuration corresponding to

Table 9.1 Performance of the algorithms

Hypervolume First quartile Third quartile
Algorithm median Hypervolume Hypervolume

NSGA-II 0.485 0.186 0.664

MO-BO GP 0.682 0.664 0.700

MO-BO DGP 1HL 0.737 0.716 0.743

MO-BO DGP 2HL 0.738 0.715 0.744

MO-BO DGP 3HL 0.739 0.726 0.741
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a degree of variation involving continuous decision (propellant masses, structural
sizing parameters, trajectory command controls, etc.) that further compound the
decision space. This design problem can be formulated by solving an optimization
problem involving objective and constraint functions which depend simultaneously
on continuous and discrete decision variables. These discrete variables can be
described by either integer values (i.e., 1,2,3) or categorical variables (e.g., mate-
rials, type of propellants).

For complex system design in the early design phases, a systematic methodology
that enables both the exploration of a large combinatorial design space and also
supports quantitative trade-off analyses to facilitate the selection of a design is
necessary. The challenge is the associated computational cost of such a method-
ology. In the literature, three different types of approaches in the conceptual design
phase may be identified: the baseline design process (Mavris and Kirby 1999;
Soban and Mavris 2013), the architecture optimization methods (Villeneuve and
Mavris 2005; Armstrong et al. 2008) and the architecture comparison approaches
(Donahue 2001; Walton and Hastings 2004; Kothari and Webber 2010; Prasadh et al.
2014). In the first category, only few configurations around a single architecture
baseline are considered to infuse new technologies and meet new requirements.
However, the simulations and analyses are accurate and detailed (using CDF and
FEA simulations for instance). These design process approaches are classical for
civil transport aircraft design using existing aircraft as baseline and improving aero-
structural design for instance. The architecture comparison process caries out a
trade-off between many architectures but with a level of analysis and simulation
very limited often based on qualitative knowledge and expert opinion. Moreover,
for each architecture considered, only a single configuration is studied, there is
no optimization of the continuous design variables. Compared to the baseline
design process, the architecture optimization approaches consider fewer architecture
baselines but carry out separate optimizations before performing a trade-off between
the optimal configurations of each architecture. Therefore, even if less architectures
are considered, the simulation and modeling are more accurate due to the need to
find the optimal configuration for each architecture. The architecture optimization
methods are a trade-off between the two other alternative approaches. They are
less accurate than the baseline design process but explore more the architecture
space, and are more accurate than the architecture comparison processes but less
architectures are considered.

Only a limited number of works focused on directly optimizing both the types of
architectures and the continuous variables describing them. Frank et al. (2016) and
Frank (2016) proposed an evolutionary multi-architecture optimization algorithm
to enable designers to generate variable-oriented architectures that can be further
optimized and compared. Three general steps are considered in the proposed
approach, with firstly the generation of alternative concepts and the associated
architectures, secondly a sequential process of optimization of each architecture and
comparison across the architectures, and finally a selection of the best architecture
and associated optimal configuration. The proposed methodology lies within the
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architecture optimization methods but stay limited in terms of modeling to low-
fidelity model and simplified analyses.

Chepko et al. (2008) and Chepko (2009) proposed a methodology to enable the
architecture selection along with the configuration optimization in a general frame-
work. Firstly, a functional decomposition of the considered system is performed
while listing the different technological options for the different components and
using logical Boolean functions (“AND”/“OR”) to establish the set of the possible
architectures. Then, depending on the size of the architecture set, if it is small
enough then each problem is solved by running an optimization on the continuous
variables for each architecture and then a comparison of the results is performed.
In case the architecture space is too large to consider all the combinations, a
nested optimization problem is set in which the discrete design variables are
controlled at the outer-level and the continuous variables are optimized at the inner-
level. Alternatively, instead of a nested optimization problem, Chepko et al. also
proposed to solve a single-level search with a decision space combining discrete
and continuous search spaces.

Some classical optimization algorithms used in the presence of both discrete
and continuous variables such as mixed variable Genetic Algorithm (Stelmack
et al. 1998) and Mesh Adaptive Discrete Search (MADS) have been adapted to
solve these mixed optimization problems. Stelmack et al. (1998) applied a mixed
Genetic Algorithm to a MDO problem solving using a Concurrent Sub-Space
Optimization (CSSO) formulation. Haftka et al. extended the Quasi-Separable
Decomposition (QSD) (Haftka and Watson 2006) MDO formulation to account
for discrete variables in addition to continuous ones. Quasi-Separable optimization
problems enable the authors to propose a rigorous decomposition theory. Barjhoux
et al. (2018) proposed a bi-level methodology to solve structural optimization
problem with both continuous and categorical variables. The methodology relies
on the separation of the continuous variables from the categorical ones that are
treated in two different optimization problems: an inner-level problem in which
the continuous sizing variables are optimized at given categorical choices, and an
outer-level problem that handles the categorical variables formulated as integers.
Aliakbargolkar et al. (2013) combined genetic algorithm and sequential quadratic
programming to solve the optimization problem of launch vehicle transportation
architectures using simplified modeling. For the previous mentioned studies, the
employed optimization algorithms are able to solve mixed continuous and discrete
optimization problems but require a large number of function evaluations in order
to converge.

To alleviate this problem, surrogate model-based design optimization (SMBDO)
(Queipo et al. 2005) may be employed. A few surrogate modeling techniques for
functions depending on both continuous and discrete variables exist in the literature
(Qian et al. 2008; Swiler et al. 2014; Zhang and Notz 2015). However, only few
works extended the use of these mixed variable surrogate models for SMBDO
for continuous/discrete optimization problems. For instance, several variants of
radial basis functions (RBF) based SMDBO techniques for constrained mixed
continuous/integer problems have been proposed (Beauthier et al. 2014; Holmström
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et al. 2008; Müller et al. 2013; Rashid et al. 2008; Regis 2014). A surrogate model
assisted GA is discussed in Bajer and Holena (2013) where both Generalized Linear
Models (GLM) and RBF are considered. Roy et al. (2017) proposed to solve an
aircraft design optimization problem along with an airline allocation problem in
order to capture the coupling that exists between the aircraft design and the airline
allocation disciplines. The authors proposed an algorithm combining branch and
bound, Efficient Global Optimization, Kriging Partial Least Squares, and gradient-
based optimization. The main idea of this framework is to leverage the efficiency of
a gradient-based optimizer while globally exploring the integer design space with
the help of the Efficient Global Optimization (EGO).

Two drawbacks can be outlined within the existing mixed variable SMDBO
techniques mentioned above. Most of these techniques only deal with integer
variables and cannot control generic discrete design variables such as categorical
variables (e.g., type of materials). Furthermore, the handling of the constraints in
the majority of the previously mentioned optimization methods relies on direct
penalization of the objective function values for solutions that are not feasible.
Although popular, this approach is inadequate when confronted with expensive
computations and usually requires large numbers of function evaluations.

Mixed-variable optimization problems involve continuous and discrete variables.
Continuous variables (e.g., geometrical sizing parameters, trajectory command
law) refer to real numbers usually defined within given bounds. In their generic
form, discrete variables are non-relaxable variables defined within a finite set of
choices. Within the context of the design of complex system, they may represent
technological choices such as architectural configurations (number of boosters,
number of stages for launch vehicle), material alternatives and can be either ordinal
or nominal (Agresti 1996). Ordinal category includes variables with an existing
notion of order (e.g., integer variables, ‘small/medium/large’ types of decision
variables), while the nominal one includes unordered decision variables for which
no concept of metrics can be defined (e.g., propulsion cycle, materials). Although
discrete variables often lack a conceptual numerical representation, it is common
practice to assign an integer value to every considered alternatives in order to be
able to include the related choices in the numerical optimization. For the sake of
generality, no distinction between nominal and ordered discrete variables is made in
the rest of the section.

9.3.1 Mixed Continuous and Discrete Variable Optimization
Problem

In the following of this section, a general mixed variable optimization problem is
formulated as follows (only one single objective is considered in this section):

min f (z, x) f : Fz × Fx → Fy ⊆ R (9.13)
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w.r.t. z ∈ Fz ⊆ R
n

x ∈ Fx

s.t. gi(z, x) ≤ 0 gi : Fz × Fx → Fgi
⊆ R (9.14)

for i = 1, . . . , m,

where f (·) is the objective function defined over the co-domain Fy . gi(·) is one
of the m constraints of the problem in the co-domain Fgi

and z = (
z(1), . . . , z(n)

)

is the vector containing the continuous decision variables and x = (
x(1), . . . , x(r)

)

is the vector containing the discrete decision variables. n and r being the size of
the continuous and discrete dimensions of the functions f (·) and g(·). For the sake
of simplicity, the input vector containing both continuous and discrete variables is
represented with the following notation: w = {z, x}. Each discrete variable x(j) is
characterized by bj possible values, also known as levels, which therefore results in

a total number of categorical combinations, or categories, of d =
k=r∏

k=1
bk .

To solve mixed continuous/discrete variable optimization problems, a recent
work proposed to combine Gaussian process using suited mixed variable kernels
with Efficient Global Optimization algorithm (Pelamatti et al. 2018). A brief
overview of this approach is provided in the next section with an illustration on
a toy case problem.

9.3.2 Gaussian Process for Mixed Continuous/Discrete
Variables

As presented in Chapter 3, Gaussian processes are mainly characterized by a
covariance function involving a kernel. A valid kernel is necessary for the covariance
function which must be symmetric and positive semi-definite (Santner et al. 2003).
The product between valid kernels also results in a valid one (Shawe-Taylor and
Cristianini 2004). This can be derived from the fact that according to the Schur
product theorem (Davis 1962), the Hadamard product between two positive semi-
definite matrices results in a positive semi-definite matrix. Therefore, in practice a
valid mixed variable kernels may be obtained by combining kernels defined in the
continuous n-dimensional space and kernels defined in the discrete r-dimensional
space (Roustant et al. 2018):

k
(
wi , wj

) = kc

(
zi , zj ) ∗ kd(xi , xj

)
(9.15)

with kc and kd corresponding to the continuous and discrete kernels, respectively,
and ∗ is a generic operator allowing to combine kernels. Such standard operators
can be the product, the sum or the ANOVA between the two kernels (Roustant et al.
2018). Kernels computed on continuous and discrete variables can be combined
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without any loss of generality or applicability in order to obtain the covariance
matrix of a multivariate Gaussian process. Considering the most generic case, the
resulting kernel is heteroscedastic, i.e., characterized by a different GP variance for
each discrete category of the problem.

Within a generic approach, the discrete kernel kd can be represented by a d × d

positive semi-definite matrix T. Each element Tk,s contains the covariance between
two generic discrete categories k and s of the modeled function. A suitable parame-
terization of T is required to ensure the kernel validity. The Cholesky decomposition
of the covariance matrix (Pinheiro and Bates 1996) is often considered in the GP
inference (see Chapter 3):

T = LLT (9.16)

in which L is a lower triangular matrix. Zhou et al. (2011) proposed to build the
matrix L using an hypersphere decomposition (Rebonato and Jaeckel 2011) to
define a mixed GP for modeling purpose (GP regression). The elements of the
kth row of the matrix represent the coordinates of a point on the surface of a k-
dimensional hypersphere. The triangular matrix elements lk,s are defined such that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

l1,1 = α1,0

l2,1 = α2,0 cos(α2,1)

l2,2 = α2,0 sin(α2,1)

lk,1 = αk,0 cos(αk,1) with k > 2
lk,s = αk,0 sin(αk,1) . . . sin(αk,s−1) cos(αk,s) with k > 2 and s = 2, . . . , k−1
lk,k = αk,0 sin(αk,1) . . . sin(αk,k−2) sin(αk,k−1) with k > 2,

(9.17)
where αk,0 > 0 and αk,s ∈ (0, π) (for s �= 0) are the hyperparameters characterizing
the covariance between the various discrete categories of the modeled function. Due
to the symmetrical nature of the covariance, (d + 1)d/2 parameters αk,s are needed
to define L.

For problems with a large number of discrete categories, the number of hyper-
parameters becomes considerably large, making the GP training difficult (Zhou
et al. 2011). Furthermore, for the GP training, the data set has to contain samples
belonging to every combination of discrete categories. However, it may happen
that some combinations of discrete design variables are not physically feasible
or cannot be modeled, in which case this parameterization cannot be applied. An
example of this problem can be found in the modeling of a rocket engine propulsive
performance (Pelamatti et al. 2019), in which not all the combinations of the
propellant types are feasible for a combustion process.

In order to avoid these issues, alternative parameterizations which do not
require all the discrete categories to be present within the data set and which are
characterized by smaller numbers of hyperparameters are discussed in the following
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paragraphs. To reduce the number of hyperparameters required to describe the
covariance matrix, a first choice that can be made is to represent the discrete kernel
as a combination of 1-dimensional discrete kernels. Each 1-dimensional kernel can
be rewritten under the form of a positive semi-definite matrix. In case a kernel-wise
product is considered, the resulting discrete kernel can be defined as Roustant et al.
(2018):

kd(xi , xj ) =
r∏

s=1

[Ts]x(s)
i ,x

(s)
j

, (9.18)

where each matrix Ts contains the values of the covariance between the various
levels of the generic discrete variable s.

Heteroscedastic Dimension-Wise Hypersphere Decomposition

A first parameterization for Ts has been introduced by Zhou et al. (2011) and uses
the hypersphere decomposition. The proposed covariance is defined dimension-wise
instead of category-wise. The hyperparameter number required to characterize the
r matrices Ts is equal to

∑k=r
k=1 bk(bk + 1)/2. The dimension-wise variant offers a

better scaling with the discrete dimension compared to the complete hypersphere
decomposition, but as a trade-off, it theoretically provides a less accurate modeling
of the correlation between the various discrete categories (Pelamatti et al. 2019).
Moreover, it is not necessary for all the problem categories to be represented in the
training data set as the kernel is defined only dimension-wise.

Homoscedastic Dimension-Wise Hypersphere Decomposition

The assumption of homoscedasticity can be made to further reduce the number of
hyperparameters meaning that all the categories of the problem are characterized by
the same variance value. In this case, each matrix Ts has a constant diagonal value.
Consequently, the discrete kernel can be rewritten as a product between the common
GP variances and r dimension-wise correlation matrices parameterized with the help
of the same hypersphere decomposition. Due to the fact that correlation matrices
are characterized by a unit diagonal, their hypersphere decomposition only requires∑k=r

k=1 bk(bk − 1)/2 hyperparameters (i.e., all the hyperparameters αi,0 are equal to
1). Nevertheless, the assumption of homoscedasticity can introduce a large modeling
error when dealing with categories that present different behaviors, and might
therefore not always be valid.
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Compound Symmetry Parameterization

In case an additional reduction in the hyperparameter number characterizing the
discrete kernel is required, the Compound Symmetry (CS) (Pinheiro and Bates
2009) may be considered. In this case, each matrix Ts is represented by a single
value of covariance cs and a single value of variance vs :

[Ts]x(s)
i ,x

(s)
j

=
{

vs if x
(s)
i = x

(s)
j

cs if x
(s)
i �= x

(s)
j

(9.19)

with −(bs + 1)−1vs < cs < vs , in order to ensure that Ts is positive semi-
definite. A particular case of CS parameterization can be obtained by considering the
covariance in the mixed continuous discrete search space to be spatially dependent
as a function of the Gower distance, as is proposed by Halstrup (2016). In the
Gower distance (Gower 1971), the coordinates of the two samples that are being
considered are compared dimension-wise. For the continuous dimensions, the
distance is proportional to the Manhattan distance, while for the discrete dimensions
the distance is a weighted binary value which depends on the similarity between
the variable values. In practice, the Gower distance between two candidates can be
calculated by:

dgow(wi , wj ) =
∑k=n

k=1

∣∣
∣z(k)

i −z
(k)
j

∣∣
∣

	z(k)

r + q
+
∑k=r

k=1 S
(
x

(k)
i , x

(k)
j

)

r + n
, (9.20)

where 	z(k) is the range of the continuous variables in the kth-dimension and S is
a score function defined such that:

S
(
x

(k)
i , x

(k)
j

)
=
{

0 if x
(k)
i = x

(k)
j

1 if x
(k)
i �= x

(k)
j .

(9.21)

From the re-definition of the distance in the joint continuous and discrete space,
the p-exponential covariance function can be employed to create a mixed variable
kernel for GP:

k(wi , wj )=σ 2 exp

⎡

⎢
⎣−

k=n∑

k=1

θk

⎛

⎜
⎝

|z(k)
i −z

(k)
j |

	z(k)

r + n

⎞

⎟
⎠

pk

−
k=r∑

k=1

θk+n

⎛

⎝
S
(
x

(k)
i , x

(k)
j

)

r + q

⎞

⎠

pk+n
⎤

⎥
⎦ .

(9.22)

Furthermore, without loss of generality as only two values: 0 or 1 can be taken by
S(x

(k)
i , x

(k)
j ) (see Equation (9.21)), in practice, pk+n is fixed to 1. This is equivalent

to the definition of a mixed variable kernel as:
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k(wi , wj ) = kc(zi , zj ) ∗
r∏

s=1

[Ts]x(s)
i ,x

(s)
j

, (9.23)

where each matrix Ts is a CS covariance matrix defined as shown in Equation (9.19)
with a cs/vs ratio equal to:

cs/vs = exp

⎡

⎢
⎣−θs

⎛

⎝
S
(
x

(s)
i , x

(s)
j

)

r + n

⎞

⎠

ps
⎤

⎥
⎦ . (9.24)

The GP based on CS described above is characterized by 2(n + r) hyperparameters
and scales better with the discrete dimension of the problem when compared to
the previously described kernel parameterizations. Furthermore, the adaptation of a
standard continuous Gaussian process into a CS-GP is relatively simple. However,
because each discrete variable is only characterized by two hyperparameters θ and
p, the surrogate model may present poor modeling performance in the presence
of discrete variables with large numbers of discrete levels. For the same reason,
the simultaneous presence of correlation and anti-correlation trends described by
the same discrete variable might be more difficult to model when compared to the
parameterizations described in the previous paragraphs (Pelamatti et al. 2019).

9.3.3 Efficient Global Optimization with Mixed Discrete and
Continuous Variables

Standard EGO may be extended using adapted mixed continuous and discrete
variable GP. In Pelamatti et al. (2018) a mixed variable adaptation of the Infill
Criterion is proposed, defined as the product between the Expected Improvement
(EI) and the Probability of Feasibility (Pf ). The mixed variable GP kernel is defined
in such a way that the resulting covariance matrix can be used to characterize a
Gaussian distribution. By extension, the derivations of the EI and the Pf expressions
remain valid for the mixed variable search space. EI defines the expected value of
the predicted improvement with respect to the data set:

E[I (w∗)] = E
[
max

(
ymin − Y (w∗), 0

)]
(9.25)

= (ymin−ŷ(w∗))

(

ymin−ŷ(w∗)
ŝ(w∗)

)
+ŝ(w∗)φ

(
ymin−ŷ(w∗)

ŝ(w∗)

)
(9.26)

with ymin the current minimum value within the data set, while 
(·) and φ(·) are
the standard distribution and normal density functions, respectively. Pf defines the
probability that all the constraints the problem is subject to are satisfied at the
unmapped location w∗ of the search space. Given a constraint function gi(·), the
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probability for it to be satisfied at w∗ can be estimated with:

P(gi(w∗) ≤ 0) = 


(
0 − ĝi (w∗)

ŝgi
(w∗)

)
, (9.27)

where ŝgi
refers to the estimated error in the prediction ĝi of the constraint function.

By extension, the Pf for problems subject to m constraints can be computed as:

Pf (w∗) =
m∏

i=1

P
(
gi(w∗) ≤ 0

)
. (9.28)

The constrained optimization infill criterion IC is given by

IC(w∗) = E[I (w∗)]Pf (w∗). (9.29)

The data sample to be added to the GP training data set is obtained by evaluating
the value of the exact objective and constraint functions for the value of w∗ that
maximizes the IC:

w∗ = argmax(IC(w)). (9.30)

An auxiliary optimization problem solving is therefore necessary. As the compu-
tation time required to evaluate the IC is negligible with respect to the exact objec-
tive and constraint functions, classical optimization algorithms can be employed.
Once the value of w∗ that maximizes IC has been determined, the exact objective
and constraint functions of the optimization problem are computed at said location
and the obtained data sample is added to the GP data set. Subsequently, the surrogate
models (of the objective and constraints) are trained anew to account for the
additional information provided by the added data sample. This process is repeated
until a user-defined stopping criterion is reached.

In mixed continuous and discrete problems, the auxiliary optimization used to
maximize IC can either be carried out separately in each category of the problem
by subsequently choosing the category yielding the largest value or it can be
directly performed in the mixed continuous/discrete search space. In Pelamatti
et al. (2018), the IC is defined in a mixed variable search space (the same as the
optimization problem) and consequently most of the commonly used algorithms,
such as gradient-based ones, may not be used due to the presence of multiple local
minima, therefore, an evolutionary algorithm is used. IC is optimized using on a
mixed continuous/discrete Genetic Algorithm (GA) similar to the one presented by
Stelmack et al. (1998) and coded with the help of the python based toolbox DEAP
(Fortin et al. 2012). The GA optimization routine is terminated once the maximum
number of generations has been reached, or alternatively after the optimum value of
the objective function has not improved over a predefined number of generations.
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9.3.4 Application to Toy Case

In order to illustrate the mixed continuous/discrete variable EGO algorithm with the
different kernel parameterizations, the following toy case problem is considered:

min f (z, x) (9.31)

w.r.t. z, x

s.t. g(z, x) ≤ 0 (9.32)

z ∈ [−5, 5]2, x ∈ {0, 1}2,

where z = [z(1), z(2)
]
, x = [x(1), x(2)

]
and:

f (z, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

200 +z(1)4 − 16 ∗ z(1)2 + 5 ∗ z(1) + z(2)4

−16 ∗ z(2)2 + 5 ∗ z(2) if x(1) = 0 and x(2) = 0

z(1)4 +12 ∗ z(1)2 + 8 ∗ z(1) + z(2)4

−16 ∗ z(2)2 + 5 ∗ z(2) if x(1) = 0 and x(2) = 1

z(1)4 +16 ∗ z(1)2 − 2 ∗ z(1) + z(2)4

+12 ∗ z(2)2 − 2 ∗ z(2) if x(1) = 1 and x(2) = 0

z(1)4 +3 ∗ z(1)3 + 5 ∗ z(1) + z(2)4

+2 ∗ z(2)3 + 8 ∗ z(1) if x(1) = 1 and x(2) = 1

(9.33)

g(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

−(z(1) − 2)2 + (z(2) − 1)2 + 2 if x(1) = 0 and x(1) = 0
−(z(1) − 1.5)2 + (z(2) − 0.7)2 + 4 if x(1) = 0 and x(2) = 1
−(z(1) − 2.5)2 + (z(2) + 2)2 + 3 if x(1) = 1 and x(2) = 0
−(z(1) + 1)2 + (z(2) − 1.5)2 + 3 if x(1) = 1 and x(2) = 1.

(9.34)
The objective function is derived from the Styblinski-Tank function (Silagadze

2007) and adapted for different categories. The four objective functions (depending
on the category defined by the discrete variable vector x) and the associated
constraints are presented in Figure 9.14. Depending on the value of the discrete
variable vector x, the objective function, and the constraints are quite different
but also present some similarities that could be exploited by the mixed variable
adaptation of EGO. Among the four categories, the optimum is within the x = [0, 1]
category.

In order to evaluate the efficiency of the mixed-GP approaches, a reference
method named category-wise (CW) is used consisting in building a separate GP
(for the objective and the constraint functions) in each category of the problem (here
height GPs) and no information are exchanged. Using these GPs, EGO is run and
the most promising point (based on an optimization of EI in each category and
comparing the results for each category) is added in the corresponding category
and the GPs are trained anew (for that particular category). For the SMBDO
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Fig. 9.14 Objective (left) and constraint (right) functions for the different value of the discrete
variable vector x-toy case problem
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Fig. 9.15 Convergence of mixed EGO and reference approaches over 10 repetitions. The
used optimization techniques rely on heteroscedastic dimension-wise decomposition (He_HS),
homoscedastic dimension-wise decomposition (Ho_HS), compound symmetry decomposition
(CS), category-wise separate surrogate modeling (CW). The median value and the first and last
quartile are represented on the convergence graph

techniques, an initial training data set of 24 samples is used (i.e., six samples
for each independent EGO in the category-wise (CW) case) and subsequently
30 additional data points are infilled during the optimization process. The results
obtained for this test case over 10 repetitions are presented in Figures 9.15 and 9.16.

The mixed variables adaptations of EGO provide better convergence results and
robustness to initial DoE than the standard category-wise EGO. Figure 9.15 presents
the convergence curves (with the median value and the first and last quartile) for the
EGO-based techniques and the three mixed variable EGO adaptations outperform
the category-wise EGO which would require more iterations to converge. The
robustness to the initial DoE is illustrated in Figure 9.16 where the obtained
minimum for the ten repetitions are represented and the three mixed variable EGO
adaptations are clearly more robust than the category-wise EGO.

Due to the simplicity of this analytical test case, no noticeable difference in the
performance between the proposed mixed variable EGO adaptations can be noticed.
For more complex test cases, see (Pelamatti et al. 2018). The data samples infilled
by the presented methods during one of the repetitions are presented in Figure 9.17.
It can be seen that an infill sample has been added in the category x = [0, 1] for
z = [1.8,−1.2] close to the constraint and the global minimum.
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Fig. 9.16 Optimization results obtained over 10 repetitions. From left to right, the used optimiza-
tion techniques rely on heteroscedastic dimension-wise decomposition (He_HS), homoscedastic
dimension-wise decomposition (Ho_HS), compound symmetry decomposition (CS), category-
wise separate surrogate modeling (CW)

This toy case problem involves heteroscedastic properties. Theoretically, the
He_HS discrete kernel parameterization is supposed to be the most appropriate
choice, as it provides a more accurate modeling of heteroscedastic functions. This
aspect is discussed by Roustant et al. (2018), where several relevant examples are
provided. However, the variance of a given category depends on the trend over the
entirety of the search space, while for the SMBDO techniques, the relevant metric
would be the variance of the problem functions in the areas of interest of the search
space, as that is where the modeling accuracy is most important in order to determine
the most suitable location in which to infill data samples. Indeed, in SMBDO,
the purpose is not to accurately model the objective and constraint functions over
the entire search space, but to identify the problem optimum while managing
surrogate model uncertainty. In general, unless problem specific knowledge is
provided, there is usually no way of knowing the optimum neighborhood variance
a priori. Moreover, as previously explained, the He_HS relies on a larger number
of hyperparameters, the optimal values of which are difficult to determine when
limited amounts of data are provided. For these two reasons, the a priori knowledge
of the heteroscedasticity or homoscedasticity of a given optimization problem is not
sufficient in order to determine the most suitable discrete kernel parameterizations
for the SMBDO algorithm.
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Fig. 9.17 Contour plot of the objective function and infill samples with CS parameterization for
one of the 10 repetitions. The contour plot of g(z, x) = 0 is represented with the black lines
(feasible regions are outside)

This toy case illustrates the interest of using mixed variable EGO adaptations
compared to classical optimization algorithms to converge efficiently to the global
minimum with respect to the continuous and discrete design variables with a limited
number of function evaluations.

9.4 Summary

This chapter presents topics related to MDO in order to solve complex aerospace
vehicle design problem. The two discussed research fields are multi-objective and
the mixed continuous/discrete optimization. In order to tackle these challenges,
recent works focused on the use of Gaussian processes (Emmerich and Klinkenberg
2008; Pelamatti et al. 2018; Brevault et al. 2019; Hebbal et al. 2019) and have been
introduced in this chapter. Each of the presented approach have been illustrated
on a toy case problem highlighting the interest of suited adaptation of GP for
such complex problems. GP have interesting properties in terms of prediction and
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estimation of the associated prediction errors enabling efficient adaptive strategies
for multi-objective or mixed continuous/discrete variable problems with a limited
number of computationally intensive simulations. Some of the presented techniques
are still at the beginning of their development (for instance the Deep Gaussian
processes for optimization) and further works are necessary to become a useful tool
for MDO and MDO under uncertainty.
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