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7.1 Introduction

This chapter is devoted to the description of the MDO formulations in the
presence of uncertainty. In Chapter 1, deterministic MDO formulations have been
introduced, highlighting the interest of such methodologies to solve complex
and multidisciplinary design problems. Uncertainty-based multidisciplinary design
optimization (UMDO) deals with the presence of uncertainty in MDO problems.
The understanding of the importance of UMDO is spreading among academia
and industry quickly. Nevertheless, in comparison with the deterministic MDO
approaches, the UMDO methodologies are still in the early stages of development
and numerous challenges have still to be solved. In the last decades, important
improvements have been made in this field of research and are presented in
this chapter. UMDO problems combine the challenges of deterministic MDO
(organization of the design process, control of interdisciplinary couplings, etc.)
and the difficulties involved by uncertainty propagation for multi-physics problems.
Most of the existing UMDO formulations are built on the uncertainty propagation
techniques dedicated to multidisciplinary problems presented in Chapter 6. The
algorithms used to solve these UMDO problems are not discussed in this chapter,
but all the presented optimization techniques in Chapter 5 may be used to solve
UMDO problems.

The objective of this chapter is to describe the existing UMDO formulations
and to understand their characteristics and limitations with illustrations on toy
cases. To understand the existing UMDO formulations, this chapter is organized
as follows. In Section 7.2, the differences between deterministic MDO and UMDO
are highlighted, distinction between robustness-based UMDO and reliability-based
UMDO is discussed, and useful notations are introduced. Section 7.3 is focused
on the existing coupled UMDO formulations relying on MDA and the use of
uncertainty propagation techniques introduced in Chapter 6 in the case of mul-
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tidisciplinary systems. Section 7.4 presents the existing single-level procedures
for UMDO problems that separate the uncertainty propagation phase from the
optimization. Section 7.5 is focused on the distributed UMDO formulations and
the interdisciplinary coupling satisfaction in the presence of uncertainty. Alternative
hybrid UMDO formulations are introduced in Section 7.6. These formulations
use MDA to ensure the interdisciplinary couplings while allowing the uncertainty
propagation though a decoupled system. In Section 7.7, UMDO strategies to deal
with both aleatory and epistemic uncertainties are briefly reviewed.

For each approach, the principle of the formulation is exposed, then the
mathematical formulation with an explanatory scheme is presented, and finally the
advantages and drawbacks are outlined. Moreover, these approaches are illustrated
over a toy case.

7.2 Differences Between MDO and UMDO

Concerning the handling of interdisciplinary couplings, several hypotheses are made
on the considered UMDO problem in order to simplify the notations and the
understanding of the UMDO formulations:

• besides the interdisciplinary coupling equation, only inequality constraints are
considered. Indeed, in aerospace vehicle design problems, tolerances are often
considered on equality constraints (such as orbit injection constraints) to account
for the presence of uncertainty and therefore equality constraints may be
transformed into inequality constraints involving tolerances.

• without loss of generality, the state variables x and the state equation residuals
r(·) are handled at the discipline level and therefore do not appear in the UMDO
formulations.

The presence of uncertainty in MDO problems requires tools and techniques coming
from the fields of:

• uncertainty characterization and modeling (see Chapter 2), of sensitivity analysis
(see Chapter 3),

• reliability analysis (see Chapter 4),
• uncertainty propagation (see Chapters 3 and 6),
• adapted optimization algorithms (see Chapter 5).

Moreover, in order to efficiently assess the performance and the reliability of
the system, an efficient organization of the design process is essential. Important
differences exist between the UMDO formulation and the deterministic MDO
formulation described in Chapter 1. The UMDO formulations require uncertainty
modeling and measures, uncertainty propagation, and optimization algorithms under
uncertainty.

The introduction of uncertainty in a MDO problem leads to a new general UMDO
problem (Yao et al. 2011) formulated as follows:
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min � [f (z, θY , U)] (7.1)

w.r.t. z, θY

s.t. Kk [gk(z, θY , U)] ≤ 0 for k ∈ {1, . . . , m} (7.2)

∀i �=j ∈[1, N]2,∀u ∈R
d , yij (θY ij , ui )= cij (zi , y.i (θY .i , u.i ), ui ) (7.3)

zmin ≤ z ≤ zmax (7.4)

The notations employed in this generic UMDO problem formulation and the
difference with respect to deterministic MDO are explained in the following
paragraphs.

• First, U is the uncertain vector (assumed to be real-valued random vector,U ∈
R

d ). We note Ui the input uncertain vector of the discipline i and U = ⋃N
i=1 Ui

without duplication. In this chapter (except in Section 7.7), it is assumed that the
uncertain variables are modeled with the probability theory, and that the joint
input variable probability distributions are known. To simplify the notations in
the following of the chapter, for all the uncertain variables, the realization U(w)

is noted u. The kth sample generated for instance by CMC of the random vector
Ui is noted ui(k). The pth coordinate of the kth sample of the random vector Ui is

noted u
(p)

i(k). As highlighted in Chapter 2, other uncertainty modelings exist such
as evidence theory (Dempster 1967), possibility theory (Negoita et al. 1978),
or interval analysis (Moore et al. 2009), and their combination with UMDO
is discussed in Section 7.7. Moreover, it is assumed that the design variables
z are deterministic variables, and all the uncertainties are represented by U.
We note (�, σ�,P) a probability space with � a sample space, σ� a sigma-
algebra, and P[·] a probability measure. We note φ(·) the joint probability density
function (PDF) of the uncertain vector U. If a design variable is considered as
uncertain, then, its contribution is composed of two parts: one deterministic that
is controlled by the optimizer and one aleatory that is propagated through the
system. For instance, if the propellant mass m is considered as an uncertain
design variable, therefore, the expected value of the propellant mass μm is the
deterministic design variable controlled by the optimizer (it can be considered
as a system-level specification) and the propellant mass uncertainty around the
expected value is propagated through the system according to the propellant mass
PDF.

• Secondly, �[·] denotes the objective function uncertainty measure. The measure
�[·] quantifies the uncertainty in the objective function to be optimized. Within
the probability formalism, the expected value E [f (z, θY , U)] or an aggregation
of the expected value and the standard deviation are commonly used to quantify
the uncertainty in the objective function (Baudoui 2012) (see Chapter 5 for more
details on the uncertainty measures for optimization).

• Eventually, because of the presence of the uncertain vector U, the coupling
variable vector Y is also an uncertain vector. In the decoupled formulations
(as in deterministic MDO), the input coupling variables have to be controlled
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by the optimizer. However in the presence of uncertainty, the optimizer cannot
directly control the uncertain coupling variables. Indeed, as the input coupling
variables are functions of U, in order to avoid infinite dimension optimization
problem, the optimizer does not directly control the uncertain coupling variables
but rather deterministic parameters θY modeling the uncertain input coupling
vector Y. These parameters may be some realizations of the uncertain variables,
the statistical moments, the parameters of the PDF, parameters of a functional
representation of Y, etc.
Concerning the UMDO constraints using the probability theory, two classical
measures of uncertainty exist. In the solving of UMDO problems, the largest
part of the computational effort is generally devoted to the constraint evaluations
(Du et al. 2008). Similarly to the single discipline optimization under uncertainty
(see Chapter 5), depending on the choice of the constraint measures, two UMDO
problem formulations may be distinguished, the robustness-based UMDO and
the reliability-based UMDO (Yao et al. 2011). Different definitions have been
proposed, we consider in this chapter that the difference between the two
approaches results from the constraint uncertainty measures as illustrated in the
following paragraphs.

Robustness-Based UMDO Formulation In the robustness-based formulation
(also called robust formulation), the constraint of the UMDO problem (Equa-
tion 7.2) can be rewritten as:

Kk [gk(z, θY , U)] = E [gk(z, θY , U)] + ηkσ [gk(z, θY , U)] ,

where E[gk(·)] and σ [gk(·)] are the expected value and the standard deviation of the
kth coordinate of the constraint function vector g(·). The robust formulation is based
on the statistical moments of the inequality function vector to ensure that despite
the uncertainty, the system will stay feasible. ηk ∈ R

+indicates the restriction of the
feasible region to ηk standard deviations away from the mean value of the constraint
function vector. The robust UMDO formulation may be written such as:

min � [f (z, θY , U)] (7.5)

w.r.t. z, θY

s.t. E [gk(z, θY , U)] + ηkσ [gk(z, θY , U)] ≤ 0 for k ∈ {1, . . . , m} (7.6)

∀i �= j,∀u ∈ R
d , yij (θY ij , ui ) = cij (zi , y.i (θY .i , u.i ), ui ) (7.7)

zmin ≤ z ≤ zmax (7.8)

For instance, the approach called multidisciplinary optimization and robust
design approaches applied to concurrent engineering (MORDACE) (Giassi et al.
2004) proposes to solve UMDO problems with a robust formulation through concur-
rent design of subsystems ensuring effective design work distribution. The method
relies on surface response methods of each discipline in order to concurrently
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optimize them. Then, a compromise strategy (based on a Pareto frontier analysis)
is performed in order to identify the potential optimal candidates of the different
possible combinations of the subsystem optimization results.

Reliability-Based UMDO Formalism In the reliability-based formulation, the
uncertainty measure of the constraint (Equation 7.2) is written as:

Kk [gk(z, θY , U)] = �k [gk(z, θY , U) > 0] − �tk ,

where �k[gk(·)] stands for the measure vector of uncertainty for the inequality
constraint function vector. The uncertainty measure of the constraint has to be at
most equal to a given threshold �tk (Agarwal et al. 2004b). The computation of
such a constraint involves reliability analysis methods such as the ones presented
in Chapters 4 and 6. It reflects the requirement for the optimized system to lie in
the feasible region with a given reliability despite the uncertainty. As the uncertain
variables are modeled within the probability theory, we have for the kth coordinate
of the vector of the measures of uncertainty:

Kk [gk(z, θY , U)] = P [gk(z, θY , U) > 0] − Ptk =
∫

Ik

φ(u)du − Ptk (7.9)

with gk(·) the kth component of the inequality constraint vector, Ik = {u ∈
R

d |gk(z, θY , u) > 0}, and Ptk the maximal allowed failure probability. In reliability-
based UMDO, the formulation may be rewritten such as:

min � [f (z, θY , U)] (7.10)

w.r.t. z, θY

s.t. P [gk(z, θY , U) > 0] − Ptk ≤ 0 for k ∈ {1, . . . , m} (7.11)

∀i �= j,∀u ∈ R
d , yij (θY ij , ui ) = cij (zi , y.i (θY .i , u.i ), ui ) (7.12)

zmin ≤ z ≤ zmax (7.13)

As in deterministic MDO, in UMDO three types of formulations may be
distinguished for the coupling handing:

– Interdisciplinary coupling satisfaction handled with using a coupled approach
(with multidisciplinary analysis using Fixed Point Iteration),

– Interdisciplinary coupling satisfaction handled with using a decoupled approach,
– Interdisciplinary coupling satisfaction through hybrid strategy combining both

coupled and decoupled techniques.

In this chapter, the coupled, hybrid, and decoupled existing UMDO formulations
are presented in the point of view of the interdisciplinary coupling satisfaction in the
presence of uncertainty. Firstly, the existing coupled approaches are introduced in
Section 7.3. Then, in Sections 7.4 and 7.5 the single-level procedures and distributed
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UMDO formulations are reviewed. Finally in Section 7.6 a brief overview of hybrid
UMDO formulations is performed.

7.3 Coupled UMDO Formulations

7.3.1 MultiDisciplinary Feasible (MDF) Formulation Under
Uncertainty

Classical MDF Under Uncertainty

Principle As in deterministic MDO, MDF under uncertainty (Koch et al. 2002) is
the most used UMDO formulation. MDF under uncertainty is a single-level coupled
formulation. It takes advantages of the simplicity of the deterministic version
of MDF and derives it in the presence of uncertainty. The most straightforward
approach to ensure the coupling satisfaction in UMDO is to use Crude Monte
Carlo simulations (CMC) to propagate uncertainty while solving the system of
interdisciplinary equations by MDA for each realization of the CMC sample set
(Oakley et al. 1998; Koch et al. 2002; Jaeger et al. 2013) (Figure 7.1). The MDF
under uncertainty formulation is given by

min � [f (z, Y(z, U), U)] (7.14)

w.r.t. z

s.t. Kk [gk(z, Y(z, U), U)] ≤ 0 for k ∈ {1, . . . , m} (7.15)

zmin ≤ z ≤ zmax (7.16)

Fig. 7.1 Multidiscipline
feasible (MDF) under
uncertainty

Discipline
1

Discipline
2

Discipline
N

Multidisciplinary Design Analysis

Coupling variables

Coupling variables

Design variables: z

Optimizer

Uncertain variables: u

Uncertainty simulation

Ξ[f(z,Y(z,U),U)]
κ[g(z,Y(z,U),U)]

...
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For a given design variable vector z, to evaluate the objective function and
the constraint functions, it is necessary to propagate the uncertainty in the entire
system (through the different disciplines). In the coupled formulations, Y (which
some readers might prefer to read as y(z, U) but, for readability, the uppercase
notation denoting random variables to Y is carried except to refer to realizations)
is the coupling variable vector satisfying the following system of interdisciplinary
equations:

∀ u ∈ R
d , ∀(i, j) ∈ {1, . . . , N}2 i �= j, yij = cij (zi , y.i , u) (7.17)

It is assumed that for a given realization of the uncertain vector U, there exists a
unique set of coupling variable values such that the coupling variables satisfy

∀ u ∈ R
d , ∀(i, j) ∈ {1, . . . , N}2 i �= j, ∃!(yij , yj i)| yij = cij (zi , y.i , u)

(7.18)
To compute the uncertainty measure of the performance �[f (z, Y(z, U), U)] and
the constraints Kk [gk(z, Y(z, U), U)], repeated MDAs are carried out for a set of
uncertain variable realizations sampled by CMC. Classical techniques introduced
for deterministic MDO in Chapter 1 such as Fixed Point Iteration or auxiliary
optimization process may be used to solve the system of interdisciplinary couplings
for each CMC sample.

MDF under uncertainty allows one to ensure the interdisciplinary coupling satis-
faction for all the realizations of the uncertain variables guarantying an appropriate
estimation of the system performance and reliability. Indeed, at each iteration of
the system-level optimizer in z, for each realization of the uncertain variables, the
system of interdisciplinary equations (7.17) is solved with using the MDA. This
approach ensures the multidisciplinary feasibility of the optimal design system and
also for all the design points evaluated during the optimization process.

This formulation is computationally expensive due to the repeated evaluations
of the disciplines. The computational cost of MDA under uncertainty with CMC
corresponds to one MDA multiplied by the number of CMC samples (Haldar and
Mahadevan 2000). Therefore, the computational cost of MDF under uncertainty
is increased by the propagation of uncertainty and becomes intractable for the
design of complex systems (Du et al. 2008). MDF under uncertainty is considered
as the reference UMDO formulation due to its intrinsic interdisciplinary coupling
satisfaction.

Nonparametric approaches have been proposed in Cho et al. (2016) considering
limited available information on data samples for the uncertain variables. A FPI-
based approach is used to propagate uncertainty characterized by a set of limited
samples. Then, a Kolmogorov–Smirnov test is used to calculate the maximum
difference of the empirical cumulative distribution functions between the previous
and the current iterations to check the FPI convergence. Then, a nonparametric
uncertainty analysis based on the Akaike information criterion (AIC) is proposed
(Akaike 1973) to select the best fitted distribution from several potential candidate
distributions. The interdisciplinary coupling satisfaction is ensured for the proba-
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bility distribution of the coupling variables but not for all the realizations of the
uncertain variables as in the reference MDF formulation.

Application to Toy Case In order to illustrate the different UMDO methodologies
described in this chapter, the following toy case problem is considered.

The robustness-based MDF formulation is given by

min E [f (z, Y(z, U), U)] (7.19)

w.r.t. z = [zsh, z1, z2]
s.t. E [g(z, Y(z, U), U)] + 3 × σ [g(z, Y(z, U), U)] ≤ 0 (7.20)

0 ≤ z ≤ 5 (7.21)

with the two disciplines defined by

—Discipline 1: y12 = −z0.2
sh + ush + 0.25 × u0.2

1 + z1 + y0.58
21

+u0.4
1 × y0.47

21 (7.22)

—Discipline 2: y21 = −zsh + u0.1
sh − z0.1

2 + 3 × y0.47
12 + u0.33

2

+y0.16
12 × u0.05

2 + y0.6
12 × u0.13

2 + 100 (7.23)

and the objective and constraint functions:

—Objective: f =
(

1

5

)

×
[
(zsh − 4)2 + (z1 − 3)2 + (z2 − 2)2

+(y21 + z1 × z2)
0.6 + (ush + 0.9)2

]
(7.24)

—Constraint: g = exp(−0.01 × u2
1) × (zsh − 1) × z1 − 0.02 × u5

2 × z3
2

+0.01 × y2.5
12 × z2 × exp(−0.1 × ush) (7.25)

U = [Ush,U1, U2] is the vector of uncertain variables. These latter are distributed
according to the following probability distributions:

• Ush is distributed according to a normal distribution: Ush ∼ N (2, 0.3)

• U1 is distributed according to a uniform distribution: U1 ∼ U (0, 1)

• U2 is distributed according to a normal distribution: U2 ∼ N (4, 0.5)

In the following, all the figures and discussions are presented with design
variable values normalized in [0,1]. To illustrate the variation of the objective
function and the constraint, the histogram for these two functions is represented
in Figures 7.2 and 7.3 for three different values of the design variable vector. The
distributions for f (·) and g(·) are obtained with a FPI between the two disciplines
and the propagation of 104 CMC samples generated according to the PDF of the
uncertain variables (see Chapter 6 for more details on the uncertainty propagation
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Fig. 7.2 Histogram of the objective function for three different values of the design variable vector

Fig. 7.3 Histogram of the
constraint function for three
different values of the design
variable vector

for multidisciplinary systems). The value of the decision variable vector z has an
important impact both on the objective and the constraint function distributions. For
instance, for z = [0.5, 0.5, 0.5], the mean value of the objective function is around
μf � 6.0, whereas for z = [0.6, 0.1, 0.9] its value is around μf � 8.0. Similarly,
the impact on the constraints and the feasibility of the three design candidates is
illustrated in Figure 7.3.

In Figure 7.4, the iso-surface of the limit state g(z, Y(z, U), U) = 0 for z =
[0.5, 0.5, 0.5] is represented with the colormap corresponding to the distance to the
origin in the uncertain space. This iso-surface separates the safe and failed states.

In Figure 7.5, the histograms for two different values of the design variable
vector are represented. The number of samples satisfying the constraint g(·) ≤ 0
is displayed in green, while the failed samples are represented in red. The value of
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2.5

3

3.5
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4.5

u2
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Fig. 7.4 Iso-surface of the limit state g(z, Y(z, U), U) = 0 for z = [0.5, 0.5, 0.5], colormap
corresponds to the distance to origin

Fig. 7.5 Histogram of constraint function for z = [0.5, 0.5, 0.2] (left) and z = [0.5, 0.5, 0.3]
(right), safe (green), and failure (red) samples

the decision variable vector influences the probability of failure which is larger on
the graph of the left side than on the right side.

Using a coupled MDF formulation, the robust optimization problem is solved
with CMA-ES (Hansen and Ostermeier 1996) (see Chapter 5 for more details on
CMA-ES algorithm) constituted of a population of 10 individuals and a penalization
strategy for the constraint handling in order to find the optimal value of the design
vector z corresponding to the problem defined by Equations (7.19–7.21). At each
iteration of CMA-ES, a propagation of uncertainty by CMC (using 104 samples) is
carried out to estimate the objective function and the constraint. The optimization is
stopped after 150 iterations. Figure 7.6 presents the convergence plots for the robust
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Fig. 7.6 Convergence plots for the robust-based MDF formulation, design variables (left),
objective function (right)

Fig. 7.7 Parallel plot for the
robust-based MDF
formulation using CMA-ES
optimization algorithm

MDF formulation for the normalized design variables (left graph) and the objective
function (right graph).

Figure 7.7 illustrates the parallel plot coordinates for the robust-based MDF
formulation using CMA-ES and represents with broken lines the best individual
variable values at each iteration. The algorithm succeeds to find an optimal
value for the design variables z∗ = [0.20, 0.60, 0.00] with an objective function
value of μf = 7.94 and satisfying the constraint E

[
g(z∗, Y(z∗, U), U)

] + 3 ×
σ

[
g(z∗, Y(z∗, U), U)

] ≤ 0. CMA-ES stabilizes after 50 iterations.
At each iteration of CMA-ES, for each of the 10 individuals, the FPI process

converges in 4 iterations and 104 CMC samples are propagated through FPI leading
to a total number of discipline evaluations of Ncall = 4×10×104 = 4×105. At the
convergence of the optimization, the two disciplines have been evaluated 6 × 107

times, which is possible here due to the simplicity of the disciplines; however, such
an approach might not be possible for complex system design using computationally
intensive disciplines.

Considering the same disciplines, objective function, and constraint equations, a
reliability-based MDF formulation is given by
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Fig. 7.8 Convergence plot for the reliability-based MDF, design variables (left), objective function
(right)

Fig. 7.9 Parallel plot for
reliability-based MDF using
CMA-ES optimization
algorithm

min E [f (z, Y(z, U), U)] (7.26)

w.r.t. z = [zsh, z1, z2]
s.t. P [g(z, Y(z, U), U) > 0] ≤ 10−3 (7.27)

0 ≤ z ≤ 5 (7.28)

The same process as for the robustness-based MDF formulation is employed
for the uncertainty propagation and the estimation of the probability of failure is
carried out by CMC. Figure 7.8 presents the convergence plot for the reliability
MDF formulation for the normalized design variables (left graph) and objective
function (right graph).

Figure 7.9 illustrates the parallel plot coordinates for the robust MDF formulation
using CMA-ES and representing with a broken line the best individual variable
values at each iteration. The algorithm succeeds to find an optimal value for
the design variables z∗ = [0.81, 0.60, 0.13] with an objective function value of
μf = 5.67 and satisfying the constraint P [g(·) > 0] ≤ 10−3. CMA-ES stabilizes
after 50 iterations. The solution found is different from the robustness-based UMDO
formulation highlighting the importance of problem formulation in the presence of
uncertainty and choice uncertainty measures as discussed in Chapter 5.
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The histogram of the objective and the constraint functions at the optimum z∗
for the reliability-based MDF formulation is displayed in Figures 7.10 and 7.11. For
the histogram of the constraint function, it can be seen that among the 104 samples
less than 10 samples do not satisfy the constraint (in red) leading to a probability of
failure under the target.

To reduce the computational cost, derivations of MDF under uncertainty based
on surrogate models have been proposed and are detailed in the following section.

Fig. 7.10 Histogram of the objective function—reliability-based MDF

Fig. 7.11 Histogram of the
constraint—reliability-based
MDF—safe (green) and
failure (red) samples
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Surrogate Model-Based MDF Under Uncertainty

Several alternatives to the classical MDF under uncertainty approach have been
proposed to reduce the computational cost introduced by repetitive calls to the
MDA. A first class of alternatives is the use of surrogate models of the disciplines or
even of the entire MDA allowing to repetitively evaluate the disciplines and MDA
without an explosion of the computational cost. Several surrogate models have
been used for that purpose such as Taylor series expansion, Kriging, polynomial
chaos expansion, neural networks, etc. Naive approaches consider the creation of
the surrogate models offline and use them for the uncertainty propagation and/or
the optimization without refinement and appropriate control of surrogate model
uncertainty. Alternative more advanced approaches propose adaptive surrogate
models for the disciplines to ensure the convergence of MDA and the satisfaction of
the interdisciplinary coupling consistency (Dubreuil et al. 2016).

Leotardi et al. (2016) proposed a derivation of MDF using surrogate models
(thin plate spline metamodel (Duchon 1977) which is a special case of radial basis
function) with varying the accuracy of the surrogate models. The variability is
present in the training set size and in the definition domain of the DoE for the
metamodel training, in the accuracy (sample size) for the uncertainty propagation,
and in the discipline coupling tolerance in the MDA (introducing a variable
precision for the multidisciplinary consistency). The surrogate model is used to
replace the objective function in the robust-based optimization (using Particle
Swarm Optimization) and speeding-up the uncertainty propagation by using quasi-
Monte Carlo (quasi-MC). At the first step of the proposed process, the training
points for the surrogate model are distributed in the entire definition domain and
the corresponding objective function values are obtained considering both a low
level of accuracy in the uncertainty propagation (sample size of the quasi-MC) and
a weak coupling between disciplines. After the first optimization step, a refined
subdomain is defined centered on the current optimum and a new training set is
used, with the corresponding objective function values obtained increasing both the
accuracy of quasi-MC and the FPI tolerance (Gauss–Seidl convergence tolerance).
The procedure is iterated until the convergence of the process.

System Uncertainty Analysis (SUA) and Concurrent SubSystem
Uncertainty Analysis (CSSUA)

Principle To overcome the computational burden introduced by the repetitive
MDAs in the MDF formulation under uncertainty, Du and Chen (2002) and Du
(2002) proposed a formulation called System Uncertainty Analysis (SUA) derived
from MDF in which the uncertainty propagation by CMC on MDA is replaced by an
approximation of the first two statistical moments of the interdisciplinary couplings
(Figure 7.12). The proposed approach is a robust MDO formulation:
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Fig. 7.12 System uncertainty
analysis (SUA)

Discipline
1

Discipline
2

Discipline
N

Multidisciplinary Design Analysis

Coupling variables

Coupling variables

Design variables: z

Optimizer

Uncertain variables: μU

Uncertainty simulation

E[f(z,Y(z,U),U)]
E[g(z,Y(z,U),U)]
   +σ[g(z,Y(z,U),U)]

...

Taylor series 
approximations of 

the couplings

Y(z,u)^

^
^

^

μYij

min �
[
E

[
f(z, Ŷ(z, U), U)

]
, σ

[
f(z, Ŷ(z, U), U)

]]
(7.29)

w.r.t. z

s.t. E

[
gk(z, Ŷ(z, U), U)

]
+ ησ

[
gk(z, Ŷ(z, U), U)

]
≤ 0

for k ∈ {1, . . . , m} (7.30)

zmin ≤ z ≤ zmax (7.31)

with �
[
E

[
f(z, Ŷ(z, U), U)

]
, σ

[
f(z, Ŷ(z, U), U)

]]
a combination of the expected

value and the standard deviation of the objective function. In practice, the surrogate
model of the coupling relations Ŷ(z, U) is obtained by a first-order Taylor series
expansion and is only used to estimate the first two statistical moments of the
coupling variables. The local approximation is made around μU and the current
design vector value z and is given by

Ŷij (z, Y.i , ush, ui ) = μYij
+ ∂cij

∂ush

∣
∣
∣
∣
u=μu

(ush − μush
) + ∂cij

∂ui

∣
∣
∣
∣
u=μu

(ui − μui
)

+ ∂cij

∂Y.i

∣
∣
∣
∣
u=μu

(Y.i − μY.i
) (7.32)

See Chapter 6 for more details on SUA, notably the calculation of μY.i
. A first-

order Taylor series expansion of the objective function f (·) and the constraints
gk(·) for k ∈ {1, . . . , m} is used to propagate the uncertainties and to estimate
their first two statistical moments. It is possible therefore to estimate the expected
value E [f (·)] and E [gk(·)] + ηkσ [gk(·)]. The first-order Taylor series expansion
provides a functional relationship of the coupling dependence with respect to the
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uncertain variables. The method enables to find the optimal design while ensuring
the interdisciplinary couplings for all the uncertain variable realizations. However,
as detailed in Chapter 6, this method has several limits: the first-order Taylor
approximation is only valid for functions that can be locally approximated as linear
functions and the method requires to perform a MDA to locally build the surrogate
model. This process is repeated for each value of the design variables provided by
the system-level optimizer.

In order to further improve SUA, Du and Chen (2002) and Du (2002) proposed an
amelioration named Concurrent SubSystem Uncertainty Analysis (CSSUA) to avoid
the FPI to locally build the surrogate models. An optimization problem replaces
the required FPI in SUA to find the expected value of the coupling variables μYij

formulated as:

min
N∑

i=1

∣
∣
∣
∣

∣
∣
∣
∣μYi.

− ci.

(
zi ,μY.i

,μU
)
∣
∣
∣
∣

∣
∣
∣
∣

2

2
(7.33)

w.r.t. μY

As in SUA, a linear approximation of the disciplines is made by assuming that

∀(i, j) ∈ {1, . . . , N}2 i �= j, μYij
= yij

(
zi ,μU

)
. (7.34)

This optimization problem allows one to call the disciplines in parallel, poten-
tially reducing the computational cost compared to FPI. Once the expected value
of the coupling variables is found, the same uncertainty propagation as in SUA
is performed. CSSUA suffers from the same drawbacks as SUA. In aerospace
vehicle design, some disciplines such as the aerodynamics and the trajectory involve
highly non-linear dynamics and the linearity hypothesis would introduce high errors
compared to the classical MDF under uncertainty approach.

Application to Toy Case As presented in Chapter 6, SUA is valid for MDO
problems which involve discipline models that can be approximated by first-order
linear models. The toy case presented in Section 7.3.1 is slightly modified in order
for SUA to be applicable. The distribution for U1 is set to U1 ∼ N (0.5, 0.1),
otherwise as illustrated in Chapter 6, SUA is not able to properly approximate the
coupling variables. This UMDO problem is solved with SUA where the uncertainty
is propagated thanks to first-order Taylor series expansion. The following formula-
tion is adopted:

min E

[
f (z, Ŷ(z, U), U)

]
(7.35)

w.r.t. z = [zsh, z1, z2]
s.t. E

[
g(z, Ŷ(z, U), U)

]
+ 3 × σ

[
g(z, Ŷ(z, U), U)

]
≤ 0 (7.36)

0 ≤ z ≤ 5 (7.37)
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At each iteration of the UMDO problem, taking into account the values of the design
variables, a local model Ŷ(z, U), U) of the coupling variables is built. The local
approximation is performed around the current value of the decision variable vector
z and μu.

Ŷ (z, u) =
[
ŷ12(z, u)

ŷ21(z, u)

]

= A−1×B×(
ush − μush

)+A−1×C×(
ui − μui

)
(7.38)

where: A =

⎡

⎢
⎢
⎣

1 − ∂c12
∂y21

∣
∣
∣
∣
u=μu

− ∂c21
∂y12

∣
∣
∣
∣
u=μu

1

⎤

⎥
⎥
⎦, B =

⎡

⎢
⎢
⎣

− ∂c12
∂zsh

∣
∣
∣
∣
u=μu

− ∂c21
∂zsh

∣
∣
∣
∣
u=μu

⎤

⎥
⎥
⎦ and

C =

⎡

⎢
⎢
⎣

− ∂c12
∂z1

∣
∣
∣
∣
u=μu

0

0 − ∂c21
∂z2

∣
∣
∣
∣
u=μu

⎤

⎥
⎥
⎦

This model is used to propagate the uncertainty and to estimate the objective
function and the constraint. In order to avoid additional simplifications, the objective
and the constraint functions are not linearized and the CMC propagation is
performed using only the approximated models of the coupling relationships. CMA-
ES is used to optimize this problem. Figure 7.13 presents the convergence plots
for SUA in terms of normalized design variables and objective function. The
convergence is reached after 40 iterations. Figure 7.14 illustrates the parallel plot
for the CMA-ES run. The objective function converges to a value of 7.95 that
corresponds to z∗ = [0.60, 0.20, 0.00]. Compared to a reference robustness-based
MDF (using FPI and CMC), SUA converges to the exact same values; therefore, the
linear approximation is well suited in such a toy case. Moreover, it enables to reduce
the number of discipline evaluations by a factor 103. Indeed, at each iteration, only
10 exact discipline evaluations (in the FPI) are necessary to estimate the objective
function and the constraints, whereas 104 are required in the classical robustness-
based MDF formulation. Figure 7.15 compares the distributions of the coupling

Fig. 7.13 Convergence plot for robust-based SUA, design variables (left), objective function
(right)
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Fig. 7.14 Parallel plot for
robust-based SUA using
CMA-ES, each line
represents the best CMA-ES
individual at each algorithm
iteration

Fig. 7.15 Comparison of SUA results with robust-based MDF for the interdisciplinary couplings,
the objective and the constraint functions

variables, the objective function, and the constraint at the respective optimum
designs for SUA and the robustness-based MDF formulation. The distributions are
very similar, the discrepancies might be explained by the linear approximation in
SUA, but in this problem the two coupling variables are appropriately approximated
by linear functions.

The classical double-loop approach (one loop to propagate uncertainty and one
loop for MDA) may become computationally inefficient for disciplinary models
of medium to high-fidelity due to the computational cost. The computational cost
associated with MDF under uncertainty using CMC is Nopt × MCMC × NMDA,
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where Nopt is the number of calls to the MDA by the system-level optimizer,
MCMC is the number of samples used to propagate the uncertainty, and NMDA is
the number of calls to the disciplines required by the MDA to converge. To further
improve the computational cost, several works (Rhodes and Sues 1994; Koch et al.
2000) proposed to use parallel computing tools to perform UMDO and reduce
computational time. For instance, the DoE design for the MDA approximation
modeling or the CMC uncertainty propagation can be executed in parallel.

An alternative strategy to full uncertainty propagation in the case of robust-based
UMDO has been proposed by Baudoui et al. (2012). This strategy is suited for
problems in which the disciplines are black boxes that cannot be modified and
adding new variables into an existing framework is too difficult. It allows not
to modify in depth the existing framework and to provide the designer with a
preliminary step towards robust-based UMDO, before integrating full uncertainty
propagation into a dedicated framework. The main idea consists in using a criterion
to estimate the importance of the disciplines affected by uncertainties over the
objective function variations. If this applicability criterion is verified for the problem
at hand, it enables to propagate uncertainty locally (through disciplines but not
the whole system) using the LOcal Uncertainty Processing (LOUP) methodology.
This approach is only valid if the outputs of the disciplines have a significant
effect on the objective function. In this case, local uncertainty computations may
be carried out instead of a complete uncertainty propagation over the MDA, making
the uncertainty handling easier and less computationally intensive.

Alternatives to coupled UMDO formulations have been proposed to transform
the organization of the UMDO process, including MDA, disciplinary analyses, and
uncertainty propagation. Two families may be distinguished: single-level proce-
dures and distributed procedures. Single-level approaches decouple the uncertainty
propagation from the optimization, for instance, using a sequential procedure.
The main interest in this category of approaches is that it enables to directly use
existing deterministic MDO formulations. Distributed procedures apply a process
for UMDO problems similar to decoupled formulations in deterministic MDO by
removing MDA. Hence, the existing decomposed formulations for deterministic
MDO, such as IDF, CSSO, CO, ATC, etc., can be employed to split the inte-
grated optimization and uncertainty analysis problem into several disciplinary or
subsystem-level uncertainty optimization problems, leading to manageable sub-
problems.

7.4 Single-Level Procedures

7.4.1 Unilevel Method for UMDO

In order to remove the nested loop imposed by the UMDO process, Agarwal
et al. (2004a) proposed to transform the reliability analysis carried out by FORM,
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which is an optimization problem, into its corresponding first-order necessary
Karush–Kuhn–Tucker (KKT) optimality conditions, and to impose these KKT con-
ditions on the upper optimization loop. This formulation enables to remove the inner
loop at each iteration of the outer loop while ensuring the reliability requirements.
In this approach, the optimal design variables z∗ and the corresponding MPP x∗
(corresponding to the transformation of u∗ into the standard normal space) are the
decision variables of the single-level procedure.

min � [f (z, Y(z, U), U)] (7.39)

w.r.t. z, x1, . . . , xm

s.t. Gk(xk) ≤ 0, k = 1, . . . , m (7.40)

‖ xk ‖‖ ∇xGk(xk) ‖ +xT
k ∇xGk(xk) = 0, k = 1, . . . , m (7.41)

‖ xk ‖ −βk = 0, k = 1, . . . , m (7.42)

zmin ≤ z ≤ zmax, (7.43)

where β is the reliability index and Gk(·) the kth limit state in the standard normal
space (m is the number of reliability constraints). For the multidisciplinary coupled
problem, GSE (Global Sensitivity Equation) is used to implicitly estimate the
gradient of the limit-state functions. This approach is mathematically equivalent
to the initial nested loop UMDO problem given that the KKT optimality conditions
for the reliability analysis are satisfied. It should be noted that only the disciplinary
reliability constraints and no system-level reliability constraint are considered
(therefore in the proposed approach Gk(·) does not depend on z and Y, limiting
its applicability to UMDO problems). Furthermore, enforcing equality constraints
on the upper optimization loop may lead to poor numerical convergence behavior.
Besides, the KKT conditions are derived from FORM and the accuracy can be
questioned for highly non-linear uncertainty problems.

Chen et al. (1997) proposed another methodology to approximately identify the
MPP location of each active reliability constraint with using the gradients of the
limit-state function and the desired safety factor. Therefore, the FORM analysis
performed at the lower loop can be removed and the approximation of the MPP can
be directly embedded in the outer optimization loop with equivalent deterministic
constraints.

These approaches enable to remove the nested loop of UMDO reducing the
computational cost but are limited to problems with no system-level reliability
constraints.
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7.4.2 Sequential Optimization and Reliability Assessment
(SORA)

Principle

The other family of single-level procedure consists in decoupling the inner uncer-
tainty propagation phase and the outer optimization phase with sequential cycles of
uncertainty analysis and deterministic MDO. Indeed, the reliability analysis is com-
putationally expensive especially on multidisciplinary systems. To avoid to perform
this reliability analysis at each system-level iteration to compute the constraints, a
sequential approach has been proposed. At each iteration of the sequential cycle,
the reliability constraints are transformed into equivalent deterministic constraints
and then integrated in the next deterministic MDO problem solving to guide the
optimum search towards the feasible region. The key challenge in these approaches
is how to transform the reliability constraints into the equivalent deterministic ones.

Sues et al. proposed a method (Sues and Cesare 2000) to search for the MPP
at the initial design during the reliability analysis phase and then to approximate
each limit-state function at its MPP with first-order linearized models. These models
are used as equivalent deterministic constraints in the following deterministic MDO
phase. Once the optimum is reached in the deterministic MDO problem, a reliability
analysis is carried out to determine the new MPP for each reliability constraint. The
sequential cycle is stopped when a convergence criterion is reached on the design
variable values and the MPP. This approach is easy to implement but is limited due
to the linear approximation of the limit-state functions.

Instead of decoupling the disciplines to avoid computationally intensive MDA
under uncertainty, an alternative is to decouple the optimization of the design
variables and the uncertainty propagation to estimate the probability of failure in
the reliability-based approach. Du et al. (2008) proposed the sequential optimization
and reliability assessment (SORA) for UMDO problems. The main idea is to
separate the optimization and the reliability analysis. The UMDO problem is divided
into a sequence of deterministic MDO problems and reliability analyses. SORA
replaces the probabilistic reliability constraints by deterministic approximation of
the reliability constraints evaluated at the Most Probable Point (MPP). Reliability
analysis is performed by FORM (Rackwitz 2001) to find the MPP (noted u∗). It is
assumed here that the uncertain variables are given in the standard normal space. If
it is not the case, different statistical transformations may be applied on the input
distributions (such as Nataf (1962) or Rosenblatt (1952) transformations).

In SORA (Du et al. 2008), four steps are distinguished (Figure 7.16):

• Step 1: at the kth SORA iteration, the deterministic MDO problem is solved with
the uncertain variables fixed at their MPP u∗k−1 found at the [k − 1]th iteration
for the constraints and fixed at their mean values ū for the objective function. The
coupling variable values are in concordance with the uncertain variable values:
coupling variables at the MPP for the constraints and mean values of the coupling
variables for the objective function.



256 7 Uncertainty-Based MDO

Fig. 7.16 SORA procedure
for UMDO (Du et al. 2008) Deterministic 

MDO

Multidisciplinary
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• Step 2: a reliability analysis is performed to identify the MPP u∗k of all the
inequality constraints by using an inverse FORM with the design variables fixed
at the optimal design z∗k found in step 1 and given a reliability index β.

• Step 3: the convergence is checked. If the inequality constraints (P [gi(z, Y(z, U),

U) > 0] − Pti ≤ 0) transformed into the MPP problem are verified and the
objective function becomes stable (Du et al. 2008), the solution is found.

• Step 4: if the convergence is not reached, or the inequality constraints are not
satisfied, a new deterministic MDO problem is formulated for u = u∗k , back to
Step 1.

Deterministic MDO: Step 1

The deterministic MDO problem of step 1 may be solved with the classical
decoupled MDO methods (IDF, AAO, BLISS, ATC, etc). With the IDF formulation
(Du et al. 2008), the deterministic MDO problem at the SORA kth-cycle, (k ≥ 2),
is formulated as follows:

given u∗k−1, ū (7.44)

min f (z, ȳ, ū) (7.45)

w.r.t. z, y∗, ȳ

s.t. g
(

z, y∗, u∗k−1
)

≤ 0 (7.46)

∀(i, j) ∈ {1, . . . , N}2 i �= j, ȳij = cij (zi , ȳ.i , ūi ) (7.47)

∀(i, j) ∈ {1, . . . , N}2 i �= j, y∗
ij = cij

(
zi , y∗

.i , u∗k−1
i

)
(7.48)

zmin ≤ z ≤ zmax (7.49)

The interdisciplinary couplings (Equations 7.47–7.48) are ensured for two
particular realizations of the uncertain variables corresponding to the MPP u∗k−1

and the mean value ū.



7.4 Single-Level Procedures 257

Reliability Analysis: Step 2

The reliability analysis is performed for the design variables fixed at z∗k based on
an inverse FORM (Chiralaksanakul and Mahadevan 2007; Du et al. 2008). The
percentile value of the performance function is calculated based on a reliability
index target β:

given z∗k (7.50)

max g
(

z∗k, y, u
)

(7.51)

w.r.t. u, y

s.t. ‖ u ‖= β (7.52)

∀(i, j) ∈ {1, . . . , N}2 i �= j, yij = cij

(
z∗k, y.i , ui

)
(7.53)

This optimization provides the MPP value u∗k for the uncertain variables
at the SORA kth-cycle. The reliability analysis is performed on a decoupled
multidisciplinary system and the interdisciplinary couplings are satisfied at the MPP
in (Equation 7.53). By decoupling the reliability analysis from the deterministic
MDO, SORA tends to decrease the number of calls to the disciplinary functions
compared to MDF under uncertainty (Du et al. 2008). SORA has been implemented
with various MDO formulations such as MDF (Chiralaksanakul and Mahadevan
2007), IDF (Chiralaksanakul and Mahadevan 2007), CO (Li et al. 2010; Zhang and
Zhang 2013a), CSSO (Li et al. 2014; Zhang and Zhang 2013b), or BLISS (Ahn and
Kwon 2006) but the coupling satisfaction relies on the same approach: satisfaction
at the MPP of the coupling variables and at their mean value.

The interdisciplinary coupling satisfaction within SORA presents several advan-
tages:

• Possibility to perform the disciplinary analyses in parallel,
• Satisfaction of the interdisciplinary couplings at the MPP value and mean value

for the coupling variables at the optimum,
• Reduction of the computational cost compared to MDF under uncertainty with

CMC.

However, SORA has also several limitations. The reliability analysis is per-
formed by FORM which locally linearizes the inequality constraints and may
lead to inaccurate estimation of the probability of failure. FORM also assumes
the uniqueness of the MPP which might be a limiting hypothesis in practical
applications (Dubourg et al. 2013). Furthermore, in terms of interdisciplinary
coupling satisfaction, the couplings are ensured only at the mean value and the
MPP which is the most likely failure point to happen but another failure less
likely may occur. Moreover, during the deterministic MDO problem solving, the
objective function and the constraints are not evaluated for the same realizations of
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the uncertain variables. The objective function is evaluated at the mean values of the
uncertain variables while the constraints are evaluated at the MPP.

Several derived SORA approaches have been proposed to improve the
reliability analysis. Meng et al. (2015) developed an approach based on subset
simulation to accurately estimate the probability of failure in SORA. From
subset simulation, the estimation of the MPPs is obtained by listing all the
MCMC samples in ascending order according to their performance values
MPP = argmin

[
g

(
z∗, y, u(1)

)
, . . . , g

(
z∗, y, u(M)

)]
. From these values, a shifting

vector S∗ = μu − u∗ is constructed for the next deterministic MDO problem
with a deterministic constraint: g(z, y, μu − S∗). The design optimization problem
considered in the paper involves low strength couplings and the CO formulation is
implemented for SORA step deterministic MDO.

Application to Toy Case

The test case presented in Section 7.3.1 is solved using SORA. At the iteration k of
SORA, the deterministic MDO phase is solved using a MDF formulation as follows:

given: u∗k−1, ū

min f (z, Y (z, ū) , ū) (7.54)

w.r.t. z = [zsh, z1, z2]
s.t. g

(
z, Y

(
z, u∗k−1

)
, u∗k−1

)
≤ 0 (7.55)

0 ≤ z ≤ 5 (7.56)

CMA-ES is used to solve the deterministic MDF formulation.
The reliability analysis phase (with an inverse reliability technique and FORM)

is carried out using FPI to estimate the couplings Y
(
z∗k, u

)
as follows:

given z∗k (7.57)

max g
(

z∗k, Y
(

z∗k, u
)

, u
)

(7.58)

w.r.t. u = [ush, u1, u2]
s.t. ‖ u ‖= β (7.59)

(7.60)

with β = 3.09 leading to the probability of failure P [g(z, Y(z, U), U) > 0] =
10−3. A SQP optimization algorithm is used to solve the inverse reliability analysis.

In Figure 7.17(left side), the convergence of the design variables at each iteration
of SORA is presented. The design variable vector z converges to z∗

SORA =
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Fig. 7.17 Convergence plot for SORA: design variables and MPP values

Fig. 7.18 Convergence plot
for SORA, objective function

[0.82, 0.560, 0.13] which is similar to the value obtained in Section 7.3.1 with the
coupled MDF formulation with FPI and CMC z∗

MDF = [0.81, 0.60, 0.13].
Figure 7.17(right side) depicts the MPP values obtained at each iteration of

SORA that converge to the optimal MPP u∗ = [1.99, 0.14, 5.45]. Figure 7.19
displays the iso-surface of the limit state g

(
z∗k, y, u∗) = 4.73 which is the

maximum obtained with the reliability analysis. The MPP for SORA with a
reliability index fixed at β = 3.09 is also represented. The colormap corresponds
to the distance to the origin. The convergence plot in terms of objective function
is represented in Figure 7.18. The difference between SORA and MDF under
uncertainty is due to the approximation of the objective function at the mean value
of the uncertain variables.

Compared to MDF under uncertainty (see Section 7.3.1), SORA requires less
evaluations of the exact disciplines. The deterministic MDF solving of SORA
carried out by CMA-ES converges in the order of 2.8 × 103 calls to the disciplines
and the reliability analysis phase using SQP requires only 1.2 × 103 discipline
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Fig. 7.19 Iso-surface of the limit-state function g
(
z∗k, y, u

) = 4.73 and SORA MPP for
reliability index β = 3.09. Colormap corresponds to the distance to the origin

evaluations. In the end, SORA requires approximatively 104 calls to the disciplines
where MDF under uncertainty requires about 107 discipline evaluations. The
reduction in terms of number of discipline evaluations is significant. SORA might
provide less accurate results for more complex problems with important non-
linearities and the presence of multiple MPPs. However, it can indicate a region of
interest to reduce the design space for a more suited methodology to the considered
problem.

7.5 Distributed UMDO Approaches

One of the main concluding remarks of the previous sections concerns the chal-
lenges of the UMDO process organization and the handling of the interdisciplinary
couplings in the presence of uncertainty. The main difficulty results in ensuring
the system consistency whatever the unexpected event realization. The distributed
strategies under uncertainty could benefit from the same advantages as in the
deterministic case; however, it must not be to the detriment of the multidisciplinary
feasibility when impacted by uncertainty. In order to maintain the mathematical
equivalence between the classical coupled formulations and the decoupled formu-
lations, the interdisciplinary couplings should be satisfied for all the realizations of
the uncertain variables.
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To avoid the repeated calls to the MDA used in MDF under uncertainty, the
decoupled approaches aim at propagating the uncertainty on decoupled disciplines
allowing one to evaluate them in parallel and to ensure the coupling satisfaction by
introducing equality constraints in the UMDO problem formulation. However, two
main challenges are faced to decouple the design process:

• The uncertain input coupling variable vector Y has to be controlled by the
system-level optimizer. The uncertain coupling variables are functions and
infinite-dimensional problems are complex to solve. Dedicated methods have to
be used.

• Equality constraints between the input coupling variables Y and the output
coupling variables computed by c(·), which are two uncertain variables, have to
be imposed. Equality between two uncertain variables corresponds to an equality
between two functions which is not obvious to formulate and implement.

In order to understand these two challenges, a quick focus on decoupled determin-
istic MDO formulations is necessary.

Let us consider two disciplines i and j , one scalar feedforward coupling yij , and
one scalar feedback coupling yji as illustrated in Figure 7.20. In a deterministic
decoupled MDO approach, to remove the feedforward coupling, there is only one
equality constraint that has to be imposed at the system level in the optimization
formulation between the input coupling variable yij and the output coupling variable
cij (zi , yji) :

yij = cij (zi , yji) (7.61)

However, in the presence of uncertainty, the coupling satisfaction involves an
equality constraint between two uncertain variables. An uncertain variable is a
function (see Chapter 2 on probability theory for more details). Two uncertain

Fig. 7.20 Illustration of
couplings between two
disciplines

Discipline i Discipline j

zi zj

yji

yijcij(zi,yji)

cji(zj,yij)

Discipline i Discipline j

zi zjyij

cij(zi,yji)

cji(zj,yij)
cij(zi,yji)yij=

yji cji(zj,yij)
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variables are equal if and only if the two corresponding functions have the same
initial and final sets and the same mappings. To ensure the coupling satisfaction in
realizations, an infinite number of equality constraints (Equation 7.62) have to be
imposed, one for each realization of the uncertain variables used to compute the
objective and constraint functions:

∀u ∈ R
d , yij = cij (zi , yji , ui ), (7.62)

where cij (·) is a function of the uncertain variable realizations u. However, it is
important to notice that even if the coupling variables are random variables, for one
realization u(0) there is in general only one converged coupling value that satisfies
yij(0)

= cij

(
zi , yji(0)

, u(0)

)
ensuring the multidisciplinary feasibility. Indeed, the

disciplines are considered here as deterministic functions, all the uncertainties arise
in the discipline inputs.

To tackle this issue, a first category of approaches proposes to reduce the
statistical description of the interdisciplinary coupling variables to their statistical
moments and to transform the UMDO problem into a classical deterministic MDO.
These methods are described in the next section.

7.5.1 Statistical Moment Matching Formulations

A Hierarchical Approach to Collaborative Multidisciplinary Robust Design

Principle In order to replace the MDA, decoupled approaches inspired from CO
(Braun et al. 1997) have been proposed (Du and Chen 2001; McAllister and
Simpson 2003; Gu et al. 2006; Liu et al. 2006; Ghosh et al. 2014; Xiong et al. 2014).
The idea is to extend the CO framework to robust design. In these methods, the
uncertain input coupling vector is replaced by its statistical moments. Therefore, the
system-level optimizer only controls deterministic parameters. For instance, Du and
Chen (2001) proposed the hierarchical approach to collaborative multidisciplinary
robust design method in which the input coupling variables are represented by their
expected values μY and standard deviations σ Y . In this formulation, the system-
level optimizer controls the design variable vector z, the input coupling variable
expected values μY , and standard deviations σ Y .

As in SUA and CSSUA, the disciplines, the objective function and the constraints
are approximated by a first-order Taylor series expansion to estimate the first- and
second-order statistical moments. The aim of the subsystem level is to determine its
local design variables z∗

i in order to find an agreement with the other subsystems
with respect to the coupling variable values. The subsystem-level objective is a
measure of the relative errors between the discipline outputs and the system-level
targets.
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Fig. 7.21 Hierarchical
approach to collaborative
multidisciplinary robust
design
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The formulation proposed by Du and Chen (2001) (Figure 7.21) is

min E

[
f (z, Ŷ(z, U), U)

]
(7.63)

w.r.t. zsh,μY, σ Y

s.t. J∗
i.(zsh, z∗

i ,μY, σY) = 0,∀i ∈ {1, . . . , N} (7.64)

zmin ≤ z ≤ zmax (7.65)

with J∗
i. the optimized objective function of the ith discipline and z∗

i the decision
variables found by the subsystem optimizer. The ith subsystem optimization
problem is given by

min Ji. =
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(7.66)

w.r.t. z∗
sh, z∗

i

s.t. E

[
gk(z, Ŷ(z∗, U), U)

]
+ ηkσ

[
gk(z, Ŷ(z∗, U), U)

]
≤ 0

for k ∈ {1, . . . , m} (7.67)

zmin ≤ z∗ ≤ zmax, (7.68)

where zsh is the target value given by the system-level optimizer. The shared
design variables between the disciplines zsh are controlled at the system level
and the decision variables specific to each discipline and local copies of the
shared design variables are controlled at the lower-level. This formulation relies
on CSSUA to estimate the statistical moments of the coupling variables and does
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not involve any MDA offering the possibility for parallel discipline optimizations.
The interdisciplinary coupling constraints at the system level ensure that the input
coupling variables and the output coupling variables have the same expected
values and the same standard deviations. The first two statistical moments of the
coupling variables are matched between the different disciplines to ensure the
multidisciplinary feasibility.

It should be noted that the proposed formulation by Du et al. and most of the
alternative moment matching approaches described in the next section are originally
not suited to handle problems involving system-level constraints g(·) depending on
zsh, zi , and yij . Indeed, this type of constraints is not specific to a single discipline
(e.g. local); therefore, it has to be evaluated at the system level. However, it depends
on design variables zi that are determined by the lower-level optimization problems
and therefore their values do not take into account a possible violation of the
global constraints. In order to handle such constraints, a target variable zi has to be
controlled at the system level and should match the copy handled at the subsystem
level (Xiong et al. 2014).

Alternative Moment Matching Approaches Alternative formulations have to be
adopted for such a general type of problems. Xiong et al. (2014) proposed a modified
robust-CO formulation to avoid the first-order Taylor series approximation. CMC
replaces the Taylor series expansion to propagate the uncertainty and to estimate
the coupling variable statistical moments. However, the proposed approach is
only compatible with parametrical PDF for the interdisciplinary coupling variables
(often considered distributed according to a Gaussian distribution). The statistical
moments of the distributions are controlled at the system level by the optimizer.
In order to offer more flexibility to the subsystem optimization problems, a copy
of the statistical moments of the coupling variable distributions is controlled at the
subsystem level and a matching constraint is added at the system level.

To further improve the method, Ghosh et al. (2014) proposed to capture the
statistical dependence of the coupling variables by introducing the covariance matrix
to model the correlations between them. The coefficients of the covariance matrix
in addition to the expected values are controlled by the system-level optimizer. It
increases the number of decision variables controlled by the system-level optimizer
but it enhances the fidelity of the moment matching. In this approach, the ranges of
uncertainty are assumed to be small and the coupling variables follow a multivariate
Gaussian distribution which is not necessary the case for non-linear disciplines.
Moreover, this approach has been extended to reliability-based UMDO (Huang et al.
2010) to enable a reliability analysis on the constraints instead of statistical moment
estimations.

Furthermore, moment matching approaches have been adapted in other UMDO
formulations such as probabilistic ATC (Kokkolaras et al. 2004; Liu et al. 2006;
Xiong et al. 2010) which presents similarities with CO. In these formulations,
the advanced mean value method is used to generate CDF of each subsystem
response and the mean and standard deviation of each subsystem are passed
upwards to its parents. Therefore, between the levels, the statistical moments of
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the coupling variables are matched between the target provided by the upper level
and the resulting uncertainty propagation at the lower one. The subsystem-level
optimization problems are solved upwards level by level up to the top of the
hierarchical decomposition. Once the higher-level problem is solved, the new targets
start to be cascaded level by level to the lower ones. With the updated parameters,
the subsystem optimization is solved again from the bottom to the top. This iterative
process is stopped when the convergence criterion is reached. Probabilistic ATC
generalizes the proposed approach in CO under uncertainty to a higher number of
levels. Xiong et al. (2010) extended this probabilistic ATC approach to match the
covariance matrix of the coupling variables between the different levels.

The moment matching formulations are interesting since they preserve some
disciplinary autonomy via parallel sybsystem-level uncertainty propagations and
optimizations. However, the interdisciplinary couplings are satisfied only in terms
of statistical moments (expected value, standard deviation, or covariance matrix) of
the coupling variables and, most of the time, Gaussian distributions are assumed for
the coupling variables.

Application to Toy Case The methodology proposed by Xiong et al. (2014) is
applied on the toy case described at the beginning of this chapter. The following
robust-CO formulation is adopted for the problem solving:

The optimization problem at the system level is given by

min E

[
f

(
z, Ŷ(z, U), U

)]
(7.69)

w.r.t. zsh, z1, z2, μy12 , σy12 , μy21 , σy21

s.t. J ∗
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(
z∗
sh, z

∗
1, μy12 , σy12 , μy21 , σy21

) = 0 (7.70)

J ∗
21

(
z∗
sh, z

∗
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) = 0 (7.71)

0 ≤ z ≤ 5 (7.72)

and the two subsystem problems are given by
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w.r.t. z∗
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+
∣
∣
∣
∣

∣
∣
∣
∣σ

2
y21

−
d∑

l=1

(
∂c21

∂u(l)

∣
∣
∣
∣
u=μU

)2

σ 2
U(l)

∣
∣
∣
∣

∣
∣
∣
∣

2

2
(7.75)

w.r.t. z∗
sh, z∗

2

s.t. E
[
g2(z, ŷ21, u)

] + ησ
[
g2(z, ŷ21, u)

] ≤ 0 (7.76)

0 ≤ z∗
sh, z

∗
2 ≤ 5 (7.77)

with g2 = exp(−0.05 ∗ u2
2) ∗ z2 − 0.2 ∗ z4

2 ∗ u2
2 + 10−4 ∗ y2

21.

In order to optimize the subsystem problems, CMA-ES is used due to the non-
convex objective and constraint functions and the presence of numerous minima.
Indeed, by using a classical SQP algorithm with different initializations, this
algorithm converges to different local minima leading to a non-robust convergence
of the lower-level (Figure 7.22). Figure 7.22 represents a boxplot of 20 repetitions
of the subsystem one solving with different initializations of the SQP algorithm for
a given system-level design variable vector. The range of optimum values for the
objective function varies between 1.2 and 30. for J12. In this case, SQP is clearly
non-robust to the initialization.

In contrast, by exploring the design space, CMA-ES succeeds to find a better
optimum than the gradient-based approach and is more robust with respect to
the initialization (that is unknown and set in the center of the subsystem design
space) than the gradient-based optimization. CMA-ES is parallelized in order
to evaluate each candidate solution with a multiprocessing approach to increase
the computational efficiency of the subsystem problem solving. A penalization
approach is carried out to control the optimization problem constraints at the
subproblem level.

Figure 7.23 illustrates the distribution of the coupling variables for robustness-
based CO formulation and robustness-based MDF formulation. Due to the assump-
tion of Gaussian distribution for the interdisciplinary coupling variables, it can

Fig. 7.22 Boxplot of J12
optimum for subproblem 1
using SQP and CMA-ES—20
repetitions with random
initializations
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Fig. 7.23 Comparison between robust-based CO and robustness-based MDF for the interdisci-
plinary couplings

Fig. 7.24 Comparison
between robust-based CO and
robustness-based MDF for
the objective function

be seen that the PDFs do not match perfectly between the two approaches. The
distribution obtained for the coupling variables with robustness-based MDF is non-
Gaussian especially for y21. These disparities have a direct impact on the objective
function, explaining the differences observed in Figure 7.24. Moreover, the fact
that the final objective function in robustness-based CO formulation is lower than
robustness-based MDF is explained by the fact that J12 and J21 are not yet equal to
0 and there still exist discrepancies between the system-level targets and lower-
level responses. In terms of moment matching, it can be seen that between the
system-level targets provided by the system-level optimizer and the subsystem-
level discipline outputs, there is an accurate moment matching between the two
distributions for the interdisciplinary couplings (Figure 7.25).

The convergence of the robust-CO formulation is more difficult to achieve
than with robustness-based MDF (Figure 7.26). Indeed, the two nested levels
of optimization converge slowly and require an important number of discipline
evaluations, mainly due to the difficulty to solve the optimization problem at
the lower level (Figure 7.22). At the subsystem level, using CMC to propagate
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Fig. 7.25 Matching statistical moments, comparison between the distributions of the couplings
for the system-level target and the subsystem-level output

Fig. 7.26 Convergence plots at the system level (CO)

uncertainty with 104 samples and with 500 evaluations of the CMA-ES algorithm,
at each iteration of the system level, there are 5 × 102 × 104 = 5 × 106 discipline
evaluations. The system-level optimizer is stopped after 400 subsystem evaluations
leading to a total number of discipline simulations in the order of 109. This is
significantly higher than the 6 × 107 evaluations required by the robustness-based
MDF. Therefore, for this particular problem, robustness-based CO seems not to
provide an advantage compared to robustness-based MDF.

7.5.2 Individual Discipline Feasible—Polynomial Chaos
Expansion (IDF-PCE) and Multi-level Hierarchical
Optimization Under Uncertainty (MHOU)

Principle

As described in the previous section, to ensure interdisciplinary coupling satisfac-
tion for all the realizations of the uncertain variables, it is necessary to introduce an
infinite number of constraints at the system level. Solving an optimization problem
with an infinite number of constraints is a challenging task. To bypass this issue,
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considering a UMDO problem involving N disciplines, in Brevault et al. (2015a,b)
and Brevault (2015) proposed a new integral form for the interdisciplinary coupling
constraint:

∀(i, j) ∈ {1, . . . , N}2, i �= j, Jij =
∫

R
d

[
cij (zi , y.i , ui ) − yij

]2
φ(u)du = 0

(7.78)
In (Equation 7.78), in order to have the integrals equal to zero, the input coupling
variables must be equal to the output coupling variables for each realization of
the uncertain variables almost surely (except maybe over null measure sets). The
interdisciplinary coupling constraints Jij represent the integration over the entire
uncertain space of a loss function (the difference between the input and the output
coupling variables). If these constraints (Equation 7.78) are satisfied, a mathematical
equivalence is conserved with coupled formulations because, similarly with MDA
using FPI, the following system of equations is satisfied for the coupling variables:

∀ u ∈ R
d , ∀(i, j) ∈ {1, . . . , N}2, i �= j, yij = cij (zi , y.i , ui ) (7.79)

However, in order to decompose the disciplines, the uncertain input coupling
variables Y must be controlled by the optimizer along with the design variables.
Uncertain variables are measurable functions (mapping between the uncertainty
space and the set of real numbers) and finding a function that is a solution to
an infinite-dimensional optimization problem is a challenge. Several approaches
have been proposed for this type of problems such as optimal control (Zhou et al.
1996), calculus of variations (Noton 2013), and shape optimization (Sokolowski
and Zolesio 1992). To avoid to directly solve an infinite-dimensional problem, the
function is often discretized and the discretization points are controlled by the
optimizer (Devolder et al. 2010). The discretization strategy must be carried out in
concordance with the optimization problem. Brevault et al. proposed to replace the
scalar coupling variable yij by a surrogate model mimicking the coupling functional
relations:

yij → ŷij

(
u,α(ij)

)
(7.80)

The metamodel, noted ŷij

(
u,α(ij)

)
, gives a functional representation of the

dependency between the uncertain variables U and the input coupling variables with
α(ij) the surrogate model hyperparameters. This approach allows to ensure that the
functional dependency between the uncertain variables and the coupling variables
is taken into account. In the proposed formulations, each coupling is replaced by a
surrogate model. This latter is also a function, represented by hyperparameters that
may be used to decompose the UMDO problem and let the system-level optimizer
controlling the surrogate model coefficients. The infinite-dimensional optimization
problem is converted into a q-dimensional optimization one with q the number of
coefficients needed to model all the removed coupling variables.
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To model the coupling functional relations, Brevault et al. proposed to use
polynomial chaos expansion (PCE) as this metamodel is particularly suited for
uncertainty analysis and propagation (Eldred 2009). PCE is adapted to represent
the input coupling variables as it is dedicated to model functions that take as
input uncertain variables as illustrated in Chapter 3. The scalar coupling yij is
represented by

ŷij

(
u,α(ij)

)
=

dPCE∑

k=1

α
(ij)

(k) 
k(u) (7.81)

with dPCE the PCE decomposition degree and 
k orthogonal polynomials basis
defined in accordance with the uncertain variable PDF distributions.

In order not to have too complex surrogate model ŷij (·), the dependency between
ŷij (·) and z is not present here. Indeed, ŷij (·) is not an explicit function of z,
it is learnt for the unknown specific z∗ where the optimization converges. The
interdisciplinary coupling satisfaction that is ensured for all the realizations of
the uncertain variables enables to guaranty that the system is multidisciplinary
feasible. This transformation of the complex original infinite-dimensional problem
into a finite-dimensional one enables to solve it in practice while ensuring the
mathematical equivalence between coupled and decoupled formulations in terms
of coupling compatibility.

This methodology relies on an iterative construction of the PCEs along with
the system-level UMDO. At the optimum, the surrogate models of the coupling
functional relations simulate these mappings as would MDA under uncertainty do
(Figure 7.27). Moreover, this approach does not require any MDA, allowing to fully
decompose the process and to reduce the number of calls to the disciplines.

IDF-PCE (Individual Discipline Feasible—polynomial chaos expansion) is a
single-level decoupled UMDO formulation relying on a functional representation
of the coupling variables. IDF-PCE is formulated as follows:

min � [f (z,α, U)] (7.82)

w.r.t. z,α

s.t. Kk [gk(z,α, U)] ≤ 0 for k ∈ {1, . . . , m} (7.83)

∀(i, j) ∈ {1, . . . , N}2, i �= j,

Jij =
∫

R
d

[
cij

(
zi , ŷ.i

(
u,α(.i)

)
, ui

)
− ŷij

(
u,α(ij)

)]2
φ(u)du = 0

(7.84)

zmin ≤ z ≤ zmax, (7.85)
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Fig. 7.27 IDF-PCE with the
surrogate models of the
coupling functional relations
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where Jij is the interdisciplinary constraint vector for the couplings from the
discipline i to the discipline j and ŷ.i

(
u,α(.i)

)
are the PCEs of all the input coupling

variables of the discipline i.
In this formulation, the system-level optimizer controls the design variables

z and the PCE hyperparameters of the coupling variables α. The handling of
the PCE coefficients at the system level enables to decouple the disciplines
and to simulate them in parallel (Figure 7.27). In comparison with the coupled
formulations, the dimension of the design space is therefore increased with the
number of hyperparameters α. To ensure the multidisciplinary compatibility at
the optimum, equality constraints derived from the generalization error are added
(Equation 7.84). These constraints take the input coupling variables modeled by
PCE and the output coupling variables resulting from the discipline evaluations.
The integral form for the constraints allows to ensure the coupling satisfaction for
all the possible realizations of the uncertain variables. If this equation is verified:
∀(i, j) ∈ {1, . . . , N}2 ∀i �= j, Jij = 0, then the couplings are satisfied for all the
realizations u ∈ R

d almost surely.
The distances with respect to the MDA coupling satisfaction are represented by

J(·). Indeed, using MDA (FPI and CMC), J(z) = 0,∀z ∈ [zmin, zmax]. In IDF-
PCE, J(z) = 0 has to be verified only at the UMDO optimum z = z∗. The
interdisciplinary compatibility is not ensured all along the optimization, as in the
deterministic IDF formulation.

In IDF-PCE, the robustness-based UMDO and the reliability-based UMDO
problem formulation may be considered. Different measures of uncertainty for the
inequality constraints (Equation 7.83) may be used, such that for instance:

K [gk(z,α, U)] = E [gk(z,α, U)] + ηkσ [gk(z,α, U)] ≤ 0 (7.86)
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K [g(z,α, U)] = Pgk(z,α,U)≤0 − Ptk ≤ 0 (7.87)

with Ptk the admissible maximal probability of failure. The first measure, (Equa-
tion 7.86), is based on the statistical moments of the inequality constraint functions
and the second (Equation 7.87) is based on the probability of failure. In practice,
the multidimensional integrals associated to the statistical moments (expectations,
standard deviations), to the coupling constraints J, or to the probability of fail-
ure require uncertainty propagation. Three techniques to estimate the statistical
moments and the coupling constraints have been considered in Brevault et al.
(2015a,b) and Brevault (2015): CMC, quadrature rules, and decomposition of the
output coupling variables over a PCE. In order to estimate the probability of failure
a technique combining subset sampling with support vector machines has been
proposed. Depending on the approach carried out to propagate uncertainty, this lead
to three variants of IDF-PCE.

The different steps of the IDF-PCE strategy are summarized in Figure 7.28.
In the proposed formulation, the design variables are considered as deterministic
(such as specifications) and all the uncertainty is assumed to be represented by
uncertain parameters U. However, an extension of these UMDO formulations to
uncertain design variables by letting the optimizer controlling the expected value of
the design variables is possible as, for instance, done in Liu et al. (2006) and Lin and
Gea (2013). Furthermore, PCE is employed to characterize the functional relations
between the coupling variables at the UMDO problem convergence as PCE are well
suited to model functions which take as input uncertain variables. The general idea

OptimizerStep 1:

Sample generatorStep 2:

PCE evaluation with 
α and u

Step 3:

Disciplines evaluation
in parallelStep 4:

Based on output coupling 
variables, objective and 

constraints function 
evaluations

Step 5:

Interdisciplinary coupling
 constraints J calculation

Step 6:

z, α

u

y.i(α  ,u)  i {1,..,N}, (.i)

ci.( ) i {1,..,N}, .

ci.( )  i {1,..,N}, .
K[g()]

()

J

Step 5:
for the constraints

with GMM and 
subset sampling

Subset 
simulation SVM

SVM 
refinement

GMM

Samples added
 to training set

u

g(z,ci.(),u)^

K[g()]

.

.^

Fig. 7.28 Steps of the IDF-PCE algorithm
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to control interdisciplinary couplings at the system level could be extended to any
parametric surrogate model. These hyperparameters would have to be controlled by
the system-level optimizer in addition with the design variables.

IDF-PCE solves a finite-dimensional problem which is manageable compared to
infinite-dimensional problems which are difficult to implement in practice. One of
the principal advantages is that this formulation ensures the coupling satisfaction
at the UMDO optimum for each uncertain variable realization almost surely. For
that purpose, it models the functional dependency between the uncertain variables,
the design variables, and the coupling variables, which may be useful beyond
optimization, for instance, for a post-optimality sensitivity analysis. IDF-PCE is
a decomposed single-level UMDO formulation allowing to decouple the UMDO
problem and to concurrently evaluate the disciplines. Furthermore, it does not
require any full MDA evaluation. This decomposition of the UMDO process allows
to reduce the management tasks compared to coupled formulations because each
discipline just converses with the system level and no more interdisciplinary infor-
mation exchange is required during the subsystem level uncertainty propagation.

However, this formulation has some drawbacks similar to deterministic IDF.
Indeed, the number of variables controlled by the system-level optimizer (design
variables and PCE coefficients) is increased. This makes the system-level opti-
mization task more complex. Moreover, the PCE decomposition order has to be
chosen a priori based on the coupling linearity knowledge. The increase of the PCE
decomposition order may highly increase the size of the design space, a curse of
dimensionality is observed due to the PCE construction. Alternative approaches
such as sparse PCE may be investigated to tackle this issue. Finally, IDF-PCE
increases the number of equality constraints at the system level which also makes
the optimization problem solving more complex.

Multi-level Hierarchical Optimization Under Uncertainty (MHOU)

The aim of MHOU (Brevault et al. 2015b) is to ease the system-level optimization
by introducing a subsystem-level optimization (Figure 7.29). It is derived from
IDF-PCE. MHOU is a semi-decomposed hierarchical method that removes all the
feedback interdisciplinary couplings in order to avoid the expensive disciplinary
loops through MDA. Due to the curse of dimensionality of the surrogate model-
based decoupling technique proposed in IDF-PCE, only the feedback couplings are
removed in MHOU. It enables a hierarchical process without any loop between the
subsystems. This type of decomposition has been proposed in the context of launch
vehicle design (Brevault et al. 2015b), but it may be generalized to a set of problems.
Indeed, the formulation assumes that the system-level objective �[f (·)] can be
decomposed into a sum of subsystem contributions �[f (·)] = ∑N

k=1 �[fk(·)]
with �[fk(·)] the kth subsystem objective function. Most of the systems may be
decomposed according to the contribution of the subsystems (contributions of the
subsystem masses, of the subsystem costs, etc.).
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Fig. 7.29 Multi-level
hierarchical optimization
under uncertainty (MHOU)
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In MHOU, the system-level and subsystem-level formulations are postulated as
follows:

• System level:

min
N∑

k=1

�
[
fk

(
zsh, z∗

k,α, U
)]

(7.88)

w.r.t. zsh,α

s.t. Kk

[
gk(zsh, z∗

k,α, U)
] ≤ 0 for k ∈ {1, . . . , m} (7.89)

∀(k, j) ∈ {1, . . . , N}2, j �= k Jkj

(
zsh, z∗

k,α
) = 0 (7.90)

∀s ∈ {1, . . . , N}, K
[
gs

(
zsh, z∗

k,α, U
)] ≤ 0 (7.91)

zshmin ≤ zsh ≤ zshmax (7.92)

• Subsystem level:
k = N

While k > 0

Given yNk, . . . , y(k+1)k

For the kth subsystem

min � [fk(zsh, zk,α, U)] (7.93)

w.r.t. zk

s.t. Ks [gs(zsh, zk,α, U)] ≤ 0 for s ∈ {1, . . . , ms} (7.94)

∀j ∈ {1, . . . , N}, j �= k Jkj =
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∫

R
d

[
ckj

(
zsh, zk, ŷ.k

(
u,α(.k)

)
, uk

)
− ŷkj

(
u,α(kj)

)]2
φ(u)du = 0

(7.95)

zkmin ≤ zk ≤ zkmax (7.96)

k ← k − 1,

where zk is the local design variable vector of discipline k and zsh is the shared
design variable vector between several disciplines. z∗

k corresponds to the optimal
design variables found by the subsystem-level optimizer. This formulation enables
to optimize each subsystem independently in a hierarchical process. The system-
level optimizer controls zsh and the PCE hyperparameters α of the feedback
coupling variables. The handling of the PCE coefficients at the system level allows
one to remove the feedback couplings and to optimize the subsystems in sequence.
The surrogate models of the functional feedback couplings provide the required
input couplings to the different subsystems. The kth subsystem-level optimizer
controls zk and the corresponding problem aims at minimizing the subsystem
contribution to the global system objective while ensuring the subsystem-level
constraints Ks [gs(·)]. The interdisciplinary coupling constraint (Equation 7.95)
guarantees the coupling consistency whatever the realization of the uncertain
variables. In MHOU (Equation 7.95) is only considered for k �= N . This formulation
is particularly suited for launch vehicle design as it is a natural way to decompose
the design process into the different stage optimizations. The decreasing order of
the discipline optimization from N to 1 is more convenient for a launch vehicle
(the last stage is optimized first, then the intermediate stages, and the first one is
optimized last). For a general problem any order may be adopted, but in practice
the disciplines are organized to have the minimal number of feedbacks in order to
decrease the number of coupling variables controlled at the system level and then
the complexity of the optimization problem. This formulation has been applied for
launch vehicle design problems, using Stage-Wise Optimal Rocket Decomposition
(SWORD) (Balesdent et al. 2013) and MHOU (Brevault et al. 2015b). In this case,
the feedforward coupling variables are the masses of the different stages (the mass
is passed from stage i to stage i − 1) and the feedback couplings are the separation
conditions (e.g., altitude, velocity, flight path angle) and trajectory loads.

Application to Toy Case

Numerical comparisons between MDF under uncertainty (using FPI and CMC)
and IDF-PCE are carried out for the toy case. The UMDO problem presented in
Figure 7.30 is a constrained optimization problem composed of

• Discipline 1: y12 = c12(z, u) = −z0.2
sh +ush+0.25×u0.2

1 +z1+y0.58
21 +u0.4

1 ×y0.47
21
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Fig. 7.30 Analytical test
case of a multidisciplinary
coupled system
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• Discipline 2: y21 = c21(z, u) = −zsh + u0.1
sh − z0.1

2 + 3 × y0.47
12 + u0.33

2 + y0.16
12 ×

u0.05
2 + y0.6

12 × u0.13
2 + 100

• Calculation of f = 1
5

[
(zsh − 5)2 + (z1 − 3)2 + (z2 − 7)2 + (y21 + z1 × z2)

0.6

+(ush + 9)2
]

• Calculation of g = 150 + exp(−0.01 ×u2
1)× zsh × z1 − 0.02 × z3

2 ×u5
2 + 0.01 ×

y2.5
12 × z2 × exp(−0.1ush)

• Objective function: �[f (z, Y, U)] = E[f (z, Y, U)],
• Constraint function: K[g(z, Y, U)] = E[g(z, Y, U))] + 3σ [g(z, Y, U))] ≤ 0

The problem has 3 design variables: z1 ∈ [0, 1], z2 ∈ [0, 1] and the shared
variable zsh ∈ [0, 1], and 3 uncertain variables: U1 = U (−1, 1), U2 = N (0, 1)

and the shared uncertain variable Ush = N (0, 1).

This toy case involves non-linear disciplines and results in non-Gaussian cou-
pling variable distributions in order to illustrate the challenge of dealing with highly
non-linear couplings. Moreover, it has been numerically verified for all z and u
values tried that this problem is such that the MDA converges (it is a contraction
mapping by FPI) and it converges to a unique coupling value.

MDF Under Uncertainty Uncertainties are propagated with CMC on MDA
(using FPI) for each realization of the uncertain variables with a sample size
M = 150,000 in order to have an error lower than 10−3 on the estimation of
the statistical moments. As the first two statistical moments are estimated with
CMC, the objective function is noisy; therefore, gradient-based optimizers are not
appropriate for this test case. Stochastic gradient optimizer is not suited due to the
multiple local minima. An Ant Colony optimizer (ACOmi) (Hirmajer et al. 2010)
is used. Optimizations are stopped if there is no improvement in 50 consecutive
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objective function evaluations with a tolerance of 10−3 on the objective function
and the constraint. The MDA convergence criterion for the Fixed Point Iteration
has been set to 10−4 as it corresponds to a variation in the objective and constraint
functions smaller than 10−3. Based on the numerical experimentation, five iterations
are in general required to converge under the tolerance with the FPI methods.
εg = −0.004 is a conservative tolerance due to the estimation of the mean and the
standard deviation of the constraint by CMC to ensure that the constraint is inferior
or equal to 0.

IDF-PCE Formulation IDF-PCE formulation (Figure 7.31) is given by

min E [f (z,α, U)] (7.97)

w.r.t. z,α(12),α(21)

s.t. E[g(z,α, U)] + 3σ [g(z,α, U)] ≤ εg (7.98)

J12 =
∫

R3

[
c12

(
zsh, z1, ush, u1, ŷ21

(
u,α(21)

))

−ŷ12

(
u,α(12)

)]2
φ(u)du ≤ ε (7.99)

J21 =
∫

R3

[
c21

(
zsh, z2, ush, u2, ŷ12

(
u,α(12)

))
− ŷ21

(
u,α(21)

)]2

× φ(u)du ≤ ε (7.100)

z ∈ [0, 1]3 (7.101)

The system-level coupling variables are decomposed according to: ŷij (U,α(ij))

= ∑19
k=0 α

(ij)
k 
k(U), with 
k(·) the product of Legendre and Hermite polynomials

with a total expansion order of degree 3 in order to take into account the non-
linearity of the problem. These polynomial bases are orthogonal to the input density
distributions (Gaussian and uniform). As there are three uncertain variables for the
decomposition, dim

(
α(12)

) = dim
(
α(21)

) = (3+3)!
3!3! = 20. The design space is of

dimension 43. The methods to compute the multivariate integrals are detailed in the
next paragraphs.

IDF-PCE (CMC) Formulation In IDF-PCE with CMC, the interdisciplinary
constraints are computed with:

Jij � 1

M

M∑

k=1

[
cij

(
zsh, z1, ush(k), u1(k), ŷ.i

(
u(k),α

(.i)
))

− ŷij

(
u(k),α

(ij)
)]2

(7.102)
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Fig. 7.31 IDF-PCE design
process
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The mean of the objective function, and the mean and the standard deviation of
the constraint g are computed by CMC. The uncertainties are propagated with CMC
on the decoupled system with a sample size of M = 150,000. The interdisciplinary
constraints on the couplings are such that ε = 10−3 in order to have on average
a coupling error under ε. Another alternative to avoid a fixed ε value set by the
designer is to convert the equality constraint of Jij = 0 into an inequality constraint
Jij ≤ ε, where ε is a small positive real number, and use an additional dynamic
slack variable to carry out the optimization process in order to minimize the value
of ε to be as close as possible to 0.

IDF-PCE (Quadrature) Formulation In IDF-PCE with quadrature rules, the
coupling constraints are computed as follows:

Jij =
Msh∑

k=1

M1∑

l=1

M2∑

m=1

(wsh(k) ⊗ w1(l) ⊗ w2(m))
[
cij

(
zsh, z1, ush(k), u1(l), ŷ.i

(
ush(k), u1(l), u2(m),α

(.i)
))

−ŷij

(
ush(k), u1(l), u2(m),α

(ij)
)]2

(7.103)
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The expected value of f (·) and the mean and the standard deviation of the constraint
g(·) are computed as explained in the paragraph describing the quadrature rules.
The quadrature rules used to compute the multidimensional integrals correspond
to the tensor product of the one-dimensional Gauss–Hermite and Gauss–Legendre
quadratures. The number of sampling points in each direction is: Msh = M2 = 8
and M1 = 10, resulting in a tensor product of 640 discipline evaluations to compute
the multivariate integrals. This number of quadrature points is selected in order to
have an error less than 10−3 compared to a CMC computation of the integrals with
106 points. The decomposition of the coupling variables is the same as in IDF-PCE
with CMC formulation.

IDF-PCE (PCE) Formulation In this approach, the output PCE coefficients α̃(ij)

are computed by orthogonal spectral projection in which the multivariate integrals
are estimated by quadrature rules. The interdisciplinary constraints J12 and J21 are
replaced by:

‖ α(12) − α̃(12) ‖2≤ εα (7.104)

‖ α(21) − α̃(21) ‖2≤ εα (7.105)

To compute the output PCE coefficients, the same quadrature rules as in IDF-PCE
(quadrature) formulation are used: Msh = M2 = 8 and M1 = 10. The constraints
on the couplings are such that εα = 0.5 as it generates an error on average smaller
than 10−3 compared to CMC approximation of the integral. The main difference
with the IDF-PCE quadrature formulation is in the coupling constraints to ensure
the interdisciplinary couplings in realizations. In IDF-PCE (PCE) the quadratic
constraints only involve the PCE coefficients and could facilitate the optimizer
convergence.

Results Due to the presence of uncertainty and the use of a population-based
optimizer, each problem solving is repeated 10 times and the results given in
Table 7.1 are the averages over the 10 repetitions. The ratio of the standard deviation
over the expected value of the results is added in parenthesis in order to quantify the
robustness of the results.

To insist on the importance of incorporating uncertainty in MDO problems, a
deterministic MDF with the uncertain variables set to their mean values is carried
out. The found optimal objective value is 0.466, the set of optimal design variables
is: zsh = 0.504, z1 = 0.452, z2 = 0.682 and the constraint is active. A
propagation of uncertainty based on the found deterministic optimum z∗ results in
a violation of the constraint E[g(z∗, Y(z∗, U), U))] + 3σ [g(z∗, Y(z∗, U), U)] =
2.73 > 0 and the performance is decreased compared to the deterministic value
E[f (z∗, Y(z∗, U), U))] = 0.831. For this toy case, the presence of uncertainty
modifies both the optimal objective and the set of optimal design variables, but it
results in a non-robust deterministic solution.
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The MDF under uncertainty formulation is considered as the reference for
interdisciplinary coupling satisfaction (couplings are satisfied for each uncertain
variable realization). MDF and the IDF-PCE formulations converge to the same
design variable values z with errors inferior to 2.04% in terms of distance to MDF
results. IDF-PCE (quadrature) is the closest to MDF. The higher error stems from
IDF-PCE (PCE) due to the approximations introduced by the output coupling PCEs
c̃(·). In terms of objective values, the relative error compared to MDF is of 0.21% for
IDF-PCE (CMC) and IDF-PCE (quadrature) and 1.5% for IDF-PCE (PCE). There
is one constraint in MDF, whereas in the proposed formulations three constraints
are present. The design space dimension is three in the MDF approach, whereas it
is 43 in the proposed formulations. The increase in number of design variables and
constraints requires more iterations for the optimization process to converge (but
less calls to the disciplines). The number of calls to each discipline is 1512 × 106

for MDF. It is divided by 1.80 for IDF-PCE (CMC) formulation. Compared to
MDF, the number of calls to each discipline decreases by a factor of 430 in IDF-
PCE (quadrature) and by 449 in IDF-PCE (PCE). The reduction of the number of
calls to the disciplines is due to the absence of complete MDA and the uncertainty
propagation technique (quadrature and PCE) instead of CMC. While the absence of
MDA decreases the number of calls to the disciplines, it generates higher errors
in the interdisciplinary coupling satisfaction: the couplings are satisfied with a
precision of 10−4 in MDF for all the realizations of the uncertain variables and
with a precision of 6.7 × 10−4 on average in IDF-PCE (CMC). The replacement of
CMC in IDF-PCE enables to decrease the number of calls to the disciplines while
ensuring coupling satisfaction with a precision of 7.4×10−4 on average. The PDF of
the performance values given by MDF and by the proposed approaches are similar
(Figures 7.32 and 7.33). The distributions of the coupling variable Y12 have the same
shape for MDF and the decoupled approaches. Moreover, the proposed approaches
succeed to handle the multimodal probability distribution for the coupling variables.
Differences exist in the distribution tails (Figures 7.32 and 7.33) due to the error
introduced by the PCE to represent the coupling relations. All the distributions of
the coupling errors J for the proposed formulation are given in Figure 7.34.

Similarly to hybrid uncertainty propagation techniques for multidisciplinary
systems presented in Chapter 6, several UMDO formulations have been proposed
to combine the advantages of coupled and decoupled strategies to solve UMDO
problems. A brief overview of several techniques is discussed in the next section.

7.6 Hybrid UMDO Approaches

Deterministic Concurrent Subspace Optimization (CSSO) framework has been
derived to solve UMDO problems. One such method has been proposed by
Padmanabhan and Batill (2002) in which the CSSO architecture has been used
to perform reliability-based optimization for UMDO problems. The proposed
procedure is a sequential process: starting from a design variable vector zk a system-
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Fig. 7.32 Distribution of the performance f (·) (left column) and the coupling variable Y12 (right
column) estimated from 150,000 U samples with MDF and IDF-PCE (CMC)

level reliability analysis is carried out to obtain outputs of the objective function, the
coupling variables, the reliability constraints and their sensitivities with respect to
the design variables, and the uncertain parameters at the current design point zk .
Then, these information are used with the first-order Taylor series approximation
models to build surrogate models of the non-local state variables and reliability
constraints. These metamodels are employed in the subspace optimization enabling
to concurrently carry out local subspace optimization and providing the next design
point zk+1. The sequential process is stopped when the convergence of the design
point is reached.

Hu et al. (2016) proposed an approach relying on active subspace identification to
reduce the uncertainty dimension and applies a one-dimensional regression surface
with least squares as the surrogate model in order to reduce the computational
cost associated with the uncertainty propagation. To estimate the measure of
uncertainty on the objective and constraint functions while avoiding repeated calls
to MDA, a partial first-order second moment (p-FOSM) is carried out. It consists
in estimating the first two statistical moments of the coupling variables using
a first-order approximation with a limited number of MDA evaluations. Then,
assuming Gaussian distribution for the coupling variables, the estimation of the
statistical moments of the objective and the constraint functions can be performed by
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Fig. 7.33 Distribution of the performance f (·) (left column) and the coupling variable Y12 (right
column) estimated from 150,000 U samples with IDF-PCE (quadrature) and IDF-PCE (PCE)

evaluating the disciplines in parallel with the corresponding input coupling variable
distributions.

Ahn et al. proposed an extension of BLISS formulation (see Chapter 1) named
ProBLISS for reliability-based MDO problems (Ahn and Kwon 2006). ProBLISS
uses a single-level reliability-based MDO in which the reliability analysis and
the optimization are carried out sequentially by approximating the limit-state
functions. As the main challenge with BLISS concerns the accuracy of the
discipline approximations, the convergence of the strategy is ensured by employing
a trust region-sequential quadratic programming framework, in order to validate
the approximation models within the trust region radius. In the proposed approach,
the interdisciplinary coupling satisfaction is partially ensured with multidisciplinary
analysis (for instance, with FPI) performed at the mean value of the uncertain
variables. Moreover, the determination of the most probable failure point is assessed
using also MDA. The approximation models are built locally around the solutions
found with MDA.
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Fig. 7.34 Distribution of the coupling errors J. Left column, estimations of J12 , right column,
estimations of J21, from 150,000 U samples

7.7 UMDO with Mixed Aleatory and Epistemic Uncertainties

UMDO process has been adapted to the presence of both aleatory and epistemic
uncertainties. These types of formulations require to propagate the uncertainty
described with different mathematical formalisms and to manage them in the
optimization process.

A first type of mixed uncertainty MDO problems combining interval and prob-
ability formalisms has been treated in the literature. Xia et al. (2016) proposed an
adaptation of the sequential-MDO (S-MDO) formulation with interval uncertainty.
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It is a decomposed bi-level MDO formulation. In the first step of S-MDO, a
concurrent optimization of each discipline is performed without considering the
other disciplines. It supposes that each discipline (or subsystem) may present
objective functions. In this step, the interdisciplinary coupling variables are con-
sidered as local variables and optimized along with the local design variables. After
these multiple local optimizations, even though different solutions for the different
subsystems are found, the obtained local design variables and interdisciplinary
couplings are used to form an hyper-interval from which a potential Pareto points
could be determined. Based on the obtained potential Pareto points, a combination
of global variables and coupling variables is dispatched into subsystems. Then
sequentially, each subsystem carries out optimization under consistency constraints
to ensure multidisciplinary feasibility. S-MDO formulation has been extended to
account for interval uncertainty. During the first step of concurrent optimization,
a fixed range (by expert opinion, for instance) is associated with the coupling
variables. Then, a robust optimization under interval uncertainty is solved for
each subsystem. A double-loop approach using genetic algorithm is employed to
propagate interval uncertainty (inner loop) and to solve the full autonomy robust
optimization problems. In the second step, in order to ensure interdisciplinary
feasibility, a design point is said to be consistently robust if the maximum variation
between the output coupling variable and the input coupling variable is within a
specified tolerance range (interval). The advantage of such an approach is that it
does not require to assume an hypothetical distribution for the uncertain variables.
However, tolerance ranges for the coupling variables and acceptable variation range
of objectives should be determined by the decision maker. These tolerance ranges
have an important impact on the ability for the problem solution to converge to an
optimum.

Hu et al. (2013) proposed an approximation assisted multi-objective collabo-
rative robust optimization under interval uncertainty by using a single-objective
optimization problem to coordinate all system and subsystem multi-objective
optimization problems with a CO framework. The developed formulation converts
the consistency constraints of CO into penalty terms which are integrated into the
system and subsystem objective functions. The upper-level problem coordinates
the shared and coupling variables and guides the lower-level problems, while a
system problem in the lower-level attempts to find the optimum design solutions.
Uncertainties using interval formalism are considered and an interdisciplinary
uncertainty propagation technique is used to quantify the impact on the objective
and constraints. The robustness evaluation is assessed at the lower-level using a
worst-case robustness evaluation approach.

Xu et al. (2017) developed a non-probabilistic CO formulation to deal with
bounded correlated uncertain variables (e.g., using interval formalism). The authors
proposed a model of correlated uncertainties based on the ellipsoidal model (Ball
et al. 1997) and interval theory. The proposed approach consists in constructing
the correlated uncertainty models and incorporate their effects in MDO through the
addition of constraints in the CO framework.
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Yang et al. (2018) developed an UMDO approach relying on Gaussian processes
to account for mixed aleatory and interval uncertainty variables. Gaussian processes
are built using MDA (solved with FPI) to replace the computationally intensive
constraints. MDF under uncertainty and robustness-based CO are carried out to
solve such a problem. CMC using Gaussian processes is used to propagate the
uncertainty. An optimization algorithm is used to determine the bounds of the
reliability index using a derivation of FORM to account for interval uncertain
variables.

Wang et al. (2018) derived a sequential multidisciplinary design optimiza-
tion with uncertainty described using intervals. To propagate the uncertainty, a
dimension-by-dimension method (DDM) is adopted (Wang et al. 2018). DDM
relies on orthogonal polynomial to fit the function between the system outputs and
the uncertain variables dimension by dimension. SORA is carried out to decouple
the reliability analysis and the deterministic MDO. In the deterministic MDO, a
shifting distance is used to shift the deterministic constraint to take into account
the uncertainty. The shifting distance is determined based on interval analysis. The
deterministic MDO problem is solved with MDF.

Zaman and Mahadevan (2017) proposed MDO formulations in the presence of
both aleatory and epistemic uncertainty (expressed through the interval formalism).
The proposed formulations deal with data uncertainty for random variables arising
from interval data. Both types of uncertainties are treated with a unified probabilistic
formalism. The use of a four-parameter flexible Johnson family distributions to
represent the interval uncertainty enables the data to be fitted with different
distribution function shapes and removes fixed distribution type assumption.

Several UMDO approaches focus on evidence theory to model epistemic uncer-
tainty. Agarwal et al. (2004b) proposed an evidence theory-based approach to mul-
tidisciplinary RBDO in the presence of only epistemic uncertainty using continuous
response surfaces for belief and plausibility functions and a sequential approximate
optimization approach. Evidence theory is used to model the uncertainty arising
due to incomplete information or the lack of knowledge. As the belief functions are
discontinuous, a sequential approximate optimization strategy is carried out using
simplified trust region to drive the design optimization. Multidisciplinary system is
handled using a coupled approach.

Yao et al. (2013) proposed a MDO formulation under both aleatory and epistemic
uncertainties using probability and evidence theory formalisms. The methodology
consists of an extension of the deterministic multi-level MDO procedure MDF-
CSSO (Yao et al. 2012), where a sequential optimization and mixed uncertainty
analysis (SOMUA) algorithm is used to decompose the traditional double-level
reliability-based optimization problem into separate deterministic optimization and
mixed uncertainty analysis sub-problems, which are iteratively solved until the
convergence is achieved. SOMUA generalizes SORA by relying on FORM-UUA
(FORM-Unified Uncertainty Analysis, see Chapter 4 for more details on FORM-
UUA), a generalization of FORM to account for epistemic uncertainty described
with evidence theory. In MDF-CSSO, in a first step, surrogate models of the exact
disciplinary models are built independently. Then in a second step, based on these
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surrogate models and an initial baseline, MDF is carried out to quickly identify the
promising region and roughly identify the optimum. In a third step, CSSO is used
to organize the concurrent disciplinary optimization and the system coordination.
The discipline surrogate models are improved during CSSO by adding the feasible
candidates into the DoE. Then, based on the CSSO results, a MDA with the exact
disciplines is performed and defines the new baseline for the next MDF. This process
is repeated until convergence. The efficiency of this formulation depends on the
accuracy of surrogate models employed in CSSO. Moreover, the proposed approach
transforms the problem into a deterministic one by adding a constraint for each focal
element, thus making the approach computationally expensive.

Guoqiang et al. (2018) proposed a derivation of the SORA UMDO strategy to
carry out multidisciplinary reliability analysis taking into account both probability
and evidence theory formalisms. Using on Bayes theorem and the maximum entropy
principle, the probability distribution is assumed as piece-wise uniform in focal
elements of evidence theory, and then the mean, variance, PDF, and CDF of
epistemic uncertainty variables are defined. For the reliability analysis, a MPP-based
method is modified to account for the presence of evidence theory. MDF and BLISS
are used to solve the SORA step which involves deterministic MDO problem.

Zhang and Huang (2010) developed a UMDO formulation to deal with mixed
aleatory and fuzzy uncertainties. The proposed approach extends SORA to enable
epistemic uncertainty description using the possibility theory. At each iteration
of SORA, a probability/possibility analysis and a deterministic MDO are carried
out. After solving the deterministic MDO, the maximal grade point of each fuzzy
design variable and the expected value of each random variable may be determined.
Then, probability/possibility analysis is applied to estimate the feasibility of each
probability/possibility constraint at the current deterministic MDO design point.
To improve the feasibility of constraints which violate the probability/possibility
requirements, constraints in deterministic MDO are shifted with the MPPs deter-
mined in probability/possibility analysis of the previous cycle.

Within the framework of mixed possibility and probability theories, Li et al.
(2013) proposed also an extension of SORA where the reliability analysis and the
deterministic MDO use single-level and bi-level MDO strategies. The multi-level
MDO process relies on the work performed around the combination of BLISS and
CO formulations for deterministic problems (Zhao and Cui 2011) but adapted for
the presence of possibility theory. Based on the fuzzy random variables theory and
the use of a−cut set (see Chapter 2 on fuzzy sets), the initial fuzzy UMDO problem
is transformed into a standard probability UMDO problem at the optimal a−cut set.

7.8 Summary

The importance of taking into account uncertainty in MDO problems has spread
among academia and industry in the last decades; however, UMDO is still in the
early stage of development compared to deterministic MDO. In addition to the
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Fig. 7.35 Classification of uncertainty-based multidisciplinary design optimization

challenges of deterministic MDO, the presence of uncertainty in UMDO makes the
UMDO problem solving more complex. In this chapter, based on the uncertainty
propagation methodologies for multidisciplinary systems presented in Chapter 6,
UMDO formulations have been described. The specificity of MDO relies on the
management of interdisciplinary couplings which become uncertain variables in the
presence of uncertainty. Different strategies for UMDO problem solving have been
proposed in the literature and in summary the classification presented in Figure 7.35
may be adopted.

A toy case problem has been used to illustrate the consequences of the presence
of uncertainty in MDO and to highlight the advantages and drawbacks of each
technique described in the chapter.
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