
Chapter 4
Reliability Analysis

Jérôme Morio, Loïc Brevault, and Mathieu Balesdent

Assessing the reliability of a complex system with uncertainty propagation consists
in estimating its probability of failure. Common sampling strategies for such tasks
are notably based on Monte Carlo sampling. This kind of methods is well suited to
characterize events of which associated probabilities are not too low with respect to
the simulation budget. However, for critical systems such as aerospace vehicles,
the reliability specifications often induce very low probability of failures (said
below 10−4). In this case, Monte Carlo based methods are not efficient inducing
unaffordable costs with regard to the available simulation budget. In this chapter,
we review the main simulation techniques to estimate low failure probabilities with
accuracy.

4.1 Introduction

Analyzing the reliability of a complex system often corresponds to the estimation of
its failure probability. A significant number of specific methods has been proposed
to estimate this probability when the system uncertainties are not considered such
as fault trees or formal methods. In this case, the global system failure probability
may be estimated with some cascade of conditional probabilities. If the uncertainties
of the system inputs may be modeled as random variables, then the system failure
probability is expressed with an integral. Within the context of complex system
design and optimization under uncertainty, the constraints of the optimization
problem are often formulated through a probability that the constraint exceeds
a given threshold, resulting in the need to estimate a probability of failure (see
Chapter 5 for more details on optimization under uncertainty). For the design of
aerospace vehicles, these failure probabilities might be low with respect to the
affordable simulation budget and therefore efficient reliability analysis techniques
are required.

© Springer Nature Switzerland AG 2020
L. Brevault et al., Aerospace System Analysis and Optimization in Uncertainty,
Springer Optimization and Its Applications 156,
https://doi.org/10.1007/978-3-030-39126-3_4

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39126-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-39126-3_4


120 4 Reliability Analysis

Discipline
g( ).

black-box model

- Uncertainty formalims

- Uncertain variable U

choice

Input model Output model

Y=g(U)

QoI: P(g(U)>T)I

reliability analysis

Fig. 4.1 Reliability analysis for single discipline problem (QoI: quantity of interest)

Let us assume that the considered complex system is a deterministic black-box
function g(·) with a d-dimensional random input U with known joint PDF φ(·) of
support Rd . For the sake of clarity, we assume the system failure is only an output
threshold exceedance, that is g(u) > T with T a scalar. The methods described in
the following chapter are still valid even for more intricate failure model. Reliability
engineering techniques aim thus at estimating the failure probability P (g(U) > T ),
that is (Figure 4.1):

Pf = P (g(U) > T ) =
∫
Rd

1(g(u)>T )φ(u)du = E
(
1g(U)>T

)
. (4.1)

with 1(·) the indicator function such that 1(g(u)>T ) = 1 if g(u) > T , 0 otherwise.
Due to the critical nature of a system failure, Pf takes in general low values (as an
indication, one may consider Pf < 10−4). Nevertheless, the accuracy required for
the estimation of Pf is very high because the consequences of a misestimation, and
particularly of an underestimation of Pf may be catastrophic.

The estimation of Pf corresponds to an integral computation. However, numer-
ical deterministic integration methods such as Gaussian quadrature (Novak 1988)
or sparse grids (Smolyak 1963; Gerstner and Griebel 2003) are not adapted in this
context. They require some smoothness of the function to be integrated: it is not
the case here since we integrate an indicator function 1(g(·)>T ). Moreover, these
methods are efficient when the dimension d is small (as an indication, one should
have d < 5): this is typically not the case for a complex system.

One may sort the different techniques of failure probability estimation into four
main categories:

• the simulation techniques which consist of input uncertainty propagation,
• the statistical methods which enable, from a set of output samples, to estimate

Pf ,
• the reliability-based approaches which take advantage of geometrical considera-

tions on the function g(·), sometimes combined with sampling,
• the use of surrogate models which are of interest for computational time

consuming systems g(·).
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The exhaustive analysis of the main available techniques has already been done in
Morio and Balesdent (2015). Thus, for the sake of brevity, we only focus on the
most well-known techniques for reliability assessment.

The relative deviation or coefficient of variation CV of an estimator P̂ of Pf is
given by the following ratio:

CV (P̂ ) =
√
V(P̂ )

E(P̂ )
. (4.2)

We will use this metrics in the following to compare the different probability
estimate for a given simulation budget. The toy case considered in this chapter is
the following three dimensional function g(·):

g
(
u(1), u(2), u(3)

)
= 150 + exp

(
−0.01

(
u(1)

)2
)

− 0.02 ∗ 0.01 ∗ (u(2))5

−0.01 exp
(
−0.1 ∗ u(3)

)
.

The random input U follows a Gaussian distribution with zero mean and
covariance matrix 0.7I3 with I3 the identity matrix. The threshold T is set to 150.9
so that an estimation of Pf with a budget for a Crude Monte Carlo sampling of 107

samples is 2.92 × 10−4. It is considered as the reference for this chapter to compare
the alternative techniques on this toy case.

4.2 Simulation Methods for Reliability Analysis

4.2.1 Crude Monte Carlo

As the failure probability of Equation (4.1) is an expectation, the law of large
numbers may be applied. Crude Monte Carlo (CMC) (Silverman 1986; Sobol 1994;
Kroese et al. 2014) takes advantage of this feature to estimate the probability Pf .
For that purpose, one generates M independent and identically distributed (i.i.d.)
samples u(1), . . . , u(M) with PDF φ(·) and computes their outputs through the
function g(·): g

(
u(1)

)
, . . . , g

(
u(M)

)
. The failure probability Pf is then estimated

with:

P̂ CMC
f = 1

M

M∑
i=1

1g(u(i))>T . (4.3)

This estimate P̂ CMC
f converges almost surely when M → +∞ to the failure

probability Pf due to the law of large numbers (Sobol 1994). The coefficient of
variation of the estimator P̂ CMC

f is given by
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Table 4.1 Failure
probability estimation with
CMC for the toy case

P̂ CMC
f CV

(
P̂ CMC

f

)
Simulation budget

2.40 × 10−4 197% 103

2.82 × 10−4 61% 104

2.79 × 10−4 15% 105

2.85 × 10−4 7% 106

CV
(
P̂ CMC

f

)
=

√
V

(
P̂ CMC

f

)

E

(
P̂ CMC

f

) = 1√
M

√
Pf − P 2

f

Pf

. (4.4)

Since we consider rare event estimation, Pf may take low values and thus

lim
Pf →0

CV
(
P̂ CMC

f

)
= lim

Pf →0

1√
MPf

= +∞. (4.5)

The coefficient of variation is consequently unbounded. To estimate a probability
Pf of order 10−4 with a 10% relative deviation, at least 106 samples are required
which is often not affordable on real applications.

The results of probability estimation with CMC for the toy case are proposed in
Table 4.1. The variability of CMC estimate decreases with rate

√
M . CMC samples

u(i) that lead to a failure, that is 1g(u(i))>T = 1, are given in Figure 4.2. Their

distribution is far from the initial Gaussian distribution. More than 105 samples
are required to get a CV lower than 10%. CMC is thus not adapted to rare event
probability estimation since the simulation budget to get a low CV is often not
available for complex systems.

4.2.2 Importance Sampling

The idea of importance sampling (IS) (Bucklew 2004) is to rewrite the integral of
Equation (4.1) with an auxiliary distribution ψ(·) such that

Pf =
∫
Rd

1(g(u)>T )

φ(u)

ψ(u)
ψ(u)du = Eψ

(
1g(U)>T

φ(U)

ψ(U)

)
. (4.6)

The notation Eψ means that mathematical expectation is done under the distribution
ψ(·). This notation will only be used in this section to avoid some confusions.

The support of the distribution ψ(·) must contain the support of φ(·) to avoid
biased estimates. One may also notice that if ψ = φ, IS is CMC. Then, the
principle of IS is similar to CMC since the failure probability is still described as
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Fig. 4.2 CMC samples u(i) that lead to 1g(u(i))>T = 1

an expectation and thus, the law of large numbers may be applied. One generates
M i.i.d. samples u(1), . . . , u(M) with the input PDF ψ(·) and computes their outputs
through the function g(·): g

(
u(1)

)
, . . . , g

(
u(M)

)
. The failure probability Pf is then

estimated with

P̂ IS
f = 1

M

M∑
i=1

1g(u(i))>T

φ
(
u(i)

)
ψ

(
u(i)

) , (4.7)

where φ(·)
ψ(·) is called the likelihood ratio. As P̂ CMC

f , the estimate P̂ IS
f converges

almost surely when M → +∞ to the failure probability Pf . Nevertheless, the
choice of ψ(·) is of high importance to reduce the variance of the estimator. A bad
choice of ψ(·) may also increase the variance. Let us consider the variance of the IS
probability estimate.
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Table 4.2 Failure
probability estimation with IS
for the toy case

P̂ IS
f CV(P̂ IS

f ) Simulation budget

2.78 × 10−4 27% 3000

2.68 × 10−4 7% 6000

2.84 × 10−4 4.6% 15,000

2.86 × 10−4 2.4% 30,000

V ar
(
P̂ IS

f

)
=

V ar
(
1g(U)>T

φ(U)
ψ(U)

)

M
. (4.8)

As variances are non-negative quantities, the optimal auxiliary density ψopt (·) is
determined by cancelling the variance in Equation (4.8). It may be shown that
ψopt (·) is then defined with (Bucklew 2004)

ψopt (u) = 1g(u)>T φ(u)

Pf

. (4.9)

The optimal auxiliary density ψopt (·) depends on Pf and is thus unusable in
practice. Let us notice that the CMC samples of Figure 4.2 follow ψopt (·) as
this distribution may be seen as a conditional distribution. A valuable auxiliary
distribution ψ(·) will be close to the shape of ψopt (·). The framework to determine
an efficient auxiliary distribution is rather large. Unless an initial guess is possible
thanks to some a priori knowledge on g, the auxiliary distribution has to be learnt
iteratively for a given range of models (parametric or nonparametric) for ψ(·).
Recent advances on this subject are the cross-entropy optimization of importance
sampling parametric distribution ψλ(·) (De Boer et al. 2005) and nonparametric
adaptive importance sampling (NAIS) where ψ(·) is modeled with kernel density
estimator (Zhang 1996; Morio 2012).

NAIS has been applied to the toy case. With a budget simulation of 6000 samples,
the estimated failure probability with NAIS is 2.68 × 10−4 with a CV of 6.5%.
The variance reduction is consequently significant compared to CMC. All the NAIS
results are gathered in Table 4.2 for different simulation budgets. Figure 4.3 also
shows samples generated during some iterations of NAIS algorithms.

NAIS is particularly suited to the toy case because the dimension d is low. When
d is greater than 10, finding an efficient IS auxiliary distribution becomes more
difficult even in the parametric case.

4.2.3 Subset Simulation

Subset simulation (SS) also called sometimes importance splitting, subset sampling
or sequential Monte Carlo, aims at decomposing the failure probability Pf as a
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Fig. 4.3 Samples u(i) at the different iterations of NAIS algorithm (black: first iteration, green:
second iteration, red: third and last iteration)

product of conditional probabilities that can be estimated with a classical CMC
approach. Different variants have been then proposed in the recent years (Au and
Beck 2001; Cérou et al. 2012; Botev and Kroese 2012).

Let us consider the set A = {u ∈ R
d |g(u) > T }, the probability Pf may

be rewritten with Pf = P(U ∈ A). The principle of SS is to iteratively estimate
supersets of A and then to estimate P(U ∈ A) with conditional probabilities.

Let us define A0 = R
d ⊃ A1 ⊃ . . . ⊃ Ap−1 ⊃ Ap = A, a decreasing sequence

of Rd subsets with smallest element A = Ap. The easiest way to get some subsets
Ai is to choose a sequence of thresholds T = Tp > Tp−1 > . . . > Ti > . . . >

T0 = −∞ and then consider that Ai = {u ∈ R
d |g(u) > Ti} for i = 0, . . . , p. This

definition is indeed well adapted to threshold exceedance probability estimation.
The probability Pf is then defined with Bayes’ theorem as
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Pf = P(U ∈ A) =
p∏

i=1

P(U ∈ Ai |U ∈ Ai−1) =
p∏

i=1

P(g(U) > Ti |g(U) > Ti−1),

(4.10)
where P(U ∈ Ai |U ∈ Ai−1) is the probability that U ∈ Ai knowing that U ∈ Ai−1.
The probabilities P(U ∈ Ai |U ∈ Ai−1) may then be estimated through Monte Carlo
simulations with samples of the densities hi−1(·), the distributions of U restricted
to the set Ai−1. The knowledge of hi−1(·) is barely available in general but let us
assume first that it is the case here. The different stages of SS to estimate Pf are
thus the following ones when all the thresholds Ti are inputs of the algorithm:

1. Set i = 1, and h0 = φ.
2. Generate M samples ui

(1), . . . , ui
(M) from hi−1(·) and apply the function g(·) to

get g
(

ui
(1)

)
, . . . , g

(
ui

(M)

)
.

3. Estimate the probability P(U ∈ Ai |U ∈ Ai−1) with CMC by P̂ CMC
i ,

P̂ CMC
i = 1

M

M∑
j=1

1
g
(

ui
(j)

)
>Ti

.

4. Set i = i + 1 and if i < p + 1, go back to stage 2. Otherwise, estimate the
probability Pf with

P̂ SS =
p∏

i=1

P̂ CMC
i .

CMC is suitable to estimate the conditional probabilities since they do not corre-
spond to rare events and thus, P̂ CMC

i may have a low variance with a reasonable
simulation budget M . The variance of P̂ SS may be then lower than a CMC direct
approach when the event g(U) > T is particularly rare, that is when Pf < 10−4

(Cérou et al. 2012).
As stated before, the complete knowledge of hi−1(·) is not available in most

cases but this density is known up to a constant as

hi−1(u) = 1g(u)>Ti−1φ(u)

P(g(U) > Ti−1)
∝ 1g(u)>Ti−1φ(u).

Markov Chain Monte Carlo (MCMC) is a well-known class of algorithms to sample
from a density that is known up to a constant. Metropolis–Hastings algorithm or
Gibbs sampling (Robert and Casella 2005) are typical MCMC methods that may
be used in that case. Moreover, the difficulty of initializing these approaches is
negligible here since the samples ui−1

(j) such that 1
g
(

ui−1
(j)

)
>Ti−1

are distributed exactly

with hi−1(·) and may be used to start the Markov chain. When φ(·) is Gaussian,
Crank–Nicolson technique is also another method to sample with hi−1(·).
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Table 4.3 Failure
probability estimation with
SS for the toy case

P̂ SS
f CV(P̂ SS

f ) M Simulation budget

2.85 × 10−4 205% 100 1462

3.03 × 10−4 73% 500 11,645

2.69 × 10−4 38% 1000 23,290

2.85 × 10−4 16% 10,000 220,900

A priori choice of thresholds is tricky since one has to control that the different
conditional probabilities are not too low and may be estimated accurately with
Monte Carlo. A significant variance for a given conditional probability highly
impacts the whole performance of SS. In fact, an optimal choice of the sequence
Ai and thus for Ti is given when P(U ∈ Ai |U ∈ Ai−1) = ρ, where ρ is a constant,
that is when all the conditional probabilities are equal. The variance of P̂ SS is indeed
minimized in this configuration as shown in Lagnoux (2006) and Cérou et al. (2006).
In practice, the values of Ti for i = 0, . . . , p are set in an adaptive manner to perform
valuable results (Cérou et al. 2012) using ρ-quantile of samples generated with the
PDF hi−1(·).

In practice, the different stages of SS to estimate Pf are the following ones:

1. Set i = 1, ρ ∈]0, 1[ and h0 = φ

2. Generate M samples ui
(1), . . . , ui

(M) from hi−1(·) and apply the function g(·) in

order to have g
(

ui
(1)

)
, . . . , g

(
ui

(M)

)
.

3. Estimate the ρ-quantile γ i
ρ of the samples g

(
ui

(1)

)
, . . . , g

(
ui

(M)

)
.

4. Generate M samples ui+1
(1) , . . . , ui+1

(M) that follows hi(·) with MCMC from the

samples g
(

ui
(1)

)
, . . . , g

(
ui

(M)

)
that are greater than γ i

ρ .

5. If γ i
ρ < T , set i = i+1 and go back to stage 3. Otherwise estimate the probability

with

P̂ SS = (1 − ρ)i−1 × 1

M

M∑
j=1

1
g
(

ui−1
(j)

)
>T

.

SS is not really efficient on the toy case as the failure probability is over 10−4 as
shown in Table 4.3. The performance of SS is of the same order as CMC in that
case. Figure 4.4 shows the SS samples for different iterations when M = 500.

SS gives its best results relatively to the other methods when the failure
probability is lower than 10−4 and when the dimension d is greater than 10. More
than 104 samples are often necessary to get a probability estimation, so that it is
hard to apply SS directly on time-costly applications.



128 4 Reliability Analysis

Fig. 4.4 Samples u(i)
(M) at different iterations of SS algorithm (black: first iteration, green: third

iteration, red: seventh and last iteration)

4.3 Statistical Approaches for Reliability Analysis

The principle of the following theories is to approximate the maximum of g(U) or
its tail PDF with a parametric model. One assumes in this section that a finite set of
i.i.d. samples g(u(1)), . . . , g(u(M)) of the output is available, but also that one cannot
generate new samples of g(u). The i.i.d. hypothesis may be relaxed for stationary
samples.

4.3.1 Extreme Value Theory

The Fisher–Tippett–Gnedenko theorem (Embrechts and Schmidli 1994) shows that
the maxima SM of the sequence g

(
u(1)

)
, . . . , g

(
u(M)

)
converges to a generalized

extreme value (GEV) distribution Fξ :



4.3 Statistical Approaches for Reliability Analysis 129

If there exists aM and bM , with aM > 0 such that, for all y ∈ R,

P

(
SM − bM

aM

≤ y

)
M→∞−→ F(y),

where F is a non-degenerate CDF, then F is a GEV distribution Fξ . In this case, F

is said to belong the maximum domain of attraction (MA) of ξ , F ∈ MA(ξ). The
set of GEV distributions is composed of three distinct types, characterized by ξ = 0,
ξ > 0, and ξ < 0 that correspond to the Gumbel, Fréchet, and Weibull distributions,
respectively. The expression of aM and bM is known for usual PDF (Embrechts and
Schmidli 1994). An approximation of Pf (Embrechts and Schmidli 1994) for large
values M is also available:

P̂ EV T
f = 1

M

(
1 + ξ

(
T − bM

aM

))− 1
ξ

. (4.11)

Equation (4.11) is often difficult to use in practice because the estimations of aM ,
bM , and ξ have a strong variance. This approach is notably considered when only
samples of maxima are available. The samples of a monthly river maximum height
correspond, for instance, to this situation. When it is not the case, it is required
to group the samples g

(
u(1)

)
, . . . , g

(
u(M)

)
into blocks and fit the GEV using the

maximum of each block.

4.3.2 Peak Over Threshold Approach

Instead of grouping the samples into block maxima, peak over threshold (POT)
considers the largest samples g

(
u(1)

)
, . . . , g

(
u(M)

)
to estimate the probability Pf .

The Pickands–Balkema–de Haan theorem (Embrechts and Schmidli 1994) links
EVT and threshold exceedance:

Let us assume that the distribution function F of i.i.d. samples g
(
u(1)

)
, . . . , g(

u(M)

)
is continuous. Set y∗ = sup{y, g(y) < 1} = inf{y, g(y) = 1}. Then, the

two following assertions are equivalent:

1. F ∈ MA(ξ),
2. there exists a positive and measurable function u 
→ β(u) such that

lim
t 
→y∗ sup

0<y<y∗−t

|F t(y) − Hξ,β(t)(y)| = 0,

where F t(y) = P(g(U) − t ≤ y|g(U) > t), and Hξ,β(t) is the CDF of a generalized
Pareto distribution with shape parameter ξ and scale parameter β(t).

The expression of the generalized Pareto CDF is the following
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Hξ,β(x) =

⎧⎪⎨
⎪⎩

1 −
(

1 + ξx
β

)−1/ξ

, for ξ �= 0,

1 − exp
(
− x

β

)
, for ξ = 0.

This theorem may be applied to estimate the probability of exceedance P(g(U) >

T ) as the distribution of g(U) knowing g(U) > t is modeled with a parametric PDF.
Indeed, the probability Pf may be rewritten as

P(g(U) > T ) = P(g(U) > T |g(U) > t)P(g(U) > t). (4.12)

for T > t . A natural estimate of P(g(U) > t) is given by a Monte Carlo estimate

P(g(U) > t) ≈ 1

M

M∑
i=1

1g(u(i))>t . (4.13)

With the Pickands–Balkema–de Haan Theorem and for large values of t , one has

P(g(U) > T |g(U) > t) ≈ 1 − Hξ,β(t)(T − t). (4.14)

The parameters (ξ, β) of the Pareto distribution H have to be estimated with the
samples g(u(i)) such that g(u(i)) > T . The estimate of Pf with POT is then built
with

P̂ POT
f =

(
1

M

M∑
i=1

1g(u(i))>t

)
× (

1 − Hξ,β(t)(T − t)
)
. (4.15)

Three parameters have to be determined in the POT probability estimate of
Equation (4.15): the threshold t and the couple (ξ, β(t)). The choice of t is sensitive
since it determines the samples that are used in the estimation of (ξ, β(t)). Indeed,
a high threshold leads to consider only a small number of samples in the estimation
of (ξ, β(t)) and thus their estimate can be then spoiled by a large variance, whereas
a low threshold introduces a bias in the probability estimate (Dekkers and De Haan
1999). There are several methods to determine a valuable threshold t knowing the
samples. The most well-known ones are the Hill plot and the mean excess plot
(Embrechts and Schmidli 1994). These methods are nevertheless very empirical
since they are based on graphical interpretation. Automatic threshold selection has
also been proposed such as in Thompson et al. (2009) based on the distribution of
the difference of the parameter estimates when the threshold is changed. It is often
necessary in practice to compare the estimates of t given by the different methods.
Once the value of t is set, the parameters (ξ, β(t)) are often estimated by maximum
likelihood (Coles 2001) or more occasionally by the method of moments (Hosking
and Wallis 1987). An overview of these different methods can be found in Neves
and Fraga Alves (2004). The statistical POT approach for different budget M is
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Table 4.4 Failure
probability estimation with
POT for the toy case

P̂ POT
f CV(P̂ POT

f ) M

4.69 × 10−4 135% 5.102

3.71 × 10−4 112% 103

3.18 × 10−4 51% 5.103

3.91 × 10−4 42% 104

applied on the toy case and the corresponding results are given in Table 4.4. The
POT threshold is evaluated with the method of Thompson et al. (2009) and the
parameters of the Pareto distribution are estimated with maximum likelihood. One
notices an overestimation of the failure probability whatever the considered budget
simulation.

When resampling is not possible, extreme value theory and POT are the only
solutions to estimate a failure probability. In the contrary case, if resampling is
possible, specific sampling methods such as IS or SS should be considered to
estimate accurately a failure probability.

4.4 Reliability Based Approaches

4.4.1 First-Order Reliability Method (FORM)/Second-Order
Reliability Method (SORM)

First-order and second-order reliability method (FORM/SORM) (Madsen et al.
1986; Bjerager 1991; Yan-Gang and Tetsuro 1999; Lassen and Recho 2006) is
a probabilistic computational approach for structural reliability. FORM gives an
analytic approximation of the failure probability when the inputs are standard
normal by estimating the most probable failure point (MPP). The limit state surface
is defined as the input region where g(U) = T . Then, the MPP also called design
point is the point with the minimum distance from the origin to the limit state
surface. This design point is determined with optimization methods. The failure
probability is then estimated with the evaluation of a standard normal CDF at the
design point. In that case, the limit state surface is approximated by a linear function
at the design point. Thus, accuracy problems may occur when the performance
function is strongly non-linear or if the most probable failure point is not unique
(Sudret 2012). The second-order reliability method (SORM) (Kiureghian et al.
1987) has been established as an attempt to improve the accuracy of FORM as it
approximates the limit state surface at the design point by a second-order surface.
When the most probable failure point is not unique, FORM and SORM with
multiple design points have been proposed in Kiureghian and Dakessian (1998).
FORM/SORM method is applied in three stages to estimate Pf :
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1. Apply a transformation V (·) on the input U such that R = V (U) with R a
standard normal variable. Depending on the available information on the PDF
of U, several transformations may be considered (Nataf 1962; Hasofer and
Lind 1974; Pei-Ling and Kiureghian 1991; Rosenblatt 1952; Lebrun and Dutfoy
2009a,b).

2. Evaluate the most probable failure point β such that

β = argmin
R

|| R || (4.16)

s.t. T − g(V −1(R)) = 0, (4.17)

where ||.|| is the Euclidian norm. The constraint T − g(V −1(R)) = 0 defines the
limit of failure space for the variable R. The parameter β is the design point and
||β|| is the reliability index. Several algorithms have been proposed to solve this
optimization procedure as described in Hasofer and Lind (1974), Pei-Ling and
Kiureghian (1991), Rackwitz and Flessler (1978), and Dietlevsen and Madsen
(1996).

3. Estimate the failure probability with in the case of FORM:

P̂ FORM
f = 	(−||β||), (4.18)

where 	 is the CDF of standard normal variable. In the case of SORM, the failure
probability is given by Breitung (1984)

P̂ SORM
f = 	(−||β||)

d−1∏
i=1

(1 − βκi)
− 1

2 , (4.19)

where κi denotes the principal curvature of T − φ(V −1(R)) at the minimum
distance point β. The term κi is defined with

κi = ∂2
(
T − φ

(
V −1(R)

))
∂2R(i)

∣∣∣∣∣
R=β

, (4.20)

with R(i), i = 1, . . . , d , a component of the vector R. These methods do not need
a large simulation budget to obtain a valuable result. Nevertheless, the different
assumptions require that one has to be careful when one applies FORM/SORM to
a realistic case of function g(·). There is also no control of the error in FORM/
SORM. However, it is possible from the FORM/SORM design point to propose an
importance sampling auxiliary density and then to sample with it to estimate the
rare event probability.

Standard FORM, FORM with multiple design points, and SORM have been
applied to the toy case and give the results summarized in Table 4.5. The standard
FORM design point is estimated to β = [3.07, 0,−5.53×10−2] with 1096 samples
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Table 4.5 Failure
probability estimation with
FORM/SORM for the toy
case

Algorithm P̂f M

FORM 1.21 × 10−4 1096

FORM multiple design point 2.43 × 10−4 2192

SORM 1.30 × 10−4 1200
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Fig. 4.5 Samples generated during FORM optimization and the design point in green

as shown in Figure 4.5. The corresponding P̂ FORM
f does not lead to an accurate

estimation as the limit state surface is non-linear and the design point is not unique
in this toy case. FORM with multiple design points finds a second design point
located at [−3.10, 0.09,−3.22] that doubles the probability given by FORM but
still underestimates the true failure probability.

FORM/SORM are very interesting in general to get a rough approximation of the
failure probability with limited simulation budgets, but as no control of the error is
available, it is often better to combine FORM/SORM with IS for instance.
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4.4.2 Directional Sampling

The principle of directional sampling (DS) (Bjerager 1988), also known as direc-
tional simulation, is to aim at the limit-state function and then estimate the failure
probability as the mean of the failure probabilities over all the directions. DS may
be considered when the input U follows a Gaussian standard distribution. If it is not
the case, iso-probabilistic transformations should be applied on the inputs several
transformations may be considered (Nataf 1962; Hasofer and Lind 1974; Pei-Ling
and Kiureghian 1991; Rosenblatt 1952; Lebrun and Dutfoy 2009a,b). DS takes
advantage of the rewriting of the standard Gaussian vector U as a product of random
variables

U = RA,

where R2 is a chi-squared random variable with d degrees of freedom with density
φR and A is a random unit vector uniformly distributed on the d-dimensional unit
sphere �d with density φA. R2 and A are independent random variables. The failure
probability Pf and the integral of Equation (4.1) may be then expressed as follows:

Pf =
∫

A∈�d

∫ +∞

0
1g(ra)>T φR(r)φA(a)dadr,

=
∫

A∈�d

P(g(RA) > T |A = a)φA(a)da.

The DS estimation corresponds in fact to a CMC estimation of E (P(g(RA) > T |A
= a)). In practice, a sequence of M i.i.d. random direction vectors Aj for j =
1, . . . ,M is generated and then, one determines rj such that g(rj Aj ) = T , by
dichotomy for instance. An estimate of P(g(RA) > T |A = Aj ) is given by 1 −
FR2

(
r2
j

)
, where FR2(·) is the CDF of a chi-squared random variable with d degrees

of freedom. This approximation is only valuable if there is only one intersection
point between the input failure region and the chosen sampling direction. The DS
probability estimate P̂ DS

f is then obtained with

P̂ DS
f = 1

M

M∑
j=1

(
1 − FR2

(
r2
j

))
.

DS has been applied to the toy case and all the estimated failure probabilities
are given in Table 4.6 for different number of directions. Samples that have been
generated when M = 100 are proposed in Figure 4.6. DS is very efficient on
this example as the dimension d is quite low and the function g(·) is regular and
differentiable.
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Table 4.6 Failure
probability estimation with
DS for the toy case

P̂ DS
f CV(P̂ DS

f ) M Simulation budget

2.92 × 10−4 24% 100 1850

2.86 × 10−4 12% 500 9430

2.87 × 10−4 7% 1000 18,830

2.91 × 10−4 2% 10,000 188,500

Fig. 4.6 Samples of DS algorithm for M = 100

The tuning of the number of directions M may be complicated in complex
systems. For that purpose, the choice of the directions Aj could be done adaptively
instead of randomly to focus on input regions that have the highest P(g(RA) >

T |A = Aj ) as shown in Zuniga et al. (2011) to reduce the estimate variance.
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4.5 Use of Surrogate Models in Rare Event Probability
Estimation

Being able to build an efficient surrogate model which allows to reduce the number
of calls to the expensive input–output function g(·) while keeping a reasonable accu-
racy of the probability estimate is the key point. Surrogate models are particularly
interesting in the case of rare event probability estimation as the surrogate model
has to be accurate not over all the support of U but only in the input region where
g(u) = T . The use of the exact function g(·) and its surrogate ĝ(·) in the probability
calculation will lead to the same result if ∀u ∈ R

d ,1g(u)>T = 1ĝ(u)>T . In other
words, the surrogate model might not be representative of the exact function outside
the zones of interest as it does not take part of the probability estimation. ĝ(·) has to
be a good classifier of samples for the failure prediction.

A great number of methods has been proposed and compared in recent years.
Polynomial chaos expansions (PCE) have been associated with Monte Carlo sam-
pling to estimate failure probabilities (Li and Xiu 2010). Support vector machines
have also been employed to estimate the domains of failure (Basudhar et al. 2008)
and been coupled to rare event estimator such as subset sampling (Bourinet et al.
2011a). Kriging has been extensively used with classical Monte Carlo estimator
(Echard et al. 2011), importance sampling method (Janusevskis and Le Riche 2012;
Schueremans and Van Gemert 2005; Balesdent et al. 2013; Dubourg et al. 2011),
importance sampling with control variates (Cannamela et al. 2008), or subset
simulation (Vazquez and Bect 2009; Li et al. 2012; Bect et al. 2012). All these
approaches are mainly based on three main ingredients:

• the type of surrogate models (PCE, Kriging, SVM, etc.),
• the surrogate model refinement strategy, that is how to choose samples that are

evaluated on the exact function g(·),
• the associated sampling strategy (CMC, IS, SS, etc.).

We will not review all the different combinations that have been proposed in the
literature but focus on two well-known methods for the sake of brevity.

4.5.1 Subset Sampling by Support Vector Margin Algorithm
for Reliability esTimation (2SMART)

The 2SMART method (Deheeger and Lemaire 2007; Bourinet et al. 2011a) is
dedicated to the use of adaptive subset sampling technique (SS) and consists in
defining one SVM model at each adaptive threshold involved in SS. For each
intermediate threshold, a SVM model is built using a three-stage refinement
approach (localization, stabilization, and convergence) which allows to accurately
represent the regions corresponding to the involved thresholds. At the ith stage of
SS, the main steps of 2SMART are as follows:
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Fig. 4.7 Limit state samples
at the last iteration of
2SMART (FERUM 4.1
toolbox)

1. A first set of samples is generated to build a SVM model ĝTi
(·) in the region

corresponding to the ith level of SS and some of these samples are used to
determine the current intermediate threshold Ti , using the ρ-quantile level of
SS and the SVM model in regression,

2. The SVM ĝTi
(·) is refined using a three-stage approach, in an iterative manner,

inducing resampling (by MCMC) and clustering of the generated samples. For
that purpose, three populations of samples of different size are generated and
used to refine the current SVM model.

3. The last step consists in evaluating the conditional probability P(ĝTi
(U) >

Ti |̂gTi
(U) > Ti−1), corresponding to the current threshold Ti .

2SMART has been applied on the toy case. The probability estimation is 2.82×10−4

with a CV equal to 17% for only 800 calls to the function g(·). The reduction of
the number of calls compared to SS is very significant. We show in Figure 4.7 the
limit-state function obtained with 2SMART algorithm from open source FERUM
4.1 Matlab® toolbox.

4.5.2 Active Learning Reliability Method Combining Kriging
and Probability Estimation Method

From the initial training set U , the Kriging properties are valuable to determine
the additional samples which have to be evaluated on g(·) to refine its surrogate
model. Active learning (Echard 2012) determines a new sample point u to add to
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the training set U by solving the following optimization problem:

max
u

[
1 − 	

( |T − ĝ(u,U )|
σ(u,U )

)]
, (4.21)

where 	(·) is the CDF of the standard Gaussian distribution and σ is the Kriging
variance. The used criterion generates a sample for which the Kriging prediction
is close to the threshold (numerator of Equation (4.21)) and which presents a high
prediction error (denominator of Equation (4.21)). Due to the monotonicity of the
involved CDF, the optimization problem Equation (4.21) is equivalent to:

min
u

|T − ĝ(u,U )|
σ(u,U )

. (4.22)

This criterion has been coupled with CMC (Echard et al. 2011), IS (Echard et al.
2013), SS (Echard 2012). In practice, the optimization problem is not solved, and
given a sample set {u(1), . . . , u(M)} provided by CMC, IS, or SS, the new sample
which will be added to the training set is determined by

u = argmin
u(1),...,u(M)

{ |T − ĝ(u1,U )|
σ(u(1),U )

, . . . ,
|T − ĝ(u(M),U )|

σ(u(M),U )

}
.

Active Kriging combined with CMC (105 samples) has been applied on the toy
case. With a limited budget simulation of 54 calls to the exact function g(·), the
estimated failure probability is 2.68 × 10−4 with a CV of 24%. The variance
reduction is consequently significant compared to CMC. We show in Figure 4.8
the CMC samples where the samples that have been really evaluated on g(·) are
highlighted.

Surrogate models are particularly adapted to rare event estimation as they offer
a low variance of the probability estimate with few calls to g(·). Nevertheless the
complexity required to set up and tune these algorithms is important and may be
case dependent. Moreover, surrogate models suffer from the curse of dimensionality.
Thus, it is often hard to apply them for the estimation of failure probabilities of high-
dimensional complex systems.

4.6 Brief Overview of Reliability Analysis with Both
Aleatory and Epistemic Uncertainties

Several works proposed to extend reliability analysis that is mainly developed within
the probability theory framework as presented in the previous sections, in order
to include alternative uncertainty description frameworks. This section presents
a brief overview of reliability analysis dealing with both aleatory and epistemic
uncertainties.
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Fig. 4.8 Population of CMC samples in active learning Kriging (in black) and samples that have
been evaluated on g(·) (in green)

Among the existing approaches for reliability analysis with both aleatory vari-
ables modeled with probability theory and epistemic variables described by an
alternative modeling framework (e.g., evidence theory, interval formalism, possi-
bility theory, Pbox) two families may be distinguished. The first ones transform
the epistemic uncertain variables in order to describe them with probability theory
and to use adaptation of the reliability analysis techniques presented in the previous
sections. The second ones manage both formalisms resulting in a nested loop for
the estimation of the bounds on the probability of failure. Some approaches try to
remove the nested loop to decrease the reliability analysis cost.

In reliability analysis, different techniques have been proposed in the case
where aleatory input distributions with interval uncertain parameters are considered
(Hurtado 2013; Balesdent et al. 2016). For instance, if the input uncertainty is
described by a Gaussian distribution but the mean value is only known within
an interval. Hurtado (2013) proposed to extend a technique called reliability plot
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Fig. 4.9 MPP in probability-based reliability analysis (left) and MPFE in evidence-theory-based
reliability analysis (right)

to account for interval uncertainty for the aleatory distribution hyperparameters.
Balesdent et al. (2016) proposed to combine Kriging, importance sampling, and a
dedicated refinement strategy of the surrogate model to find the upper and the lower
bounds on the probability of failure due to interval uncertainty. Within the more
general context of Pboxes, the probability of failure is defined within bounds given
by:

P f = min
φ

∫
Rd

1(g(u)>T )φ(u)du (4.23)

P f = max
φ

∫
Rd

1(g(u)>T )φ(u)du, (4.24)

where min and max mean that the optimization would be carried out over all
PDF φ(·) that satisfy the definition of the input Pbox. Schöbi and Sudret (2017)
proposed a reliability analysis approach in which the input variables are modeled
by Pboxes (in both cases, parametric and general). The authors developed a two-
level approach using Kriging surrogate models with adaptive experimental designs
at different levels of the reliability analysis. The input uncertainties are represented
using convex normal membership functions.

Similarly to the concept of Most Probable Point (MPP) of failure in probability
reliability analysis with the probability formalism, the concept of Most Probable
Focal Element (MPFE) has been proposed by Jiang et al. (2013). Due to the discrete
nature of the basic mass assignment, the MPFE is defined as a region rather than a
point, which has the maximum contribution to the failure probability (Figure 4.9).
Du (2008) proposed to extend FORM to the presence of evidence theory to account
for both aleatory and epistemic uncertainties into a unified framework. Let us
consider an input space divided between the aleatory space U and the epistemic
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space X . Consider also a state function U ∈ U × X ∈ X → g(U, X) and CXi

for i = {1, . . . , n} the focal elements of X,with n the number of focal elements. It is
possible to define the belief and plausibility of the probability of failure as follows:

Bel(Pf ) =
n∑

i=1

mX(CXi
)P[Gmax(U, X) > 0|X ∈ CXi

] (4.25)

P l(Pf ) =
n∑

i=1

mX(CXi
)P[Gmin(U, X) > 0|X ∈ CXi

] (4.26)

with Gmin(U, X) and Gmax(U, X) the global minimum and maximum values of
g(·) in the subset CXi

. The calculation of the belief or the plausibility measures is
transformed into the calculation of the minimum or maximum probability of failure
at each focal element of X. In order to compute Bel(Pf ) and P l(Pf ), it is necessary
to carry out interval analysis (IA) to determine Gmin and Gmax and probability
analysis (PA) to estimate the corresponding probability of failure. Du proposed to
introduce FORM-UUA to solve this nested problem. FORM is used for the PA and
non-linear optimization to solve IA. To overcome the nested loop problem, FORM-
UUA provides a sequential approach in which interval variables are fixed during
the MPP search in the aleatory space and optimization to find the maximum and
minimum of state function g(·) is performed with the aleatory variables fixed to
MPP. The values of both evidence theory measures indicate the effect of aleatory
uncertainty on a response while the gap between them reflects the effect of epistemic
uncertainty on the response. Yao et al. (2013) extended FORM-UUA to reformulate
the double-loop optimization problem into an equivalent single-level optimization
(SLO) problem.

Xiao et al. (2015) proposed to transform the variables described with evidence
theory into probability random variables. Support vector regression (SVR, see
Chapter 3) is used to build an approximation model of the limit-state function.
Based on the surrogate model, the MPP of the approximate reliability problem with
only random variables is searched out. Then, the MPFE of the original problem
with evidence variables is determined. Using the MPFE and the monotonicity of the
limit-state function, contributions of some focal elements to Belief and Plausibility
measures are estimated. Therefore, the number of focal elements involved in the
calculation of extreme values of the limit-state function is reduced, facilitating the
reliability analysis for mixed uncertain variables. The challenges of this approach
are the proper transformation of evidence variables into random variables and the
control of SVR uncertainty.

Nannapaneni and Mahadevan (2016) developed a probabilistic framework to
account for both aleatory uncertainty and epistemic uncertainty in the reliability
analysis. It is based on FORM, extended to include uncertain distribution param-
eters, distribution type, uncertain correlations, and model errors using auxiliary
variables, based on the probability integral transform and the theorem of total
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probability. This formalism enables to avoid the nested loop of uncertainty prop-
agation when accounting for different types of uncertainty formalism, resulting in a
single-loop approach combined with MCS and FORM for reliability analysis in the
presence of aleatory and epistemic uncertainties.

In the case the epistemic variables are modeled with interval instead of evidence
theory, Yang et al. (2015) proposed to combine Kriging (in a classification mode
instead of a regression approach), surrogate refinement and DIRECT optimization
algorithm (Finkel 2003) to find the maximum and minimum values of g(·) for each
aleatory sample and CMC to estimate the bounds on the probability of failure.

Within the framework of possibility theory, Mourelatos and Zhou (2005) pro-
posed a reliability estimation method with insufficient data. Instead of using
classical discretization methods (Akpan et al. 2002) or vertex methods (Penmetsa
and Grandhi 2002) to propagate the fuzzy uncertainty, the authors proposed a hybrid
global-local optimization method. The optimization approach is used to calculate
the confidence level of fuzzy response. The DIRECT (divisions of rectangles) global
optimizer is first used, followed by a local optimizer based on sequential quadratic
programming.

Mixed aleatory and epistemic reliability analyses are more complex to set up than
traditional probability estimation due to the need to combine different mathematical
formalisms to account for the diverse natures of uncertainty and to mix different
numerical analysis tools such as sampling, optimization, combinatorics calculations,
etc.

4.7 Summary

In this chapter, an overview of the main different algorithms that may be applied
for the estimation of rare event probabilities modeled by a threshold exceedance
of an input–output function g(·) has been presented. Their domain of applicability
may vary a lot from an algorithm to another and thus the choice of a given
simulation technique depends on practical characteristics of the reliability problem
such as the ability to resample, the knowledge we have on the density of g(U),
the computational cost and the non-linearity of g(·), the dimension of U, or the
complexity of the limit state surface. Figure 4.10 proposed a classification of the
reliability analysis techniques presented in this chapter.

In addition to the uncertainty propagation presented in Chapter 3 and the
reliability analysis presented in this chapter, in order to solve single discipline
optimization problem in the presence of uncertainty, it is necessary to address the
formulation of the optimization problem and to appropriately choose a suitable
optimization algorithm. The next chapter is focused on these key issues.
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Fig. 4.10 Classification of reliability analysis techniques
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