Chapter 2 ®
Uncertainty Characterization Qs
and Modeling

Loic Brevault, Jérome Morio, and Mathieu Balesdent

2.1 Introduction

2.1.1 Taxonomy of Uncertainty

The design process of complex systems such as aerospace vehicles involves
physics-based and mathematical models. A model is a representation of the reality
through a set of simulations and/or experimentations under appropriate assumptions
(Der Kiureghian and Ditlevsen 2009). Due to simplification hypotheses, lack
of knowledge and inherent stochastic quantities, models represent reality with
uncertainties. These uncertainties are quite large at the early phases of the design
process. The term uncertainty has various definitions and taxonomies depending
on the research communities. The concept of uncertainty is related to alterna-
tive concepts such as imperfection, ignorance, ambiguity, imprecision, vagueness,
incompleteness, etc.

Two different meanings are generally distinguished for uncertainty (Jousselme
et al. 2003):

* Uncertainty as a state of mind,
* Uncertainty as a physical property of information.

The first meaning describes the lack of knowledge and information of an agent to
make a decision. The second meaning refers to a physical property, representing
the limitation of the perception systems (for instance measurement uncertainty).
Different taxonomies and classifications of uncertainty have been proposed in the
literature such as the Bronner’s sociological point of view (Bronner 2015), the
taxonomy of ignorance by Smithson (2012), the uncertainty classification proposed
by Krause and Clark (2012), the uncertainty model developed by Bouchon-Meunier
and Nguyen (1996), the different types of uncertainty presented by Klir and
Wierman (2013), etc. To deal with uncertainty, a framework must be defined
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32 2 Uncertainty Characterization and Modeling

in which knowledge, information and uncertainty can be represented, combined,
managed, reduced, updated, etc.

In the aerospace design field, a consensus has been established on two main
categories of uncertainty: aleatory and epistemic, reflecting the two possible
meanings of uncertainty (Table 2.1), (Thunnissen 2005). Aleatory uncertainty is an
inherent physical property of information and cannot be reduced by collecting more
data or information. Epistemic uncertainty results from a lack of knowledge and can
be reduced by increasing our knowledge or collecting more information. Table 2.1
provides definition for these two types of uncertainty with some examples.

The distinction between the two types of uncertainty is important because the
use of an appropriate mathematical framework for uncertainty modeling depends
on the type, the knowledge, and data available to characterize such uncertainties.
Uncertainty can be classified in general into two categories, however, the sources
of uncertainty in the modeling of a system are multiples and are briefly detailed in
next section. The objective of this chapter is to present the different frameworks that
may be adopted to deal with uncertainty in the analysis and design of aerospace
systems. The rest of the chapter is organized as follows. In Section 2.1.2, the
various sources of uncertainty are discussed with a focus on the engineering
field. Then, in Section 2.2 various mathematical formalisms used to describe

Table 2.1 Aleatory and epistemic uncertainty

Aleatory uncertainty
e Definition:

From the Latin alea, meaning a die, it is the
inherent variability of the physical system and
the environment under consideration. Aleatory
uncertainty cannot be reduced by collecting
more information or data (Thunnissen 2005)

o Also referred to as:

Variability, stochastic uncertainty,
randomness, irreducible uncertainty
(Thunnissen 2005)

e Examples:

The presence, the direction and the amplitude
of a wind gust during a rocket launch, etc.

e Adapted mathematical framework for
uncertainty modeling:

Probability theory

Epistemic uncertainty

o Definition:

From the Greek epistemikds, meaning
knowledge, it corresponds to any lack of
knowledge or information about fundamental
phenomena. It encompasses the model
uncertainty which is associated to the
precision of the chosen simplified
mathematical models to represent the real
physical phenomena (Thunnissen 2005)

e Also referred to as:

Ignorance, subjective uncertainty, reducible
uncertainty (Thunnissen 2005)

e Examples:

The choice of a compressible or not, with
boundary layer or not, with turbulence or not,
flow modeling in aerodynamics represents
with more or less accuracy of the air flow
around an aerospace vehicle during its flight

e Adapted mathematical framework for
uncertainty modeling:

Imprecise probability, Dempster—Shafer
theory, Possibility theory, Probability boxes
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uncertainty are presented. Two key mathematical concepts are firstly introduced:
the sets and the measures. Then, the main existing uncertainty theories are briefly
overviewed including Imprecise probability theory, Evidence theory, Possibility
theory, Probability boxes theory, Interval formalism, and Probability theory. A
particular focus on the probability theory tools and associated methods is carried
out in Section 2.2.6. A final discussion to compare these formalisms and their
applicability to engineering problems is discussed in Section 2.3.

2.1.2 Sources of Uncertainty

Thunnissen (2005) distinguished four sources of uncertainty for engineering design
problems: input, model-parameter, measurement and operational/environmental.
Input uncertainty describes the imprecision and ambiguity that might exist in the
definition of the requirements. Model-parameter uncertainty refers to the uncertainty
introduced by a representation of the reality through a set of mathematical and
physics-based models. Measurement uncertainty describes lack of precision and
errors that could arise from experiment measurements and results. Eventually, oper-
ational/environmental uncertainty is present because of unknown, uncontrollable
external perturbations.

Several sources of uncertainty can be distinguished. Let us consider a parameter-
ized model representing a real physical system (Figure 2.1). The model involves a
set of input variables represented by a set of uncertain variables u = (uy, ..., ug).
Moreover, the model outputs are given by the mapping: y = c(u,p), with
p parameters of the physical model. In this chapter, we do not consider any
multidisciplinary aspect. Thus, y is just a generic output of the model without
consideration of any coupling as described in Chapter 1. For the same reasons, the
design variables z are not considered in this chapter for the sake of simplicity.

In this context, we can identify the following nonexhaustive sources of uncer-
tainty (Der Kiureghian and Ditlevsen 2009):

¢ Uncertainty due to the inherent randomness of the input variables u (e.g.,
on-board propellant mass at launch vehicle take-off due to constant boiling
evaporation of cryogenic propellants for the rocket tanks in the launch pad,
material properties such that Young modulus coefficient, Poisson coefficient),

¢ Uncertainty due to the choice of the uncertainty modeling of the input variables
u, used to describe the available information to the designer (e.g., probability,
evidence theory, possibility theory),

Fig. 2.1 Generic model model parameters: p
model output: y

.

Generic model

uncertain variables: u
c(u,p)
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* Uncertainty due to the choice of modeling of the physical phenomena represented
by c(u, p) (e.g., Ideal gas or Van der Waals gas modeling, Euler or Navier—Stokes
flow modeling),

e Uncertainty due to the model parameters p (e.g., convergence parameters in a
model, internal algorithm initialization),

e Uncertainty in the computation of y, due to the numerical approximations,
errors (e.g., precision of numerical integration, ordinary differential equation
tolerances),

* Uncertainty due to the non-modeling of interactions between different disciplines
involved in the considered system, etc.

The interaction uncertainty (Thunnissen 2005) is particular for multidisciplinary
systems and consequently is interesting in the context of MDO. It refers to the
unknown and non-modeled interactions between the disciplines involved in the
design of the complex systems. For instance, considering an aerospace vehicle, it
can be assumed that the drag coefficient is not function of velocity and angle of
attack and therefore an interdisciplinary coupling between the trajectory and the
aerodynamics disciplines is not modeled. This introduces uncertainty on the drag
coefficient estimated with this model. In a MDO framework, the identification of
the sources of uncertainty has to be driven with experts of each discipline and
with experts of aerospace vehicle design to identify all the potential sources of
uncertainty. More discussions on MDO and uncertainty are presented in Chapters 6
and 7.

Optimization techniques are engineering tools that are often used in design prob-
lems in order to find the optimal design under some specifications and constraints
with respect to some design variables. In terms of design optimization problem,
these sources of uncertainty may be classified according to three categories:

* Uncertainty due to the inherent random nature of the input variables u (Fig-
ure 2.2). One might prefer to find a minimum that is less perturbed by
uncertainties in the inputs, it is linked to the concept of robust optimization (see
Chapter 5 for more details).

e Uncertainty due to the model parameters p that are not perfectly known
(Figure 2.3). When possible, increasing the knowledge on the model parameters
p by collecting more data could help to reduce the impact of such parameters on
the design optimization problem.

* Uncertainty due to the choice of modeling, e.g. simplifying assumptions, numer-
ical approximations, etc. (Figure 2.4). The uncertainty in the models has to be
taken into account in the early design phases to avoid designs that are not possible
if a refinement with higher fidelity models is performed in the latter design
phases. This issue is linked to multi-fidelity design and is discussed more in-
depth in Chapter 8.
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Fig. 2.2 Uncertainty due to Performance

the input variables

35

Source of uncertainty:
input variables

, Deterministic
/ minimum K R(.)b_USt

/ / minimum
!

-

Fig. 2.3 Uncertainty due to
the parameters

<>
Uncertainty on

Performance

input variable

Source of uncertainty:
parameters

Performance
variability due to ~ Deterministic
model values

parameter
K

! uncertainty

Fig. 2.4 Uncertainty in the
model

Source of uncertainty:
model

Performance

Experiment




36 2 Uncertainty Characterization and Modeling

2.2 Overview of Existing Mathematical Formalisms
to Describe Uncertainty

2.2.1 Fundamentals

Uncertainty analysis relies on two key mathematical concepts: the sets and the
measures. A brief overview of these concepts is presented in the next section. Then,
an introduction on the existing mathematical formalisms to model uncertainty is
proposed.

Some Vocabulary and Prerequisites

The uncertainty mathematical formalisms are strongly grounded in the probability
theory and Hilbert spaces (but not only as illustrated in this chapter) and therefore
a prerequisite is to be familiar with the measure and the probability theory but also
the functional analysis. A brief recall of these essential elements is carried out in
this chapter. Some vocabulary is first introduced:

e A measurable space is a pair (2", /) with 2 a set called the sample space and
o/ a o—algebra on Z°, meaning a collection of subsets of 2~ containing the
empty set ¢ and closed under countable applications of the classical operations
of intersection, union, complementation. The elements of .o/ are referred to as
measurable sets or events.

e On any set 2 it is possible to define the power set o —algebra 24 in which
every subset of 2 is measurable. It corresponds to the set of all subsets of .Z".

e If 2 is a metric or normed space, it is classical to consider <7 to be the Borel
o —algebra #(Z") which is the smallest o —algebra on 2" so that every open set
is measurable.

For more details on these vocabulary elements please refer for instance to Tijms
(2012). In the probability theory (as explained in Section 2.2.6) the sample space of
a probability space is often referred to as €2.

Crisp and Fuzzy Sets

Uncertainty analysis is based on the concept of a set. Any collection of distinct
elements is called a set. A set can be defined as a collection of elements from a
universe of interest. For instance, considering a six-sided die, the sample set 2 is
equal to @ = {1, 2, 3,4,5, 6}. For more complex systems, the sample set can be
infinite. A random event corresponds to a set of outcomes of a random experiment
(experiment that leads to different results depending on the randomness). A classical
set (also referred to as crisp set) is defined as a set in which it is possible to determine
uniquely whether any given individual is or is not a member of the set (left side of
Figure 2.5).
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Fig. 2.5 Illustration of crisp set and fuzzy set

A characteristic function u may be defined for a given crisp set A such that:
n:—{0,1} (2.1)
which assigns to any element of the universe set €2 a characteristic:

1 VxeA
pu(x) =
0 Vx¢A.

In engineering problems, the notion of crisp set is essential for instance in
reliability analysis. In a first approximation, a system is often considered in two
possible modes: a safe state or a failure state. Therefore, the system status either
belongs to one mode or another. However, it is sometimes required to have a finer
description of the states in cases where the transition from a safe state to a failure
state is gradual rather than abrupt. In the fuzzy sets, the notion of membership to a
set is modified compared to the crisp sets (Zadeh et al. 1965). For the fuzzy sets, the
boundary is not precise and there exists a degree of membership for an element to a
given set. Therefore, the change from membership to non-membership for a fuzzy
set is gradual rather than abrupt as with classical sets. This progressive change is
characterized by a membership function defined such that:

nw: Q— [0,1] (2.2)

leading to an interval rather than a set of two alternative options. Let consider A a
label of the fuzzy set defined by this function, for a given x € 2. The value taken
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by @ (x) indicates the degree of membership in the fuzzy set A, meaning the grade
of compatibility of x with the concept represented by the fuzzy set A. Instead of
taking only two possible values {0, 1}, with fuzzy sets, the membership function
takes all the values in the interval [0, 1]. The larger the value, the higher the degree
of membership to the fuzzy set (meaning the higher the evidence that x belongs
to A).

Considering a fuzzy set A defined on the universe 2 and a number a € [0, 1] in
the unit interval of membership, it is possible to define the a-cut of A, denoted ¢ A
which is the crisp set that consists of all elements of A with membership degrees
greater than or equal to a (Figure 2.5, right side):

‘A= {x|p(x) = a}. (2.3)

This crisp set is a set of x values such that the membership value p(x) is greater
than or equal to a. The core set of a fuzzy set A is defined by a a-cut set such that
a = 1 (Figure 2.5, right side).

Monotone Additive and Non-additive Measures

A measure is a function that affects a value to quantify a notion of a metric
representing a subset of a given set. Classically, a measure corresponds to a mapping
of each element of a set A to a real axis (Figure 2.6). It generalizes the concept of
length, area, or volume in the Euclidean geometry.

A regular monotone measure is defined as a mapping w from a family of subsets
A of auniverse €2 to an interval [0, 1]. Usually, A is the power set of €2 (the set of all
the subsets of €2, denoted ). This function may be expressed as: i : A — [0, 1]
and in addition to continuity, it follows some properties:

Boundary conditions: () = 0 and u(2) = 1 2.4)
Monotonicity: VC; and C;€A if C; € C; then u(C;))<u(Cj) (2.5)
Continuity from above: forCi 2 Cr D --- 2 Cy, setsin A (2.6)
if ﬂci € A, then lim u(C;)) =p (ﬂ C,-) (2.7)

alli e alli
Continuity from below: forCi C C, C--- C C, setsin A (2.8)

if Uci € A, then lim u(C;) = (U ci) .(2.9)

alli all i
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For two sets Cy and C, € A such that C; N Cy = ), a monotone measure is able
to represent the following cases:

e superadditivity: u(C1 U C2) > u(Cy) + n(Ca)
e additivity: u(C1 U C2) = u(Cy) + n(Ca)
e subadditivity: u(C1 U C2) < u(Cr) + u(Ca)

The generalization of the set theory (Zadeh et al. 1965) and the measure theory
(Halmos 1950; Choquet 1954) enables to diversify the uncertainty mathematical
formalisms through various theories representing different approaches for the
uncertainty modeling (Figure 2.7 and Table 2.2). The modern probability theory
was the first advanced mathematical theory dealing with uncertainty formalized by
Kolmogorov in 1933 (see Kolmogorov 1950 for the translation of the original paper
of Kolmogorov). It is based on the classical monotone additive measure and on
crisp set. Choquet (1954) generalized the classical measure theory to the theory of
monotone measures under the name of “theory of capacities.” Negoita et al. (1978)
and Zadeh (1999) generalized the set theory by developing the concept of fuzzy sets.
By combining alternative definitions of sets (based on fuzzy sets) and measures

Fig. 2.6 Measure illustration Family of A Real
subset A axis

Mapping
function:

measure

Fig. 2.7 Extensions of the
concepts of set and measure
to create alternative
uncertainty modeling theories

. Generalization
Crispset |——>| Fuzzy set

v. Alternative
Classical .
. uncertainty
probability .
modeling
theory .
formalisms
A
Classical

Generalization Monotone
additive —>

measure

measure
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Table 2.2 Classification of uncertainty theories (Ayyub and Klir 2006)

Formalized languages

Uncertainty theories Classical sets Fuzzy sets
Monotone Additive Classical numerical | Crisp probability | Possibility of
measures probability theory fuzzy events
Non-additive | Possibility and Crisp possibility Graded
necessity theory possibility theory
Belief and Dempster—Shafer | Fuzzified DST
plausibility theory (DST)
Interval-valued Feasible Feasible fuzzy
probability interval-valued probability
distribution probability distributions
distribution
General lower and General lower NA
upper probabilities | and upper
probabilities

(non-additive measures) it is possible to define alternative uncertain formalisms.
All the theories listed in the Table 2.2 do not have the same degree of maturity
and development for practical use by engineers and scientists in design problems.
Consequently, only the mature and fully developed ones are briefly discussed in
following sections of this chapter.

2.2.2 Imprecise Probability Theory

The imprecise probability theory, developed by Walley (1991), is a generalization
of the existing uncertainty theories to cover all the mathematical models which
measure the uncertainty without sharp numerical probabilities. Let (2,7Y) a
measurable space, with Y an algebra of measurable subsets of 2 and IT a set of
monotone measures on the measurable space. It is possible to define two measures
such that:

* upper probability: P(A) = sup[P(A)]; VA C Q
Pell
* lower probability: P(A) = gan[P(A)]; VA C Q
€
Lower and upper probabilities are characterized by the following rules (Walley
2000):

* P(A)=1-P(A9)

* P=PW®) =0

* 0= P(A) <P =1

* P(A)+P(B) <P(AUB) < P(A)+P(B) < P(AUB) < P(A) + P(B)

where A and B are disjoint sets, and A€ is the complementary set of A.
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Fig. 2.8 Example of upper
and lower probability 1= ——-:7%] Cumulative distribution
measures Sup(P) L) funetion

Inf(P)

xmin Xmax X

P and P define two measures that are, respectively, the inferior and the superior
bounds over all the monotone measures that could be defined on the measurable
space (Baudrit and Dubois 2006) (Figure 2.8). P is a superadditive measure and P
is a subadditive measure. The lower probability may be understood as the maximal
price one would be willing to pay for the gamble A which pays 1 unit if the
event A occurs. It is the maximal betting rate at which one would be disposed to
bet on A. The upper probability may be interpreted as the minimal selling price
for the gamble A, or one minus the maximal rate at which an agent would bet
against A. The two measures encode a family of measures. The introduction of
these two measures enables to quantify the confidence in the uncertainty modeling,
and the difference between the two measures reflects the incomplete nature of the
knowledge (Baudrit and Dubois 2006). Indeed, the available information about
the uncertainty in the performance of a future complex systems is often partial
(DeLaurentis and Mavris 2000) and the uncertainty in the available knowledge
needs to be quantified. Nevertheless, reasoning on a family of measures can be very
complex. Further details on imprecise theory can be found in Walley (1991). In the
following sections, four uncertainty formalisms are briefly reviewed. They represent
special expressions of lower and upper measures which allow practical engineering
applications: Evidence theory (Dempster 1967; Shafer 1976), Probability theory
(Kolmogorov 1950), Possibility theory (Negoita et al. 1978) and Probability boxes
(Ferson et al. 1996).

Relations exist between these uncertainty theories. As represented on Fig-
ure 2.9, Imprecise probability theory is a generalization of uncertainty theories
and Evidence theory, Possibility theory, Probability theory, Probability boxes are
a particular construction of the upper and lower bounds P and P depending on
the available knowledge and data concerning the uncertainty and its treatment and
combination.

2.2.3 Evidence Theory

Dempster—Shafer Theory (DST), also referred to as theory of evidence was devel-
oped by Dempster (1967) and Shafer (1976). This theory is based on two monotonic
non-additive measures: the belief (Bel) and the plausibility (Pl). In comparison,
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Fig. 2.9 Relations between the different uncertainty theories

the probability theory uses just one measure, the probability of an event (see
Section 2.2.6). The probability theory and the possibility theory may be seen as
special cases of the evidence theory. The belief and plausibility measures are
determined based on the known evidence about a proposition without requiring
to distribute the evidence to subsets of the proposition. An ensemble of evidences
represented by a family of sets may be characterized by a basic mass assignment
m : Pq — [0, 1] (with P the power set of ) constructed to ease the data and
information synthesis. A basic assignment assesses the likelihood of each set in a
family of sets. Considering an event E which is a subset of the universe 2, m(E)
refers to the basic mass assignment corresponding to the event E and it expresses
the degree of support of the evidential claim that the true realization is in the set
E, but no information are provided about a potential distribution among the subsets
of E. The mass assignment may be obtained from a wide range of sources such as
theoretical evidence, experimental data, opinion of experts concerning the belief of
occurrence of an event or value of a parameter.

The basis of evidence theory is the impossible discernment of the mass distri-
bution inside this element. A basic assignment has to satisfy the following two
conditions:

e m(@) =0
* DalEeyom(E) =1
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Ifm(E) > 0, E is called a focal element. The mass assignment function can encode
a family of measures as: [1(m) = {P|VE € Pq, Bel,(E) < P(E) < Pl,(E)}
(Shafer 1976). The upper and lower imprecise probability measures are defined such
that:

P(E) = Bel(E)= Y _ m(A;) (2.10)
all A;CE

P(E)=PI(E)= Y  m(A). (2.11)
all A;NE#(

The mappings Bel(-), PI(-), and m(-) can be understood as alternative repre-
sentations of the same information. These functions describe the likelihood that an
element e belongs to each E as a belief measure (strongest), plausibility measure
(weakest) and a basic mass assignment (collected evidences). Once one of these
mappings is defined, the two others may be uniquely determined. The belief of
an event is calculated by summing the mass assignment of the propositions that
totally agree with the event E, whereas the plausibility of an event is calculated by
summing the mass assignment of propositions that agree totally and only partially
with the event E. Bel(-) and PI(-) give, respectively, the lower and upper bounds of
the measure on the event.

Considering the example of Figure 2.10 with the universal set €2, a set A and

six elements E;, i = 1, ..., 6 with their associated mass assignments m(E;), i =
1, ..., 6. In this case, the Belief and Plausibility functions are given by

Bel(A) = m(Ey) +m(Eyg) (2.12)

PI(A) = m(E») + m(E3) +m(E4) + m(Eg). (2.13)

The Belief function only accounts for the mass of the elements E, and E4 as they
are fully included in the set A. The Plausibility function, in addition to account for
E, and Ej4, takes the contributions of E3 and E¢ that overlap the set A.

Figure 2.11 presents another example of Bel(-) and PI(-) measure constructions

based on 10 evidences (Ej, ..., E1g) with the same mass assignment m(E;) =
Fig. 2.10 Example of m(E1)
evidence mass assignments, ' m(E2)

belief and plausibility

measures for a given set A 'ﬂ'
: ‘m(E4) |
L m(ES)
 m(E6): L
> A < >0
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Fig. 2.11 Example of evidence mass assignment, belief, and plausibility cumulative distribution
in the case m(E;) = 0.1 Vi € [1, 10]

0.1 Vi € [1, 10]. The cumulative Belief function is a lower bound of the possible
measures and the cumulative Plausibility function is an upper bound.

The Evidence theory allows the combination of the evidences from different
sources and experts through different rules of combination of evidence (Dempster’s
rule, Yager’s rule, etc.) (Yager 1987; Inagaki 1991).

The interval formalism for uncertainty modeling, referred to as interval analysis
(see Section 2.2.5), models an uncertain variable as an interval with a minimum and
a maximum values that the uncertain variable might take. The interval analysis can
be seen as a special case of the evidence theory in which only one focal element
exists for the uncertain variable with a mass assignment of one.

The evidence theory has the advantages to enable the handling of both epistemic
and aleatory uncertainties and facilitates the combination of expert opinions from
different sources. Moreover, by relying on two measures, the evidence theory
provides a level of confidence on the uncertainty modeling. However, compared
to the probability theory, in an engineering design context, it might be difficult to
interpret the uncertainty modeling and to obtain evidences for the different elements
from non-evidence theory experts.

2.2.4 Possibility Theory

Different perspectives exist to present the possibility theory (Negoita et al. 1978;
Dubois and Prade 2012) (Figure 2.12). The possibility theory may be interpreted as
a subcase of the evidence theory. It can be applied only when there is no conflict
in the provided body of evidence. In this case, the focal elements are nested (e.g.,
E, C E» C --- C Ep), and the associated belief and plausibility measures are
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Fig. 2.12 Different interpretations for possibility theory

called consonant. In this case, the belief and plausibility measures are characterized
by the following relations:

Bel(B N C) = min[Bel(B), Bel(C)] forall B, C € @gz (2.14)

PI(B U C) = max[PI(B), PI(C)] forall B, C € 3. (2.15)

In the possibility theory, special counterparts of belief and plausibility measures

are called Necessity (Nec) and Possibility (Pos) measures (Dubois and Prade

1998). Every possibility measures Pos(-) on &g, may be uniquely defined by a
possibility distribution function r(-):

ri 92— [0,1] (2.16)

with the following relation: Pos(A) = mail( r(x) for each A € Zq. The Necessity
Xe

and Possibility are dual measures related by: Nec(A) = 1—Pos (A). Like the Belief
and Plausibility, the Necessity and Possibility measures are non-additive measures
and satisfy the following relations:

Nec(A) < Pos(A) 2.17)
Pos(A) + Pos(A) > 1 (2.18)
Nec(A) + Nec(A) < 1 (2.19)
max [Pos(A) , Pos(A)] =1 (2.20)
min[Nec(A) , Nec(A)]=0. (2.21)

The possibility theory may also be seen as an extension of the fuzzy sets and
the fuzzy logic theory adapted to the presence of sparse information about the
uncertainty as introduced by Zadeh (1999). In the fuzzy set approach to possibility
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theory, the focal elements are represented by a—cuts of the associated fuzzy set. The
possibility theory enables to define various confidence intervals (a—cut) around the
true probability based on the fuzzy set (see section “Crisp and Fuzzy Sets”). As
with the probability measures, which are characterized by probability distribution
functions, the possibility measures can be represented by the possibility distribution
function r : 2 — [0, 1] such that:

Pos(A) = maﬁ r(x). (2.22)

The possibility measures are equivalent to the fuzzy sets. The membership grade
of an element x corresponds to the plausibility of the singleton {x}. Indeed, as
presented in section “Crisp and Fuzzy Sets,” a fuzzy set A of the universal set €2 is
characterized by a membership function 14 (-). Zadeh (1999) defined a possibility
distribution function r(-) associated with A as r(x) = ua(x), Vx € Q. Then, the
possibility measure Pos(-) may be defined as:

Pos(A) = sup r(x) foreach A € Hq. (2.23)

xX€A

Therefore, if the possibility distribution function is known for a response Y, it is
then possible to define an interval for the true (unknown in general) probability [P:
Nec(Y) <P(Y) < Pos(Y).

For instance, assuming that the following information are collected using expert
opinions:

e Jam sure that X € [0, 10],

e Jam sure at 80% that X € [2, 10],

e [ am sure at 60% that X € [4, 8],

e Jam sure at 25% that X € [4.5, 6.5].

Then, it is possible to define the Possibility and Necessity measures that
characterize these information (Figures 2.13 and 2.14).

The cumulative possibility and necessity functions bracket the true unknown
cumulative probability function, giving intervals of confidence. The possibility
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theory presents the same advantages of evidence theory in its ability to describe
both aleatory and epistemic events and to combine them inside a single formalism.
Moreover, the possibility theory also relies on two measures to account for lack
of knowledge in the uncertainty modeling. However, for the design of aerospace
systems, these possibility information might not be easy to interpret in terms of
performance under uncertainty. For more details on the possibility theory, one can
refer to Dubois and Prade (1998) and Zadeh (1999).

2.2.5 Interval Analysis

Interval data are commonly encountered in practical engineering problems. Ferson
et al. (2007) and Du et al. (2005) discussed such situations where interval data are
present. For instance, in the early design phase, the experts often cannot provide
a complete Probability Density Function (PDF, see Section 2.2.6) of the uncertain
variables U and the only available information is in the form of an expert opinion
expressed through interval data which specifies a range of possible values for the
variable. Moreover, it appears that a uniform distribution might not be adapted in
some cases because it requires to know that the samples are distributed with an
iso-probability inside the interval to be appropriately used (Klir 2005; Ferson et al.
2007).

A closed interval for a real-valued continuous uncertain variable u is a set defined
as:

T ={u € Rlumin < 4 < Umax} (2.24)
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with umin and upmax, respectively, the lower and upper bounds of the interval.
An interval is denoted by its bounds [#min, Umax].- For a d-dimensional uncertain

variable u = [u(]), cee, u(d)], its representation by an interval is given by
Y = (ueRu® ¢ [ufjgn, ug;gn] L Yiefl,....d)). (2.25)

As intervals are sets, the same arithmetical operations are possible such as
intersection, unions, sums, etc. For more details on interval formalism, one can refer
to Moore et al. (2009).

2.2.6 Probability Theory

Fundamental definitions of the probability theory have been proposed by Kol-
mogorov (1950). The purpose of this section is to review the main elements of this
theory; for more complete information on that topic, see (Tijms 2012) for instance.

Uncertainty may be seen as a collection of states that occur randomly. A random
experiment leads to different results depending on the randomness. The result of the
experiment is called an outcome or a realization and is generally denoted by w. In
that case, the basic tool to model that situation with the probability theory is the
probability space defined by the triple (€2, A, P) where :

* the universal set 2 is assumed to be non-empty. It corresponds to the set of all
the possible outcomes w.
¢ the o-algebra A is a family of subsets of 2 (called events), such that:

- QeA,
— if Be A, then B¢ € A,
— if By, By, ... By belongto A,then ByU By U---UB, € A.

A common o -algebra is the Borel algebra. A Borel algebra on €2 is the smallest
o-algebra containing all the open sets. If @ = R, the Borel algebra #A(R) is
the smallest o -algebra on R which contains all the intervals. Another example of
o —algebra is the power set of €2, noted Pq.

* the probability measure PP is a countable additive measure, P : A — [0, 1] such
that

- P(Q2) =1and P(¥) =0,
— let (By, B2, ..., By) be a countable collection of disjoint events in A, then

P (CJ Bl-) = Zn:IP’(B,-).
i=1 i=1

According to the theory of measure, the couple (€2, A) is a measurable space. The
probability measure PP gives the probability of any event of A. These definitions lead
to the following properties if one considers B and C, two subsets of A:
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e P(B°)=1-P(B)

* P(CUB)=P(C)+P(B)—-P(CNB),

» All the properties of a generic measure i apply here (see Equations 2.5-2.9) with
w="P.

A real-valued random variable U is a measurable function from the probability
space (2, A, P) into the real numbers R. U(w) is a realization of the random
variable. The set {w € Q, U(w) < ¢} must belong to A forall ¢ € R. If A = Z(R),
this previous assertion is valid by definition. The probability that U takes a value in
{weQ, Uw)<clisP(we R, U(w) <c)=PU < c). The set of probabilities
P(U € [a, b)), Ya, b € R, a < b is the probability distribution or probability law
of U. The probability distribution of U is uniquely characterized by the Cumulative
Distribution Function (CDF) F(-) of U :

Fw) =PWU <u), foru e R.

For continuous random variables, the Probability Density Function (PDF) ¢ (-) of U
is defined by

Yu e R, F(u):/u o (1)dt.

An example of Gaussian CDF and PDF for a standard Gaussian distribution is
illustrated in Figure 2.15.

The different properties (limits, positiveness, etc.) of F(-) and ¢(-) are not
detailed in this book for the sake of conciseness. Assuming that U is a continuous
random variable with a PDF ¢ (-), if the integral convergence is defined, then it is
possible to define some statistical moments of the random variable U:

* Expected value (first-order statistical moment): E(U) = fR u@ (u)du (the scalar
expected value is often noted ),

0.8

0.6 1

CDF

PDF
o
N
S

0.41

0.2

0.04 0.00

Fig. 2.15 Example of normal CDF (left) and PDF (right) for a standard Gaussian distribution
(mean=0. and variance=1.)
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e The wvariance (centered second-order statistical moment): V(U) =
E[W - EW)?] = [, @~ EWV))? $w)du
e The standard deviation defined by: 0 = /V(U)
* The p-order centered moment m,(U) = E[U —EWU))?] = fR(u —
)P ¢ (u)du
The notion of random variable can be extended to random vectors. A real-valued
random vector U = (U Oy U (d)) of dimension d is a measurable function
from the probability space (2, A, P) into R¥. The joint CDF of U is defined by

Fu =F (u(l), u®, ...,u(d)> = IP’(U(I) <uD Uu® <@, U@ < u(d)>
foru = (u(l), u(2), R u(d)) e RY. (2.26)

If U is a continuous random variable, the associated joint PDF ¢ is given by

3% F (u)

PW = s D@

u

It is also possible to define the covariance between to jointly distributed random
variables X and Y (assuming that the finite second moments are defined for the two
variables), then the covariance between X and Y is given by

cov(X,Y) =E[(X —E[X]) (Y —E[Y]]. (2.27)

In practice, the distribution of the uncertain random variable U has to be
determined. In some applications, this distribution may be assumed with expert
knowledge or with some physical considerations of modeled phenomenon. In other
cases, this distribution has to be learned from samples (for instance collected
through experimentation) that can be seen as realizations of U. We assume in
the next sections that a set of M independent and identically distributed samples
Uny(w), Ugy(w), ..., Umy(w) of the random variable U is available and U is
a continuous random variable. The @ dependencies is no more recalled in the
following sections and for the sake of conciseness, we use the notation u;) =
U(i)(w). We will review in the following paragraphs the main estimation techniques
of a probability distribution (Silverman 1986).

Empirical Distribution

From the samples u (1), u(2), . .. #(um), it is possible to evaluate their empirical CDF
defined by
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with 1(-) an indicator function equal to 1 if u;) < u and O otherwise. F¢"’
is the distribution of a discrete random variable, and thus, the notion of PDF is
not defined. Figure 2.16 represents an empirical CDF obtained with 100 samples
generated according to a distribution. Both the empirical distribution and the exact
distribution at the origin of the samples are represented for comparison. The
empirical distribution is close to the exact one however not enough data are available
to represent accurately the exact CDF. It is possible to sample from this distribution
with a uniform sampling with replacement among the samples u ;). It corresponds
to the principle of bootstrap (Efron and Tibshirani 1994) in that case and it is
particularly interesting for the estimation of some statistical moments of U and
their associated confidence interval. Nevertheless, this approach will never propose
samples that have not been observed in the data which may be seen as restrictive
notably if the sample size M is limited.

Entropy and Divergence Measures

In order to choose an appropriate probability law depending on the available data,
one can use the maximum of entropy theorem. The entropy of a continuous random
variable is defined by

HU) =— [ ¢)ln(¢(u))du, (2.28)
U

where U = {# € R|¢p(u) > 0} is the support of ¢(-). The entropy quantifies
the amount of information that a random variable produces and it is linked to
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the information theory (Shannon 1948). Another measure derived from entropy
called Kullback-Leibler divergence (Joyce 2011) (also referred as relative entropy)
is a measure of how a probability distribution differs from a second one. For two
continuous probability distributions p(-) and ¢(-), the Kullback-Leibler divergence
is defined by

Y <p<u>>
(p.q) = G log ( 22) du. (2.29)
q(u)

—0oQ
The divergence is always non-negative, it is not symmetric and it tends to zero when
p(-) converge to g (-).

Parametric Approaches

There exists a set of common probability distributions (e.g., Gaussian, Uniform,
Gamma, Weibull) that allows to generate random samples but also to model existing
collected data. A brief overview of these distributions is given in the following
paragraphs.

Uniform Distribution The PDF of the uniform distribution %/, ;) over an interval
[a, b] is given by

bu) = ban,b](u), foru € R (2.30)

—a

with 14 (%) an indicator function equal to 1 if u € [a, b] and O otherwise. The
mathematical expectation of a random variable U following a uniform distribution
over the interval [a, b] is given by: E(U) = # and the variance is given by:

VU) = %. The uniform distribution is often selected to model a random
variable with probability formalism when only the bounds on the variable are known
but no information of its distribution over the interval is available. This choice may
be explained by the maximum entropy theorem as the uniform distribution is the
one that maximizes the entropy with only an information on the bounds.

Gaussian Distribution The PDF of the univariate Gaussian distribution
A (w, 0?) is given by

_ 1 u—pu 2
¢(u)—Wexp—<m>, foru e R 2.31)

w and o2 are the mathematical expectation and the variance of the Gaussian
distribution (also named as Normal distribution). The Gaussian distribution is one
of the most employed distributions to model random variables and to characterize
a set of collected data. The Gaussian distribution is the law that maximizes the



2.2 Mathematical Formalisms for Uncertainty Description 53

Fig. 2.17 Example of 0.40 1
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entropy among all real-valued distributions if a mathematical expectation and a
variance are provided. Moreover, the Central Limit Theorem (CLT) (Laplace 1810)
also justifies the use of Normal distribution in a lot of applications. CLT establishes
that, under some hypotheses, when independent random variables are summed, their
normalized sum tends toward a normal distribution even if the original variables are
not normally distributed. This distribution will be particularly used for illustrative
purposes in this book. The standard Gaussian distribution is given by .4 (0, 1) (see
Figure 2.15).

Gamma Distribution The PDF of the Gamma law I'(A, o), with A > Oand o > 0
is given by

du) = ;)\"‘u"‘_l exp (Au), foru e R*, (2.32)
I'a)

where I'(«) = fo e exp —udu. The expectation and the variance are given by:
E(U) = § and V(U) = % The Gamma distribution is often used in applications
such as financial services or queuing problems.

An illustration of classical PDFs is presented in Figure 2.17. For more details on
common probability distributions see Tijms (2012).

Fit of Parametric Distribution Suppose that a given statistical model is available
or assumed. It corresponds in fact to a PDF family ¢ (-|@) (for instance one of the
distributions presented in the previous paragraphs) indexed by a parameter § € ®
that may be multidimensional. ¢ (-) is often chosen among usual distributions such
as Gaussian distribution (@ is then its mean and/or its variance), etc. Different
considerations can be taken into account for this choice such as the shape proximity
between the CDF of ¢ (-|@) and F¢"*P, the required complexity of the model or some
expert knowledge. The problem of distribution estimation now consists in estimating
0 with 6 from the samples u(y), ..., um). A large number of methods (Sahu
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et al. 2015) has been proposed for that purpose such as the Maximum Likelihood
Estimation (MLE) or the generalized method of moments. We will not detail all
these methods and only give a brief focus on MLE.

The likelihood of the samples is the function & (0|u(iy, u(2), ..., u(m). For
continuous random variables and if the samples u 1y, ..., u(y) are independent and
identically distributed, then . (0| (u(1y, u(2), - . . , () is given by

ZL (Oluqy u@. - uon) = [ | @al6).
i=1

The estimate éM 1 with maximum likelihood estimation is then computed in the
following way:

éML = argmax {g (9|(u(1), U@Q)s oy M(M))} ,
0c®

if this maximum exists. In many cases, it is not necessary to perform the optimiza-
tion, as an analytical expression of 9M 1 1s available. GM 1 has also some interesting
theoretical properties such as consistency and efficiency.

At the end of the parametric estimation, the density of U is estimated with ¢ =
¢(:10).

An example of Maximum Likelihood Estimation for different parametric distri-
butions for a set of samples is presented in Figure 2.18. The set of samples have
been generated according to a Gamma distribution and different MLE estimations
of the hyperparameters are performed for a Normal, a Student, a Log-normal, and
a Gamma distributions. Moreover, it is compared to a nonparametric approach
detailed in the next section. The different MLE fit with more or less precision the
exact distribution and the corresponding histogram representing the existing data.
The Gamma fit is the closest to the histogram distribution which is coherent with
the existing data.
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Nonparametric Approaches

When no parametric classic density fits with an acceptable accuracy the samples,
nonparametric approaches may be an efficient alternative (Izenman 1991). The most
well-known nonparametric density estimate is Kernel Density Estimator (KDE). It
enables to approximate the PDF of U in the following way:

M
du) = 1 ' d a0l
Mh “ h ’
i=1
where K is a kernel (a non-negative symmetric function that integrates to one) and &
is a positive scalar called bandwidth. There is a large number of potentially efficient
kernels, but in practice the most used kernel is the Gaussian kernel, defined by

—u2

e 2

1
K (u) T
The choice of the kernel also depends on the assumptions one makes on the PDF of
the samples u ;) as their distribution tail, etc. The bandwidth values correspond to a
trade-off between the bias and the variance of ¢ (-). In general, a small bandwidth
in a given dimension implies a small bias but a large variance. Different approaches
propose an estimate of the optimal bandwidth for a given criterion. In most cases,
one may choose an adapted bandwidth h,p, that minimizes the mean integrated
square error (MISE) (Heidenreich et al. 2013). The application of KDE to random
vectors is possible but suffers from the curse of dimensionality.

From a set of samples generated according to a Gaussian distribution, Figure 2.19
illustrates a KDE estimation. Moreover, the influence of the bandwidth is repre-
sented on the right of Figure 2.19. Figure 2.20 represents the associated kernels
to each data of the collected samples that is used in the kernel density estimator.
Figure 2.21 illustrates a two-dimensional KDE estimation of a set of data.

0.40 1 — KDE 0.6 — bw: 15

Normal PDF bw: 0.1
0.354 — bw: 2.5
0.5
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Fig. 2.19 Example of KDE estimation for a set of data (left) and different bandwidth assumptions
(right)
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Fig. 2.21 Example of KDE estimation for a set of data in two dimensions

Semi Parametric Approaches

Semi-parametric approaches combine parametric and nonparametric elements. A
popular semi-parametric density estimation approach is the expectation maximiza-
tion algorithm (Moon 1996). It uses Gaussian mixture model and MLE to estimate

PDF for a given data set.

A quite different semi-parametric approach is the maximum entropy principle,
introduced by Jaynes (1957), that estimates the PDF ¢(-) of U by the PDF that
somehow bears the largest uncertainty given available information on U. The
measure of uncertainty of U is defined by the differential entropy of the PDF ¢ (-)
(see Equation 2.28). In addition, the information available on the sought density is
of the form E [g(U)] = b € R™, where g(-) is a given mapping from R to R” with
m the number of constraints. For instance, one may know the first two moments
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w1 and o and the support S of U, corresponding to g(u) = (u, u?, Tes)) and
b = (u1, 12, 1). Then, the maximum entropy estimate ¢3(~) of ¢(-) is defined as a
solution of the following optimization problem:

{ ¢ = argmax H(¢)
. | n (2.33)
st. [gw)¢u)du =band ¢ € L'(S,RT).
Equation (2.33) is a convex optimization problem that may be reformulated by
using Lagrange multipliers, see for instance (Boyd and Vandenberghe 2004).
The moments E [g(U)] may be unknown in practice and be estimated with the
samples u(1), ..., um). Considering fractional moments provide better estimates
than integer moments for the constraint choice (Zhang and Pandey 2013). Maximum
entropy density can be extended to random vectors but suffers however from the
curse of dimensionality.

Statistical and Qualitative Tests

At the end of the distribution learning process, it may be useful to verify that the
estimated PDF d3(~) (and its associated CDF F (+)) fits well the observed samples
ucy, ..., Uy with a statistical test. Various goodness of fit tests may be applied
such as Kuiper’s test, Kolmogorov—Smirnov test, Cramér—von Mises criterion,
Pearson’s chi-squared test, Anderson—Darling test, etc. (D’ Agostino 1986). These
tests measure how well do the observed data correspond to the fitted distribution
model. For instance, the Kolmogorov—Smirnov test evaluates the distance between
FemP(.) and F (-). The Kolmogorov—Smirnov statistics Dy is given by

Dy = sup| F" (u) — F(u)|.
u

Dy is in [0, 1]. If Dy is near O, the model fits well the observed samples and
conversely.

In addition to the statistical tests, qualitative tests may be used in order to validate
the choice of a suited distribution to represent the considered data. For instance, the
QQ-plot (quantile-quantile plots) aims to determine graphically whether two sets of
samples come from the same probability distribution or not. The QQ-plot relies on
the notion of quantile. An «-quantile gy (o) of a set of data U is defined by

PU < qu(a)) = «a. (2.34)

For two set of samples U and U’ corresponding to the same probability distribution,
the a-quantile value should be closed. Thus, graphically, the data set defined by:
{gu (@), qu/ (), a = %, 1 <i < M} should be closed to the diagonal if U and U’
are corresponding to the same PDF.
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Fig. 2.22 QQplot for two MLE fits for a one-dimensional set of data (generated with a Gumbel
distribution)

In Figure 2.22 an example of two QQ-plots for a set of data are illustrated.
Two hypotheses for the distribution of the data are made: a Normal (right side)
or a Gumbel (left side) distributions. The hyperparameters of the parametric
distributions are determined by MLE. The QQ-plot of the Gumbel hypothesis is
more close to the diagonal than the Normal distribution hypothesis (and the set of
data have been generated according to a Gumbel distribution which is compliant
with the QQ-plot result).

Identification of Dependency Between the Variables

The different density estimation methods described in the previous sections can be
applied on random vectors with some adaptations. Nevertheless, when the dimen-
sion d increases, parametric and nonparametric may present some computational
drawbacks. An alternative approach is to characterize the dependency between
the components of a random vector. The density ¢(-) of a random vector U =
WM, U, ..., UD)may be decomposed uniquely as Nelsen (2007)

¢ (M(l), u?, . u(d)) = dym (M(l)) X ¢y (u(2)> X X Py (u(d))

X C(FU(I) (bt(])) , FU(z) (u(z)) g ey FU(d) (u(d))) s

(2.35)

where ¢ (-) and Fy) (+) are, respectively, the PDF and CDF of U @, They are the
marginal distributions along the dimension i. c(-) is a multivariate density whose
support is the hypercube [0, 1]¢ and its marginal distribution are uniform laws.
The density c(-) is known as the copula density. The copula framework allows to
separate for a joint probability distribution the contribution of the marginals and the
contribution of the dependence structure between each component of the considered
random vector.
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Fig. 2.23 Comparison of different copula fit for a set of data (generated with a Gumbel copula)

The marginal distribution U ) is then estimated with one-dimensional parametric
or nonparametric approaches as detailed in the previous sections. The copula may
be estimated notably in a parametric way from a given copula family (Nelsen 2007),
in a nonparametric way (Chen and Huang 2007) or in a semi-parametric framework
with vine copulas (Joe et al. 2010).

Unlike the marginals, the structure of dependence between different random
variables is generally difficult to grasp. Parametric copula (e.g., Gaussian, Clayton,
Gumbel) may be fit in order to reflect at best the structure of dependence. An
illustration of different parametric copula fit for a set of data is presented in
Figure 2.23.

2.2.7 Theory of Probability Boxes

The probability boxes (Pboxes in short), also referred to as probability bounds
may be interpreted as a combination of the probability theory and the interval
analysis (Ferson et al. 1996; Beer et al. 2013). Similarly to an interval bound for
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General Pbox Parametrized Pbox

Fig. 2.24 Example of general and parameterized probability boxes

an uncertain real variable, a probability—box bounds an uncertain CDF. It enables
the modeling of epistemic uncertainty about the shape of a probability distribution,
the distribution of uncertain parameters, etc.

Consider U as a random variable defined on the probability space (€2, A, IP) and
apair (F, F) of non-intersecting cumulative distributions. The Pbox [F, F]encodes
a class of probability measures whose CDFs F' are bounded by the pair of CDFs F
and F such that: F(u) < F(u) < F(u); Yu € Q (Beer et al. 2013).

To ease the Pbox construction and calculations, these probability bounds of
the CDF of a random variable can be represented as step functions. Moreover, in
practice, a restriction is added to ensure that the steps for both left and right functions
occur at the same CDF values.

For two variables X and Y, assuming an independence between them, operations
on these variables, such as X + Y, require first to partition the uncertain spaces
of X and Y with suited intervals. Then, interval arithmetic on all the combinations
of the Cartesian space of X and Y is carried out, and finally, the resulting Pboxes
are estimated by computing the corresponding probabilities of the output intervals
as the product of the respective pairs. Williamson and Downs (1990) developed
algorithms to compute bounds on the result of addition, subtraction, multiplication,
and division of random variables when only bounds on their input distributions are
given.

Pbox incorporates both the imprecision on the available knowledge and the
probabilistic characterization. It is possible to distinguish two types of Pboxes,
the parameterized Pboxes and the general Pboxes (Figure 2.24). In the case of
parameterized Pboxes, the distribution is known but the parameters characterizing
the distribution are unknown, only intervals can be identified. General Pboxes are
distribution-free representation methods using only statistical or experimental data.
It exists different rules to construct Pboxes based on the available information
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(Beer et al. 2013; Ferson et al. 2015). For parameterized Pboxes, assume that,
based on expert opinion, it is supposed that a distribution is Gaussian, but the
precise values of the distribution hyperparameters (mean and standard deviation)
are known only in an interval. Bounds on the possible distributions may be obtained
in the form of a Pbox by computing the envelop of all Gaussian distributions that
have their hyperparameters within the specified intervals. Considering the set of

hyperparameters @ = {(u, 0)|(t € [min, Umax], & € [Omin, Omax]}, the upper and
lower bounds on the possible CDF are defined by

F(u) = min Fy(u) (2.36)
0cO®

F(u) = max Fy(u). (2.37)
0cO

Parametric Pboxes enable for a clear distinction between aleatory and epistemic
uncertainties: aleatory uncertainty is represented by the distribution function family,
whereas epistemic uncertainty is modeled by the intervals in the distribution
hyperparameters. However, the parametric Pboxes are more restrictive than the
general Pboxes because the knowledge about the distribution family is required.

The Pboxes may also be derived in case the distribution family is unknown
resulting in general Pboxes. For these latter, the true CDF can have any arbitrary
shape, it only has to follow the characteristics of a generic CDF and lie within the
bounds of the Pbox. In case additional information are available such as the mean
of the exact CDF, it enables to constrain the Pbox to a smaller region by defining
more accurate bounds.

Relations between the Pboxes and the Dempster—Shaffer Structures (DSS) exist
(Ferson et al. 2015). In DSS, unless a singleton is considered, a focal element
represents usually a set of possible values for the variable U that existing evidence
or measurement is not able to distinguish. However, the mass assigned to any
particular focal element is a precise number. In DSS, the uncertainty lies in the
u-value and certainty about the p-value. In contrast, the Pboxes express epistemic
uncertainty about the mass assignment but a kind of certainty about the event U
(its interval of definition). There is a duality between the two perspectives, and each
approach may be converted to the other. However, there exists different Dempster—
Shafer structures corresponding to a single Pbox, therefore there is not a one-to-one
correspondence.

Moreover, connection between Pboxes and possibility measures have been
established in different works such as Troffaes et al. (2013). In this work, the authors
proved that almost every possibility measure may be interpreted as a Pbox, by
reordering the elements according to increasing possibility. Therefore the Pboxes
generalize the possibility measures.
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2.3 Summary and Comparison of Uncertainty Modeling
Formalisms

Based on the brief presentation of the existing mature uncertainty modeling
formalisms suited for engineering design, some conclusions on advantages and
drawbacks may be learned (Table 2.3).

The probability theory is the most used formalism to model uncertainty by
engineers and researchers in the field of complex system design. The probability
theory is particularly suited to represent the aleatory uncertainty, and the methods
and tools (sampling techniques, sensitivity analysis, reliability analysis, etc.) devel-
oped with the probability are adapted for the design in the presence of uncertainty.
Compared to the alternative uncertainty formalisms, the uncertainty propagation
is easier especially for complex models (see Chapter 3). Classical approaches
such as Crude Monte Carlo are easy to implement and commonly used for the

Table 2.3 Comparison of uncertainty modeling formalisms

Uncertainty
modeling

Probability theory

Evidence theory

Possibility theory

Interval theory

Pbox

Advantages

Adapted to represent aleatory
uncertainty

Combination of information
through Bayesian approach

Expert familiar with probability

Easy to propagate

Handle both aleatory and
epistemic uncertainties

Express confidence in uncertainty
modeling information

No hypothesis needed on the
uncertainty distribution inside
subsets

Concept of membership function
and fuzzyness

Express confidence in uncertainty
modeling information

Handle both aleatory and
epistemic uncertainties

Simplicity of modeling

Handle both aleatory and
epistemic uncertainties

Express confidence in uncertainty
modeling information

Close to probability formalism

Drawbacks

Need information on each singleton
of the subset

Handle mainly aleatory uncertainty

No measure of the confidence in the
uncertainty modeling information

Computational cost of uncertainty
propagation

Might be difficult to interpret for
design

Might be difficult to get information
from experts

Difficult to interpret for design

Might be difficult to get information
from experts

Computational cost of uncertainty
propagation

Limitations in uncertainty
description

Computational cost of uncertainty
propagation

Difficult to interpret for design
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uncertainty propagation. One drawback of the probability formalism is the need to
obtain information on each singleton of a subset through the probability distribution.
Sometimes, information on the uncertainty distribution within a subset is unknown
and only bounds are available. Although, uniform distribution is the distribution
that maximizes the entropy when only the bounds of an uncertain variables are
unknown, assuming a uniform distribution without additional information might
be problematic. Indeed, considering two uncertain variables U; and U, for which
only the bounds are known: Uy, U, € [0, 172. Let consider the uncertain variable Y
defined such as Y = U; + U,. If uniform distribution between O and 1 are assumed
for U; and U;, by summing these variables, the obtained distribution for Y is a
triangular distribution between 0 and 2 with a maximum at 1, which is different
from a uniform between O and 2. If interval formalism is used in such cases, the
resulting bounds for Y is [0, 2]. By assuming uniform distribution for the variables,
it leads to an a-priori on Y without any reason because of the absence of information
on the distribution of Uy, U, (Figure 2.25).

An advantage for the alternative uncertainty modeling techniques (evidence
theory, possibility theory, imprecise probability and Pboxes) compared to the
probability theory is the ability to measure the confidence in the uncertainty mod-
eling information. Indeed, as the alternative techniques are based on non-additive
measures, it enables to define two measures that provide an interval of confidence in
the available uncertainty information that bracket the probability measure that would
be obtained with the same information. Therefore, it naturally allows to account
for epistemic uncertainty that often exists in the available data collected in the
field and the aggregation of different expert opinions. The probability theory may
be viewed as a special case of the alternative uncertainty formalisms which offer
an easier aggregation of different types of uncertainty information. One important
drawback of these formalisms is the difficulty to interpret the results in complex
system design and especially with respect to all the existing regulations, design
rules and constraints that are expressed with the probability theory. Moreover, the
access to information from experts (in terms of the possibility distribution or the
evidence) might be complicated with non-initiated experts. Finally, in terms of
complex system design, the complexity and the computational cost associated to the
uncertainty propagation for these alternative formalims is usually more important
than with probability theory.

One major lesson learnt with this brief introduction of the different uncertainty
modeling formalisms is that it is important to choose a formalism based on the
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available information (data, expert opinions, etc.) than trying to fit the existing
information to a formalism chosen by default.
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