
Chapter 1
Multidisciplinary System Modeling
and Optimization

Loïc Brevault and Mathieu Balesdent

1.1 Introduction

With the increasing complexity of systems such as aerospace vehicles, it has
become more and more necessary to adopt a global and integrated approach from
the early steps and all along the design process. Tightly coupling aerodynamics,
propulsion, structure, guidance and navigation, trajectory, etc. but also taking into
account environmental and operational constraints as well as manufacturability,
reliability, maintainability is a huge challenge. For instance, for launch vehicle, it
is typically considered that 80% of the life-cycle cost is locked in by early design
decisions (Blair et al. 2001). The field of multidisciplinary design optimization
(MDO) provides some answers on how to integrate more and more knowledge into
the design process while reducing the design cycles. MDO can be thought as a set
of engineering methods and tools to handle complex design problems involving
several coupled disciplines. It consists of a core of key methodologies such as
multidisciplinary problem formulations, optimization algorithms, surrogate-based
high-fidelity tools, etc. which are validated and enriched through confrontation
to various kinds of design studies. It provides an informed decision framework
for the system designers. In the MDO formalism, a system is described as a set
of interconnected subsystems (called disciplines) in order to model its dynamics
and to estimate its performance. MDO approaches have been applied to a large
panel of case studies in various fields such as aircraft (Henderson et al. 2012;
Nguyen et al. 2013; Kenway et al. 2014), launch vehicles (Braun 1996; Balesdent
et al. 2012; Breitkopf and Coelho 2013), spacecraft (Hwang et al. 2013; Huang
et al. 2014), automotives (McAllister and Simpson 2003), ships (Peri and Campana
2003), buildings (Choudhary et al. 2005), etc. and offer methods to solve complex
design optimizations which are laborious to handle with the classical design
methods (Alexandrov 1997). Classical design approaches (Figure 1.1) consist of
a sequence of discipline optimizations. However, in the case of complex system
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4 1 Multidisciplinary System Modeling and Optimization

design, the disciplines often present antagonistic objectives and the classical design
approaches have difficulty in the search for a compromise between these conflicting
disciplinary objectives (Balesdent et al. 2012). For instance, in launch vehicle
design, the aerodynamics discipline may tend to decrease the stage diameters to
decrease the drag during the atmospheric flight, whereas the structure discipline
may tend to increase it for stress and stability reasons. Some review articles
(Agte et al. 2010; Alexandrov 1997; Balling and Sobieszczanski-Sobieski 1996;
Sobieszczanski-Sobieski and Haftka 1997; Tosserams et al. 2009; Martins and
Lambe 2013; Balesdent et al. 2012) provide a state of the art of the different MDO
methods.

Unlike the sequential disciplinary optimizations (Figure 1.1), in MDO, the
interactions between the disciplines are directly taken into account (Balesdent et al.
2012) (Figure 1.2). Moreover, the design of complex systems requires diverse
fields of expertise and with the globalization of the industries, it involves engineers
distributed all over the world. The data exchange between the teams is a crucial point
to take into account in the design process. MDO approaches aim to facilitate the
discipline exchanges in order to find an optimal solution in reduced time and costs.
The MDO formulations take advantage of the inherent synergies and couplings
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between the disciplines involved in the design process to decrease the computational
cost and/or to improve the quality of the global optimal design (Sobieszczanski-
Sobieski and Haftka 1997). However, the complexity of the problem is significantly
increased by the simultaneous handling of all the disciplines and their interactions.
To subdue the complexity introduced by MDO, various MDO formulations have
been developed.

This chapter introduces the fundamental concepts, notations, and methods
required to describe a MDO process without the presence of uncertainty. In
Section 1.2, the concept of discipline and the general MDO formulation are
introduced in addition to the appropriate notations to establish the preliminary bases.
In Section 1.3, the methods to handle the interdisciplinary coupling handling are
described. These approaches may be distinguished into different categories: coupled
and decoupled approaches, and single and multi-level formulations. Section 1.4
presents an overview of the existing MDO formulations in order to describe their
keys steps and to highlight their main advantages and drawbacks.

1.2 Mathematical Formulation of the General Deterministic
Multidisciplinary Design Optimization (MDO) Problem

In MDO, a discipline i is modeled by a function ci(·) taking design variables
and input coupling variables as inputs and computing output coupling variables.
A discipline i is illustrated in Figure 1.3.

A general MDO problem can be formulated as follows (Balesdent et al. 2012):

min f (z, y, x) (1.1)

w.r.t. z, y, x

s.t. g(z, y, x) ≤ 0 (1.2)

h(z, y, x) = 0 (1.3)

∀(i, j) ∈ {1, . . . , N}2 i �= j, yij = cij (zi , y.i , xi ) (1.4)

∀i ∈ {1, . . . , N}, ri (zi , y.i , xi ) = 0 (1.5)

zmin ≤ z ≤ zmax (1.6)

All the variables and functions are described in the following paragraphs. Three
types of variables are involved in a deterministic MDO problem:

Fig. 1.3 Discipline modeling
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• z is the design variable vector. The design variables evolve all along the
optimization process in order to find their optimal values with respect to the
MDO problem (objective function and constraints). The design variables may be
shared between several disciplines (noted zsh) or specific to one discipline. For
example, the design variables specific to the discipline i are noted z̄i . We note
zi = {zsh, z̄i} the input design variable vector of the discipline i ∈ {1, . . . , N}
with N the number of disciplines and z = ⋃N

i=1 zi without duplication. For
instance, the typical design variables in a launch vehicle design problem are
the stage diameters, the pressures in the combustion chambers, the propellant
masses, the fairing geometry parameters, etc.

• x is the state variable vector. Unlike z, the state variables are not independent
degrees of freedom but depend on the design variables, the coupling variables y
and the state equations characterized by the residuals r(·). These variables are
often defined by implicit relations that require specific numerical methods for
solving complex industrial problems. For example, the guidance law (modeled,
for instance, by pitch angle interpolation with respect to a set of way points)
in a launch vehicle trajectory discipline has to be determined in order to ensure
payload injection into orbit. The guidance law is often the result of an iterative
process minimizing the discrepancy between the target orbit injection and the real
orbit injection. In such a modeling, the pitch angle way points are state variables
for the trajectory discipline and the discrepancy between the actual and target
orbits is the residual r(·).

• In a multidisciplinary environment, the disciplines exchange coupling variables,
y (Figure 1.4). The latter link the different disciplines to model the interactions
between them. cij (zi , y.i , xi ) is a coupling function used to compute the output
coupling variable vector which is calculated by the discipline i and input to the
discipline j. y.i stands for the vector of all the input coupling variables of the
discipline i and yij is the input coupling variable vector which is input to the
discipline j and output from the discipline i. We note y = ⋃N

i=1 y.i = ⋃N
i=1 yi.

without duplication. From the design variables and the input coupling variables
to the discipline i, the output coupling variables are computed with the coupling
function: ci.(zi , y.i , xi ) and yi. = (yi1, . . . , yiN ) is the vector of the outputs of
the discipline i and the input coupling variable vector of all the other disciplines
requiring this couplings as inputs. For example, the sizing discipline computes
the aerospace vehicle dry mass which is transferred to the trajectory discipline
for a simulation of the aerospace vehicle flight. Another example is the classical
aerodynamics and structural analysis (Figure 1.5) (Coelho et al. 2009; El Majd
et al. 2010; Kennedy and Martins 2014; Kenway et al. 2014). For an aircraft, this
analysis involves coupled analyses between the aerodynamics discipline (which
requires the aircraft geometry and the deformations) and the structure discipline
(which requires the aerodynamics loads on the aircraft structure and especially
the wings). For the coupled systems, it is important to keep in mind that their
designs involve goals which are often conflicting with each other, for instance,
reducing weight may lead to higher structural stresses.
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Fig. 1.4 Couplings between
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In order to solve the MDO problem Equations (1.1–1.6), we are looking for:

• Inequality and equality constraint feasibility: the MDO solution has to satisfy
the inequality constraints imposed by g(·) and the equality constraints imposed
by h(·). These constraints translate the requirements for the system in terms of
targeted performance, safety, flexibility, etc. For example, a target orbit altitude
for a launch vehicle payload is an equality constraint that has to be satisfied.

• Individual disciplinary feasibility: the MDO solution has to ensure the disci-
plinary satisfaction through the equality constraints on the residuals ri (·). The
residuals ri (·) quantify the satisfaction of the state equations in the discipline
i. The state variables xi are the roots of the state equations of the discipline
i. For instance, the state equations may translate a thermodynamic equilibrium
between the chemical components in the rocket engine combustion. In the rest
of this chapter, it is assumed that the satisfaction of the disciplinary feasibility
is ensured by the disciplines; therefore, no more references to the state variables
and residuals will be done.

• Multidisciplinary feasibility: the MDO solution has to satisfy the interdisci-
plinary equality constraints (also referred to as multidisciplinary compatibility
constraints) between the input coupling variable vector y and the output coupling
variable vector which is the output of the coupling functions gathered in
c(·) resulting from the discipline simulations. In two disciplines context, the
couplings between the disciplines i and j are said to be satisfied (also called
feasible, compatible, or consistent) when the following interdisciplinary system
of equations is verified:

{
yij = cij (zi , y.i )

yj i = cj i(zj , y.j ).
(1.7)

When all the couplings are satisfied, i.e. when Equations (1.7) are satisfied
for all the couplings between all the disciplines, the system is said to be
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multidisciplinary feasible. The satisfaction of the interdisciplinary couplings is
essential as it is a necessary condition for the modeled system to be physically
realistic. Indeed, in the aerodynamics and structural example, if the aerodynamics
discipline computes a load of 10 MPa, it is necessary that the structure discipline
uses as input 10 MPa and not another value otherwise the coupled analysis is not
consistent. The existing methods for the coupling satisfaction in the deterministic
MDO are detailed in Section 1.3.

• Optimal MDO solution: f (·) is the objective function (also called performance)
to be optimized. Multi-objective functions may be used to quantify several per-
formances to be optimized (see Chapter 8). This kind of functions characterizes
the system and is a measure of its quality expressed with some metrics (e.g.,
aerospace vehicle life cycle cost in euros, Gross Lift-Off Weight in kg, aircraft
range in km). In general, the objective function has to be minimized.

To summarize, in order to solve a MDO problem, it is necessary to ensure:

• Requirement feasibility: respect of the requirements asked by the designer,
• Multidisciplinary feasibility: respect of the physical relevance for the obtained

design,
• Individual disciplinary feasibility: respect of the disciplinary state equations,
• MDO solution optimality.

The multidisciplinary feasibility is a specificity of multidisciplinary systems which
involve coupled analyses and require specific methodologies to guarantee it. The
classical methods to ensure the interdisciplinary coupling satisfaction are detailed
in the next section.

1.3 Multidisciplinary Coupling Satisfaction

In MDO, two categories of methods to satisfy the interdisciplinary couplings may be
distinguished (Balling and Sobieszczanski-Sobieski 1996): the coupled approaches
(Figure 1.6) and the decoupled approaches (Figure 1.7) and are introduced in this
section.

1.3.1 Coupled Approaches (Use of Multidisciplinary Analysis)

The coupled approaches (Figure 1.6) perform a multidisciplinary analysis (MDA)
to ensure the interdisciplinary couplings at each iteration of the system-level
optimization. MDA is an auxiliary analysis aiming to find an equilibrium between
the disciplines by solving the system of interdisciplinary equations (Coelho et al.
2009). In other words, MDA consists in finding the value of the input coupling
variables y satisfying the system of interdisciplinary equations (Equations 1.7). An
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iterative scheme is required to solve the system of equations because of the coupled
nature of the disciplines. Two classical MDA methods are distinguished: either
the Fixed Point Iteration (FPI) or an auxiliary optimization process minimizing
the residuals of the interdisciplinary equations (Coelho et al. 2009; Breitkopf and
Coelho 2013).

• Fixed Point Iteration. FPI is an iterative procedure involving a loop between the
disciplines with no control on the coupling variables (excepted for the initializa-
tion) which directly results from the discipline simulations. Different schemes
for iterative FPI exist in the literature. The most used are the Gauss–Seidel
or the Jacobi approaches (Salkuyeh 2007; Lambe and Martins 2012; Martins
and Lambe 2013) (Figure 1.9). FPI with the Gauss–Seidel scheme consists in
successively analyzing the different disciplines with the updated output coupling
variables from the disciplines computed previously. This FPI scheme can be
interpreted as a generalized Gauss–Seidel scheme for multidisciplinary analysis
because of its links with the Gauss–Seidel algorithm for solving linear algebraic
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Fig. 1.8 General principle of
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Fig. 1.9 Gauss–Seidel vs Jacobi schemes for FPI between the discipline i and the discipline j . (a)
Gauss–Seidel scheme for FPI between the discipline i and the discipline j . (b) Jacobi scheme for
FPI between the discipline i and the discipline j

equations. The Jacobi scheme differs from the Gauss–Seidel approach in the
sense that the disciplines take as inputs the values of the coupling variables
given at the previous Jacobi iteration. In that sense, in a Jacobi scheme, all the
disciplines can be evaluated in parallel. It is important to note that FPI may not
always converge, a theoretical analysis of conditions under which convergence
can be guaranteed (for instance, if the interdisciplinary set of equations defines
a contraction mapping) may be found in Ortega (1973). In the FPI approach,
only one coupling vector is initialized (for instance, yij in Figure 1.8). The FPI
algorithm for a scalar coupling variable between two disciplines is described in
Algorithm 1 for the Gauss–Seidel scheme and in Algorithm 2 for the Jacobi
scheme. These algorithms can be generalized to vector couplings and problems
with more than two disciplines.
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initialization: zi , zj , initial coupling guess y
guess
ji , convergence tolerance criterion δref,

maximum number of iterations kmax
1) Initialize k = 0

2) Evaluate the discipline i with: yij = cij

(
zi , y

guess
ji

)

3) Evaluate the discipline j with: ynew
ji = cji (zj , yij )

4) Compute the coupling error: δ = |yguess
ji − ynew

ji |
5) k ← k + 1 while δ > δref and k < kmax do

6-1) Set y
guess
ji = ynew

ji

6-2) Evaluate the discipline i with: yij = cij

(
zi , y

guess
ji

)

6-3) Evaluate the discipline j with: ynew
ji = cji (zj , yij )

6-4) Compute the coupling error: δ = |yguess
ji − ynew

ji |
6-5) k ← k + 1

end
if k < kmax then

return ynew
ji , yij and k

else
return ′′not converged′′.

end
end

Algorithm 1: FPI algorithm (Gauss–Seidel type) for scalar coupling between two
disciplines

initialization: zi , zj , initial coupling guess y
guess
ji , y

guess
ij , convergence tolerance criterion

δref, maximum number of iterations kmax
1) Initialize k = 0

2) Evaluate the disciplines i and j with: yij = cij

(
zi , y

guess
ji

)
, ynew

ji = cji

(
zj , y

guess
ij

)

3) Compute the coupling errors: δji = |yguess
ji − ynew

ji |, δij = |yguess
ij − ynew

ij |
4) k ← k + 1 while δij > δref and δji > δref and k < kmax do

5-1) Set y
guess
ji = ynew

ji ,yguess
ij = ynew

ij

5-2) Evaluate the disciplines i and j with: ynew
ij = cij

(
zi , y

guess
ji

)
,

ynew
ji = cji

(
zj , y

guess
ij

)

5-3) Compute the coupling errors: δji = |yguess
ji − ynew

ji |, δij = |yguess
ij − ynew

ij |
5-4) k ← k + 1

end
if k < kmax then

return ynew
ji , ynew

ij and k

else
return ′′not converged′′.

end
end

Algorithm 2: FPI algorithm (Jacobi type) for scalar coupling between two
disciplines
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Fig. 1.10 Discrepancy
minimization for the
discipline i and the discipline
j
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• Discrepancy minimization. Alternatively, MDA may be solved by minimizing
the discrepancy between the input coupling variable vector and the coupling
output vector (Tedford and Martins 2006) (Figure 1.10):

min ‖ y1. − c1.(z, y.1) ‖2 + · · · + ‖ yN. − cN.(z, y.N ) ‖2 (1.8)

w.r.t. y

with yi. the input coupling variable vector of all the disciplines linked to the
discipline i. The interdisciplinary coupling system is solved when the optimizer
converges such that the discrepancy is equal to zero. An efficient auxiliary
optimization algorithm often requires fewer calls to the discipline i than FPI, as
the optimization process chooses the steps more freely than FPI (Sankararaman
and Mahadevan 2012). Newton–Raphson or staggered solution approaches
(Felippa et al. 2001) are examples of root finding algorithms applied to MDA.
More details on MDA can be found in Keane and Nair (2005). It is important to
notice that the MDO formulations satisfying the interdisciplinary equations with
MDA ensure the system feasibility at each system-level optimization iteration.

It is worth noting that whatever the numerical scheme used to solve MDA,
it is possible that the final couplings may depend on the initial guess. Indeed,
a nonlinear system may have multiple equilibrium points resulting in several
couplings satisfying the multidisciplinary feasibility. Even though such situations
are rarely encountered in the aerospace vehicle design, MDA must be performed
carefully to ensure that the most physically meaningful solution is picked.

1.3.2 Decoupled Approaches

The decoupled approaches (Figure 1.7) aim at removing MDA and at imposing
equality constraints on the coupling variables in the MDO formulation at the system-
level (Equation 1.4) to ensure the interdisciplinary coupling satisfaction only for the



1.4 MDO Formulations 13

optimal design. Instead of solving the system of interdisciplinary equations at each
of the MDO process iteration in z, equality constraints may be imposed between the
input and the output coupling variables in the MDO formulation at the same level
as the constraints g(·) and h(·): ∀(i, j) ∈ {1, . . . , N}2 i �= j, yij = cij (zi , y.i ).
These constraints impose to the optimal design the multidisciplinary feasibility. The
basic idea is to define the input coupling variables y as optimization variables along
with the design variables z. Indeed, in the decoupled approaches, the system-level
optimizer controls both the design variables and the input coupling variables. Hence,
the additional degrees of freedom introduced by expanding the variables handled by
the system-level optimizer are controlled by the coupling equality constraints. The
equality constraints on coupling variables may not be satisfied at each iteration but
guide the search of optimal design.

The coupled and decoupled approaches to handle the interdisciplinary couplings
have been incorporated in various MDO formulations that are briefly presented in
the following sections.

1.4 MDO Formulations

A lot of MDO formulations have been proposed in the literature to efficiently
solve general and specific engineering problems. Some articles (Balling and
Sobieszczanski-Sobieski 1996; Alexandrov 1997; Balesdent et al. 2012; Martins
and Lambe 2013; Breitkopf and Coelho 2013) provide a review of the different
methods and compare them qualitatively and numerically on a benchmark of MDO
problems (Yi et al. 2008; Tedford and Martins 2010).

This section presents the main MDO formulations that will be used in the
following chapters. Classical MDO formulations may be classified in four categories
(Figure 1.11) according to the coupled or decoupled and to the single or multi-level
approaches:

• Single-level approaches with the use of MDA: e.g. MultiDiscipline Feasible
(MDF) (Balling and Sobieszczanski-Sobieski 1996),

• Multi-level approaches with the use of MDA: e.g. Concurrent SubSpace Opti-
mization (CSSO) (Sobieszczanski-Sobieski 1988), Bi-Level Integrated System
Synthesis (BLISS) (Sobieszczanski-Sobieski et al. 1998),

• Single-level approaches with equality constraints on the coupling variables:
e.g. Individual Discipline Feasible (IDF) (Balling and Sobieszczanski-Sobieski
1996), All At Once (AAO) (Balling and Sobieszczanski-Sobieski 1996),

• Multi-level approaches with equality constraints on the coupling variables: e.g.
Collaborative Optimization (CO) (Braun 1996), Analytical Target Cascading
(ATC) (Allison et al. 2005), Quasi Separable Decomposition (QSD) (Haftka and
Watson 2005).

The single-level vs. multi-level formulations differ by the number of optimizers.
Single-level formulations have only one system optimizer to solve the MDO
problem, whereas in multi-level formulations, in addition to the system optimizer,
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Fig. 1.11 Classification of
the main MDO formulations
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the discipline (or subsystem) optimizers are introduced in order to distribute the
problem complexity over the different dedicated discipline optimizations. Among
the formulations relying on MDA, MDF is the most used (Balesdent et al. 2012).
MDF is a single-level optimization formulation in which the system performance is
evaluated with a disciplinary iterative process. CSSO and BLISS use MDA to ensure
the interdisciplinary couplings but enable the decoupled discipline optimizations.
IDF, CO, ATC, and AAO are fully decoupled formulations with the satisfaction of
the couplings by incorporating additional variables and equality constraints in the
formulations. The decoupled MDO formulations offer several advantages compared
to MDF (Balesdent et al. 2012; Martins and Lambe 2013):

• The system-level optimization process allows parallel analyses of the disciplines;
however, the load balancing has to be taken into account when some analyses
or optimizations are much more expensive than others, such as in multi-fidelity
optimization problems. For example, in Zadeh and Toropov (2002) the decoupled
approaches are not efficient because of the inactivity of the processors running
the inexpensive analyses and optimizations which is waiting for the updates from
the other processors.

• The number of calls to the computationally expensive discipline codes may be
notably decreased by avoiding expensive MDA calculations,

• The multi-level methods facilitate the system optimization by distributing the
problem complexity over the different dedicated discipline optimizations. How-
ever, poor convergence rate may be observed due to the imbrication of several
levels of optimization (DeMiguel and Murray 2000; Martins and Lambe 2013),

• In the multi-level approaches, the discipline optimizers handle the local design
variables (decreasing the system-level design space size) and the system-level
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optimizer only controls the shared design variables between the disciplines and
the coupling variables. Different suited optimizer algorithms may be used to
solve the lower-level optimization problems.

However, compared to MDF, the decoupled MDO formulations require an appro-
priate interdisciplinary coupling handling and involve an optimization problem with
more variables in total (the design variables and the coupling variables that can be
distributed among the system and the local disciplinary optimizers in the case of
multi-level approaches) and more constraints. In the next sections, two single-level
formulations (one coupled and one decoupled) and four multi-level formulations
(two coupled and two decoupled) are presented in order to highlight the coupling
handling approaches in the main MDO formulations. First, the two single-level
approaches are introduced.

1.4.1 MultiDiscipline Feasible (MDF)

The Multidiscipline Feasible (MDF) formulation (Figure 1.12) is the most used
MDO method. This approach is described in Cramer et al. (1994) and Balling
and Sobieszczanski-Sobieski (1996). MDF is a single-level coupled deterministic
approach which uses MDA to ensure the interdisciplinary coupling satisfaction at
each iteration of the system-level optimizer. Once the MDA is performed, the design
variables and the converged values of the coupling variables are used to compute
the objective function and the constraints. The disciplines are in charge of finding
the state variable values satisfying the state equations consequently they do not
intervene in the MDF formulation.

min f (z, y(z)) (1.9)

w.r.t. z

s.t. g (z, y(z)) ≤ 0 (1.10)

h (z, y(z)) = 0 (1.11)

zmin ≤ z ≤ zmax (1.12)

with y(z) the (converged) coupling variable vector satisfying the system of inter-
disciplinary equations (could also be noted yFPI(z)) (Equations 1.7). It is important
to notice that, in MDF, due to the repeated calls to MDA, at each iteration, each
candidate solution is multidisciplinary feasible. The main advantage of MDF is
its simplicity of implementation which involves only one system optimizer and
MDA controls the interdisciplinary couplings. Moreover, this formulation is general
enough to be easily adapted to all types of multidisciplinary systems. MDF is often
considered as a reference due to its intrinsic interdisciplinary coupling satisfaction
thanks to MDA. However, MDF presents also important drawbacks. MDA requires
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Fig. 1.12 MDF formulation
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iterative loops between the disciplines and can be, therefore, computationally
expensive. In the presence of computationally expensive disciplines, the repeated
calls to MDA in MDF result in a prohibitive computational cost.

For large scale industrial design problems, each subsystem may involve spe-
cialists and engineering teams distributed all over the world and performing MDA
becomes a complicated task as it requires (Balesdent 2011):

• the definition of each subsystem autonomy and domain of action with respect to
all the involved collaborators,

• the management of the exchanges of information and data transmissions between
the different subsystems,

• the traceability of the exchanged information and the evaluated system design.

Moreover, the subsystem analyses are performed sequentially and each team has to
wait for the previous one in order to perform its tasks (when FPI with Gauss–Seidel
is used to solve MDA) which can be very time consuming.

1.4.2 Individual Discipline Feasible (IDF)

Individual Discipline Feasible (Cramer et al. 1994; Balling and Sobieszczanski-
Sobieski 1996) (Figure 1.13) is a decoupled single-level deterministic formulation
(Equations 1.13–1.17). It replaces the computationally expensive MDA by intro-
ducing additional degrees of freedom, the input coupling variables controlled at the
system-level, and by adding interdisciplinary coupling constraints in the formulation
(Equation 1.16):
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Fig. 1.13 IDF method
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min f (z, y) (1.13)

w.r.t. z, y

s.t. g (z, y) ≤ 0 (1.14)

h (z, y) = 0 (1.15)

∀(i, j) ∈ {1, . . . , N}2i �= j, yij = cij (zi , y.i ) (1.16)

zmin ≤ z ≤ zmax. (1.17)

This formulation allows to split the main problem into several subproblems by
removing MDA. The input coupling variables are controlled by the system-level
optimizer allowing to decouple the disciplines and to evaluate them in parallel.
The optimizer exchanges the coupling information with all the disciplines to
coordinate them to a multidisciplinary feasible solution. In order to ensure the
system consistency for the optimal solution, equality constraints (Equation 1.16)
between the input and the output coupling variables are added compared to MDF
formulation. In IDF, the multidisciplinary feasibility is ensured only at the MDO
problem convergence and the intermediate optimization solution consistency is
not guaranteed. This decomposition approach increases the number of decision
variables controlled by the system-level optimizer but the computational cost may be
improved thanks to the discipline parallelization. Unlike MDF, at each system-level
iteration, only one call to the disciplines is carried out. For large scale applications,
the management tasks are less restrictive than in MDF because each discipline only
dialogues with the optimizer.

Multi-level approaches have been proposed in order to ease the system-level
optimization by introducing dedicated subsystem-level optimizers. Two families
of decoupled MDO formulations are discussed in the following sections. First,
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Collaborative Optimization (CO) and Analytical Target Cascading (ATC) decom-
positions which belong to decoupled multi-level formulations are detailed and
then Bi-Level Integrated Systems Synthesis (BLISS) and Concurrent SubSpace
Optimization (CSSO) which may be viewed as an hybrid form between coupled
and decoupled approaches are discussed.

1.4.3 Collaborative Optimization (CO)

Collaborative Optimization (CO) (Braun 1996) is a decoupled bi-level deterministic
formulation (Figure 1.14). This formulation has been developed to offer more
autonomy to the subsystems to satisfy the interdisciplinary couplings. CO may be
resumed as follows:

min f (z, y) (1.18)

w.r.t. z, y

s.t. Ji.(z∗
i , zi , y) = 0,∀i ∈ {1, . . . , N} (1.19)

zmin ≤ z ≤ zmax (1.20)

with Ji. the optimized objective function of the ith discipline and z∗ the local copies
of z controlled by the subsystem optimizer. The ith subsystem optimization problem
is given by

min Ji. =‖ z∗
i − zi ‖2

2 + ‖ yi. − ci.(y.i , z∗
i ) ‖2

2 (1.21)

w.r.t. z∗
i

s.t. gi

(
z∗
i , y.i

) ≤ 0 (1.22)

hi
(
z∗
i , y.i

) = 0 (1.23)

z∗
imin

≤ z∗ ≤ z∗
imax

. (1.24)

CO presents important advantages compared to the single-level MDO formu-
lations. Indeed, CO allows to employ the most adapted optimization method to
each discipline with possible actions of the disciplinary experts. Moreover, the
design process offers modularity and flexibility to add or remove disciplines without
modifying the entire design process. However, theoretical and practical convergence
issues with respect to the quadratic constraint formulation have been observed
by some researchers (Alexandrov and Lewis 2000) due to instabilities at the
convergence. Several adaptations of CO have been proposed in order to overcome
this difficulty (DeMiguel and Murray 2006). Nevertheless, this approach has been
shown to provide good results for some MDO problems (Braun 1996).
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Fig. 1.14 CO method

1.4.4 Analytical Target Cascading (ATC)

The Analytical Target Cascading (ATC) method (Figure 1.15), described in Miche-
lena et al. (1999, 2003) and Kim (2001), has been initially developed to formalize
industrial product development processes. This formulation is adapted to solve
problems with a hierarchical structure. ATC is a multi-level MDO method (possibly
involving more than two levels) which hierarchically propagates system and
subsystem-level targets through the different subsystem-levels. In this formulation,
the initial problem is subdivided into a set of subproblems. The specified design tar-
gets are cascaded from the system-level to the lower-levels and are also rebalanced
to the higher-levels after being optimized at the lower-levels.

At each level of the design process, a specific optimization problem is formulated
to minimize the errors between the level outputs and the propagated objectives, and
thus to ensure the consistency concerning the couplings between the upper and lower
optimization levels. For some problems, the mathematical formulation of ATC can
be similar to CO (Allison et al. 2005).
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Fig. 1.15 ATC method (Balesdent et al. 2012)

Let Sij be the j th subsystem of the ith optimization level, the optimization
problem to solve for this subsystem is the following:

min fij = ‖Cij − y(i−1)j‖ +
∥
∥
∥zsh(i−1)j − z∗

sh(i−1)j

∥
∥
∥ + εCij

+ εZij

w.r.t z̄ij, zshij , z∗
sh(i−1)j

, yij, εCij
, εZij

with Cij = cij

(
yij, z̄ij, z∗

sh(i−1)j

)
(1.25)

∑

k∈Childij

∥
∥yijk − C(i+1)jk

∥
∥ ≤ εCij

(1.26)

s.t.
∑

k∈Childij

∥
∥
∥zshijk

− z∗
shijk

∥
∥
∥ ≤ εZij

(1.27)
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gij

(
cij, z̄ij, z∗

sh(i−1)j

)
≤ 0 (1.28)

hij

(
cij, z̄ij, z∗

sh(i−1)j

)
= 0 (1.29)

with z̄ij the design variables of Sij , zshij the shared design variables of Sij , z∗
sh(i−1)j

the local copies of the Sij ’s parent shared design variables, Cij the responses of
Sij , C(i+1)jk the responses of the kth Sij ’s child, yij the coupling variables of Sij ,
y(i−1)j the Sij ’s parent coupling variables, εCij

and εZij
the relative tolerances on the

satisfaction of the inequality constraints (Equations 1.28 and 1.29). Childij stands
for the set of Sij ’s children.

For the top-level, the objective function does not involve the satisfaction of the
coupling constraints and the term y(i−1)j is replaced by the real target to reach (the
variables z∗

sh(i−1)j
are not necessary). In the same way, at the bottom-level, Equations

(1.26) and (1.27) are not necessary and the bottom-level subsystem optimizers only
involve the variables z̄ij, z∗

sh(i−1)j
.

ATC is a generic formulation adapted to the large scale problems which can
be solved with a multi-level structure. By partitioning the MDO process into a
series of levels, ATC allows to distribute the complexity of the MDO problem
into the different subsystems present in the different optimization levels. For that
reason, ATC is adapted for the MDO problems which can be divided into many
small subproblems. ATC has been improved using Lagrangian coordination (Kim
et al. 2006) and has been adapted to non-hierarchical formulation (Tosserams et al.
2010). Convergence proof and parallelization processes of ATC have been proposed
(Michelena et al. 2003; Han and Papalambros 2010).

1.4.5 Bi-Level Integrated System Synthesis (BLISS)

Bi-Level Integrated System Synthesis (BLISS) (Sobieszczanski-Sobieski et al.
1998, 2000) is a multi-level deterministic MDO formulation (Figure 1.16). It is an
iterative method organized with a system-level optimizer and a set of disciplinary
optimizers at the subsystem-level. The basic idea of BLISS is to create a path in the
design space using a series of linear approximations to the original design problem,
with bounds on the design variable steps defined by the designer, in order to avoid
to the design point from moving so far away that the approximations become
inaccurate. The concept is similar to trust region optimization algorithms (Conn
et al. 2000). BLISS is based on a gradient approach and optimizes successively
the contributions of the discipline specific design variables (subsystem optimization
problems) and the shared design variables to the objective function (system-level
optimization problem). In order to ensure multidisciplinary feasibility, BLISS relies
on MDA as in MDF which is performed between the system and the subsystem
optimization problems.
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Fig. 1.16 BLISS formulation

At the kth iteration of BLISS, the system-level optimizer solves the following
problem:

min f ∗
k + ∂f ∗

k

∂zsh
�zsh (1.30)

w.r.t. �zsh

s.t. �zshmin ≤ �zsh ≤ �zshmax . (1.31)
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The ith subsystem optimization problem is given by

min f + ∂f

∂ z̄i

�z̄i (1.32)

w.r.t. �z̄i

s.t. gi + ∂gi

∂�z̄i

�z̄i ≤ 0 (1.33)

hi + ∂hi

∂�z̄i

�z̄i = 0 (1.34)

�z̄imin ≤ �z̄i ≤ �z̄imax (1.35)

with �z the optimization variable increments at the current iteration k. In the
system-level optimization problem, Equations (1.30–1.31), the objective function
f ∗

k (·) is a first-order Taylor series expansion of the exact objective function f (·)
with the discipline design variables zi being fixed to their optimal values found
at the subsystem-level. At the subsystem-level, the objective function and the
constraints are first-order Taylor series expansions with the shared variables being
fixed to the optimal values found at the system-level. BLISS allows one to separate
the system-level optimization and the optimizations of the different disciplines
at the subsystem-level. Adapted optimization methods for each discipline are
possible to improve the system convergence. The reliance of BLISS on linear
approximations may introduce difficulties if the underlying problem is highly
nonlinear, the algorithm may converge slowly. The user-defined variable bounds
may help the convergence if these bounds are correctly chosen, e.g., through a
trust region framework. Variants of BLISS have been developed such as BLISS-
2000 using approximate models to replace the original disciplines and decrease the
computational cost.

1.4.6 Concurrent SubSpace Optimization (CSSO)

The Concurrent SubSpace Optimization (CSSO) method (Figure 1.17) was for-
mulated by Sobieszczanski-Sobieski (1988). This iterative method is also based
on a system decomposition strategy which allows the subsystems to contribute
independently to the optimization process. The global problem is solved by a
system-level optimizer which ensures the coordination of the different subsystems
and aims at finding a compromise between the different solutions proposed at the
subsystem-level.

Approximations of the coupling variables are used in the different subsystems
in order to determine their influence on the objective f (·) and on the constraints
g(·) and h(·). With this method, when performing the subsystem optimizations, the
effects of a variable variation in one subsystem to the constraints of the other sub-
systems can be determined. This method introduces a concept of responsibility for
the constraint violation and uses cumulative constraints (Sobieszczanski-Sobieski
1988), which consist in considering the partial satisfaction of a constraint in one
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Fig. 1.17 CSSO method
(Balesdent et al. 2012)
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discipline by the influences of the other disciplines. This concept is made possible
by introducing additional (coordinating) variables to the initial problem.

The approximations of the coupling variables can be performed by, for instance,
using neural networks (Sellar and Batill 1996) or response surfaces (Renaud and
Gabriele 1993, 1994; Sellar et al. 1996; Wujek et al. 1996, 1997). Other expansions
of the CSSO method using approximate models (Rodriguez et al. 1998, 2001;
Perez et al. 2002) can be found in the literature but are not developed in this
chapter. The CSSO method uses a multidisciplinary analysis to coordinate the
optimization process and often performs sensitivity analysis by using the Global
Sensitivity Equation (GSE). The resolution of the GSE (Sobieszczanski-Sobieski
1990) allows to quickly obtain the total influence of the different variables to the
objective function.
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The system-level optimizer solves the following problem:

min f (ỹ, zsh) (1.36)

w.r.t zsh

s.t. g(ỹ, zsh) ≤ 0 (1.37)

h(ỹ, zsh) = 0 (1.38)

zshmin ≤ zsh ≤ zshmax (1.39)

where ỹ represent the approximations of the coupling variables. The optimization
problem of the ith subsystem can be formulated as follows:

min f (ỹ.i , zsh, z̄i), j �= i (1.40)

w.r.t. zi

s.t. gi(ỹ.i , zsh, z̄i) ≤ 0 (1.41)

hi(ỹ.i , zsh, z̄i) = 0 (1.42)

zimin ≤ z̄i ≤ zimax . (1.43)

Unlike the CO method, the shared design variables are considered as constants
during the concurrent optimizations at the subsystem-level. In Huang and Bloebaum
(2004), a CSSO-based method is presented: the Multi-Objective Pareto Concurrent
SubSpace Optimization (MOPCSSO). MOPCSSO has been developed to solve
multi-objective problem with a CSSO architecture and integrates the concept of
Pareto Optimality (Pareto 1971). This method allows to solve multi-objective large
scale problems with a CSSO-based method. For more details on MDO and multi-
objective problems, see Chapter 9.

The main characteristic of the CSSO method is the use of approximate dis-
ciplinary models to estimate the effects of the variables of the other disciplines
and to solve the problem as a decoupled one. These approximate models create a
database which is used by the local optimizers in order to optimize the objectives
and to satisfy the constraints. In that way, CSSO can reduce the calculation time
of the optimization process. In brief, if the problem is relatively small and the
model approximations are easy to formulate, CSSO can be very efficient and gives
solutions in a reduced calculation time.

Unfortunately, the efficiency of CSSO highly depends on the approximate
models of the coupling variables. Moreover, for large scale problems, the necessary
time to build these models can be longer than the time saved by using them.

For more details on deterministic MDO formulations one can refer to different
survey papers (Balling and Sobieszczanski-Sobieski 1996; Alexandrov 1997; Bales-
dent et al. 2012; Martins and Lambe 2013).
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1.5 Practical Implementation of MDO Approaches

To ease the implementation and solving of MDO problems, MDO framework has
been outlined as an important aspect. Different requirements have been identified
(Salas and Townsend 1998; Padula and Gillian 2006; Hiriyannaiah and Mocko
2008) for such framework categorized under problem formulation, problem exe-
cution, modularity, parallel processing, user interface, software design, and data
workflow management. Several commercial frameworks have been proposed such
as iSIGHT (Golovidov et al. 1998), ModelCenter or ModeFRONTIER. These
frameworks offer the possibility for users to couple multiple disciplines and
simulation codes but also to use a set of optimization algorithms or uncertainty
quantification techniques. Moreover, they offer a Graphical User Interfaces (GUI)
facilitating MDO implementation for nonexperts, especially by using the wrappers
to ease integration of popular commercial engineering tools (NASTRAN, Matlab,
etc.). However, these software are limited in terms of scalability and numerical
techniques for complex design problems. For instance, to solve MDO problems
with gradient-based optimizer, finite-difference approximations are used rather than
more accurate analytic derivatives, leading to an important computational cost and
possible inaccuracies. More recently, OpenMDAO framework developed in Python
by NASA Glenn (Gray et al. 2019) proposed to use gradient-based optimization with
analytic derivatives to solve MDO problems. OpenMDAO offers unified derivatives
equation combined with the advanced numerical methods that allows to solve larger
and more complex MDO problems. Indeed, adjoint method for analytic derivation
enables to ease coupled MDO problem solving and offers important computational
cost reductions compared to traditional techniques. However, it does not provide
at the moment a GUI or wrapper, making it more difficult to handle for engineers
nonfamiliar with MDO approaches. All the MDO problems presented in this book
have been implemented using OpenMDAO. For more details on OpenMDAO and
gradient-based technique for MDO, please refer to Gray et al. (2019).

1.6 Summary

Several existing deterministic MDO formulations have been presented in this
chapter. These formulations might be classified according to the interdisciplinary
coupling handling techniques (coupled or decoupled approaches) and according to
the number of levels of optimization (single or multi). Decomposition strategies of
the design process can offer autonomy to the engineering teams of each discipline
but they make the MDO problem to solve more complex. Deterministic MDO
methods have been applied to solve a wide range of aerospace vehicle design
problems (Henderson et al. 2012; Nguyen et al. 2013; Kenway et al. 2014; Braun
1996; Balesdent et al. 2012; Breitkopf and Coelho 2013) involving mostly the
single-level MDF formulation.
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Since the development of these deterministic MDO formulations, researchers,
aerospace agencies, and industrial companies (Zang et al. 2002) stress upon the
need for the development of design methods allowing aerospace vehicles to have
better performance, higher reliability at lower cost and risk. To efficiently address
these objectives, designers use modeling, simulation, and optimization methods
and include all the relevant aspects of the aerospace vehicle life cycle from the
conceptual design to its industrialization. However, in practice, the life cycle is
affected by various uncertainties arising from the vehicle itself, its environment or
its operational conditions. These uncertainties may modify or introduce fluctuations
in the system performance or even may cause system failures due to unexpected
deviation from nominal expected conditions. Therefore, taking into account the
various uncertainties in the early design phases is essential to avoid unexpected
design failure and to ensure optimal performance. The introduction of uncertainty
in MDO formulations would offer the possibility to enhance the design of complex
systems by taking into account potential synergistic uncertain phenomena thanks to
coupled discipline analysis. Uncertainty-based Multidisciplinary Design Optimiza-
tion (UMDO) aims at solving MDO problem under uncertainty.

Taking into account uncertainties in MDO require a number of new topics to
accurately handle uncertainty. These new topics will be introduced in the following
chapters. In the next chapter, the definition of uncertainty and its classification into
different types is discussed in order to identify the potential sources of uncertainty.
Then, modeling of uncertainty which is a premise in UMDO is discussed. Math-
ematical representations of the uncertainty allow to incorporate uncertainty in the
MDO framework. Different formalisms of uncertainty exist and the appropriate
choice of modeling is essential as it affects all the UMDO process. These aspects
are presented in the next chapter.
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