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Abstract. In this article, by using the Bernoulli sub-equation, we
build the analytical traveling wave solution of the (2+1)-dimensional
Davey-Stewartson equation system. First of all, the imaginary (2+1)-
dimensional Davey-Stewatson system is transformed into a system of
nonlinear differential equations, After getting the resultant equation,
the homogeneous method of balance between the highest power and the
highest derivative of the ordinary differential equation is authorized and
finally the outcomes equations are solved in order to achieve some new
analytical solutions. Wolfram Mathematica Package is used for different
cases as well as for different values of constants to investigate the solu-
tions of the resulting system of a nonlinear differential equation. The
results of this study are shown in 2D and 3D dimensions graphically.
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1 Introduction

Progressing of soliton formation and its application in differential systems has
been remarkable in recent years. Disputing modes of solitary energy propagating
on behalf of a chain of other biological molecules has pulled forward interesting.
New attainment of topological, nontopological solitons as well as transformation
phenomena in polyacetylene chains with the action of an electrical field [1]. The
physical phenomena of nonlinear partial differential equations (NLPDEs) are
involved in many fields of physics, for example, plasma physics, optical fibers,
nonlinear optics, fluid mechanics, chemistry, biology, geochemistry as well as
engineering sciences [2].

Researchers have been reported an assorted numerical and analytical tech-
niques to seek solutions of NLPDEs for example a homotopy analysis method
[3,4], a finite forward difference method [5,6], homotopy perturbation method
[7,8], spectral methods [9], Adomian decomposition method [10,11], Adams-
Bashforth scheme [12], Adams-Bashforth-Moulton scheme [13], shooting scheme
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[14–17], the sine-Gordon expansion method [18,19], the inverse scattering method
[20], functional variable method [21], the Bernoulli sub-ODE function method
[22,23], the modified auxiliary expansion method [24], the modified exp (−ϕ (ξ))-
expansion function method [25–27], the tan(φ (ξ) /2)-expansion method [28,
29], G′/G-expansion method [30,31], the decomposition-Sumudu-like-integral-
transform method [32], the extended sinh-Gordon expansion method [33,34] and
the generalized exponential rational function method [35,36].

Scholars have been used different methods to find some kind of solution like
exact, analytical, numerical and semi-analytic solutions of Davey-Stewartson
equations for instance, the G′/G method [37], the improved tan(φ (ξ) /2)-
expansion method with generalized G′/G-expansion method [32], the rational
expansion method [38], time splitting spectral method [39], the Gram-type deter-
minant solution and Casorati-type determinant solution [40]. Also, different ana-
lytical approaches such as, the method of multiple scales combined with a quasi
discreteness approximation [41], sine-Gordon expansion method [42], the new
generalized G′/G-expansion method [43], the extended Weierstrass transforma-
tion method [44], the sine-cosine, tanh-coth and exp-function methods [45] and
the extended mapping method technique [46] have been developed to investigate
analytical solutions for the different types of NLPDEs.

In this study, some novel soliton solution of Davey and Stewartson equations
by using the Bernoulli sub-equation is investigated. The variable approach of the
traveling wave changes the NLPDEs into nonlinear ordinary differential equa-
tions and it is solved for different physical nonzero parameters. Outcomes cases
are present in 2D and 3D-dimensions.

2 Structures of Bernoulli Sub-equation Function Method

The mainly modified steps of this technique are [47,48]:
Let we have a nonlinear partial differential equation:

P (ux, ut, uxt, uxx, ...) = 0, (1)

and defining the traveling wave transformation

u(x, t) = q(η), η = x + γt, (2)

where γ �= 0. Applying Eq. (4) on Eq. (3) as a result, we get a nonlinear ordinary
differential equation:

N(q, q
′
, q

′′
, ...) = 0. (3)

Using a trial equation of solution as follows:

q (η) =
n∑

i=0

aiF
i = a0 + a1F + a2F

2 + ... + anFn, (4)

and
F

′
= bF + dFM , b �= 0, d �= 0,M ∈ R − {0, 1, 2}. (5)
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here F (η) is Bernoulli differential polynomial. Inserting Eq. (6) into Eq. (5) as
well as using Eq. (7) produces:

Ω(F (η)) = bkF (η)s + · · · + b1F (η) + b0 = 0, (6)

via the balance principle, the connection of n and M will be evaluate.
By taking all the coefficients of Ω(F (η)) to be zero, we get an algebraic

equations system:
bi = 0, i = 0, · · · , k, (7)

solving Eq. (9), we will find the values of a0, a1, ..., an.
Step 4. Solving Bernoulli Eq. (7), two cases are observed depending on the

values of b and d:

F (η) =
[−d

b
+

E

eb(M−1)η

] 1
1−M

, b �= d, (8)

F (η) =

⎡

⎣
(E − 1) + (E + 1) tanh

(
b(1−M)η

2

)

1 − tanh
(

b(1−M)η
2

)

⎤

⎦

1
1−M

, b = d,E ∈ R. (9)

Where E is the non-zero constant of integration, with the help of Mathematical
packages, we gain the solutions to Eq. (5), using a complete polynomial discrim-
ination system. Also, all the solutions gained in this method are plotted and the
suitable parameter values on (1+1)-dimensional surfaces of solutions are taken
into account.

3 The (2+1)-Dimensional Davey-Stewartson Equations

In this article, the Davey-Stewartson equations in dimensional [49,50] are con-
sidered

iφt +
1
2
σ2

(
φxx + σ2φyy

)
+ λ|φ|2φ − φ ψx = 0, (10)

ψxx − σ2ψyy − 2λ
(

|φ|2
)

x
= 0, (11)

here φ (x, y, t) and ψ (x, y, t) represents the dependent variables while, x and y
are the independent variables axes as well as is represent a time-independent
variable. Also, σ and λ represent constant coefficients. First of all we convert
the (2+1)-dimensional imaginary Davey-Stewartson equations into a system of
nonlinear ODE to study and analyze its exact solutions.

Using the following transformation:

φ (x, y, t) = eiθu (ξ) , ψ (x, y, t) = v (ξ) , ξ = μ (x + y − ηt) , θ = κx + λy + βt.
(12)

where μ, η, κ, λ and β are real constants. Applying Eq. (12), the (2+1)-
dimensional Davey-Stewartson equations are changed to

μ2
(
1 − σ2 − 2σ4

)
u′′ − (

β + κ2σ2 + λ2
)
u − uv + κu3 = 0, (13)
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μ
(
η − 2κσ2 − 2λ

)
i u′ = 0, (14)

− μ2
(
1 − σ2

)
v

′′
+ 4κμ2

(
uu

′′
+ u

′2)
= 0. (15)

Integrating Eq. (15) twice with respect to ξ and taking the constant of integration
to be zero, one gets

v =
2κ

1 − σ2
u2 . (16)

Finding the close solution, we find from Eq. (14) that

η = 2κσ2 + 2λ. (17)

Now substituting Eq. (16) into Eq. (13), we get

μ2
(
1 − σ2

) (
1 − σ2 − 2σ4

)
u

′′ − (
1 − σ2

) (
β + κ2σ2 + λ2

)
u − κ

(
1 + σ2

)
u3 = 0.

(18)
Now to evaluate the balances between and, the relationship between and can
written

M = n + 1. (19)

Case 1. Using n = 2, M = 3 and then substituting them into Eq. (4) with using
Eq. (5), the following equations are obtained:

u = a0 + a1F + a2F
2, (20)

u
′
= a1bF + a1dF 3 + 2a2bF

2 + 2a2dF 4, (21)

u′′ = a1b
2F + 4a2b

2F 2 + 4a1bdF 3 + 12a2bdF 4 + 3a1d
2F 5 + 8a2d

2F 6, (22)

where a2 �= 0, b �= 0, d �= 0. Substituting Eqs. (20–22) into Eq. (18), a system of
algebraic equations are found. Inserting Eqs. (8) or (9) into a system of algebraic
equations, we can investigate the following solutions:

Case 1a. For a0 = bμ
√
2−6σ2+4σ4√

κ
, a1 = 0, a2 = 2dμ

√
2−6σ2+4σ4√

κ
, β = −λ2 −

κ2σ2 + 2b2μ2
(−1 + σ2 + 2σ4

)
, we get (Fig. 1)

φ (x, y, t) =
bμ

√
2 − 6σ2 + 4σ4ei(βt+κx+λy)

(
de2bμ(x+y−2(λ+κσ2)t) + bE

)

√
κ

(−de2bμ(x+y−2(λ+κσ2)t) + bE
) , (23)

ψ (x, y, t) = −
4b2μ2

(−1 + 2σ2
) (

de2bμ(x+y−2(λ+κσ2)t) + bE
)2

(
de2bμ(x+y−2(λ+κσ2)t) − bE

)2 . (24)

Case 1b. λ =
√−α + κ2, σ = i, we get (Fig. 2)

φ (x, y, t) =ei(βt+κx+λy)

⎛

⎝a0 +
a2

−d
b + Ee−2bξ

+
a1√

−d
b + Ee−2bξ

⎞

⎠ , (25)
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Fig. 1. 3D surfaces with its 2D figures of Eqs. (21) and (22) with values b = 1, d =
−1, E = 1, σ = 0.1, κ = 0.1, t = 0.5, μ = 0.1, λ = 1 and y = 2 for 2D surface.

Fig. 2. 3D surfaces with its 2D figures of Eqs. (23) and (24) with values b = 1, d =
−1, E = 0.1, κ = 2, a0 = 0.1, a2 = 0.1, a1 = 0.2, t = 0.5, μ = 0.1, α = −0.5 and y = 2
for 2D surface.

ψ (x, y, t) = κ

⎛

⎝a0 +
a2

−d
b + Ee−2bξ

+
a1√

−d
b + Ee−2bξ

⎞

⎠
2

. (26)

Case 2. If taking n = 3 and M = 4 in Eq. (4) with using Eq. (5), the following
equations are found:

u = a0 + a1F + a2F
2 + a3F

3, (27)

u′ = a1bF + 2a2bF
2 + 3a3bF

3 + a1dF 4 + 2a2dF 5 + 3a3dF 6, (28)

u′′ = a1b
2F + 4a2b

2F 2 + 9a3b
2F 3 + 5a1bdF 4 + 14a2bdF 5

+ 27a3bdF 6 + 4a1d
2F 7 + 10a2d

2F 8 + 18a3d
2F 9,

(29)

where a3 �= 0, b �= 0, d �= 0. putting Eqs. (27–29) into Eq. (18), a system of
algebraic equations is evaluated. Solving this system the following cases and
solutions have resulted:
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Case 2a. When a0 = −μ
√

β+λ2+κ2σ2
√
1−3σ2+2σ4

√
κ
√

μ2(−1+σ2+2σ4)
, a1 = 0, a2 = 0, a3 =

− 3dμ
√
2−6σ2+4σ4√

κ
, b =

√
2
√

β+λ2+κ2σ2

3
√

μ2(−1+σ2+2σ4)
, we obtain (Fig. 3)

φ (x, y, t) =ei(βt+κx+yλ)μ
√

B√
κ

(
− 3

√
2d

−d
b + Ee−3bξ

−
√

A√
μ2B

)
, (30)

ψ (x, y, t) = −
2
(
bE

√
A − de3bξ

(√
A − 3

√
2b

√
μ2 (−1 + σ2 + 2σ4)

))2

(de3bξ − bE)2 (1 + σ2)
, (31)

where A = β + λ2 + κ2σ2 and B = 1 − 3σ2 + 2σ4.

Fig. 3. 3D surfaces with its 2D figures of Eqs. (30) and (31) with values d = −1, E =
1, σ = 2, κ = 1, t = 1/2, μ = 0.1, α = 0.5, λ = 1 and y = 2 for 2D surface.

Case 2b. When a0 = −μ
√

β+λ2+κ2σ2
√
1−3σ2+2σ4

√
κ
√

μ2(−1+σ2+2σ4)
, a1 = 0, a2 = 0, a3 =

− 3dμ
√
2−6σ2+4σ4√

κ
, b =

√
2
√

β+λ2+κ2σ2

3
√

μ2(−1+σ2+2σ4)
, we obtain (Fig. 4)

φ (x, y, t) =ei(βt+κx+λy)

⎛

⎜⎜⎜⎝

a0 +
a3

−d
b + Ee−3bξ

+
a2

(−d
b + Ee−3bξ

)2/3
+

a1
(−d

b + Ee−3bξ
)1/3

⎞

⎟⎟⎟⎠ , (32)

ψ (x, y, t) = κ

(
a0 +

a3

− d
b

+ Ee−3bξ
+

a2(− d
b

+ Ee−3bξ
)2/3

+
a1(− d

b
+ Ee−3bξ

)1/3

)2

.

(33)
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Fig. 4. 3D surfaces with its 2D figures of Eqs. (32) and (33) with values b = 1, d =
−1, a0 = 0, a1 = 0.4, a2 = 0.1, a3 = 0.1, E = 1, t = 0.5, μ = 0.1, α = 0.5, λ = 2 and
y = 2 for 2D surface.

4 Conclusion

In this researcher, the Bernoulli sub-equation is used to find some novel solu-
tions of (2 + 1)-dimensional imaginary Davey-Stewartson equations with differ-
ent physical parameters by utilizing the Wolfram Mathematica package. These
methods with using computer-based symbolic computation utilized to construct
broad classes of soliton solutions of nonlinear differential equations that arise
in applied physics. Our resultant may appreciate and useful in some sciences
like mathematical physics, applied physics, and engineering in terms of nonlin-
ear science. Moreover, the method proposed in this paper, should be reliable,
effective, provide more solutions as well. These methods may be applied to other
nonlinear partial differential equations.

References

1. Ilhan, O.A., Esen, A., Bulut, H., Baskonus, H.M.: Singular solitons in the pseudo-
parabolic model arising in nonlinear surface waves. Results Phys. (2019). https://
doi.org/10.1016/j.rinp.2019.01.059
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