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Abstract. In present article, we constitute a user friendly algorithm basically
expansion of homotopy perturbationmethodwith Sumudu transform (ST), namely
homotopy perturbation Sumudu transformmethod (HPSTM) to resolve fractional
model of Newell-Whitehead-Segel equation (NWS).Thereafter, the numerical
solution of the time-fractional NWS model compared with exact solution. The
results attained byHPSTMmay be hypothesize as a different and effectivemethod
for solving fractional model. Two tests example demonstrate the correctness as
well as effectiveness of the present techniques.

Keywords: Caputo fractional derivative · Fractional Newell-Whitehead-Segel
equation · Homotopy perturbation Sumudu transform method

1 Introduction

Fractional calculus (FC) is the branch of applied mathematics was introduced by Guil-
laume de I’Hopital as the conventional calculus before 300 years ago. In recent year,
fractional differential equation has been promoted in diverse area of science and tech-
nology such as fluid mechanics, diffusion equation, biology, electro-magnetic waves,
control theory visco elasticity, electrode-electrolyte heat conduction, polarization and
many others physical processes, finance and biomedical engineering. Many authors
describe varied techniques to reach the objective of most correct solution [7–19] and
very recently, Singh et al. have suggested HPSTM [20].

In the present work, the HPSTM is tested to the fractional model of NWS equation. It
is the action of the impact of the diffusion term with the nonlinear impact of the reaction
term. Fractional model of NWS equation is represent as

uα
t = kuxx + au − buq , t > 0, 0 < α ≤ 1, (1)

© Springer Nature Switzerland AG 2020
H. Dutta et al. (Eds.): CMES 2019, AISC 1111, pp. 1–14, 2020.
https://doi.org/10.1007/978-3-030-39112-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39112-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-39112-6_1


2 A. Prakash et al.

where a, b and k > 0 represent the real numbers and represent the positive integers.
In Eq. (1) uα

t , uxx and au − buq illustrate the variation of u(x, t) with time at a fixed
location, variation of u(x, t) with dimensional variable at a particular time and takes
into description the impact of the source term respectively and the nonlinear distribution
of temperature may be represent by function u(x, t) in an infinitely narrow and lengthy
rod or fluid flow as a velocity in an infinitely lengthy pipe with limited diameter.

Mainly two kinds of template are noticed, in the first roll template cylinders form
by fluid stream lines and these cylinders may be turn and layout spiral like template. In
the second template liquid flow is spilt into honey comb cells and layout hexagon alike
template. The uniform template, stripes and hexagons occur in distinct physical structure,
stripes template are show in visual cortex, on zebra skin and in a human fingerprints and
hexagonal template are attained from the laser beams propagation through a nonlinear
approach and in structure with chemical reaction and diffusion species [24].

Recently Nourazar et al. and Prakash et al. used homotopy perturbation method [25]
and variation iteration method [26] to solved classical NWS model, respectively. Also,
Prakash et al. applied Adomain decomposition method [27] and fractional variational
iteration method [28] to solve fractional model of NWS equation. Kumar and Sharma
[29] used homotopy analysis Sumudu transform method to solved fractional model of
NWS equation. But fractional model of NWS equation has not been solved by HPSTM.

The framework of present paper is outline as follow: First section is introductory, in
the Sect. 2 the key terminology of fractional calculus is examined, in Sect. 3 proposed
homotopy perturbation Sumudu transforms method is discussed, in Sect. 4 two test
examples of fractional model of NWS equation are given to elucidate the proposed
method HPSTM and in Sect. 5 consequence of the effort is drawn.

2 Preliminaries

In present segment, we will introduce the key terminology of FC and ST used to discuss
the suggested procedure.

Definition 2.1. The Sumudu transform is defined over the set of function B =
{ f (t)|∃N , t1, t2 > 0, | f (t)| < Ne

|t |
t j if t ∈ (−1) j × [0,∞) be the following formula

S[ f (t)] =
∫ ∞

0
f (ut)e−t dt, u ∈ (−t1, t2).

Definition 2.2. The ST of fractional derivative in Caputo sense is defined as:

S
[
Dnα
x u(x, t)

] = v−nαS[u(x, t)] −
∑n−1

k=0
v(−nα+k)uk(0, t), n − 1 < nα ≤ n.

Definition 2.3. The fractional derivative of f (t), f ∈ Cn−1, n ∈ N, n > 0, in Caputo
sense is defined as

Dα f (t) = I n−αDn f (t) = 1

�(n − α)

∫ t

0
(t − x)n−α−1 f n(x)dx,

where n − 1 < α ≤ n.
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3 Proposed Homotopy Perturbation Sumudu Transforms Method

In present section, solution procedure of the proposed technique HPSTM is illustrated
for the time-fractional nonlinear partial differential equation (NPDE). Now, consider the
following time-fractional NPDE:

Dα
t u(x, t) + Ru(x, t) + Nu(x, t) = f (x, t), (2)

with initial approximation u(x, 0) = g(x),
where Dα

t , R, Nand f (x, t) illustrate Caputo fractional derivative in Caputo sense,
linear differential operator, nonlinear differential operator and the source term, respec-
tively.

After using the ST on Eq. (2), we attained

S(Dα
t u(x, t)) + S(Ru(x, t)) + S(Nu(x, t)) = S(( f x, t)). (3)

Now, operating the property of ST on the Eq. (3), we obtain

S(u(x, t)) = g(x) + uαS( f (x, t)) − uαS(Ru(x, t) + Nu(x, t)) (4)

After using the property of inverse ST on the Eq. (4), we obtain

u(x, t) = G(x, t) − S−1(uαS(Ru(x, t) + Nu(x, t)), (5)

where G(x, t) represent the term obtained from source term and suggested initial
approximation.

Now, after using the Homotopy perturbation method, the result can be demonstrate
as a power series in small homotopy parameter p ∈ [0, 1] is specified in the form

u(x, t) =
∑∞

n=0
pnun(x, t). (6)

Again, nonlinear term can be expressed as a He’s polynomials Hn(u)

Nu(x, t) =
∑∞

n=0
pnHn(u), (7)

and He’s polynomials Hn(u) can be evaluated by the subsequent formula

Hn
(
u0,u1,u2, . . . . . . . . . .un,

) = 1

�(n + 1)

∂n

∂Pn
[N

∑∞
n=0

piui (x, t)]p=0. (8)

where n = 0, 1, 2, 3 . . . ..

Substituting (6) and (7) in (5) and using HPM by He [21, 22], we attain

∑∞
n=0

pnun(x, t) = G(x, t) − p ∗ S−1
{
uαS(R

∑∞
n=0

pnun(x, t) +
∑∞

n=0
pnHn(u)

}
.
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After comparing coefficient of similar power of p on both sides, we obtain successive
approximations:

p0 : u0 = G(x, t),
p1 : u = S−1{uαS(Ru0(x, t) + H0(u))},

p2 : u2 = S−1{uαS(Ru1(x, t) + H1(u))},
p3 : u3 = S−1{uαS(Ru2(x, t) + H2(u))},

Similarly, we can calculate

pn : un = S−1{uαS(Run−1(x, t) + Hn−1(u))
}
.

Lastly, we approximate the numerical results by the series

u(x, t) = lim
n→∞

∑∞
n=0

un(x, t). (9)

4 Numerical Experiments

In present segment, we shall apply aforesaid HPSTM to two test example of time-
fractional NWS equation.

Example 1. We analysis the linear model of time-fractional NWS equation

uα
t = uxx − 2u, t > 0, 0 < α ≤ 1, (10)

with initial approximation

u(x, 0) = ex. (11)

Now, for particular case when α = 1, the exact solution of the classical model of
NWS equation is given as: u(x, t) = ex−t .

After, using the suggested technique HPSTM to the previously show illustration, we
obtain the successive approximations:

u0 = ex ,
u1 = −ex tα

�(α+1) ,

u2 = ex t2α
�(2α+1) ,

u3 = −ex t3α
�(3α+1) ,

...

un = (−1)nex tnα

�(nα+1) .

From Figs. 1 and 2, we noticed the marvellous consistency between suggested tech-
nique HPSTM and exact solution. Here, we use eight terms of approximation to depicts
the Fig. 1.
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Fig. 1. Surface represents approximate solution u(x, t) at α = 1, for Ex. 1.

Fig. 2. Surface represents exact solution u(x, t) at α = 1, for Ex. 1.
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Fig. 3. Surface represents absolute error |uExact − uH PST M | at α = 1, for Ex. 1.

Fig. 4. Surface represents approximate solution u(x, t) at α = 0.7, for Ex. 1.
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Fig. 5. Surface represents approximate solution u(x, t) at α = 0.8, for Ex. 1.

Figure 1 demonstrate the 8th order approximate result, Fig. 2 depicts exact solution. It
is noticed from Figs. 1and 2 that the result attained by HPSTM is almost similar to exact
solution, Fig. 3 represents the absolute error, Figs. 4, 5 and 6 shows the approximate
solution for α = 0.7, 0.8 and 0.9 respectively Fig. 7 demonstrate the comparison of
HPSTM solution for different values of fractional order α = 0.25, 0.50, 0.75 and 1 and
exact solution for α = 1 and t = 0.50. From Fig. 7 it is observed that with increase the
value of x value of u increase and approach to ∞ and towards negative value of x its
show asymptotic behaviour toward x axis.

Example 2 We analysis the nonlinear model of time-fractional NWS equation

uα
t = uxx + u − u2 = 0, t > 0, 0 < α ≤ 1, (12)

with initial approximation

u(x, 0) = 1(
1 + e

x√
6

)2 . (13)

Now, for particular case when α = 1, the exact solution of the classical nonlinear
model of NWS equation is given as: u(x, t) = 1(

1+e
x√
6

− 5
6 t

)2 .
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Fig. 6. Surface represents approximate solution u(x, t) at α = 0.9, for Ex. 1.

After, using the suggested technique HPSTM to the previously show illustration, we
obtain the successive approximations:

u0 = 1(
1 + e

x√
6

)2 ,

u1 = 5

3

e
x√
6(

1 + e
x√
6

)3
tα

�(α + 1)
,

u2 = 25

18

⎛
⎜⎝
e

x√
6

(
−1 + 2e

x√
6

)
(
1 + e

x√
6

)4
⎞
⎟⎠ t2α

�(2α + 1)
,

u3 = {25
18

1(
1 + e

x√
6

)5 [8
6
(e

x√
6 )2 − 4(e

x√
6 )3 +

(
8

6
(e

x√
6 )2 − (e

x√
6 )

6

)(
1 + e

x√
6

)

+ 4

6
(e

x√
6 )2 − 16

6
(e

x√
6 )3 +

(
2(e

x√
6 )2 − e

x√
6

)(
1 + e

x√
6

)
+

−20
6 (e

x√
6 )3 + 40

6 (e
x√
6 )4(

1 + e
x√
6

)
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− 2

⎛
⎝ (−e

x√
6 )1 + 2(e

x√
6 )2(

1 + e
x√
6

)
⎞
⎠]} t3α

�(3α + 1)
− 25

9

(e
x√
6 )2(

1 + e
x√
6

)6
�(2α + 1)t3α

�(3α + 1)�(α + 1)2
.

Fig. 7. Surface represent HPSTM solution for different of value α and exact sol. at α = 1 and t =
0.50, for Ex. 1.

From Figs. 8 and 9, we noticed the marvellous consistency between suggested tech-
nique HPSTM and exact solution. Here, we use third terms of approximation to depicts
the Fig. 8.

Figure 8 demonstrate the 2nd order approximate result, Fig. 9 depicts the exact
solution. It is noticed from Figs. 8 and 9 that the result attained by HPSTM is nearly
similar to exact solution, Fig. 10 represents the absolute error, Figs. 11, 12 and 13 shows
the approximate solution for α = 0.7, 0.8 and 0.9 respectively and Fig. 14 demonstrate
the comparison of proposed technique HPSTM solution for α = 0.25, 0.50, 0.75, 1 and
exact solution for α = 1 and t = 0.50. From Fig. 14 it is observed that with increase the
value of x value of u decrease and approach to 0 and curve show asymptotic behaviour
toward x axis.
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Fig. 8. Surface represents approximate solution u(x, t) at α = 1, for Ex. 2.

Fig. 9. Surface represents exact solution u(x, t) at α = 1, for Ex. 2.
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Fig. 10. Surface represents absolute error |uExact − uH PST M | at α = 1, for Ex. 2.

Fig. 11. Surface represents approximate solution u(x, t) at α = 0.7, for Ex. 2.
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Fig. 12. Surface represents approximate solution u(x, t) at α = 0.8, for Ex. 2.

Fig. 13. Surface represents approximate solution u(x, t) at α = 0.9, for Ex. 2.
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Fig. 14. Surface represent HPSTM solution for different value of α and exact sol. at α =
1 and t = 0.50, for Ex. 2.

5 Conclusions

In the present paper, almost accurate solution of fractionalmodel ofNWS is attainedwith
the aids of effective techniques HPSTM. The plotted graph and approximate solution
demonstrate the validity and effectiveness of suggested techniques HPSTM and solution
is converge towards the exact solution vary rapidly which is demonstrated numerically.
We noticed the marvellous consistency between suggested techniques HPSTM and the
exact solution. Moreover, efficient techniques HPSTM can be again tested to construct
the accurate solution of nonlinear fractional model.
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Abstract. In this paper, we investigate the effect of contact tracing the spread of
HIV in a population. The mathematical model is given as a system of differential
equations with piecewise constant arguments, where we divide the population into
three sub-classes: HIV negative, HIV positive that do not know they are infected
and the classwithHIVpositive that know they are infected. This system is analyzed
using the theory of differential and difference equations. The local stability of the
positive equilibrium point is investigated by using the Schur-Cohn Criteria, while
for the global stability we consider an appropriate Lyapunov function. The system
under consideration has shown that it has semi-cycle behaviors, but not a structure
of period two. Moreover, we analyze the case for low infection rate by using the
Allee effect at time t. Several examples are presented to support our theoretical
findings using data from a case study in India.

Keywords: Logistic differential equations · Stability analysis · Periodic
behavior · Allee effect

1 Introduction

Since 1981, HIV has spread throughout the world, and now it is a major epidemic
problem worldwide [1]. Furthermore, it is an important research area in medicine as
well as in applied mathematics. Mathematical models of transmission dynamics of HIV
play an important role in understanding epidemiological patterns for disease control and
to have a long-term prediction of HIV. Recent studies have been conducted to describe
the transmission dynamics of HIV, where some of them are [2–6].

In this paper, we want to consider the study of [7, 8], where the authors analyzed
the effect of contact tracing on reducing the spread of HIV/AIDS in a homogeneous
populationwith the constant immigrationof susceptible byusing the theoryof differential
equations. However, in some biological phenomena, we need to use both continuous and
discrete time. In this demography study, the model needs continuous time, since we have
overlapping population growth. Moreover, the spread of transmission and to realize to
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be infected happens in discrete time. Theoretical studies show that differential equations
with piecewise constant arguments are equivalent to integral equations and are very close
to delaying differential equations [9, 10]. Cooke and Györi studied this idea and proved
that a differential equation with piecewise constant arguments could be used to obtain
the approximate solution of delay differential equations that contains discrete delays.
Following this work, many authors have analyzed various types of biological models
consisting of differential equations with piecewise constant arguments and fractional
order differential equations. The reader can consult the papers [11–16] for further details.

According to the above information, our model as a system of equations with
piecewise constant arguments is as follows:

⎧
⎪⎨

⎪⎩

dS
dt = S(t)r1(p − α1S(t) − β1I1([[t]]) − β2I2([[t]])),

dI1
dt = I1(t)r2(1 − α2I1(t) + β1(1 − ε1)S([[t]]) − θI1([[t]]) + β2(1 − ε2)S([[t]])I2([[t]])),

dI2
dt = I2(t)r3(1 − α3I2(t) + β2ε2S([[t]]) + θI1([[t]]) + β1ε1S([[t]])I1([[t]])),

(1.1)

where t is the time and [[t]] is the exact value of t ≥ 0.
The model contains three populations; susceptible S, HIV positives that do not know

they are infected I1 and HIV positives that know they are infected I2. The susceptible are
composed of individuals that have not contacted the infection but can get infected through
contacts (sexual, blood transfusion, etc.)with infectives.Note, r1 is the population growth
rate of the susceptible population, α1 is the death (of natural causes) rate while, p is a rate
of susceptible population per year. The susceptibles lost their class following contacts
with infectives I1 and I2 at a rate β1 and β2, respectively.

I1 is the population that hasHIVpositive, but they do not know it due to the invisibility
of disease symptoms. In class I1, r2 is the population growth rate, while α2 is the death
(of natural causes) rate. The population of this class decreases by HIV test and become
aware after screening at a rate θ. After contacts of classes S and I1 in discrete time, these
classes could realize they are infected. This group (S([[t]]) · I1([[t]])) is given in class I2
with rate ε1.

It can also be possible that after tracing contact between S and I2, a rate of the sus-
ceptible class detect in further time to be HIV positive, which is here ε2. The population
growth rate of class I2 is given by r3, while the death rate of natural causes is α3.

In this paper, we analyzed in Sect. 2 the boundedness character and the non-periodic
behavior of system (1.1). We obtained that the solutions show a semi-cycle behavior,
which is not periodic. In Sect. 3, we investigated the local and global behavior of the
system around the positive equilibrium point, which is based on specific conditions. For
a prediction analysis about a small infected class of I1 and I2, we incorporate Allee
functions at time t in Sect. 4. The conclusion part in Sect. 5 summarize the study in this
paper.

2 The Boundedness Character and Analysis of Periodic Behavior

In this section, we analyze the boundedness character of the system, and we want to find
conditions for periodic behavior.
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For t ∈ [n, n + 1), system (1.1) is an expression of Bernoulli differential equations
such as
⎧
⎨

⎩

dS
dt − r1(p − β1I1(n) − β2I2(n))S(t) = −α1r1S(t)2,

dI1
dt − r2(1 + β1(1 − ε1)S(n) − θI1(n) + β2(1 − ε2)S(n)I2(n))I1(t) = −α2r2I1(t)2,

dI2
dt − r3(1 + β2ε2S(n) + θI1(n) + β1ε1S(n)I1(n))I2(t) = −α3r3I2(t).

(2.1)

Solving (2.1) for t ∈ [n, n + 1), we obtain
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S(n + 1) = S(n)U1(n)
(U1(n)− α1S(n)) · exp(−r1U1(n)) + α1S(n) ,

I1(n + 1) = I1(n)U2(n)
(U2(n)− α2I1(n)) · exp(−r2U2(n) + α2I1(n)

,

I2(n + 1) = I2(n)U3(n)
(U3(n) − α3I2(n)) · exp(−r3U3(n)) + α3I2(n)

,

(2.2)

where

U1(n) = p − β1I1(n) − β2I2(n) �= 0,

U2(n) = 1 + β1(1 − ε1)S(n) − θI1(n) + β2(1 − ε2)S(n)I2(n) �= 0,

and

U3(n) = 1 + β2ε2S(n) + θI1(n) + β1ε1S(n)I1(n) �= 0.

To analyze the stability around a positive critical point of system (1.1), we want to
obtain at first the positive equilibrium point of (2.2), since (2.2) is the solution of (1.1)
for t ∈ [n, n + 1). Thus, we get

p = β1I1 + β2I2 + α1S̄, (2.3)

1 = −β1(1 − ε1)S̄ + (θ + α2)I1 − β2(1 − ε2)S̄I2 (2.4)

and

1 = −β2ε2S̄ − θI1 − β1ε1S̄I1 + α3I2. (2.5)

To find the positive equilibrium point of (2.2), we have the following assumptions
given in the demographic data in [7, 8];

(i) β1 = 3β2,
(ii) ε1 = ε2,

(iii) ε1 + ε2 < 1,
(iv) ε1 = ε2 < 0.75.

Considering (2.4) and (2.5), we obtain

I1 = (1 − ε1)

3ε1
I2, (2.6)
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where we can write

−β2ε1(3 − 4ε1)S̄ + ((2θ + α2)β2(1 − ε1) − α3ε1)I2 = 0 (2.7)

and

α1ε1S̄ + β2I2 = ε1 p. (2.8)

Thus, we have the equilibrium point
(
S̄, I1, I2

)
as follows;

S̄ = p

α1
− β22p(3 − 4ε1)

α1
(
β22(3 − 4ε1) + α1((2θ + α2)β2 − ε1((2θ + α2)β2 + α3))

) ,

I1 = β2ε1 p(3 − 4ε1)(1 − ε1)

3ε1
(
β22(3 − 4ε1) + α1((2θ + α2)β2 − ε1((2θ + α2)β2 + α3))

) ,

I2 = β2ε1 p(3 − 4ε1)

β22(3 − 4ε1) + α1((2θ + α2)β2 − ε1((2θ + α2)β2 + α3))
,

where ε1 <
(2θ + α2)β2

(2θ + α2)β2 + α3
and p >

β22p(3− 4ε1)

β22(3− 4ε1) + α1((2θ + α2)β2 − ε1((2θ + α2)β2 + α3))
.

The Jacobian matrix for the positive equilibrium point X̄ = (
S̄, I1, I2

)
is

J
(
X̄

) =
⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ (2.9)

where

a11 = e−r1U1 , a12 =
3β2

(
e−r1U1 − 1

)

α1
, a13 =

β2

(
e−r1U1 − 1

)

α1
,

a21 =
β2(1 − ε1)

(
3 + I2

)(
1 − e−r2U2

)

α2
, a22 = −θ + (θ + α2)e−r2U2

α2
,

a23 =
β2(1 − ε1)S̄

(
1 − e−r2U2

)

α2
, a31 =

β2ε1
(
1 + 3I2

)(
1 − e−r3U3

)

α3
,

a32 =
(
θ + 3β2ε1S̄

)(
1 − e−r3U3

)

α3
, a33 = e−r3U3 .

The characteristic equation of (2.9) around the equilibrium point is given by

λ3 + (−a11 − a22 − a33)λ
2 + (a11a22 + a11a33 + a22a33 − a13a31 − a23a32 − a12a21)λ

+ (a13a31a22 + a23a32a11 + a12a21a33 − a11a22a33 − a21a32a13 − a31a12a23) = 0.
(2.10)

Theorem 2.1. Assume that (S(n), I1(n), I2(n))∞n=0 is a positive solution of system (2.2).
Then the following statements are true.
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(i) If

⎧
⎨

⎩

p > β1I1(n) + β2I2(n) > α1S(n),
1 > 1 + β1(1 − ε1)S(n) − θI1(n) + β2(1 − ε2)S(n)I2(n) > α2I1(n) > 0

1 > 1 + β2ε2S(n) + θI1(n) + β1ε1S(n)I1(n) > α3I2(n),
,

(2.11)

then the solution of system (2.2) increases monotonically.
(ii) If

⎧
⎨

⎩

α1S(n) > p − β1I1(n) − β2I2(n) > 0,
α2I1(n) > 1 + β1(1 − ε1)S(n) − θI1(n) + β2(1 − ε2)S(n)I2(n) > 0

α3I2(n) > 1 + β2ε2S(n) + θI1(n) + β1ε1S(n)I1(n) > 0,
, (2.12)

then the solution of system (2.2) decreases monotonically.

Proof

(i) Assume that (S(n), I1(n), I2(n))∞n=0 is a positive solution of system (2.2). If (2.11)
holds, then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S(n+ 1)
S(n) = U1(n)

(U1(n)− α1S(n))· exp(−r1U1(n)) + α1S(n) > 1,

I1(n+ 1)
I1(n)

= U2
(U2(n) − α2I1(n))· exp(−r2U2(n)) + α2I1(n)

> 1,

I2(n+ 1)
I2(n)

= U3
(U3(n)− α3I2(n))· exp(−r3U3(n)) + α3I2(n)

> 1,

which implies that the solution increases.
(ii) The proof is similar to Theorem 2.1/(i) and thus omitted.

Theorem 2.2. Assume that (S(n), I1(n), I2(n))∞n=0 is a positive solution of system (2.2).
Then the following statements are true.

(i) Let Theorem 2.1/(i) hold. Then

S(n) ∈
(

0,
p

α1

)

, I1(n + 1) ∈
(

0,
1

α2

)

and I2(n + 1) ∈
(

0,
1

α3

)

. (2.13)

(ii) Let Theorem 2.1/(ii) hold. If U1 > 1
r1
ln 2, U2 > 1

r2
ln 2 and U3 > 1

r3
ln 2, then

system (2.2) is bounded from above with
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(n) < S(0) exp
(
r1α1

∑n−1
i=0 S(i)

)
,

I1(n) < I1(0) exp
(
r2α2

∑n−1
i=0 I1(i)

)
,

I2(n) < I2(0) exp
(
r2α2

∑n−1
i=0 I2(i)

)
.

(2.14)
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Proof

(i) Assume that the conditions in Theorem 2.1./(i) hold. Then we obtain

S(n + 1) = S(n)U1(n)

(U1(n) − α1S(n)) · exp(−r1U1(n)) + α1S(n)

= S(n) ·U1(n)

U1(n) · exp(−r1U1(n)) + α1S(n) · (1 − exp(−r1U1(n)))

<
p

α1 · (1 − exp(−r1U1(n)))
<

p

α1 · (1 − exp(−r1α1S(n)))
<

p

α1

I1(n + 1) = I1(n)U2(n)

U2(n) · exp(−r2U2(n)) + α2I1(n)(1 − exp(−r2U2(n)))

<
U2(n)

α2(1 − exp(−r2U2(n)))
<

1

α2(1 − exp(−r2α2I1(n)))
<

1

α2

I2(n + 1) = I2(n)U3(n)

U3(n) · exp(−r3U3) + α3I2(n)(1 − exp(−r3U3))

<
U3(n)

α3I2(n)(1 − exp(−r3U3(n)))
<

1

α3(1 − exp(−r3α3I2(n)))
<

1

α3
.

This completes the proof of part (i).
(ii) Assume that the conditions in Theorem 2.1./(ii) hold. Then we have

S(n + 1) = S(n) ·U1(n)

U1(n) · exp(−r1U1(n)) + α1S(n) · (1 − exp(−r1U1(n)))

<
S(n)

1 − exp(−r1U1(n))
= S(n) · exp(r1U1(n))

exp(r1U1(n)) − 1
<

S(n)exp(r1α1S(n))

exp(r1U1(n)) − 1

< S(n)exp(r1α1S(n)).

For n = 1, . . . we get

S(n) < S(0)exp

(

r1α1
∑n−1

i=0
S(i)

)

.

Similarly, we obtain

I1(n) < I1(0)exp

(

r2α2
∑n−1

i=0
I1(i)

)

and I2(n) < I2(0)exp

(

r2α2
∑n−1

i=0
I2(i)

)

.

This completes the proof of part (ii).

Theorem 2.3. Let (S(n), I1(n), I2(n))∞n=0 be a positive solution of system (2.2), which
consists a single semi cycle. Furthermore, assume (2.11) holds. If

U1(n − 1) <
1

r1
ln

(
S̄

S(n − 1)

)

, U2(n − 1) <
1

r2
ln

(
I1

I1(n − 1)

)

and

U3(n − 1) <
1

r3
ln

(
I2

I2(n − 1)

)

, (2.15)
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for all n ≥ 1, then (S(n), I1(n), I2(n))∞n=0 converges monotonically to the positive
equilibrium point x̄ = (

S̄, I1, I2
)
.

Proof. Suppose that 0 < S(n − 1) < S̄ for all n ≥ 1. Note that in this case, we have

S(n − 1) < S(n) =
S(n − 1)(p − β1I1(n − 1) − β2I2(n − 1))

(p − β1I1(n − 1) − β2I2(n − 1) − α1S(n − 1)) · e−r1
(
p−β1I1(n−1)−β2I2(n−1)

)

+ α1S(n − 1)
,

where
(
1 − e−r1(p−β1I1(n−1)−β2I2(n−1))

)
· (p − β1I1(n − 1) − β2I2(n − 1) − α1S(n − 1)) > 0

holds for the conditions in (2.11). Moreover, from

S(n) = S(n − 1)(p − β1I1(n − 1) − β2I2(n − 1))

(p − β1I1(n − 1) − β2I2(n − 1) − α1S(n − 1)) · e−r1
(
p−β1I1(n−1)−β2I2(n−1)

)

+ α1S(n − 1)
< S̄,

we can write

S(n − 1)
(
p − β1I1(n − 1) − β2I2(n − 1) − α1S̄

)

< S̄(p − β1I1(n − 1) − β2I2(n − 1) − α1S(n − 1)) · e−r1(p−β1I1(n−1)−β2I2(n−1)),

which holds for

p − β1I1(n − 1) − β2I2(n − 1) − α1S̄
< p − β1I1(n − 1) − β2I2(n − 1) − α1S(n − 1)

and

S(n − 1) < S̄ · e−r1(p−β1I1(n−1)−β2I2(n−1)) ⇒ U1(n − 1) <
1

r1
ln

(
S̄

S(n − 1)

)

. (2.16)

Thus we obtain

0 < S(n − 1) < S(n) < S̄ for all n ≥ 1.

In a similar way as before, we can prove that

0 < I1(n − 1) < I1(n) < I1 for all n ≥ 1

and

0 < I2(n − 1) < I2(n) < I2 for all n ≥ 1.

The proof is completed.

Theorem 2.4. Let (S(n), I1(n), I2(n))∞n=0 be a positive solution of (2.2). System (2.2)
has no positive solutions of prime period two.
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Proof. Let

. . . , θ, μ, θ, μ, . . . (2.17)

be period two solutions of the (S(n))∞n=0 such that θ �= μ. Then, we have

θ = μ(p − β1I1(n) − β2I2(n))

(p − β1I1(n) − β2I2(n) − α1μ) · e−r1(p−β1I1(n)−β2I2(n)) + α1μ
(2.18)

and

μ = θ(p − β1I1(n) − β2I2(n))

(p − β1I1(n) − β2I2(n) − α1θ) · e−r1(p−β1I1(n)−β2I2(n)) + α1θ
. (2.19)

Note that

μ(p − β1I1(n) − β2I2(n)) − θ
{
(p − β1I1(n) − β2I2(n) − α1μ) · e−r1(p−β1I1(n)−β2I2(n))

}

= α1θμ

(2.20)

and

θ(p − β1I1(n) − β2I2(n)) − μ
{
(p − β1I1(n) − β2I2(n) − α1θ) · e−r1(p−β1I1(n)−β2I2(n))

}

= α1θμ.

(2.21)

From (2.20) and (2.21), we can write

(μ − θ)(p − β1I1(n) − β2I2(n))
(
1 + e−r1(p−β1I1(n)−β2I2(n))

)
= 0. (2.22)

Since U1(n) �= 0 and 1 + e−r1(p−β1I1(n)−β2I2(n)) �= 0, (2.22) can holds if μ = θ ,
which contradicts with our assumption. This completes the proof.

3 Local and Global Stability Analysis

In this section, we analyze the local stability by using the Schur-Cohn Criteria. We
consider the case, where the infection is active, and the awareness of protection is low.

To show the local asymptotic stability of the positive equilibrium point, we use the
Schur-Cohn criterion.

Theorem 3.1. [17] The characteristic polynomial

P(λ) = λ3 + a2λ
2 + a1λ + a0 , (3.1)

has all its roots inside the unit disk (|λ| < 1) if and only if

(i) P(1) = 1 + a2 + a1 + a0 > 0 and (−1)3P(−1) = 1 − a2 + a1 − a0 > 0.
(ii) D+

2 = 1 + a1 − a20 − a0a2 > 0
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(iii) D−
2 = 1 − a1 − a20 + a0a2 > 0.

Theorem 3.2. Let X̄ = (
S̄, I1, I2

)
be the positive equilibrium point of system (2.2).

Assume
α1
α3

>
3β2

(
3+ I2

)

(θ + 3β2ε1S̄)S̄
, β2 >

(1− ε1)(θ + 3β2ε1S̄)S̄α1

ε1
(
1+ 3I2

)
α2 + 3(1− ε1)

(
3+ I2

)
α3

and α2
α1

>
(1− ε1)(θ + 3β2ε1S̄)

β2ε1
(
1+ 3I2

)

hold.
If

r1 ∈

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ln

(
β22ε1

(
1 + 3I2

)
α2 + 3β22(1 − ε1)

(
3 + I2

)
α3

β22ε1
(
1 + 3I2

)
α2 + 3β22(1 − ε1)

(
3 + I2

)
α3 − β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

) 1
U1

,

ln

(
β22ε1

(
1 + 3I2

)
α2

β22ε1
(
1 + 3I2

)
α2 − β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

) 1
U1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.2)

r2 ∈
⎛

⎝ln

(
3β2(1 − ε1)S̄ + θ + α2

3β2(1 − ε1)S̄ + θ

) 1
U2

, ln

(
θ + α2

θ

) 1
U2

⎞

⎠, (3.3)

and

ln

(
β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

β2(1 − ε1)
(
θ + 3β2ε1S̄

)
S̄α1 − 3β22(1 − ε1)

(
3 + I2

)
α3

) 1
U3

< r3 (3.4)

then the positive equilibrium point of system (2.2) is local asymptotically stable.

Proof. We consider at first Theorem 2.1./(i), where we have

1+(−a11 − a22 − a33) + (a11a22 + a11a33 + a22a33 − a13a31 − a23a32 − a12a21)

+ (a13a31a22 + a23a32a11 + a12a21a33 − a11a22a33 − a21a32a13 − a31a12a23) > 0
(3.5)

and

1 − (−a11 − a22 − a33) + (a11a22 + a11a33 + a22a33 − a13a31 − a23a32 − a12a21)

− (a13a31a22 + a23a32a11 + a12a21a33 − a11a22a33 − a21a32a13 − a31a12a23) > 0.
(3.6)

Considering (3.5) and (3.6), we obtain

1 + a11a22 + a11a33 + a22a33 > a13a31 + a23a32 + a12a21. (3.7)

The above inequality (3.7) can be written in the following form;

−
β22ε1

(
1 + 3I2

)(
1 − e−r1U1

)(
1 − e−r3U3

)

α1α3
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+
β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄
(
1 − e−r2U2

)(
1 − e−r3U3

)

α2α3

−
3β22(1 − ε1)

(
3 + I2

)(
1 − e−r1U1

)(
1 − e−r2U2

)

α1α2

< 1 +
(

−θ + (θ + α2)e−r2U2

α2

)

e−r1U1 + e−(
r1U1+r3U3

)

+
(

−θ + (θ + α2)e−r2U2

α2

)

e−r3U3 (3.8)

From

−θ + (θ + α2)e−r2U2

α2
> 0, (3.9)

we obtain

r2 <
1

U2
ln

(
θ + α2

θ

)

. (3.10)

Furthermore from (3.8), if

−
β22ε1

(
1 + 3I2

)(
1 − e−r1U1

)(
1 − e−r3U3

)

α1α3

+
β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄
(
1 − e−r2U2

)(
1 − e−r3U3

)

α2α3

−
3β22(1 − ε1)

(
3 + I2

)(
1 − e−r1U1

)(
1 − e−r2U2

)

α1α2
< 0, (3.11)

then

− β22ε1
(
1 + 3I2

)
α2

(
1 − e−r1U1 − e−r3U3 + e−r3U3−r1U1

)

+ β2(1 − ε1)
(
θ + 3β2ε1S̄

)
S̄α1

(
1 − e−r2U2 − e−r3U3 + e−r3U3−r2U2

)

− 3β22(1 − ε1)
(
3 + I2

)
α3

(
1 − e−r2U2 − e−r1U1 + e−r1U1−r2U2

)
< 0. (3.12)

Rearrangement of (3.12), we get
(
β22ε1

(
1 + 3I2

)
α2 + 3β22(1 − ε1)

(
3 + I2

)
α3

)
e−r1U1

+ β2(1 − ε1)
(
θ + 3β2ε1S̄

)
S̄α1e

−r3U3−r2U2+
(
β22ε1

(
1 + 3I2

)
α2 − β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

)
e−r3U3
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<
(
β22ε1

(
1 + 3I2

)
α2 + 3β22(1 − ε1)

(
3 + I2

)
α3 − β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

)

+ β22ε1
(
1 + 3I2

)
α2e

−r3U3−r1U1+
(
β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1 − 3β22(1 − ε1)

(
3 + I2

)
α3

)
e−r2U2

+ 3β22(1 − ε1)
(
3 + I2

)
α3e

−r1U1−r2U2 (3.13)

Considering (3.13), we have

β2(1 − ε1)
(
θ + 3β2ε1S̄

)
S̄α1e−r3U3−r2U2

<
(
β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1 − 3β22(1 − ε1)

(
3 + I2

)
α3

)
e−r2U2

where we obtain

r3 >
1

U3
ln

( (
θ + 3β2ε1S̄

)
S̄α1

(
θ + 3β2ε1S̄

)
S̄α1 − 3β2

(
3 + I2

)
α3

)

. (3.14)

for

α1

α3
>

3β2
(
3 + I2

)

(
θ + 3β2ε1S̄

)
S̄

. (3.15)

Furthermore, from (3.13) we get

(β22ε1
(
1 + 3I2

)
α2 + 3β22(1 − ε1)

(
3 + I2

)
α3)e−r1U1 < (β22ε1

(
1 + 3I2

)
α2

+ 3β22(1 − ε1)
(
3 + I2

)
α3 − β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1)

(3.16)

where we have

r1 >
1

U1
ln

(
β22ε1

(
1 + 3I2

)
α2 + 3β22(1 − ε1)

(
3 + I2

)
α3

β22ε1
(
1 + 3I2

)
α2 + 3β22(1 − ε1)

(
3 + I2

)
α3 − β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

)

(3.17)

and

β2 >
(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

ε1
(
1 + 3I2

)
α2 + 3(1 − ε1)

(
3 + I2

)
α3

. (3.18)

At last, from the next inequality

(
β22ε1

(
1 + 3I2

)
α2 − β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

)
e−r3U3 < β22ε1

(
1 + 3I2

)
α2e

−r3U3−r1U1 ,

(3.19)

we have

r1 <
1

U1
ln

(
β22ε1

(
1 + 3I2

)
α2

β22ε1
(
1 + 3I2

)
α2 − β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

)

, (3.20)
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where

α2

α1
>

(1 − ε1)
(
θ + 3β2ε1S̄

)

β2ε1
(
1 + 3I2

) . (3.21)

Considering (3.17) and (3.20), we get

1
U1

ln

(
β22ε1

(
1+3I2

)
α2+3β22(1−ε1)

(
3+I2

)
α3

β22ε1
(
1+3I2

)
α2+3β22(1−ε1)

(
3+I2

)
α3−β2(1−ε1)(θ+3β2ε1S̄)S̄α1

)

< r1

< 1
U1

ln

(
β22ε1

(
1+3I2

)
α2

β22ε1
(
1+3I2

)
α2−β2(1−ε1)(θ+3β2ε1S̄)S̄α1

)

.

The conditions for (i) are obtained.
Considering (ii) and (iii), we have

1 − c21 > |−c2 − c1c3|, (3.22)

where

c1 = a11a22a33 + a21a32a13 + a31a12a23 − a13a31a22 − a23a32a11 − a12a21a33,

c2 = a13a31 + a23a32 + a12a21 − a11a22 − a11a33 − a22a33,

c3 = a11 + a22 + a33.

The inequality (3.22) can be written as

c1(c1 − c3) − c2 < c1(c1 + c3) + c2 < 1. (3.23)

In this case, we have to show the condition

c1(c1 + c3) + c2 < 0 + 1 (3.24)

for c1 < 0, c2 < 1 and c1 + c3 > 0. Let us consider now

c2 < 1 ⇒ a13a31 + a23a32 + a12a21 < 1 + a11a22 + a11a33 + a22a33, (3.25)

and

c1 + c3 > 0
⇒ −a11a22a33 − a21a32a13 − a31a12a23 < a11 + a22 + a33 − a13a31a22

−a23a32a11 − a12a21a33

(3.26)

and

c1 < 0 ⇒ a11a22a33 + a21a32a13 + a31a12a23 < a13a31a22 + a23a32a11 + a12a21a33.
(3.27)

From (3.26) and (3.27), we obtain

a11 + a22 + a33 > 0, (3.28)
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which holds for

e−r1U1 + −θ + (θ + α2)e−r2U2

α2
+ e−r3U3 > 0 ⇒ r2 <

1

U2
ln

(
θ + α2

θ

)

. (3.29)

Condition (3.25) is already proven in (i).
Furthermore, if the following conditions hold, then (3.27) is available;
I. a31a12a23 < a13a31a22 ⇒ a12a23 < a13a22, where we obtain

r2 >
1

U2
ln

(
3β2(1 − ε1)S̄ + θ + α2

3β2(1 − ε1)S̄ + θ

)

. (3.30)

Considering (3.29) and (3.30), we obtain

r2 ∈
(

1

U2
ln

(
3β2(1 − ε1)S̄ + θ + α2

3β2(1 − ε1)S̄ + θ

)

,
1

U2
ln

(
θ + α2

θ

))

(3.31)

II. a21a32a13 < a12a21a33 ⇒ a32a13 < a12a33, where we get

r3 >
1

U3
ln

(
θ + 3

(
β2ε1S̄ + α3

)

θ + 3β2ε1S̄

)

. (3.32)

From (3.14) and (3.32), we have

1

U3
ln

(
θ + 3

(
β2ε1S̄ + α3

)

θ + 3β2ε1S̄

)

<

1

U3
ln

(
β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

β2(1 − ε1)
(
θ + 3β2ε1S̄

)
S̄α1 − 3β22(1 − ε1)

(
3 + I2

)
α3

)

< r3 (3.33)

III. a11a22a33 < a23a32a11 ⇒ a22a33 < a23a32, where we obtain that it holds for
(3.32).

This completes the proof.

Theorem 3.3. Let X̄ = (
S̄, I1, I2

)
be the positive equilibrium point of system (2.2) and

assume the conditions in Theorem 3.2. hold.

(i) Let Theorem 2.1./(i) holds. Then the positive equilibrium point of system (2.2) is
global asymptotically stable, if

0 < U1(n) < ln
(
2S̄−S(n)
S(n)

)
and S(n) < S̄,

0 < U2(n) < ln
(
2I1−I1(n)

I1(n)

)
and I1(n) < I1
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and

0 < U3(n) < ln

(
2I2 − I2(n)

I2(n)

)

and I2(n) < I2.

(ii) Let Theorem 2.1./(ii) holds. Then the positive equilibrium point of system (2.2) is
global asymptotically stable, if

S(n) > 2S̄, I1(n) > 2I1 and I2(n) > 2I2.

Proof. Let X̄ = (
S̄, I1, I2

)
be the positive equilibrium point of system (2.2) and let us

consider a Lyapunov function V (n) defined by

V (n) = (
X(n) − X̄

)2
, n = 0, 1, 2, . . . (3.34)

where X(n) = (S(n), I1(n), I2(n)) and X̄ = (
S̄, I1, I2

)
.

The change along the solutions of the system is

�V (n) = V (n + 1) − V (n)

= (
X(n + 1) − X̄

)2 − (
X(n) − X̄

)2

= (X(n + 1) − X(n))
(
X(n + 1) + X(n) − 2X̄

)
. (3.35)

From the first equation of system (2.2), we have

�V1(n) =(S(n + 1) − S(n))
(
S(n + 1) + S(n) − 2S̄

)

=
(

S(n)U1(n)

(U1(n) − α1S(n)) · exp(−r1U1(n)) + α1S(n)
− S(n)

)

(
S(n)U1(n)

(U1(n) − α1S(n)) · exp(−r1U1(n)) + α1S(n)
+ S(n) − 2S̄

)

= 1

(K (n))2
· (S(n)U1(n) − K (n) · S(n)) · (

S(n)U1(n) + (
S(n) − 2S̄

)
K (n)

)
,

where K (n) = (U1(n) − α1S(n)) · exp(−r1U1(n)) + α1S(n).

(i) In this case, if (2.11) in Theorem 2.1/(i) holds, then

S(n)U1(n) − K (n) · S(n) = S(n)(U1(n) − α1S(n))
(
1 − e−r1U1(n)

)
> 0. (3.36)

So, we have to obtain

S(n)U1(n) + (
S(n) − 2S̄

)
K (n) < 0, (3.37)

to get �V1(n) < 0, which holds for

0 < U1(n) < ln

(
2S̄ − S(n)

S(n)

)

and S(n) < S̄. (3.38)
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This implies that lim
n→∞ S(n) = S̄. Similarly, we can obtain the conditions

0 < U2(n) < ln

(
2I1 − I1(n)

I1(n)

)

and I1(n) < I1 (3.39)

for �V2(n) < 0 and

0 < U3(n) < ln

(
2I2 − I2(n)

I2(n)

)

and I2(n) < I2. (3.40)

This completes part (i).

(ii) If (2.12) in Theorem 2.1/(ii) holds, then

S(n)U1(n) − K (n) · S(n) = S(n)(U1(n) − α1S(n))
(
1 − e−r1U1(n)

)
> 0, (3.41)

since U1(n) < 0. Additionally,

S(n)U1(n) + (
S(n) − 2S̄

)
K (n)

= U1(n)
[
S(n) + (

S(n) − 2S̄
)
e−r1U1(n)

]
− α1S(n)

(
S(n) − 2S̄

)(
e−r1U1(n) − 1

)
< 0,

if S(n) > 2S̄. In a similar way, we can obtain I1(n) > 2I1 and I2(n) > 2I2, which
completes the proof.

Example 3.1. In this work, we consider the HIV transmission case in India using the
data of [7, 8]. The initial conditions are given as follows;

S(0) = 100, 000, 000 adult population that were recorded in 1990
I1(0) = 500, 000 assumed that were found after 1990 and were already infected that
time
I2(0) = 200, 000 number of HIV positives at the end of 1990.

The blue graph denotes the susceptible class S(n), the red graph is the HIV positives
that do not know that they are infected, namely I1(n), and the green graph shows the
class that know they are infected, which is I2(n). In Fig. 1, we see the behavior of these
classes according to the given data, where r1 ∈ [0.012, 0.05] and r1 = 4 · r2 = 12 · r3. In
Fig. 2, we increased the rate of infections of class I1 and I2 to consider the case where
both populations continue to infect people. We choose β1 = 1.5 and β2 = 0.5, where
all other parameters and initial conditions are fixed. In Fig. 3, show the existence of the
non-negative equilibrium point for I1 and I2. Figure 4 shows the per capita growth rate
of each population class, while r1 ∈ [0.012, 0.05] and r1 = 4 · r2 = 12 · r3 (Table 1).
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Table 1. The parameters for S(n), I1(n) and I2(n) populations (see [7, 8])

Parameter Parameter

p Yearly immigrated
adult persons

3, 000, 000 r1 The population growth rate
of susceptible class S

0.012

α1 Death (of natural
causes) for class S

0.0748 r2 The population growth rate
of class I1

0.003

α2 Death (of natural
causes) for class I1

0.0919 r3 The population growth rate
of class I2

0.001

α3 Death (of natural
causes) for class I2

0.0920 ε1 Awareness of class S after
tracing contact with I1

0.01

β1 The rate of infection
from class I1

1.3440 ε2 Awareness of class S after
tracing contact with I2

0.01

β2 The rate of infection
from class I2

0.4480 θ Aware of infection in class
I1 by HIV test

0.015

Fig. 1. Dynamical behavior of S(n), I1(n)

I2(n).

Fig. 2. Dynamical behavior of S(n), I1(n)

and and I2(n), where β1 = 1.5 and β2 = 0.5

4 Stability Analysis for a Model with Allee Effect

Significant research for population models is obtained by Allee [18], who demonstrated
that the Allee effect occurs when the population growth rate is reduced at low popula-
tion size. It is well known that the logistic model assumes that per-capita growth rate
declines monotonically when the density increase; however, it is shown that for popula-
tion subjected to an Allee effect, per-capita growth rate gives a humped curve increasing
at low density, up to a maximum intermediate density and then declines again. Many
theoretical and laboratory studies have demonstrated the importance of the Allee effect
in the dynamics of small populations, see for example [19–23].

In this section, we use Allee functions to I1 and I2 to analyse the spread of infection
when the population of the infected classes are low.
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Fig. 3. Existence of non-negative equilibrium
growth point of the infected classes

Fig. 4. Dynamical behavior of per-capita rate
of each population

Let
⎧
⎪⎪⎨

⎪⎪⎩

1
S
dS
dt = r1(p − α1S − 3β2I1 − β2I2),

1
I1

dI1
dt = r2

(
I1

E1+I1

)
(1 − (α2 + θ)I1 + 3β2(1 − ε1)S + β2(1 − ε1)SI2),

1
I2

dI2
dt = r3

(
I2

E2+I2

)
(1 − α3I2 + β2ε2S + θI1 + 3β2ε1SI1),

(4.1)

where a(I1) = I1
E1+I1

and a(I2) = I2
E2+I2

are Allee functions, while E1 and E2 are Allee
constants. By defining

g(I1) = r2

(
I1

E1 + I1

)

(1 − (α2 + θ)I1 + β1(1 − ε1)S + β2(1 − ε2)SI2), (4.2)

moreover, taking the derivative with respect to I1, we obtain

dg(I1)

dI1
= −r2(α2 + θ)I21 − 2E1r2(α2 + θ)I1 + E1r2(1 + 3β2(1 − ε1)S + β2(1 − ε1)SI2)

(E1 + I1)2

(4.3)

By considering the sign of (4.3), we obtain that g is an increasing function, if

I1 ∈
⎛

⎝0,
−E1(α2 + θ) +

√

E2
1(α2 + θ)2 + (α2 + θ)E1(1 + 3β2(1 − ε1)S + β2(1 − ε1)SI2)

α2 + θ

⎞

⎠,

(4.4)

and a decreasing function, if

I1 ∈
⎛

⎝
−E1(α2 + θ) +

√

E2
1(α2 + θ)2 + (α2 + θ)E1(1 + 3β2(1 − ε1)S + β2(1 − ε1)SI2)

α2 + θ
, ∞

⎞

⎠.

(4.5)
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This means that, if the population of the class I1 is given in (4.4), then a population
model without using Allee function will not give realistic results. However, if the popu-
lation is given in (4.5), then it is not any more important to incorporate an Allee function
to the system. Similarly, we want to consider a function given by

h(I2) = r3

(
I2

E2 + I2

)

(1 − α3I2 + β2ε2S + θI1 + 3β2ε1SI1), (4.6)

where the derivative of function h with respect to I2 is

dh(I2)

dI2
= −α3r3I22 − 2α3r3E2I2 + r3(1 + β2ε2S + θI1 + 3β2ε1SI1)

(E2 + I2)2
. (4.7)

If

I2 ∈
⎛

⎝0,
−α3E2 +

√

α23E
2
2 + α3(1 + β2ε2S + θI1 + 3β2ε1SI1)

α3

⎞

⎠, (4.8)

then h is monotonic increasing and if

I2 ∈
⎛

⎝
−α3E2 +

√

α23E
2
2 + α3(1 + β2ε2S + θI1 + 3β2ε1SI1)

α3
,∞

⎞

⎠, (4.9)

then it is decreasing, which means that I2 has to be in the interval (4.8).
Furthermore, for t ∈ [n, n + 1), system (2.2) with Allee effect can be obtained as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S(n + 1) = S(n)U1(n)
(U1(n)−α1S(n))· exp(−r1U1(n))+α1S(n) ,

I1(n + 1) = I1(n)U2(n)
(U2(n)−α2I1(n))· exp(−r2a(I1(n))U2(n)+α2I1(n)

,

I2(n + 1) = I2(n)U3(n)
(U3(n)−α3I2(n))· exp(−r3a(I2(n))U3(n))+α3I2(n)

,

(4.10)

where a(I1(n)) = I1(n)
E1+I1(n)

and a(I2([[t]])) = I2(n)
E2+I2(n)

.
The following theorems are given without proof since it is similar to Sect. 3.

Theorem 4.1. Let X̄ = (
S̄, I1, I2

)
be the positive equilibrium point of system (4.10).

Let X̄ = (
S̄, I1, I2

)
be the positive equilibrium point of system (2.2). Assume that

α1
α3

>
3β2

(
3 + I2

)

(θ + 3β2ε1S̄)S̄
, β2 >

(1−ε1)(θ + 3β2ε1S̄)S̄α1

ε1
(
1 + 3I2

)
α2 + 3(1−ε1)

(
3 + I2

)
α3

and α2
α1

>
(1−ε1)(θ + 3β2ε1S̄)

β2ε1
(
1 + 3I2

) hold.

If

1
U1

ln

(
β22ε1

(
1+3I2

)
α2+3β22(1−ε1)

(
3+I2

)
α3

β22ε1
(
1+3I2

)
α2+3β22(1−ε1)

(
3+I2

)
α3−β2(1−ε1)(θ+3β2ε1S̄)S̄α1

)

< r1

< 1
U1

ln

(
β22ε1

(
1+3I2

)
α2

β22ε1
(
1+3I2

)
α2−β2(1−ε1)(θ+3β2ε1S̄)S̄α1

)

,

r2 ∈
(

1
a
(
I1n)

)
U2

ln
(
3β2(1−ε1)S̄+θ+α2
3β2(1−ε1)S̄+θ

)
, 1
a
(
I1n)

)
U2

ln
(

θ+α2
θ

))

,
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and

1

a
(
I2n)

)
U2

ln

(
β2(1 − ε1)

(
θ + 3β2ε1S̄

)
S̄α1

β2(1 − ε1)
(
θ + 3β2ε1S̄

)
S̄α1 − 3β22(1 − ε1)

(
3 + I2

)
α3

)

< r3,

then the positive equilibrium point of system (4.10) is local asymptotically stable.

Theorem 4.2. Let X̄ = (
S̄, I1, I2

)
be the positive equilibrium point of system (4.10) and

assume that the conditions in Theorem 2.1/(i) and Theorem 4.1 hold. Then the positive
equilibrium point of system (4.10) is global asymptotically stable, if

0 < U1(n) < ln
(
2S̄−S(n)
S(n)

)
and S(n) < S̄,

0 < U2(n) < 1
a(I1(n))

ln
(
2I1−I1(n)

I1(n)

)
and I1(n) < I1

and

0 < U3(n) <
1

a(I2(n))
ln

(
2I2 − I2(n)

I2(n)

)

and I2(n) < I2.

Example 4.1. The initial condition for the susceptible class is as given in Example 3.1,
namely S(0) = 100, 000, 000. From (4.4), we obtain

I1 ∈
⎛

⎝0,
−E1(α2 + θ) +

√

E2
1(α2 + θ)2 + (α2 + θ)E1(1 + 3β2(1 − ε1)S + β2(1 − ε1)SI2)

α2 + θ

⎞

⎠

≈ (0, 24939)

for E1 = 0.5, where we choose I1(0) = 24, 000. Furthermore,

I2 ∈
⎛

⎝0,
−α3E2 +

√

α23E
2
2 + α3(1 + β2ε2S + θI1 + 3β2ε1SI1)

α3

⎞

⎠ ≈ (0, 2207)

for E2 = 0.5, where I2(0) = 2200.

Figure 5 shows the population of each class and the per capita growth rate of each
population according to the data of Fig. 1. Using the initial values given above, we obtain
Fig. 6, where we can see the increase to a humped curve and after that decrease.
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Fig. 5. Graph without Allee effect Fig. 6. Graph with Allee effect

5 Conclusion

In this paper, we construct a system of differential equations with piecewise constant
arguments to analyze the spread of infection in an overlapping population, where the
infection happens in discrete time. In this system, the population is divided into three
sub-classes as mentioned before. In Sect. 2, we obtained conditions for a semi-cycle
behavior and showed that the behavior is dependent on the attitude of each class to the
HIV infection. Furthermore, we show that the behavior around the equilibrium point
cannot be in a period two structure. In Sect. 3, we consider the local and global stability
around the positive equilibrium point under specific conditions by using the Schur-Cohn
Criteria and Lyapunov function, respectively. Example 3.1 shows the spread of each
class according to the data of [7, 8]. The demographic information of HIV shows in
Fig. 1 that after 80 years a significant increase of (I1(t)) and a decrease in (S(t)) will
happen. We want to see the case, if a human in India become more unaware in infecting
the classes, which show us a dramatic graph in Fig. 2. In Fig. 3, we want to show the
existence of non-negative equilibrium points in the infected classes that are (I1(t)) and
(I2(t)), while Fig. 4 shows the growth rate of each population according to the per capita
growth rate. Due to the immigration to the susceptible class, we expect that (S(t)) will
be always positive, since India does not have a closed population, and has an endemic
spread.

Furthermore, if the infection can be detected earlier by screening and the awareness
of the HIV infected class do not transmit in any contact tracing, then the infection rate
will be reduced significantly. This prediction was analyzed in Sect. 4, where we consider
(I1(t)) and (I2(t)) in a small population. Figures 5 and 6 show the differences of the
populations in large and small populations.

Finally, the most effective way to reduce the infection in India is to educate humans
about the infection and to show the consequences of doing sex without protection or any
other kinds of transmission risk.
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1 Introduction

Fractional calculus has many applications in biology, in sciences and engineering,
in physics and mechanics and many other fields. Recently, many papers appear and
addressmanyapplications of fractional calculus in realwordproblems. [34] has pro-
posed the analytical and the numerical solution of the fractional diffusion equation
described by the generalized fractional derivative. In [31,33], Sene has proposed the
analytical solution of the fractional diffusion equation described by the Atangana-
Baluenu fractional derivative using the Fourier Laplace transform and the Fourier
sine transform. In [17,18], Santos has proposed the statistical interpretations of the
fractional diffusion of the particle. In [17,18], these contributions, Santos has used
themean square displacement to classify the fractional diffusion equations in differ-
ent classes. The discrete versions of the fractional derivatives have been proposed
recently by Thabet et al. in [1–4]. Statistical application in fractional calculus has
been started by Atangana et al. in [9]. Applications of fractional calculus in biology
can be found in [7,23]. Many other applications of fractional calculus exist and can
be found in [20,21,25,28,29,32,35].

The fractional optimal control has been recently addressed in some recent
works. In [6], Agarwal et al. have proposed the fractional optimal control prob-
lems with several state and control variables. In [11], Bahaa has introduced the
fractional optimal control problem for a differential system with delay. In [11],
Bahaa et al. have presented the necessary and sufficient condition for the frac-
tional optimal problems described by the fractional derivative with nonsingular
kernel. In [12], Bahaa et al. have studied the fractional optimal control of initial
value problems on time scales. In [27], Pooseh et al. have studied the fractional
optimal control problems in which the dynamic control system are described by
the fractional order derivatives and the terminal time is free. In [24], Lotfi et al.
have proposed a numerical technique for solving fractional optimal control prob-
lems. There exist many other applications of fractional calculus in control theory,
see in [13,37]. In this paper, we try to determine the Nash Equilibrium using
the fractional optimal control theory. We consider the continuous-time dynam-
ical game model related to the semi-renewable resource electricity described by
the generalized fractional derivative. The optimal control has been got for this
problem. The optimal control obtained for the considered model is called the
Nash Equilibrium point due to the fact a game theory model has been stud-
ied in our chapter. The game theory is one of the mathematical fields which
interests many mathematicians. Game theory is a systematic study of strategic
interactions among rational individuals. In all games, the decision for all players
depends on the strategy adopted by the other players. The game theory finds
many applications in the economic model, in Finance and many other fields.
Cournot proposed the first work in game theory at 1838 [15], later other work
in this field has been proposed by Bertrand at 1883 [14]. Von Neumann and
Morgenstern proposed the main important work considered as the beginning of
the game theory model at 1944 [26].

The paper is structured as follows. In Sect. 2, we propose a review on fractional
derivative operators. In Sect. 3, we propose the game theory model considered in
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this Section. In Sect. 4, we determine the optimal control of our game theory model
known as the Nash Equilibrium. In Sect. 5, we discuss our main results proposed
in the previous sections. In Section, we give the concluding remarks.

2 Review on Fractional Derivative Operators

In this section, we recall the definitions of the existing fractional derivatives. We
recall the Laplace transforms, introduce the Mittag-Leffler function with two
parameters, and propose the property related to the integration by parts. The
integration by parts is one of the essential property in fractional optimal control.
It plays an essential role in establishing the different conditions for optimality.

We begin with the Mittag-Leffler function. The Mittag–Leffler function with
two parameters is represented as the following series

Eα,β (z) =
∞∑

k=0

zk

Γ(αk + β)
, (1)

where α > 0, β ∈ R, z ∈ C and the function Γ(...) represents the Euler Gamma
function.

The fractional derivative with Mittag-Leffler kernel [8] for a given function u
in Riemann-Liouville sense, of order α ∈ (0, 1) is defined by

DABR
α u(y, t) =

B(α)
1 − α

d

dt

∫ t

0

u(y(s), s)Eα

(
− α

1 − α
(t − s)α

)
ds, (2)

for all t > 0.
The fractional derivative with Mittag-Leffler kernel [8] for a function u in

Caputo sense, of order α ∈ (0, 1) is defined as the following form

DABC
α u(y, t) =

B(α)
1 − α

∫ t

0

u′(y(s), s)Eα

(
− α

1 − α
(t − s)α

)
ds, (3)

for all t > 0.
Let’s the function u, the Caputo-Fabrizio fractional derivative of the function

u of order α ∈ (0, 1) is expressed in the form [8]

DCF
α u(y, t) =

M(α)
1 − α

∫ t

0

u′(y(s), s) exp
(

− α

1 − α
(t − s)

)
ds, (4)

for all t > 0.
The Riemann-Liouville integral [8] for a given function u, of order α ∈ (0, 1)

is represented as the form

Iαu(y, t) =
1

Γ(α)

∫ t

a

(t − s)α−1u(y(s), s)ds, (5)

for all t > 0.
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The Atangana-Baleanu integral [8] for a given function u, of order α ∈ (0, 1)
is defined as the form

IAB
α u(y, t) =

1 − α

B(α)
u(y, t) +

α

B(α)
IRL
α u(y, t), (6)

for all t > 0.
Let’s the function u, the left generalized derivative of the function u of order

α ∈ (0, 1) is expressed in the form [22]

(Dα,ρu) (y, t) =
1

Γ(1 − α)

(
t1−ρ d

dt

)∫ t

0

(
tρ − sρ

ρ

)−α

u(y(s), s)
ds

s1−ρ
, (7)

for all t > 0.
Let’s the function u, the left generalized derivative in Caputo sense of the

function u of order α ∈ (0, 1) is expressed in the form [22]

(Dα,ρ
c u) (y, t) =

1
Γ(1 − α)

∫ t

0

(
tρ − sρ

ρ

)−α

u′(y(s), s)ds, (8)

for all t > 0.
We recall the Laplace transform of the Atangana-Baleanu-Caputo derivative

[8] and the Atangana-Baleanu-Riemann derivative. The following Laplace trans-
form is used for solving the fractional differential equations described by the
fractional derivatives with Mittag-Leffler functions. We have the following forms

L{
DABC

α u
}

(s) =
B(α)
1 − α

sαL{u} − sα−1u(0)
sα + α

1−α

. (9)

Here L represents the classical Laplace transform.

L{
DABR

α u
}

(s) =
B(α)
1 − α

sαL{u}
sα + α

1−α

. (10)

Let’s recall the Laplace transform used for solving a class of the fractional
differential equations described by the left generalized fractional derivative. The
ρ-Laplace transform was introduced in [22]. The ρ-Laplace transform of the
generalized fractional derivative in the Caputo sense is expressed in the following
form

Lρ {(Dα,ρ
c f) (t)} = sαLρ {f(t)} − sα−1f(0), (11)

The ρ-Laplace transform of function f is given in the form

Lρ {g(t)} (s) =
∫ ∞

0

e−s tρ

ρ g(t)
dt

t1−ρ
. (12)

We finish this section by recalling the integration by parts related to gener-
alized fractional derivative recently introduced by Thabet et al. in [5]; we have
the following expression

∫ b

a

f(t)Dα,ρ
a g(t)dt =

∫ b

a

g(t)Dα,ρ
b f(t)dt. (13)
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3 Presentation of the Game Theory Model

In this section, we present the continuous-time dynamical game model related
to the semi-renewable resource electricity in our country. Let’s the set of finite
players i ∈ I = {1, 2, 3, ..., n}. We denote by ui the electricity consummation
of the miners or player i. In our game model [36] the profile of the player i is
represented by the following continuous function

f(x, ui, t) =

[
P − C −

n∑

i=1

ui

]
ui, (14)

where P is considered as the price of the bitcoin, and C represents the price of
the electricity in our country. Our objective in this paper is to get the optimal
strategy ui of the player i, which maximize the total profile of the players

J(x, ū) =
∫ 1

0

e−rt
n∑

i=1

[
P − C −

n∑

i=1

ui

]
uidt

=
∫ 1

0

e−rt
n∑

i=1

[P − C − nū] uidt

=
∫ 1

0

e−rt [P − C − nū]
n∑

i=1

uidt

=
∫ 1

0

ne−rt [P − C − nū] ūdt, (15)

under which the strategy satisfies the following constraint

Dα,ρ
0 x = ξx −

n∑

i=1

ui = ξx − nū. (16)

Note that here x(ui) = ui. In this paper, we consider the game is cooperative.
That is, all players cooperate and decide to consume the electricity respecting
the price of the electricity fixed by the government and in return. Furthermore,
the players get the bitcoin market price as profit so, they maximize their profit,
and the profit is identically shared among all the players. As explained in the
next lines.

The above-presented model is a game theory model. In games theory, there
exist two different types of games: cooperative game and non-cooperative game.
A game is called cooperative when all the players can cooperate between them
and make sign contrats or make agreements between them. A game is called
non-cooperative when the profits of each economic player do not depend on his
own decision but the decision of the other players in the game. A fundamental
property in a non-cooperative game is the players cannot sign contrast between
them. In our paper, we consider the case on which the game is cooperative.
There exist two types of a cooperative game, namely transferable game and
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non-transferable game. A cooperative game is said to be non-transferable when
all the utilities of the players in the game cannot be summed and distributed
between them. A cooperative game is said to be transferable when the utilities of
all the players in the game can be summed and distributed between all the players
individually. When the strategy of the game is cooperative and transferable all
players try to maximize their own profit and the profits obtained by the other
players in the game. We said in this case; the players have a common market.
In our chapter, we consider the game is cooperative and transferable. The Nash
Equilibrium is one of the essential concepts in game theory nowadays. In many
situations, the profile obtained by the player depends on his strategy and the
strategy proposed by the other players in the game. That is when a player
chooses a strategy, and he will have in mind the approach of the other players
in the game. Summarizing, the Nash Equilibrium is an action profile a∗ with
the property that no player i can do better by choosing an action different from
a∗

i , giving that every player j adheres to the action a∗
j . The concept of Nash

Equilibrium is now fundamental in mathematics, optimal control, economics,
and game theory. The Nash Equilibrium is a situation under which each player
doesn’t want to change his strategy, having in mind the action of the other
players.

4 Optimization of the Continuous Time Dynamical Game
Model

In this section, we address the optimal control which maximizes the payoff
function of the continuous time dynamical game model in cooperative strat-
egy related to the semi-renewable resource electricity in our country described
by

J(x, ū) =
∫ 1

0

ne−rt [P − C − nū] ūdt, (17)

where P denotes the price of the bitcoin, C represents the electricity price fixed
by the government, nū =

∑n
i=1 ui and r denotes the discount rate. Furthermore,

the optimal control satisfies the fractional differential equation with exogenous
input

Dα,ρ
0 x = ξx − nū, (18)

where ξ represents the regeneration rate of the electricity. For simplification of
our problem, let’s the following function

f(x, ui, t) = ne−rt [P − C − nū] ū and g(x, ui, t) = ξx − nū. (19)

The function f represents the payoff function of miner i. Thus, the optimization
problem is defined by Eqs. (17) and (18). The problem consists of finding the
optimal control which represents the Nash equilibrium in our game problem of
the playoff function defined by

J(x, ū) =
∫ 1

0

f(x, ū, t)dt, (20)
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and satisfies the fractional differential equation defined by

Dα,ρ
0 x = g(x, ū, t), (21)

under initial boundary condition defined by x(0) = η. In other words, the prob-
lem consists of finding optimal control for the game, maximizing the total profit
of miner i represented by Eq. (17) satisfying the constraint (18). Many methods
exist to solve the problem defined by Eqs. (17) and (18). In our studies, we use
fractional optimal control theory. Let’s the Hamiltonian function defined by the
following equation

H(x, ū, λ, t) = f(x, ū, t) − λT g(x, ū, t), (22)

where λ denotes the Lagrange multiplier. Note the Eq. (17) can be expressed in
the term of the Hamiltonian function defined by

J(x, ū) =
∫ 1

0

[
H(x, ū, λ, t) − λT Dα,ρ

0 x
]
dt. (23)

The necessaries and the sufficient conditions for optimality of the problem
defined by Eqs. (17) and (18) are described in the following Theorem [6,11].

Theorem 1. Consider the Nash equilibrium ū and the state x(t) be the optimal
points for the cooperative game related to the semi-renewable resource electricity
for our country in Eqs. (17) and (18), then there exist a Lagrange multiplier λ
such that the following relationships are held:

Dα,ρ
0 x =

∂H

∂λ
and Dα,ρ

1 λ =
∂H

∂x
and

∂H

∂ū
= 0. (24)

The proof of this Thereom is classic in fractional calculus, Banaa et al. [11]
provided the proof in the context of the Riemann-Liouville fractional derivative,
early stated by Agrawal et al. in [6]. Here we recall the same Theorem and prove
it in the context of the generalized fractional derivative recently introduced in
Fractional Calculus. In other words, the novelty of this works is the use of the
generalized fractional derivative and the application of the optimal control. This
work provided too the relation existing between the game theory model and
fractional calculus.

Proof: We adopt the same proof as in [6,11]. The game theory model Eqs. (17)–
(18) in term of the Hamiltonian function is described by

J(x, ū) =
∫ 1

0

[
H(x, ū, λ, t) − λT Dα,ρ

0 x
]
dt. (25)

Taking the variation of the total profit function, we obtain the following rela-
tionship

δJ(x, ū) =
∫ 1

0

{[
∂H

∂x

]T

δx − λT Dα,ρ
0 δx +

[
∂H

∂λ
− Dα,ρ

0 x

]
δλ +

[
∂H

∂ū

]T

δū

}
dt.

(26)
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Recalling the integration by parts in term of the generalized fractional derivative
stated by Thabet et al. in [5,22], we have the following expression

∫ 1

0

λT Dα,ρ
0 δxdt =

∫ 1

0

(Dα,ρ
1 λ)T

δxdt. (27)

Replacing Eqs. (27) into (26) and imposing the variation of the playoff function
null to obtain the maximum, we have respectively

Dα,ρ
0 x =

∂H

∂λ
and Dα,ρ

1 λ =
∂H

∂x
and

∂H

∂ū
= 0. (28)

In this new paragraph, we replace the function f and g by their values and use
the optimality conditions established in Theorem 1 to get the Nash equilibrium
of the continuous time dynamical game model related to the semi-renewable
resource electricity in our country. The explicit form of the Hamiltonian function
of the game model is given by

H(x, ū, λ, t) = ne−rt [P − C − nū] ū − λT [ξx − nū] . (29)

We begin our investigation by the last optimality condition given in Eq. (28), we
have the following equation

∂H

∂ū
= ne−rt [−2nū + P − C] + nλ = 0. (30)

From Eq. (30), it follows the value of the Nash equilibrium in the cooperative
game of the continuous time dynamical model related to the semi-renewable
resource electricity in our country is given by the following expression

ū =
P − C + λert

2n
. (31)

We can observe the Nash equilibrium obtained in this section depends on the
Lagrange multiplicator λ. The second step of the resolution of our problem con-
sists of determining the state obtained by solving the first equation in Eq. (24),
that is

Dα,ρ
0 x =

∂H

∂λ
= ξx − nū. (32)

Applying the ρ-Laplace transform to both sides of Eq. (32), we have the following
relation

qαx̃ − x0 = ξx̄ − nū(q)
qαx̃ − ξx̄ = x0 − nū(q)

x̃ =
x0

qα − ξ
− nū(q)

qα − ξ
. (33)

Applying the inverse of the ρ-Laplace transform to both sides of Eq. (33), we
obtain the state defined by

x(t) = η

(
tρ

ρ

)α−1

Eα,α

(
ξ

(
tρ

ρ

)α)
+

∫ t

0

(
tρ − sρ

ρ

)α−1

Eα,α

(
ξ

(
tρ − sρ

ρ

)α)
nū(s)ds.

(34)
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The last step of the resolution concerns the determination of the Lagrange mul-
tiplicator λ, using second equation into Eq. (24), we have the following equation
to solve

Dα,ρ
1 λ =

∂H

∂x
= ξλ + ne−rt

[
−2nū

∂ū

∂x
+ (P − C)

∂ū

∂x

]
. (35)

We can observe the second term of Eq. (35) depends on time, for simplification,
we let the following function

v(t) = ne−rt

[
−2nū

∂ū

∂x
+ (P − C)

∂ū

∂x

]
. (36)

But ∂ū
∂x = 0 in our model, finaly Eq. (35) becomes the following

Dα,ρ
1 λ = ξλ. (37)

Applying the ρ-Laplace transform to both sides of Eq. (37), we have the following
relationships

qαλ̄ − λ(1) = ξλ̄

qαλ̄ − ξλ̄ = λ(1)

λ̄ =
λ(1)

qα − ξ
. (38)

Applying the inverse of the ρ-Laplace transform to both sides of Eq. (38), we
obtain the following solution for Eq. (37)

λ(t) = λ(1)
(

tρ

ρ

)α−1

Eα,α

(
ξ

(
tρ

ρ

)α)
. (39)

Finally, the triplet (x, ū, λ) is the optimal solution which maximizes the total
profit of the miner i of the game theory model related to the semi-renewable
resource electricity in our country.

5 Discussion and Graphical Representations

In this section, we represent and discuss the optimal control, which maximizes
the total profit of the player i of the game theory model related to the semi-
renewable resource electricity in our country. We depict the optimal control ū
of the problems (17) and (18). We consider n = 2000 players in Dakar, α = 1,
different values for the order ρ. Furthermore r = 0.03 and ξ = 0.02. The price
of the bitcoin in Dakar is fixed to P = 8302, 57 USD, and then the price of the
electricity of a player in Dakar is C = 6000 USD for all players equivalent to 3
USD per player.

In Fig. 1a, we depict the values of the Nash equilibrium in time when we
consider n = 2000 players. We can observe the Nash equilibrium increase with



Fractional Optimal Economic Control Problem 45

0 5 10 15 20 25 30 35 40 45 50
t

0.5755

0.576

0.5765

0.577

0.5775

0.578

0.5785

0.579

N
as

h 
E

qu
ili

br
iu

m
=0.5

=0.75

=1

(a)

Fig. 1. Nash equilibrium evolution in times.

the time when the values of the order ρ ≤ 1 increase, see the direction of the
arrow in Fig. 1a.

In Fig. 2a, we depict the values of the Nash equilibrium in time when we
consider n = 2000 players. We can observe the Nash equilibrium decrease with
the time when the values of the order ρ ≤ 1 decrease, see the direction of the
arrow in Fig. 2a.

Fig. 2. Nash equilibrium evolution in times.

In Fig. 3a, we depict the values of the Nash equilibrium in time when we
consider n = 2000 players. We can observe the Nash equilibrium decrease with
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the time when the values of the order ρ ≥ 1 increase with time, see the direction
of the arrow in Fig. 3a. Furthermore, the values of the Nash equilibrium converges
to zero. The convergence of the Nash equilibrium to zero can be justified from
the fact the number of the player is high, and the value the order respect the
assumption ρ ≥ 1.

Fig. 3. Nash equilibrium evolution in times.

6 Conclusion

In this paper, we have discussed the fractional optimal control of the continuous
game theory model described by the fractional order derivative. We establish
three conditions which permit to obtain the optimal control of our presented
model. For Dakar based on the price of the electricity and the price of bitcoin, we
have proposed the optimal control which maximizes the profit for 2000 players.
The order ρ has a significant impact on the values of the Nash equilibrium. Future
works, we will extend the studies in all the Senegal. What will happen when
the fractional derivative with Mittag-Leffler kernel is used. For the forthcoming
paper, we will focus on these directions.
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Abstract. In the present work, the approximated analytical solution for the
time-fractional coupled Whitham-Broer-Kaup (WBK) equations describing the
propagation of shallow water waves are obtained with the aid of an efficient
computational technique called, q-Homotopy analysis transform method
(briefly, q-HATM). To demonstrate the reliability and efficiency of the proposed
technique, two examples are illustrated. The homotopy polynomials are hired in
order to handle the nonlinear terms and the suggested algorithm provides the
auxiliary parameters �h and n, which help us to control and adjust the conver-
gence region of the obtained series solution. Numerical simulation has been
carried out in terms of absolute error. The obtained results revels that, the
proposed algorithm is highly methodical and very efficient to solve coupled
nonlinear differential system.

Keywords: q-homotopy analysis transform method � Fractional Whitham-
Broer-Kaup equations � Laplace transform

1 Introduction

The derivatives of fractional order were debut in 1695, as in the question of the
extension of meaning. In recent years, many researchers are attentive to study the
fractional calculus due to its ability to provide an exact description for various types of
non-linear phenomena. Fractional order differential equations are the generalization of
traditional differential equations having nonlocal and genetic consequence in the
material properties, which are studied and described by many pioneers including
Caputo [1], Miller and Ross [2], Podlubny [3], Liao [4], and others. Nowadays,
fractional partial differential equations have gained popularity in developing procedure
for non-linear models and investigation of dynamical systems [5]. The problems
relating to applications of fractional differential equations are situated in various con-
nected branches of science and engineering; like fluid and continuum mechanics [6],
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H. Dutta et al. (Eds.): CMES 2019, AISC 1111, pp. 49–75, 2020.
https://doi.org/10.1007/978-3-030-39112-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39112-6_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39112-6_4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39112-6_4&amp;domain=pdf
https://doi.org/10.1007/978-3-030-39112-6_4


electrodynamics [7], nanotechnology [8], ocean engineering [9], cosmology [10] and
many other branches [11–16].

The solutions of the nonlinear differential equations of arbitrary order play a vital
role in describing the nature and characteristics of complex problems arised in science
and technology. Moreover, it is very difficult to obtain the analytical solutions for these
differential equations. On other hand, last three decades be the witness for initiating and
studying the number of numerical techniques. There have been many such techniques
are available in literature and one of them is q-homotopy analysis transform method
(briefly, q-HATM). This method was introduced by Singh et al. [17], to study the linear
and nonlinear differential equation of integer and fractional order exist is different areas
of science. The q-HATM is an elegant amalgamation of q-homotopy analysis method
and Laplace transform.

In this paper, we present the numerical solution of nonlinear coupled fractional
Whitham-Broer-Kaup (WBK) equations with the help of q-HATM. The WBK equa-
tions were studied by Whitham [18], Broer [19] and Kaup [20], and these equations
describe the propagation of shallow water waves with different dispersion relations.
The WBK equations arise in hydrodynamics to describe the propagation of waves in
dissipative and nonlinear media. They are advisable for problems arise in the leakage of
water in porous subsurface stratum and widely used in ocean and coastal engineering.
Moreover, these equations are the foundation of numerous models utilize to portray the
unconfined subsurface like, drainage and groundwater flow problems.

Consider coupled nonlinear WBK equations of fractional order [21]:

Da
t uþuux þ vx þ buxx ¼ 0;

Da
t vþuvx þ vux þ auxxx � bvxx ¼ 0;

0\a� 1 ; ð1Þ

where u ¼ u x; tð Þ is the horizontal velocity and v ¼ v x; tð Þ be the height that deviating
from equilibrium position of the liquid. Further, a and b are constants which are
representing different diffusion powers i.e., if a ¼ 1 and b ¼ 0, then Eq. (1) reduces to
the modified Boussinesq equation, and if a ¼ 0 and b ¼ 1, then the system represents
classical long wave equation. The solutions for coupled fractional WBK equations
were obtained and studied by many authors through different numerical techniques
like, Adomian decomposition method [22], variation iteration method [23], optimal
homotopy asymptotic method [24], coupled fractional reduced differential transform
method [21], residual power series method [25] and Laplace Adomian decomposition
method [26].

2 Preliminaries

We recall some definitions and properties of fractional calculus and Laplace transform,
which are used in the sequel:

Definition 1. Let a function f tð Þ 2 Cl l� � 1ð Þ, then the Riemann-Liouville integral
of fractional order ða[ 0Þ is given as [3]:
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Jaf tð Þ ¼ 1
C að Þ

Rt
0
t � #ð Þa�1f #ð Þd#;

J0f tð Þ ¼ f tð Þ
ð2Þ

Definition 2. The fractional derivative of f 2 Cn
�1 in the Caputo [1] sense is defined as

Da
t f tð Þ ¼

dnf tð Þ
dtn ; a ¼ n 2 N;
1

C n�að Þ
R t
0 t � #ð Þn�a�1f nð Þ #ð Þd#; n� 1\a\n; n 2 N:

(
ð3Þ

Definition 3. The Laplace transform (LT) of a Caputo fractional derivative Da
t f tð Þ is

represented as [1, 2]

L Da
t f tð Þ� � ¼ saF sð Þ �

Xn�1

r¼0
sa�r�1f rð Þ 0þð Þ; n� 1\a� nð Þ; ð4Þ

where F sð Þ is symbolize the LT of the function f tð Þ.

3 Fundamental Idea of q-HATM

To present the fundamental idea of proposed method [27–35], we consider a general
fractional order nonlinear non-homogeneous partial differential equation of the form:

Da
t U x; tð ÞþRU x; tð ÞþNU x; tð Þ ¼ f x; tð Þ; n� 1\a� n; ð5Þ

where Da
t U x; tð Þ denotes the Caputo’s fractional derivative of the function U x; tð Þ;

R and N specifies the linear and nonlinear differential operator, respectively, and f x; tð Þ
represents the source term. Now, by employing the LT on Eq. (5), we get

saL U x; tð Þ½ � �
Xn�1

k¼0
sa�k�1U kð Þ x; 0ð Þþ L RU x; tð Þ½ � þ L NU x; tð Þ½ � ¼ L f x; tð Þ½ �: ð6Þ

On simplifying Eq. (6), we have

L U x; tð Þ½ � � 1
sa
Xn�1

k¼0
sa�k�1Uk x; 0ð Þþ 1

sa
L RU x; tð Þ½ � þ L NU x; tð Þ½ � � L f x; tð Þ½ �f g ¼ 0:

ð7Þ

According to homotopy analysis method [4], the nonlinear operator defined as

N u x; t; qð Þ½ � ¼ L u x; t; qð Þ½ � � 1
sa
Xn�1

k¼0
sa�k�1u kð Þ x; t; qð Þ 0þð Þ

þ 1
sa

L Ru x; t; qð Þ½ � þ L Nu x; t; qð Þ½ � � L f x; tð Þ½ �f g;
ð8Þ

where q 2 0; 1n
� �

, and u x; t; qð Þ is real function of x; t and q.
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We construct a homotopy for non-zero auxiliary function H x; tð Þ as follows:

1� nqð ÞL u x; t; qð Þ � U0 x; tð Þ½ � ¼ �hqH x; tð ÞN u x; t; qð Þ½ �; ð9Þ

where L be a symbol of the Laplace transform, �h 6¼ 0 is an auxiliary parameter, q 2
0; 1n
� �

n� 1ð Þ is the embedding parameter, U0 x; tð Þ is an initial guess of U x; tð Þ and
u x; t; qð Þ is an unknown function. The following results hold for q ¼ 0 and q ¼ 1

n:

u x; t; 0ð Þ ¼ U0 x; tð Þ; u x; t;
1
n

� �
¼ U x; tð Þ; ð10Þ

respectively. Thus, by amplifying q from 0 to 1
n, the solution u x; t; qð Þ converge from

U0 x; tð Þ to the solution U x; tð Þ. Expanding the function u x; t; qð Þ in series form by
employing Taylor theorem near to q, one can get

u x; t; qð Þ ¼ U0 x; tð Þþ
X1

m¼1
Um x; tð Þqm; ð11Þ

where

Um x; tð Þ ¼ 1
m!

@mu x; t; qð Þ
@qm

jq¼0: ð12Þ

On choosing the auxiliary linear operator, the initial guess U0 x; tð Þ; the auxiliary
parameter n; �h and H x; tð Þ, the series (11) converges at q ¼ 1

n, then it gives one of the
solutions of the original nonlinear equation of the form

U x; tð Þ ¼ U0 x; tð Þþ
X/

m¼1
Um x; tð Þ 1

n

� �m

: ð13Þ

Now, differentiating the zero-th order deformation Eq. (9) m-times with respect to q
and then dividing by m! and finally taking q ¼ 0, which yields

L Um x; tð Þ � kmUm�1 x; tð Þ½ � ¼ �hH x; tð Þ<m ~Um�1

� �
; ð14Þ

where the vectors are defined as

~Um ¼ U0 x; tð Þ;U1 x; tð Þ; . . .;Um x; tð Þf g: ð15Þ

Applying the inverse Laplace transform on Eq. (14), it provide the following
recursive equation

Um x; tð Þ ¼ kmUm�1 x; tð Þþ �hL�1 H x; tð Þ<m ~Um�1

� �h i
; ð16Þ
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where

<m ~Um�1

� �
¼ 1

m� 1ð Þ!
@m�1N u x; t; qð Þ½ �

@qm�1 jq¼0 ð17Þ

and

km ¼ 0;m� 1;
n;m[ 1:

�
ð18Þ

Finally, on solving Eq. (16) we obtain the components of the q-HATM series
solution.

4 Numerical Examples

To demonstrate the efficiency and applicability of the proposed algorithm, we consider
two examples as an illustration.

Example 4.1. Consider the coupled WBK equations of time-fractional order [21]:

Da
t u ¼ �u @u

@x � @v
@x � b @2u

@x2 ;

Da
t v ¼ �u @v

@x � v @u
@x � a @3u

@x3 þ b @2v
@x2 ;

0\a� 1 ;

8<
: ð19Þ

with initial conditions

u x; 0ð Þ ¼ x� 2B‘ coth ‘ xþ cð Þ½ �; v x; 0ð Þ ¼ �2B Bþ bð Þ‘2csch2 ‘ xþ cð Þ½ � ð20Þ

where x; ‘ and c are arbitrary constants and B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b2

p
. Now by performing LT on

both sides of Eq. (19) and make use of conditions provided in Eq. (20), we have

L u x; tð Þ½ � � x�2B‘coth ‘ xþ cð Þ½ �
s þ 1

sa L u @u
@x þ @v

@x þ b @2u
@x2

n o
¼ 0;

L v x; tð Þ½ � þ 2B Bþ bð Þ‘2csch2 ‘ xþ cð Þ½ �
s þ 1

sa L u @v
@x þ v @u

@x þ a @3u
@x3 � b @2v

@x2

n o
¼ 0:

ð21Þ

Define the non-linear operator as

N1 u1 x; t; qð Þ;u2 x; t; qð Þ½ � ¼ L u1 x; t; qð Þ½ � � x� 2B‘ coth ‘ xþ cð Þ½ �
s

þ 1
sa
L u1 x; t; qð Þ @u1 x; t; qð Þ

@x
þ @u2 x; t; qð Þ

@y
þ b

@2u1 x; t; qð Þ
@x2

� 

;

N2 u1 x; t; qð Þ;u2 x; t; qð Þ½ � ¼ L u2 x; t; qð Þ½ � þ 2B Bþ bð Þ‘2csch2 ‘ xþ cð Þ½ �
s

þ 1
sa
L u1 x; t; qð Þ @u2 x; t; qð Þ

@x
þu2 x; t; qð Þ @u1 x; t; qð Þ

@x

�

þ a
@3u1 x; t; qð Þ

@x3
� b

@2u2 x; t; qð Þ
@x2



:

ð22Þ
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By proposed algorithm, the deformation equation of m-th order for H x; tð Þ ¼ 1, is
given as

L um x; tð Þ � kmum�1 x; tð Þ½ � ¼ h<1;m u!m�1; v!m�1½ �;
L vm x; tð Þ � kmvm�1 x; tð Þ½ � ¼ h<2;m u!m�1; v!m�1½ �:

ð23Þ

where

<1;m u!m�1; v!m�1½ � ¼ L um�1 x; tð Þ½ � � 1� km
n

� �
x� 2B‘ coth ‘ xþ cð Þ½ �

s

þ 1
sa
L

Xm�1

i¼0
ui

@um�1�i

@x
þ @vm�1

@x
þ b

@2um�1

@x2

� 

;

<2;m u!m�1; v!m�1½ � ¼ L vm�1 x; tð Þ½ � þ 1� km
n

� �
2B Bþ bð Þ‘2csch2 ‘ xþ cð Þ½ �

s

þ 1
sa
L

Xm�1

i¼0
ui

@vm�1�i

@x
þ

Xm�1

i¼0
vi
@um�1�i

@x
þ a

@3um�1

@x3
� b

@2vm�1

@x2

� 

:

ð24Þ

By applying inverse LT on Eq. (24), we get

um x; tð Þ ¼ kmum�1 x; tð Þþ �hL�1 <1;m u!m�1; v!m�1½ �� �
;

vm x; tð Þ ¼ kmvm�1 x; tð Þþ �hL�1 <2;m u!m�1; v!m�1½ �� �
:

ð25Þ

On solving above system of equations, we have

u0 x; tð Þ ¼ x� 2B‘ coth ‘ xþ cð Þ½ �;
v0 x; tð Þ ¼ � 2B Bþ bð Þ‘2csch2 ‘ xþ cð Þ½ �;

u1 x; tð Þ ¼ 2�hB‘2x csch2 ‘ xþ cð Þ½ �ta
C aþ 1½ � ;

v1 x; tð Þ ¼ � 2�hB‘3csch4 ‘ xþ cð Þ½ � �4 aþ b2 � B2ð Þ‘� 2 aþ b2 � B2ð Þ‘ cosh 2‘ xþ cð Þ½ � � bþBð Þxsinh 2‘ xþ cð Þ½ �ð Þta
C aþ 1½ � ;

u2 x; tð Þ ¼ 2 nþ �hð Þ�hB‘2x csch2 ‘ xþ cð Þ½ �ta
C aþ 1½ � þ 2B�h2‘3t2a

C 2aþ 1½ � � 20a‘2 � 20b2‘2 þ 20B2‘2 þx2


� 4a‘2 þ 4b2‘2 � 4B2‘2þx2 �
cosh 2‘ xþ cð Þ½ ��coth ‘ xþ cð Þ½ �csch4 ‘ xþ cð Þ½ �;

v2 x; tð Þ ¼ � 2 nþ �hð Þ�hB‘3csch4 ‘ xþ cð Þ½ � �4 aþ b2 � B2ð Þ‘� 2 aþ b2 � B2ð Þ‘cosh 2‘ xþ cð Þ½ � � bþBð Þx sinh 2‘ xþ cð Þ½ �ð Þta
C aþ 1½ �

� B�h2‘4csch ‘ xþ cð Þ½ �6t2a
C 2aþ 1½ � 132b‘2 � 60B‘2

 �
aþ b2 � B2 �� 3x2 bþBð Þ

þ 2cosh 2‘ xþ cð Þ½ � 4a 13b� 7Bð Þ‘2 þ bþBð Þ 52b2‘2 � 80bB‘2 þ 28B2‘2 þx2
 � �

þ cosh 4‘ xþ cð Þ½ � 4a b� Bð Þ‘2 þ bþBð Þ 4b2‘2 � 8bB‘2 þ 4B2‘2 þx2
 � �

þ 4‘x 10 sinh 2‘ xþ cð Þ½ � þ sinh 4‘ xþ cð Þ½ �ð Þ aþ b2 � B2 ��

54 P. Veeresha et al.



u3 x; tð Þ ¼ 2 nþ �hð Þ2�hB‘2x csch2 ‘ xþ cð Þ½ �ta
C aþ 1½ � þ 4 nþ �hð ÞB�h2‘3t2a

C 2aþ 1½ � ð�20a‘2 � 20b2‘2þ 20B2‘2þ x2

� 4a‘2 þ 4b2‘2 � 4B2‘2 þ x2
 �

cosh 2‘ xþ cð Þ½ ��coth ‘ xþ cð Þ½ �csch4 ‘ xþ cð Þ½ �

þ B�h3‘4t3acsch7 ‘ xþ cð Þ½ �
2C aþ 1½ �2C 3aþ 1½ � ð�8B‘x2C 2aþ 1½ �sinh ‘ xþ cð Þ½ �sinh 2‘ xþ cð Þ½ �

þ C aþ 1½ �2ð�8B‘ 260a‘2þ 260b2‘2 � 260B2‘2 þ x2 �
cosh ‘ xþ cð Þ½ �

þ 8B‘ �62a‘2 � 62b2‘2 þ 62B2‘2 þ x2 �
cosh 3‘ xþ cð Þ½ � � 16aB‘3cosh 5‘ xþ cð Þ½ �

� 16b2B‘3cosh 5‘ xþ cð Þ½ � þ 16B3‘3cosh 5‘ xþ cð Þ½ � þ 480a‘2x sinh ‘ xþ cð Þ½ �
þ 480b2‘2x sinh ‘ xþ cð Þ½ � � 480B2‘2x sinh ‘ xþ cð Þ½ � � 8x3sinh ‘ xþ cð Þ½ �
þ 300a‘2x sinh 3‘ xþ cð Þ½ � þ 300b2‘2xsinh 3‘ xþ cð Þ½ � � 300B2‘2x sinh 3‘ xþ cð Þ½ �
þ x3sinh 3‘ xþ cð Þ½ � þ 12a‘2x sinh 5‘ xþ cð Þ½ � þ 12b2‘2x sinh 5‘ xþ cð Þ½ �
� 12B2‘2x sinh 5‘ xþ cð Þ½ � þ x3sinh 5‘ xþ cð Þ½ �ÞÞ;

v3 x; tð Þ ¼ � 2 nþ �hð Þ2�hB‘3csch4 ‘ xþ cð Þ½ � � 4 aþ b2 � B2ð Þ‘� 2 aþ b2 � B2ð Þ‘cosh 2‘ xþ cð Þ½ � � bþ Bð Þxsinh 2‘ xþ cð Þ½ �ð Þta
C aþ 1½ �

� nþ �hð Þ�h2B‘4csch ‘ xþ cð Þ½ �6t2a
C 2aþ 1½ � ð 132b‘2 � 60B‘2

 �
aþ b2 � B2 �� 3x2 bþ Bð Þ

þ 2cosh 2‘ xþ cð Þ½ � 4a 13b� 7Bð Þ‘2 þ bþ Bð Þ 52b2‘2 � 80bB‘2þ 28B2‘2þ x2 � �
þ cosh 4‘ xþ cð Þ½ � 4a b� Bð Þ‘2 þ bþ Bð Þ 4b2‘2 � 8bB‘2 þ 4B2‘2 þ x2 � �
þ 4‘x 10 sinh 2‘ xþ cð Þ½ � þ sinh 4‘ xþ cð Þ½ �ð Þ aþ b2 � B2 �Þ
� B�h3‘5csch ‘ xþ cð Þ½ �8t3a

2C 1þ a½ �2C 3aþ 1½ � ð16B‘xC 2aþ 1 sinh� ½‘ xþ cð Þ½ �ð16 aþ b2 � B2 �
‘cosh ‘ xþ cð Þ½ �

þ 2 aþ b2 � B2
 �

‘cosh 3‘ xþ cð Þ½ � þ bþ Bð Þx 2sinh ‘ xþ cð Þ½ � þ sinh 3‘ xþ cð Þ½ �ð ÞÞ
� C aþ 1½ �2ð2‘ð8ð604a2‘2þ a 8‘2 151b2 � 65bB� 70B2

 �� 15x2
 �

þ bþ Bð Þ 4‘2 151b3 � 281b2Bþ 141bB2 � 11B3
 �þ x2ð13B� 15b

 �Þ
þ ð4764a2‘2 þ a 4‘2 2382b2 � 1090bB� 1060B2 �þ 45x2 �
þ bþ Bð Þ 4‘2 1191b3 � 2281b2Bþ 1221bB2 � 131B3 �þ 45bx2 � 37Bx2 �Þcosh 2‘ xþ cð Þ½ �Þ
þ 16‘ð60a2‘2 þ a 4‘2 30b2 � 17bB� 11B2 �þ 9x2 �
þ bþ Bð Þ 4‘2 15b3 � 32b2Bþ 21bB2 � 4B3 �þ x2 9b� 8Bð Þ �Þcosh 4‘ xþ cð Þ½ �
þ 2‘ aþ b2 � B2 �

4a‘2þ 4b2‘2 � 8bB‘2 þ 4B2‘2 þ 3x2 �
cosh 6‘ xþ cð Þ½ �

� x � 4a 735b� 283Bð Þ‘2 � bþ Bð Þ 4‘2 735b2 � 1018bBþ 283B2 �� 19x2 � �
sinh 2‘ xþ cð Þ½ �

þ 8x 4a 21b� 11Bð Þ‘2 þ bþ Bð Þ 4‘2 21b2 � 32bBþ 11B2 �þ x2 � �
sinh 4‘ xþ cð Þ½ �

þ x 12a b� Bð Þ‘2þ bþ Bð Þ 4‘2 3b2 � 6bBþ 3B2‘2
 �þ x2 � �

sinh 6‘ xþ cð Þ½ �ÞÞ
..
.

In this approach, the rest of the iterative terms can be obtained. Then, the family of
q-HATM series solution of the of Eq. (19) is

u x; tð Þ ¼ u0 x; tð Þþ
X1

m¼1
um x; tð Þ 1

n

� �m

;

v x; tð Þ ¼ v0 x; tð Þþ
X1

m¼1
vm x; tð Þ 1

n

� �m

:

ð26Þ

If we set a ¼ 1; h ¼ �1; and n ¼ 1, then the obtained solutions
PN

m¼1 um x; tð Þ 1
n

 �m
and

PN
m¼1 vm x; tð Þ 1

n

 �m, respectively converges to the exact solutions
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u x; tð Þ ¼ x� 2B‘coth ‘ xþ c� xtð Þ½ � and v x; tð Þ ¼ �2B Bþ bð Þ‘2csch2 ‘ xþð½ c�
xtÞ� of the classical order coupled WBK equations as N ! 1.

Example 4.2. Consider the time-fractional coupled WBK Eq. (1) for a ¼ 3 and b ¼ 1
[26, 36]:

Da
t u ¼ �u @u

@x � @v
@x � @2u

@x2 ;

Da
t v ¼ �u @v

@x � v @u
@x þ @2v

@x2 � 3 @3u
@x3 ;

0\a� 1;

8<
: ð27Þ

with initial conditions

                      (a)                                                                                (b)

(c)

Fig. 1. (a) Surface of approximate solution (b) Surface of exact solution (c) Surface of absolute
error ¼ uexa: � uapp:

�� �� for Example 4.1 at n ¼ 1; a ¼ 1; �h ¼ �1;x ¼ 0:005; a ¼ 1:5; b ¼
1:5; ‘ ¼ 0:1 and c ¼ 10.
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    (a)                                                                                       (b)

(c)

Fig. 2. (a) Surface of approximate solution (b) Surface of exact solution (c) Surface of absolute
errore error ¼ vexa: � vapp:

�� �� at n ¼ 1; a ¼ 1;x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; �h ¼ �1; ‘ ¼ 0:1 and
c ¼ 10 for Example 4.1.

Fig. 3. Plot of q-HATM solution u x; tð Þ for Example 4.1 with respect to t when n ¼ 1; �h ¼
�1;x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼ 0:1, c ¼ 10 and x ¼ 1 with diverse values of a.
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Fig. 4. Nature of q-HATM solution v x; tð Þ with respect to t for Example 4.1, at n ¼ 1; �h ¼
�1;x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼ 0:1, c ¼ 10 and x ¼ 1 with different values of a:

Fig. 5. Nature of q-HATM solution u x; tð Þ at n ¼ 5; a ¼ 1;x ¼ 0:005; ‘ ¼ 0:1; a ¼ 1:5; b ¼
1:5; c ¼ 10 and x ¼ 1 with diverse values of �h for Example 4.1.
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Fig. 6. Behaviour of q-HATM solution v x; tð Þ with different values of �h for Example 4.1 at
n ¼ 5; a ¼ 1;x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼ 0:1; c ¼ 10 and x ¼ 1:

Fig. 7. �h-curves drown for the q-HATM solution u x; tð Þ at x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼
0:1; c ¼ 10; x ¼ 1; t ¼ 0:01 and n ¼ 1 with diverse values of a for Example 4.1.
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Fig. 8. �h-curves drown for the q-HATM solution u x; tð Þ with different values of a for Example
4.1 at x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼ 0:1; c ¼ 10; x ¼ 1; t ¼ 0:01 and n ¼ 2:

Fig. 9. �h-curves drown for the q-HATM solution u x; tð Þ for Example 4.1 at x ¼ 0:005; a ¼
1:5; b ¼ 1:5; ‘ ¼ 0:1; c ¼ 10; x ¼ 1; t ¼ 0:01 and n ¼ 3 with distinct values of a:
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Fig. 10. �h-curves drown for the q-HATM solution v x; tð Þ with different values of a for Example
4.1 at x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼ 0:1; c ¼ 10; x ¼ 1; t ¼ 0:01 and n ¼ 1:

Fig. 11. �h-curves drown for the q-HATM solution v x; tð Þ at x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼
0:1; c ¼ 10; x ¼ 1; t ¼ 0:01 and n ¼ 2 with diverse values of a for Example 4.1.
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Fig. 12. �h-curves drown for the q-HATM solution v x; tð Þ at x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼
0:1; c ¼ 10; x ¼ 1; t ¼ 0:01 and n ¼ 3 with distinct values of a for Example 4.1.

Fig. 13. Nature of coupled q-HATM solutions u x; tð Þ and v x; tð Þ atn ¼ 1; �h ¼ �1; c ¼ 10;x ¼
0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼ 0:1 and a ¼ 1 for Example 4.1.
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Table 1. Comparative study between ADM [22], VIM [23], CFRDTM [21] and q-HATM for
the approximate solution u x; tð Þ at c ¼ 10; x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼ 0; n ¼ 1; �h ¼ �1
and a ¼ 1 for Example 4.1

x; tð Þ uExact � uADMj j uExact � uVIMj j uExact � uCFRDTMj j uExact � u
3ð Þ
q�HATM

��� ���
0:1; 0:1ð Þ 1:04892� 10�4 1:23033� 10�4 1:11022� 10�16 1:11022� 10�16

0:1; 0:3ð Þ 9:64474� 10�5 3:69597� 10�4 1:11022� 10�16 1:11022� 10�16

0:1; 0:5ð Þ 8:88312� 10�5 6:16873� 10�4 1:33227� 10�15 1:33227� 10�15

0:2; 0:1ð Þ 4:25408� 10�4 1:19869� 10�4 2:22045� 10�16 2:22045� 10�16

0:2; 0:3ð Þ 3:91098� 10�4 3:60098� 10�4 1:66533� 10�16 1:66533� 10�16

0:2; 0:5ð Þ 3:60161� 10�4 6:01006� 10�4 1:49880� 10�15 1:49880� 10�15

0:3; 0:1ð Þ 9:71922� 10�4 1:16789� 10�4 0 0

0:3; 0:3ð Þ 8:93309� 10�4 3:50866� 10�4 2:77556� 10�16 2:77556� 10�16

0:3; 0:5ð Þ 8:22452� 10�4 5:85610� 10�4 1:27676� 10�15 1:27676� 10�15

0:4; 0:1ð Þ 1:75596� 10�3 1:13829� 10�4 5:55112� 10�17 5:55112� 10�17

0:4; 0:3ð Þ 1:61430� 10�3 3:41948� 10�4 1:66533� 10�16 1:66533� 10�16

0:4; 0:5ð Þ 1:48578� 10�3 5:70710� 10�4 1:27676� 10�15 1:27676� 10�15

0:5; 0:1ð Þ 2:79519� 10�3 1:10936� 10�4 0 0

0:5; 0:3ð Þ 2:56714� 10�3 3:33274� 10�4 2:22045� 10�16 2:22045� 10�16

0:5; 0:5ð Þ 2:36184� 10�3 5:56235� 10�4 1:22125� 10�15 1:22125� 10�15

Table 2. Comparative study between ADM [22], VIM [23], CFRDTM [21] and q-HATM for
the approximate solution v x; tð Þ at c ¼ 10;x ¼ 0:005; a ¼ 1:5; b ¼ 1:5; ‘ ¼ 0:1; n ¼ 1; �h ¼ �1
and a ¼ 1 for Example 4.1

x; tð Þ vExact � vADMj j vExact � vVIMj j vExact � vCFRDTMj j user2vExact � v
3ð Þ
q�user2HATM

��� ���
0:1; 0:1ð Þ 6:41419� 10�3 1:10430� 10�4 2:77556� 10�17 2:77556� 10�17

0:1; 0:3ð Þ 5:99783� 10�3 3:31865� 10�4 3:60822� 10�16 3:60822� 10�16

0:1; 0:5ð Þ 5:61507� 10�3 5:54071� 10�4 2:40086� 10�15 2:40086� 10�15

0:2; 0:1ð Þ 1:33181� 10�2 1:07016� 10�4 4:16334� 10�17 4:16334� 10�17

0:2; 0:3ð Þ 1:24441� 10�2 3:21601� 10�4 3:05311� 10�16 3:05311� 10�16

0:2; 0:5ð Þ 1:16416� 10�2 5:36927� 10�4 2:31759� 10�15 2:31759� 10�15

0:3; 0:1ð Þ 2:07641� 10�2 1:03737� 10�4 5:55112� 10�17 5:55112� 10�17

0:3; 0:3ð Þ 1:93852� 10�2 3:11737� 10�4 2:63678� 10�16 2:63678� 10�16

0:3; 0:5ð Þ 1:81209� 10�2 5:20447� 10�4 2:15106� 10�15 2:15106� 10�15

0:4; 0:1ð Þ 2:88100� 10�2 1:00579� 10�4 2:77556� 10�17 2:77556� 10�17

0:4; 0:3ð Þ 2:68724� 10�2 3:02245� 10�4 2:49800� 10�16 2:49800� 10�16

0:4; 0:5ð Þ 2:50985� 10�2 5:04593� 10�4 2:04003� 10�15 2:04003� 10�15

0:5; 0:1ð Þ 3:75193� 10�2 9:75385� 10�4 0 0

0:5; 0:3ð Þ 3:49617� 10�2 2:93107� 10�4 2:63678� 10�16 2:63678� 10�16

0:5; 0:5ð Þ 3:26239� 10�2 4:89335� 10�4 1:09126� 10�15 1:09126� 10�15
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u x; 0ð Þ ¼ 1
2
� 8 tanh �2xð Þ; v x; 0ð Þ ¼ 16� 16 tanh2 �2xð Þ: ð28Þ

By performing LT on both sides of Eq. (27) and make use of conditions provided
in Eq. (28), we have

L u x; tð Þ½ � � 1
s

1
2 � 8 tanh �2xð Þ �þ 1

sa L u @u
@x þ @v

@x þ @2u
@x2

n o
¼ 0;

L v x; tð Þ½ � � 16�16 tanh2 �2xð Þ
s þ 1

sa L u @v
@x þ v @u

@x � @2v
@x2 þ 3 @3u

@x3

n o
¼ 0:

ð29Þ

Define the non-linear operator as

N1 u1 x; t; qð Þ;u2 x; t; qð Þ½ � ¼ L u1 x; t; qð Þ½ � � 1
s

1
2
� 8tanh �2xð Þ

� �

þ 1
sa
L u1 x; t; qð Þ @u1 x; t; qð Þ

@x
þ @u2 x; t; qð Þ

@y
þ @2u1 x; t; qð Þ

@x2

� 

;

N2 u1 x; t; qð Þ;u2 x; t; qð Þ½ � ¼ L u2 x; t; qð Þ½ � � 16� 16 tanh2 �2xð Þ
s

þ 1
sa
Lfu1 x; t; qð Þ @u2 x; t; qð Þ

@x

þ u2 x; t; qð Þ @u1 x; t; qð Þ
@y

� @2u2 x; t; qð Þ
@x2

þ 3
@3u1 x; t; qð Þ

@x3
g:

ð30Þ

The m-th order deformation equation for H x; tð Þ ¼ 1, is given as

L um x; tð Þ � kmum�1 x; tð Þ½ � ¼ h<1;m u!m�1; v!m�1½ �;
L vm x; tð Þ � kmvm�1 x; tð Þ½ � ¼ h<2;m u!m�1; v!m�1½ �; ð31Þ

where

<1;m u!m�1; v!m�1½ � ¼ L um�1 x; tð Þ½ � � 1� km
n

� �
1
s

1
2
� 8 tanh �2xð Þ

� �

þ 1
sa
L

Xm�1

i¼0
ui

@um�1�i

@x
þ @vm�1

@x
þ @2um�1

@x2

� 

;

<2;m u!m�1; v!m�1½ � ¼ L vm�1 x; tð Þ½ � � 1� km
n

� �
16� 16 tanh2 �2xð Þ

s

þ 1
sa
L

Xm�1

i¼0
ui

@vm�1�i

@x
þ

Xm�1

i¼0
vi
@um�1�i

@x
� @2vm�1

@x2
þ 3

@3um�1

@x3

� 

:

ð32Þ
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By applying inverse LT on Eq. (31), we get

um x; tð Þ ¼ kmum�1 x; tð Þþ �hL�1 <1;m u!m�1; v!m�1½ �� �
;

vm x; tð Þ ¼ kmvm�1 x; tð Þþ �hL�1 <2;m u!m�1; v!m�1½ �� �
:

ð33Þ

On solving above equation, we have

u0 x; tð Þ ¼ 1
2
� 8 tanh �2xð Þ; v0 x; tð Þ ¼ 16� 16 tanh2 �2xð Þ;

u1 x; tð Þ ¼ 8�h sech2 �2xð Þta
C aþ 1½ � ; v1 x; tð Þ ¼ 32�hsech2 �2xð Þtanh �2xð Þta

C aþ 1½ � ;

u2 x; tð Þ ¼ 8 nþ �hð Þ�h sech2 �2xð Þta
C aþ 1½ � þ 16�h2sech2 �2xð Þtanh �2xð Þt2a

C 2aþ 1½ � ;

v2 x; tð Þ ¼ 32 nþ �hð Þ�h sech2 �2xð Þtanh �2xð Þta
C aþ 1½ � þ 32�h2 �2þ cosh 4xð Þð Þsech4 �2xð Þt2a

C 2aþ 1½ � ;

u3 x; tð Þ ¼ 8 nþ �hð Þ2�h sech2 �2xð Þta
C aþ 1½ � þ 32 nþ �hð Þ�h2sech2 �2xð Þtanh �2xð Þt2a

C 2aþ 1½ �

þ
8�h3sech5 2xð Þ �32C 2aþ 1½ �sinh 2xð ÞþC aþ 1½ �2 �3cosh 2xð Þþ cosh 6xð Þþ 64sinh 2xð Þð Þ

� �
t3a

C aþ 1½ �2C 3aþ 1½ � ;

v3 x; tð Þ ¼ 32 nþ �hð Þ2�h sech2 �2xð Þtanh �2xð Þta
C aþ 1½ � þ 64�h2 nþ �hð Þ �2þ cosh 4xð Þð Þsech4 2xð Þt2a

C 2aþ 1½ �

�
16�h3sech6 �2xð Þ 32 3� 2 cosh 4xð Þð ÞC 2aþ 1½ � þC aþ 1½ �2 �192þ 128 cosh 4xð Þ � 10 sinh 4xð Þþ sinh 8xð Þð Þ

� �
t3a

C aþ 1½ �2C 3aþ 1½ � ;

..

.

Following in the same procedure, the rest of the iterative components can be easily
obtained. Eventually, the family of q-HATM series solution of the system of Eq. (27) is
given by

u x; tð Þ ¼ u0 x; tð Þþ
X1

m¼1
um x; tð Þ 1

n

� �m

;

v x; tð Þ ¼ v0 x; tð Þþ
X1

m¼1
vm x; tð Þ 1

n

� �m

:

ð34Þ

If we set a ¼ 1; h ¼ �1; and n ¼ 1, then the obtained solutions
PN

m¼1 um x; tð Þ 1
n

 �m
and

PN
m¼1 vm x; tð Þ 1

n

 �m
when N ! 1, converges to the exact solutions of classical

order coupled WBK equations

u x; tð Þ ¼ 1
2
� 8 tanh �2 x� t

2

� �h i
; v x; tð Þ ¼ 16� 16 tanh2 �2 x� t

2

� �h i
:
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5 Numerical Results and Discussion

In order to verify whether the proposed algorithm lead to greater accuracy, the
numerical solutions have been evaluated. From results we can certainly conclude that,
the proposed technique provides remarkable exactness in comparison to the method
available in the literature [21–26, 36]. It can be observed from Tables 1 and 2, the
absolute error is very tiny and less numbers of homotopy polynomial are needed.
Further, the accuracy of proposed scheme is drowned in terms of numerical simulations
for Example 4.2 is showed in Tables 3. The Mathematica code is used for numerical
computations.

 (a)                                                                                       (b)

(c)

Fig. 14. (a) Surface of approximate solution (b) Surface of exact solution (c) Surface of absolute
errore error ¼ uexa: � uapp:

�� �� at n ¼ 1; a ¼ 1 and �h ¼ �1 for Example 4.2.
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(a)                                                                                       (b)

(c)

Fig. 15. (a) Surface of approximate solution (b) Surface of exact solution (c) Surface of absolute
errore error ¼ vexa: � vapp:

�� �� at n ¼ 1; a ¼ 1 and �h ¼ �1 for Example 4.2.

Fig. 16. Nature of q-HATM solution u x; tð Þ with respect to t through distinct values of a for
Example 4.2 when n ¼ 1; �h ¼ �1 and x ¼ 1.
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Fig. 17. Plot of q-HATM solution v x; tð Þ with respect to t for Example 4.2. at n ¼ 1; �h ¼ �1
and x ¼ 1 with diverse values of a:

Fig. 18. Nature of q-HATM solution u x; tð Þ at n ¼ 1; a ¼ 1 and x ¼ 1 with different values of �h
for Example 4.2.
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Fig. 19. Plot of q-HATM solution v x; tð Þ for Example 4.2 with distinct values of �h at n ¼
1; a ¼ 1 and x ¼ 1.

Fig. 20. �h-curve drown for the q-HATM solution u x; tð Þ with different values of a for Example
4.2 at x ¼ 1; t ¼ 0:01 and n ¼ 1:
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Fig. 21. �h-curve drown for the q-HATM solution u x; tð Þ with diverse values of a for Example
4.2 at x ¼ 1; t ¼ 0:01 and n ¼ 2.

Fig. 22. �h-curve drown for the q-HATM solution u x; tð Þ at x ¼ 1; t ¼ 0:01 and n ¼ 3 with
distinct values of a for Example 4.2.
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Fig. 23. �h-curve drown for the q-HATM solution v x; tð Þ at x ¼ 1; t ¼ 0:001 and n ¼ 1 with
diverse values of a for Example 4.2.

Fig. 24. �h-curve drown for the q-HATM solution v x; tð Þ with different values of a for Example
4.2 at x ¼ 1; t ¼ 0:001 and n ¼ 2.
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Fig. 25. �h-curve drown for the q-HATM solution v x; tð Þ with distinct values of a for Example
4.2 at x ¼ 1; t ¼ 0:001 and n ¼ 3.

Fig. 26. Surface of q-HATM coupled solutions u x; tð Þ and v x; tð Þ when n ¼ 1; a ¼ 1 and �h ¼
�1 for Example 4.2.
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Figures 1 and 2 explore the comparison of q-HATM solutions with exact solutions
and absolute error for Example 4.1. Figures 3 and 4 cite the action of solutions
obtained for Eq. (19) with distinct Brownian motions and standard motion a ¼ 1ð Þ.
Figures 5 and 6 depict the q-HATM solutions for different values of auxiliary
parameter �h, which helps us to control and adjust the convergence region. The Figs. 7,
8, 9, 10, 11 and 12 explore the role of asymptotic parameter n with respect to �h in q-
HATM solution.

Moreover, Figs. 14 and 15 cite the nature of q-HATM solutions in comparison with
exact solutions for Example 4.2, in particular Figs. 14(c) and 15(c) revel the efficiency
of proposed technique in terms of absolute error. Figures 16 and 17 explore the validity
of Brownian motion and standard motion (i.e.,a ¼ 1; 0:75; 0:50Þ: Figs. 18 and 19
depicts the q-HATM solutions for different values of auxiliary parameter �h which helps
us to control and adjust the convergence region. Figures 20, 21, 22, 23, 24 and 25
represent �h-curves and the horizontal line illustrate the range of convergence for
Eq. (27). The surface of the coupled WBK equations consider in Examples 4.1 and 4.2
are respectively shown in Figs. 13 and 26, which helps us to understand the nature of
the coupled equations.

6 Conclusion

In the present frame work, the q-homotopy analysis transform method is employed
lucratively to find the numerical solution for nonlinear coupled time-fractional
Whitham-Broer-Kaup equations. The obtained results expose that, the proposed

Table 3. Comparison between exact and q-HATM solutions u x; tð Þ and v x; tð Þ in differing
values of x and t at n ¼ 1; �h ¼ �1 and a ¼ 1 for Example 4.2

x; tð Þ u x; tð Þ v x; tð Þ
q� HATM Exact Absolute error q� HATM Exact Absolute error

0:1; 0:01ð Þ 2:0019696 2:0019696 9:45121� 10�9 15:4360256 15:4360217 3:89208� 10�6

0:1; 0:03ð Þ 1:8470476 1:8470484 7:53287� 10�7 15:5464661 15:5463651 1:00978� 10�4

0:1; 0:05ð Þ 1:6910745 1:6910802 5:71541� 10�6 15:6457798 15:6453319 4:47907� 10�4

0:2; 0:01ð Þ 3:4708818 3:4708818 1:35768� 10�8 13:7934663 13:7934652 1:07888� 10�6

0:2; 0:03ð Þ 3:3319326 3:3319336 1:09828� 10�6 13:9950665 13:9950379 2:86269� 10�5

0:2; 0:05ð Þ 3:1909958 3:1910043 8:46058� 10�6 14:1897534 14:1896239 1:29544� 10�4

0:3; 0:01ð Þ 4:7391648 4:7391648 1:16045� 10�8 11:5073691 11:5073703 1:15327� 10�6

0:3; 0:03ð Þ 4:6228733 4:6228742 9:46436� 10�7 11:7504480 11:7504770 2:89910� 10�5

0:3; 0:05ð Þ 4:5041543 4:5041616 7:35142� 10�6 11:9915477 11:9916723 1:24588� 10�4

0:4; 0:01ð Þ 5:7672722 5:7672722 6:75430� 10�9 9:0639587 9:0639607 1:95748� 10�6

0:4; 0:03ð Þ 5:6754350 5:6754356 5:55326� 10�7 9:3036664 9:3037166 5:01077� 10�5

0:4; 0:05ð Þ 5:5811872 5:5811916 4:34857� 10�6 9:5451536 9:5453729 2:19238� 10�4

0:5; 0:01ð Þ 6:5588985 6:5588985 2:25417� 10�9 6:8224352 6:8224369 1:75019� 10�6

0:5; 0:03ð Þ 6:4896341 6:4896342 1:88687� 10�7 7:0310250 7:0310702 4:52158� 10�5

0:5; 0:05ð Þ 6:4182629 6:4182644 1:50372� 10�6 7:2433368 7:2435366 1:99711� 10�4
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technique is very accurate and it can be employed to explore wide class of fractional
nonlinear differential equations interpreting complex phenomena. The suggested
algorithm manipulates and controls the series solution, which rapidly converges to the
exact solution in a short admissible domain. The novelty of the proposed technique is it
provides nonlocal effect, promising large convergence region, free from any assump-
tion and moreover it has straight forward solution procedure.
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Abstract. In the present article, we suggest an efficient computational scheme
to examine nonlinear Emden-Fowler equations arising in astrophysics and space
science. The suggested scheme is based on a modified theory of the Adomian
polynomials, and the two steps Adomian decomposition technique mixed with
the padé approximant. Moreover, a maple software package ADMP is used to
apply the suggested computational scheme, which is very simple to perform and
well organized. The input of the system requires initial or boundary conditions and
many desired parameters to find the analytic approximate solutions within a very
short time. The following algorithm does not require linearization, perturbations,
guessing the initial terms and any restrictive supposition, which may leads the
solutions in closed form. Several examples are discussed to illustrate the reliability
of the algorithm.

Keywords: Emden Fowler equations · Lane Emden type equations ·
Astrophysics · ADM · TSADM · Adomian polynomials

1 Introduction

Analytical techniques have made a comeback in research methodology after proceeds a
backseat to the numerical schemes for the end of the preceding century. The superiority
of analytical schemes are manifolds, the main being that they give a much effective
intuition than the numbers crunched by a computer using a purely numerical algorithm.
Many such physical phenomena are represented in the form of nonlinear differential
equations. A wide class of analytic techniques and computational techniques have been
applied to examine nonlinear mathematical models [1–10].

The ADM has been proven to be one of the most powerful techniques to solve
nonlinear differential equations. Numerous researchers have concentrated on the ADM
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[11–20]. In 1999, Wazwaz suggested a modification of the ADM [21], and shown the
ability of the suggested moderation in many numerical experiments. Subsequently, Luo
proposed the two-step ADM (TSADM) [22], which gives the exact solution without
employing to the Adomian polynomials (AP). Zhang et al. [23] analysed the experi-
mentation with TSADM. Babolian and Javadi [24] discussed one more new scheme to
calculate the AP quickly. Gu and Li [25] enlarged the this operator and employed it
to examine the nonlinear problems. Furthermore, Rach [26] again defined and amalga-
mated the class of AP in another from. Moreover, he has shown that the novel methods
are much more effective.

Here, we investigate the Emden-Fowler type equation in the following manner

y′′ + a

x
y′ + a f (x)g(y) = Q(x), (1)

with initial conditions (ICs) y(0) = A, y′(0) = 0.
In Eq. (1) a represents a constant, f (x) and g(y) indicate functions of x and y

respectively. For Q(x) = 0, f (x) = 1 and g(y) = ym , Eq. (1) is the classical Lane
–Emden equation, which is employed to describe the thermal behaviour of a spherical
cloud of gas acting under the mutual attraction of the molecules [27] and under the
well known laws of thermodynamics. The Emden-Fowler type equation has notable
uses in several disciplines of science and technology world. Different of forms of g(y)
have been studied by several mathematicians and scientists with the aid of numerous
techniques involving numerical and perturbation schemes have been employed to handle
the Emden-Fowler equations [28–33]. The Emden-Fowler equations play a key role to
describe many facts in physical sciences and astrophysics such as thermal explosions,
stellar structure, the thermal behaviour of a spherical cloud of a gas, isothermal gas
spheres and thermionic currents [34, 35]. The detailed plan of the padé approach was
given by Pozzi and Bassano [36].

The principal aim of this work is to implement a systematic numerical approach
based on the theory of Lin et al. [1], where the mathematicians have transformed the
solution of the model with Dirichlet and Robin boundary conditions from the developed
computer algorithm to the approximate solution, which converges to exact solution.

This article is developed as follows. In part 2, we discuss the key features of the
ADM, the novel concept of the AP as well as the TSADM. In portion 3, a method
is considered to develop analytical and approximate solution of nonlinear differential
equation having ICs. The part 4 presents the MAPLE package ADMP and the stability
and convergence of ADM. Finally, in Sect. 5 various kinds of numerical experiments
are discussed to demonstrate the usefulness the software package ADMP.

2 Basic Ideas

In this portion, the fundamental plans of the ADM, the novel theory of the AP and the
TSADM have been discussed.
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2.1 The Classical ADM

Let us take a nonlinear differential equation (NDE) of the form

Lv + Rv + Nv = �. (2)

In Eq. (2) L denotes the higher order linear derivative and R represents the extra part
of the linear operator, Nv indicates the nonlinear operator and � represents the function
due to source. The Eq. (2) can be expressed as

Lv = � − Rv − Nv, (3)

Employing the inverse operator L−1 on the Eq. (3), it gives

v = ζ − L−1Rv − L−1Nv, (4)

where ζ denotes the terms occurring from integration the source function � and the
associated ICs with Eq. (2).

Using the ADM, the solution v can be presented in the subsequent manner

v =
∞∑

m=0

λmvm, (5)

The termNv is analytic in nature and can be expressed into a particular seriesmodified
to the specific nonlinearity Nv, which is given as

Nv =
∞∑

m=0

λm Am, (6)

where λ is a grouping parameter of convenience, and Am , m = 0, 1, 2 . . . indicate the
AP.

On replacing, we arrive at the below result

∞∑

m=0

λmvm = ζ − L−1R
∞∑

m=0

λmvm − L−1
∞∑

m=0

λmvm, (7)

For the easiness of evaluation, we put λ = 1 the iterates vm (m ≥ 0) can be simply
obtained from the subsequent classical Adomian iterative technique

v0 = ζ,

vm+1 = −L−1Rvm − L−1Am, m ≥ 0.
(8)

In the above procedure, the r-term partial sum is given by

v =
r−1∑

m=0

vm(x). (9)
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2.2 The Modified Theory of the AP

Rach [26] suggested a new concept to obtain the uniform result for the family of the
classes of the AP [26].

The introduced method for all classes of the AP can be presented in the subsequent
from

A0 ≡ T1
(∑

An

)
,

For m ≥ 1 : Am ≡ Tm+1
(∑

An
) − Tm

(∑
An

)
,

where Tm
(∑

An
) = Tm

(∑
An; q1, q2, q3

) = ∑m−1
n=0 An = ζm[N (u)] or similar form

is

[ ∞∑

n=0

An

]

n≥m

=
[[ ∞∑

n=0

[
1

n!

( ∞∑

r=0

vr − v0

) n

× ∂n

∂vn0
N (v0)

]

r≥q1(m)

⎤

⎦

r≥q2(m)

⎤

⎥⎦
∑

jr j≥q3(m)

For more details of this scheme one can see the work of Rach [26].

2.3 Analysis of TSADM

Recently, TSADMwas suggested which is a systematic improvement of the ADM [23],
it yields a encouraging plan for several utilizations [24]. The plan of the TSADM is
demonstrated in the subsequent way.

Step 1. Employing the inverse operator L−1 to �, and then applying the associated
condition, we have

φ = ξ + L−1�

By setting

φ = ξ0 + ξ1 + . . . + ξl ,

where ξ0, ξ1, . . . ξl are the terms arising from integrating the source term � and from the
given conditions.

In view of the above, we suppose that

u0 = ξk1 + . . . + ξk1+k2 ,

In which k1 = 0, 1 . . . l, k2 = 0, 1 . . . l − k1. then we prove that u0 fulfils the given
problem and the associated conditions by substitutions, once we proceed to the Step 2.

Step 2. We substitute v0 = φ and use the classical Adomian recursive algorithm to
compute the succeeding solutions terms.
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3 Main Algorithms

3.1 A Novel Algorithm for Handling Nonlinear IVP

In view of the techniques discussed in the previous portion, an effective scheme is studied
in the present part to derive the solution for NDE having the ICs.

To illustrates the procedure of the suggested technique, we study the system of NDE
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L1v1 + R1(v1, v2, . . . vs) + N1(v1, v2, . . . vs) = �1,

L2v2 + R2(v1, v2, . . . vs) + N2(v1, v2, . . . vs) = �2,
...

Lsvs + Rs(v1, v2, . . . vs) + Ns(v1, v2, . . . vs) = �s.

(10)

Subject to the ICs

vi (t = 0, x, y, . . .) = qi (x, y, . . .), i = 1, 2, . . . s,
∂vi (t,x,y,...)

∂t

∣∣∣
t=0

= pi (x, y, . . .), i = 1, 2, . . . s,
(11)

Where �i are the sources terms and Li are linear derivative of the highest orde. Ri

denotes rest part of the linear operators and Ni stands for the nonlinear operators. For
the IVP, we normally describe L−1

i for Li = dn
/
dtn as the n-fold definite integration

operator lies from 0 to t. Hence, the inversion of the operators L−1
i are defined as

L−1
i =

t∫

0

· · ·
t∫

0

(•)dt . . . dt

︸ ︷︷ ︸
n−times

= Fi (t) −
n−1∑

j=0

t j

j !
d j Fi (t)

dt j

∣∣∣∣∣∣
t=0

, (12)

where Fi (t) stand for a n- fold purely integrations of the integrand.
Employing L−1

i on Eq. (10), it gives

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v1 = ζ1 − L−1
1 R1(v1, v2, . . . vs) − L−1

1 N1(v1, v2, . . . vs),

v2 = ζ2 − L−1
2 R2(v1, v2, . . . vs) − L−1

2 N2(v1, v2, . . . vs),
...

vs = ζs − L−1
s Rs(v1, v2, . . . vs) − L−1

s Ns(v1, v2, . . . vs),

(13)

where

ζi = ξi + L−1
i Γi , (14)

Following the TSADM, we put

ζi = ξi,0 + ξi,1 + . . . + ξi,li (15)

where ξi,0, ξi,1, . . .+ ξi,li are the function occurring from integration of the source parts
�i and the given ICs. In view of the above consideration, we take

vi,0 = ξi,ki1
+ ξi,ki2

+ . . . + ξi,ki1+ki2, (16)
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in which ki1 = 0, 1, . . . , li , ki2 = 0, 1, . . . , li −ki1. Then we prove whether vi,0 fulfils
the given problem and the ICs or not, one time when the exact solution is attained, we
terminate the procedure.

In the other case, by employing the classical ADM, the solution vi is decomposed
into following series

vi =
∞∑

m=0

vi,mλm, i = 1, 2, . . . s. (17)

The terms Ni (v1, v2, . . . vs) are analytic in nature and can be expressed in the form
of infinite series of their corresponding AP, which are given in the following manner

Ni (v1, v2, . . . vs) =
∑

Ai,m(v1,0, . . . , v1,m, v2,0, . . . , v2,m, vs,0,...,vs,m)λm, (18)

where the Ai,m can be computed by making use of any one of Rach’s novel theories.

4 Convergence Analysis

The present section offers a scheme to demonstrate the examination of convergence
of the used technique. Many mathematicians [37, 38] have studied the convergence of
ADM for handling NDE of various kinds.

Consider that X = C[0, 1] be a banach space having the norm ‖v‖ =
max
0≤t≤1

|v(t), v ∈ X | then the succeeding theorems will show the convergence of the

suggested scheme.

Theorem 1. Let N (v) be the nonlinear operator describe by N (y) = ξα f (ξ) that
hold the Lipschitz condition having the Lipschitz constant ρ < 1 then there holds

‖vk+1‖ ≤ ρ‖vk‖, k = 0, 1, 2, . . . and sequence {ψn} defined byψn =
n∑
j=0

v j (t) indicate

the n-term approximate series, converges to the exact solution v.

Proof. Please see, [39].

Theorem 2. Suppose that v(t) be the exact solution of the NDE (2). Assume thatψm(t)

be the sequence of the series solution expressed by ψn =
n∑
j=0

v j (t). Then there holds

max
0≤t≤1

∣∣∣∣∣∣
v(t) −

m∑

j=0

v j (t)

∣∣∣∣∣∣
≤ ρm+1

1 − ρ
‖v0‖. (19)

Proof. Please see, [39].
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5 Numerical Experiments

In this portion, some numerical experiments are discussed to represent the technique
and show the successfulness of the package.

Example 1. Here we examine the following nonlinear singular initial value problem
(NSIVP)

y′′ + 3

x
y′ + 2x2y2 = 0

along with ICs y(0) = 1, y′(0) = 0.
Taking class = 4 and index = 15, the package automatically provides the ADM-

padé approximations and outputs the Figs. 1, 2, 3 and 4 in 0.187 s.
The expression of the Padé [10/10]:

Pade4[10/10] = 1.0000 − 0.00021x8 − 0.01736x4

1.0000 + 0.00112x8 + 0.06597x4
.

Toauthenticate thepackage, in the followingwemade comparisonof the approximate
solutions of different orders as shownby the outstanding agreement. TheADMPprovides
outputs Figs. 1 and 2, in which the approximate solutions are closely the identical in
different order of approximations. Also Figs. 3 and 4 represent the error and absolute
error among the approximate solution of 15-order and exact solution, which are showing
that the error is very less and the approximate solution yields effective approximation
by suggested scheme.

Fig. 1. Plots of the solution of different order for 0 ≤ x ≤ 1.
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Fig. 2. Plots of TSADM and combination of TSADM-pade solutions.

Fig. 3. Plot of the error function.
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Fig. 4. Plot of the absolute error function.

Example 2. We study the following NSIVP

y′′ + 8

x
y′ + xy2 = x5 + x4

with ICs y(0) = 1, y′(0) = 0.
Taking class = 4 and index = 15, the package automatically provides the ADM-

Padé approximations and outputs the Fig. 4 in 1.435 s.
The expression of the Padé [10/10]:

Pade4[10/10] = [0.00217x2 − 0.00395x − 0.02371x3 + 0.01321x6 + 0.01015x7

+ 6.8963910−9x7 + 0.0000x10 + 0.00016x4 − 0.00009x5 − 0.00001x8 + 1.0000]/
[0.00217x2 − 0.00395x + 0.00962x3 − 0.00015x6 − 4.7892310−7x7 + 0.00004x9

0.00002x10 + 0.00002x4 − 0.00002x5 + 3.8809910−9x8 + 1.0000.

Toauthenticate thepackage, in the followingwemade comparisonof the approximate
solutions of distinct orders as demonstrated by the great concurrence. The applied scheme
delivers outputs Figs. 5 and 6, where the approximate solutions are closely the identical
in different order of approximations. Also Figs. 7 and 8 represent the error and absolute
error among the exact and approximate solutions, which are showing that the error is
very less and the approximate solution yields good approximation with aid of TSADM.
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Fig. 5. Plots of the solution of different order for 0 ≤ x ≤ 1.

Fig. 6. Plots of 15th order TSADM and combination of TSADM-pade approximants [10]
solutions.
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Fig. 7. Plot of the error function.

Fig. 8. Plot of the absolute error function.
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Example 3. We study the following NSIVP

y′′ + 2

x
y′ + ey = 0

with ICs y(0) = 0, y′(0) = 0.
Taking class = 4 and index = 15, the package automatically provides the ADM-

Padé approximations in 0.187 s.
The presentation of the Padé [10/10] is as:

Pade4[10/10] =
[− 0.16667x2 − 0.03114x4 − 0.00190x6 − 0.00004x8 − 2.3125410−7x10]/[1.0000
+ 0.23684x2 + 0.02007x4 + 0.00073x6 + 0.00001x8 + 3.6005810−8x10

]
.

Toauthenticate thepackage, in the followingwemade comparisonof the approximate
solutions of distinct orders as demonstrated by the great concurrence. The used scheme
delivers outputs Figs. 9 and 10, in which the approximate solutions are closely the
identical in different order of approximations. Also Figs. 11 and 12 show the error
and absolute error among the approximate solution of 15-order and the exact solution,
which are showing that the error is very less and the approximate solution yields effective
approximation by the suggested scheme.

Fig. 9. Plots of the solution of different order for 0 ≤ x ≤ 1.



88 S. Gupta et al.

Fig. 10. Plots of 15th order TSADM and combination of TSADM-pade solutions.

Fig. 11. Plot of the error function.
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Fig. 12. Plot of the absolute error function.

Example 4. Consider the following NSIVP

y′′ + 2

x
y′ + x2 ln y = 0,

with ICs y(0) = 1, y′(0) = 0.
Taking class = 4 and index = 15, the package automatically provides the ADM-

Padé approximations in 1.202 s.
The presentations of the Padé [15/15] is as follows:

Pade4[15/15] =
1.0000 − 9.03954 × 10−10x14 − 7.33607 × 10−8x12 + 0.0000x10 − 0.00132x6 − 0.01638x4

+ 0.8771x2]/[1.0000 − 1.47463 × 10−9x14 − 5.551399 × 10−8x12 − 0.0000x10 − 0.00005x8

+ 0.00020x6 + 0.02405x4 + 0.28358x2].

To authenticate the package, in the following we made comparison of the approxi-
mate solutions of distinct orders as demonstrated by the superb concurrence. The ADMP
gives outputs Figs. 13 and 14, in which the approximate solutions are closely the iden-
tical in different order of approximations. Also Figs. 15 and 16 represent the error and
absolute error between approximate solution of 15-order and the exact solution, which
are showing that the error is very less and the approximate solution yields efficient
approximation by the suggested scheme.
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Fig. 13. Plots of the solution of different order for 0 ≤ x ≤ 1.

Fig. 14. Plots of 15th order TSADM and combination of TSADM-pade solutions.
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Fig. 15. Plot of the error function.

Fig. 16. Plot of the absolute error function.
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Example 5. Next, we examine the following NSIVP

y′′ + 2

x
y′ + 18y = −4y ln(y) (x > 0),

with ICs y(0) = 1, y′(0) = 0.
Taking class = 4 and index = 15, the computational scheme provides the ADM-

Padé approximations in 0.821 s.
The expression of the Padé [10/10]:

Pade4[10/10] =
[1.0000 − 0.50000x2 + 0.11111x4 − 0.01389x6 − 0.00099x8 − 0.00003x10]/[1.0000
+ 0.50000x2 + 0.11111x4 + 0.01389x6 + 0.00099x8 + 0.00003x10

]
.

Toauthenticate thepackage, in the followingwemade comparisonof the approximate
solutions of distinct orders as demonstrated by the excellent concurrence. The ADMP
yields the outputs Figs. 17 and 18, where the approximate solutions are closely the
identical in different order of approximations. Also Figs. 19 and 20 represent the error
and absolute error among the approximate solution of 15-order and the exact solution,
which are showing that the error is very less and the approximate solution yields better
approximation by the suggested technique.

Fig. 17. Plots of the solution of different order for 0 ≤ x ≤ 1.
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Fig. 18. Plots of 15th order TSADM and combination of TSADM-pade solutions.

Fig. 19. Plot of the error function.
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Fig. 20. Plot of the absolute error function.

Example 6. Consider the following NSIVP

y′′ + 2

x
y′ + 8

(
ey + ey/ 2

)
= 0, (x > 0),

with the initial conditions y(0) = 1, y′(0) = 0.
Taking class = 4 and index = 15, the computational scheme yields the ADM- Padé

approximations in 31.419 s.
The expression of the Padé [10/10]:

Pade4[10, 10] =
[
(1.00000 + 1.31927x2 − 3.37473x4 − 6.57331x6 − 3.15754x8 − 0.35145x10)/

(1.00000 + 4.23061x2 + 6.36354x4 + 4.0314x6 + 0.96516x8 + 0.05151x10)
]
.

To authenticate the package, in the following wemade the comparison of the approx-
imate solutions of distinct orders as displayed by the outstanding concurrence. The
ADMP provides outputs Figs. 21 and 22, in which the approximate solutions are closely
the identical in different order of approximations. Also Figs. 23 and 24 represent the
error and absolute error among the approximate solution of 15-order and the exact solu-
tion, which are showing that the error is very less and the approximate solution yields
efficient approximation by the proposed scheme.
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Fig. 21. Plots of the solution of different order for 0 ≤ x ≤ 0.4.

Fig. 22. Plots of 15th order TSADM and combination of TSADM-pade solutions.
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Fig. 23. Plot of the error function.

Fig. 24. Plot of the error function.
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6 Concluding Remarks and Observations

In the presentwork, a software packageADMPbased onmaple has been applied to obtain
numerical solutions of Emden-Fowler equations. Several working problems are taken to
demonstrate the productiveness and accuracy of the suggested numerical algorithm. The
suggested computational scheme has been employed with a great success to examine
six distinct kinds of nonlinear differential equations. At the same time, it also depicts
graph of comparative study of distinct order of approximations, their corresponding pade
approximants and graphs for error examinations. Thus it can be concluded that the used
approach is user friendly and easy to use instrument in scientific and technological areas.

Acknowledgement. Authors are sincerely thankful to Dr. Yezhi Lin (Department of Computer
Science and Technology, East China Normal University, Shanghai 200241, PR China), for his
kind help and support to complete the manuscript.
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Abstract. In many engineering and biological applications, the data sets such
as wave direction, orientations of animal are circular. This type of data refers as
circular data and cannot be analyzed using linear statistical methods. The most
common distributions for analyzing circular data are the von Mises (vM) and
wrapped Cauchy (wC) distributions. In the present chapter, we consider a two-
component circular mixture model of the vM and wC distributions. In order to
obtain themaximum likelihood estimators of the parameters of the circularmixture
model, we consider four optimization methods as the Newton-Raphson, Nelder-
Mead, simulated annealing and the proposed genetic algorithm (GA). Here, GAs
are a class of evolutionary algorithms and based on the principles of biological
systems. The search space in GA addresses for the circular mixture model. To
compare the performance of four optimizationmethods, we present the simulation
study and phase data examples. The results indicate that the proposed GA seems
to perform well in terms of parameter estimations as seen in simulated and phase
data examples.

Keywords: Circular data · A mixture of circular distributions · Genetic
algorithms

1 Introduction

In many types of research including environmental, engineering and biological applica-
tions, circular data are commonly used and have the property of bimodality.Modeling the
bimodal circular data plays an important role in the biological and engineering sciences
and cannot be analyzed using linear statistical methods.

In the literature, bimodal circular data have been analyzed by different authors using
mixtures of von Mises (vM) distributions (Mardia 1975; Spurr and Koutbeiy 1991;
Mooney et al. 2003), extensions of vM distribution (Yfantis and Borgman 1982; Gatto
and Jammalamadaka 2007; Kim and SenGupta 2013), sine-skewed circular distribu-
tions (Abe and Pewsey 2011), wrapped flexible generalized skew-normal distribution
(Hernández-Sánchez and Scarpa 2012) and the general projected normal distribution
(Wang and Gelfand 2013). In this study, we focus on a mixture of two different circular
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distributions of vM and wrapped Cauchy (wC) and inference techniques have developed
for estimating its parameters.

One of the popular approaches for estimating the parameters of circular distributions
is maximum likelihood estimation which is an attractive method. However, maximum
likelihood estimation possesses some difficult problems due to the Newton-type opti-
mization which involves inequality constraints and gradient problems. Another prob-
lem for circular distributions is the normalizing constants which have a complex form
and leads inferential and predictive problems. To overcome these problems, we pro-
vide a metaheuristic approach based on genetic algorithm (GA) to obtain the maximum
likelihood estimators of the parameters of a two-component circular mixture model.

GAs are a class of stochastic search algorithms based on the principles of biological
systems including the genetic process of selection, crossover, and mutation proposed
by Holland (1992). GA is commonly used in many areas for solving optimization prob-
lems such as machine learning systems (Goldberg and Holland 1988), image processing
(Booker 1982), pipeline control system (Goldberg and Kuo 1987) and estimating the
parameters of Weibull (Thomas et al. 1995), the negative binomial gamma (Gençtürk
and Yiğiter 2016) and skew-normal parameters (Yalçınkaya et al. 2018). In the context
of circular probability distributions, the parameters of finite mixtures of vM distribu-
tions were estimated by using the GA technique (Heckenbergerová et al. 2013), but the
search space in GA was not well addressed. The main advantage of GA uses a search
space instead of random starting points over other iterative algorithms. Recently, an
adaptive search space that is depending on the data has become an essential issue in the
aspect of the performance of evolutionary algorithms (Acitas et al. 2019). Therefore,
this paper is addressed an adaptive search space in GA for estimating the parameters of
a two-component circular mixture model.

The contribution of this chapter is to present a novel metaheuristic approach based
on GA with Nelder-Mead (NM) search space for maximum likelihood estimators of the
parameters of themixture of two different distributions of vMandwC.Then,we compare
the performances of the maximum likelihood estimators by using the Newton-Raphson
(NR), NM, simulated annealing (SA) and the proposed GA methods. The remainder
of this chapter is structured as follows. In Sect. 2, we will be described the functional
form and the basic properties including probability functions of a mixture of the circular
distributions used in this study. In Sect. 3, we briefly describe the parameter estimation
frameworks which are based on the maximization of the log-likelihood function by
using NR, NM, SA, and the proposed GA methods and an adaptive search space in GA
is addressed for estimating of the parameters of a two-component circularmixturemodel.
Section 4 presents the simulation study and a phase data example to show the efficiency
of the proposed GA approach. In Sect. 5, we provide some concluding remarks.

2 Circular Data

Circular (directional) data analysis is different than linear data analysis because of
the restriction of the support on the unit circle and a geometric structure of the
data. Standard methods cannot be appropriate to compute descriptive statistics. Let
θ1, θ2, . . . , θn be a set of directional observations. Consider the polar to rectangular
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transformation for each observation, then it can be obtained the resultant vector as
R = (

∑n
i=1 cosθi ,

∑n
i=1 sinθi ) = (C, S). The length of the resultant vector is com-

puted by R = ‖R‖ = √
C2 + S2. The direction of the resultant vector is named as the

mean direction denoted by θ which is computed by θ = arctan∗(S/C) (arctan∗(S/C)

is defined as arctan(S/C) if C > 0, S ≥ 0;π/2 if C = 0, S > 0; arctan(S/C) + π if
C < 0; arctan(S/C) + 2π if C ≥ 0, S < 0; undefined if C = 0, S = 0 given in
Jammalamadaka and SenGupta 2001).

2.1 A Two-Component Circular Mixture Model

Most commonly used distribution in circular data analysis is the vM distribution with
respective parameters μ and κ as shown below

f (θ;μ, κ) = 1

2π I0(κ)
eκ cos(θ−μ), 0 ≤ θ < 2π (1)

where 0 ≤ μ < 2π and κ > 0 are the circular mean and concentration parameters,
respectively. I0(κ) is modified Bessel function of first the kind of order zerowhich can be

defined by: I0(κ) = ∑∞
i=0 (i !)−2( 1

2κ
)2i

. Another commonly used circular distribution
is the wC distribution with respective parameters μ and ρ as shown below

f (θ;μ, ρ) = 1

2π

1 − ρ2

1 + ρ2 − 2ρ cos(θ − μ)
, 0 ≤ θ < 2π (2)

where 0 ≤ μ < 2π and 0 ≤ ρ < 1 are the circular mean and concentration parameters,
respectively. The maximum likelihood estimator of the parameters of wC distribution is
given in Kent and Tyler (1988).

The standard approach to constructing bimodal circular distribution is to use a mix-
ture of unimodal circular distributions. Then, the probability density function of the
mixture of two different distributions of vM and wC is defined by:

f (θ;ϕ) = p f (θ;μ1, κ) + (1 − p) f (θ;μ2, ρ), 0 ≤ θ < 2π (3)

where 0 ≤ μ1, μ2 < 2π , κ > 0, 0 ≤ ρ < 1 and 0 < p < 1 are the circular mean,
concentration and mixing parameters, respectively. ϕ = (p, μ1, κ, μ2, ρ) is called as
the parameter vector of the mixture of two different distributions of vM and wC. In
the following section, we have investigated the parameter estimation frameworks of a
two-component circular mixture model.

3 Estimation

Estimation procedures for the parameters of a mixture of circular distributions are per-
formed by maximizing the log-likelihood function. The log-likelihood function for the
mixture of two different distributions of vM and wC are given below

ln L(ϕ) =
∑n

i=1
ln

(

p
1

2π I0(κ)
eκ cos(θi−μ1) + (1 − p)

1

2π

1 − ρ2

1 + ρ2 − 2ρ cos(θi − μ2)

)

. (4)
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Since there are no explicit solutions for estimators, we use the NR, NM, SA and GA
frameworks for estimating unknown parameters vector ϕ of the mixture of circular
distributions.

3.1 Newton-Raphson Framework

The NR method can be used to estimate the parameters of a mixture model. Here, we
summarize steps forNR framework (McLachan andKrishnan 2007) of a two-component
circular mixture model as follows.

Step 1. Determine initial values ϕ(0) for ϕ.

Step 2. Compute the score equation denoted by S(ϕ) = ∂ln L(ϕ)
∂ϕ

= 0.
Step 3. Compute the matrix of the negative of second-order partial derivatives of the
log-likelihood function in respect of the elements of ϕ as shown below

J (ϕ) = J (ϕ; θ) = −∂2ln L(ϕ; θ)

∂ϕ∂ϕT
.

Step 4. Compute the elements of ϕ at (m + 1) iteration by using Eq. (5)

ϕ(m+1) = ϕ(m) + J−1
(
ϕ(m); θ

)
S
(
ϕ(m)

)
. (5)

Step 5. Continue the iterations until the convergence criteria are satisfied.

Here, the NR method for mixture distributions has some disadvantages. The first dis-
advantage is that the log-likelihood function is not concave. Hence, the NR method is
not assured to converge from a random initial value (McLachlan and Krishnan 2007).
Secondly, the matrix J (ϕ) can be lead to an inverse problem. Therefore, we propose a
metaheuristic approach to obtain the maximum likelihood estimators of the parameters
of the mixture of circular distributions.

3.2 Nelder-Mead Framework

The Nelder-Mead method proposed by Nelder and Mead (1965). The steps of NM
(Lagarias et al. 1998) are as follows.

Step 1. Identify the four scalar parameters of the NM method: β > 0 (reflection), χ >

1 (expansion), 0 < λ < 1 (contraction), 0 < σ < 1 (shrinkage). These parameters are
generally chosen as β = 1, χ = 2, λ = 1/2 and σ = 1/2 in the literature.
Step 2. Order the d + 1 vertices to satisfy f (ϕ1) ≤ f (ϕ2) ≤ . . . ≤ f (ϕd+1) where
f (ϕ) = − ln L(ϕ) is used to minimize and d is the number of optimization parameters.
Step 3. Compute the reflection point ϕr from ϕr = ϕ + β(ϕ − ϕd+1) and evaluate
fr = f (ϕr ).
Step 4. If f (ϕr ) < f (ϕ1), compute the expansion point from ϕe = ϕ + χ(ϕr − ϕd+1)

and evaluate fe = f (ϕe). If fe < fr , accept ϕe and terminate the iteration; otherwise,
accept ϕr and terminate the iteration.
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Step 5. If fr ≥ fd , perform a contraction between ϕ and the better of ϕd+1 and ϕr .

Step 6. Perform a shrink step. Evaluate f at d points, ϕi = ϕ1 + σ(ϕi − ϕ1), i =
2, . . . , (d + 1), and apply the next iteration as ϕ1, ϕ2, . . . , ϕd+1.

Step 7. Stop the algorithm when the point is the lowest value.

3.3 Simulated Annealing

Kirkpatrick et al. (1983) first introduced the SA algorithm. Heating of solid matters and
cooling them until crystallization called as annealing process. The simulated annealing
algorithmevaluates the energy function denoted byE,which shows the objective function
and its parameters as E = E( f, ϕ). Here, the objective function is to be maximized the
log-likelihood given in Eq. (4). The steps of SA (Al-Ageelee et al. 2017) are below.

Step 1. Choose an initial point ϕ0.

Step 2. Initialize T with a large value.
Step 3. Repeat.

a. Repeat.

1. Apply random perturbations to the state ϕ = ϕ + �ϕ.

2. Evaluate �E (ϕ) = E(� + �ϕ) − E(ϕ) if �E (ϕ) ≤ 0, keep the new state;

otherwise, accept the new state with probability P = e− �E
T until the number of

accepted transitions is lower than a threshold level.

b. Set T = T − �T until T is too small.

3.4 Genetic Algorithm Framework

GAs are well-known evolutionary algorithms inspired by the natural principles of bio-
logical systems. Here, we summarize the steps of the GA framework for estimating the
parameters of the mixture of two different distributions of vM and wC as follows.

Step 1. Determine the fitness function, the search space and initial GA’s parameterswhich
contain population size, selection rate, crossover probability, and mutation probability.
The fitness function is the log-likelihood function ln L(ϕ) given in Eq. (4).
Step 2. Start with randomly generating an initial population of N chromosomes
from search space via random generation. The initial population is given by
ϕ

(0)
1 , ϕ

(0)
2 , . . . , ϕ

(0)
N where ϕ = (p, μ1, κ, μ2, ρ) represents the parameters of a

two-component circular mixture model.
Step3.Thefitness value, ln L(ϕ

(m)
j ) at any iterationm, for each chromosome, is evaluated.

The individuals, having the worst fitness value based on a selection rate, are replaced by
new individuals. These individuals are named as elite individuals.
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Step 4. Perform crossover and mutation operators to obtain best candidate individuals
based on crossover probability and mutation probability. Cross over of parents, which
are selected from two best individuals, is conducted to obtain new offspring individuals
and then apply mutation for determining new individuals. Hence (m + 1)th iteration can
be obtained as ϕ

(m+1)
1 , ϕ

(m+1)
2 , . . . , ϕ

(m+1)
N .

Step 5. Repeat the steps 2–5 with the fitness evaluation step until convergence criteria are
met the evolution stops. Finally, the best individual is accepted as the optimum denoted

by ϕ∗ = argmax
ϕ

(m)
j

ln L
(
ϕ

(m)
j

)
.

3.4.1 Adaptive Search Space

The search space in GA is a most valuable issue in the aspect of the performance of GA.
Here, we have addressed an adaptive search space in GA for estimating the parameters
of a two-component mixture model. The proposed algorithm for identifying the search
space in GA is illustrated below.

Step 1. From a random sample, 	 = (θ1, θ2, . . . , θn), compute ϕ̂ using NM.
Step 2. Sample with replacement from the original sample to obtain 	*b =
(θ∗b

1 , θ∗b
2 , . . . , θ∗b

n ), b = 1, 2, . . . B.
Step 3. Compute ϕ̂∗b using the sample in step 2 from the bootstrap replicates.
Step 4.Use the percentile bootstrap method for constructing the confidence intervals for
each element of ϕ.

Here, the developed search space is constructed by NM method which is both fast and
robust estimation method. For circular mean parameters, the method of symmetric arc
(Fisher and Hall 1989) is considered by γ b

1 = ∣
∣μ̂∗b

1 − μ̂1
∣
∣ and γ b

2 = ∣
∣μ̂∗b

2 − μ̂2
∣
∣. Here,

order the γ b
1 and γ b

2 from the smallest to largest. The lower endpoint of the interval
is in the integer part of l = (1/2 B α + 1/2)th and the upper endpoint is in the m
= (B − l)th position of the same ordered list. A 100 (1 − α)% confidence interval for
the circular mean parameters is given by

(
μ̂1 − γ l

1, μ̂1 + γm
1

)
and

(
μ̂2 − γ l

2, μ̂2 + γm
2

)
.

The method of the minimum length is used to construct the confidence interval of vM
and wC concentration parameters and mixing parameter. This confidence interval based
on minimum length performs well and reduces bias (Buckland 1983). The procedure
of a confidence interval 100 (1–2α)% is given by (κ̂∗k, κ̂∗(k+s−r)), (ρ̂∗k, ρ̂∗(k+s−r))

and (ρ̂∗k, ρ̂∗(k+s−r)) where k (k = 0, 1, 2, . . . , r ) is identified as minimum value of
(κ̂∗k, κ̂∗(k+s−r)), (ρ̂∗k, ρ̂∗(k+s−r)) and

(
ρ̂∗k, ρ̂∗(k+s−r)

)
, respectively. r = (n + 1)α

and s = (n + 1)(1 − α) values are rounded to the nearest integer.

4 Applications

The objective of this section is to investigate the performance of the proposed GA
approach under two different simulation scenarios and phase data example. Here, the
initial GA parameters whose population size, elitism number, crossover probability, and
mutation probability are chosen as 15, 1, 0.8 and 0.01, respectively. These parameters
are similar to the other studies given in the literature.
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4.1 Simulation Study

The purpose of the simulation study is to compare the efficiency of the maximum like-
lihood estimators of the parameters of the mixture of two different distributions of vM
and wC densities using NR, NM, SA, and GA for different sample sizes 30, 50, 100 and
200 respectively. For each sample size, 1000 circular data sets are generated from the
mixture of two different distributions of vM and wC as follows

θi ∼ p vM (μ1, κ) + (1 − p)wC (μ2, ρ), i = 1, 2, . . . , n

where µ = (μ1, μ2) = (π/3, 3π/2) and we here consider two different scenarios for
concentration parameters (κ, ρ) = (5, 0.7) with p = 0.2 and (κ, ρ) = (15, 0.8) with
p = 0.5 indicating circular observations with low and high concentrations, respectively.
To evaluate the performance of the maximum likelihood estimators using the NR, NM,
SA andGA frameworks, we compute bias, mean absolute error (MAE), and circular bias,
mean absolute cosine error (MACE) (Jammalamadaka and SenGupta 2001) as follows

Bias
(
φ̂
)

= 1

1000

1000∑

i=1

(
φ̂i − φ

)
,

MAE
(
φ̂
)

= 1

1000

1000∑

i=1

∣
∣
∣φ̂i − φ

∣
∣
∣,

Circular Bias
(
ψ̂

)
= 1

1000

∑1000

i=1
sin

(
ψ̂i − ψ

)
,

MACE
(
ψ̂

)
= 1

1000

1000∑

i=1

∣
∣
∣cos

(
ψ̂i

)
− cos(ψ)

∣
∣
∣, (6)

where φ shows one of the true parameters vector (p, κ, ρ) and φ̂i shows an estimation
of true parameters φ in the ith run. Here, we compute circular bias and the MACE for
μ1 and μ2 since these represent the circular mean parameters. Therefore, ψ shows one
of the true parameter vector (μ1, μ2) and ψ̂i shows an estimation of true parameters
ψ in the ith run for each component. The smaller absolute value of the bias, MAE,
absolute value of the circular bias and the MACE show the high efficiency of estimators.
All computational codes for NR, NM, SA, and GA frameworks are made by maxLik
(Henningsen and Toomet 2011) and GA packages (Scrucca 2013) of R software and
these codes can be provided upon request from the authors. Table 1 demonstrates the
bias, MAE, circular bias, and the MACE of maximum likelihood estimators using NR,
NM, SA, and the proposed GA approach via Monte Carlo simulations. In this table, the
best values of the bias, MAE, circular bias, and the MACE are highlighted in bold. From
Table 1, we note that:

1. the biases of all estimators of the parameters tend to zero for large n except the
circular mean parameters from 50 to 100 sizes. These results are also consistent
with the simulation results of a mixture of two vM distributions (Spurr and Koutbeiy
1991),
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2. NR and NM have almost identical biases for circular mean and mixing parameters,
3. NR has the largest biases for concentration parameters among the presented four

optimization methods,
4. GA and SA estimators have the smallest biases for the concentration parameters,
5. GA has the smallest biases for the circular mean parameters,
6. the estimators of κ are positively biased, and the estimators of ρ, p, μ1 and μ2 are

both positively and negatively biased,
7. MAE and MACE of the corresponding estimators of the parameters tend to zero for

large n,
8. GA has the smallest MAE and MACE among the presented four-optimization

methods.

Generally, the absolute value of bias, MAE, the absolute value of circular bias and the
MACE are smaller for GA among the presented methods. Accordingly, we have also
concluded that the GAmethod based on NM search space has also very good estimation
performance than for NM from simulation results.

Table 1. Simulated bias, MAE and MACE values for the estimators of the parameters of a two-
component circular mixture model using the NR, NM, SA and GA frameworks.

n = 30 n = 50 n = 100 n = 200

Bias &
Circ. Bias

MAE &
MACE

Bias &
Circ. Bias

MAE &
MACE

Bias &
Circ. Bias

MAE &
MACE

Bias &
Circ. Bias

MAE &
MACE

NR

p = 0.2 0.0263 0.0624 0.0141 0.0482 0.0084 0.0335 0.0035 0.0208

μ1 = π/3 −0.4645 0.1845 −0.3872 0.1498 −0.1461 0.1010 −0.0549 0.0688

μ2 = 3π/2 0.0023 0.0892 −0.2447 0.0662 −0.0674 0.0480 −0.1336 0.0337

κ = 5 97.8252 99.3926 29.7984 31.2713 2.9555 4.4006 0.7987 1.8919

ρ = 0.7 0.0213 0.0718 0.0118 0.0544 0.0056 0.0384 0.0020 0.0261

p = 0.5 0.0038 0.0229 0.0008 0.0159 0.0010 0.0116 0.0000 0.0078

μ1 = π/3 −0.0638 0.0518 −0.0118 0.0382 0.0263 0.0268 0.0745 0.0188

μ2 = 3π/2 −0.4534 0.0741 −0.1007 0.0541 0.0086 0.0366 0.0447 0.0248

κ = 15 4.6809 7.7503 2.5179 5.0876 1.0073 3.0200 0.4541 1.9437

ρ = 0.8 0.0063 0.0579 0.0039 0.0434 0.0003 0.0315 0.0007 0.0209

NM

p = 0.2 0.0320 0.0635 0.0148 0.0463 0.0082 0.0328 0.0035 0.0208

μ1 = π/3 −0.6178 0.1921 −0.2943 0.1495 −0.0945 0.1012 −0.0549 0.0689

μ2 = 3π/2 −0.0863 0.0898 −0.2736 0.0666 −0.677 0.0479 −0.1336 0.0337

κ = 5 15.2812 16.9516 8.0604 9.5169 2.6584 4.0866 0.7987 1.8850

ρ = 0.7 0.0242 0.0723 0.0120 0.0540 0.0055 0.0382 0.0020 0.0262

p = 0.5 0.0041 0.0229 0.0009 0.0159 0.0009 0.0118 −0.0001 0.0079

(continued)
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Table 1. (continued)

n = 30 n = 50 n = 100 n = 200

Bias &
Circ. Bias

MAE &
MACE

Bias &
Circ. Bias

MAE &
MACE

Bias &
Circ. Bias

MAE &
MACE

Bias &
Circ. Bias

MAE &
MACE

μ1 = π/3 −0.0945 0.0517 −0.0098 0.0381 0.0291 0.0268 0.0773 0.0189

μ2 = 3π/2 −0.2336 0.0739 −0.0992 0.0543 0.0095 0.0366 0.0468 0.0248

κ = 15 4.3219 7.2529 2.3004 4.7676 0.9400 2.8806 0.4621 1.8925

ρ = 0.8 0.0065 0.0574 0.0038 0.0433 0.0001 0.0315 0.0007 0.0209

SA

p = 0.2 0.0732 0.0953 0.0239 0.0514 0.0101 0.0327 0.0044 0.0199

μ1 = π/3 0.8902 0.2160 −0.9986 0.1569 0.0408 0.1020 −0.2089 0.0699

μ2 = 3π/2 0.0543 0.1275 −0.6014 0.0800 −0.0538 0.0497 −0.1555 0.0346

κ = 5 1.8201 3.3847 1.5305 2.7946 0.6599 1.9194 0.2490 1.2200

ρ = 0.7 0.0089 0.0926 0.0050 0.0597 0.0053 0.0387 0.0015 0.0265

p = 0.5 0.0016 0.0264 −0.0001 0.0209 0.0002 0.0164 −0.0014 0.0134

μ1 = π/3 −0.0991 0.0521 −0.0029 0.0388 0.0376 0.0277 0.0433 0.0198

μ2 = 3π/2 −0.2394 0.0752 −0.1315 0.0548 0.0076 0.0385 0.0407 0.0258

κ = 15 1.4352 3.3674 1.0054 2.6394 0.8087 1.7519 0.7221 1.2076

ρ = 0.8 0.0030 0.0582 0.0021 0.0440 −0.0013 0.0326 −0.0008 0.0223

GA

p = 0.2 0.0014 0.0390 0.0059 0.0309 0.0020 0.0222 0.0016 0.0152

μ1 = π/3 −0.8586 0.1605 −0.0821 0.1252 0.1648 0.0859 0.0228 0.0597

μ2 = 3π/2 0.1733 0.0767 −0.2229 0.0591 −0.0467 0.0424 −0.1378 0.0298

κ = 5 14.2948 14.7359 6.2738 6.8418 1.4216 2.7308 0.6445 1.4672

ρ = 0.7 −0.0008 0.0566 −0.0002 0.0428 0.0013 0.0316 0.0006 0.0221

p = 0.5 0.0016 0.0170 0.0013 0.0130 0.0010 0.0103 0.0000 0.0065

μ1 = π/3 −0.0062 0.0449 0.0250 0.0335 0.0115 0.0247 0.0772 0.0171

μ2 = 3π/2 −0.1091 0.0635 −0.0533 0.0478 0.0132 0.0338 0.0305 0.0219

κ = 15 4.1145 6.4037 2.1451 4.2815 0.7922 2.6958 0.3933 1.7083

ρ = 0.8 0.0011 0.0495 0.0020 0.0380 0.0000 0.0292 0.0001 0.0185

4.2 Phase Data Example

We consider phase differences in hand flexion-extension movements. Data are obtained
from a study by Puglisi et al. (2017) on the role of attention in human motor resonance.
For analysis phase data, we here apply theNR,NM, SA and the proposedGA approaches
to obtain maximum likelihood estimators of the parameters of the mixture of vM and
wC distributions. Table 2 presents the parameter estimates, maximize log-likelihood
(lnL), Akaike information criterion (AIC), Bayesian information criterion (BIC). We
also provide the value of the Watson U2 goodness of fit test which is useful for circular
data. The proposed GA has the highest lnL and the lowest AIC, BIC, Watson U2 values
which denote the best fit. Accordingly, the proposed GA shows superiority in terms of
parameter estimations among other optimization methods. A linear histogram of phase
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data and the fitted densities obtained from four different methods are shown in Fig. 1.
Accordingly, the proposed GA approach seems to capture the modes of data well.

Table 2. The parameter estimations using the NR, NM, SA and GA frameworks, lnL, AIC, BIC,
Watson U2 values for phase data example.

NR NM SA Proposed GA

p
∧

0.2118 0.2422 0.1979 0.0658

μ
∧

1 0.3109 0.3434 1.1605 1.5036

μ
∧

2 0.7884 0.7724 0.3745 0.5010

κ
∧

15.6262 12.4908 3.6156 157.2482

ρ
∧

0.5141 0.5161 0.6269 0.6148

ln L −58.4510 −58.5042 −58.6501 −57.2336

AIC 126.9020 127.0084 127.3002 124.4672

BIC 135.5903 135.6967 135.9885 133.1555

U2 0.0125 0.0141 0.0158 0.0123

Fig. 1. A histogram of phase data and the fitted densities obtained from four different parameter
estimation methods.
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5 Concluding Remarks

In this chapter, we have provided a novel metaheuristic GA method to obtain the maxi-
mum likelihood estimators of the parameters of a two-componentmixture circularmodel
based on adaptive search space. The proposed GA based on NM search space seems
to perform well in terms of parameter estimations as seen in the simulation study and
phase data example and it has also improved the performance of maximum likelihood
estimation. In addition to analysis phase data, we would like to emphasize that the mix-
ture of two different distributions of vM and wC can be used as an alternative circular
distribution for modeling bimodal circular data.
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Abstract. In this paper, we adopt a model by including fuzzy initial values to
study the interaction of a monoclonal brain tumor and the macrophages for an
early detection treatment. Numerical simulations will give detailed information on
the behavior of the model at the end of the paper. We perform all the computations
in this study with the help of the Maple software.
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1 Introduction

In 1965, Zadeh [1] introduced fuzzy set theory. Kandel andByatt [2] were among the first
to study fuzzy differential equation in 1978. Within the past ten years, Hüllermeier [3],
Bede andGal [4], Bede et al. [5], Khastan, Bahrami and Ivaz [6] studied fuzzy differential
equations andhave also explained the concept of strongly generalized derivative of higher
order fuzzy differential equation.

Many termswe use randomly daily life have a fuzziness. There is often a vague struc-
ture in life the language and numerical expression when we use describing something,
explain an event, command andmany other situations contain ambiguity. As for the fuzzy
set, it has two basic features. The first is the modeling of systems whose mathematical
model is uncertain or whose behavior can be estimated approximately. The second can
determine when there is incomplete and uncertain information. Because among these
features, new mathematical concepts have emerged, and new research problems and
engineering practices have emerged. Particularly interesting applications in the field of
medicine and artificial intelligence are beginning to emerge. Nowadays, diseases can
now be expressed and solved mathematically. This leads to a better way to treat the dis-
ease. Fuzzy numbers can get closer results than classical mathematics. Therefore, in our
research, by using these numbers, we can obtainmore accurate results and bemore effec-
tive in the diagnosis and treatment of diseases. One of the diseases is cancer, which is one
of the biggest killers in the world. Controlling tumor growth requires special attention
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[7] and interdisciplinary research, such as biology, medicine, and mathematics, many
of which are attracted by the spread of the disease. Typical methods for treating GBM
(GlioblastomaMultiforme) include surgical resection followed by radiation therapy and
chemotherapy [8]. Work on multi-subgroup modeling can be shown in [5, 9–11].

Differential equations have high importance in biological modeling. In the past few
years, by using different types ofmodels, Bozkurt uses the differential equation system as
a model of brain tumors and its interaction with the human immune system (IS) [12, 13].
In addition, another interesting model is the GBM model constructed by Bozkurt [14],
which explains the interaction between cancer and the human body. Also, at [15], Akın
and Oruç studied a predator-prey model with fuzzy initial values. Then, by considering
the second order initial value Akın, Khaniyev, Oruç and Turksen [16] generalized the
model. Studies about the prey-predator model of fuzzy numbers can be seen in [17–19].
Finally, Benli andKeskin [20] considered amodelwith a predator-prey structure between
monoclonal tumor and macrophages. In this study, a new model for the work of Bozkurt
[14] was established, which used fuzzy initial values. In addition, the Allee threshold
functions are embedded in the system to study the threshold effect on the system and to
interpret the extinction conditions.

The paper has four sections and constructed as follows: The model and the prelimi-
nary definitions are in Sect. 2, nonlinear fuzzy differential equations are given in Sect. 3,
a numerical study of the model are given in Sect. 4. The last part we have the conclusion,
to summarize the study in the paper.

2 The Model and Preliminary Definitions

The model is constructed as follows:
⎧
⎨

⎩

dx
dt

=
(

x
E+x

)
(px + r1x(K1 − α1x) − d1x − τ1xy)

dy
dt

= r2y(K2 − β1y) − d2y − τ2xy
(2.1)

where t ≥ 0 denotes the time, the parameters α1, β1, τ1, τ2, p, d1, d2, K1, K2, r1 and r2
are positive numbers (see Table 1). x(t) is used for the GB which is used to represent the
monoclonal brain tumor. On the other hand, y(t) represents the activated macrophages
in the system [21].

Differential equations are indispensable for modeling the real world phenomena
unfortunately, whenever uncertainty can interfere with real-world problems, the uncer-
tainty can come from insufficient data, measurement errors, or when determining ini-
tial conditions. Fuzzy set theory is a powerful tool to overcome these problems. The
following are some of the definitions needed to have a basic idea of the work.

We referee the reader to [4, 5, 15] to more information about the definitions that have
been used in current section.

Hence, we recall some basic definition about the subject.

Definition 1. A fuzzy set A in a universe set X is a mapping A(x) : X → [0, 1]. We
think of A as assigning to each element x ∈ X a degree of membership, 0 ≤ A(x) ≤ 1.
Let us denote by F the class of fuzzy subsets of the real axis, A(x) : X → [0, 1]
satisfying the following properties:
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Table 1. Values of the parameter of system (2.1)

p Division rate of the sensitive cells 0,192

K1 Carrying capacity of the tumor cells 4,704

K2 Carrying capacity of the macrophages 1,232

r1 The growth rate of the macrophage 0,55

r2 The growth rate of the macrophage 0,5

τi Destroying rate caused from the interaction 0,01

d1 Causes of drug treatment to the tumor cells 0,6

d2 Causes of drug treatment to the macrophages 0,06

β1 Logistic population rate of macrophages β2 ∈ [0,05; 0,25]
α1 Logistic population rate of tumor cell population α1 ∈ [0,5; 0,95]

i. A is a convex fuzzy set, i.e. A(rλ + (1 − λ)s) ≥ min[A(r), A(s)], λ ∈ [0, 1] and
r, s ∈ X

ii. A is normal, i.e. ∃x0 ∈ X with A(x0) = 1;
iii. A is upper semicontinuous, i.e. A(x0) ≥ lim

x→x∓
0

A(x);

iv. [A]0 = sup p(A) = { x ∈ R|A(x) ≥ 0} is compact, where A denotes the closure
of A.

Then F is called the space of fuzzy numbers.
If A is a fuzzy set, we define [A]α = { x ∈ X |μA ≥ α}, the α-level (cut) of A, with

0 < α ≤ 1. For u, v ε F and λ ∈ R the sum u ⊕ v and the product λ 	 u are defined
by [u ⊕ v]α = [u]α + [v]α , λ 	 u = λ[u]α , ∀α ∈ [0, 1]. Additionally, u ⊕ v = v⊕u,
λ	 u = u 	λ. Also, if u ∈ F the α-cut of u, denoted by [u]α = [

uα, uα
]
, ∀ α ∈ [0, 1].

Definition 2. Let D : FxF → R+ ∪{0}, D(u, v) = supα∈[0,1]max{|uα, vα|, |uα, vα|}
be a Hausdorff distance between fuzzy numbers, where [u]α = [

uα, uα
]
and

[v]α = [
vα, vα

]
. The following properties are well-known [21, 22].

D(u ⊕ ω, v ⊕ ω) = D(u, v), ∀u, v, ω ∈ F ,

D(k 	 u, k 	 v) = |k|D(u, v), ∀k ∈ R, u, v ∈ F ,

D(u ⊕ v, ω ⊕ e) ≤ D(u, ω) + D(v, e), ∀u, v, ω, e ∈ F ,

a (F , D) is a complete metric space.

Definition 3 (H-Difference). Let ∀ u, v ∈ F . If there existsω ∈ F such that u = v⊕ω,
then ω is called the H-difference of u and v and is denoted by u � v.

Definition 4 (Hukuhara Derivative) [23]. Consider a fuzzy mapping F : (a, b) → F
and t0 ∈ (a, b). We say that F is differentiable at t0 ∈ (a, b) if there exists an



114 F. B. Benli and O. A. İlhan

element F ′(t0) ∈ F such that for all h > 0 sufficiently small F(t0 + h)� F(t0),
F(t0) � F(t0 − h), and the limits (in the metric D)

lim
x→0+

F(t0 + h)� F(t0)

h
= lim

x→0−
F(t0)� F(t0 − h)

h

exist and are equal to F ′(t0).

Note that this definition of the derivative is very restrictive; for instance in [4, 5] the
authors showed that if F(t) = c.g(t)where c is a fuzzy number and g : [a, b] → R+ is a
function with g′(t) < 0, then F is not differentiable. To avoid this difficulty, the authors
of [4, 5] introduce a more general definition of the derivative for fuzzy mappings.

Definition 5 (Generalized Fuzzy Derivative) [4, 5]. Let F : (a, b) → F and t0 ∈
(a, b). We say that F is strongly generalized differentiable at t0 if there exists an element
F ′(t0) ∈ F such that

i. for h > 0 sufficiently small ∃F(t0 + h)� F(t0), F(t0)� F(t0 − h) and the limits
satisfy

lim
h→0

F(t0 + h)� F(t0)

h
= lim

h→0

F(t0)� F(t0 − h)

h
= F ′(t0)

ii. for h > 0 sufficiently small ∃F(t0)� F(t0 + h), F(t0 − h)� F(t0) and the limits
satisfy

lim
h→0

F(t0)� F(t0 + h)

(−h)
= lim

h→0

F(t0 − h)� F(t0)

(−h)
= F ′(t0)

or
iii. for h > 0 sufficiently small ∃F(t0 + h) � F(t0), F(t0 − h)� F(t0), and the limits

satisfy

lim
h→0

F(t0 + h)� F(t0)

h
= lim

h→0

F(t0 − h)� F(t0)

(−h)
= F ′(t0)

or
iv. for h > 0 sufficiently small ∃F(t0)� F(t0 + h), F(t0)� F(t0 − h) and the limits

satisfy

lim
h→0

F(t0)� F(t0 + h)

(−h)
= lim

h→0

F(t0 − h)� F(t0)

h
= F ′(t0)

Definition 5 is equivalent to Definition 6 that we will use in this paper.
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Definition 6. Let F : (a, b) → F and t0 ∈ (a, b).

(1) for h > 0 sufficiently small, ∃F(t0 + h)� F(t0), F(t0) � F(t0 − h) and

lim
h→0+

F(t0 + h)� F(t0)

h
= lim

h→0+
F(t0)� F(t0 − h)

h
= F ′(t0)

or
(2) for h > 0 sufficiently small ∃F(t0 + h) � F(t0), F(t0) � F(t0 − h) and

lim
h→0−

F(t0 + h)� F(t0)

h
= lim

h→0−
F(t0) � F(t0 − h)

h
= F ′(t0).

The following theorem is very important to solve fuzzy differential equations.

Theorem 1 [24, 25]. Let F : T → F be a function and set [F(t)]α = [ fα(t), gα(t)]
for each α ∈ [0, 1]. Then

i. If F is differentiable following the form (1) in Definition 6, then fα(t) and gα(t)
are differentiable functions and

[
F ′(t)

]α = [
f ′
α(t), g′

α(t)
]
.

ii. If F is differentiable following the form (2) in Definition 6, then fα(t) and gα(t)
are differentiable functions and

[
F ′(t)

]α = [
g′
α(t), f ′

α(t)
]
.

3 Solving Fuzzy Differential Equations with Fuzzy Initial Values

Consider the following equation with fuzzy initial values

x′(t) = F(t, x(t)), x(0) = x0 (3.1)

F : [0, α] × F → F and x0 is a fuzzy number [x(t)]α = [uα(t), vα(t)], [x0]α =[
u0α, v

0
α

]
and

[F(t, x(t))]α = [
fα(t, uα(t), vα(t)), gα(t, uα(t), vα(t))

]
.

Then, we get the following alternatives for solving the initial value problem (3.1):

1. If we consider x′(t) by using the derivative in the first form (1), then from Theorem 1
[
x′(t)

]α = [
u′
α(t), v

′
α(t)

]

So we have the following equalities:

u′
α(t) = fα(t, uα(t), vα(t)), uα(0) = u0α

v′
α(t) = gα(t, uα(t), vα(t)), vα(0) = v0α.

By solving the above system for uα and vα; we get the fuzzy solution
[x(t)]α = [uα(t), vα(t)]. Finally, we ensure that [x(t)]α = [uα(t), vα(t)] and[
x′(t)

]α = [
u′
α(t), v

′
α(t)

]
are valid level sets.



116 F. B. Benli and O. A. İlhan

2. If we consider x′(t) by using the derivative in the second form (2), then from
Theorem 1

[
x′(t)

]α = [
u′
α(t), v

′
α(t)

]
So we get following:

u′
α(t) = gα(t, uα(t), vα(t)), uα(0) = u0α

v′
α(t) = fα(t, uα(t), vα(t)), vα(0) = v0α.

Solving the above system for uα and vα, we get the fuzzy solution [x(t)]α =
[uα(t), vα(t)] Finally we ensure that [x(t)]α = [uα(t), vα(t)] and

[
x′(t)

]α =[
u′
α(t), v′

α(t)
]
are valid level sets.

4 Numerical Study for Early Brain Tumor Growth Model
with Fuzzy Initial Values

Now we consider the following numerical study for the following model, which
represents the early diagnosis tumor model with fuzzy initial values.

dx

dt
=

(
x

0,1 + x

)

[0,192x + 0,65x(4,704 − 0,55x) − 0,6x − 0,01xy]

dy

dt
= 0, 5y(1,232 − 0,25y) − 0,06y − 0,01xy

x(0) = 0,35ml, y(0) = 0,2ml. (4.1)

where x(t) and y(t) are the density of the tumor andmacrophages at time t, respectively.
Table 1 shows the values of the parameters in Eq. (1), which gives us (4.1)

Now, we consider the following model given as:

dx
dt =

(
x

0,1+x

)[
2,6496x − 0,3575x2 − 0,01xy

]

dy
dt = 0,556y − 0,125y2 − 0,01xy

x(0) = 0,35ml, y(0) = 0,ml.

Linearization of the equations, we get a system of two linear equations which can
be solved to get a solution closer to the real situation,

J (7, 303392; 3, 863729) =
( −2,5757 −0,07205

−0,03864 −0,48297

)

dx
dt = −2,5757x − 0,07205y
dy
dt = −0,03864x − 0,48297y

x(0) = 0,35ml, y(0) = 0,2ml.

(4.2)

The crisp solutions for the problem (4.2) are shown in Fig. 1.
Let the initial values be fuzzy, that is, x(0) = ˜0,35, y(0) = 0̃,2 and let their α-level

sets be as follows;

x(0) =
[
˜0,35

]
= [0,20 + 0,15α, 0,50 − 0,15α]
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 , 
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t)
 

t time
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0,0

0,1
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0,4

x
y

Fig. 1. Crisp solution for problem (4.2)

y(0) = [
0̃,2

] = [0,10 + 0, 10α, 0,30 − 0,10α]

Let the α-level sets of x(t, α) be [x(t, α)]α = [u(t, α), v(t, α)] and for simplicity
denote them as [u; v]; similarly

[
y(t, α)

]α = [r(t, α), s(t, α)] = [r; s].
If x(t, α) and y(t, α) are (1) differentiable according to Definition 6, system (4.2)

becomes
[
u′, v′] = −2,5757[u, v] − 0,07205[r, s],

[
r′, s′

] = −0,03864[u, v] − 0,48297[r, s].

Hence for α = 0 the following initial value problem derives from (4.2):

u′ = −2, 5757v − 0,07205s,

v′ = −2,5757u − 0,07205r,

r ′ = −0,03864v − 0,48297s,

s′ = −0,03864u − 0,48297r.

u(0) = 0,20ml, v(0) = 0,50ml, r(0) = 0,10ml, s(0) = 0,30ml.

u(0), v(0), r(0) and s(0) are fuzzy initial conditions for the system. Now if x(t, α)

and y(t, α) are (2) differentiable according to Definition 6, system (4.2) becomes

u′ = −2,5757u − 0,07205r,

v′ = −2,5757v − 0,07205s,

r ′ = −0,03864u − 0,48297r,

s′ − 0,03864v − 0,48297s

u(0) = 0,20ml, v(0) = 0,50ml, r(0) = 0,10ml, s(0) = 0,30ml.

In Fig. 2, we can see the graphical solution of all cases for α = 0.
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Fig. 2. Fuzzy solution of problem (4.2) for α = 0

In Fig. 2; according to Definition 6, (a) means that x(t, α) and y(t, α) are (1) differ-
entiable, (b) means that x(t, α) is (1) differentiable and y(t, α) is (2) differentiable, (c)
means that x(t, α) is (2) differentiable and y(t, α) is (1) differentiable, (d) means that
x(t, α) and y(t, α) are (2) differentiable. Now, if Fig. 2 is analyzed, we see that when
x(t, α) and y(t, α) are (2) differentiable graphical solution (Fig. 2(d)) is biologically
meaningful. In addition, the graphical solution is compatible with a crisp solution. In
contrast, when x(t, α) and y(t, α) are differentiable as in (a), (b) and (c), the graph-
ical solutions are incompatible with biological facts. x(t) and y(t) are the density of
tumors and macrophages at time t respectively. Being compatible with biological facts
means that the tumor is increasing or decreasing and the macrophages are increasing or
decreasing. It does not give us information about tumors and macrophages when it is
differentiated as in (a), (b) and (c), so these conditions are biologically meaningless.

Now, we will focus on the situation when x(t, α) and y(t, α) are (2) differentiable.
When the crisp graphical solution and the fuzzy graphical solution x(t, α) and y(t, α) are
(2) differentiable, we will plot their graphs on the same graph for α = 0 and α = [0, 1].
The fuzzy solution for α = 0 and the crisp solution are given in Table 1 and Fig. 3.
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Fig. 3. Crisp solution and fuzzy solution for α = 0

5 Conclusion

In this paper, we consider a model which has a predator-prey structure between the
monoclonal tumor and the macrophages. Building upon the work of Bozkurt [14], we
include fuzzy initial values to study the interaction of a monoclonal brain tumor and the
macrophages to see the extinction conditions for the tumor population. From one hand
and as a result of using fuzzy initial values, the uniqueness of the solution is lost. On the
other hand, and using the strongly generalized derivative, biologically we obtain more
realistic behavior that explains the interaction phenomena.
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Abstract. In this study, an improved matrix method based on collocation points
is developed to obtain the approximate solutions of systems of high-order panto-
graph type delay differential equations with variable coefficients. These kinds of
systems described by the existence of linear functional argument play a critical
role in defining many different phenomena and particularly, arise in industrial
applications and in studies based on biology, economy, electrodynamics, physics
and chemistry. The technique we have used reduces the mentioned delay system
solution with the initial conditions to the solution of a matrix equation with the
unknown Laguerre coefficients. Thereby, the approximate solution is obtained in
terms of Laguerre polynomials. In addition, several examples along with error
analysis are given to illustrate the efficiency of the method; the obtained results
are scrutinized and interpreted.

Keywords: Laguerre polynomials and series · Matrix method · Pantograph
equations · System of delay differential equations · Collocation method

1 Introduction

Mathematical models have an importance in many areas such as engineering, biology,
physics, and social science. Especially in biology, we define the systems of high-order
pantograph type delay differential equations to represent many biological phenomena.
For instance, epidemiological models are the subject of study in biology. This is the study
of disease dynamics which describe the mechanism of disease transmission. Various
biological models can be explained by systems of high-order pantograph type delay
differential equations. A delay model of predator-prey interaction is an example of these
types of systems [1].

A specific example for the applications of these type of models can be given as
the glucose-insulin regulatory system and ultradian insulin secretory oscillations which
include two explicit time delays (Fig. 1).
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Fig. 1. Schematic diagram of the glucose-insulin regulatory system model [2].

The diagram illustrates the modeled schematic diagram of the glucose-insulin reg-
ulatory system. The lines with the dots indicate exalted glucose concentration which
stimulates insulin synthesis excretion by the pancreatic beta cells. Moreover, insulin
propagates utilisation in muscle, fat and other tissues [2–4].

These type of models are difficult to solve and often arises in the study of numer-
ical approaches which have been investigated by many authors. So that, Runge-Kutta
method, collocation methods, spectral method, Adomian decomposition method have
been studied to obtain approximate solutions of system of high-order pantograph type
delay differential equations with variable coefficients [5–12]. Also, the model’s asymp-
totic behaviours, harmonic balance analysis, stability, and control have been reached
over the last decades [13–15].

2 The Model

In this study, we consider system of high-order pantograph type delay differential
equations which includes variable coefficients as

m∑

r=0

k∑

i=1

S∑

s=0

Pr,s
ji (t)y(r)

i (t − βs) + Qr
ji y

(r)
i (t) = g j (t), j = 1, 2, . . . , k, 0 ≤ t ≤ 1,

(1)

with the initial conditions are given as

m−1∑

i=0

(
anji y

(i)
n (0)

)
= λni , j = 0, 1, . . . ,m − 1, n = 1, 2, . . . , k. (2)

where anji , λni and βs are real constants. Also, P
r,s
ji (t) and Qr

ji are continuous functions
defined in 0 ≤ t ≤ 1. Our aim is to find approximate solution of the problem in (1)–(2)
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in the truncated Laguerre series form

yi (t) ∼= yi,N (t) =
N∑

n=0

ai,n Ln(t), i = 1, 2, . . . , k, 0 ≤ t ≤ 1 (3)

where an, n = 0, 1, . . . , N are unknown coefficients; and Ln(t), n = 0, 1, . . . , N , are
the Laguerre polynomials which are defined as

Ln(t) =
n∑

r=0

(−1)r

r !
(
n
r

)
tr . (4)

3 Fundamental Relations

In this section, we compose the matrix forms of yi (t) and their derivatives in the matrix
forms:

[yi (t)] = L(t)Ai=X(t)HAi , i = 1, 2, . . . , k (5)

[
y(1)
i (t)

]
= L(1)(t)Ai=X(t)BHAi ,

[
y(2)
i (t)

]
= L(2)(t)Ai=X(t)B2HAi ,

...
[
y(r)
i (t)

]
= L(r)(t)Ai=X(t)BrHAi , r = 1, 2, . . . ,m

(6)

where

L(t) = [
L0(t) L1(t) L2(t) . . . LN (t)

]
, X(t) = [1 t . . . t N ],

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)0

0!
(
0
0

)
(−1)0

0!
(
1
0

)
(−1)0

0!
(
2
0

)
. . .

(−1)0

0!
(
N
0

)

0 (−1)1

1!
(
1
1

)
(−1)1

1!
(
2
1

)
. . .

(−1)1

1!
(
N
1

)

0 0 (−1)2

2!
(
2
2

)
. . .

(−1)2

2!
(
N
2

)

...
...

...
. . .

...

0 0 0 . . .
(−1)N

N !
(
N
N

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,B =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 N 0
0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
,

and Ai = [ai,0 ai,1 · · · ai,N ]T , i = 1, . . . , k . By replacing t → (t − βs) in Eq. (6)
then the matrix form is the following

[
y(r)
i (t − βs)

]
= L(r)(t − βs)Ai=X(t − βs)BrHAi , r = 1, 2, . . . ,m, i = 1, 2, . . . , k. (7)
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We have the relation between X(t − βs) and X(t) as

X(t − βs) = X(t)B(−βs ). (8)

where

B(−βs) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
0
0

)
(−βs)

0
(
1
0

)
(−βs)

1
(
2
0

)
(−βs)

2 . . .

(
N
0

)
(−βs)

N

0

(
1
1

)
(−βs)

0
(
2
1

)
(−βs)

1 . . .

(
N
1

)
(−βs)

N−1

0 0

(
2
2

)
(−βs)

0 . . .

(
N
2

)
(−βs)

N−2

...
...

...
. . .

...

0 0 0 . . .

(
N
N

)
(−βs)

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By substituting Eq. (8) into Eq. (7), we have
[
y(r)
i (t − βs)

]
= X(t)B(−βs)BrHAi , r = 1, 2, . . . ,m, i = 1, 2, . . . , k (9)

Then, from (6), (8) and (9), the following matrix forms are found

y(r)(t) = X̄(t)B̄r H̄Ai , r = 1, 2, . . . ,m, (10)

and

y(r)(t − βs) = X̄(t)B̄(−βs)B̄r H̄Ai , r = 1, 2, . . . ,m, (11)

where

y(r)(t) =

⎡

⎢⎢⎢⎢⎣

y(r)
1 (t)

y(r)
2 (t)

...

y(r)
k (t)

⎤

⎥⎥⎥⎥⎦
, y(r)(t − βs) =

⎡

⎢⎢⎢⎢⎣

y(r)
1 (t − βs)

y(r)
2 (t − βs)

...

y(r)
k (t − βs)

⎤

⎥⎥⎥⎥⎦
, X̄(t) =

⎡

⎢⎢⎢⎣

X(t) 0 . . . 0
0 X(t) . . . 0
...

...
. . .

...

0 0 . . . X(t)

⎤

⎥⎥⎥⎦,

B̄(−βs) =

⎡

⎢⎢⎢⎢⎣

B(−βs) 0 . . . 0
0 B(−βs) . . . 0
...

...
. . .

...

0 0 . . . B(−βs)

⎤

⎥⎥⎥⎥⎦
, B̄r =

⎡

⎢⎢⎢⎢⎣

Br 0 . . . 0
0 Br . . . 0
...

...
. . .

...

0 0 . . . Br

⎤

⎥⎥⎥⎥⎦
, H̄ =

⎡

⎢⎢⎢⎢⎣

H 0 . . . 0
0 H . . . 0
...

...
. . .

...

0 0 . . . H

⎤

⎥⎥⎥⎥⎦
,

and A = [A1 A2 . . . Ak]T , i = 1, 2, . . . , k .

4 Method of Solution

Now, we define the collocation points as

tl = 1

N
l, l = 0, 1, . . . , N . (12)
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First, the relations (10) and (11) are replaced into the Eq. (1) and we obtain the
system

m∑

r=0

S∑

s=0

Pr,s(t)y(r)(t − βs) + Qr (t)y(r)(t) = g(t), (13)

where

Pr,s(t) =

⎡

⎢⎢⎢⎣

Pr,s
11 (t) Pr,s

12 (t) . . . Pr,s
1k (t)

Pr,s
21 (t) Pr,s

22 (t) . . . Pr,s
2k (t)

...
...

. . .
...

Pr,s
k1 (t) Pr,s

k2 (t) . . . Pr,s
kk (t)

⎤

⎥⎥⎥⎦, Qr (t) =

⎡

⎢⎢⎢⎣

Qr
11(t) Qr

12(t) . . . Qr
1k(t)

Qr
21(t) Qr

22(t) . . . Qr
2k(t)

...
...

. . .
...

Qr
k1(t) Qr

k2(t) . . . Qr
kk(t)

⎤

⎥⎥⎥⎦,

g(t) =

⎡

⎢⎢⎢⎣

g1(t)
g2(t)

...

gk(t)

⎤

⎥⎥⎥⎦.

Then by using the collocation points (12) in the Eq. (13), we have

m∑

r=0

S∑

s=0

Pr,s(tl)y(r)(tl − βs) + Qr (tl)y(r)(tl) = g(tl), (14)

or briefly

m∑

r=0

S∑

s=0

Pr,sȲ(r) + QrY(r) = G, (15)

Pr,s =

⎡

⎢⎢⎢⎣

Pr,s(t0) 0 . . . 0
0 Pr,s(t1) . . . 0
...

...
. . .

...

0 0 . . . Pr,s(tN )

⎤

⎥⎥⎥⎦, Qr =

⎡

⎢⎢⎢⎣

Qr (t0) 0 . . . 0
0 Qr (t1) . . . 0
...

...
. . .

...

0 0 . . . Qr (tN )

⎤

⎥⎥⎥⎦,

Ȳ(r) =

⎡

⎢⎢⎢⎣

y(r)(t0 − βs)

y(r)(t1 − βs)
...

y(r)(tN − βs)

⎤

⎥⎥⎥⎦, Ȳ(r) =

⎡

⎢⎢⎢⎣

y(r)(t0)
y(r)(t1)

...

y(r)(tN )

⎤

⎥⎥⎥⎦, G =

⎡

⎢⎢⎢⎣

g(t0)
g(t1)

...

g(tN )

⎤

⎥⎥⎥⎦, X =

⎡

⎢⎢⎢⎣

X̄(t0)
X̄(t1)

...

X̄(tN )

⎤

⎥⎥⎥⎦.

Then we obtain fundamental matrix equation by using (10), (11), and (15)
{

m∑

r=0

S∑

s=0

Pr,sXB̄(−βs )B̄
r H̄ + QrXB̄

r
H̄

}
A = G, (16)

We can write Eq. (16), briefly, in the following form:

WA = G ⇒ [W;G] (17)
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which corresponds to a system of the linear algebraic equations with the unknown
Laguerre coefficients ai,n, i = 1, 2, . . . , k, n = 0, 1, . . . , N .

Similarly, we consider the same procedure for the initial conditions and we obtain
the matrix form:

m−1∑

j=0

{
a j X̄(0)B̄ j H̄

}
A = λ, (18)

where

a j =

⎡

⎢⎢⎢⎢⎣

a1j 0 . . . 0

0 a2j . . . 0
...

...
. . .

...

0 0 . . . akj

⎤

⎥⎥⎥⎥⎦
, and

λ = [
λ1 λ2 . . . λk

]T
,

aij =
[
ai0 j a

i
1 j . . . aim−1 j

]T
.

Summarily, we have the conditions, Eq. (18), in the form:

UA = λ ⇒ [U;λ]; U =
m−1∑

j=0

{
a j X̄(0)B̄ j H̄

}
. (19)

By replacing the matrices (19) into last rows of the part W in Eq. (17), we have the

new augmented matrix as
[
W̃; G̃

]
[16]. By solving the system, therefore, from Eq. (3),

approximate solution of the problem (1)–(2) is obtained in the following form:

yi (t) ∼= yi,N (t) =
N∑

n=0

ai,n Ln(t), i = 1, 2, . . . , k, 0 ≤ t ≤ 1.

5 Error Analysis

In this section, we check the accuracy of the present method. The approximate solutions
yi,N (t) of Eq. (1), and their first derivatives are considered and substituted into Eq. (1).
Then we obtain approximate results for t = tr ∈ [0, 1], r = 0, 1, . . . .

Ei,N (tr ) =
∣∣∣∣∣

m∑

r=0

k∑

i=1

S∑

s=0

Pr,s
ji (tr )y

(r)
i (tr − βs) + Qr

ji y
(r)
i (tr ) − g j (tr )

∣∣∣∣∣
∼= 0,

where EN (tr ) ≤ 10−kα,β = 10−k(k is a positive integer) is prescribed, then the truncation
limit N is increased until difference EN (tr ) becomes smaller than the prescribed 10−k

at each points.
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6 Algorithm

Step 0. Input initial data: P, and Q.
Step 1. Set m ≤ N for m ∈ N.

Step 2. Construct the matrices such as Pr,s(t), Qr (t), X̄(t), B̄(−βs), B̄r , H̄, g(t).
Step 3. Replace in the fundamental equation.
Step 4. Apply the collocation points, tl = 1

N l, l = 0, 1, . . . , N in S3.
Step 5. Compute [W;G].
Step 6. Calculate initial condition matrices [U;λ].

Step 7. Replace findings in S5 and get the new augmented matrix
[
W̃; G̃

]
.

Step 8. Solve the system in S7 where output: yi,N (t).
Step 9. Check the accuracy for the error function EN (tr ).
Step 10. If EN (tr ) ∼= 0. Else, then back S1.

7 Numerical Experiments

In this section, to show the accuracy and efficiency of the presented method, for the
problem given at (1)–(2), is solved with it. Numerical calculations were performed
using Maple software.

Example 1. Firstly, we deal with the system of first-order delay differential equations
which is defined in Eq. (1) [7]

y′
1(t − 1) + y′

2(t − 1) = 2t,

y′
1(t − 1) − y′

3(t − 1) = 2t − 1,

y′
1(t − 1) + y3(t − 1) = t − 1, 0 ≤ t ≤ 1, (20)

and initial conditions are given as

y1(0) = 0, y2(0) = 0, and y3(0) = 0. (21)

where

P0,1(t) =
⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦, P0,1(t) =
⎡

⎣
1 1 0
1 0 −1
1 0 1

⎤

⎦, g(t) =
⎡

⎣
2t

2t − 1
t − 1

⎤

⎦

and the collocation points are t0 = 0, t1 = 1/3, t2 = 2/3, and t3 = 1. Then the
fundamental matrix equation of the problem is

{
P0,1XB̄(−1)H̄ + P1,0XB̄(−1)B̄H̄ + P2,0XB̄(−1)B̄2H̄

}

︸ ︷︷ ︸
W

A = G,

where we get the augmented matrix [W;G]. Also, we consider the initial conditions
given in Eq. (21) by the matrix form of Eq. (19). Then the new augmented matrix
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[
W̃; G̃

]
is described by substituting the conditions. Finally, we have the solution of the

system which gives us the exact solution of the system for N = 3 as:

y1(t) = t2, y2(t) = 2t, and y3(t) = −t.

Example 2. We consider the following linear system of second-order retarded and
advanced differential equations [10]

y′′
1

(
t − 1

2

)
+ 2t y′

1

(
t + 1

3

)
− t y2

(
t − 1

2

)
+ t2y3(t − 1) = g1(t),

y′′
2

(
t − 1

4

)
− t y′

1

(
t + 1

5

)
− t y2

(
t − 1

6

)
+ 5y3

(
t − 1

2

)
= g2(t),

y′′
3

(
t + 1

3

)
− t y′

1

(
t − 1

6

)
+ t y′

3

(
t − 1

3

)
+ 3y1

(
t + 1

4

)
+ 2t y2

(
t + 1

3

)
= g3(t), 0 ≤ t ≤ 1,

with the initial conditions

y1(0) = 0, y′
1(0) = 1, y2(0) = 1, y′

2(0) = 0, y3(0) = 1, and y′
3(0) = 1.

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g1(t) = − sin
(
t − 1

2

) + 2t cos
(
t − 1

3

) − t cos
(
t − 1

2

) + t2et−1,

g2(t) = − cos
(
t − 1

4

) − t cos
(
t + 1

5

) − t cos
(
t − 1

6

) + 5et−1/2,

g3(t) = et+1/3 − t cos
(
t − 1

6

) + tet−1/3 + 3 sin
(
t + 1

4

) + 2t cos
(
t + 1

3

)
.

The exact solution of the system is y1(t) = sin t, y2(t) = cos t, and y3(t) = et

(Figs. 2, 3, 4) and (Tables 1, 2, 3).

Table 1. Absolute errors for N = 8 and 10 comparison for y1(t), in Example 2.

t EN = E8 EN = E10

0.0 0.00000 0.00000

0.1 0.1569E−7 0.1003E−8

0.2 0.2560E−7 0.2021E−8

0.3 0.3248E−7 0.1032E−8

0.4 0.1039E−7 0.9820E−8

0.5 0.3591E−7 0.3097E−8

0.6 0.3719E−7 0.2065E−8

0.7 0.2052E−6 0.1082E−7

0.8 0.5066E−6 0.5194E−7

0.9 0.1042E−5 0.1112E−6

1.0 0.3702E−5 0.3003E−6
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Table 2. Absolute errors for N = 8 and 10 comparison for y2(t), in Example 2.

t EN = E8 EN = E10

0.0 0.00000 0.00000

0.1 0.2981E−7 0.1973E−8

0.2 0.6330E−7 0.2371E−8

0.3 0.8120E−7 0.9873E−8

0.4 0.9001E−7 0.3205E−8

0.5 0.5361E−7 0.7903E−8

0.6 0.9137E−6 0.5608E−8

0.7 0.5209E−6 0.8379E−7

0.8 0.6650E−5 0.9970E−7

0.9 0.2401E−5 0.7260E−6

1.0 0.2703E−5 0.7780E−6

Table 3. Absolute errors for N = 8 and 10 comparison for y3(t), in Example 2.

t EN = E8 EN = E10

0.0 0.00000 0.00000

0.1 0.2981E−7 0.1973E−8

0.2 0.6330E−7 0.2371E−8

0.3 0.8120E−7 0.9873E−8

0.4 0.9001E−7 0.3205E−8

0.5 0.5361E−7 0.7903E−8

0.6 0.9137E−6 0.5608E−8

0.7 0.5209E−6 0.8379E−7

0.8 0.6650E−5 0.9970E−7

0.9 0.2401E−5 0.7260E−6

1.0 0.2703E−5 0.7780E−6

Fig. 2. Comparison of the error function for Laguerre collocation method (LCM), Jacobi Gauss
collocation method (JGCM) for y1(t), N = 8 in Example 2.
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Fig. 3. Comparison of the error function for Laguerre collocation method (LCM), Jacobi Gauss
collocation method (JGCM) for y2(t), N = 8 in Example 2.

Fig. 4. Comparison of the error function for Laguerre collocation method (LCM), Jacobi Gauss
collocation method (JGCM) for y3(t), N = 8 in Example 2.

Example 3. Let us consider a homogenous system in three dependent variables

y′
1(t) = 2

t y1(t) + (
1 − 2

t

)
y2(t) − y3(t),

y′
2(t) = 1

t y1(t) + (
1 − 1

t

)
y2(t) − y3(t),

y′
3(t) = 1

t y1(t) − 1
t y2(t), 0 ≤ t ≤ 1,

with the initial conditions [8, 9]

y1(1) = 0, y2(1) = 1, and y3(1) = 1.
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Applying the introduced technique for N = 4, then we have the following solutions

y1(t) = 2 − 2t, y2(t) = 2 − t, and y3(t) = 2 − t,

which give us the exact solutions of the problem.

8 Conclusion

In this study, we introduce a matrix method depending on Laguerre polynomials in order
to solve systems of high-order pantograph type delay differential equations with variable
coefficients numerically. Furthermore, the error analysis is given to show the accuracy of
themethod. The presentmethod and its error analysis are applied on illustrative examples
which have been shown by figures and tables. The method has significant importance
such as; the present method has a short and concise computing procedure by writing the
algorithm in Maple18. The present method has sufficient results when N is chosen large
enough. The method also can be extended to different types of mathematical models
with respect to some modifications [17].
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Abstract. In this work, we will study the integral solution of wave fractional
differential equations with fuzzy initial data by using Fourier transform, the exact
solution is given in the case of γ = 2. Some examples are presented to illustrate
the results.

1 Introduction

The present paper investigates the analytic solution of the following problem
⎧
⎪⎨

⎪⎩

gHD
γ
t u(t,x)−g c2 ∂ 2

∂x2 u(t,x) = 0,−∞ < x< ∞, t ≥ 0, 1 < γ < 2

u(0,x) = a(x)
∂
∂ t u(0,x) = b(x)

where a and b are two absolutely valued-functions in E1. −g is the generalized
Hukuhara difference. gHD is the generalized fuzzy fractional caputo’s derivative.

In 1965 Zadeh [13] introduced the basic ideas of the fuzzy set theory, as an extension
of the classical notion of set. The authors in [6] give a generalization of the Hukuhara
difference which guaranteed the existence of this is for two segments in R. As conse-
quence in the same work Bede and Stefanini presented the generalized derivative of a set
valued-functions. Agarwal et al. [1] are the pioneers working in fuzzy fractional (DEs).
They formulated the Riemann-Liouville differentiability notion as the base to define
the concept of fuzzy fractional DEs. After that, they proved the existence of solutions
of fuzzy fractional integral equations (IEs) under compactness type conditions using
the Hausdorff measure of noncompactness in the paper [2]. Allahviranloo et al. in [3]
presented two new results on the existence of two kinds of gH−weak solutions of these
problems and indicated the boundedness and continuous dependence of solutions on
the initial data of the problems. In [5] the authors prove the existence and uniqueness
theorems for non-linear fuzzy fractional Fredholm integro-differential equations under
fractional generalized Hukuhara derivatives in the Caputo sense. From the idea of [5]
we will try to prove the existence and uniqueness of fuzzy fractional wave equation.

This paper is organized as follows. In Sect. 2 we recall some concepts concerning
the fuzzy metric space. The generalized derivative take place in the Sect. 3. In Sect. 4 we
give the concept of fuzzy Fourier transform and we presented some properties. We pre-
sented the solution of the fuzzy wave equation in Sect. 5. Finally in Sect. 6 two examples
are given to illustrate the usefulness of our main results.
c© Springer Nature Switzerland AG 2020
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2 Preliminaries

In this section, we present some definitions and introduce the necessary notation, which
will be used throughout the paper.

We denote E1 the class of function defined as follows:

E1 =
{
u : R → [0,1], u satisfies (1−4) below

}

1. u is normal, i.e. there is a x0 ∈ R such that u(x0) = 1;
2. u is a fuzzy convex set;
3. u is upper semi-continuous;
4. u closure of {x ∈ R

n, u(x)> 0} is compact

For all α ∈ (0,1] the α-cut of an element of E1 is defined by

uα =
{
x ∈ R, u(x) ≥ α

}

By the previous properties we can write

uα = [u(α),u(α)]

By the extension principal of Zadeh we have

(u+ v)α = uα + vα ;

(λu)α = λuα

For all u,v ∈ E1 and λ ∈ R

The distance between two element of E1 is given by (see [4])

d(u,v) = sup
α∈(0,1]

max
{
|u(α)− v(α)|, |u(α)− v(α)|

}

The metric space (E1,d) is complete, separable and locally compact and the fol-
lowing properties for metric d are valid:

1. d(u+ v,u+w) = d(u,v);
2. d(λu,λv) = |λ |d(u,v);
3. d(u+ v,w+ z) ≤ d(u,w)+d(v,z);

Remark 2.1. The space (E1,d) is a linear normed space with ‖u‖ = d(u,0).

Definition 2.2. [10] A complex fuzzy number is a mapping z : C → [0,1] with the fol-
lowing properties:

1. z is continuous;
2. zα , α ∈ (0,1] is open, bounded, connected and simply connected;
3. z1 is non-empty, compact, arcwise connected and simply connected.

We denote the set of all fuzzy complex number by C
1.
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Definition 2.3. [6] The generalized Hukuhara difference of two fuzzy numbers u,v∈E1

is defined as follows

u−g v= w ⇔
{
u= v+w

or v= u+(−1)w

In terms of α-levels we have

(
u−g v

)α
=

[
min{u(α)− v(α),u(α)− v(α)} ,max{u(α)− v(α),u(α)− v(α)}

]

and the conditions for the existence of w= u−g v ∈ E1 are

case (i)

{
w(α) = u(α)− v(α) and w(α) = u(α)− v(α)
with w(α) increasing, w(α) decreasing,w(α) ≤ w(α)

(1)

case (ii)

{
w(α) = u(α)− v(α) and w(α) = u(α)− v(α)
with w(α) increasing, w(α) decreasing,w(α) ≤ w(α)

(2)

for all α ∈ [0,1].

Throughout the rest of this paper, we assume that u−g v ∈ E1

Proposition 2.4. [11]
‖u−g v‖ = d(u,v)

Since ‖.‖ is a norm on En and by the Proposition (2.4) we have

Proposition 2.5.
‖λu−g μu‖ = |λ − μ |‖u‖

Let f : [a,b] ⊂ R → E1 a fuzzy-valued function. The α-level of f is given by

f (x,α) =
[
f (x,α), f (x,α)

]
, ∀x ∈ [a,b], ∀α ∈ [0,1].

Definition 2.6. [6] Let x0 ∈ (a,b) and h be such that x0 + h ∈ (a,b), then the gener-
alized Hukuhara derivative of a fuzzy value function f : (a,b) → E1 at x0 is defined
as

lim
h→0

∥
∥
∥
f (x0 +h)−g f (x0)

h
−g f

′
gH(x0)

∥
∥
∥ = 0 (3)

If fgH(x0) ∈ E1 satisfying 3 exists, we say that f is generalized Hukuhara differentiable
(gH-differentiable for short) at x0.



136 S. Melliani et al.

Definition 2.7. [6] Let f : [a,b] → E1 and x0 ∈ (a,b), with f (x,α) and f (x,α) both
differentiable at x0.
We say that

1. f is [(i)−gH]-differentiable at x0 if

f ′i,gH(x0) =
[
f ′(x,α), f ′(x,α)

]
(4)

2. f is [(ii)−gH]-differentiable at x0 if

f ′ii,gH(x0) =
[
f
′(x,α), f ′(x,α)

]
(5)

Theorem 2.8. Let f : J ⊂ R → E1 and g : J → R and x ∈ J. Suppose that g(x) is
differentiable function at x and the fuzzy-valued function f (x) is gH-differentiable at x.
So

( f g)′gH = ( f ′g)gH +( f g′)gH

Proof. Using (2.5), for h enough small we get

∥
∥
∥
f (x+h)g(x+h)−g f (x)g(x)

h
−g

(
( f ′(x)g(x))gH +( f (x)g′(x))gH

)∥
∥
∥

=
∥
∥
∥
f (x+h)g(x+h)−g f (x)g(x+h)+ f (x)g(x+h)−g f (x)g(x)

h
−g

(
( f ′(x)g(x))gH +( f (x)g′(x))gH

)∥
∥
∥

=
∥
∥
∥
( f (x+h)−g f (x))g(x+h)+ f (x)(g(x+h)−g g(x))

h
−g

(
( f ′(x)g(x))gH +( f (x)g′(x))gH

)∥
∥
∥

≤
∥
∥
∥
( f (x+h)−g f (x))g(x+h)

h
−g

(
( f ′(x)g(x))gH

)∥
∥
∥+

∥
∥
∥
( f (x)(g(x+h)−g g(x))

h
−g

(
( f (x)g′(x))gH

)∥
∥
∥

≤
∥
∥
∥
( f (x+h)−g f (x))

h
g(x+h)−g

(
( f ′(x)g(x))gH

)∥
∥
∥+

∥
∥
∥ f (x)

((g(x+h)−g g(x))
h

−g
(
( f (x)g′(x))gH

)∥
∥
∥

which complete the proof by passing to limit.

Definition 2.9. [6] We say that a point x0 ∈ (a,b), is a switching point for the differ-
entiability of f , if in any neighborhood V of x0 there exist points x1 < x0 < x2 such
that

1. type (1). at x1 (4) holds while (5) does not hold and at x2 (5) holds and (4) does not
hold, or

2. type (2). at x1 (5) holds while (4) does not hold and at x2 (4) holds and (5) does not
hold.

Definition 2.10. [3] Let f : (a,b) → E1. We say that f (x) is gH-differentiable of the
2nd-order at x0 whenever the function f (x) is gH-differentiable of the order i, i = 0,1,
at x0,(( f (x0))(i)gH ∈E1), moreover there isn’t any switching point on (a,b). Then there
exists ( f )′′gH(x0) ∈ E1 such that

lim
h→0

∥
∥
∥
f ′(x0 +h)−g f ′(x0)

h
−g f

′′
gH(x0)

∥
∥
∥ = 0
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Definition 2.11. [3] Let f : [a,b] → E1 and f ′gH(x) be gH-differentiable at x0 ∈ (a,b),
moreover there isn’t any switching point on (a,b) and f (x,α) and f (x,α) both differ-
entiable at x0. We say that

• f ′ is [(i)−gH]-differentiable at x0 if

f ′′i,gH(x0) =
[
f ′′(x,α), f ′′(x,α)

]

• f ′ is [(ii)−gH]-differentiable at x0 if

f ′′ii,gH(x0) =
[
f
′′(x,α), f ′′(x,α)

]

Definition 2.12. [8] Let f : [a,b] → E1. We say that f (x) is fuzzy Riemann integrable
to I ∈ E1 if for any ε > 0, there exists δ > 0 such that for any division P = {[u,v];ξ}
with the norms Δ(P)< δ , we have

d

(
∗
∑
p
(v−u) f (ξ ),I

)

< ε

where ∑∗
p denotes the fuzzy summation. We choose to write I =

∫ b
a f (x)dx.

Theorem 2.13. [6] If f is gH-differentiable with no switching point in the interval [a,b]
then we have ∫ b

a
f (t)dt = f (b)−g f (a)

Theorem 2.14. [12] Let f (x) be a fuzzy-valued function on (−∞,∞) and it is repre-

sented by f (x,α) =
[
f (x,α), f (x,α)] for any fixed α ∈ [0,1]. Assume that | f (x,α)| and

| f (x,α)| are Riemann integrable on (−∞,∞) for all α ∈ [0,1]. Then f (x) is improper
fuzzy Riemann-integrable on (−∞,∞) and the improper fuzzy Riemann integral is a
fuzzy number. Furthermore, we have

∫ ∞

−∞
f (x)dx=

[∫ ∞

−∞
f (x,α)dx,

∫ ∞

−∞
f (x,α)dx

]

From this theorem we can discuss the Fuzzy Riemann’s improper integral

Lemma 2.15. Let f : R×R
+ → E1, given by f (x, t;α) = [ f (x, t;α), f (x, t;α)], and let

a ∈ R
+

If
∫ ∞
a f (x, t;α)dt and

∫ ∞
a f (x, t;α)dt are converges then

∫ ∞

a
f (x, t;α)dt ∈ E1

Proof. Just use the conditions (1).
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Theorem 2.16. Let f : R×R
+ → E1 be fuzzy-valued function such that f (x, t;α) =

[ f (x, t;α), f (x, t;α)]. Suppose that for each x ∈ [a,∞), the fuzzy integral
∫ ∞
c f (x, t)dt is

convergent and moreover
∫ ∞
a f (x, t)dx as a function of t is convergent on [c,∞). Then

∫ ∞

c

∫ ∞

a
f (x, t)dxdt =

∫ ∞

a

∫ ∞

a
f (x, t)dtdx

Proof. Applying the theorem of Fubini-Tonelli [7] to these two functions f (x, t;α) and
f (x, t;α), and use the conditions (1)

Theorem 2.17. Suppose both, f (x, t) and ∂xgH f (x, t), are fuzzy continuous in [a,b]×
[c,∞). Suppose also that the integral converges for x ∈ R, and the integral

∫ ∞
c f (x, t)dt

converges uniformly on [a,b]. Then F is gH-differentiable on [a,b] and

F ′
gH(x) =

∫ ∞

c
∂xgH f (x, t)dt

Proof. The continuity of ∂xgH f (x, t) on [a,b] by the convergence domain theorem of to
f (x, t;α) and f (x, t;α) and use the condition (1).

According to the Theorem (2.8) we get

Theorem 2.18. Let f : [a,b] → E1 and g : [a,b] → R are two differentiable functions
( f is gH-differentiable), then

∫ b

a
f ′gH(x)g(x)dx= f (b)g(b)−g f (a)g(a)−g

∫ b

a
f (x)g′(x)dx

Remark 2.19. If f ,g ∈ AE1
with lim

|x|→∞
f (x) = 0, lim|x|→∞ g(x) = 0 then

∫ ∞

−∞
f ′gH(x)g(x)dx=

∫ ∞

−∞
f (x)g′(x)dx

3 Fuzzy Generalized Hukuhara Partial Differentiation

In this section f : D ⊂ R×R
+ → E1 is called the two variable fuzzy-valued function.

The parametric representation of the fuzzy-valued function fis expressed by f (x, t,α) =[
f (x, t,α), f (x, t,α)

]

Definition 3.1. [3] Let f : D ⊂ R×R
+ → E1 and (x0, t0) ∈ D. Then first generalized

Hukuhara partial derivative ([gH − p]-derivative for short) of f with respect to vari-
ables x, t are the functions ∂xgH f (x0, t0) and ∂tgH f (x0, t0) given by

lim
h→0

∥
∥
∥
f (x0 +h, t0)−g f (x0, t0)

h
−g ∂xgH f (x0, t0)

∥
∥
∥ = 0

and

lim
h→0

∥
∥
∥
f (x0, t0 +h)−g f (x0, t0)

h
,∂xgH f (x0, t0)

∥
∥
∥ = 0

provided that ∂xgH f (x0, t0),∂tgH f (x0, t0) ∈ E1.
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Definition 3.2. [3] Let f (x, t) : D → E1, (x0, t0) ∈ D and f (x, t;α) and f (x, t;α) both
partial differentiable w.r.t. t at (x0, t0). We say that

• f (x, t) is [(i)− p]-differentiable w.r.t. t at (x0, t0) if

∂ti,gH f (x0, t0) =
[
∂t f (x0, t0;α),∂t f (x0, t0;α)

]
(1)

∂tii,gH f (x0, t0) =
[
∂t f (x0, t0;α),∂t f (x0, t0;α)

]
(2)

We inspired of the Definition (2.10) we presented the following definition

Definition 3.3. f : R×R
+R → E1. We say that the function t = h(x), is switching

boundary for the differentiability of f (x, t) with respect to t, if for all x belongs to
domain of h(x) and for all t ∈ R

+, there exist points t0 < t1 < t2 such that

1. at (x, t1) (1) holds while (2) does not hold and at (x, t2) (2) holds and (1) does not
hold, or

2. at (x, t1) (2) holds while (1) does not hold and at (x, t2) (1) holds and (2) does not
hold.

Theorem 3.4. Consider f : R×R
+ → E1 and u : R → E1 are fuzzy-valued functions

such that u(x;α) = [u(x;α),u(x;α)]. Suppose that h : R → R and p : R×R
+ → R

+ is
a differentiable function w.r.t. t and

∂t p(x, t) =

{
∂t p(x, t) ≥ 0, h1(t)< x< h2(t);
∂t p(x, t)< 0, h2(t)< x< h3(t)

and f (x, t) = p(x, t)u(x). Then ∂tgH f (x, t) exists and

∂tgH p(x, t) =

{
∂ti,gH p(x, t) ≥ 0, h1(t)< x< h2(t);
∂tii,gH p(x, t)< 0, h2(t)< x< h3(t)

In fact, the function h2(t) is switching boundary type 1 for differentiability of f (x, t)
with respect to t.

Proof. Since p is valued in R
+ then we can set f (x, t;α) = p(x, t)[u(x;α),u(x;α)],

which implies that

∂tgH = ∂t p(x, t)[u(x;α),u(x;α)]

.
If h1(t)< x< h2(t) then

∂tgH = [∂t p(x, t)u(x;α),∂t p(x, t)u(x;α)]

then f (x, t) is [(i)-differentiable] by report at t. In the same if h2(t)< x< h3(t) we
get

∂tgH = [∂t p(x, t)u(x;α),∂t p(x, t)u(x;α)]

thus f (x, t) is [(ii)-differentiable] by report at t.
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4 Generalized Fuzzy Fractional Derivative

We present generalized fuzzy fractional derivative and their properties.

Definition 4.1. [5] Let f ∈ LE
1
([a,b]). The fuzzy Riemann-Liouville integral of fuzzy-

valued function f is defined as following:

Iq f (t) =
1

Γ (1−q)

∫ t

a
(t− s)q−1 f (s)ds, a< s< t, 0 < q< 1

Definition 4.2. [5] Let f (x, t;α)= [ f (x, t;α), f (x, t;α)] be a valued-fuzzy function. The
fuzzy Riemann-Liouville integral of f is defined as following:

gHD
q
t f (t,x;α) =

1
Γ (1−q)

∫ t

a
(t− s)q f ′gH(s)ds, a< s< t, 0 < q< 1

Also we say that f is [(i)−gH]-differentiable at t0 if

gHD
q
t f (x, t;α) = [Dq f (x, t;α),Dq f (x, t;α)]

and f is [(ii)−gH]-differentiable at t0 if

gHD
q
t f (x, t;α) = [Dq f (x, t;α), f (x, t;α)]

Lemma 4.3. Let f ∈ AE1
and r ∈ (0,1),then

1. If f is [(i)−gH]-differentiable at t0 then Dr f is [(i)−gH]-differentiable at t0.
2. If f is [(ii)−gH]-differentiable at t0 then Dr f is [(ii)−gH]-differentiable at t0

Proof. Note that

gHD
q f (t) =

1
Γ (1−q)

∫ t

0
(t− s)−q f ′gH(s)ds

Since 1
Γ (1−q) (t− s)−q is a nonegative quantity whenever 0 < t < s.

Theorem 4.4. Let f ∈ AE1
and q ∈ (1,2),then

gHD
q f (t) = gHD

q−1 f ′gH(t)

Proof. We set f (t) = [ f (t;α), f (t;α)] and use Lemma (4.3)
If f is [(i)-differentiable] then

f (t)′ = [ f ′(t;α), f ′(t;α)]

and
Dq−1 f (t)′ = [Dq−1 f ′(t;α),Dq−1 f

′(t;α)]

If f is [(i)-differentiable] then

f (t)′ = [ f ′(t;α), f ′(t;α)]

and
Dq−1 f (t)′ = [Dq−1 f

′(t;α),Dq−1 f ′(t;α)]
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Proposition 4.5. Let f : LE
1
.

If Dγ−1 f (t) = g(t), then f (t) = f (0)+ t f ′gH(0)+ Iγ−1g(t)

Proof. We set f (t) = [ f (t;α), f (t;α)] and g(t) = [g(t;α),g(t;α)].

1. If f is [(i)-differentiable] by Theorem (4.4)

Dγ−1 f (t) = [Dγ−1 f (t;α),Dγ−1 f (t;α)]
= [g(t;α),g(t;α)]

Which implies that {
Dγ−1 f (t;α) = g(t;α)
Dγ−1 f (t;α) = g(t;α)

By [9] we get
{
f (t;α) = f (0;α)+ t f ′(0;α)+ Iγ−1g(t;α)
f (t;α) = f (0;α)+ t f

′(0;α)+ Iγ−1g(t;α)

in the same if f is [(ii)-differentiable] then
{
f (t;α) = f (0;α)+ t f

′(0;α)+ Iγ−1g(t;α)
f (t;α) = f (0;α)+ t f ′(0;α)+ Iγ−1g(t;α)

Thus
f (t) = f (0)+ t f ′gH(0)+ Iγ−1g(t)

5 Fuzzy Fourier Transform

In this section we discuss the Fourier transform in the fuzzy case

Lemma 5.1. If f ∈ AE1
then the map

F : R �−→ C
1

ω → ∫ ∞
−∞ f (x)e−iωwdx

is well defined

Proof. We have ∥
∥
∥ f (x)e−iωw

∥
∥
∥ =

∥
∥
∥ f (x)

∥
∥
∥

Since f ∈ AE1
then f (x)e−iωw ∈ AC

1
, which complete the proof.
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Remark 5.2. In the same the map and under same assumption

F : R �−→ C
1

ω → ∫ ∞
−∞ f (x)eiωwdx

is well defined

By the previous lemma and remark we can give a definition of the fuzzy Fourier
transform

Definition 5.3. Let f : R → E1 a fuzzy-valued function. The fuzzy Fourier transform of
f , denote F ( f ) : R → C

1, is given by

F ( f (x)) =
1√
2π

∫ ∞

−∞
f (x)e−iωwdx= F(ω)

Also the fuzzy inverse Fourier transform of F(ω) is given by

F−1 (F(ω)) =
1√
2π

∫ ∞

−∞
f (x)eiωwdx= f (x)

By the conditions (1) we have

Remark 5.4. Let f ∈ AC
1
.

If f (x, t;α) = [ f (x, t;α), f (x, t;α)], then we can denote

F ( f (x, t;α)) = [F
(
f (x, t;α)

)
,F

(
f (x, t;α)

)
]

with
[z1,z2] = [Re(z1),Re(z2)]× [Im(z1), Im(z2)]

and
F−1 ( f (x, t;α)) = [F−1 (

f (x, t;α)
)
,F−1 (

f (x, t;α)
)
]

Using the conditions (1) and the linearity of Fourier transform on a “crisp” function
we get for all a,b> 0

aF ( f (x, t;α))+bF (g(x, t;α)) =F (a f (x, t;α)+bg(x, t;α))

Theorem 5.5. Let f ∈ AE1
such that lim

|x|→∞
f (x) = 0. suppose that f ′gH ∈ AE1

. Then

F
(
f ′gH(x)

)
= iωF ( f (x))

Proof. Using Theorem (2.18) we get

F
(
f ′gH(x)

)
=

1√
2π

[
[ f (x)eiωx]∞−∞ −g (−iω)

∫ ∞

−∞
f (x)eiωxdx

]

Using the limit lim
|x|→∞

f (x) = 0 we get the result.
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Corollary 5.6. If f (k)gH ∈ AE1
and lim

|x|→∞
f (k)(x) = 0 for k = 0,1,2, then

F
(
f ′′gH(x)

)
= −ω2F ( f (x))

By the Theorems (2.17) and (4.4) we have

Theorem 5.7.
F

(
gHD

γ
t f (x, t)

)
= gHD

γ
t F ( f (x, t))

6 The Solution of the Fuzzy Fractional Wave Equation

In this section consider the following problem

⎧
⎪⎨

⎪⎩

gHD
γ
t u(t,x)−g c2 ∂ 2

∂x2 u(t,x) = 0 0 < x, t < 1, 0 < γ < 1

u(0,x) = a(x),
∂
∂ t u(0,x) = b(x)

(1)

where a and b are belongs to AE1
,

Proposition 6.1. The problem (1) has a unique solution.

Proof. Let u(x, t) is fuzzy absolutely integrable, we define the fuzzy Fourier transform
of u(x, t) and its inverse by

F (u(x, t)) =
1√
2π

∫ ∞

−∞
u(x, t)e−iωtdx=U(ω, t)

F−1 (U(ω, t)) =
1√
2π

∫ ∞

−∞
U(ω, t)eiωtdω = u(x, t)

If Dγ
tgH u(x, t), ∂xgH u(x, t) and ∂xxgH u(x, t) are fuzzy absolutely integrable in (−∞,∞) by

using

F
(
gHD

γ
t u(t,x)

)−gF

(

c2 ∂ 2

∂x2 u(t,x)
)

= 0

It follows from the Corollary (5.6) that

F

(

c2 ∂ 2

∂x2 u(t,x)
)

= −c2ω2U(ω, t)

F
(
gHD

γ
t u(t,x)

)
= Dγ

t U(ω, t)

We get
gHD

γ
t U(ω, t) = −c2U(ω, t)
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It follows that
gHD

γ−1
t U ′

gH(ω, t) = −c2U(ω, t)

Thus we have the following problem

gHD
γ−1
t U ′

gH(ω, t) = −c2U(ω, t) (2)

U(ω,0) =F (a(x)) (3)
∂
∂ t

U(ω,0) =F (b(x)) (4)

by Lemma 3.2 [5] this problem has a unique solution given by

U(ω, t) =U(ω,0)+ t
∂
∂ t

U(ω,0)−g
c2

Γ (γ −1)

∫ t

0

∫ s

0
(s− τ)γ−2U(ω,τ)dτds

if u′ is [(i)-differentiable], and

U(ω, t) =U(ω,0)+ t
∂
∂ t

U(ω,0)+
c2

Γ (γ −1)

∫ t

0

∫ s

0
(s− τ)γ−2U(ω,τ)dτds

if u′ is [(ii)-differentiable].

Which implies the existence and uniqueness of the solution of the problem (2) and
by the inverse of Fourier transform we get the existence and uniqueness of the solution
of (1).

7 Case γ = 2

In this section we set
u(x, t;α) = [u(x, t;α),u(x, t;α)]

a(x;α) = [a(x;α),u(x;α)]

b(x;α) = [b(x;α),b(x;α)]

If u′ is [(i)-differentiable] then

∂ 2

∂ t2
u(x, t;α) = c2 ∂ 2

∂x2 u(x, t;α)

∂ 2

∂ t2
u(x, t;α) = c2 ∂ 2

∂x2 u(x, t;α)

which implies

u(x, t;α) = F(x− ct;α)+G(x+ ct;α)
u(x, t;α) = F(x− ct;α)+G(x+ ct;α)
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where
a(x;α) = F(x− ct;α)+G(x+ ct;α) (1)

a(x, t;α) = F(x− ct;α)+G(x+ ct;α) (2)

and
b(x;α) = F ′(x− ct;α)+G′(x+ ct;α) (3)

b(x, t;α) = F ′(x− ct;α)+G′(x+ ct;α) (4)

By the conditions (1) the solution is given by

u(x, t) = F(x− ct)+G(x+ ct)

where F and G are given by the above formula (7.1)− (7.4).

8 Examples

In this section we will give some examples to illustrate the previous results.

Example 8.1.

⎧
⎪⎨

⎪⎩

gHD
3
2
t u(t,x)−g c2 ∂ 2

∂x2 u(t,x) = 0 0 < x, t < 1, 0 < γ < 1

u(0,x;α) = [(1+α)e−x2
,(3−α)e−x2

],
∂
∂ t u(0,x) = 0

(1)

the solution is given by u(x, t) =F−1 (U(ω, t)) with

U(ω, t) =
[

α +1√
2

e−ω2
,
−α +3√

2
e−ω2

]

+
c2

Γ ( 1
2 )

∫ t

0

∫ s

0
(s− τ)−

1
4U(ω,τ)dτds

Example 8.2.
⎧
⎪⎨

⎪⎩

gHD2
t u(t,x)−g c2 ∂ 2

∂x2 u(t,x) = 0 0 < x, t < 1, 0 < γ < 1

u(x,0;α) = [αe−x2
,(2−α)e−x2

],
∂
∂ t u(x,0) = 0

(2)

the solution is given by

u(x, t) = [α,1− α
2
]e−x cosh(ct)
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Fig. 1. Lower and upper branch of u(x, t)with α = 1

9 Conclusions

This study makes it possible to explain the wave phenomena with uncertainty in exper-
imental data.
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Regularized Long Wave Equation
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Abstract. The Galerkin finite element method, based on cubic trigonometric B-
spline for the space discretization and fourth order Runge Kutta method for time
discretization is proposed for numerical solution of the Regularized Long Wave
(RLW) equation. The numerical example related to single solitary wave is consid-
ered as the test problem. To see the accuracy for the proposed method, the maxi-
mum error norm L∞ is computed and conservation property of the RLW equation
will be validated by calculating the three conservation quantities, corresponding
to mass, momentum and energy.

Keywords: Galerkin finite element method · Cubic trigonometric B-spline ·
Regularized long wave equation · Solitary waves

1 Introduction

Nonlinear partial differential equations are used in the modeling of many events in
nature. There is no general method for the exact solution of nonlinear partial differential
equations. Therefore, approximate solutions of such equations are frequently studied.
The RLW equation, which can be used as an alternative to the KdV equation, has an
important role in soliton theory. RLW equation has only a limited number of analytical
solutions for boundary and initial conditions. The nonlinear partial differential equation
which may be written in the following form as

ut + ux + εuux − μuxxt = 0, (1)

is known as RLW equation formulated by Peregrine for studying soliton phenomenon
[1, 2].

Due to the fact that the Solitarywave’s boundary conditions are zero at the boundaries
namelyu → 0 as x → ±∞, the position rangewill be selected to beu(a, t) = u(b, t) ≈
0. Therefore, the boundary and initial conditions will be considered as

u(a, t) = u(b, t) = 0,
ux (a, t) = ux (b, t) = 0,

t ∈ (0, T ] (2)

and

u(x, 0) = f (x). (3)
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To solve numerically the RLW equation, various numerical methods including dif-
ferent degrees of spline functions are proposed [3–13]. Generally in these methods,
Crank Nicolson method having second order accurate in time has been used for the
time discretization for the RLW equation. By this study, it is aimed to get a numerical
solution for the interested equation with a high accurately numerical method based on
the use of the fourth order Runge Kutta method for time discretization. Trigonometric
B-spline functions are rarely used in literature compared to B-spline functions. In this
study, Galerkin finite element method based on cubic trigonometric B-spline functions
will be used when time discretization is performed.

2 Application of the Method

When making calculations, the space-time plane [a, b] × [0, T ] will be discretized by
grids with �t and h. Thus,

u(xp, tn) = unp, p = 0, 1, . . . , N ; n = 0, 1, 2, . . .

will be used for the exact solution and Un
p will be used for the approximate solution of

the exact solution at the points
(
xp, tn

)
where xp = a + ph and tn = n�t . The space

interval [a, b] will be divided into equal length N sub-interval as

a = x0 < x1 < . . . < xN−1 < xN = b.

The definition of cubic trigonometric B-spline functions in these knots is as follows:

Tp(x) = 1

θ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g3
(
xp−2

)
, x ∈ [

xp−2, xp−1
)

−g2
(
xp−2

)
g
(
xp

)

−g
(
xp−2

)
g
(
xp+1

)
g
(
xp−1

) − g
(
xp+2

)
g2

(
xp−1

)
, x ∈ [

xp−1, xp
)

g
(
xp−2

)
g2

(
xp+1

)

+g
(
xp+2

)
g
(
xp−1

)
g
(
xp+1

) + g2
(
xp+2

)
g
(
xp

)
, x ∈ [

xp, xp+1
)

−g3
(
xp+2

)
, x ∈ [

xp+1, xp+2
)

0 otherwise
(4)

where

θ = sin

(
h

2

)
sin(h) sin

(
3h

2

)
,

g(xp) = sin

(
x − xp

2

)
.

An approach U (x, t) to the unknown function u(x, t) as a linear combination of
cubic trigonometric functions can be performed as follows:

u(x, t) ≈ U (x, t) =
N+1∑

p=−1

Tp(x)δp(t). (5)
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Since the cubic trigonometric B-splines have local supports, there is no need to
evaluate basis functions where they are zero. Therefore, by editing the trial solution (5),
the following form can be written over the sub-elements [xp, xp+1]:

U (x, t) =
p+2∑

j=p−1

Tj (x)δ j (t) (6)

Using cubic trigonometric B-spline (4) and the solution (6), unknown function Up =
U (xp, t) and the space derivatives at knots are written as

Up =α1δp−1 + α2δp + α1δp+1,

U ′
p =α3

(−δp−1 + δp+1
)
,

U ′′
p =α4δp−1 + α5δp + α4δp+1, (7)

where

α1 = sin2
( h
2

)
csc(h) csc

( 3h
2

)
, α2 =

(
2

1+2 cos(h)

)
,

α3 = ( 3
4 csc(

3h
2 )

)
,

α4 =
(

3
(
3 cos2

(
h
2

)
−1

)

4
(
sin(h) sin

(
3h
2

))

)

, α5 = −
(

3 cot2
(
h
2

)

(2+4 cos(h))

)

.

By arranging, the Eq. (1) can be rewritten in the following form as

(u − μuxx )t = −(ux + εuux ). (8)

If both sides of the equation are multiplied by the weight functionW (x) and integrating
over the space interval [a, b], we get the following equation:

b∫
a
W (x)(ut − μuxxt ) dx = − b∫

a
W (x)(ux + εuux ) dx . (9)

Now, weight function and unknown functions in Eq. (9) are taken as cubic trigonometric
B-spline shape function and an approach for unknown function u(x, t) given in (6)
respectively. Thus, the fully discretized approximation form can be obtained over the
sub-element [xp, xp+1] as

p+2∑

j=p−1

[
xp+1

∫
xp

(
Ti Tj − μTi T

′′
j

)
dx

]

(δt ) j −
p+2∑

j=p−1

⎡

⎣
xp+1

∫
xp

⎛

⎝−Ti T
′
j − εTi

p+2∑

r=p−1

(Tr δr ) T
′
j

⎞

⎠ dx

⎤

⎦ δ j .

(10)

The approximation (10) can be written as
[
Ae − μBe)

]
δet − [−Ce − εDe(δe)

]
δe, p = 0, 1, . . . , N − 1 (11)

where

Ae
i j=

xp+1∫
xp

Ti Tj dx, Be
i j =

xp+1∫
xp

Ti T
′′
j dx, Ce

i j =
xp+1∫
xp

Ti T
′
j dx
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De
i j =

xp+1∫
xp

Ti Trδr T
′
j dx,

(
δe

) = (δp−1, . . . , δp+2)
T .

Combining contributions from all elements lead to the matrix equation

[A−μB] δt = [−C − εD] δ (12)

or

δt = Eδ (13)

where

E =[A−μB]−1[−C − εD],

δ=(δ−1, δ0, . . . , δN , δN+1)
T .

After initial vector

d0 = (δ0−1, . . . , δ0N−1, δ0N+1)

is found using the conditions (2) and (3), unknown vectors

dn+1 = (δn+1
−1 , . . . , δn+1

N , δn+1
N+1)

is found by using fourth order Runge Kutta method for a system of ODEs (13).

3 Propagation of Solitary Wave

The conservation quantities of the RLW equation

I1 = ∞∫
−∞

udx ≈ b∫
a
Udx,

I2 = ∞∫
−∞

(u2 + μ(ux )2)dx ≈ b∫
a
(U 2 + μ(Ux )

2)dx,

I3 = ∞∫
−∞

(
u3 + 3u2

)
dx ≈ b∫

a
(U 3 + 3U 2)dx .

(14)

corresponding to the mass, energy and momentum [14] will be calculated by approxi-
mately the trapezoid rule. Also error norm

L∞ = max
∣∣u p −Up

∣∣ (15)

and the order of convergence

order =
log

∣∣(u −U�tp

)
/
(
u −U�tp+1

)∣∣

log
∣∣�tp/�tp+1

∣∣ , (16)

will be calculated.
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The solitary wave solution of the RLW equation is

u(x, t) = 3csech2(k[x − x̃0 − vt]). (17)

Taking t = 0 in (17), the initial condition of the test problem is found as

u(x, 0) = 3csech2(k[x − x̃0]), (18)

where the velocity and amplitude of the solitarywave are v = 1+εc and 3c, respectively.

x̃0 is the point at which the peak of the initial wave and k =
√

εc
4μv

.

Three invariants for the RLW equation using the initial condition

u(x, 0) = 3csech2(k[x − x̃0]),
can be determined analytically as

I1 = ∞∫
−∞

udx = 6c
k ,

I2 = ∞∫
−∞

(u2 + μ(ux )2)dx = 12c2
k + 48kc2μ

5 ,

I3 = ∞∫
−∞

(
u3 + 3u2

)
dx = 36c2

k

(
1 + 4c

5

)
.

The error norm L∞, conservation quantities I1, I2, I3 and order of convergence for
the obtained algorithm over the space interval −80 ≤ x ≤ 120 by using the parameters
c = 0.1, h = 0.02 and various time steps are documented in Table 1. As clearly seen
from the Table 1 that the conservation constants are almost the same as the exact results,
the error norm decreases as the time step decreases, and the convergence rate is almost
4, which is the accuracy of the Runge-Kutta method.

Table 1. Invariants, error norm and order of convergences with the amplitude = 0.3

�t L∞ I1 I2 I3 Order

2 2.21 × 10−3 3.97994975 0.808728306 2.57327030 3.88

1 1.50 × 10−4 3.97994975 0.810400790 2.57880375 3.97

0.5 9.61 × 10−6 3.97994975 0.810460516 2.57900091 3.99

0.2 2.48 × 10−7 3.97994975 0.810462474 2.57900737 3.99

0.1 1.56 × 10−8 3.97994975 0.810462494 2.57900744 3.97

0.05 9.92 × 10−10 3.97994975 0.810462494 2.57900744

Exact 0 3.97994975 0.810462494 2.57900744

The propagation of the solitary wave simulation is performed throughout the interval
−80 ≤ x ≤ 120 up to time t = 20 using the parameters ε = μ = 1, x̃0 = 0, c = 0.1
and h = 0.02, �t = 0.05. Using these parameters, the state of the solitary wave at the
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time of the start and at certain times are drawn in Fig. 1 up to time t = 20. It is seen
from the figure that the solitary wave in the beginning is moving while maintaining its
shape and the solitary wave travels 22 units between t = 0 and t = 20 since the velocity
of the solitary wave is v = 1 + εc = 1.1.

Fig. 1. Solitary waves

For the proposed method, the graph of the absolute error is plotted at time t = 20
in Fig. 2 by using h = 0.02 and �t = 0.05. As can be seen from Fig. 2, the maximum
error comes from the middle of the space interval.

Fig. 2. Absolute error

Secondly, the error norm L∞, conservation quantities I3, I2, I3 and order of conver-
gence for the obtained algorithm over the space interval −80 ≤ x ≤ 120 by using the
parameters c = 1/3, h = 0.02 and various time steps are presented in Table 2.In this
case, the test problem is repeated for a solitary wave with greater amplitude 3c = 1.
According to the Table 2, the error norm decreases as the time step decreases, and as in
the previous table, the convergence rate is almost 4.

Table 2. Invariants, error norm and order of convergences with the amplitude = 1

�t L∞ I1 I2 I3 Order

2 7.92 × 10−2 8.00000000 5.142783585 18.4296950 3.62

1 6.44 × 10−3 8.00000000 5.572265396 20.1556551 3.86

0.5 4.44 × 10−4 8.00000000 5.599022280 20.2627554 3.98

0.2 1.16 × 10−5 8.00000000 5.599989708 20.2666255 4.00

0.1 7.29 × 10−7 8.00000000 5.599999677 20.2666654 3.99

0.05 4.57 × 10−8 8.00000000 5.599999990 20.2666666

Exact 0 8.00000000 5.6 20.2666667
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The propagation of the solitary wave simulation is performed throughout the interval
−80 ≤ x ≤ 120 up to time t = 20 using the parameters ε = μ = 1,x̃0 = 0, c = 1/3
and h = 0.02, �t = 0.05. Using these parameters, the state of the solitary wave at the
time of the start and at certain times are drawn in Fig. 3 up to time t = 20. It is seen from
the figure that the solitary wave in the beginning is moving while maintaining its shape
and the solitary wave travels 80/3 	 26.6 units between t = 0 and t = 20 since the
velocity of the solitary wave is v = 1 + εc = 4/3. It can be seen here that the solitary
wave moves faster because the amplitude of the solitary wave is larger.

Fig. 3. Solitary waves

The graph of the absolute error for the proposed method is plotted at time t = 20 in
Fig. 4 by using h = 0.02 and �t = 0.05. When the figure is examined, it can be seen
that the maximum error occurs again at the midpoints of the space interval.

Fig. 4. Absolute error.

Comparisons are made with several previous works listed in Table 3. According
to the table, when we compare our method with previously published methods, it is
possible to say that as the fourth order accurate Runge Kutta method is used for the time
discretization of our proposed method, better results are obtained.

Table 3. c =0.1, h = 0.125, �t = 0.1.

L∞ × 105 I1 I2 I3

Present 0.00437 3.9799497 0.8104625 2.5790074

[12] (CN) 8.78896 3.9799498 0.8104273 2.5790075

[12] (AM) 0.20615 3.9799498 0.8104625 2.5790074

[13] (CN) 8.78967 3.9799497 0.8104624 2.5790074

Exact 3.9799497 0.8104625 2.5790074
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4 Conclusion

In this study, the Galerkin method based on cubic trigonometric B-splines for space
discretization and fourth order Runge Kutta method for time discretization are presented
for the numerical solution of the RLW equation. The proposed method has been tested
on the propagation of a single solitary wave. To see the accuracy of the methods, the
error norms and the conservation quantities are documented according to the obtained
results. According to these results, it can be said that the proposed numerical solution
algorithm is effective in maintaining both the error norm and conservation constants, and
has high accuracy because the error is much smaller when compared to other studies.
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Abstract. In this article, by using the Bernoulli sub-equation, we
build the analytical traveling wave solution of the (2+1)-dimensional
Davey-Stewartson equation system. First of all, the imaginary (2+1)-
dimensional Davey-Stewatson system is transformed into a system of
nonlinear differential equations, After getting the resultant equation,
the homogeneous method of balance between the highest power and the
highest derivative of the ordinary differential equation is authorized and
finally the outcomes equations are solved in order to achieve some new
analytical solutions. Wolfram Mathematica Package is used for different
cases as well as for different values of constants to investigate the solu-
tions of the resulting system of a nonlinear differential equation. The
results of this study are shown in 2D and 3D dimensions graphically.

Keywords: Bernoulli sub-equation · Davey-Stewatson equations

1 Introduction

Progressing of soliton formation and its application in differential systems has
been remarkable in recent years. Disputing modes of solitary energy propagating
on behalf of a chain of other biological molecules has pulled forward interesting.
New attainment of topological, nontopological solitons as well as transformation
phenomena in polyacetylene chains with the action of an electrical field [1]. The
physical phenomena of nonlinear partial differential equations (NLPDEs) are
involved in many fields of physics, for example, plasma physics, optical fibers,
nonlinear optics, fluid mechanics, chemistry, biology, geochemistry as well as
engineering sciences [2].

Researchers have been reported an assorted numerical and analytical tech-
niques to seek solutions of NLPDEs for example a homotopy analysis method
[3,4], a finite forward difference method [5,6], homotopy perturbation method
[7,8], spectral methods [9], Adomian decomposition method [10,11], Adams-
Bashforth scheme [12], Adams-Bashforth-Moulton scheme [13], shooting scheme
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[14–17], the sine-Gordon expansion method [18,19], the inverse scattering method
[20], functional variable method [21], the Bernoulli sub-ODE function method
[22,23], the modified auxiliary expansion method [24], the modified exp (−ϕ (ξ))-
expansion function method [25–27], the tan(φ (ξ) /2)-expansion method [28,
29], G′/G-expansion method [30,31], the decomposition-Sumudu-like-integral-
transform method [32], the extended sinh-Gordon expansion method [33,34] and
the generalized exponential rational function method [35,36].

Scholars have been used different methods to find some kind of solution like
exact, analytical, numerical and semi-analytic solutions of Davey-Stewartson
equations for instance, the G′/G method [37], the improved tan(φ (ξ) /2)-
expansion method with generalized G′/G-expansion method [32], the rational
expansion method [38], time splitting spectral method [39], the Gram-type deter-
minant solution and Casorati-type determinant solution [40]. Also, different ana-
lytical approaches such as, the method of multiple scales combined with a quasi
discreteness approximation [41], sine-Gordon expansion method [42], the new
generalized G′/G-expansion method [43], the extended Weierstrass transforma-
tion method [44], the sine-cosine, tanh-coth and exp-function methods [45] and
the extended mapping method technique [46] have been developed to investigate
analytical solutions for the different types of NLPDEs.

In this study, some novel soliton solution of Davey and Stewartson equations
by using the Bernoulli sub-equation is investigated. The variable approach of the
traveling wave changes the NLPDEs into nonlinear ordinary differential equa-
tions and it is solved for different physical nonzero parameters. Outcomes cases
are present in 2D and 3D-dimensions.

2 Structures of Bernoulli Sub-equation Function Method

The mainly modified steps of this technique are [47,48]:
Let we have a nonlinear partial differential equation:

P (ux, ut, uxt, uxx, ...) = 0, (1)

and defining the traveling wave transformation

u(x, t) = q(η), η = x + γt, (2)

where γ �= 0. Applying Eq. (4) on Eq. (3) as a result, we get a nonlinear ordinary
differential equation:

N(q, q
′
, q

′′
, ...) = 0. (3)

Using a trial equation of solution as follows:

q (η) =
n∑

i=0

aiF
i = a0 + a1F + a2F

2 + ... + anFn, (4)

and
F

′
= bF + dFM , b �= 0, d �= 0,M ∈ R − {0, 1, 2}. (5)
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here F (η) is Bernoulli differential polynomial. Inserting Eq. (6) into Eq. (5) as
well as using Eq. (7) produces:

Ω(F (η)) = bkF (η)s + · · · + b1F (η) + b0 = 0, (6)

via the balance principle, the connection of n and M will be evaluate.
By taking all the coefficients of Ω(F (η)) to be zero, we get an algebraic

equations system:
bi = 0, i = 0, · · · , k, (7)

solving Eq. (9), we will find the values of a0, a1, ..., an.
Step 4. Solving Bernoulli Eq. (7), two cases are observed depending on the

values of b and d:

F (η) =
[−d

b
+

E

eb(M−1)η

] 1
1−M

, b �= d, (8)

F (η) =

⎡

⎣
(E − 1) + (E + 1) tanh

(
b(1−M)η

2

)

1 − tanh
(

b(1−M)η
2

)

⎤

⎦

1
1−M

, b = d,E ∈ R. (9)

Where E is the non-zero constant of integration, with the help of Mathematical
packages, we gain the solutions to Eq. (5), using a complete polynomial discrim-
ination system. Also, all the solutions gained in this method are plotted and the
suitable parameter values on (1+1)-dimensional surfaces of solutions are taken
into account.

3 The (2+1)-Dimensional Davey-Stewartson Equations

In this article, the Davey-Stewartson equations in dimensional [49,50] are con-
sidered

iφt +
1
2
σ2

(
φxx + σ2φyy

)
+ λ|φ|2φ − φ ψx = 0, (10)

ψxx − σ2ψyy − 2λ
(

|φ|2
)

x
= 0, (11)

here φ (x, y, t) and ψ (x, y, t) represents the dependent variables while, x and y
are the independent variables axes as well as is represent a time-independent
variable. Also, σ and λ represent constant coefficients. First of all we convert
the (2+1)-dimensional imaginary Davey-Stewartson equations into a system of
nonlinear ODE to study and analyze its exact solutions.

Using the following transformation:

φ (x, y, t) = eiθu (ξ) , ψ (x, y, t) = v (ξ) , ξ = μ (x + y − ηt) , θ = κx + λy + βt.
(12)

where μ, η, κ, λ and β are real constants. Applying Eq. (12), the (2+1)-
dimensional Davey-Stewartson equations are changed to

μ2
(
1 − σ2 − 2σ4

)
u′′ − (

β + κ2σ2 + λ2
)
u − uv + κu3 = 0, (13)
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μ
(
η − 2κσ2 − 2λ

)
i u′ = 0, (14)

− μ2
(
1 − σ2

)
v

′′
+ 4κμ2

(
uu

′′
+ u

′2)
= 0. (15)

Integrating Eq. (15) twice with respect to ξ and taking the constant of integration
to be zero, one gets

v =
2κ

1 − σ2
u2 . (16)

Finding the close solution, we find from Eq. (14) that

η = 2κσ2 + 2λ. (17)

Now substituting Eq. (16) into Eq. (13), we get

μ2
(
1 − σ2

) (
1 − σ2 − 2σ4

)
u

′′ − (
1 − σ2

) (
β + κ2σ2 + λ2

)
u − κ

(
1 + σ2

)
u3 = 0.

(18)
Now to evaluate the balances between and, the relationship between and can
written

M = n + 1. (19)

Case 1. Using n = 2, M = 3 and then substituting them into Eq. (4) with using
Eq. (5), the following equations are obtained:

u = a0 + a1F + a2F
2, (20)

u
′
= a1bF + a1dF 3 + 2a2bF

2 + 2a2dF 4, (21)

u′′ = a1b
2F + 4a2b

2F 2 + 4a1bdF 3 + 12a2bdF 4 + 3a1d
2F 5 + 8a2d

2F 6, (22)

where a2 �= 0, b �= 0, d �= 0. Substituting Eqs. (20–22) into Eq. (18), a system of
algebraic equations are found. Inserting Eqs. (8) or (9) into a system of algebraic
equations, we can investigate the following solutions:

Case 1a. For a0 = bμ
√
2−6σ2+4σ4√

κ
, a1 = 0, a2 = 2dμ

√
2−6σ2+4σ4√

κ
, β = −λ2 −

κ2σ2 + 2b2μ2
(−1 + σ2 + 2σ4

)
, we get (Fig. 1)

φ (x, y, t) =
bμ

√
2 − 6σ2 + 4σ4ei(βt+κx+λy)

(
de2bμ(x+y−2(λ+κσ2)t) + bE

)

√
κ

(−de2bμ(x+y−2(λ+κσ2)t) + bE
) , (23)

ψ (x, y, t) = −
4b2μ2

(−1 + 2σ2
) (

de2bμ(x+y−2(λ+κσ2)t) + bE
)2

(
de2bμ(x+y−2(λ+κσ2)t) − bE

)2 . (24)

Case 1b. λ =
√−α + κ2, σ = i, we get (Fig. 2)

φ (x, y, t) =ei(βt+κx+λy)

⎛

⎝a0 +
a2

−d
b + Ee−2bξ

+
a1√

−d
b + Ee−2bξ

⎞

⎠ , (25)
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Fig. 1. 3D surfaces with its 2D figures of Eqs. (21) and (22) with values b = 1, d =
−1, E = 1, σ = 0.1, κ = 0.1, t = 0.5, μ = 0.1, λ = 1 and y = 2 for 2D surface.

Fig. 2. 3D surfaces with its 2D figures of Eqs. (23) and (24) with values b = 1, d =
−1, E = 0.1, κ = 2, a0 = 0.1, a2 = 0.1, a1 = 0.2, t = 0.5, μ = 0.1, α = −0.5 and y = 2
for 2D surface.

ψ (x, y, t) = κ

⎛

⎝a0 +
a2

−d
b + Ee−2bξ

+
a1√

−d
b + Ee−2bξ

⎞

⎠
2

. (26)

Case 2. If taking n = 3 and M = 4 in Eq. (4) with using Eq. (5), the following
equations are found:

u = a0 + a1F + a2F
2 + a3F

3, (27)

u′ = a1bF + 2a2bF
2 + 3a3bF

3 + a1dF 4 + 2a2dF 5 + 3a3dF 6, (28)

u′′ = a1b
2F + 4a2b

2F 2 + 9a3b
2F 3 + 5a1bdF 4 + 14a2bdF 5

+ 27a3bdF 6 + 4a1d
2F 7 + 10a2d

2F 8 + 18a3d
2F 9,

(29)

where a3 �= 0, b �= 0, d �= 0. putting Eqs. (27–29) into Eq. (18), a system of
algebraic equations is evaluated. Solving this system the following cases and
solutions have resulted:
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Case 2a. When a0 = −μ
√

β+λ2+κ2σ2
√
1−3σ2+2σ4

√
κ
√

μ2(−1+σ2+2σ4)
, a1 = 0, a2 = 0, a3 =

− 3dμ
√
2−6σ2+4σ4√

κ
, b =

√
2
√

β+λ2+κ2σ2

3
√

μ2(−1+σ2+2σ4)
, we obtain (Fig. 3)

φ (x, y, t) =ei(βt+κx+yλ)μ
√

B√
κ

(
− 3

√
2d

−d
b + Ee−3bξ

−
√

A√
μ2B

)
, (30)

ψ (x, y, t) = −
2
(
bE

√
A − de3bξ

(√
A − 3

√
2b

√
μ2 (−1 + σ2 + 2σ4)

))2

(de3bξ − bE)2 (1 + σ2)
, (31)

where A = β + λ2 + κ2σ2 and B = 1 − 3σ2 + 2σ4.

Fig. 3. 3D surfaces with its 2D figures of Eqs. (30) and (31) with values d = −1, E =
1, σ = 2, κ = 1, t = 1/2, μ = 0.1, α = 0.5, λ = 1 and y = 2 for 2D surface.

Case 2b. When a0 = −μ
√

β+λ2+κ2σ2
√
1−3σ2+2σ4

√
κ
√

μ2(−1+σ2+2σ4)
, a1 = 0, a2 = 0, a3 =

− 3dμ
√
2−6σ2+4σ4√

κ
, b =

√
2
√

β+λ2+κ2σ2

3
√

μ2(−1+σ2+2σ4)
, we obtain (Fig. 4)

φ (x, y, t) =ei(βt+κx+λy)

⎛

⎜⎜⎜⎝

a0 +
a3

−d
b + Ee−3bξ

+
a2

(−d
b + Ee−3bξ

)2/3
+

a1
(−d

b + Ee−3bξ
)1/3

⎞

⎟⎟⎟⎠ , (32)

ψ (x, y, t) = κ

(
a0 +

a3

− d
b

+ Ee−3bξ
+

a2(− d
b

+ Ee−3bξ
)2/3

+
a1(− d

b
+ Ee−3bξ

)1/3

)2

.

(33)
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Fig. 4. 3D surfaces with its 2D figures of Eqs. (32) and (33) with values b = 1, d =
−1, a0 = 0, a1 = 0.4, a2 = 0.1, a3 = 0.1, E = 1, t = 0.5, μ = 0.1, α = 0.5, λ = 2 and
y = 2 for 2D surface.

4 Conclusion

In this researcher, the Bernoulli sub-equation is used to find some novel solu-
tions of (2 + 1)-dimensional imaginary Davey-Stewartson equations with differ-
ent physical parameters by utilizing the Wolfram Mathematica package. These
methods with using computer-based symbolic computation utilized to construct
broad classes of soliton solutions of nonlinear differential equations that arise
in applied physics. Our resultant may appreciate and useful in some sciences
like mathematical physics, applied physics, and engineering in terms of nonlin-
ear science. Moreover, the method proposed in this paper, should be reliable,
effective, provide more solutions as well. These methods may be applied to other
nonlinear partial differential equations.
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Abstract. This work is concerned with magnetohydrodynamic (MHD)
stagnation point flow of third-grade fluid due to a stretching cylinder.
Thermal radiation effects are considered in the analysis of heat trans-
fer phenomenon. Joule heating and viscous dissipation effects are also
retained. The resulting nonlinear system is computed for the series solu-
tions. Influence of various physical parameters on the velocity and tem-
perature profiles are scrutinized graphically. Comparison between New-
tonian and third-grade fluids is made. Velocity and temperature profiles
in the presence/absence of stagnation point are discussed graphically.
Numerical values of skin friction and Nusselt number are also computed
and interpreted. The comparison is conducted between Newtonian and
third-grade fluids velocities in the presence of magnetohydrodynamic
over a flat plat for two cases (i) without stagnation point (ii) with stagna-
tion point. It is observed that in the presence of MHD, the velocity profile
is higher for third-grade fluid for both the cases. On the other hand it is
also examined that the velocity profile is higher for both Newtonian and
third-grade fluids with stagnation point.

Keywords: Viscous dissipation · Stagnation point · Thermal
radiation · Magnetohydrodynamics (MHD) · Third-grade fluid ·
Stretching cylinder

1 Introduction

The boundary layer theory has been effectively applied to non-Newtonian fluid
models and has gained a lot of attention during the last few decades. Such
flows play very important role in reducing the drag forces and increase the heat
transfer rate. The viscoelastic features of non-Newtonian fluids in general are
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classified by three categories namely the differential, rate and integral types.
The simplest subclass of differential type materials is second-grade. It should
be noted that second-grade fluid captures the normal stress effect whereas the
shear thinning and shear thickening properties even in steady flow situation can
be only analyzed by third-grade fluid. Aforesaid analysis with magnetohydrody-
namic phenomenon has ample applications in industries and technology. It has
many practical applications such as to design the MHD generators, accelerators,
cooling systems, geothermal energy extractions etc. Some relevant literature on
this topic can be surveyed through recent studies [1–16] and many few references
therein.

The thermal radiation effect has a pivotal role for controlling heat transfer
processes in polymer processing industry. The final product’s quality depends
on controlling heat factors to a certain extent. The design of several advanced
energy convection systems which function at high temperature are due to the
effects of thermal radiation in flow and heat transfer processes. Thermal radi-
ation occurs in these systems, due to the emission by the hot walls and the
working fluid. Its effects become more significant with the increase in the differ-
ence between the surface and the ambient temperature. Therefore, this proves
the fact that thermal radiation is indeed one of the vital factors in controlling
the heat transfer process. The knowledge of radiation heat transfer in the sys-
tem may even lead to a desired product with sought features. Hayat et al. [17]
reported the effect of thermal radiation on the boundary layer flow with heat
transfer in third grade fluid along a permeable stretching surface. Mushtaq et al.
[18] investigated the effect of thermal radiation on the two-dimensional incom-
pressible flow of upper-convected Maxwell (UCM) fluid and solved numerically
by the shooting method using a fourth-order Runge-Kutta integration technique.
Bhattacharyya et al. [19] analyzed the flow of micropolar fluid and heat transfer
past a porous shrinking surface with thermal radiation and get the dual solu-
tion for the several values of different parameters. Mukhopadhyay [20] examined
the boundary layer flow and heat transfer along a porous exponential stretching
surface in presence of a magnetic field and thermal radiation. Velocity slip and
thermal slip are taken into account and solved by shooting technique. Rashidi
et al. [21] reported the analytical solution of free convective heat and mass trans-
fer in a steady non-uniform magnetohydrodynamic fluid flow over a stretching
vertical surface embedded in a porous medium with thermal radiation effects.
Mukhopadhyay [22] is performed similarity analysis to study the structure of the
boundary layer stagnation point flow and heat transfer over a stretching plate
subject to suction with variable viscosity and thermal radiation. Heat transfer
of a steady, incompressible water based nanofluid flow over a stretching surface
in the presence of transverse magnetic field with thermal radiation and buoy-
ancy effect are numerically investigated by Rashidi et al. [23]. Chamkha et al.
[24] analyzed the problem of steady mixed convection boundary layer flow over
an isothermal vertical wedge embedded in a porous medium saturated with a
nanofluid and thermal radiation effects are also considered. Sheikholeslami et al.
[25] studied the effect of thermal radiation on magnetohydrodynamics nanofluid
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flow between two horizontal rotating plates. Seini and Makinde [26] have been
investigated the magnetohydrodynamic boundary layer flow due to exponential
stretching surface with radiation and chemical reaction.

Many researchers have been focused on stagnation point flow and heat trans-
fer along a stretching surface due to its widespread applications. Its applications
contain the flow over the tips of the submarines, rockets, oil ships and air crafts.
Bhattacharyya [27] examined the problem of unsteady boundary layer flow along
a shrinking/stretching surface in the region of stagnation point. Turkyilma-
zoglu and Pop [28] described the stagnation point flow of Jeffrey fluid over a
stretching/shrinking plate with parallel external flow. Nandy and Mahapatra
[29] analyzed influences of velocity slip and heat generation/absorption in MHD
flow and heat transfer over convectively heated stretching/shrinking surface in
the presence of nanoparticle fractions. The mixed convection stagnation point
flow of a non-Newtonian fluid along stretching surface with convective bound-
ary condition was reported by Hayat et al. [30]. Bhattacharyya [31] described
the stagnation point flow of Casson fluid over a shrinking/stretching sheet with
heat transfer. Rashidi and Freidoonimehr [32] studied the entropy generation
in MHD stagnation point flow through a porous medium. Bhattacharyya et al.
[33] investigated the reactive solute distribution for the laminar stagnation point
boundary layer flow past a stretching sheet subject to suction or blowing. Hayat
et al. [34] describe the boundary layer stagnation point flow of Jeffrey fluid near
a stretching plate in the presence of Soret and Dufour effects and melting heat
transfer.

It is clear from the previous study that proper attention has not been focused
to the boundary layer flow of non-Newtonian fluids by a stretching cylinder. So
our intention here is to analyze the heat transfer in MHD stagnation point flow of
third-grade fluid along a stretching cylinder. The analysis has been carried out in
the presence of thermal radiation and heat generation/absorption. The viscous
dissipation and Joule heating effects are also taken into account. Hence the
governing mathematical problems are solved for the convergent series solutions
by using analytical technique named as homotopy analysis method (HAM) [35–
41]. Nusselt number is computed. Graphical results and numerical values are
interpreted.

2 Mathematical Formulation

Consider magnetohydrodynamic stagnation point flow of an electrically conduct-
ing third-grade fluid due to a stretching cylinder with thermal radiation. Heat
transfer is analyzed in the presence of Joule heating and viscous dissipation
effects. Cylindrical coordinates are chosen in such a way that z−axis is along
the axis of stretching cylinder and r−axis normal to it (Fig. 1). Under the bound-
ary layer approximations (i.e, u = O (δ), r = O (δ), w = O (1) and z = O (1))
the laws of conservation of mass and momentum give

∂u

∂r
+

u

r
+

∂w

∂z
= 0, (1)
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Fig. 1. Schematic diagram of the problem.
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The subjected conditions can be mentioned as follows:

w (r, z) = Ww (z) =
W0z

l
, u (r, z) = 0, T (r, z) = T∞ + b

(z

l

)
, at r = R,

w (r, z) −→ We (z) =
W∞z

l
, T (r, z) −→ T∞, at r −→ ∞. (4)

In the above expressions u and w denote the velocity components in the r and
z directions respectively, (α∗

1, α∗
2 and β3) the fluid parameters, ν the kinematic

viscosity, ρ the density of fluid, W0 and W∞ are the reference velocities, l the
characteristic length, T and T∞ are the temperatures of the fluid and surround-
ing respectively, k the thermal conductivity of fluid, σ is the electrical conduc-
tivity, B0 is the applied magnetic field, σ∗ is the Stefan-Boltzmann constant, k∗

is the mean absorption coefficient, b is the dimensional constants, cp the specific
heat at constant pressure, qr is the radiative heat flux, Ww is stretching velocity
and W∞ is the free stream velocity.

We use

η =

√
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νl
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2R

)
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l
f
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r
f (η) , θ =
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, (5)

Incompressibility condition is identically satisfied and the Eqs. (2)–(4) can be
written as

(1 + 2γη) f ′′′ + A2 + 2γf ′′ − f ′2 + ff ′′ + α1

[
(1 + 2γη)

{
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(
f ′ − A

)2
= 0, (7)

f (0) = 0, f ′ (0) = 1, f ′ (∞) → A, θ(0) = 1, θ(∞) → 0, (8)

where γ is the curvature parameter, Re is the Reynolds number, M is the mag-
netic parameter, (α1, α2, β) are the fluid parameters, A is the ratio of velocities,
Rd is the radiation parameter, Pr is the Prandtl number and Ec is the Eckert
number. These parameters are defined as follows:
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cp (Tw − T∞)
. (9)
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The local skin friction coefficient is defined as

Cf =
τrz

ρU2
w

=
τrz|r = R

ρU2
w

1/2

Re
z

Cf =
[
f ′′ (0) + 3α1f

′′ (0) + 2β Re f ′′3 (0)
]
. (10)

The Nusselt number is given by

Nuz =
zqw

k (Tw − T∞)
= −

z
(
k + 16σ∗T 3

∞
3k1

)
∂T
∂y

∣∣∣
r = R

k (Tw − T∞)
−1/2

Re
z

Nuz = −
(

1 +
4
3
Rd

)
θ′(0), (11)

in which Rez = Wz
ν is the local Reynolds number.

3 Homotopic Solutions

The velocity and temperature can be expressed in the set of base functions
{

ηk exp (−nη)
∣∣ k ≥ 0, n ≥ 0

}
, (12)

can be expressed as follows

f (η) = a0
0,0 +

∞∑
n=0

∞∑
k=0

ak
m,nηk exp (−nη) , (13)

θ (η) =
∞∑

n=0

∞∑
k=0

bk
m,nηk exp (−nη) , (14)

where ak
m,n and bk

m,n are the coefficients. The initial guesses and linear operators
for the dimensionless momentum and energy equations are (f0, θ0) and (Lf ,Lθ).
The chosen initial guesses and linear operators are given by

f0(η) = Aη + (1 − A) (1 − exp (−η)) , (15)

θ0(η) = exp (−η) , (16)

Lf (f) =
d3f

dη3
− df

dη
, Lθ (θ) =

d2θ

dη2
− θ, (17)

satisfy the following properties

Lf [C1 + C2 exp (η) + C3 exp (−η)] = 0, (18)

Lθ [C4 exp (η) + C5 exp (−η)] = 0, (19)

where Ci(i = 1 − 5) depict the arbitrary constants.
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3.1 Zeroth Order Problems

The zeroth order problems are

(1 − p)Lf [f̂(η, p) − f0(η)] = p�fNf

[
f̂(η, p)

]
, (20)

f̂(η; p)
∣∣∣
η = 0

= 0,
∂f̂ ′(η; p)

∂η

∣∣∣∣∣
η = 0

= 1,
∂f̂ ′(η; p)

∂η

∣∣∣∣∣
η = ∞

= A, (21)

(1 − p)Lθ[θ̂(η, p) − θ0(η)] = p�θNθ

[
f̂(η, p), θ̂(η, p)

]
, (22)

θ̂(η; p)
∣∣∣
η = 0

= 1, θ̂(η; p)
∣∣∣
η = ∞

= 0, (23)

with non-linear operators Nf

[
f̂(η, p)

]
and Nθ

[
f̂(η, p), θ̂(η, p)

]
defined by

Nf

[
f̂(η; p)

]
= (1 + 2γη)

∂3f̂(η, p)

∂η3
+ A

2
+ 2γ

∂2f̂(η, p)

∂η2
−

(
∂f̂(η, p)

∂η

)2

+ f̂(η, p)
∂2f̂(η, p)

∂η2

+α1

{
(1 + 2γη)

(
2

∂f̂(η, p)

∂η

∂3f̂(η; q)

∂η3
− f̂(η, p)

∂4f̂(η, p)

∂η4
+ 3

(
∂2f̂(η, p)

∂η2

)2)

+γ

(
6

∂f̂(η, p)

∂η

∂2f̂(η, p)

∂η2
− 2f̂(η, p)

∂3f̂(η; q)

∂η3

)}

+α2

{
2 (1 + 2γη)

(
∂2f̂(η, p)

∂η2

)2

+γ

(
2

∂f̂(η, p)

∂η

∂2f̂(η, p)

∂η2
+ 2f̂(η, p)

∂3f̂(η; q)

∂η3

)}

+β Re

[
6 (1 + 2γη)

2

(
∂2f̂(η, p)

∂η2

)2
∂3f̂(η; q)

∂η3
+ 8γ (1 + 2γη)

(
∂2f̂(η, p)

∂η2

)3]

+M
2
sin

2
ψ

{
A − ∂f̂(η, p)

∂η

}
, (24)

Nθ

[
f̂(η; p), θ̂(η; p)

]
=

(
1 +

4

3
Rd

)
(1 + 2γη)

∂2θ̂(η; p)

∂η2
+ 2γ

(
1 +

4

3
Rd

)
∂θ̂(η; p)

∂η

+Pr Ec (1 + 2γη)

(
∂2f̂(η, p)

∂η2

)2

+ Pr

(
∂f̂(η; q)

∂η
θ̂(η; p) − f̂(η, p)

∂θ̂(η; p)

∂η

)

+α1 Pr Ec

[
2γf̂(η, p)

(
∂2f̂(η, p)

∂η2

)2

+ (1 + 2γη)
∂f̂(η; q)

∂η

(
∂2f̂(η, p)

∂η2

)2

− (1 + 2γη) f̂(η, p)
∂2f̂(η, p)

∂η2

∂3f̂(η; q)

∂η3

]
+ β Pr Ec Re (1 + 2γη)

(
∂2f̂(η; q)

∂η2

)4

+M
2
sin

2
ψ Pr Ec

[
∂f̂(η; q)

∂η
− A

]2

, (25)

in which p ∈ [0, 1] indicates the embedding parameter and �f and �θ the nonzero
auxiliary parameters.
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3.2 mth-Order Deformation Problems

The mth-order deformation problems are

Lf [fm (η) − χmfm−1 (η)] = �fRf
m (η) , (26)

f̂m(η; p)
∣∣∣
η = 0

= 0,
∂f̂ ′

m(η; p)
∂η

∣∣∣∣∣
η = 0

= 0,
∂f̂ ′

m(η; p)
∂η

∣∣∣∣∣
η = ∞

= 0, (27)

Lθ [θm (η) − χmθm−1 (η)] = �θRθ
m (η) , (28)

θ̂m(η; p)
∣∣∣
η = 0

= 0, θ̂m(η; p)
∣∣∣
η = ∞

= 0, (29)

Rf
m (η) = (1 + 2γη) f ′′′

m−1 (η) + A2 (1− χm) + 2γf ′′
m−1 +

m−1∑
k=0

(
fm−1−kf ′′

k − f ′
m−1−kf ′

k

)

+

m−1∑
k=0

α1

[
(1 + 2γη)

(
2f ′

m−1−kf ′′′
k − fm−1−kf

(iv)
k + 3f ′′

m−1−kf ′′
k

)

+ γ
(
6f ′

m−1−kf ′′
k − 2fm−1−kf ′′′

k

) ]
+ α2

m−1∑
k=0

[
2 (1 + 2γη) f ′′

m−1−kf ′′
k

+ γ
(
2f ′

m−1−kf ′′
k + 2fm−1−kf ′′′

k

)]
+ β Re

m−1∑
k=0

k∑
l=0

[
6 (1 + 2γη)2 f ′′

m−1−kf ′′
k−lf

′′′
l

+8γ (1 + 2γη) f ′′
m−1−kf ′′

k−lf
′′
l

]
+ M2 sin2 ψ

[
A (1− χm)− f ′

m−1

]
, (30)

Rθ
m (η) =

(
1 +

4

3
Rd

)
(1 + 2γη) θ

′′
m−1 + 2γ

(
1 +

4

3
Rd

)
θ

′
m−1 + PrEc (1 + 2γη)

m−1∑
k=0

f
′′
m−1−kf

′′
k

+Pr

m−1∑
k=0

(
f

′
m−1−kθk − fm−1−kθ

′
k

)
+ α1 PrEc

[
2γ

m−1∑
k=0

fm−1−k

k∑
l=0

f
′′
k−lf

′′
l

+(1 + 2γη)

m−1∑
k=0

f
′
m−1−k

k∑
l=0

f
′′
k−lf

′′
l − (1 + 2γη)

m−1∑
k=0

fm−1−k

k∑
l=0

f
′′
k−lf

′′′
l

]

+β PrEc Re (1 + 2γη)

m−1∑
k=0

f
′′
m−1−k

k∑
l=0

f
′′
k−l

l∑
s=0

f
′′
l−sf

′′
s

+M
2
sin

2
ψ PrEc

[
m−1∑
k=0

f
′
m−1−kf

′
k − 2Af

′
m−1 − A

2
(1 − χm)

]
(31)

χm =
{

0, m ≤ 1
1, m > 1 . (32)

Setting p = 0 and p = 1 then one has

f̂(η; 0) = f0(η), f̂(η; 1) = f(η), (33)

θ̂(η; 0) = θ0(η), θ̂(η; 1) = θ(η). (34)
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When p varies from 0 to 1, f̂(η; p) and θ̂(η; p) deforms from the initial solutions
f0(η) and θ0(η) to the final solutions f(η) and θ(η), respectively. Taylor’s series
leads to the following relations

f̂(η; p) = f0(η) +
∞∑

m=1

fm(η)pm, fm(η) =
1
m!

∂mf̂(η; p)
∂pm

∣∣∣∣∣
p=0

, (35)

θ̂(η; p) = θ0(η) +
∞∑

m=1

θm(η)pm, θm(η) =
1
m!

∂mθ̂(η; p)
∂pm

∣∣∣∣∣
p=0

. (36)

The auxiliary parameters are properly chosen such that the series solutions (35)
and (36) converge at p = 1. Therefore

f(η) = f0(η) +
∞∑

m=1

fm(η), (37)

θ(η) = θ0(η) +
∞∑

m=1

θm(η). (38)

Denoting the special solutions by (f∗
m, θ∗

m) one can express the general solutions
(fm, θm) of Eqs. (26)–(29) as follows:

fm(η) = f∗
m(η) + C1 + C2 exp (η) + C3 exp (−η) , (39)

θm(η) = θ∗
m(η) + C4 exp (η) + C5 exp (−η) , (40)

in which the constants Ci(i = 1 − 5) in veiw of the conditions (27) and (29) are

C2 = 0 = C4, C3 =
∂f∗

m(η)
∂η

∣∣∣∣
η = 0

, C1 = −C3 − f∗
m(0), C5 = −θ∗

m(0). (41)

4 Convergence

To get the series solutions through homotopy analysis method it is important
to check the convergence of the desired solutions. Such solutions involve the
auxiliary parameters �f and �θ. These parameters are useful in adjusting and
controlling the convergence region. Therefore �f and �θ−curves are plotted for
16th order of approximation in Fig. 2 for the suitable ranges of the auxiliary
parameters. Here the suitable values for �f and �θ are −1.3 ≤ �f < −0.4
and −0.9 ≤ �θ < −0.2. Furthermore, convergence of series solution is checked
and shown in Table 1. Note that the series solutions converge at 11th order of
approximation up to 5 decimal places for the momentum equation and 12th
order of approximation is enough for the temperature equation.
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Fig. 2. �−curves of the functions f(η) and θ (η) at 16th order of approximation.

Table 1. Convergence of homotopy solutions when α1 = α2 = β = 0.1, M = 0.5,
γ = A = Re = 0.2, ψ = π/4, Rd = 0.3, Pr = 2 and Ec = 0.5.

Order of approximation −f ′′ (0) −θ′(0)

1 0.98019 1.0966

2 1.06910 1.0973

5 1.13430 1.0458

11 1.13740 1.0316

12 1.13740 1.0315

14 1.13740 1.0315

50 1.13740 1.0315

5 Results and Discussion

This section illustrates the impact of physical parameters. The results are dis-
played graphically in the Figs. 3, 4, 5, 6, 7, 8, 9, 10 and 11. The conclusions for
flow field and other physical quantities of interest are drawn. The numerical val-
ues of the skin friction coefficient and local Nusselt number are presented in the
Tables 2 and 3 for various values of α1, α2, β, M , Re, Rd, Pr and Ec. Fig. 3(a)
displays the effect of magnetic parameter M on velocity profile f ′ (η) by keeping
other physical parameter fixed. It is of interest to note that the velocity pro-
file decreases with an increase in magnetic parameter M whereas the boundary
layer thickness reduces. Clearly by increasing magnetic force, the Lorentz force
increases which causes resistance in the fluid flow and consequently the veloc-
ity profile decreases. Fig. 3(b) shows the effect of third grade parameter β on
the velocity profile f ′ (η). Here it is examined that the velocity increases near
the wall for larger values of β whereas it becomes vanishes away from the wall.
Figs. 4(a) and (b) illustrate the behavior of second grade parameters α1 and α2
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on the velocity profile f ′ (η) respectively. It is observed that the velocity profile
f ′ (η) is an increasing function of α1. The velocity profile also increases when
α2 is increased (see Fig. 4(b)). In fact the second grade parameter are directly
proportional to the viscosity and by increasing the second grade parameter the
viscosity of the fluid decreases and as a result velocity profile increased. The
behavior of Reynolds number Re on velocity profile f ′ (η) is shown in Fig. 5(a)
It is observed that the velocity profile f ′ (η) decreases with an increase in Reynold
number Re. Physically the Reynolds number is defined as the ratio of inertial
forces to viscous forces and for larger values of Reynold number the inertial
forces are dominant as compare to the viscous forces. Consequently the velocity
profile increases. Fig. 5(b) is sketched for the influence of angle of inclination
ψ on the velocity profile f ′ (η). The velocity profile and the thermal bound-
ary layer decreases for larger values of ψ. In fact due to the larger values of
angle of inclination the Lorentz forces are dominant and therefore the velocity
profile decreases. The influence of curvature parameter γ is shown in Fig. 6(a)
It is revealed that velocity and boundary layer thickness increase when curva-
ture parameter γ increases. In fact with the increase of curvature parameter,
the radius of curvature decreases which reduces the contact area of the cylinder
with the fluid. Therefore resistance offered by the surface decreases and velocity
of the fluid increases. The behavior of A on velocity profile f ′ (η) is shown in
Fig. 6(b) It is analyzed that velocity profile f ′ (η) increases for both the cases
A > 1 and A < 1. However the boundary layers in these two cases have opposite
behavior. It is noticed that there is no boundary layer for A = 1.

Figure 7(a) is sketched for the behavior of angle of inclination ψ on temper-
ature field θ (η). It is clear from the Fig. that temperature profile increases with
an increase in angle of inclination ψ. Because Lorentz force increases with an
increase in angle of inclination which is a resistive force. Hence more heat is pro-
duced due to the resistive forces. Therefore temperature profile θ (η) increases.
Fig. 7(b) portrays the effects of curvature parameter γ on the temperature profile
θ (η). It is depicted that temperature profile shows merging behavior near the
surface of cylinder while it increases away from the cylinder when 0.5 < η < 6
and become vanish when η ≥ 6. The thermal boundary layer thickness increase
with an increase in curvature parameter γ. The influence of ratio parameter A is
analyzed in the Fig. 8(a) It is observed that temperature and thermal boundary
layer thickness decrease for larger values of A. The effects of thermal radiation
parameter Rd on temperature distribution θ (η) is shown in Fig. 8(b). Temper-
ature and thermal boundary layer thickness increase when radiation parameter
is increased. It is due the reason that with the increase of thermal radiation
parameter the mean absorption coefficient decreases. This leads to enhancement
of temperature profile. Fig. 9(a) is plotted to see the variation of Prandtl num-
ber Pr on the temperature field θ (η). It is revealed that both the temperature
and thermal boundary layer thickness are increased for smaller values of Pr.
Thermal diffusivity decreases with an increase in Prandtl number consequently
temperature field decreases. Fluids with high Prandtl number have low thermal
diffusivity and fluids subject to low Prandtl number have high Prandtl number.
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Fig. 3. (a) Influence of M on f ′(η) and (b) Influence of β on f ′(η).

Fig. 4. (a) Influence of α1 on f ′ (η) and (b) Influence of α2 on f ′ (η).

We displayed the temperature field for various values of Eckert number Ec by
keeping other parameters fixed in Fig. 9(b). The effect of Eckert number is to
increase the temperature boundary layer thickness due to the frictional heating.
Fig. 10(a) shows the comparison of Newtonian, second-grade and third-grade
fluids velocities over a cylinder in the presence of magnetohydrodynamic. It is
analyzed that the velocity for third-grade fluid is higher than the Newtonian and
second-grade fluid. Further the momentum boundary layer thickness is higher
for third-grade fluid. Fig. 10(b) is sketched to see the comparison of Newtonian,
second-grade and third-grade fluids velocities over a cylinder in the absence
of magnetohydrodynamic. It is analyzed that the velocity for third-grade fluid
is higher than the Newtonian and second-grade fluid. Further the momentum
boundary layer thickness is higher for third-grade fluid. Comparison between
Newtonian and third-grade fluids velocities with magnetohydrodynamic over a
cylinder is shown in Fig. 11(a) for two cases (i) without stagnation point (ii) with
stagnation point. It is depicted that in the presence of magnetohydrodynamic,
the velocity profile is higher for third-grade fluid for both the cases. Further it is
also noted that the velocity profile is higher for both Newtonian and third-grade
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fluids in the presence of stagnation point. Fig. 11(b) is drawn for the comparison
between Newtonian and third-grade fluids velocities in the presence of magneto-
hydrodynamic over a flat plat for two cases (i) without stagnation point (ii) with
stagnation point. It is noted that in the presence of MHD, the velocity profile
is higher for third-grade fluid for both the cases. On the other hand it is also
examined that the velocity profile is higher for both Newtonian and third-grade
fluids with stagnation point. Table 2 shows the impact of various parameters
on skin friction coefficient. It is observed that skin friction coefficient increases
with the increase of curvature parameter γ, magnetic parameter M , third-grade
parameter β, second-grade parameter α1, Reynold’s number Re and angle of
inclination ψ while it decreases with the increase of second-grade parameter α2

and ratio parameter A. Hence in order to reduce the value of skin friction coef-
ficient which is very useful for industrial applications, one needs to reduce the
radius of cylinder and decrease magnetic parameter M , third-grade parameter
β, second-grade parameter α1, Reynold’s number Re and angle of inclination
ψ. Table 3 shows the behavior of various parameters on local Nusselt number.
It is examined that local Nusselt number increases with the increase of fluid
parameter (α1, α2, β), Reynold’s number Re, radiation parameter Rd, stagna-
tion parameter A and Prandtl number Pr while it decreases with the increase of
magnetic parameter M , curvature parameter γ, Eckert number Ec and angle of
inclination ψ. Therefore higher values of fluid parameter (α1, α2, β), Reynold’s
number Re, radiation parameter Rd, stagnation parameter A and Prandtl num-
ber Pr and small values of M , γ, Ec and ψ can be used to increase the rate of
heat transfer.

Fig. 5. (a) Influence of Re on f ′ (η) . (b) Influence of ψ on f ′ (η) .
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Fig. 6. (a) Influence of γ on f ′ (η) . (b) Influence of A on f ′ (η) .

Fig. 7. (a) Influence of ψ on θ (η) . (b)Influence of γ on θ (η) .

Fig. 8. (a) Influence of A on θ (η) . (b) Influence of Rd on θ (η) .
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Fig. 9. (a) Influence of Pr on θ (η) . (b) Influence of Ec on θ (η) .

Fig. 10. (a) Comparison of velocity profiles for Newtonian, second-grade and third-
grade fluids in the presence of MHD. (b)Comparison of velocity profiles for Newtonian,
second-grade and third-grade fluids in the absence of MHD.

Fig. 11. (a) Comparison of velocity profiles for Newtonian and third-grade fluids for
cylinder, (b) Comparison of velocity profiles for Newtonian and third-grade fluids for
plate.



Radiative MHD Flow of Third-Grade Fluid Towards a Stretched Cylinder 181

Table 2. Numerical values of skin friction coefficients Re
1/2
x Cf for different values of

physical parameters

α1 α2 β M Re γ ψ A −Re
1/2
x Cf

0.0 0.1 0.1 0.5 0.2 0.2 π/4 0.2 1.4029

0.1 1.5374

0.2 1.6550

0.1 0.0 0.1 0.5 0.2 0.2 π/4 0.2 1.6491

0.1 1.5374

0.2 1.4408

0.1 0.1 β0.0 0.5 0.2 0.2 π/4 0.2 1.5252

0.1 1.5374

0.2 1.5487

0.1 0.1 0.1 M0.3 0.2 0.2 π/4 0.2 1.5080

0.5 1.5374

0.7 1.5803

0.1 0.1 0.1 0.5 0.0Re 0.2 π/4 0.2 1.5252

0.1 1.5314

0.2 1.5374

0.1 0.1 0.1 0.5 0.2 0.0γ π/4 0.2 1.0228

0.1 1.2676

0.2 1.5374

0.1 0.1 0.1 0.5 0.2 0.2 0 0.2 1.4910

π/4 1.5374

π/2 1.5820

0.1 0.1 0.1 0.5 0.2 0.2 π/4 0.0 1.6733

0.1 1.6200

0.2 1.5374
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Table 3. Numerical values of Nusselt number Re
−1/2
x Nux for different values of phys-

ical parameters

α1 α2 β M Re Rd γ ψ A Pr Ec Re
−1/2
x Nux

0.0 0.1 0.1 0.5 0.2 0.3 0.2 π/4 0.2 2 0.5 1.3945

0.1 1.4440

0.2 1.4819

0.1 0.0 0.1 0.5 0.2 0.3 0.2 π/4 0.2 2 0.5 1.3860

0.1 1.4440

0.2 1.4957

0.1 0.1 0.0 0.5 0.2 0.3 0.2 π/4 0.2 2 0.5 1.4354

0.1 1.4440

0.2 1.4516

0.1 0.1 0.1 0.3 0.2 0.3 0.2 π/4 0.2 2 0.5 1.4732

0.5 1.4440

0.7 1.4018

0.1 0.1 0.1 0.5 0.0 0.3 0.2 π/4 0.2 2 0.5 1.4354

0.1 1.4398

0.2 1.4440

0.1 0.1 0.1 0.5 0.2 0.0 0.2 π/4 0.2 2 0.5 1.2022

0.1 1.2876

0.3 1.4440

0.1 0.1 0.1 0.5 0.2 0.3 0.0 π/4 0.2 2 0.5 1.5721

0.1 1.5112

0.2 1.4440

0.1 0.1 0.1 0.5 0.2 0.3 0.2 0 0.2 2 0.5 1.4899

π/4 1.4440

π/2 1.4002

0.1 0.1 0.1 0.5 0.2 0.3 0.2 π/4 0.0 2 0.5 1.2297

0.1 1.3312

0.2 1.4440

0.1 0.1 0.1 0.5 0.2 0.3 0.2 π/4 0.2 1.0 0.5 1.0444

1.5 1.2635

2 1.4440

0.1 0.1 0.1 0.5 0.2 0.3 0.2 π/4 0.2 2 0.5 1.4440

0.7 1.2745

0.9 1.1050
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6 Concluding Remarks

The MHD stagnation point flow of third-grade fluid with heat transfer phe-
nomenon in the presence of thermal radiation over a stretching cylinder are
examined. Impact of involved parameters is seen. The following observations
hold:

• The effect of third grade parameterβ is to increase the boundary layer thickness.
• Velocity and temperature profiles shows merging behavior near the cylinder

surface and these increase away from the cylinder with an increase in curva-
ture parameter γ.

• Effect of fluid parameters and Reynolds number on boundary layer thickness
is similar in a qualitative sense.

• Velocity profile decreases while temperature profile increases for larger values
of angle of inclination ψ.

• With the increase in Pr the temperature profile and thermal boundary layer
thickness decrease.

• Minimum values of skin friction coefficient are achieved for small values of
Re, α1, β, M , γ, ψ and large values of α2 and A.

• Rate of heat transfer is higher for larger values of α1, α2, β, Re, Rd, A and Pr.
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Abstract. Countermeasures are recognized as a remarkable effort to
comprehend the computer virus problem and estimate its forthcom-
ing actions. Countermeasure-Competing (CMC) strategy is a conception
comprising viruses and countermeasures. The main point of this paper
is to probe a mixing propagation model of computer viruses and coun-
termeasures in the light of the newly fractional derivative introduced by
Atangana and Baleanu. The existence and uniqueness of solutions for
this fractionalized model is discussed by taking the fixed point theory
into consideration.. The efficacious belongings of this fractional model
are exhibited theoretically, confirmed by numerical graphics.

1 Introduction

With the immense usage of the Internet and increasing globalization throughout
the world, detrimental software has turned out to be a major threat in terms of
cyber security. Computer viruses are one of this harmful software that can mul-
tiply itself without any user interaction. An erupting virus in computer systems
may carry out numerous unwanted activities by damaging programs, reformat-
ting hard disks, limiting one’s access to data, stealing one’s personal information,
etc. Therefore the question how to restrain the abundance of computer viruses
on networks has become the centre of attention in both our work and lives.

In order to extensively investigate the propagation of computer viruses, math-
ematical models are required, and the analogy between the spreading behaviour
of computer viruses and biological viruses has led researchers to develop a mul-
titude of mathematical models in the world of computing [1–8]. Furthermore, it
is considered that countermeasures, which can also be referred to as new virus
definition files or software patches are extremely efficient ways to tackle the
diffusion of computer viruses. For this reason, Chen and Carley [9] presented
a novel approach named as CMC strategy (Countermeasure-Competing) where
c© Springer Nature Switzerland AG 2020
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they argue that countermeasures and computer viruses propagate at distinct
ratios, and computers equipped with countermeasures are permanently immu-
nized. Moreover, they demonstrated that CMC is a more powerful strategy for
dramatically reducing the extent of virus infection.

The concept of fractional calculus has recently come to be a subject of interest
in different disciplines due to its ability to reflect system behaviour more realis-
tically than integer order derivatives [10–18]. This is why there are several frac-
tional derivatives which may be regarded as conventional, such as the Riemann-
Liouville (RL) and Caputo operators, and these derivatives possess the memory
properties for real-world phenomena. However, the complexity of their numer-
ical process prompts the researchers to investigate new fractional derivatives
because of their singular points. In this context, Atangana-Baleanu [19] defined a
new non-singular derivative with Mittag-Leffler kernel named Atangana-Baleanu
derivative (AB). It follows from the studies latterly carried out that this new
operator has been employed in various complex problems, such as showing the
applicability of AB derivative to Rubella disease in [20]. Avcı et al. [21] consid-
ers an advection-diffusion equation on a line segment using Mittag-Leffler kernel
while Gomez-Aguilar [22] studies a nonlinear alcoholism model considering the
influence of Twitter by use of Liouville-Caputo and AB fractional derivatives.
For other notable studies, please see [23–30].

Based on the aforesaidCMCscheme,we focus on themixing propagationmodel
of computer viruses and countermeasures suggested by Zhu et al. [31]. In line with
our current objective, we will denominate two types of computers by taking their
connection to the Internet into consideration, and thereby refer to a computer
as whether internal or external. Each and every existing internal computer falls
into one of the three categories which we define below. The first category, which
comprises the internal computers that are not infected but susceptible to infec-
tion as a result of countermeasure deficiency, is susceptible internal computers (S-
computers). The second category, which encompasses the internal computers that
are already infected, is called infective internal computers (I-computers). And the
last category, which contains the internal computers that are not infected and also
have temporary immunity as a result of the existing countermeasures, is named C-
computers.We shall useS(t) to specify the averagenumber ofS-computer at time t,
and I(t) for the same number of I-computer at time t, and C(t) for the said number
of C-computer at time t. In order to prevent any confusion, we will refer to them
as S, I, and C, respectively. Linked with these notations the SICS (Susceptible-
Infected-Countermeasure-Susceptible)model is handledby the belowmannerwith
classical derivative [31]:

dS (t)
dt

= λ − b1SI − b2SC + d1I + d2C − φS,

dI (t)
dt

= b1SI − b2IC − (d1 + φ) I,

dC (t)
dt

= b2 (S + I) C − (d2 + φ) C. (1.1)
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with the initial condition (S (0) , I (0) , C (0)) ∈ R
3
+. In this model, there are

some assumptions in order to obtain a view of the mixing propagation attitudes
exhibited by computer viruses and countermeasures. These assumptions are:
Each and every external computer is susceptible; the rate at which an exter-
nal computer establishes internet connection is fixed on λ; the rate at which
an internal computer loses internet connection is fixed on φ; the probability
with which I -computers infect all S-computers is b1I(t) where b1 is a constant
that is positive; the probability with which all S-computers or I-computers gain
countermeasures is fixed at b2C(t) when b2 is a constant that is positive; the
probability with which the infection is eliminated in all I-computers is fixed at
d1; since countermeasures are rendered invalid, the probability with which all
C-computers become prone to loss of immunity remains fixed at d2.

To deeply understand the combined impact of computer viruses and coun-
termeasures, we study the above SICS model considering the AB derivative.
Section 2, we summarize some basic definitions and theorems of the AB fractional
derivative. In Sect. 3, we present the SICS model with AB fractional derivative
and prove detailed the existence and uniqueness conditions of the solutions using
the fixed point theory. Variable numerical results of our new model put in place
so as to demonstrate the effect of this fractional derivative in Sect. 4. In Sect. 5,
we finalize the study with the concluding remarks.

2 Preliminary Tools

In this section, we briefly give some basic definitions and properties of the AB
fractional derivative and present an Implicit Euler scheme to solve the so-called
problem.

Definition 1. Let a < b, g ∈ H1 (a, b) be a function and η ∈ [0, 1]. The
Atangana-Baleanu derivative in Caputo sense of order η of g is defined as [19]

ABC
a Dη

t [g (t)] =
F (η)
1 − η

t∫

a

g′ (x) Eη

[
−η

(t − x)η

1 − η

]
dx (1.2)

where F (η) is a normalization function with F (0) = F (1) = 1 and Eη is the
Mittag-Leffler function.

Definition 2. Let a < b, g ∈ H1 (a, b) be a function and η ∈ [0, 1]. The
Atangana-Baleanu derivative in Riemann-Liouville sense of order η of g is rep-
resented as [19]:

ABR
a Dη

t [g (t)] =
F (η)
1 − η

d

dt

t∫

a

g (x)Eη

[
−η

(t − x)η

1 − η

]
dx. (1.3)
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Definition 3. The fractional integral connected to the fractional derivative is
given as [19]:

AB
a Iη

t [g (t)] =
1 − η

F (η)
g (t) +

η

F (η) Γ (η)

t∫

a

g (y) (t − y)η−1
dy. (1.4)

Theorem 1. Let g be a continuous function on [a, b]. The following inequality
holds on [a, b] [19]:

∥∥ABR
0 Dη

t [g (t)]
∥∥ <

F (η)
1 − η

‖g (t)‖ , (1.5)

where ‖g (t)‖ = max
a≤t≤b

|g (t)|.

Theorem 2. The Atangana-Baleanu derivative in Caputo and RL sense fulfill
Lipschitz condition [19]:

∥∥ABC
0 Dη

t [g (t)] −ABC
0 Dη

t [h (t)]
∥∥ ≤ H ‖g (t) − h (t)‖ (1.6)

and ∥∥ABR
0 Dη

t [g (t)] −ABR
0 Dη

t [h (t)]
∥∥ ≤ H ‖g (t) − h (t)‖ . (1.7)

Theorem 3. [19] The fractional ordinary differential equation

ABC
a Dη

t [g (t)] = u (t)

possess a unique solution given by

g (t) =
1 − η

F (η)
u (t) +

η

F (η)Γ (η)

t∫

a

u (y) (t − y)η−1
dy.

In what follows, we describe the Fractional Euler Method introduced by Baleanu
et. al [32], which will be used for numerical simulations throughout the present
work. To express this method, we consider the nonlinear differential equation
with AB derivative in Caputo sense as follows:

{
ABC
0 Dη

t y (t) = f (t, y (t)) , 0 < t ≤ T < ∞.
y (0) = y0,

(1.8)

where 0 < η < 1. Let N is an arbitrary positive integer, we regard a uniform
mesh on the interval [0, T ] and the nodes 0, 1, ..., N where the time step size
h = T

N . yi means the numerical approximation of y (ti).
According to [32], the following nonlinear Volterra integral equation is formu-
lated

y(t) = y0 +
1 − η

F (η)
f(t, y(t)) +

η

Γ (η)F (η)

∫ t

0

f(τ, y(τ))dτ, (1.9)
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A descritization of the integral equation (1.9) using the Euler Method, gives

yi+1 = y0 +
1 − η

F (η)
f(ti+1, yi+1) +

ηhη
N

F (η)Γ (η + 1)

i∑
j=0

b
(η)
i+1,jf(tj , yj), (1.10)

where i = 0, ..., N − 1 and b
(η)
i+1,j ; j = 0, ..., i are computed from

b
(η)
i+1,j = − (i − j)η + (i − j + 1)η

.

The stability and the error estimation were proved elegantly in [32].

3 SICS Model with AB Derivative

To extend and amend this model, we formulate the Eq. (1.1) by substituting the
integer order time derivative by the fractional time derivative:

ABC
0 Dη

t (S (t)) = λ − b1SI − b2SC + d1I + d2C − φS,
ABC
0 Dη

t (I (t)) = b1SI − b2IC − (d1 + φ) I,
ABC
0 Dη

t (C (t)) = b2 (S + I)C − (d2 + φ)C. (1.11)

The related initial conditions are S (0) ≥ 0, I (0) ≥ 0, C (0) ≥ 0.

3.1 Existence and Uniqueness Analysis

Providing the solution of nonlinear equations is one of the hard subjects in
differential calculus. The fractional order model under consideration is nonlinear,
it can be impossible to find the exact solution of this kind systems. For this
reason, this part is devoted to investigate in detail the existence and uniqueness
of the solution for the model (1.11) taking into consideration fixed point theory.

Let P = C (J) × C (J) and C (J) be a Banach space of continuous R → R

valued functions on the interval J with the norm

‖(S, I, C)‖ = ‖S‖ + ‖I‖ + ‖C‖ ,

where ‖S‖ = sup {|S (t)| : t ∈ J}, ‖I‖ = sup {|I (t)| : t ∈ J}, ‖C‖ =
sup {|C (t)| : t ∈ N} . In order to simplify the Eq. (1.11), we edit this model
in the following expressions:

ABC
0 Dη

t (S (t)) = K1 (t, S) ,
ABC
0 Dη

t (I (t)) = K2 (t, I) ,
ABC
0 Dη

t (C (t)) = K3 (t, C) . (1.12)
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Using Theorem 3, the model (1.12) is of the following Volterra type integral
equation with Atangana-Baleanu integral:

S (t) − S (0) =
1 − η

F (η)
K1 (t, S) +

η

F (η) Γ (η)

t∫

0

(t − y)η−1 K1 (y, S) dy,

I (t) − I (0) =
1 − η

F (η)
K2 (t, I) +

η

F (η) Γ (η)

t∫

0

(t − y)η−1 K2 (y, I) dy,

C (t) − C (0) =
1 − η

F (η)
K3 (t, C) +

η

F (η) Γ (η)

t∫

0

(t − y)η−1 K3 (y, C) dy. (1.13)

Theorem 4. The kernel K1 satisfies the Lipschitz condition and contraction if
the below inequality holds:

0 ≤ b1ε2 + b2ε3 + φ < 1.

Proof. Let S and S1 be two functions, then we get

‖K1 (t, S) − K1 (t, S1)‖ = ‖−b1SI − b2SC − φS + b1S1I + b2S1C + φS1‖
≤ (b1 ‖I (t)‖ + b2 ‖C (t)‖ + φ) ‖S (t) − S1 (t)‖
≤ γ1 ‖S (t) − S1 (t)‖ . (1.14)

where γ1 = b1ε2 + b2ε3 + φ and ‖S (t)‖ ≤ ε1, ‖I (t)‖ ≤ ε2, ‖C (t)‖ ≤ ε3. Thus,
we get

‖K1 (t, S) − K1 (t, S1)‖ ≤ γ1 ‖S (t) − S1 (t)‖ . (1.15)

As a consequence, Lipschitz condition satisfied for K1 and because of 0 ≤ b1ε2 +
b2ε3 + φ < 1 implies K1 is also contraction.

Clearly, it can be shown that the other kernels K2 and K3 fulfil the Lipschitz
condition and contraction.

Here, we consider the following iterative formula:

Sn (t) =
1 − η

F (η)
K1 (t, Sn−1) +

η

F (η) Γ (η)

t∫

0

(t − y)η−1 K1 (y, Sn−1) dy,

In (t) =
1 − η

F (η)
K2 (t, In−1) +

η

F (η) Γ (η)

t∫

0

(t − y)η−1 K2 (y, In−1) dy,

Cn (t) =
1 − η

F (η)
K3 (t, Cn−1) +

η

F (η) Γ (η)

t∫

0

(t − y)η−1 K3 (y, Cn−1) dy. (1.16)
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with the initial conditions are

S0 (t) = S (0) , I0 (t) = I (0) , C0 (t) = C (0) .

The difference between the successive terms is of the following form:

Φn (t) = Sn (t) − Sn−1 (t) =
1 − η

F (η)
[K1 (t, Sn−1) − K1 (t, Sn−2)]

+
η

F (η)Γ (η)

t∫

0

(t − y)η−1 [K1 (y, Sn−1) − K1 (y, Sn−2)] dy,

ψn (t) = In (t) − In−1 (t) =
1 − η

F (η)
[K2 (t, In−1) − K2 (t, In−2)]

+
η

F (η)Γ (η)

t∫

0

(t − y)η−1 [K2 (y, In−1) − K2 (y, In−2)] dy,

ξn (t) = Cn (t) − Cn−1 (t) =
1 − η

F (η)
[K3 (t, Cn−1) − K3 (t, Cn−2)]

+
η

F (η)Γ (η)

t∫

0

(t − y)η−1 [K3 (y, Cn−1) − K3 (y, Cn−2)] dy, (1.17)

In the light of the above calculations, it is explicit that

Sn (t) =
n∑

k=1

Φk (t) ,

In (t) =
n∑

k=1

ψk (t) ,

Cn (t) =
n∑

k=1

ξk (t) . (1.18)

Performing the norm to both sides of the Eq. (1.17) and by using triangular
identity, we find

‖Φn (t)‖ = ‖Sn (t) − Sn−1 (t)‖
≤ 1 − η

F (η)
‖[K1 (t, Sn−1) − K1 (t, Sn−2)]‖

+
η

F (η) Γ (η)

∥∥∥∥∥∥
t∫

0

(t − y)η−1 [K1 (y, Sn−1) − K1 (y, Sn−2)] dy

∥∥∥∥∥∥ (1.19)



A Fractional Mixing Propagation Model of Computer Viruses 193

Because the kernel K1 ensures Lipschitz condition as seen in Eq. (1.15), we
assess

‖Φn (t)‖ = ‖Sn (t) − Sn−1 (t)‖
≤ 1 − η

F (η)
γ1 ‖Sn−1 − Sn−2‖

+
η

F (η)Γ (η)
γ1

t∫

0

(t − y)η−1 ‖Sn−1 − Sn−2‖ dy. (1.20)

and we own

‖Φn (t)‖ ≤ 1 − η

F (η)
γ1

∥∥Φ(n−1) (t)
∥∥

+
η

F (η) Γ (η)
γ1

t∫

0

(t − y)η−1 ∥∥Φ(n−1) (y)
∥∥ dy (1.21)

Using the same attitude we gain the followings:

‖ψn (t)‖ ≤ 1 − η

F (η)
γ2

∥∥ψ(n−1) (t)
∥∥

+
η

F (η) Γ (η)
γ2

t∫

0

(t − y)η−1 ∥∥ψ(n−1) (y)
∥∥ dy,

‖ξn (t)‖ ≤ 1 − η

F (η)
γ3

∥∥ξ(n−1) (t)
∥∥

+
η

F (η) Γ (η)
γ3

t∫

0

(t − y)η−1 ∥∥ξ(n−1) (y)
∥∥ dy. (1.22)

Considering the gained results, we state the below theorem.

Theorem 5. If we can find t0 such that

1 − η

F (η)
γi +

tη0
F (η)Γ (η)

γi < 1 for i = 1, 2, 3, (1.23)

then the fractional model in the Eq. (1.11) has a solution.
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Proof. With the aid of Eqs. (1.21) and (1.22), since the functions S (t), I (t)
and C (t) are bounded and carry out Lipschitz condition, we get the succeeding
relations as below:

‖Φn (t)‖ ≤ ‖Sn (0)‖
[
1 − η

F (η)
γ1 +

tη

F (η) Γ (η)
γ1

]n

,

‖ψn (t)‖ ≤ ‖In (0)‖
[
1 − η

F (η)
γ2 +

tη

F (η) Γ (η)
γ2

]n

,

‖ξn (t)‖ ≤ ‖Cn (0)‖
[
1 − η

F (η)
γ3 +

tη

F (η) Γ (η)
γ3

]n

. (1.24)

Hence, we prove the existence and continuity of the aforementioned solutions.
In order to show that the above functions are solutions of the model (1.11), we
suppose

S (t) − S (0) = Sn (t) − en (t) ,

I (t) − I (0) = In (t) − gn (t) ,

C (t) − C (0) = Cn (t) − hn (t) . (1.25)

Next, we find

‖en (t)‖ =
∥∥∥∥1 − η

F (η)
[K1 (t, S) − K1 (t, Sn−1)]

+
η

F (η)Γ (η)

t∫

0

(t − y)η−1 [K1 (y, S) − K1 (y, Sn−1)] dy

∥∥∥∥∥∥

≤ 1 − η

F (η)
‖K1 (t, S) − K1 (t, Sn−1)‖

+
η

F (η) Γ (η)

t∫

0

(t − y)η−1 ‖K1 (y, S) − K1 (y, Sn−1) dy‖

≤ 1 − η

F (η)
γ1 ‖S − Sn−1‖ +

tη

F (η) Γ (η)
γ1 ‖S − Sn−1‖ . (1.26)

By continuing this process, we obtain

‖en (t)‖ ≤
(

1 − η

F (η)
+

tη0
F (η) Γ (η)

)n+1

γn+1
1 a. (1.27)

As n approaches to infinity, we find ‖en (t)‖ → 0. Similarly, it can be seen
‖gn (t)‖ → 0, ‖hn (t)‖ → 0. Thus the proof is completed.
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It is an important matter to prove the uniqueness for the solutions of the
model (1.11). Let S1 (t), I1 (t) and C1 (t) be another solutions, then

S (t) − S1 (t) =
1 − η

F (η)
[K1 (t, S) − K1 (t, S1)]

+
η

F (η)Γ (η)

t∫

0

(t − y)η−1 [K1 (y, S) − K1 (y, S1)] dy(1.28)

Considering the fact that the kernel carries out the Lipschitz condition and
implementing the norm (1.28), we get

‖S (t) − S1 (t)‖ ≤ 1 − η

F (η)
γ1 ‖S (t) − S1 (t)‖ +

tη

F (η) Γ (η)
γ1 ‖S (t) − S1 (t)‖

(1.29)
This gives rise to

‖S (t) − S1 (t)‖
(

1 − 1 − η

F (η)
γ1 − tη

F (η)Γ (η)
γ1

)
≤ 0. (1.30)

If the inequality
(
1 − 1−η

F (η)γ1 − tη

F (η)Γ (η)γ1

)
> 0 holds, then ‖S (t) −

S1 (t)‖ = 0. Thus, we find

S (t) = S1 (t) .

Analogously, same results can be obtained for the other solutions I (t) and R (t).

4 Numerical Simulations and Discussion

In this section, benefiting from the above Euler approximation scheme, we give
several numerical examples substantiating our theoretical outcomes. For this
purpose, we choose the parameters λ = 1, b1 = 0.04, b2 = 0.001, d1 = 0.02, d2 =
0.02, φ = 0.1 and initial conditions S (0) = 3, I (0) = 1, C (0) = 5 as given in [31].

Fig. 1. Numerical simulations for the Eq. (1.11) at η = 0.9.
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Fig. 2. Numerical simulations for the Eq. (1.11) at η = 0.5 and η = 0.3, respectively.

Fig. 3. Numerical simulations for the Eq. (1.11) at η = 0.8, η = 0.6, η = 0.4 and
η = 0.2, respectively.

It is indicated in the figures that the number of S-computers, I-computers and
C-computers rise or fall depending on the change in the fractional order η. It can
be seen in Fig. 1 that the model remains under attack by infectious populations
I (t) for a long time, which is a critical behavior. Figure 2 together with the
order the η = 0.5 and η = 0.3 demonstrate that C(t) shows an increase while
the numbers of exposed computers S(t) and infective computers I(t) decrease
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in numbers as the fractional order alpha decreases. Furthermore, Fig. 3 suggests
that the model components’ attitude can be perceived by the varying numerical
data obtained from the fractional order η.

5 Concluding Remarks

Since blocking virus abundance plays a key role in computer security and the
undesired outcomes of viruses are highly evident, the question how to suppress
the avalanche of viruses has become a focus in both industrial and academic
societies. In this paper, we aim to deeply examine a SICS model with the concept
of ABC derivative assisting a memory effect.First of all, we propose a fractional
SICS model based on the model given in [31], and then prove the existence and
uniqueness conditions by benefiting from the fixed point theory. The simulation
results are illustrated according to different values η, and briefly commented
on. Due to the importance of averting infectious populations I (t) in the cyber
world, we observe that the number of I(t) decreases when the fractional order η
decreases; a great benefit of AB derivative. We expect our findings to be helpful
for tackling the virus problem troubling the world of computing and computer
users.
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Abstract. The shallow water equations provide a vast range of appli-
cations in the ocean, atmospheric modeling, and pneumatic computing,
which can also be utilized to modeling flows in rivers and coastal areas.
The Bernoulli sub-equation function method is utilized to build the ana-
lytic solutions of the (1+1) dimensional coupled Whitham-Broer-Kaup
(WBK) equations. This partial differential equation model is translated
into ordinary differential equations in order to construct new exponential
prototype structures. As a result, the novel results are obtained and then
plotted in 3D and 2D surfaces.

Keywords: Nonlinear Whitham-Broer-Kaup equation · Bernoulli
sub-equation method · Exponential solution

1 Introduction

Many of the observed phenomena have been presented using nonlinear partial
differential equations in engineering, applied mathematics and physics. NPDEs
are extensively used in various scientific fields to describe complex phenomena,
particularly in optical science, engineering, applied mathematics and physics. In
research papers various numeric and analytic techniques have been used to find
solutions of NLPDEs for example finite forward difference method [1,2], homo-
topy perturbation method [3], Adomian decomposition method [4,5], Adams-
Bashforth-Moulton method [6], spectral methods [7], homotopy analysis method
[8,9], shooting scheme [10–13], the sine-Gordon expansion method [14,15], the
inverse scattering method [16], the Bernoulli sub-ODE function method [17,18],
the modified auxiliary expansion method [19], the modified -expansion func-
tion method [20–22], the tan -expansion method [23,24], the extended sinh-
Gordon expansion method [25,26] and the generalized exponential rational func-
tion method [27,28]. A number of articles have already resolved the shallow water
equations numerically and analytically like the generally projective Riccati equa-
tion technique [29], a finite volume method [30], the variational iteration method
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[31,32], the Galerkin spectral method [33], second-order Runge-Kutta discon-
tinuous Galerkin scheme [34], Bäcklund transformation with Lax pairs [35], the
tanh-coth, Exp-function as well as Hirota’s methods [36]. In this paper, we inves-
tigate the (1+1)–dimensional coupled Whitham-Broer-Kaup shallow water via
the Bernoulli Sub-equation function method. Consider the nonlinear system of
shallow water as follows:

ut + uux + vx + βuxx = 0, (1)

vt + (uv)x + αuxxx − βvxx = 0, (2)

in which u (x, t) and v (x, t) represents the velocity and the total depth, which
could be utilized as a structure for water waves. If choosing α = 1 and β = 0
Eqs. (1) and (2) will change to the approximate long wave equations in shallow
water while, the same Eqs. will change to the modified Boussinesq equations if
we choose α = 0 and β = 0.5.

2 Structures of Bernoulli Sub-equation Function Method

The mainly modified steps of this technique are:
Let we have a nonlinear partial differential equation:

P (ux, ut, uxt, uxx, ...) = 0, (3)

and defining the traveling wave transformation

u(x, t) = q(η), η = x + γt, (4)

where γ �= 0. Applying Eq. (4) on Eq. (3) as a result, we get a nonlinear ordinary
differential equation:

N(q, q′, q′′, ...) = 0. (5)

Using a trial equation of solution as follows:

q (η) =
n∑

i=0

aiF
i = a0 + a1F + a2F

2 + ... + anFn, (6)

and
F

′
= bF + dFM , b �= 0, d �= 0,M ∈ R − {0, 1, 2}. (7)

here F (η) is Bernoulli differential polynomial. Inserting Eq. (6) into Eq. (5) as
well as using Eq. (7) produces:

Ω(F (η)) = bkF (η)s + · · · + b1F (η) + b0 = 0, (8)

via the balance principle,the connection of n and M will be evaluate.
By taking all the coefficients of Ω(F (η)) to be zero, we get an algebraic

equations system:
bi = 0, i = 0, · · · , k, (9)

solving Eq. (9), we will find the values of a0, a1, ..., an.
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Step 4. Solving Bernoulli Eq. (7), two cases are observed depending on the
values of b and d:

F (η) =
[−d

b
+

E

eb(M−1)η

] 1
1−M

, b �= d, (10)

F (η) =

⎡

⎣
(E − 1) + (E + 1) tanh

(
b(1−M)η

2

)

1 − tanh
(

b(1−M)η
2

)

⎤

⎦

1
1−M

, b = d,E ∈ R. (11)

Where E is the non-zero constant of integration, with the help of Mathematical
packages, we gain the solutions to Eq. (5), using a complete polynomial discrim-
ination system. Also, all the solutions gained in this method are plotted and the
suitable parameter values on (1+1)-dimensional surfaces of solutions are taken
into account.

3 Implementation of the BSEFM

Now we use the BSEFM on the shallow water equations to build novel solutions.
Letting the traveling wave transformation, present the transformation u(x, t) =
U(η), and v(x, t) = V (η), η = x+γt, in which γ is constant, the nonlinear system
of shallow water is converted into a system of NLODEs [37,38]

γU ′ + UU ′ + V ′ + βU ′′ = 0, (12)

γV ′ + (V U ′) + αU ′′′ − βV ′′ = 0. (13)

Integrating Eqs. (12, 13) and letting a integration constant to zero, we get

γU +
U2

2
+ V + βU ′ = 0, (14)

γV + V U + αU ′′ − βV ′ = 0. (15)

Taking derivative of Eq. (14) with respect to η and writing in terms of V ′, we
get

V ′ = −γU ′ − UU ′ − βU ′′, (16)

putting Eq. (16) into Eq. (15), the NLODE can write as:

2γ2U + 3γU2 + U3 − (β2 + α)U ′′ = 0. (17)

Balancing U ′′ and U3, the connection n and M yields,

M = n + 1.

Now by choosing the value of n, we get the value of M , Using these values in Eqs.
(6–7) and then inserting resultant Eqs. into Eq. (17), we discuss the following
cases:
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Case 1. Using n = 2, M = 3 and then substituting them into Eq. (6), the
following equations are obtained:

U = a0 + a1F + a2F
2, (18)

U
′
= a1bF + a1dF 3 + 2a2bF

2 + 2a2dF 4, (19)

U ′′ = a1b
2F + 4a2b

2F 2 + 4a1bdF 3 + 12a2bdF 4 + 3a1d
2F 5 + 8a2d

2F 6, (20)

where a2 �= 0, b �= 0, d �= 0. Substituting Eqs. (18–20) into Eq. (17), a system
of algebraic equations are found. Inserting Eqs. (10) or (11) into a system of
algebraic equations, we can investigate the following solutions (Figs. 1, 2):
Case 1a. For b �= d, a0 = −2, d = −

(
(a2b)

2

)
, α = 1

(4b2) − β2, γ = 1, we get

u(x, t) = −2 +
a2

a2
2 + Ee−2b(t+x)

, (21)

v(x, t) = −4a2Ee2b(t+x) (−1 + 2bβ)
(
2E + a2e2b(t+x)

)2 . (22)

Fig. 1. 3D surfaces with its 2D figures of Eqs. (21) and (22) with values M = 3, a2 =
4, d = 2, b = −1, β = 3, E = 0.25 and t = 2 for 2D surface.

Case 1b. b = (2d)
a2

, α = a2
2

(16d2) − β2, γ = 1, we get

u(x, t) =
a2

−a2
2 + Ee− 4d(t+x)

a2

, (23)

v(x, t) = −4Ee
4d(t+x)

a2 (a2 + 4dβ)
(
−2E + a2e

4d(t+x)
a2

)2 . (24)
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Fig. 2. 3D surfaces with its 2D figures of Eqs. (23) and (24) with values M = 3, a2 =
5, b = 2, d = 1, β = −2, E = −2 and t = 2 for 2D surface.

Case 2. If taking n = 3 and M = 4 in Eq. (6), the following equations are
found;

U = a0 + a1F + a2F
2 + a3F

3, (25)

U ′ = a1bF + 2a2bF
2 + 3a3bF

3 + a1dF 4 + 2a2dF 5 + 3a3dF 6, (26)

U ′′ = a1b
2F + 4a2b

2F 2 + 9a3b
2F 3 + 5a1bdF 4 + 14a2bdF 5

+ 27a3bdF 6 + 4a1d
2F 7 + 10a2d

2F 8 + 18a3d
2F 9,

(27)

where a3 �= 0, b �= 0, d �= 0. putting Eqs. (25–27) into Eq. (17), a system of
algebraic equations is evaluated. Solving this system the following coefficients
and solutions have resulted (Fig. 3):
Case 2a. When a0 = 0, a1 = 0, a3 = 2d

b , γ = 1, a2 = 0, α = 1
9b2 − β2, we obtain

u(x, t) =
4

−2 + Ee−3(t+x)
, (28)

v(x, t) = −4E (1 + 3β) e3(t+x)

(
E − 2e3(t+x)

)2 . (29)

Case 2b. When a0 = 0, a1 = 0, a2 = 0, b = 1

3
√

α+β2
, d = a3

6
√

α+β2
, γ = 1, we

obtain Fig. 4
u(x, t) =

a3

−2 + Ee−3(t+x)
, (30)

v(x, t) = −a3e3(t+x)
(
(−4 + a3) e3(t+x) + E (2 + 6β)

)

2
(
E − 2e3(t+x)

)2 . (31)
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Fig. 3. 3D surfaces with its 2D figures of Eqs. (28) and (29) with values M = 3, a2 =
4, d = 2, b = −1, β = 3, E = 0.25 and t = 2 for 2D surface.

Fig. 4. 3D surfaces with its 2D figures of Eqs. (30) and (31) with values M = 3, a2 =
4, d = 2, b = −1, β = 3, E = 0.25 and t = 2 for 2D surface.

4 Conclusion

Analytic solutions of Whitham-Broer-Kaup equations via utilizing the BSEFM
are presented. In comparison with the results obtained at paper [30], Eqs. (21)
and (23) are the same results, but the traveling wave solutions such as Eqs.
(22), (24), (28), and (29) extracted via utilizing BSEFM are novel exponential
functional solutions for Eqs. (1–2). Moreover, all solutions are inserted into Eqs.
(1–2) and they verify the system.
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the inverse scattering transform method for the generalised Vakhnenko equation,
Chaos. Solitons Fractals (2003). https://doi.org/10.1016/S0960-0779(02)00483-6

17. Baskonus, H.M., Bulut, H.: An effective schema for solving some nonlinear partial
differential equation arising in nonlinear physics. Open Phys. (2015). https://doi.
org/10.1515/phys-2015-0035

18. Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2+1)-
dimensional Boiti-Leon-Pempinelli systems in mathematical physics. Waves Ran-
dom Complex Media (2016). https://doi.org/10.1080/17455030.2015.1132860

19. Wei, G., Ismael, H.F., Bulut, H., Baskonus, H.M.: Instability modulation for the
(2+1)-dimension paraxial wave equation and its new optical soliton solutions in
Kerr media. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab4a50

https://doi.org/10.12732/ijpam.v107i2.1
https://doi.org/10.12732/ijpam.v107i2.1
https://doi.org/10.17654/FM020040533
https://doi.org/10.1515/math-2015-0052
https://doi.org/10.1371/journal.pone.0002559
https://doi.org/10.17654/HM015040847
https://doi.org/10.4283/JMAG.2018.23.4.491
https://doi.org/10.4283/JMAG.2018.23.4.491
https://doi.org/10.1016/j.ijleo.2016.10.135
https://doi.org/10.1007/s11082-016-0831-4
https://doi.org/10.1016/S0960-0779(02)00483-6
https://doi.org/10.1515/phys-2015-0035
https://doi.org/10.1515/phys-2015-0035
https://doi.org/10.1080/17455030.2015.1132860
https://doi.org/10.1088/1402-4896/ab4a50


Coupled Whitham-Broer-Kaup Equations 207

20. Ilhan, O.A., Bulut, H., Sulaiman, T.A., Baskonus, H.M.: Dynamic of solitary wave
solutions in some nonlinear pseudoparabolic models and Dodd-Bullough-Mikhailov
equation. Indian J. Phys. (2018). https://doi.org/10.1007/s12648-018-1187-3

21. Cattani, C., Sulaiman, T.A., Baskonus, H.M., Bulut, H.: Solitons in an inhomoge-
neous Murnaghan’s rod. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/
i2018-12085-y

22. Houwe, A., Hammouch, Z., Bienvenue, D., Nestor, S. and Betchewe, G.: Nonlinear
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Abstract. In this study, high order numerical solution of one dimensional homo-
geneous Telegraph equation is presented using quadratic B-spline Galerkin finite
element method. In the method, second and fourth order single step methods are
used for the time integration. Second order single step method is also known
as Crank Nicolson method. The numerical example is studied to illustrate the
accuracy and the efficiency of the method.

Keywords: Quadratic B-spline · Galerkin method · Homogeneous Telegraph
equation

1 Introduction

One dimensional homogeneous Telegraph equation arises in the study of propagation
of electrical signals in a cable of transmission line and wave phenomena [1, 2]. Various
numerical techniques havebeendeveloped and compared for solving the onedimensional
Telegraph equation (see [3, 4] and referenced in). In the next section, after the time
discretization of the homogeneous Telegraph equation is performed by using higher
accurate finite difference method, a finite element space discretization is used to obtain
a system of algebraic equation. In the numerical experiment section, proposed methods
are tested for the test problem and a summary of main findings of the work is presented
in the last section. While the numerical solutions of partial differential equations are
investigated, finite difference or finite element method is frequently used. While the
time discretization of such equations is done, generally Crank Nicolson method having
second order accuracy is used. The aim of this study is to see how the results change
when a method with an accuracy of 4 is used instead of the Crank Nicolson method for
the numerical solution of the homogeneous Telegraph equation.

We consider the following one dimensional homogeneous Telegraph equation

utt + 2αut + β2u − uxx = 0 (1)

© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-39112-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39112-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-39112-6_15


210 D. Irk and E. Kirli

with the boundary conditions

u(a, t) = g1(t), u(b, t) = g2(t), t ∈ (0, T ] (2)

and initial conditions

u(x, 0) = f1(x), a ≤ x ≤ b
ut (x, 0) = f2(x), a ≤ x ≤ b

(3)

in a restricted solution domain over an space/time interval [a, b] × [0, T ].

2 Application of the Method

The homogeneous Telegraph equation can be converted to the following system by
standard change of variables

ut = v,

vt = uxx − 2αv − β2u. (4)

The following one step method will be used for time discretization of the Eq. (4)

un+1 = un + θ1u
n+1
t + θ2unt + θ3u

n+1
t t + θ4untt ,

vn+1 = vn + θ1v
n+1
t + θ2v

n
t + θ3v

n+1
t t + θ4v

n
tt .

(5)

When

θ1 = θ2 = �t

2
, θ3 = θ4 = 0,

the method (5) is of order 2 known as Crank-Nicolson method (M1). When

θ1 = θ2 = �t

2
, θ3 = − (�t)2

12
, θ4 = (�t)2

12
,

the method (5) is of order 4 (M2). Using (4) in (5), we have

(
1 + θ3β

2
)
un+1 + (2αθ3 − θ1) vn+1 − θ3(uxx )

n+1 =
(
1 − θ4β

2
)
un + (−2αθ4 + θ2) vn + θ4(uxx )

n

(6)

and

(
β2θ1 − 2αβ2θ3

)
un+1 +

(
1 + 2αθ1 + β2θ3 − 4α2θ3

)
vn+1 + (−θ1 + 2αθ3) u

n+1
xx − θ3v

n+1
xx =(

−β2θ2 + 2αβ2θ4

)
un +

(
1 − 2αθ2 − β2θ4 + 4α2θ4

)
vn + (θ2 − 2αθ4) u

n
xx + θ4v

n
xx .

(7)

When making calculations, the space-time plane [a, b] × [0, T ] will be discretized
by grids with �t and h. Thus,

u(xm, tn) = unm,

v(xm, tn) = vnm,
m = 0, 1, . . . , N ; n = 0, 1, 2, . . .
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where xm = a+mh, tn = n�t , will be used for the exact solution at the points (xm, tn).
Un
m and V n

m will be used for the approximate solutions. The space interval [a, b] will be
divided into equal length N sub-interval as

a = x0 < x1 < . . . < xN−1 < xN = b.

Then the quadratic B-spline functions are defined at these knots as

Tm(x) = 1

h2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(xm+2 − x)2 − 3(xm+1 − x)2

+ 3(xm − x)2,
xm−1 ≤ x < xm

(xm+2 − x)2 − 3(xm+1 − x)2, xm ≤ x < xm+1

(xm+2 − x)2, xm+1 ≤ x < xm+2

0, otherwise.

(8)

Over the problem domain, the approximate solutions U (x, t) and V (x, t) to the
exact solutions u(x, t) and v(x, t) can be written as a combination of the quadratic
B-splines

U (x, t) =
N∑

j=−1

Tj (x)δ j (t),

V (x, t) =
N∑

j=−1

Tj (x)ρ j (t) (9)

where δ j andρ j are time dependent unknown parameters. Since each quadratic B-splines
covers 3 intervals, each element [xm, xm+1] is covered by three splines. Therefore over
the element [xm, xm+1], an approximation to the exact solutions u(x, t) and v(x, t) in
terms of quadratic B-splines can be written as

U (x, t) =
m+1∑
j=m−1

Tj (x)δ j (t)

V (x, t) =
m+1∑
j=m−1

Tj (x)ρ j (t). (10)

Using quadratic trigonometric B-spline function (8) and the trial solution (10), the
values of Um = U (xm, t), Vm = V (xm, t) and U ′

m = U (xm, t), V ′
m = V (xm, t) are

obtained as follows

Um = δm−1 + δm,

U ′
m = 2

h
(δm − δm−1),

Vm = ρm−1 + ρm,

V ′
m = 2

h
(ρm − ρm−1). (11)
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Applying Galerkin method to the Eqs. (6–7) with weight function W (x) and then
integrating by parts lead to the equation:

b∫
a

[(
1 + θ3β

2
)
W (x)Un+1 + θ3Wx (x)Un+1

x + (2αθ3 − θ1)W (x)V n+1
]
dx

− θ3W (x)Un+1
x

∣∣b
a = b∫

a

[(
1 − θ4β

2
)
W (x)un + (−2αθ4 + θ2)W (x)vn −

θ4Wx (x)Un
x

]
dx + θ4W (x)Un

x

∣∣b
a

(12)

and

b∫
a

[(
β2θ1 − 2αβ2θ3

)
W (x)Un+1 − (−θ1 + 2αθ3)Wx (x)U

n+1
x +

(
1 + 2αθ1 + β2θ3 − 4α2θ3

)
W (x)Vn+1 + θ3Wx (x)V

n+1
x

]
dx+

(−θ1 + 2αθ3)W (x)Un+1
x

∣∣∣b
a

− θ3W (x)Vn+1
x

∣∣∣b
a

= b∫
a

[
(−β2θ2 + 2αβ2θ4)W (x)un +

(1 − 2αθ2 − β2θ4 + 4α2θ4)W (x)Vn − (θ2 − 2αθ4)Wx (x)Un
x − θ4Wx (x)Vn

x
]
dx

+ (θ2 − 2αθ4)W (x)Un
x
∣∣b
a + θ4W (x)Vn

x
∣∣b
a .

(13)

If the weight function W (x) is taken as quadratic B-spline shape function Tm and
using the expression (10) in the Eqs. (12–13), a fully discrete approximation is obtained
over the element [xm, xm+1] as
m+1∑
j=m−1

{xm+1∫
xm

[(
1 + θ3β

2
)
Ti Tj δ

n+1
j + θ3T

′
i T

′
j δ

n+1
j + (2αθ3 − θ1) Ti Tjρ

n+1
j

]
dx − θ3Ti T

′
j

∣∣∣xm+1

xm
δn+1
j

}

−
m+1∑
j=m−1

{xm+1∫
xm

[(
1 − θ4β

2
)
Ti Tj δ

n
j + (−2αθ4 + θ2) Ti Tjρ

n
j − θ4T

′
i T

′
j δ

n
j

]
dx + θ4 Ti T

′
j

∣∣∣xm+1

xm
δnj

}

(14)

and

m+1∑
j=m−1

xm+1∫
xm

[(
β2θ1 − 2αβ2θ3

)
Ti Tj δ

n+1
j − (−θ1 + 2αθ3)T

′
i T

′
j δ

n+1
j +

(
1 + 2αθ1 + β2θ3 − 4α2θ3

)
Ti Tjρ

n+1
j + θ3T

′
i T

′
jρ

n+1
j

]
dx + (−θ1 + 2αθ3)Ti T

′
j

∣∣∣xm+1

xm
δn+1
j

− θ3 Ti T
′
j

∣∣∣xm+1

xm
ρn+1
j

−
m+1∑
j=m−1

xm+1∫
xm

[
(−β2θ2 + 2αβ2θ4)Ti Tj δ

n
j + (1 − 2αθ2 − β2θ4 + 4α2θ4)Ti Tjρ

n
j −

(θ2 − 2αθ4)T
′
i T

′
j δ

n
j − θ4T

′
i T

′
jρ

n
j

]
dx + (θ2 − 2αθ4)Ti T

′
j

∣∣∣xm+1

xm
δnj + θ4 Ti T

′
j

∣∣∣xm+1

xm
ρnj . (15)

A typical finite interval [xm, xm+1] is mapped to the interval [0, h] by a local coor-
dinate transformation defined by ξ = x − xm . Therefore (14–15) by using quadratic
B-spline shape functions in terms of ξ over the element [0, h] can be written as

m+1∑
j=m−1

{
h∫
0

[(
1 + θ3β

2
)
Ti Tj δ

n+1
j + θ3T

′
i T

′
j δ

n+1
j + (2αθ3 − θ1) Ti Tjρ

n+1
j

]
dξ − θ3Ti T

′
j

∣∣∣h
0
δn+1
j

}

−
m+1∑
j=m−1

{
h∫
0

[(
1 − θ4β

2
)
Ti Tj δ

n
j + (−2αθ4 + θ2) Ti Tjρ

n
j − θ4T

′
i T

′
j δ

n
j

]
dξ + θ4 Ti T

′
j

∣∣∣h
0
δnj

}

(16)
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and

m+1∑
j=m−1

h∫
0

[(
β2θ1 − 2αβ2θ3

)
Ti Tj δ

n+1
j − (−θ1 + 2αθ3)T

′
i T

′
j δ

n+1
j +

(
1 + 2αθ1 + β2θ3 − 4α2θ3

)
Ti Tjρ

n+1
j + θ3T

′
i T

′
jρ

n+1
j

]
dξ + (−θ1 + 2αθ3)Ti T

′
j

∣∣∣h
0
δn+1
j

− θ3 Ti T
′
j

∣∣∣h
0
ρn+1
j

−
m+1∑
j=m−1

h∫
0

[
(−β2θ2 + 2αβ2θ4)Ti Tj δ

n
j + (1 − 2αθ2 − β2θ4 + 4α2θ4)Ti Tjρ

n
j −

(θ2 − 2αθ4)T
′
i T

′
j δ

n
j − θ4T

′
i T

′
jρ

n
j

]
dξ + (θ2 − 2αθ4)Ti T

′
j

∣∣∣h
0
δnj + θ4 Ti T

′
j

∣∣∣h
0
ρnj . (17)

(16–17) can be written in the matrices form as
[(
1 + θ3β

2
)
Ae(δe)n+1 − θ3Be

(
δe

)n+1 + (2αθ3 − θ1) Ae(ρe)n+1 − θ3Ce(δe)n+1
]
−[(

1 − θ4β
2
)
Ae(δe)n + θ4Be

(
δe

)n + (−2αθ4 + θ2) Ae(ρe)n + θ4Ce(δe)n]
(18)

and
[(

β2θ1 − 2αβ2θ3
)
Ae(δe)n+1 + (−θ1 + 2αθ3)Be

(
δe

)n+1+
(
1 + 2αθ1 + β2θ3 − 4α2θ3

)
Ae(ρe)n+1 − θ3Be(ρe)n+1

]
+

(−θ1 + 2αθ3)Ce(δe)n+1 + θ3Ce(ρe)n+1−[
(−β2θ2 + 2αβ2θ4)Ae(δe)n + (1 − 2αθ2 − β2θ4 + 4α2θ4)Ae(ρe)n+
(θ2 − 2αθ4)Be

(
δe

)n + θ4Be(ρe)n + (θ2 − 2αθ4)Ce(δe)n + θ4Ce(ρe)n
]

(19)

where

Ae
i j=

xm+1∫
xm

Ti Tjdx, Be
i j =

xm+1∫
xm

Ti T
′
j dx −

xm+1∫
xm

T ′
i T

′
j dx, Ce

i j=Ti T
′
j

∣∣∣
h

0
,

δe = (δm−1, δm, δm+1)
T , ρe = (ρm−1, ρm, ρm+1)

T .

Combining contributions from all elements lead to the linear matrix equation
[(
1 + θ3β

2
)
Aδn+1 − θ3Bδn+1 + (2αθ3 − θ1) Aρn+1 − θ3Cδn+1] =[(

1 − θ4β
2
)
Aδn + θ4Bδn + (−2αθ4 + θ2) Aρn + θ4Cδn

] (20)

and

(
β2θ1 − 2αβ2θ3

)
Aδn+1 + (−θ1 + 2αθ3)Bδn+1 +

(
1 + 2αθ1 + β2θ3 − 4α2θ3

)
Aρn+1

− θ3Bρn+1 + (−θ1 + 2αθ3)Cδn+1 + θ3Cρn+1 = (−β2θ2 + 2αβ2θ4)Aδn

+ (1 − 2αθ2 − β2θ4 + 4α2θ4)Aρn + (θ2 − 2αθ4)Bδn + θ4Bρn + (θ2 − 2αθ4)Cδn + θ4Cρn

(21)

where global element parameters

δ = (δ−1, δ0, . . . , δN−1, δN )T ,
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ρ = (ρ−1, ρ0, . . . , ρN−1, ρN )T .

The system of Eqs. (20–21) consists of (2N + 4) equations of (2N + 4) unknown
parameters

(δ−1, δ0, . . . , δN−1, δN , ρ−1, ρ0, . . . , ρN−1, ρN ).

Once the first two and last two equations have been deleted in the system of Eqs. (20–
21), unknowns

δn+1
−1 , ρn+1

−1 , δn+1
N , ρn+1

N

can be eliminated from the system using the following boundary conditions

U (a, x) = g1(t), U (b, x) = g2(t)

V (a, x) = dg1(t)

dt
, V (b, x) = dg2(t)

dt
.

Thus, (2N ) unknowns and (2N ) equations obtained from the system of Eqs. (20–21)
can be solved easily with the Matlab package program.

Once the initial vector

d0 = (δ0−1, . . . , δ0N−1, δ0N , ρ0−1, ρ0
0 , . . . , ρ0

N−1, ρ0
N )

is found using the initial and boundary conditions, the unknown vector

d1 = (δ1−1, . . . , δ1N−1, δ1N , ρ1−1, ρ1
0 , . . . , ρ1

N−1, ρ1
N )

can be found using the (20–21). Therefore unknown vector dn+1, (n = 0, 1, . . .) can
be found repeatedly by solving the recurrence relation (20–21) using previous unknown
vector dn .

3 Test Problem

The error norm

L∞ = max
m

|um −Um |, (22)

and the order of convergence

order =
log

∣∣∣ u−U�tm
u−U�tm+1

∣∣∣
log

∣∣∣ �tm
�tm+1

∣∣∣
, (23)

will be calculated.
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The homogeneous Telegraph equation has the exact solution [5]

u(x, t) = ex−t (24)

with the boundary conditions

u(a, t) = ea−t , u(b, t) = eb−t , t ∈ (0, T ] (25)

and initial conditions

u(x, 0) = ex

ut (x, 0) = v(x, 0) = −ex . (26)

The numerical simulation is accomplished with α = 0.5 and β = 1 by the termi-
nating time t = 5 over the domain [0, 4]. The program is run until time t = 5 and the
analytical solutions at various times are shown in the Fig. 1.

Fig. 1. Analytical solutions at different times

The error norm L∞ and rate of convergence for the presented two methods are
listed in Table 1. According to the Table 1 that M2 gives better result than M1 and the
error norm decreases as the time step decreases for the both proposed methods and the
convergence rate is almost 4 for the M2, which is the accuracy of the proposed method
for the time discretization of the Telegraph equation.

Absolute error (difference between the exact and numerical solutions) distribution
at t = 5 is also depicted in Fig. 2 for each proposed methods. When the figures are
examined, it can be seen that maximum errors do not occur at the end points of the range
in both methods. Therefore, it can be said that there is no error due to the application of
boundary conditions.
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Table 1. L∞ and rate of convergence at time t = 5 for h = 0.001.

M1 M1 M2 M2

�t L∞ Order L∞ Order

1 2.57 × 10−1 3.19 1.41 × 10−3 4.33

0.5 2.82 × 10−2 2.98 6.76 × 10−5 4.00

0.2 1.84 × 10−3 1.66 1.73 × 10−6 4.30

0.1 5.84 × 10−4 1.82 8.80 × 10−8 3.94

0.05 1.65 × 10−4 2.19 5.75 × 10−9 3.73

0.02 2.21 × 10−5 1.88 × 10−10

M1 M2

Fig. 2. Absolute errors when h = 0.001 and �t = 0.02.

4 Conclusion

The high-order Galerkin finite-element method based on Taylor series expansion for
the time discretization and quadratic B-spline functions for the space discretization was
proposed to solve numerically the homogeneous Telegraph equation. The test problem
was simulated well with the proposed all algorithms. As a result, according to the results
obtained from the proposed methods, the M2 method has been found to give very good
results for approximate solution of the homogeneous Telegraph equation.
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Abstract. The purpose of this article is to study analytically the hydro-
magnetic natural convection flow of an electrically conducting, incom-
pressible viscous fluid over a moving infinite inclined plate. Moreover,
the dynamic of fluid is studied under the influence of exponential heat-
ing and constant concentration. Porous effects are taken into considera-
tion and in order to investigate the influence of the transverse magnetic
field, two cases when the transverse magnetic field is held fixed to the
fluid or to the plate are considered. The Laplace transform technique is
used to obtain exact solutions for such motions. The dimensionless Latin
symbols velocity, and also the corresponding skin friction, is presented
as sum of mechanical, thermal and concentration components. Finally,
for illustration, as well as for a check of results, some special cases with
applications in engineering are considered and influence of the system
parameters is graphically brought to light.

Keywords: Magnetohydrodynamic · Inclined plate · Natural
convection · Exponential heating · Chemical reaction
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B Magnetic field strength
C Dimensional concentration in the fluid
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C ′
w Concentration of the fluid near the plate

C ′
∞ Concentration of the fluid far away from the plate

T ′
w Constant temperature of the plate

T ′
∞ Free stream temperature
u Velocity of the fluid
cp Specific heat at constant pressure
u0 Characteristic velocity of the plate
D Chemical molecular diffusivity

Gc Mass Grashof number
Gr Thermal Grashof number

g Acceleration due to gravity
K Permeability of porous medium
kR Rosseland mean attenuation coefficient
M Magnetic field parameter
N Ratio of the buoyancy forces

Nr Radiation conduction
Pr Prandtl number

Preff Effective Prandtl number
q The transform parameter

qr radioactive heat flux
R Radiative parameter

Sc Schmidt number

Greek Symbols

βT Volumetric coefficient of thermal expansion
βC Volumetric coefficient of expansion with concentration

ν Kinematic coefficient of viscosity
τ Skin friction
γ Inclination angle from the vertical direction
σ Electric conductivity
μ Coefficient of viscosity
ρ Density
κ Thermal conductivity of the fluid

1 Introduction

From the past few years, the study of magnetohydrodynamic (MHD) natural
convection flow of electrically conducting fluids with heat and mass transfer has
gained a special attention due to their multiple applications in meteorology, elec-
trical power generation, solar physics, geophysics and chemical engineering. The
study of MHD natural convection flow over a moving inclined plate has many
useful consequences so attracted the attention of many researchers. For exam-
ple, the flow characteristics for the natural convection boundary layer flow over a
flat plate with arbitrary inclination also depend on the angle of inclination and
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on the distance from the leading edge [1]. Uddin and Kumar [2] noticed that
as the angle of the plate from vertical direction increases the value of friction
factor and heat transfer coefficient decreases while studying the unsteady free
convection in a fluid flow past an infinite inclined plate immersed in a porous
medium has been considered for viscous dissipative heat. Moreover, Palani [3]
studied the convection effects on flow past an inclined plate with variable surface
temperatures in water at 4◦, Singh and Makinde [4] investigated the MHD free
convection flow with Newtonian heating in the presence of exponentially decay-
ing volumetric heat source along the inclined plane. The thermal radiation effect
on an unsteady MHD flow past an inclined, porous, heated plate in the presence
of chemical reaction and viscous dissipation is investigated by Barik et al. [5].
Chen [6] found that increasing the angle of inclination decreases the effect of
buoyancy force while investigating the natural flow over a permeable inclined
surface with variable wall temperature and concentration. MHD natural convec-
tion flow with Newtonian heating and mass diffusion was analytical solved by
Vieru et al. [7], when the plate applies an arbitrary time-dependent shear stress
to the fluid. Fetecau et al. [8] investigated the slip effects on the radiative MHD
free convection flow over a moving plate with mass diffusion and heat source.
Recently, a general study of such flow with radiative effects, heat source and
shear stress on the boundary has been developed by Fetecau et al. [9].

However, in all these studies as well as in many other which have been previ-
ously published, the magnetic lines of force are fixed to the fluid. There are many
interesting papers [10–16] in which exact solutions are obtained for hydromag-
netic free convection flows through porous media with heat and mass transfer,
but they also correspond to the case when the magnetic field lines of force are
fixed to the fluid.

The first exact solutions for free convection flows when the magnetic lines
of force are fixed to the fluid or to the plate seem to be those obtained by
Tokis [17] corresponding to motions induced by uniform, constantly accelerating
or decaying oscillatory translations of the plate. More recently, Narahari and
Debnath [18] developed an interesting study of unsteady MHD free convection
flow with constant heat flux and heat source when the magnetic lines of force
are fixed to the fluid or to the plate.

In this article, we present a general study of MHD natural convection flow
over a moving inclined plate that is embedded in a porous medium with expo-
nential heating, constant concentration and chemical reaction. However, our pur-
pose is not only to extend some previous results by including porous effects and
mass transfer, but we also want to provide new results both for general and
oscillating motions of the inclined plate. It is worth pointing out the fact that
“the fluid velocity does not remain zero at infinity if the magnetic field is fixed
to the plate” [19,20]. Moreover, to investigate the contribution of mechanical,
thermal and concentration influence on the fluid velocity as well as on skin fric-
tion, we will present these as a sum of mechanical, thermal and concentration
components.
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2 Statement of the Problem

By choosing a suitable cartesian coordinate system Oxy′z, let us consider the
unsteady free convection flow of an electrically conducting incompressible viscous
fluid over a non-conducting infinite inclined plate making an angle γ with the
verticle and in the presence of a uniform magnetic field of strength B. The
magnetic field is applied perpendicular to the plate and its magnetic lines of
force are fixed to the fluid or to the plate. Initially, the plate and the fluid are
at rest at the constant temperature T ′

∞ and species concentration C ′
∞. After

the time t′ = 0+, the plate begins to slide in its plane against the gravitational
field with the velocity u0g

′ (t′) and its temperature is maintained at the value
T ′

∞ +T ′
w

(
1 − ae−b′t′

)
where a, b′ and T ′

w are constants. Moreover, is a constant
velocity, a piecewise continuous function with the condition that g′ (0) = 0. The
plate is also maintained at a constant concentration C

′
w.

We assume that all physical properties are constant except the density varia-
tion with temperature in the body force and the induced magnetic field is negli-
gible in comparison with the applied magnetic field B. Furthermore, neglecting
viscous dissipation and Joule heating and taken into consideration porous and
radiative effects, the chemical reaction between the fluid and species concentra-
tion. Under the usual Boussinesq’s approximation, our problem reduces to the
following set of partial differential equations [18,19].
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′

∂t′ = ν
∂2u

∂y′2 + gβT

(
T

′ − T
′
∞

)
cos γ + gβc

(
C

′ − C
′
∞

)
cos γ − ν

K′ u
′ − σB2

0

ρ

(
u

′ − lu0g
′ (

t
′))

,

ρcp
∂T ′

∂t′ = k
∂2T ′

∂y′2 − ∂qr

∂y′ ,

∂C′

∂t′ = D
∂2C′

∂y′2 − R
′ (

C
′ − C

′
∞

)
,

y
′
, t

′
> 0,

(1)

with the initial and boundary conditions
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′ (y′, 0) = 0, T ′(y′, 0) = T ′
∞, C ′(y′, 0) = C ′

∞, y′ ≥ 0,

u′ (0, t′) = u0g
′ (t′) , T ′(0, t′) = T ′

∞ + T ′
w

(
1 − ae−b′t′)

, C ′(0, t′) = C ′
w, t′ ≥ 0,

u′ (y′, t′) → 0, T ′(y′, t′) → T ′
∞, C ′(y′, t′) → C ′

∞, y′ → ∞,
(2)

Into above equations, the unknown functions u′ (y′, t′), T ′(y′, t′) and C ′(y′, t′)
are the velocity, the temperature and the species concentration while ν, g, βT ,
βC , K ′, σ, ρ, cp, k, D, R′ and qr are defined in the nomenclature. The parameter
l is 0 when the magnetic field is fixed relative to the fluid (MFFRF) and 1 (one)
when the magnetic field is fixed relative to the plate (MFFRP).
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By adopting the Rosseland diffusion approximation for an optically thick
fluid (see Seth et al. [21] or Narahari and Dutta [22])

qr = −4
3

σ

kR

∂T ′4

∂y′ , (3)

assuming the temperature difference between the fluid temperature and the free
stream temperature to be small enough, the energy equation (2.2)1 can be writ-
ten in the form [23,24].

Preff
∂T ′(y′, t′)

∂t′
=

∂2T ′(y′, t′)
∂y′2 ; y′, t′ > 0, (4)

where Preff =
Pr

1 + Nr
, Pr =

μcp

k
and Nr =

16
3

σ

kkR
T 3

∞.

Introducing the following dimensionless variables, functions and parameters
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y =
u0

ν
y′, t =

u2
0

ν
t′, u =

u′

u0
,

T =
T ′ − T ′

∞
T ′

w

, C =
C ′ − C ′

∞
C ′

w − C ′∞
, b =

ν

u2
0

b′, K =
(

ν

u0

)2 1
K ′ ,

R =
ν

u2
0

R′, g (t) = g′
(

ν

u2
0

t′
)

,

(5)

and choosing the characteristic velocity u0 to be equal with 3
√

νgβT Tw, our
problem reduce to the following dimensionless partial differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u (y, t)

∂t
=

∂2u (y, t)

∂y′2 + T (y, t) cos γ + NC (y, t) cos γ − Ku (y, t) − M (u (y, t) − lg (t)) ,

Preff
∂T (y, t)

∂t
=

∂2T (y, t)

∂y2
,

∂C (y, t)

∂t
=

1

Sc

∂2C (y, t)

∂y2
− RC (y, t) ,

y, t > 0,

(6)

with the initial and boundary conditions
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u (y, 0) = 0, T (y, 0) = 0, C(y, 0) = 0, y ≥ 0,

u (0, t) = g (t) , T (0, t) = 1 − ae−b′t′
, C(0, t) = 1, t ≥ 0,

u (y, t) → 0, T (y, t) → 0, C(y, t) → 0, y′ → ∞,

(7)

Into above relations, K is the inverse permeability parameter of the porous
medium, R is the dimensionless chemical reaction parameter while the ratio of
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the buoyancy forces N , the magnetic parameter M and Schmidt number Sc are
defined by

N =
βC (Cw − C∞)

βT Tw
, M =

σB2

ρ

ν

V 2
, Sc =

ν

D
.

where Preff and Sc are transport parameters regarding the thermal and mass
diffusivity and N represents the relative contribution of the mass transport rate
on the free convection flow. Moreover, depending upon βC , N can be also positive
or negative because βT is always positive [20] and N = 0 for the case when the
buoyancy force effect from mass diffusion is absent.

3 Solution of the Problem

As the temperature and concentration fields corresponding to this problem can
be easily obtained from previous works (see [[20], Eq. (20)], respectively [[25],
Eq. (15)]). Our prime interest is to find the fluid velocity, however in order to
determine it using the Laplace transform technique, we need the Laplace trans-
forms of T (y, t) and C(y, t), namely

T̄ (y, q) =
(

1
q

− a

q + b

)
e−y

√
Preff q, C̄ (y, q) =

1
q
e−y

√
Sc(q+R), (8)

obtained from [20] and [25].
Applying the Laplace transform to Eq. (2.9) and using the corresponding

initial and boundary conditions, we find the differential equation

qū (y, q) =
∂2ū (y, q)

∂y2
+ T̄ (y, q) cos γ + NC̄ (y, q) cos γ − Kū (y, q)

− M (ū (y, q) − lG (q)) , y, t > 0, (9)

with the boundary conditions

ū (0, q) = G (q) , ū (y, q) → 0, as y → ∞, (10)

where ū (y, q) and G (q) denote the Laplace transforms of u (y, t), respectively
g (t). Introducing Eqs. (3.1) into (3.2), we get

∂2ū (y, q)
∂y2

− (q + H) ū (y, q) = − lMG (q) −
(

1
q

− a

q + b

)
e−y

√
Preff q cos γ

−N
1
q
e−y

√
Sc(q+R) cos γ, (11)

where H = M + K.
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The solution of the ordinary differential equation (3.4) with the boundary
conditions (3.3) is

ū (y, q) = G (q) e−y
√

q+H + εM
G (q)
q + H

(
1 − e−y

√
q+H

)

+
(1 − a) q + b

q (q + b) [(1 − Preff ) q + H]

(
e−y

√
Preff q − e−y

√
q+H

)
cos γ

+
N

q [(1 − Sc) q − (ScR − H)]

(
e−y

√
Sc(q+R) − e−y

√
q+H

)
cos γ. (12)

Next, introducing the relations

(1 − a) q + b

q (q + b) [(1 − Preff ) q + H]
=

1
1 − Preff

[
1
E

1
q

− a

E − b

1
q + b

+
(1 − a) E − b

E (b − E)
1

q + E

]
,

1
q [(1 − Sc) q − (ScR − H)]

=
1

H − ScR

(
1
q

− 1
q + F

)
,

E =
H

1 − Preff
, F =

ScR − H

Sc − 1
,

into Eq. (3.5), applying the inverse Laplace transform and using the convolution
theorem and Eqs. (A1) and (A2) from Appendix, we can present the velocity
field under the form

u (y, t) = um (y, t) + uT (y, t) + uC (y, t) , (13)

where

um (y, t) =
y

2
√

π

t∫

0

g (t − s)
s
√

s
exp

(−y2

4s
− Hs

)
ds

+ lM

t∫

0

g (t − s) e−Hs erf
(

y

2
√

s

)
ds, (14)

uT (y, t) =
1

1 − Preff

[
1
E

[
Ψ

(
y
√

Preff , t, 0, 0
)

− Ψ (y, t,H, 0)
]

+
a

b − E

[
Ψ

(
y
√

Preff , t, 0,−b
)

− Ψ (y, t,H,−b)
]

+
(1 − a) E − b

E (b − E)

[
Ψ

(
y
√

Preff , t, 0,−E
)

− Ψ (y, t,H,−E)
]]

cos γ,

(15)
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uC (y, t) =
N

H − ScR

[
Ψ

(
y
√

Sc, t, R, 0
)

− Ψ (y, t,H, 0)

−Ψ
(
y
√

Sc, t, R,−F
)

+ Ψ (y, t,H,−F )
]
cos γ, (16)

are its mechanical, thermal and concentration components and the function
Ψ (y, t, a, b) is defined in Appendix.

It is not difficult to show that u (y, t), given by Eqs. (3.6)–(3.9), satisfies
the imposed initial and boundary conditions. In order to verify the boundary
condition (2.12)1, for instance, we rewrite um (y, t) in the equivalent form

um (y, t) =
2√
π

∞∫

y

2
√

t

g

(
t − y2

4s2

)
exp

(
−s2 − Hy2

4s2

)
ds

+ lM

t∫

0

g (t − s) e−Hs erf
(

y

2
√

s

)
ds, (17)

As regards the limit of velocity as y → ∞, it results that

lim
y→∞ um (y, t) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if l = 0

M

t∫

0

g (t − s) e−Hsds if l = 1 (18)

Consequently, in the case when the MFFRP, the fluid does not remain at rest
far away from the plate.

From physical point of view, it is also important to determine the skin friction
or shear on the plate. Introducing Eq. (3.5)

τ = −∂u (y, t)
∂y

∣∣∣∣
y=0

= −L−1

{
∂ū (y, q)

∂y

∣∣∣∣
y=0

}
, (19)

we find that (see also Eqs. (A3)–(A5) from Appendix)

τ = τm + τT + τC , (20)

where

τm =
∫ t

0

g′ (t − s)
[√

H erf
(√

Hs
)

+
e−Hs

√
πs

]
ds

− l
M√
H

∫ t

0

g′ (t − s) erf
(√

Hs
)

ds, (21)

τT =
1

1 − Preff

{[
1

E
√

πt
+

a

b − E
φ (t; 0, b) +

(1 − a) E − b

E (b − E)
φ (t; 0, E)

]

− 1
E

φ (t;H, 0) − a

b − E
φ (t;H, b) − (1 − a) E − b

E (b − E)
φ (t;H,E)

}
cos γ, (22)
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τC =
N

ScR − H
{φ (t;H,F ) − φ (t;H, 0)

+
√

Sc [φ (t;R, 0) − φ (t;R,F )]
}

cos γ, (23)

are the mechanical, thermal and concentration components of the skin friction
and the function φ (t; a, b) is defined in the Appendix.

By taking K = 0 and γ = 0 into Eqs. (3.6) and (3.13), we recover the
corresponding results of [[19], Eqs. (20) and (27)].

As the concentration and thermal parts of velocity and skin friction are inde-
pendent of g (t), so in the following section we will discuss the special cases
regarding to the mechanical part of velocity and skin friction.

4 Special Cases

In the following, in order to get some physical insight of present results and
for validation of the obtained results with possible engineering applications, we
consider the following cases.

4.1 Case g (t) = H (t) (Uniform Motion of the Plate)

let us take K = 0, γ = 0, g (t) = H (t) (the Heaviside unit step function) in our
relations (3.7) and (3.14) and use Eqs. (A6) and (A7) from Appendix, we get

um (y, t) = (1 − l) Ψ (y, t; 0,M) + l

[
1 − exp (−Mt) erf

(
y

2
√

t

)]
, (24)

and

τm (t) =
[√

H erf (Ht) +
e−Ht

√
πt

]
H (t) − l

M√
H

H (t) erf
(√

Ht
)

. (25)

As it was to be expected, the corresponding results are identical to those obtained
by Tokis [[17], Eqs. (12) and (13a)] and Narahari and Debnath [[18], Eqs. (11a),
(13)] with a0 = 0 and in the absence of thermal and concentration effects and
γ = 0.

4.2 Case g (t) = H (t) tα (Variably Accelerating Plate)

Thermal and concentration components of velocity do not depend on the plate
motion. However, the heat and mass transfer can influence the fluid motion and
we have to know if their influence is significant or it can be neglected in some
motions with possible engineering applications. Taking, g (t) = H (t) tα with
α > 0, the Eqs. (3.7) and (3.14) take the forms

um (y, t) =
y

2
√

π

∫ t

0

(t − s)α

s
√

s
exp

(
−y2

4s
− Hs

)
ds

+ lM

∫ t

0

(t − s)α
e−Hs erf

(
y

2
√

s

)
ds, (26)
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τm (t) = α

∫ t

0

(t − s)α−1

[√
H erf

(√
Hs

)
+

e−Hs

√
πs

]
ds

− lα
M√
H

∫ t

0

(t − s)α−1 erf
(√

Hs
)

ds; α > 0, (27)

which corresponds to motions induced by a slowly, constantly or highly acceler-
ating plate.

4.3 Case g (t) = H (t) cos (ωt) or H (t) sin (ωt) (Oscillating Plate)

Introducing into Eqs. (3.7) and (3.14) and using the fact that H ′ (t) = δ (t) and
∫ t

0

δ (t − s) g (s) ds =
∫ t

0

δ (s) g (t − s) ds = g (t) , (28)

where δ (.) is the Dirac delta function, we find that

ucm (y, t) =
y

2
√

π

∫ t

0

cos [ω (t − s)]
s
√

s
exp

(
−y2

4s
− Hs

)
ds

+ lM

∫ t

0

cos [ω (t − s)] e−Hserf
(

y

2
√

s

)
ds, (29)

usm (y, t) =
y

2
√

π

∫ t

0

sin [ω (t − s)]
s
√

s
exp

(
−y2

4s
− Hs

)
ds

+ lM

∫ t

0

sin [ω (t − s)] e−Hserf
(

y

2
√

s

)
ds, (30)

τcm = H (t)
{√

H erf
(√

Ht
)

+
e−Ht

√
πt

− l
M√
H

erf
(√

Ht
)}

−ω

∫ t

0

sin [ω (t − s)]
[√

H erf
(√

Hs
)

+
e−Hs

√
πs

]
ds

+ lω
M√
H

∫ t

0

sin [ω (t − s)] erf
(√

Hs
)

ds, (31)

τsm = ω

∫ t

0

cos [ω (t − s)]
[√

H erf
(√

Hs
)

+
e−Hs

√
πs

]
ds

− lω
M√
H

∫ t

0

cos [ω (t − s)] erf
(√

Hs
)

ds. (32)

As expected, for ω = 0, the solutions (4.3.2) and (4.3.4) reduce to those given
by Eqs. (4.1.1) and (4.1.2) corresponding to the motion with uniform velocity
on the boundary.

Indeed, assigning to g (.) suitable forms, we can determine exact solutions
for any motion with technical relevance of this type. Consequently, the problem
under debate is completely solved.
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5 Numerical Results and Discussion

In this paper, exact general solutions are determined for dimensionless veloc-
ity and skin friction corresponding to the MHD natural convection flow over
a moving inclined plate with exponential heating, constant concentration and
chemical reaction. Radiative and porous effects are taken into consideration and
the magnetic field is fixed to the fluid or to the plate. In order to get some
physical insight of obtained results and to avoid repetition, three special cases
are considered. Figures 1 and 2 present the profiles of the dimensionless veloc-
ity u (y, t) , respectively mechanical component of velocity um (y, t) against y
at different times for a slowly accelerating motion of the plate. As expected,
both velocities are increasing functions of time. Furthermore, the velocities cor-
responding to (MFFRP) are appreciably large as compared with (MFFRF). In
all cases, the velocities smoothly decrease from maximum values on the bound-
ary to asymptotical values for increasing y. However, as it is clearly seen from
these figures, the asymptotic values of both velocities are not zero at infinity if
the magnetic field is fixed to the plate.

Fig. 1. (a) Profiles of um (y, t) against y for γ = π
6

and different values of t, (b) 3D
plot of um (y, t).

In Fig. 3 we have plotted velocities um (y, t), um (y, t) + uC (y, t) and
um (y, t)+uC (y, t)+uT (y, t) versus y to investigate the contributions of mechan-
ical, thermal and concentration components of velocity on the fluid motion. It
is observed that contributions of mechanical, thermal and concentration compo-
nents of velocity on the fluid motion are significant and they cannot be neglected.
In all diagrams a = 0.75, b = 0.15, α = 0.5, Pr = 0.7, M = 0.5, Preff = 0.5,
Sc = 0.6, R = 0.7, N = 0.5, K = 0.3.
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Fig. 2. Profiles of u (y, t) against y for γ = π
6

and different values of t.

Fig. 3. Profiles of uαm (y, t) , uαm (y, t) + uT (y, t) and uαm (y, t) + uT (y, t) + uC (y, t)
against y at γ = π

6
, t = 1.5. and l = 0 when g(t) = H(t).tα.

6 Conclusions

Hydromagnetic natural convection flow of an electrically conducting, incom-
pressible viscous fluid over a moving infinite inclined plate with exponentially
heating, constant concentration and chemical reaction is analytically and graphi-
cally studied. Viscous dissipation and Joule heating are neglected but the porous
and radiative effects are taken into consideration. The plate is moving with arbi-
trary time-dependent velocity in its plane while the transverse magnetic field is
fixed to the fluid or to the plate and our interest is focused on the fluid motion.
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Consequently, exact general expressions for the dimensionless velocity and the
corresponding skin friction are established in simple forms in terms of error and
complementary error functions of Gauss and the problem under consideration is
completely solved. Both the velocity and skin friction are presented as sum of
their mechanical, thermal and concentration components.

However, in order to obtain some physical insight of results that have been
obtained as well as to avoid repetition, three special cases are considered. Finally,
the contributions of mechanical, thermal and concentration components of veloc-
ity and skin friction on the fluid motion are brought to light for a slowly accel-
erating motion of the plate. The main conclusions are:

• Contrary to our expectations, the fluid velocity does not remain zero at infin-
ity if the magnetic lines of force are fixed relative to the plate.

• The dimensionless velocity of the fluid significantly increases in the case
(MFFRP) in comparison to the case (MFFRF).

• Contributions of mechanical, thermal and concentration components of veloc-
ity and skin friction on the fluid motion are significant and they cannot be
neglected.

Appendix

L−1
{

e−y
√

q
}

=
y

2t
√

πt
exp

(−y2

4t

)
, L−1

{
e−y

√
q

q

}
= erf c

{
y

2
√

t

}
,

L−1

{
e−y

√
q+a

q − b

}
= Ψ (y, t; a, b) , (33)

Ψ (y, t; a, b) =
ebt

2

⎡
⎣ e−y

√
a+berf c

(
y

2
√

t
− √

(a + b) t
)

+ey
√

a+berf c
(

y

2
√

t
+

√
(a + b) t

)
⎤
⎦ . (34)

L
−1 {qF (q)} = f

′
(t) + δ (t) f (0) if L

−1 {F (q)} = f (t) (δ (.) is the Dirac delta function) . (35)

L−1

{
1

(q + b)
√

q + a

}
=

e−bt

√
a − b

erf
(√

(a − b) t
)

, L−1

{
1√
q

}
=

1√
πt

. (36)

L−1

{√
q + a

q + b

}
=

e−at

√
πt

+
1√

a − b
e−bterf

(√
a − bt

)
= φ (t; a, b) , (37)

∫ t

0

1√
s

exp
(

−y2

4s
− as

)
ds =

√
π

2
√

a

{
e−y

√
aerf c

(
y

2
√

t
− √

at

)

−ey
√

aerf c

(
y

2
√

t
+

√
at

)}
, (38)
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∫ t

0

1
s
√

s
exp

(
−y2

4s
− as

)
ds =

√
π

y

{
e−y

√
aerf c

(
y

2
√

t
− √

at

)

−ey
√

aerf c

(
y

2
√

t
+

√
at

)}
, (39)

∫ ∞

0

e−p2s2− q2

s2 cos
(

a2s2 +
b2

s2

)
ds =

√
π

24
√

p4 + a4
e−2c cos(α+β)

cos [α + 2c sin (α + β)] , (40)

∫ ∞

0

e−p2s2− q2

s2 sin
(

a2s2 +
b2

s2

)
ds =

√
π

24
√

p4 + a4
e−2c cos(α+β)

sin [α + 2c sin (α + β)] , (41)

where α =
1
2
arctg

(
a2

p2

)
, β =

1
2
arctg

(
b2

q2

)
and c = 4

√
(p4 + a4) (q4 + b4).
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Abstract. In the current study, we investigate the coupled Boussinesq-
Burgers equations through sine-Gordon expansion method. BBEs arises
in the research of fluid flow and describes the spreading of shallow water
waves. A traveling wave transformation has been applied to turn the
governing equation into a nonlinear ordinary differential equation. As a
result, we produce some novel analytical solutions, such as topological,
non-topological, and kink-type soliton solutions. Furthermore, 2D, 3D
and contour surfaces are also plotted for all obtaining solutions.

Keywords: Analytical solutions · Coupled Boussinesq-Burgers
equations · Sine-Gordon expansion method

1 Introduction

Nonlinear evolution equations (NLEEs) have been used as models to explain
many physical phenomena in fluid mechanics, plasma waves, solid state physics,
chemical physics, etc. [1–5]. It is very important to explore the attitudes of the
models that occur in ocean dynamics because of the important roles they play
in our daily activities [6–8]. NLEE solutions not only represent the problems
identified, but also provide more insight into the physical aspects of the prob-
lems in the relevant area [9,10]. Recently, distinct computational and numerical
methods have been use to handle these type of nonlinear models, such as the
Hirota’s bilinear method [11], Adomian decomposition method [12], Bernoulli
sub equation function method [13], Homotopy perturbation method [14], and
many more [15–19].

The intention of this research is to explore the coupled Boussinesq-Burgers
equations [1–10] using sin-Gordon expansion method [20–22].

The coupled BBEs is given by

ut + 2uux − 1
2
vx = 0, (1)
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vt + 2(uv)x − 1
2
uxxx = 0, (2)

Eqs. (1) and (2) appear in the fluid flow survey and explain the proliferation
of severe shallow waves, where u = u (x, t) denoted the horizontal velocity
v = v (x, t) donated the height of the water surface above the horizontal level
at the bottom. Recently, different computational approaches have been used to
investigate the BBEs such as Exp-function method [1], nonlinear transformation
[2], Bäcklund transformation [3], The modified exp (−φ (ξ))-expansion function
method [4], Darboux transformation [5], Homotopy perturbation method [6], the
extended homogeneous balance [7], Jacobi elliptic function method [8], general-
ized algebraic method [9], the extended homogeneous balance method [10].

2 The SGEM

In the current section, the basic concepts of sine-Gordon expansion method is
presented.

Consider the sine-Gordon equation

vxx − vtt = n2 sin (v) , (3)

where v = v (x, t) and n ∈ R.
Using the wave transformation v = v (x, t) = G (γ) , γ = p (x − bt) into Eq. (3),
we get a NODE

G′′ =
n2

p2 (1 − b2)
sin (G) , (4)

where G = G (γ) , γ is the amplitude of wave and b is the wave speed.
After some simplification, Eq. (4) gives:[(

G

2

)′]2

=
n2

p2 (1 − b2)
sin2

(
G

2

)
+ E. (5)

Setting E = 0 , z (γ) = G
2 and d2 = n2

p2(1−b2) into Eq. (5), we obtain

z′ (γ) = d sin (z) , (6)

assume that d = 1, Eq. (6) turn into:

z′ (γ) = sin (z) . (7)

The following two significant equations have been gained from Eq. (7)

sin (z) = sin (z (γ)) =
2qeγ

q2e2γ + 1

∣∣∣∣
q=1

= sech (γ) , (8)

cos (z) = sin (z (γ)) =
q2e2γ − 1
q2e2γ + 1

∣∣∣∣
q=1

= tanh (γ) , (9)

where q is an integration constant.
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For the solution of the following nonlinear partial differential equation
(NPDE);

W (p, px, pt, ...) , (10)

we consider

G (γ) =
τ∑

i=1

tanhi−1
(γ) [Bisech (γ) + Ai tanh (γ)] + A0, (11)

Eq. (11) can be rewritten according to Eqs. (8) and (9) as follows:

G (z) =
τ∑

i=1

cosi−1
(z) [Bi sin (z) + Ai cos (z)] + A0. (12)

Using the balance principle to identify the value of τ , by considering the high-
est power of nonlinear term and the highest derivative in the obtained NODE.
Equating the coefficients of the same power of sini (w) , cosi (w) to zero, a sys-
tem of equations can be obtained, these system can be solved by supporting
one of the computer programs, gives the values of A0, Ai, Bi, p and b. Eventu-
ally, inserting the finding values into Eq. (12), we get the novel traveling wave
solutions to the Eq. (10).

3 Implementation of SGEM

In the current section, the application of SGEM to the BBEs equation is pre-
sented.

Consider the coupled Boussinesq-Burgers equations (Eqs. (1) and (2)) stated
in Sect. 1.

Inserting the wave transformation

u (x, t) = G (γ) , v (x, t) = V (γ) , γ = x − wt, (13)

into Eqs. (1) and (2), the following NODE can be obtain:

− wG′ + 2GG′ − 1
2
V ′ = 0, (14)

− wV ′ + 2GV ′ + 2V G′ − 1
2
G′′′ = 0, (15)

integrating Eq. (14) respect to γ.
Let the constant of integration to be zero, one can obtains:

− wG + G2 − 1
2
V = 0, (16)

from Eq. (16), we have
V = 2G2 − 2wG, (17)
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substituting Eq. (17) into Eq. (15), and integrate once with respect to γ, we get

G′′ − 8G3 + 12wG2 − 4w2G = 0. (18)

Applying the balance principle between G3 and G′′ in Eq. (18), yield τ = 1, with
τ = 1 Eq. (12) take the form

G (z) = B1 sin (z) + A1 cos (z) + A0. (19)

where

G′′ = −2A1 cos (z) sin (z)2 − B1 sin (z)3 + B1 sin (z)
(
1 − sin (z)2

)
, (20)

G2 = A0
2 + 2A0A1 cos (z) + A1

2 cos (z)2 + 2A0B1 sin (z)
+ 2A1B1 cos (z) sin (z) + B1

2 sin (z)2,
(21)

and

G3 = A0
3 + 3A0

2A1 cos (z) + 3A0A1
2 cos (z)2 + 3A1

2B1 cos (z)2 sin (z)
+ 3A0

2B1 sin (z) + 6A0A1B1 cos (z) sin (z) + 3A0B1
2 sin (z)2

+ 3A1B1
2 cos (z) sin (z)2 + B1

3 sin (z)3 + A1
3 cos (z)3.

(22)

Substituting Eqs. (19), (20), (21), and (22) into Eq. (18), we get

−8A0
3 + 12A0

2w − 4A0w
2 − 24A0

2A1 cos (z) + 24A0A1w cos (z)
−8A1

3 cos (z)3 − 4A1w
2 cos (z) − 24A0A1

2 cos (z)2 + 12A1
2w cos (z)2

+B1 sin (z) − 8B1
3 sin (z)324A0

2B1 sin (z) + 24A0B1w sin (z)
−4B1w

2 sin (z) − 48A0A1B1 cos (z) sin (z) + 24A1B1w cos (z) sin (z)
−24A1

2B1 cos (z)2 sin (z) − 24A0B1
2 sin (z)2 + 12B1

2w sin (z)2

−2A1 cos (z) sin (z)2 − 24A1B1
2 cos (z) sin (z)2 − 2B1 sin (z)3 = 0.

(23)

According to Eq. (23), we get the following equations:
constant:−8A0

3 − 24A0A1
2 + 12A0

2w + 12A1
2w − 4A0w

2 = 0.
cos (z) : −24A0

2A1 − 8A1
3 + 24A0A1w − 4A1w

2 = 0.
sin (z) : −B1 − 24A0

2B1 − 8B1
3 + 24A0B1w − 4B1w

2 = 0.
cos (z) sin (z) : −48A0A1B1 + 24A1B1w = 0.
cos2 (z) sin (z) : 2B1 − 24A1

2B1 + 8B1
3 = 0.

sin2 (z) : 24A0A1
2 − 24A0B1

2 − 12A1
2w + 12B1

2w = 0.
cos (z) sin2 (z) : −2A1 + 8A1

3 − 24A1B1
2 = 0.

Solving the above system, gives the following families of solutions:

Family 1. When

A0 = −1
4
, A1 = −1

4
, B1 =

i

4
, w = −1

2
, (24)

we get

u1 (x, t) = − 1
4 + 1

4 isech
(

t
2 + x

) − 1
4 tanh

(
t
2 + x

)
,

v1 (x, t) = − 1
4 + 1

4 isech
(

t
2 + x

) − 1
4 tanh

(
t
2 + x

)
+ 2

(− 1
4 + 1

4 isech
(

t
2 + x

) − 1
4 tanh

(
t
2 + x

))2
.

(25)
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Fig. 1. 2D, 3D and contour surfaces of Eq. (25).

Family 2. when

A0 =
i

2
√

2
, A1 = 0, B1 = − i

2
, w =

i√
2
, (26)

we get
u2 (x, t) = i

2
√
2

− 1
2 i sec

(
t√
2

+ ix
)

,

v2 (x, t) = −i
√

2
(

i
2
√
2

− 1
2 i sec

(
t√
2

+ ix
))

+ 2
(

i
2
√
2

− 1
2 i sec

(
t√
2

+ ix
))2

.

(27)

Family 3. when

A0 =
1
2
, A1 = −1

2
, B1 = 0, w = 1, (28)

we get
u3 (x, t) = 1

2 + 1
2 tanh (t − x) ,

v3 (x, t) = −2
(
1
2 + 1

2 tanh (t − x)
)

+2
(
1
2 + 1

2 tanh (t − x)
)2

.

(29)
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Fig. 2. 2D, 3D and contour surfaces of Eq. (27).

Fig. 3. 2D, 3D and contour surfaces of Eq. (29).

4 Conclusion

In this paper, with aid of sine-Gordon expansion method the coupled Boussinesq-
Burgers equation have been investigated. We successfully constructed differ-
ent types of exact solutions such as topological, non-topological, and kink-type
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soliton solutions. 2D, 3D and contour surfaces are plotted to explain the physical
structure of the obtaining solutions (Figs. 1, 2 and 3).
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Abstract. Modelling equations involving functions is a powerful tool in
many physical problems which do not require derivatives of function. The
study of solution, stability and application of functional equations is an
emerging field in the present scenario of research in abstract and applied
mathematics. The purpose of this study is to deal with a new functional
equation arising from subcontrary mean (harmonic mean) and its various
fundamental stabilities relevant to Ulam’s ideology of stability and also
its pertinences in different fields such as physics, finance, geometry and in
other sciences. We illustrate a numerical example to relate the equation
dealt in this study with the fuel economy in automobiles.

Keywords: Arithmetic mean · Harmonic mean · Functional
equation · Ulam stability
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1 Introduction and Preliminaries

The research work on approximating functional, differential and integral
inequalities is a hot topic in analysis. The historical background of the stability
of mathematical equations is available in the literaure ([5,6,9,11,20]). There are
many published papers and textbooks on various types of functional equations,
their solutions and stability results; one can refer to [1,7,8,10,12,13,15,19]. The
Ulam’s approximation of several functional and differential equations are dealt
via invariant point technique in ([2–4]). There are many interesting applications
of functional equations, especially multiplicative inverse functional equations in
various fields [16–18].

In this study, a new multiplicative inverse functional equation arising from
subcontrary mean (harmonic mean) of the form

mj

(
2pq

p + q

)
=

1
2

[mj(p) + mj(q)] (1.1)
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H. Dutta et al. (Eds.): CMES 2019, AISC 1111, pp. 241–247, 2020.
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is proposed. One can easily verify that the multiplicative inverse function
mj(p) = 1

p is a solution of Eq. (1.1). The fundamental stabilities of Eq. (1.1) are
solved using fixed point alternative theorem and some applications of Eq. (1.1)
are presented. Also, Eq. (1.1) is interpreted with the measurements of fuel econ-
omy in automobiles.

2 Stability Results of Subcontrary Mean Functional
Equation (1.1)

In this fragmant, let us presume that q �= p, for all p, q ∈ R
�. Then we proceed

to obtain fundamental stability results of Eq. (1.1) involving a common control
mapping as upper bound, a positive fixed constant and sum of powers of norms
as upper bounds in the setting of real numbers excluding zero. For the purpose
of uncomplicated computation, let us symbolize the operator D as below:

Dmj(p, q) = mj

(
2

1
p + 1

q

)
− 1

2
[mj(p) + mj(q)] .

Theorem 2.1. Consider a function mj : R
� −→ R with the condition that

mj(p) tends to 0 when p tends to ∞. Also, assume that the function mj satisfies
the following inequality

|Dmj(p, q)| ≤ υ

(
1
p
,
1
q

)
(2.1)

for all p, q ∈ R
�, where υ : R� ×R

� −→ [0,∞) is a given function. Suppose there
persists L < 1 such that the mapping p �→ Υ(p) = υ

(
1
p , 0

)
has the property

Υ
(

p
2

) ≤ 2LΥ(p) for all p ∈ R
�. If the mapping υ has the property

lim
n→∞ 2−nυ

(
2−np, 2−nq

)
= 0, (2.2)

for all p, q ∈ R
�, then a unique multiplicative inverse mapping Mj : R� −→ R

exists such that
|mj(p) − Mj(p)| ≤ 1

1 − L
Υ(p) (2.3)

for all p ∈ R
�.

Proof. Let us define a set S as follows: T = {φ : R
� −→ R,where φ

is a mapping}. Assume ρ be the generalized metric on T which is described
as:

ρ(ψ, φ) = ρΥ(ψ, φ) = inf{λ > 0 : |ψ(p) − φ(p)| ≤ λΥ(p), for all p ∈ R
�}. (2.4)

From the above definition of ρ shows that the set T is complete space. Now,
define a mapping μ : T −→ T by

μφ(p) =
1
2
φ

(p

2

)
(p ∈ R

�) (2.5)
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for all φ ∈ T . Next, let us show that μ is a strictly contractive function on the
set T . For given ψ, φ ∈ T , suppose 0 ≤ λψφ ≤ ∞ is an arbitrary constant with
ρ(ψ, φ) ≤ λψφ. Therefore, we have

ρ(ψ, φ) < λψφ =⇒ |ψ(p) − φ(p)| ≤ λψφΥ(p), (∀p ∈ R
�)

=⇒
∣∣∣∣12ψ

(p

2

)
− 1

2
φ

(p

2

)∣∣∣∣ ≤ 1
2
λψφΥ

(p

2

)
, (∀p ∈ R

�)

=⇒
∣∣∣∣12ψ

(p

2

)
− 1

2
φ

(p

2

)∣∣∣∣ ≤ LλψφΥ(p), (∀p ∈ R
�)

=⇒ ρ(μψ, μφ) ≤ Lλψφ.

The above inequality implies that ρ(μψ, μφ) ≤ Lρ(ψ, φ) for all ψ, φ ∈ T , which
inturn indicates that μ is a strictly contractive mapping of T , with the Lipschitz
constant L. Now, plugging (p, q) by (p, 0) in (2.1), we get

∣∣∣∣12mj

(p

2

)
− mj(p)

∣∣∣∣ ≤ υ

(
1
p
, 0

)
= Υ(p)

for all p ∈ R
�. Hence (2.4) produces that ρ(μrj , rj) ≤ 1. So, by employing the

fixed point alternative Theorem, there exists a function Mj : R� −→ R satisfying
the following:

(1) Mj is a fixed point of ρ, that is

Mj

(p

2

)
= 2Mj(p) (2.6)

for all p ∈ R
�. The mapping Mj is the distinctive invariant point of μ

in the set Γ = {φ ∈ T : ρ(Mj ,mj) < ∞}. This implies that Mj is the
unique mapping satisfying (2.6) such that there exists 0 < λ < ∞ satisfying
|Mj(p) − mj(p)| ≤ λΥ(p), ∀p ∈ R

�.
(2) ρ (μnmj ,Mj) → 0 as n → ∞. Thus, we have

lim
n→∞ 2−nmj

(
2−np

)
= Mj(p) (2.7)

for all p ∈ R
�.

(3) d(Mj ,mj) ≤ 1
1−Lρ(Mj , μmj), which implies ρ(Mj ,mj) ≤ 1

1−L .

So, the inequality (2.3) holds. On the other hand, from (2.1), (2.2) and (2.7), we
have

∣∣DMj(p, q)
∣∣ = lim

n→∞ 2−n

∣∣∣∣∣mj

(
2

1
2−np

+ 1
2−nq

)
− 1

2

[
2−nmj(2

−np) + 2−nmj(2
−nq)

]∣∣∣∣∣
≤ lim

n→∞ 2−nυ
(
2−np, 2−nq

)
= 0

for all p, q ∈ R
�, which shows that Mj is a solution of the Eq. (1.1) and hence

Mj : R� −→ R is a multiplicative inverse function. Now, we exhibit that Mj

is the distinctive multiplicative inverse mapping satisfying (1.1) and (2.3). Let
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us suppose that M ′
j : R

� −→ R be one more multiplicative inverse function
satisfying (1.1) and (2.3). Since M ′

j is an invariant point of μ and ρ(mj ,M
′
j) < ∞,

we have M ′
j ∈ T � = {ψ ∈ T |ρ(mj , ψ) < ∞}. From the invariant point alternative

theorem and since both Mj and M ′
j are invariant points of μ, we have Mj = M ′

j .
Therefore, Mj is unique which completes the proof of Theorem 2.1. 
�

The upcoming theorem is the dual of Theorem 2.1. The proof is obtained by
similar arguments as in Theorem 2.1 and so, for completeness, we present only
the statement.

Theorem 2.2. Suppose that the mapping mj : R� −→ R satisfies the condition
mj(∞) = 0 and the inequality (2.1), where υ : R� × R

� −→ [0,∞) is a specified
function. Suppose there is an L < 1 exists such that the function p �→ Υ(p) =
2υ

(
2
p , 0

)
has the property Υ(2p) ≤ 1

2LΥ(p), for all p ∈ R
�. If the mapping

υ has the property lim
n→∞ 2nυ (2np, 2nq) = 0, for all p, q ∈ R

�, then a unique

multiplicative inverse function Mj : R� −→ R exists such that |mj(p) − Mj(p)| ≤
1

1−LΥ(p) for all p ∈ R
�.

The following corollary is the investigation of various stabilities of Eq. (1.1) per-
tinent to UHS and UHR stability. The proof directly follow from the above
theorems.

Corollary 2.3. Let mj : R� −→ R be a function. Let there exists a constant η
(not depending on p, q)≥ 0 and real numbers � �= −1 and δ ≥ 0 such that the
functional inequality

|Dmj(p, q)| ≤
⎧⎨
⎩

η
2

δ

(∣∣∣ 1
p

∣∣∣� +
∣∣∣ 1
q

∣∣∣�
)

holds for all p, q ∈ R. Then a distinctive multiplicative inverse function Mj :
R

� −→ R exists which satisfies (1.1) and

|mj(α) − Mj(α)| ≤
⎧⎨
⎩

η

2�+1δ
|2�+1−1|

∣∣∣ 1
p

∣∣∣� , � �= −1

for all p ∈ R
�.

Proof. The proof is obtained by considering υ
(

1
p , 1

q

)
= η

2 , δ

(∣∣∣ 1
p

∣∣∣� +
∣∣∣ 1
q

∣∣∣�
)

for

all p, q ∈ R
�, and then selecting L = 1

2 in Theorems 2.1 and 2.2. 
�

3 Applications of Equation (1.1)

We summarize here various applications of Eq. (1.1) in many other fields where
harmonic mean is involved.



Functional Equation from Subcontrary Mean 245

• In chemistry, the density of an alloy is the harmonic mean of densitiies of its
constituents. Hence Eq. (1.1) can be used to estimate the density of the alloy.

• In an electrical circuit, the effective resistance of two resistors connected in
parallel is the harmonic mean of the resistance of the parallel resistor. Hence to
calculate the effective resistance of an electric circuit, we can apply Eq. (1.1).

• In finance, the price-earning ratio is the harmonic mean of data points since
it gives equal weight to each data point. Thus we can estimate price-earning
ratio using Eq. (1.1).

• In geometry, consider an incircle in a triangle. Then the radius of the incircle
is equal to the one-third of the harmonic mean of altitudes of the triangle. In
this situation, Eq. (1.1) can be utilized.

• In computer science, to evaluate algorithms and systems especially in machine
learning and information retrieval, the harmonic mean of the precision and
the recall is employed as an accumulated performance score. Hence to evaluate
algorithms and systems, we can use Eq. (1.1).

4 Interpretation of Equation (1.1)

We wind up this study with an interpretation of Eq. (1.1) with the standard
measurements of fuel economy in automobiles.

There are two standard measurements used for fuel economy in automobiles.
They are miles per gallon and litres per 100 km. It is clear that the dimensions of
these quantitites are reciprocal to each other. Hence, the calculation of average
value of the fuel economy of a car in one measurement implies the harmonic
mean of the other. In other words, the average value of fuel economy expressed
in litres per 100 km to miles per gallon will produce the harmonic mean of the
fuel economy expressed in miles per gallon.

4.1 Numerical Example

Suppose there are two cars with fuel economy 10 L/100 km and 20 L/100 km,
respectively. Let mj(p) and mj(q) denote fuel economy of the cars. Since mj(p) =
1
p , the value of the right hand side of Eq. (1.1) is

1
2
[mj(p) + mj(q)] =

1
2

[
1
10

+
1
20

]
= 0.075 L/100 km.

Now,

p =
1
10

L/100 km = 2824.81 miles/gal,

q =
1
20

L/100 km = 5649.81 miles/gal.

Then, 2pq
p+q = 3766.41 miles/gal.

But, 0.075L/100 km = 3766.41 miles/gal.
Thus, the arithmetic mean of 1

p and 1
q is obtained by the mapping of harmonic

mean of p and q by the solution of Eq. (1.1).
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Abstract. In this study, we consider a familier inequality of Hermite-
Hadamard inequality that is well known as Bullen’s inequality in the
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Bullen’s type inequalities for functions whose second derivatives in abso-
lute value are logarithmically convex. So, new error bounds for averaged
midpoint-trapezoid quadrature rules are obtained and applications in
numerical integration are given.

Keywords: Power mean inequality · Logarithmically convex ·
Averaged midpoint-trapezoid formula
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1 Introduction

The following double inequality offers estimations of the mean value of a convex
mapping f : [a, b] → R,

f

(
a + b

2

)
≤ 1

b − a

∫ b

a

f (x) dx ≤ f (a) + f (b)
2

.

This famous inequality called as Hermite-Hadamard inequality that appears
firstly in the studies of Hermite [5] and Hadamard [11]. During the last few
years, many researchers focused their attention on the study, generalizations
and similar results of the above inequality, see the papers [7–9,13,15–17]. Many
researchers used new lemmas to obtain Hermite-Hadamard type inequalities for
different kinds of convexity.
c© Springer Nature Switzerland AG 2020
H. Dutta et al. (Eds.): CMES 2019, AISC 1111, pp. 248–255, 2020.
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Here we give another inequality for convex functions in the literature:
Suppose that f : I ⊂ R → R is a convex function on the subset of real

numbers, then the following inequality

1
b − a

∫ b

a

f (x) dx ≤ 1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]

is known as Bullen’s inequality for convex functions [17], p. 39.
In [6], Niculescu mentioned log −convex functions as following:
A positive function f is called log −convex on a real interval I = [a, b], if for

all x, y ∈ [a, b] and λ ∈ [0, 1],

f (λx + (1 − λ) y) ≤ fλ (x) f1−λ (y) .

If f is a positive log −concave function, then the inequality is reversed. Equiv-
alently, a function f is log −convex on I if f is positive and log f is convex on
I. Several researchers spent efforts to provide new refinements, more general
results and different versions of extensions for log −convexity. A brief historical
background can be found in [1–3,10,18].

Recently, finding new results in error analysis by using various quadrature
formulas is a popular topic. Approaching error analysis in terms of inequalities
gave a new dimension to numerical analysis. The averaged midpoint-trapezoid
quadrature rule is discussed in [4,12,14,19–22].

The aim of this paper is to obtain new Bullen’s type inequalities for functions
whose second derivatives are log −convex by using Lemma 2 which is obtained
by Sarıkaya and Aktan in [13]. Then we give some applications in numerical
integration.

2 Main Results

Now we begin with the following lemma, for λ = 1
2 , [13]:

Lemma 1. Suppose that I be a subset of real numbers where a, b ∈ I with a < b.
f : I → R is a twice differentiable mapping such that f ′′ is integrable. Then the
following identity holds:

1

2

[
f

(
a + b

2

)
+

f (a) + f (b)

2

]
− 1

b − a

∫ b

a
f (x) dx = (b − a)2

∫ 1

0
k (t) f ′′ (ta + (1 − t) b)) dt

where

k (t) =
{

1
2 t

(
1
2 − t

)
, 0 ≤ t ≤ 1

2
1
2 (1 − t)

(
t − 1

2

)
, 1
2 ≤ t ≤ 1.

We give our first theorem and its proof as following:
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Theorem 1. Suppose that I be a subset of real numbers where a, b ∈ I with
a < b. f : I → R is a twice differentiable mapping such that f ′′ is integrable. If
|f ′′|q is log-convex on I, q ≥ 1, the following inequality holds:

∣∣∣∣∣
1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]
− 1

b − a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ |f ′′ (b)| (b − a)2

4

(
1
24

)1− 1
q

×
⎧⎨
⎩

((√
η + 1

)
ln η − 4

√
η + 4

ln3 η

) 1
q

+

((√
η + η

)
ln η − 4η + 4

√
η

ln3 η

) 1
q

⎫⎬
⎭

where η is defined as η = |f ′′(a)|q
|f ′′(b)|q �= 1.

Proof. Starting with the identity that is given in Lemma 1 and by applying
welll-known power mean integral inequality, we have

∣∣∣∣12
[
f

(
a + b

2

)
+

f (a) + f (b)

2

]
− 1

b − a

∫ b

a
f (x) dx

∣∣∣∣

≤ (b − a)2

4

{∫ 1
2

0
|t (1 − 2t)| ∣∣f ′′ (ta + (1 − t) b)

∣∣ dt

+

∫ 1

1
2

|(1 − t) (2t − 1)| ∣∣f ′′ (ta + (1 − t) b)
∣∣ dt

}

≤ (b − a)2

4

⎧⎨
⎩

(∫ 1
2

0
|t (1 − 2t)| dt

)1− 1
q

(∫ 1
2

0
|t (1 − 2t)| ∣∣f ′′ (ta + (1 − t) b)

∣∣q dt

) 1
q

+

(∫ 1

1
2

|(1 − t) (2t − 1)| dt

)1− 1
q

(∫ 1

1
2

|(1 − t) (2t − 1)| ∣∣f ′′ (ta + (1 − t) b)
∣∣q dt

) 1
q

⎫⎬
⎭ .

By taking into account that

∫ 1
2

0

|t (1 − 2t)| dt =
∫ 1

1
2

|(1 − t) (2t − 1)| dt =
1
24

and since |f ′′|q is log-convex on I, we have

∫ 1
2

0

|t (1 − 2t)| |f ′′ (ta + (1 − t) b)|q dt ≤
∫ 1

2

0

(
t − 2t2

) |f ′′ (a)|qt |f ′′ (b)|q(1−t)
dt

= |f ′′ (b)|q
(√

η + 1
)
ln η − 4

√
η + 4

ln3 η
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and
∫ 1

1
2

(
3t − 2t2 − 1

) ∣∣f ′′ (ta + (1 − t) b)
∣∣q dt ≤

∫ 1

1
2

(
3t − 2t2 − 1

) ∣∣f ′′ (a)
∣∣qt ∣∣f ′′ (b)

∣∣q(1−t)
dt

=
∣∣f ′′ (b)

∣∣q
(√

η + η
)
ln η − 4η + 4

√
η

ln3 η

where η = |f ′′(a)|q
|f ′′(b)|q , the proof is completed.

Corollary 1. If we choose q = 1 in Theorem 1, we get
∣∣∣∣∣
1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]
− 1

b − a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ |f ′′ (b)| (b − a)2

4

[(
μ + 2

√
μ + 1

)
ln μ − 4μ + 4

ln3 μ

]

where μ is defined as μ = |f ′′(a)|
|f ′′(b)| .

Theorem 2. Suppose that I be a subset of real numbers where a, b ∈ I with
a < b. f : I → R is a twice differentiable mapping such that f ′′ is integrable. If
|f ′′|q is log-convex on I, q > 1, the following inequality holds:

∣∣∣∣∣
1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]
− 1

b − a

∫ b

a

f (x) dx

∣∣∣∣∣

≤ |f ′′ (b)| (b − a)2
[(

1
2

) 4q−3
q−1 (q − 1)2

(2q − 1) (3q − 1)

]1− 1
q

×
{(

2 +
√

η (−2 + ln η)
4 ln2 η

) 1
q

+
(

2η − √
η (2 + ln η)

4 ln2 η

) 1
q

}

where η is defined in Theorem 1.

Proof. Using Lemma 1, the property of the modulus and Hölder integral inequal-
ity we have

∣
∣
∣
∣

1

2

[

f

(
a + b

2

)

+
f (a) + f (b)

2

]

− 1

b − a

∫ b

a

f (x) dx

∣
∣
∣
∣

≤ (b − a)2
{

∫ 1
2

0

∣
∣
∣
∣

t

2

(
1

2
− t

)∣
∣
∣
∣

∣
∣f ′′ (ta + (1 − t) b)

∣
∣ dt

+

∫ 1

1
2

∣
∣
∣
∣

(
1 − t

2

) (

t − 1

2

)∣
∣
∣
∣

∣
∣f ′′ (ta + (1 − t) b)

∣
∣ dt

}
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≤ (b − a)2

⎧

⎨

⎩

(
∫ 1

2

0

∣
∣
∣
∣
∣

t

2

(
1

2
− t

) q
q−1

∣
∣
∣
∣
∣
dt

)1− 1
q

(
∫ 1

2

0

t

2

∣
∣f ′′ (ta + (1 − t) b)

∣
∣
q
dt

) 1
q

+

(
∫ 1

1
2

∣
∣
∣
∣
∣

(
1 − t

2

) (

t − 1

2

) q
q−1

∣
∣
∣
∣
∣
dt

)1− 1
q

(
∫ 1

1
2

1 − t

2

∣
∣f ′′ (ta + (1 − t) b)

∣
∣
q
dt

) 1
q

⎫

⎬

⎭
.

By taking into account that
∫ 1

2

0

∣∣∣∣∣
t

2

(
1

2
− t

) q
q−1

∣∣∣∣∣ dt =

∫ 1

1
2

∣∣∣∣∣
(
1 − t

2

) (
t − 1

2

) q
q−1

∣∣∣∣∣ dt =

(
1

2

) 4q−3
q−1 (q − 1)2

(2q − 1) (3q − 1)

and since |f ′′|q is log-convex on I, we have

∫ 1
2

0

t

2
|f ′′ (ta + (1 − t) b)|q dt ≤

∫ 1
2

0

t

2
|f ′′ (a)|qt |f ′′ (b)|q(1−t)

dt

= |f ′′ (b)|q
(

2 +
√

η (−2 + ln η)
4 ln2 η

)

and
∫ 1

1
2

1 − t

2
|f ′′ (ta + (1 − t) b)|q dt ≤

∫ 1

1
2

1 − t

2
|f ′′ (a)|qt |f ′′ (b)|q(1−t)

dt

= |f ′′ (b)|q
(

2η − √
η (2 + ln η)

4 ln2 η

)

where η is defined in Theorem 1, the proof is completed.

3 Applications for Numerical Integration

Let π = {a = x0 < x1 < ... < xn = b} be a partition of the interval [a, b] , hi =
xi+1 − xi, for i = 0, 1, 2, ..., n − 1 and consider the averaged midpoint-trapezoid
quadrature formula

∫ b

a

f (x) dx = AMT (π, f) + RMT (π, f) ,

where

AMT (π, f) =
1
4

n−1∑
i=0

hi

[
f (xi) + 2f

(
xi + xi+1

2

)
+ f (xi+1)

]

Here, the term RMT (π, f) denotes the associated approximation error.
The following results holds.



Some Integral Inequalities 253

Proposition 1. Let I ⊂ R be an open interval, a, b ∈ I with a < b. f : I → R

is a twice differentiable mapping such that f ′′ is integrable. If |f ′′|q is log-convex
on I, q ≥ 1, then, for partition π of [a, b], the following inequality holds:

|RMT (π, f)| ≤
(

1
24

)1− 1
q

n−1∑
i=0

(hi)
3 |f ′′ (xi+1)|

4

×
⎧⎨
⎩

((√
ηi + 1

)
ln ηi − 4

√
ηi + 4

(ln ηi)
3

) 1
q

+

((√
ηi + ηi

)
ln ηi − 4ηi + 4

√
ηi

(ln ηi)
3

) 1
q

⎫⎬
⎭

where ηi is defined as ηi = |f ′′(xi)|q
|f ′′(xi+1)|q .

Proof. We apply Theorem 1 to the intervals [xi, xi+1] , i = 0, 1, ..., n − 1 and
sum. Then the triangle inequality gives the proof.

Corollary 2. Let I ⊂ R be an open interval, a, b ∈ I with a < b. f : I → R is
a twice differentiable mapping such that f ′′ is integrable. Assume that |f ′′| is a
log-convex on I. Then, for partition π of [a, b], the following inequality holds:

|RMT (π, f)| ≤
n−1∑
i=0

|f ′′ (xi+1)| (hi)
3

4

[(
μi + 2

√
μi + 1

)
ln μi − 4μi + 4

(lnμi)
3

]

where μi is defined as μi = |f ′′(xi)|
|f ′′(xi+1)| .

Proof. We apply Proposition 1 for q = 1 to the intervals [xi, xi+1] , i = 0, 1, ..., n−
1 and sum. Then the triangle inequality gives the proof.

Proposition 2. Let I ⊂ R be an open interval, a, b ∈ I with a < b. f : I → R

is a twice differentiable mapping such that f ′′ is integrable. If |f ′′|q is log-convex
on I, q > 1, then, for partition π of [a, b], the following inequality holds:

|RMT (π, f)| ≤
n−1∑
i=0

|f ′′ (xi+1)| (hi)
3

[(
1
2

) 4q−3
q−1 (q − 1)2

(2q − 1) (3q − 1)

]1− 1
q

×
{(

2 +
√

ηi (−2 + ln ηi)
4 ln2 ηi

) 1
q

+
(

2ηi − √
ηi (2 + ln ηi)

4 ln2 ηi

) 1
q

}

where ηi is defined in Proposition 1.

Proof. We apply Theorem 2 to the intervals [xi, xi+1] , i = 0, 1, ..., n − 1 and
sum. Then the triangle inequality gives the proof.
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4 Conclusion

This paper includes some new integral inequalities of Bullen’s type for differen-
tiable logarithmically convex functions. The results have been applied for numer-
ical integration in terms of remainder term. The main results have performed
by using Hölder inequality and its variants. Interested researchers can improved
our results and new bounds can be presented by using different kinds of convex
functions.
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7. Set, E., Özdemir, M.E., Dragomir, S.S.: On Hadamard-type inequalities involving

several kinds of convexity. J. Inequal. Appl. (2010). https://doi.org/10.1155/2010/
286845. Article Number: 286845

8. Toader, G.: Some generalizations of the convexity. In: Proceedings of the Collo-
quium on Approximation and Optimization, pp. 329–338. Cluj-Napoca, Romania
(1984)

9. Toader, G.: On a generalization of the convexity. Mathematica 30(53), 83–87
(1988)

10. Yang, G.-S., Tseng, K.-L., Wang, H.: A note on integral inequalities of Hadamard
type for log −convex and log −concave functions. Taiwan. J. Math. 16(2), 479–496
(2012)

11. Hadamard, J.: Étude sur les propietés des functions enti éres et en particulies d’une
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Abstract. The interest in fuzzy numbers and their applications is
increasing rapidly. Many types of fuzzy numbers were studied in the liter-
ature and applied to many mathematical fields. The n-Polygonal Fuzzy
Number (n-PFN) is starting to get a special attention since it gener-
alizes the known triangular and trapezoidal fuzzy numbers and has the
linearity advantages with flexibility of changing the value of n as desired.
Tuffaha and Alrefaei [13] have presented a ranking function and conve-
nient binary operations on the n-PFN with equidistant knots that satisfy
the most important properties. In this paper, an equivalence relation of
the set of all n-PFN’s is introduced, where two n-PFN’s are equivalent
if and only if their ranking values are equal. Then, the set of the equiva-
lence classes with two operations is shown to be a field that is isomorphic
to the set of real numbers. Finally, matrices of n-PFN’s are studied.

Keywords: n-polygonal fuzzy numbers · Multiplication of fuzzy
numbers · The fuzzy ranking equivalence relation

1 Introduction

Fuzzy sets are important tools to represent fuzzy data we face in real life, as
Zadeh [17] showed in the year 1965 in his introduction of Fuzzy Set Theory.
Since then, the theory has been widely developed and applied to many mathe-
matical fields [10]. In particular, the fuzzy numbers [4], which are normalized real
fuzzy sets, are getting a special interest since they give a kind of generalization
of the real numbers. Many types of fuzzy numbers were studied in the literature
and applied in many mathematical fields including fuzzy differential equations
[2,6,7,15] and fuzzy linear programming [1,3,5,8,11]. Recently, the n-polygonal
fuzzy number, which generalizes the known triangular and trapezoidal fuzzy
numbers, is getting a big interest and applications, especially in neural networks
[9,14]. Piecewise linear fuzzy numbers were first introduced by Steyaert et al. [12]
to be fuzzy numbers with piecewise linear membership functions. This linearity
was shown in [12] to reduce the addition computational time in comparison with
the time needed to add arbitrary fuzzy numbers. However, the authors failed to
define a convenient closed multiplication operation. In 2001, Liu introduced the
equidistant n-polygonal fuzzy number with arithmetic operations depending on
c© Springer Nature Switzerland AG 2020
H. Dutta et al. (Eds.): CMES 2019, AISC 1111, pp. 256–265, 2020.
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Zadeh’s extension principle [18]. Although many application of this fuzzy number
with these arithmetic operations were studied [14], the multiplication based on
Zadeh’s extension principle was criticized to miss linearity and closeness proper-
ties [9,16], rather than not preserving the ranking values of the multiplied fuzzy
numbers, which restricts the application capability. Later, in a previous work of
Tuffaha and Alrefaei [13], a ranking function and convenient binary operations
have been defined on the Piecewise Linear Fuzzy Number of order n (PLFN-
n), which is the same as the equidistant n-polygonal fuzzy number. The binary
operations were shown to overcome some disadvantages of existing arithmetic
operations and to satisfy the most important properties, such as preserving the
ranking values and having identities and inverses. In this paper, the aim is to
show the strength of the algebraic structure by introducing a ranking equiva-
lence relation on the set of all piecewise linear fuzzy numbers of order n, where
two PLFN-n’s are equivalent if and only if their ranking values are equal. Then,
the set of the equivalence classes with two operations is shown to be a field
that is isomorphic to the set of real numbers. On the other hand, applying the
PLFN-n to other fields needs some tools that help us to deal with this new type
of numbers. In this paper, matrices of PLFN-n with binary operations are also
introduced and shown to be well defined.

2 Preliminaries

First, we present some definitions about the fuzzy sets and numbers:

Definition 1. [17] A fuzzy set Ã is a pair (X,μ), where X ⊆ IR is a set and
μÃ : X → [0, 1] is called the membership function, where the value of μÃ(x)
represents the “degree of membership” of x in Ã.

The definitions of piecewise linear fuzzy number is as follows.

Definition 2. [13] If the membership function of a real fuzzy set Ã is given by:

fÃ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
n [ x−ai

ai+1−ai
] + i

n ; ai ≤ x ≤ ai+1, i = 0, .., n − 1
1 ; an ≤ x ≤ b0
−1
n [ x−bi

bi+1−bi
] + n−i

n ; bi ≤ x ≤ bi+1, i = 0, .., n − 1
0 otherwise

(1)

Then, Ã is called a Piecewise Linear Fuzzy Number of Order n (PLFN-
n), which is represented by its knots: (a0, a1, .., an; b0, b1, .., bn). The family of all
PLFN-n’s is denoted by PLn.

Definition 3. Let P̃ = (a0, a1, .., an; b0, b1, .., bn) be a PLFN-n. Then its ranking
value is given by:

R(P̃ ) =
1
4n

[a0+2a1+2a2+ ...+2an−1+an+b0+2b1+2b2+ ...+2bn−1+bn] (2)
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The following definition gives a comparison between two PLFN-n’s through
their ranking values.

Definition 4. Let Ã and B̃ be two PLFN-n’s. Then:

– Ã and B̃ are said to be equivalent, denoted Ã ≈ B̃, if R(Ã) = R(B̃).
– Ã is said to be greater than or equivalent to B̃, denoted Ã � B̃, if R(Ã) ≥

R(B̃).
– Ã is said to be smaller than or equivalent to B̃, denoted Ã � B̃, if

R(Ã) ≤ R(B̃).

Definition 5. Let Ã = (a0, a1, .., an; b0, b1, .., bn), B̃ = (c0, c1, .., cn; d0, d1, .., dn)
∈ PLn. The addition of Ã and B̃ is defined as follows:

Ã ⊕ B̃ = (a0 + c0, a1 + c1, .., an + cn; b0 + d0, b1 + d1, .., bn + d1)

The multiplication of Ã and B̃ is Ã ⊗ B̃ = (e0, e1, .., en; f0, f1, .., fn) where:

fn =
1
4n

[I +
n∑

i=1

(2i − 1)Xi + 2nXn+1 +
n∑

i=1

(2(n + i) − 1)Xn+1+i]

fi−1 = fi − Xn+1+i, for i = n, n − 1, .., 1
en = f0 − Xn+1

ei−1 = ei − Xi, for i = n, n − 1, .., 1

and, I =
1
4n

[(a0 + 2a1 + .. + 2an−1 + an + b0 + 2b1 + .. + 2bn−1 + bn)∗
(c0 + 2c1 + .. + 2cn−1 + cn + d0 + 2d1 + .. + 2dn−1 + dn)]

Xi = (ai − ai−1) + (ci − ci−1), for i = n, n − 1, .., 1
Xn+1 = (b0 − an) + (d0 − cn)
Xn+1+i = (bi − bi−1) + (di − di−1), for i = n, n − 1, .., 1

Definition 6. Let Ã = (a0, a1, .., an; b0, b1, .., bn) and let B̃ = (c0, c1, .., cn; d0,
d1, .., dn) ∈ PLn. We define the additive inverse of Ã as follows:

−Ã = (−bn,−bn−1, ..,−b1,−b0;−an,−an−1, ..,−a1,−a0)

The subtraction of B̃ from Ã is defined as follows:

Ã � B̃ = Ã ⊕ (−B̃) = (a0 − dn, a1 − dn−1, .., an − d0; b0 − cn, b1 − cn−1, .., bn − c0)
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In addition, if R(Ã) = 0, the multiplicative inverse of Ã, in the sense that
Ã ⊗ Ã−1 ≈ 1, can be defined to be Ã−1 = (c0, c1, .., cn; d0, d1, .., dn), where

c0 = A +
1
4n

(a0 + 2a1 + .. + 2an−1 + an + b0 + 2b1 + .. + 2bn−1 − (4n − 1)bn)

A =
1

R(Ã)
ci = ci−1 + (bn−i+1 − bn−i) for all i = 1, .., n

d0 = cn + (b0 − an)
di = di−1 + (an−i+1 − an−i) for all i = 1, .., n

The following theorem gives some important properties of the arithmetic
operations.

Theorem 1. Let Ã = (a0, a1, .., an; b0, b1, .., bn) and B̃ = (c0, c1, .., cn; d0, d1, ..,
dn) be two PLFN-n’s. Then

1. R(Ã ⊕ B̃) = R(Ã) + R(B̃)
2. R(Ã � B̃) = R(Ã) − R(B̃)
3. R(−Ã) = −R(Ã)
4. R(Ã ⊗ B̃) = R(Ã) · R(B̃)

Proof: The proof of properties 1, 2 and 3 is straight forward, while the multi-
plication operation was built in [13] to satisfy property 4.

The proof of the following theorem is straightforward based on Theorem 1.

Theorem 2. For ã, b̃, c̃ ∈ PLn, we have:

1. If ã ⊕ b̃ ≈ c̃, then ã ≈ c̃ � b̃.
2. If ã ⊕ b̃ � c̃ and b̃ � 0, then ã � c̃.
3. If ã � c̃, then c̃ � ã � 0.
4. If ã � c̃ and b̃ � 0, then ã ⊗ b̃ � c̃ ⊗ b̃.
5. If ã � 0, then ã ⊕ b̃ � b̃.
6. ã � b̃ if and only if −ã � −b̃.

3 The Ranking Equivalence Relation

In this section, showing the strength of the algebraic structure (PLn,⊕,⊗) is
intended. This is done by introducing an equivalence relation on it and proposing
two binary operations on the set of equivalence classes. Then, some important
results are shown.

Definition 7. Define the ranking relation ∼ on PLn as follows:
For all Ñ1, Ñ2 ∈ PLn: Ñ1 ∼ Ñ2 ⇔ R(Ñ1) = R(Ñ2).

Theorem 3. The ranking relation defined above is an equivalence relation.
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Proof:

• For all Ñ ∈ PLn: R(Ñ) = R(Ñ). Therefore, Ñ ∼ Ñ and the relation is
reflexive.

• Let Ñ1, Ñ2 ∈ PLn such that Ñ1 ∼ Ñ2, i.e. R(Ñ1) = R(Ñ2), then Ñ2 ∼ Ñ1.
Therefore, the relation is symmetric.

• Let Ñ1, Ñ2, Ñ3 ∈ PLn such that Ñ1 ∼ Ñ2 and Ñ2 ∼ Ñ3, i.e. R(Ñ1) = R(Ñ2)
and R(Ñ2) = R(Ñ3). Then R(Ñ1) = R(Ñ3), so Ñ1 ∼ Ñ3. Thus, the relation
is transitive.

From the above points, the ranking relation is an equivalence relation.

Definition 8. The equivalence classes on PLn with respect to the equivalence
relation defined above are defined by:

[Ñ ] = {Ã ∈ PLn : R(Ã) = R(Ñ)} for all Ñ ∈ PLn

We denote the set of all equivalence classes in PLn by Fn = {[Ñ ] : Ñ ∈ PLn}.
Definition 9. For [Ñ1], [Ñ2] ∈ Fn, we define the addition on Fn by:

[Ñ1] + [Ñ2] = {Ã ⊕ B̃ : R(Ã) = R(Ñ1) and R(B̃) = R(Ñ2)}
Theorem 4. [Ñ1] + [Ñ2] = [Ñ1 ⊕ Ñ2] for all [Ñ1], [Ñ2] ∈ Fn.

Proof: Suppose R(Ñ1) = x and R(Ñ2) = y. Then, by Theorem 1, R(Ñ1⊕Ñ2) =
x + y.

1. Let C̃ ∈ [Ñ1] + [Ñ2]. Then C̃ = Ã ⊕ B̃, where Ã ∈ [Ñ1] and B̃ ∈ [Ñ2]. From
Theorem 1, we have:

R(Ã ⊕ B̃) = R(Ã) + R(B̃)

R(C̃) = x + y

Therefore, C̃ ∈ [Ñ1 ⊕ Ñ2].

2. Let C̃ = (e0, e1, .., en; f0, f1, .., fn) ∈ [Ñ1 ⊕ Ñ2]. Then

R(C̃) =
e0 + 2e1 + .. + 2en−1 + en + f0 + 2f1 + .. + 2fn−1 + fn

4n
= x + y

We want to show that C̃ ∈ [Ñ1] + [Ñ2], i.e. we need to find Ã ∈ [Ñ1] and
B̃ ∈ [Ñ2] such that Ã ⊕ B̃ = C̃.
Let Ã = (x, x, .., x;x, x, .., x). Then R(Ã) = x and Ã ∈ [Ñ1]. And let B̃ =
(e0 − x, e1 − x, .., en − x; f0 − x, f1 − x, .., fn − x). Then

R(B̃) =
1

4n
[e0 − x + (e1 − x) + .. + 2(en−1 − x) + en − x

+ f0 − x + 2(f1 − x) + .. + 2(fn−1 − x) + fn − x]

=
1

4n
[e0 + 2e1 + .. + 2en−1 + en + f0 + 2f1 + .. + 2fn−1 + fn] +

1

4n
[−4n.x]

= x + y − x = y
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Therefore, B̃ ∈ [Ñ2].
Moreover, Ã ⊕ B̃ = (e0, e1, .., en; f0, f1, .., fn) = C̃. Hence C̃ ∈ [Ñ1] + [Ñ2].

From the above we conclude that [Ñ1] + [Ñ2] = [Ñ1 ⊕ Ñ2].

Theorem 5. The set Fn with the addition operation given in Definition 9 is an
abelian group.

Proof:

1. Fn has an additive identity, that is [0̃], where 0̃ is any PLFN-n with ranking
value equal to 0, since for all [ã] ∈ Fn:

[ã] + [0̃] = [0̃] + [ã] = [ã ⊕ 0̃] = [ã]

2. For all [ã] ∈ Fn, [ã] has an additive inverse in Fn, that is −[ã] = [−ã], since:

[ã] + [−ã] = [−ã] + [ã] = [ã � ã] = [0̃]

3. The addition is associative since for all [ã], [b̃], [c̃] ∈ Fn, we have:

[ã] + ([b̃] ⊕ [c̃]) = [ã] + [b̃ ⊕ c̃] = [ã ⊕ (b̃ ⊕ c̃)]

= [(ã ⊕ b̃) ⊕ c̃] = [ã ⊕ b̃] + [c̃] = ([ã] + [b̃]) + [c̃]

4. The addition is commutative since for all [ã], [b̃] ∈ Fn, we have:

[ã] + [b̃] = [ã ⊕ b̃] = [b̃ ⊕ ã] = [b̃] + [ã]

From the above we conclude that (Fn,+) is an abelian group.

Definition 10. Let [Ñ1], [Ñ2] ∈ Fn. Define the multiplication on Fn by:

[Ñ1] · [Ñ2] = {Ã ⊗ B̃ : R(Ã) = R(Ñ1) and R(B̃) = R(Ñ2)}

Theorem 6. [Ñ1] · [Ñ2] = [Ñ1 ⊗ Ñ2] for all [Ñ1], [Ñ2] ∈ Fn.

Proof: Suppose R(Ñ1) = x and R(Ñ2) = y. Then R(Ñ1 ⊗ Ñ2) = x · y.

1. Let C̃ ∈ [Ñ1] · [Ñ2]. Then C̃ = Ã ⊗ B̃, where Ã ∈ [Ñ1] and B̃ ∈ [Ñ2]. From
Theorem 1, we have:

R(Ã ⊗ B̃) = R(Ã) · R(B̃)

R(C̃) = x · y

Therefore, C̃ ∈ [Ñ1 ⊗ Ñ2].
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2. Let C̃ = (e0, e1, .., en; f0, f1, .., fn) ∈ [Ñ1 ⊗ Ñ2]. We want to show that C̃ ∈
[Ñ1] · [Ñ2], i.e. we need to find Ã ∈ [Ñ1] and B̃ ∈ [Ñ2] such that Ã ⊗ B̃ = C̃.
Let Ã = (x, x, .., x;x, x, .., x). Then Ã ∈ [Ñ1]. And let B̃ = (y[1−x]+e0, y[1−
x] + e1, .., y[1 − x] + en; y[1 − x] + f0, y[1 − x] + f1, .., y[1 − x] + fn). Then

R(B̃) =
1

4n
[y(1 − x) + e0 + 2y(1 − x) + 2e1 + ..+ 2y(1 − x) + 2en−1 + y(1 − x) + en

+ y(1 − x) + f0 + 2y(1 − x) + 2f1 + ..+ 2y(1 − x) + 2fn−1 + y(1 − x) + fn]

=
1

4n
[4ny(1 − x)] + R(C̃) = y(1 − x) + xy = y

Therefore, B̃ ∈ [Ñ2]. Now, we show that Ã ⊗ B̃ = C̃.
I = 1

4n [4nx][4ny(1 − x) + 4nxy] = 4nx[y(1 − x) + xy] = 4nxy
Xi = (x−x)+ [y(1−x)+ ei −y(1−x)− ei−1] = ei − ei−1, for all i = 1, .., n
Xn+1 = (x − x) + [y(1 − x) + f0 − y(1 − x) − en] = f0 − en
Xn+1+i = (x−x)+[y(1−x)+fi−y(1−x)−fi−1] = fi−fi−1, for all i = 1, .., n
It is clear that Ã ⊗ B̃ = C̃. Hence C̃ ∈ [Ñ1] · [Ñ2].

From the above we conclude that [Ñ1] · [Ñ2] = [Ñ1 ⊗ Ñ2].

Theorem 7. The structure (Fn,+, ·) is a field.

Proof:

1. Theorem 5 shows that (Fn,+) is an abelian group.
2. The operation (·) is associative since for all [ã], [b̃], [c̃] ∈ Fn, by Theorem 6,

we have:

[ã] · ([b̃] · [c̃]) = [ã] · [b̃ ⊗ c̃] = [ã ⊗ (b̃ ⊗ c̃)] = [(ã ⊗ b̃) ⊗ c̃] = [ã ⊗ b̃] · [c̃] = ([ã] · [b̃]) · [c̃]

3. The operation (·) is commutative since for all [ã], [b̃] ∈ Fn, by Theorem 6, we
have:

[ã] · [b̃] = [ã ⊗ b̃] = [b̃ ⊗ ã] = [b̃] · [ã]

4. The distribution laws hold since for all [ã], [b̃], [c̃] ∈ Fn, by Theorems 4 and
6, we have [ã] · ([b̃] + [c̃]) = [ã] · [b̃ ⊕ c̃] = [ã ⊗ (b̃ ⊕ c̃)].
However, since both the addition and the multiplication preserve the ranking
value, it can easily be seen that R[ã ⊗ (b̃ ⊕ c̃)] = R[(ã ⊗ b̃) ⊕ (ã ⊗ c̃)]. Thus,

[ã] · ([b̃] + [c̃]) = [(ã ⊗ b̃) ⊕ (ã ⊗ c̃)] = [ã ⊗ b̃] + [ã ⊗ c̃] = [ã] · [b̃] + [ã] · [c̃]

Similarly, ([b̃] + [c̃]) · [ã] = [b̃] · [ã] + [c̃] · [ã].
5. Fn has a multiplicative identity, that is [1̃], where 1̃ is any PLFN-n with

ranking value equal to 1. For all [ã] ∈ Fn, by Theorem 6, we have [ã] · [1̃] =
[1̃] · [ã] = [ã].

6. For all [ã] ∈ Fn with [ã] = [0̃], [ã] has a multiplicative inverse in Fn, that is
[ã]−1 = [ã−1], since by Theorem 6 above, we have [ã] · [ã]−1 = [ã]−1 · [ã] =
[ã ⊗ ã−1] = [1̃].

Therefore, (Fn,+, ·) is a field.
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Theorem 8. The field (Fn,+, ·) is isomorphic to IR as rings.

Proof: Let the map φ : Fn → IR with φ([Ñ ]) = R(Ñ). Then φ is a ring
homomorphism since for all [x̃], [ỹ] ∈ Fn, by Theorems 4 and 6, we have:

φ([x̃] + [ỹ]) = φ([x̃ ⊕ ỹ]) = R(x̃ ⊕ ỹ) = R(x̃) + R(ỹ) = φ([x̃]) + φ([ỹ])

φ([x̃] · [ỹ]) = φ([x̃ ⊗ ỹ]) = R(x̃ ⊗ ỹ) = R(x̃) · R(ỹ) = φ([x̃]) · φ([ỹ])

Moreover, φ is clearly one-to-one and onto. Thus φ is an isomorphism and Fn �
IR as rings.

4 Matrices with PLFN-n

Studying fuzziness in many fields requires working with matrices of fuzzy num-
bers. Therefore, in this section, some concepts about the matrices with PLFN-n’s
are proposed here.

Definition 11

– A piecewise linear fuzzy matrix M̃ is a matrix whose entries are PLFN-n’s.
– The set of all piecewise linear fuzzy matrices is denoted M(PLn).
– The addition and multiplication of piecewise linear fuzzy matrices are similar

to those on real matrices, but using the binary operations on PLn given in
Definition 5.

Definition 12. Let M̃ = [m̃ij ]p×q, Ñ = [ñij ]p×q ∈ M(PLn). Then:

1. M̃ and Ñ are said to be equal, written M̃ = Ñ, if m̃ij = ñij for all i = 1, .., p

and j = 1, .., q. Moreover, we call them equivalent, written M̃ ≈ Ñ, if m̃ij ≈
ñij (have the same rank) for all i = 1, .., p and j = 1, .., q.

2. A set of rows of M̃, {m̃i1 , m̃i2 , ..., m̃ik}, is said to be linearly independent if
the equation: a1 ∗ m̃i1 ⊕ a2 ∗ m̃i2 ⊕ ... ⊕ ak ∗ m̃ik ≈ 0̃ with a1, a2, ..., ak ∈ IR
can only be satisfied by: ai = 0 for all i = 1, .., k.

3. The rank of M̃ is the maximal number of linearly independent rows of M̃.
4. If p = q, then M̃ is a square fuzzy matrix, and we define the determinant

of M̃, denoted det(M̃), to be a PLFN-n computed in a similar way to how
we compute the determinant of a real square matrix, but using the binary
operations defined in Sect. 2 on PLn. Furthermore, it can easily be shown that
if det(M̃) ≈ 0, then M̃ has an inverse matrix M̃−1 such that M̃ ∗ M̃−1 ≈ Ĩ,
where the square matrix Ĩ is a fuzzy identity matrix in M(PLn) which has
PLFN-n’s equivalent to 1 on the main diagonal, and all its other elements
are equivalent to 0.

Example 1. Take M̃ =
[

ã = (0, 2, 4; 5, 6, 7) b̃ = (5, 6, 7; 7, 8, 9)
c̃ = (−2, 0, 2; 3, 4, 5) d̃ = (1, 4, 6; 6, 8, 11)

]

.

Then det(M̃) = (ã ⊗ d̃) � (c̃ ⊗ b̃) = (−4, 3, 9; 11, 17, 24) ≈ 0.
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This means that M̃ has an inverse:

M̃−1 = (det(M̃))−1 ∗
[
d̃ −b̃

−c̃ ã

]

=

[
ã′ = (−18.4,−8.4,−0.4; 1.6, 9.6, 19.6) b̃′ = (−16.7,−8.7,−1.7; 0.3, 7.3, 15.3)

c̃′ = (−17.2,−9.2,−2.2; 0.8, 8.8, 17.8) d̃′ = (−17.6,−8.6,−0.6; 2.4, 9.4, 17.4)

]

where

M̃ ∗ M̃−1 =
[
(ã ⊗ ã′) ⊕ (b̃ ⊗ c̃′) (ã ⊗ b̃′) ⊕ (b̃ ⊗ d̃′)
(c̃ ⊗ ã′) ⊕ (d̃ ⊗ c̃′) (c̃ ⊗ b̃′) ⊕ (d̃ ⊗ d̃′)

]

=
[
(−41,−20,−2; 4, 22, 43) (−40,−20,−2; 4, 20, 38)
(−45,−22,−3; 3, 22, 45) (−42,−20,−1; 5, 22, 42)

]

≈ Ĩ

Note that if we find the real matrix equivalent to M̃ by ranking all its fuzzy

numbers, we get: N =
[
4 7
2 6

]

, where we notice that the value of the determinant

of N equals the ranking value of the determinant of the fuzzy matrix M̃, i.e.

det(N) = R[det(M̃)] = 10 and N−1 =
[

0.6 −0.7
−0.2 0.4

]

≈ M̃−1.

Remark 1. Let Ã be a square piecewise linear fuzzy matrix with nonzero deter-
minant, and let Ã−1 be its inverse. The inverse is not unique since any matrix
B̃ that is equivalent to Ã−1 satisfies Ã ∗ B̃ ≈ Ĩ. This means that there is a class
of equivalent matrices that represents the inverse of Ã.

5 Conclusion

In conclusion, the algebraic structure of the set of all piecewise linear fuzzy
numbers of order n with its arithmetic operations introduced by Tuffaha and
Alrefaei is shown to be strong. This was shown in this paper by proposing a
ranking equivalence relation on it and showing that the set of the resulting
equivalence classes is a field which is isomorphic to the real numbers. This means
that we have a kind of generalization of the real numbers, where every real
number corresponds to a class of PLFN-n’s that have a ranking value equal to
this real number.

Moreover, some mathematical tools to deal with PLFN-n’s are developed
in this paper. These are, matrices of PLFN-n, equalities and inequalities with
PLFN-n’s. These concepts are only an extension to those on real numbers.

Further work in the future can be done by applying this practical type of
fuzzy numbers to many fields. For instance, it can be used to give a more realistic
representation for the fuzziness that can be found in fuzzy linear programming
(FLP) problems. The proposed approach of binary operations on PLFN-n’s can
be used to generalize the simplex method for solving FLP problems. Since this
binary operations preserve the ranking function, therefore a more preferable
solution will be obtained (i.e., the optimal solution will be consistent with the
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solution of the ranking linear programming which results from converting each
fuzzy number to its ranking value). Moreover, this type of fuzzy numbers is also
expected to get a more realistic solutions when applied to solve fuzzy differential
equations, neural networks or other fields.
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Abstract. Mier and Keeler formulated their fixed point theorem for
contractive mapping with purely metric condition. This idea was
extended by numerous mathematicians. In this paper we present a sim-
ple method of proving such theorems in the fuzzy metric space and give
new results.

1 Introduction

Theory of fuzzy sets was intruduced by Zadeh [23]. Kramosil and Michalek [17]
introduced fuzzy metric spaces based on the notion of continuous triangular
norms that were the first time applied in [24] to modify the definition of proba-
bilistic metric spaces introduced by K. Menger [12]. By a slight modification of
the Kramosil-Michalek definition, George and Veeramani [4,5] introduced and
studied fuzzy metric spaces and topological spaces induced by fuzzy metric [6,7].
Many of the most important nonlinear problems of applied mathematics reduce
to finding solutions of nonlinear functional equations which can be formulated
in terms of finding the fixed points of a given nonlinear operator of an infinite
dimensional function space X into itself. The autor in [14] establish a simple
and powerful lemma that provides a criterion for sequences in metric spaces to
be Cauchy. Using the lemma, it is then easily verified that the Picard iterates
{Tnx}, where T is a contraction or asymptotic contraction of Meir-Keeler type,
are Cauchy sequences. As an important application in this paper, M. Abtahi
presentes a new and simple proofs for several known results on the existence of
a fixed point for continuous and asymptotically regular self-maps of complete
metric spaces satisfying a contractive condition of Meir-Keeler type. We based
on the last paper and we use the notions of fuzzy metric space of George and
Veeramani [4]. he concept of fuzzy sets as a generalization of the “crisp” sets
[23] and later there has been much progress in the study of fuzzy sets, as many
authors have proved fixed point theorems for contractions in fuzzy metric spaces.
In the present paper we will try to give the version of fixed point of Meir-Keeler
type in the fuzzy context.

The present paper is organized as follows: After this introduction, we pre-
sented some basic concept in Sect. 2. Somme results as lemmas take place in
Sect. 3, and we finished by several results as theorems in the last section.
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2 Preliminaries

Definition 2.1. [4] A benary operation ∗[0, 1] × [0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:

1. ∗ is commutative and associative
2. is continuous
3. a ∗ 1 = a, ∀a ∈ [0, 1]
4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2.2. [4] The 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X
is an arbitrary set, ∗ is a continuous tnorm and M is a fuzzy set on X2 × [0,∞[
satisfying the following conditions for all x, y, z ∈ X and s, t > 0:

1. M(x, y, 0) = 0
2. M(x, y, t) = 1 for all t > 0 if and only if x = y
3. M(x, y, t) = M(y, x, t)
4. M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s)
5. M(x, y, .)[0,∞[→ [0, 1] is left continuous.

The function M(x, y, t) denotes the degree of nearness between x and y with
respect to t. So, we identify M(x, y, t) = 1 with x = y and M(x, y, t) = 0 with
∞.

In theorems cited further, we apply notations that are better suited to the
results of the next sections of our paper. The result of Meir and Keeler was
devolopped in the fuzzy case by Sidite Duraj and Elida Hoxha.

Theorem 2.3. [3] Let (X,M, ∗) be a fuzzy metric space, and f a mapping of
X into itself. If given ε > 0, there exists α > 0 such that

ε − α < M(x, y, t) < ε implies M(fx, fy, t) ≥ ε

Then f has a unique fixed point x.and lim
n−→∞ fnx0 = x for x0 ∈ X

Theorem 2.4. [10] Let f be a contractive selfmapping on a complete metric
space (X, d) that satisfies the following condition
for any α > 0, there exists ε > 0 such that

α < d(x, y) < ε + α implies d(fx, fy) ≤ α x, y ∈ X

Then f has a unique fixed point x.and lim
n−→∞ fnx0 = x for each x0 ∈ X

both theorems are more general than the next theorem of Boyd and Wong.

Theorem 2.5. [1] Let (X, d) be a complete metric space. And let f : X −→ X
satisfy

d(fx, fy, t) ≤ ϕ(d(fx, fy)) x, y ∈ X

where ϕ : [0,∞[−→ [0,∞[ is upper semicontinuous from the right and such that
ϕ(t) < t for all t ∈ (0,∞). Then f has a unique fixed point x.and lim

n−→∞ fnx0 = x

for each x0 ∈ X
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Clearly, our theorem in the fuzzy case is more general than the Boyd-Wong
one even for metric spaces. Jachymski [16] obtained the following more general
result for metric spaces.

Theorem 2.6. ([16], Corollary) Let f be a selfmapping of a complete metric
space (X, d) such that d(fy, fx) < d(y, x) for x 	= y and d(fy, fx) ≤ ϕ(d(y, x))
for all x, y ∈ X, where ϕ : [0,+∞) −→ [0,+∞) satisfies condition.
for each α > 0, there exists ε > 0 such that

ϕ(x, y) ≥ α on (α, α + ε)

Then f has a unique fixed point x.and lim
n−→∞ fnx0 = x for each x0 ∈ X

It appears that the simple reasoning presented in [18] applies to conditions
of the MeirKeeler type. Consequently, we easily obtain extensions of the well-
known theorems to the case of fuzzy metric spaces or partial fuzzy metric spaces.
In addition, new results for cyclic mappings are proved. Also, the next theorem
of Proinov is strongly extended in one of the Section below.

Theorem 2.7. [21] Let (X, d) be a complete metric space, and let f be a con-
tinuous selfmapping such that lim

n−→∞ d(fn+1x0, f
nx0) = x, x0 ∈ X, and for

D(x, y) = d(x, y) + γ[d(fx, x) + d(fy, y)] γ > 0

the following conditions are satisfied: d(fy, fx) < D(y, x), x, y ∈ X,
for each α > 0, there exists ε > 0 such that
α < D(y, x) < α + ε implies d(fy, fx) ≤ α, x, y ∈ X.
Then f has a unique fixed point x.and lim

n−→∞ fnx0 = x for each x0 ∈ X

3 Lemmas

Lemma 3.1. [20] Let (an)n∈N be a nonnegative sequence such that

an+1 > 0 yields an+1 < an n ∈ N (1)

Then lim
n−→∞ an = 0 iff the following condition is satisfied

for each ε > 0, there exists α > 0 such that

α < an < α + ε implies an+1 < an n ∈ N (2)

Lemma 3.2. Let (X,M, ∗) be a fuzzy metric space and let f be a selfmapping
satisfying

M(xn+2, xn+1, t) > 0 implies M(xn+2, xn+1, t) < M(xn+1, xn, t), n ∈ N. (3)

Then lim
n−→∞ M(xn+1, xn, t) = 1 iff the following condition holds

for each ε > 0, there exists α > 0 such that

ε − α < M(xn+1, xn, t) < ε implies M(xn+2, xn+1, t) ≥ ε n ∈ N (4)
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Proof 3.3. We apply Lemma 3.1 to an = M(xn+1, xn, t) in the fuzzy case

Definition 3.4. Let (X,M, ∗) be a fuzzy metric space, and 0 < ε < 1. Then a
selfmapping f is ε − contractive if the following condition is satisfied

1 − ε < M(x, y, t) < 1 =⇒ M(fx, fy, t) > M(x, y, t) (5)

If f : X −→ X is a ε − contractive mapping, then (3) holds for each x ∈ X.
Now, from Lemma 3.2 we obtain the following:

Corollary 3.5. Let (X,M, ∗) be a fuzzy metric space, and let f be a ε −
contractive selfmapping on X. Then lim

n−→∞ M(xn+1, xn, t) = 1 iff (4) holds.

Let us consider

cf (y, x, t) = min{M(y, x, t),M(fy, y, t),M(fx, x, t)}
and M(fx, fy, t) < 1 implies M(fy, fx, t) > cf (y, x, t)
Then we obtain
M(xn+2, xn+1, t) < 1 implies

M
(
xn+2, xn+1, t) > cf (xn+1, xn, t

)
= min

{
M(xn+1, xn, t),M(xn+2, xn+1, t)

}

(6)

= M
(
xn+1, xn, t

)
, n ∈ N (7)

(otherwise, a contradiction). Consecontly (6) yield (3) and we have the following

Corollary 3.6. Let (X,M, ∗) be a fuzzy metric space. and let f be a selfmapping
satisfying (6) or (5) or (3) Then lim n −→ ∞M(xn+1, xn, t) = 1 iff (4) holds
(ε − α < M(xn+1, xn, t) < ε) can also replaced by ε − α < cf (xn+1, xn, t) < ε in
(4)

Let us recall the notion of partial fuzzy metric

Definition 3.7. [15] A partial fuzzy metric on a nonempty set X is a function

PM : X × X × [0,∞[→ [0, 1]

such that for all x, y, z ∈ X and t, s > 0

1. M(x, y, 0) = 0
2. M(x, y, t) = 1 for all t > 0 if and only if x = y
3. M(x, y, t) = M(y, x, t)
4. M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s)
5. M(x, y, .)[0,∞[→ [0, 1] is left continuous.

where M(x, y, t) =
t

t + d(x; y)
. and d(x, y) is partial metric If (X,M, ∗) is a

fuzzy partial metric space, we will say that Mp is a fuzzy partial metric on X.
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All results of the present paper for fuzzy metric spaces remain valid also for
partial fuzzy metric spaces
Let us consider

mf (x, y, t) = min
{

M(y, x, t),M(fy, y, t),M(fx, x, t),

M(x, fy, 2t),M(y, fx, t),
[M(x, fx, t)M(y, fy, t)]

M(x, y, t)

}

and M(fy, fx, t) < 1 implies

M(fy, fx, t) > mf (y, x, t) x, y ∈ X and t > 0 (8)

we have M(xn+1, xn + 1, 2t) = 1
and

M(xn+2, xn, t) ≤ M(xn+2, xn+1, t/2) ∗ M(xn+1, xn, t/2)
≤ min{M(xn+2, xn+1, t/2),M(xn+1, xn, t/2)}
= cf (xn+1, xn, t).

and
[
M(xn+1, xn+2, t)M(xn, xn+1, t)

]

M
(
xn+1, xn, t

) = M
(
xn+2, xn+1, t/2

)

≤ M
(
xn+2, xn, t/2

) ∗ M
(
xn+1, xn, t/2

)

≤ min
{

M
(
xn+2, xn+1, t/2

)
, M

(
xn+1, xn, t/2

)}

= cf
(
xn+1, xn, t

)
.

Consequently, mf

(
xn+1, xn, t

)
= cf

(
xn+1, xn, t

)
, and the reasoning for cf

applies. Each partial fuzzy metric is a fuzzy metric, and the previous reasoning,
together with Corollary 2, yields the following:

Corollary 3.8. Let (X,M, ∗) be a partial fuzzy metric space, and let f be a
selfmapping on X satisfying (8) (or (6) or (5) or (3)).
Then lim

n−→∞ M(xn+1, xn, t) = 1 iff (3.4) holds (ε − α < M(xn+1, xn, t) < ε) can
also replaced by
ε − α < mf (xn+1, xn, t) < ε or by ε − α < mf (xn+1, xn, t) < ε in (4)).

Lemma 3.9. Let
(
X,M, ∗) be a fuzzy metric space and let f be a selfmapping

on X satisfying the following conditions:

M
(
xn+k+1, xk+1, t

)
< 1 implies (9)

M
(
xn+k+1, xk+1, t

)
> cf

(
xn+k, xk, t

)
, k, n ∈ N,

for each ε > 0, there exists α > 0 such that

ε − α < cf
(
xn+k, xk, t

)
< ε implies M

(
xn+k+1, xk+1

) ≥ ε, k, n ∈ N.
(10)
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Then lim
n,m−→∞ M

(
xn, xm, t

)
= 1 In addition, cf can be replaced by M in (9) or

(10) (so also in both of them). Similarly, if M is a partial fuzzy metric, then cf
can be replaced by mf in (9) or (10).

Proof 3.10. Let x0 ∈ X be an arbitrary point. Consider the sequence {xn} =
{fnx0}. We will prove that {xn} is a Cauchy sequence in X. Let Mn =
M(xn, xn+1, t), t > 0
If for some n, Mn = M(xn, xn+1, t) = 1 Then we have the result immidiatly.
Now suppose that Mn 	= 1 for all n.
if cf (x, y, t) = 1 then for some x, y,∈ X, we have that cf (x, fx, t) = 1.
Now if cf (x, y, t) < 1 for all x, y,∈ X, than by (9) we have
cf (x, x, t) < ε < M(fx, fy, t). For any n ∈ N

Mn = M(xn, xn+1, t) = M(fxn−1, fxn, t) > cf (xn−1, xn, t)
= min{M(xn−1, xn, t),M(xn−1, fxn−1, t),M(xn, fxn, t)}
= min{M(xn−1, xn, t),M(xn−1, xn, t),M(xn, xn+1, t)}
= min{M(xn−1, xn, t),M(xn, xn+1, t)}
= min{Mn−1,Mn}.

Thus the sequence {Mn} is strictly increasing. Since {Mn} ⊂ [0, 1] then {Mn}
converges to some s ∈ [0, 1], where sup{Mn}.
If s < 1 than exists δ > 0 and m ∈ N such that for n < m, s − δ < Mn−1 =
M(xn−1, xn, t) ≤ s. By the condition (10) and cf (x, x, t) < ε < M(fx, fy, t), we
have
s − δ < Mn−1 = cf (xn−1, xn, t) ≤ s =⇒ M(fxn−1, fxn, t) ≥ s
But M(fxn−1, fxn, t) = M(xn, xn+1, t) = Mn ≥ s that is a contradiction.
So s = 1 = lim

n−→∞ M(xn, xn+1, t)

For p ∈ N, M(xn, xn+p, t) > M(xn, xn+1, t/p) ∗ M(xn+1, xn+2, t/p) ∗ ... ∗
M(xn+p−1, xn+p, t/p) then lim

n−→∞ M(xn, xn+p, t) = 1. So the sequence {xn} is

Cauchy sequence in (X,M, ∗) hence the result.

Lemma 3.11. Let (X,M, ∗) be a fuzzy metric space, and let f be a selfmapping
on X satisfying the following conditions for a fixed t ∈ N

M(xnt+k+2, xk+1, s) < 1 implies (11)

M(xnt+k+2, , xk+1, s) < cf (xnt+k+1, xk, s), k ∈ N, n ∈ N ∪ {0}
for each ε > 0 there exists α > 0 such that

ε − α < cf (xnt+k+1, xk, s) < ε implies ε < M(xnt+k+2, xk+1, s) (12)
, k ∈ N , n ∈ N ∪ {0} (13)

Then lim
m,n−→∞ M(xn, xm, s) = 1. In addition, cf can be replaced by M in (11)

or (12)(so also in both of them). Similarly, if M is a partial fuzzy metric, then
cf can be replaced by mf in (11) or (12).



272 S. Melliani et al.

Proof 3.12. Clearly, if (11) and (12) hold, then, in particular, (15) and (4)
are satisfied. Therefore, we have lim

m,n−→∞ M(xn+1, xn, s) = 1 (see Corollar-

ies 3.5 or 3.6). Suppose that lim
k,n−→∞

M(xnt+k+2, xk+1, s) = 1 is false. Then,

for an infinite subset K of N and each k ∈ K, there exists n ∈ N such that
M(x(n+1)t+k+2, xk+1, s) < ε < 1. Let n = n(k) be the smallest such number. For
large k, we obtain (see (11)).

ε > M(x(n+1)t+k+2, xk+1, s) > cf (x(n+1)t+k+1, xk, s) = M(x(n+1)t+k+1, xk, s)

≥ M(x(n+1)t+k+1, x(n+1)t+k, s/(n + 1)t + 1) ∗ ... ∗ M(xnt+k+2, xk+1, s/(n + 1)t + 1)

∗ M(xk+1, xk, s/(n + 1)t + 1)

≥ M(x(n+1)t+k+1, x(n+1)t+k, s/(n + 1)t + 1) ∗ ... ∗ ε ∗ M(xk+1, xk, s/(n + 1)t + 1)

Therefore (see Corollary 3.5), we have
ε > M(x(n+1)t+k+2, xk+1, s) > cf (x(n+1)t+k+1, xk, s) > ε − α

for large k. Now, condition (12) yields

ε > M(x(n+1)t+k+2, xk+1, s) ≥ ε

a contradiction. Therefore lim
n,k−→∞

M(x(n+1)t+k+2, xk+1, s) = 0.

For any p ∈ {3, ..., t}, we have.

M(xnt+k+p, xk+1, s) ≥ M(xnt+k+p, xnt+k+p−1, s/nt + p − 1)
∗... ∗ M(xnt+k+2, xk+1, s/nt + p − 1)

and Lemma 3.2 yields lim
m,n−→∞ M(xnt+k+p, xk+1, s) = 1, that is, the proof of our

lemma is completed.

It can be seen that Lemma 3.9 is a consequence of Lemma 3.11 for t = 1.
For a mapping β : [0, 1] × [0, 1] −→ [0, 1] continuous at (1, 1) and such that
β(1, 1) = 1, let us consider

Df (x, y, t) = M(x, y, t) + β(M(fx, x, t),M(fy, y, t)) (14)

and
M(fx, fy, t) < 1 ⇒ M(fx, fy, t) > Df (x, y, t) x, y ∈ X (15)

Lemma 3.13. Let (X,M, ∗) be a fuzzy metric space, and let f be be such a
selfmapping on X that lim

n−→∞ M(xn+1, xn, t) = 1 and the following conditions
hold for a fixed t ∈ N

M(xnt+k+2, xk+1, s) < 1 implies (16)
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M(xnt+k+2, , xk+1, s) < Df (xnt+k+1, xk, s), k ∈ N, n ∈ N ∪ {0}
for each ε > 0 there exists α > 0 such that

ε−α < Df (xnt+k+1, xk, s) < ε implies ε < M(xnt+k+2, xk+1, s), k ∈ N, n ∈ N∪{0} (17)

Then lim
m,n−→∞ M(xn, xm, s) = 1. In addition, M can be replaced by cf (or by

mf (x, y) if M is a partial fuzzy metric) in (14) for (16) or (17).

Proof 3.14. Suppose that lim
k,n−→∞

M(xnt+k+2, xk+1, s) = 1 is false. Then, for

an infinite subset K of N and each k ∈ K, there exists n ∈ N such that
M(x(n+1)t+k+2, xk+1, s) < ε < 1. Let n = n(k) be the smallest such number. For
large k, we obtain (see (16)).

ε > M(x(n+1)t+k+2, xk+1, s) > Df (x(n+1)t+k+1, xk, s)

= M(x(n+1)t+k+1, xk, s) ∗ β(M(x(n+1)t+k+2, x(n+1)t+k+1, s), M(xk+1, xk, s))

≥ M(x(n+1)t+k+1, x(n+1)t+k, s/(n + 1)t + 1) ∗ ... ∗ M(xnt+k+2, xk+1, s/(n + 1)t + 1)

∗ M(xk+1, xk, s/(n + 1)t + 1) ∗ β(M(x(n+1)t+k+2, x(n+1)t+k+1, s), M(xk+1, xk, s))

≥ M(x(n+1)t+k+1, x(n+1)t+k, s/(n + 1)t + 1) ∗ ... ∗ ε ∗ M(xk+1, xk, s/(n + 1)t + 1) ∗ β(.., ..)

for large k. Therefore (β is continuous at (1, 1) and such that β(1, 1) = 1), we
have

ε > M(x(n+1)t+k+2, xk+1, s) > Df (x(n+1)t+k+1, xk, s) > ε − α

for large k. Our condition (17) yields

ε > M(x(n+1)t+k+2, xk+1, s) ≥ ε
a contradiction. Therefore, lim

k,n−→∞
M(xnt+k+2, xk+1, s) = 1. Now, we follow the

final part of the proof of Lemma 3.11.

Definition 3.15. A selfmapping f on a fuzzy metric space (X,M, ∗) is
1−continuous at x if lim

n−→∞ M(x, xn, t) = 1 implies lim
n−→∞ M(fx, fxn, t) = 1

for each sequence (xn)n∈N in X; f is 1−continuous if it is 1−continuous at each
point x ∈ X.

Lemma 3.16. Let (X,M, ∗) be fuzzy metric space and let f be a selfmapping
on X. If f is contractive, then f has at most one fixed point; the same holds if f
satisfies (6) or (8) and M satisfies M(x, x, t) ≥ M(x, y, t), x, y ∈ X or if M is
a fuzzy metric and (15) holds. If f is 1-continuous at x (e.g., if f is contractive)
and lim

n−→∞ M(x, fnx0, t) = 1 then x = fx and M(x, x, t) = 1
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Proof 3.17. If x, y are fixed points of f and M(x, x, t) ≥ M(x, y, t), x, y ∈ X
holds, then we obtain

mf (x, y, t) = min
{

M(y, x, t),M(fy, y, t),M(fx, x, t),M(x, fy, 2t),M(y, fx, t),

[M(x, fx, t)M(y, fy, t)]
M(x, y, t)

}

= cf (x, y, t) = M(x, y, t)

In addition, if x 	= y, then each of conditions (5), (6), and (8) yields

1 > M(x, y, t) = M(fx, fy, t) > M(x, y, t)

a contradiction. If M is a fuzzy metric and (15) holds, then we have

1 > M(x, y, t) = M(fx, fy, t) > Df (x, y, t) = M(x, y, t) ∗ β(1, 1) = M(x, y, t)

also a contradiction. Let us consider x ∈ X with lim
n−→∞ M(x, xn, t) = 1. Then

we have
M(fx, x, t) ≥ M(fx, xn+1, t/2) ∗ M(xn+1, x, t/2)

and in view of 1-continuity of f at x we also obtain lim
n−→∞ M(fx, xn+1, t) = 1,

that is lim
n−→∞ M(fx, x, t) = 1.

4 Theorems

Let us recall ([18], Definition 2.3) that a d-metric space (X, p) is 0-complete if
for each sequence (xn)n∈N in X with lim

n,m−→∞ p(xn, xm) = 0, there exists x ∈ X

such that lim
n−→∞ p(x, xn) = 0. Now, we are ready to extend the Ciric theorem

[2] and the Matkowski Theorem 1.5.1 in [10] to the case of fuzzy metric spaces
(and cf in place of p).

Theorem 4.1. Let f be a 1−continuous selfmapping on a 1−complete fuzzy
metric space (X,M, ∗). Assume that (6) or (5) holds and the following condition
is satisfied:
for each ε > 0, there exists α > 0 such that

ε − α < cf (x, y, t) < ε implies M(fx, fy, t) ≥ ε x, y ∈ X (1)

Then f has a unique fixed point, say x, and lim
n−→∞ M(x, fnx0, t) = M(x, x, t) =

1, x0 ∈ X

Proof 4.2. Our space is 1−complete, and, therefore, the sequence (fnx0)n∈N

converges (Lemma 3.9) to a unique fixed point of f (Lemma 3.16).

Lemma 29 from [19] and the previous theorem yield the following result.
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Theorem 4.3. Let h be a selfmapping on a 1−complete fuzzy metric space
(X,M, ∗) such that f = hs (for some s ∈ N) satisfies the assumptions of The-
orem 1. Then h has a unique fixed point, say x, and lim

n−→∞ M(x, hnx0, t) =

M(x, x, t) = 1, x0 ∈ X.

Lemma 3.11 enables us to extend the previous theorems to the case of fuzzy
cyclic mappings.
The idea was introduced by Kirk et al. [11], and we apply Definition 2.5 from
[18]. fixed t ∈ N, we put t + + = 1 and j + + = j + 1 for j ∈ {1, ..., t − 1}. Then
f : X −→ X is cyclic if X = X1 ∪ ... ∪ Xt and f(Xj) ⊂ Xj + +, j = 1, ..., t.

Theorem 4.4. Let f be a 1−continuous fuzzy cyclic selfmapping on a
1−complete fuzzy metric space (X,M, ∗), and let the following conditions be
satisfied:

M(fx, fy, t) < 1 implies (2)

M(fx, fy, t) > cf (x, y, t), x ∈ Xj , y ∈ Xj++, j = 1, ..., t
for each ε > 0, there exists α > 0 such that

ε − α < cf (x, y, t) < ε implies M(fx, fy, t) ≥ ε, (3)
x ∈ Xj , y ∈ Xj++, j = 1, ..., t. (4)

Then f has a unique fixed point, say x, and lim
n−→∞ M(x, fnx0, t) = M(x, x, t) =

1, x0 ∈ X

Proof 4.5. Our space is 1−complete, and, therfore, the sequence (fnx0)n∈N

converges (Lemma 3.11) to a unique fixed point of f (Lemma 3.16).

An analogue of theorem 2 for fuzzy cyclic mappings is the following consequence
of Theorem 3.3 and Lemma 29 of [19].

Theorem 4.6. Let f be a 1−continuous fuzzy cyclic selfmapping on a
1−complete fuzzy metric space (X,M, ∗), such that f = hs (for some s ∈ N)
satisfies the assumptions of Theorem 3. Then h has a unique fixed point, say x,
and

lim
n−→∞ M(x, hnx0, t) = M(x, x, t) = 1, x0 ∈ X.

Let us note that a fuzzy partial metric space (X,M, ∗) is 1−complete iff (X,M, ∗)
treated as a fuzzy metric space is 1−complete (see [19], Corollary 4, Proposition
5).

Remark 4.7. In view of Lemma 3.9, cf can be replaced by M in any of condi-
tions of Theorems 1, 2, 3, and 4; if M is a fuzzy partial metric, then in view of
Lemma 3.11, cf can be replaced by mf in any condition of those theorems. The-
orem 1 for mf becomes an extension of a theorem of Jachymski ([16], Theorem
2) in fuzzy case to the case of fuzzy partial metric spaces.
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Theorem 4.8. Let (X,M, ∗) be a 1−complete fuzzy metric space, and
let f be a 1−continuous fuzzy cyclic selfmapping on X such that
lim

n−→∞ M(fn+1x0, f
nx0, t) = 1, x0 ∈ X, assume that the following conditions

hold:
M(fx, fy, r) < 1 implies (5)

M(fx, fy, r) > Df (x, y, r), x ∈ Xj , y ∈ Xj++, j = 1, ..., t
for each ε > 0, there exists α > 0 such that

ε − α < Df (x, y, r) < ε implies M(fx, fy, r) ≥ ε, (6)
x ∈ Xj , y ∈ Xj++, j = 1, ..., t. (7)

Then f has a fixed point, say x, such that lim
n−→∞ M(x, fnx0, r) = 1, x0 ∈ X and

x is unique if M is a fuzzy metric. In addition, M(x, y, r) can be replaced by
cf (x, y, t) (or by mf (x, y, r) if M is a partial fuzzy metric) in (14) for (5) or (6)
(so also for both of them).

Proof 4.9. We apply Lemmas 3.13 and 3.16.

theorem 5 with t = 1 yield the followin one.

Theorem 4.10. Let (X,M, ∗) be a 1−complete fuzzy metric space, and
let f be a 1−continuous fuzzy cyclic selfmapping on X such that
lim

n−→∞ M(fn+1x0, f
nx0, r) = 1, x0 ∈ X, assume that the following conditions

hold:

M(fx, fy, r) < 1 implies M(fx, fy, r) > Df (x, y, r) x, y ∈ X (8)

for each ε > 0, there exists α > 0 such that

ε − α < Df (x, y, r) < ε implies M(fx, fy, r) ≥ ε, x, y ∈ X. (9)

Then f has a fixed point, say x, such that lim
n−→∞ M(x, fnx0, r) = 1, x0 ∈ X and

x is unique if M is a fuzzy metric. In addition, M(x, y, r) can be replaced by
cf (x, y, t) (or by mf (x, y, r) if M is a partial fuzzy metric) in (14) for (8) or (9)
(so also for both of them).

We can easily present extensions of the previous theorems for f = hs (see
Theorems 2 and 4).

Theorem 6 is a further extension of Theorem 4.2 in [21].
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Abstract. The aim of the present paper is to establish generalized fractional inte-

gral formulae involving generalized multiindex Bessel function J
(λ j)m,γ
(ν j)m,q

(z). Then

their image formulae (Beta transform, Laplace transform and Whittaker trans-
form) are also established. The results obtained here are quite general in nature
and capable of yielding a very large number of known and (presumably) new
results.

1 Introduction and Preliminaries

The Fractional Order Calculus (FOC) constitutes the branch of mathematics dealing
with differentiation and integration under an arbitrary order of the operation, i.e. the
order can be any real or even complex number, not only the integer one [1–3]. Although
the FOC represents more than 300-year-old issue [4,5], its great consequences in con-
temporary theoretical research and real world applications have been widely discussed
relatively recently (see [6–13,39,40]). The idea of non-integer derivative was men-
tioned for the first time probably in a letter from Leibniz to L’Hospital in 1695. Later
on, the pioneering works related to FOC have been elaborated by personalities such
as Euler, Fourier, Abel, Liouville or Riemann. The interested reader can find the more
detailed historical background of FOC in [1].

According to [4,14], the reason why FOC remained practically unexplored for engi-
neering applications and why only pure mathematics were privileged to deal with it for
so long can be seen in multiple definitions of FOC, such as missing simple geomet-
rical interpretation, absence of solution methods for fractional order differential equa-
tions and seeming adequateness of the Integer Order Calculus (IOC) for majority of
problems. Nowadays, the situation is going better and the FOC provides efficient tool
for many issues related to fractal dimension,“infinite memory”, chaotic behaviour, etc.
Thus, the FOC has already come in useful in engineering areas such as bioengineering,
viscoelasticity, electronics, robotics, control theory and signal processing [14]. Several
control applications are available e.g. in [15–17].

A great number of additional results of fractional calculus was presented in the
twentieth century, but at this point we only concentrate on one more, given by Caputo
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and first used extensively in [18]. Given a function f with an n−1 absolute continuous
derivative, Caputo defined a fractional derivative by

Dα
∗ f (x) =

1
Γ (n−α)

∫ t

0
(t− s)n−α−1

(
d
ds

)n

f (s)ds (1.1)

today usually named Caputo fractional derivative. The derivative 1.1 is strongly con-
nected to the Riemann-Liouville fractional derivative (see [19]) and is today frequently
used in applications. This is because using the Caputo derivative one can specify the
initial conditions of fractional differential equations in classical form, i.e.

y(k)(0) = bk, k = 0,1, ...,n−1, (1.2)

in contrast to differential equations containing the Riemann-Liouville differential oper-
ator (see [19]). While the operator Dα∗ is denoted today as Caputo operator, Rabotnov
had already introduced this differential operator into the Russian viscoelastic literature
in [20], a year before Caputo’s paper was published.

By the second half of the twentieth century the field of fractional calculus had grown
to such extent, that in 1974 the first conference concerned solely with the theory and
applications of fractional calculus was held in New Haven [21]. In the same year the
first book on fractional calculus by Oldham and Spanier [1] was published. A number
of additional books have appeared since then, the most popular the ones by Miller and
Ross [2], Samko et al. [22] and Podlubny [3]. In 1998 the first issue of the mathemati-
cal journal “Fractional calculus & applied analysis” was printed. This journal is solely
concerned with topics on the theory of fractional calculus and its applications. Finally
in 2004 the large conference “Fractional differentiation and its applications” was held
in Bordeaux, where no less than 104 talks were given in the field of fractional calculus.

From its birth - a simple question from L’Hospital to Leibniz – to its today’s wide
use in numerous scientific fields fractional calculus has come a long way. Even though
its nearly as old as classical calculus itself, it flourished mainly over the last decades
because of its good applicability on models describing complex real life problems (see
recent work [23–27]). And even though the term fractional calculus is a misnomer we
will use it throughout this text, which will be concerned with theoretical and, more
importantly, numerical aspects of problems arising in this field.

For our present study we start by recalling the previous work. The Bessel-Maitland
function Jλ

ν (z) is given as (see Marichev [28]):

Jλ
ν (z) =

∞

∑
n=0

(−z)n

Γ (ν +λn+1)n!
, λ > 0;z ∈ C (1.3)

The generalized form of Bessel function Jλ
ν ,μ is given by Jain and Agarwal [29] as:

Jλ
ν ,μ(z) =

∞

∑
n=0

(−1)r
(
z
2

)ν+2μ+2n

Γ (ν +μ +λn+1)Γ (μ +n+1)
,

λ > 0,ν ,μ ∈ C;z ∈ C\ (−∞,0].

(1.4)
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Further, Pathak [30] gave the following more generalized form of the generalized
Bessel-Maitland function Jλ ,γ

ν ,μ(.) as:

Jλ ,γ
ν ,q (z) =

∞

∑
n=0

(γ)qn(−z)n

Γ (ν +λn+1)n!
,

λ ,ν ,γ ∈ C, ℜ(λ ) ≥ 0, ℜ(ν) ≥ −1, ℜ(γ) ≥ 0 and q ∈ (0,1)∪N.

(1.5)

If ν is replaced by ν − 1 and z by −z then generalized Bessel-Maitland function
given in Eq. (1.5) reduces to well known Mittag-Leffler function as follows:

Jλ ,γ
ν−1,q(−z) = Eγ ,q

λ ,ν(z),

λ ,ν ,γ ∈ C, ℜ(λ )> 0, ℜ(ν)> 0, ℜ(γ)> 0;q ∈ (0,1)∪N,
(1.6)

where Eγ ,q
λ ,ν(z) denotes generalized Mittag-Lefller function, was introduced by Shukla

and Prajapati [31].
If q= 1,γ = 1,ν is replaced by ν −1 and z by −z then generalized Bessel-Maitland

function given in Eq. (1.5) reduces to Mittag-Leffler function, studied by Wiman [32]
as follows:

Jλ ,1
ν−1,1(−z) = Eλ ,ν(z), λ ,ν ∈ C, ℜ(λ )> 0, ℜ(ν)> 0. (1.7)

The generalized multiindex Bessel function J
(λ j)m,γ
(ν j)m,q

(z) studied by [33] is defined as

follows:

J
(λ j)m,γ
(ν j)m,q

(z) =
∞

∑
n=0

(γ)qn
m

∏
j=1

Γ (λ jn+ν j+1)

(−z)n

n!
, (1.8)

where m ∈ N, λ j,ν j,γ,q,z ∈ C( j = 1, ...,m) such that
m

∑
j=1

ℜ(λ j) > max{0;

ℜ(q)−1};q> 0, ℜ(ν j)> −1,ℜ(γ)> 0 and q ∈ (0,1)∪N.

On setting m= 1,q= 0,λ1 = 1,ν1 = ν and replace z by z2

4 in (1.8), we have

J1,γ
ν ,0

[
z2

4

]
=

(
2
z

)ν
Jν [z], (1.9)

where Jν [z] is a well known Bessel function of first kind defined by (see [34])

Jν [z] =
∞

∑
n=0

(−1)n
(
z
2

)2n+ν

Γ (n+ν +1)
, ν ∈ C;z ∈ C\ (−∞,0]. (1.10)
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For more details about the Bessel function one may refer to earlier work by Erdélyi
et al. [35] and Watson [36].

The Fox-Wright function pΨq defined as

pΨq[z] = pΨq

[
(a1,α1), ...,(ap,αp);
(b1,β1), ...,(bq,βq);

z

]

= pΨq

[
(ai,αi)1,p;
(b j,β j)1,q;

z

]
=

∞

∑
n=0

∏p
i=1 Γ (ai+αin)

∏q
j=1 Γ (b j+β jn)

zn

n!
,

(1.11)

where the coefficients α1, ...,αp, β1, ...,βq ∈ R
+ such that

1+
q

∑
j=1

β j −
p

∑
i=1

αi ≥ 0. (1.12)

2 Fractional Integration

In this section, some fractional integral formulas involving generalized multiindex

Bessel function J
(λ j)m,γ
(ν j)m,q

(z) are established. To do this, we need to recall the follow-

ing pair of generalized fractional integral operators introduced by Katugampola [37],
which are presented in Lemma 1.

Lemma 1. Let Ω = [a,b](−∞ < a< b< ∞) be a finite interval on the real axis R. The
generalized fractional integral ρ Iσ

a+ f of order σ ∈C for x> a and ℜ(σ)> 0 is defined
as:

(ρ Iσ
a+ f

)
(x) =

(ρ)1−σ

Γ (σ)

∫ x

a

tρ f (t)
(xρ − tρ)1−σ dt, (1.13)

similarly the generalized fractional integral ρ Iσ
b− f of order σ ∈ C for x < b and

ℜ(σ)> 0 is defined as:

(ρ Iσ
b− f

)
(x) =

(ρ)1−σ

Γ (σ)

∫ b

x

tρ f (t)
(tρ − xρ)1−σ dt. (1.14)

In our investigation, we choose a = b = 0 the above Lemma 1 reduces to the fol-
lowing form:

Lemma 2. The generalized fractional integral ρ Iσ
0+ f of order σ ∈ C for x > 0 and

ℜ(σ)> 0 is defined as

(ρ Iσ
0+ f

)
(x) =

(ρ)1−σ

Γ (σ)

∫ x

0

tρ f (t)
(xρ − tρ)1−σ dt, (1.15)
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similarly the generalized fractional integral ρ Iσ
0− f of order σ ∈ C for x < 0 and

ℜ(σ)> 0 is defined as

(ρ Iσ
0− f

)
(x) =

(ρ)1−σ

Γ (σ)

∫ 0

x

tρ f (t)
(tρ − xρ)1−σ dt. (1.16)

The main results are given in the following theorems.

Theorem 1. Let x > 0,m ∈ N;σ ,ρ, λ j,ν j,γ,q,z ∈ C( j = 1, ...,m) such that
m

∑
j=1

ℜ(λ j)> max{0;ℜ(q)−1};q> 0, ℜ(ν j)> −1,ℜ(γ)> 0 and q ∈ (0,1)∪N, then

(
ρ Iσ

0+t
λ J

(λ j)m,γ
(ν j)m,q

(tν )
)
(x) =

xλ+ρσ+1

(ρ)σ Γ (γ) 2Ψm+1

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)
(
ν j +1,λ j

)m
j=1 ,

(
λ+1

ρ +σ +1, ν
ρ

)
∣∣∣∣∣∣− xν

⎤
⎦ (1.17)

Proof. For convenience, we denote the left-hand side of the result (1.17) by I . Using
(1.8), and changing the order of integration and summation, then

I =
∞

∑
n=0

(γ)qn
m

∏
j=1

Γ (λ jn+ν j+1)

(−1)n

n!

(
ρ Iσ

0+t
nν+λ

)
, (1.18)

applying the fractional derivative formula given in Eq. (1.15), the above Eq. (1.18)
reduces to

I =
∞

∑
n=0

(γ)qn
m

∏
j=1

Γ (λ jn+ν j+1)

(−1)n

n!
(ρ)1−σ

Γ (σ)

∫ x

0

tρ+nν+λ

(xρ − tρ)1−σ dt. (1.19)

Put tρ = xρz in Eq. (1.19) and by proper substitution, we have

I =
∞

∑
n=0

(γ)qn
m

∏
j=1

Γ (λ jn+ν j+1)

(−1)n

n!
(ρ)−σ

Γ (σ)
xρ+nν+ρσ+λ+1

∫ 1

0
z
nν+λ+1

ρ (1− z)σ−1dz, (1.20)

after simplification, the above Eq. (1.20) reduces to

I =
xλ+ρσ+1

(ρ)σ Γ (γ)

∞

∑
n=0

Γ (γ +qn)Γ
(

λ+1
ρ +1+ ν

ρ n
)

m

∏
j=1

Γ (λ jn+ν j+1) Γ
(

λ +1
ρ

+1+σ +
ν
ρ
n

) (−xν )n

n!
, (1.21)

interpreting the above result in the view of (1.11), we have the required result. ��
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Theorem 2. Let x < 0,m ∈ N;σ ,ρ, λ j,ν j,γ,q,z ∈ C( j = 1, ...,m) such that
m

∑
j=1

ℜ(λ j)> max{0;ℜ(q)−1};q> 0, ℜ(ν j)> −1,ℜ(γ)> 0 and q ∈ (0,1)∪N, then

(
ρ Iσ

0−t
λ J

(λ j)m,γ
(ν j)m,q

(tν )
)
(x) = (−1)σ xλ+ρσ+1

(ρ)σ Γ (γ) 2Ψm+1

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)
(
ν j +1,λ j

)m
j=1 ,

(
λ+1

ρ +σ +1, ν
ρ

)
∣∣∣∣∣∣− xν

⎤
⎦ (1.22)

Proof. The proof of the Theorem 2, would run parallel to those of Theorem 1, so we
omit the proof.

2.1 Special Cases

By assigning the values to the parameters, the above results established in Eqs. (1.17)
and (1.22) reduces to the following form:

Choose m= 1, the results in Eqs. (1.17) and (1.22) reduces to the following form:

Corollary 1. Let x> 0;σ ,ρ, λ ,ν ,γ,q,z ∈ C such that ℜ(λ )> max{0;ℜ(q)−1};q>
0, ℜ(ν)> −1,ℜ(γ)> 0 and q ∈ (0,1)∪N, then

(
ρ Iσ

0+t
λ Jλ ,γ

ν ,q (t
ν )

)
(x) =

xλ+ρσ+1

(ρ)σ Γ (γ) 2Ψ2

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)

(ν +1,λ ) ,
(

λ+1
ρ +σ +1, ν

ρ

)
∣∣∣∣∣∣− xν

⎤
⎦ (1.23)

Corollary 2. Let x< 0;σ ,ρ, λ ,ν ,γ,q,z ∈ C such that ℜ(λ )> max{0;ℜ(q)−1};q>
0, ℜ(ν)> −1,ℜ(γ)> 0 and q ∈ (0,1)∪N, then

(
ρ Iσ

0−t
λ Jλ ,γ

ν ,q (t
ν )

)
(x) = (−1)σ xλ+ρσ+1

(ρ)σ Γ (γ) 2Ψ2

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)

(ν +1,λ ) ,
(

λ+1
ρ +σ +1, ν

ρ

)
∣∣∣∣∣∣− xν

⎤
⎦ (1.24)

If ν is replaced by ν − 1 and z by −z then the results given in Corollaries 1 and 2
reduces to the following form:

Corollary 3. Let x > 0;σ ,ρ, λ ,ν ,γ,q,z ∈ C such that ℜ(λ )> 0,ℜ(ν)> 0,ℜ(γ)> 0
and q ∈ (0,1)∪N, then

(
ρ Iσ

0+t
λEγ ,q

λ ,ν(t
ν)

)
(x) =

xλ+ρσ+1

(ρ)σΓ (γ) 2Ψ2

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)

(ν ,λ ) ,
(

λ+1
ρ +σ +1, ν

ρ

)
∣∣∣∣∣∣x

ν

⎤
⎦ (1.25)

Corollary 4. Let x < 0;σ ,ρ, λ ,ν ,γ,q,z ∈ C such that ℜ(λ )> 0,ℜ(ν)> 0,ℜ(γ)> 0
and q ∈ (0,1)∪N, then

(
ρ Iσ

0−t
λEγ,q

λ ,ν (t
ν )

)
(x) = (−1)σ xλ+ρσ+1

(ρ)σ Γ (γ) 2Ψ2

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)

(ν,λ ) ,
(

λ+1
ρ +σ +1, ν

ρ

)
∣∣∣∣∣∣x

ν

⎤
⎦ (1.26)
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If we choose q= γ = 1, ν is replaced by ν −1 and z by −z then the results given in
Corollaries 1 and 2 reduces to the following form:

Corollary 5. Let x > 0;σ ,ρ, λ ,ν ,z ∈ C such that ℜ(λ )> 0,ℜ(ν)> 0,ℜ(γ)> 0 and
q ∈ (0,1)∪N, then

(
ρ Iσ

0+t
λEλ ,ν(t

ν)
)
(x) =

xλ+ρσ+1

(ρ)σΓ (γ) 2Ψ2

⎡
⎣ (1,1) ,

(
λ+1

ρ +1, ν
ρ

)

(ν ,λ ) ,
(

λ+1
ρ +σ +1, ν

ρ

)
∣∣∣∣∣∣x

ν

⎤
⎦ (1.27)

Corollary 6. Let x < 0;σ ,ρ, λ ,ν ,z ∈ C such that ℜ(λ )> 0,ℜ(ν)> 0,ℜ(γ)> 0 and
q ∈ (0,1)∪N, then

(
ρ Iσ

0−t
λEλ ,ν(t

ν)
)
(x) = (−1)σ xλ+ρσ+1

(ρ)σΓ (γ) 2Ψ2

⎡
⎣ (1,1) ,

(
λ+1

ρ +1, ν
ρ

)

(ν ,λ ) ,
(

λ+1
ρ +σ +1, ν

ρ

)
∣∣∣∣∣∣x

ν

⎤
⎦ (1.28)

3 Image Formulas Associated with Integral Transform

In this section we establish certain theorems involving the results obtained in the previ-
ous section associated with integral transforms like Beta transform, Laplace transform
and Whittaker transform.

3.1 Beta Transform

The Beta transform of f (z) is defined as [38]

B{ f (z) : a,b} =
∫ 1

0
za−1(1− z)b−1 f (z)dz (1.29)

Theorem 3. Let x > 0,m ∈ N;σ ,ρ, λ j,ν j,γ,q,z ∈ C( j = 1, ...,m) such that
m

∑
j=1

ℜ(λ j)>max{0;ℜ(q)−1};q> 0, ℜ(ν j)>−1,ℜ(γ)> 0 and q∈ (0,1)∪N, ℜ(l)>

0,ℜ(k)> 0 > ρ > 0, then

B
{(

ρ Iσ
0+t

λ J
(λ j)m,γ
(ν j)m,q

(tz)ν
)
(x) : l,k

}
= Γ (k)

xλ+ρσ+1

(ρ)σ Γ (γ)

× 3Ψm+2

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)
,(l,ν)(

ν j +1,λ j
)m
j=1 ,

(
λ+1

ρ +σ +1, ν
ρ

)
,(l+ k,ν)

∣∣∣∣∣∣− xν

⎤
⎦

(1.30)

Proof. For convenience, we denote the left-hand side of the result (1.30) by B. Using
the definition of beta transform, the LHS of (1.30) becomes:
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B =
∫ 1

0
zl−1(1− z)k−1

(
ρ Iσ

0+t
λ J

(λ j)m,γ
(ν j)m,q

(tz)ν
)
(x)dz (1.31)

further using (1.8) and then changing the order of integration and summation, which is
valid under the conditions of Theorem 1, then

B =
∞

∑
n=0

(γ)qn
m

∏
j=1

Γ (λ jn+ν j+1)

(−1)n

n!

(
ρ Iσ

0+t
nν+λ

)
(x)

∫ 1

0
zl+nν−1(1− z)k−1dz, (1.32)

applying the result (1.15), after simplification Eq. (1.19) reduced to

B =
xλ+ρσ+1

(ρ)σΓ (γ)

∞

∑
n=0

Γ (γ +qn)Γ
(

λ+1
ρ +1+ ν

ρ n
)

m

∏
j=1

Γ (λ jn+ν j+1)Γ
(

λ +1
ρ

+1+σ +
ν
ρ
n

)

× (xν)n

n!

∫ 1

0
zl+nν−1(1− z)k−1dz

(1.33)

applying the definition of beta transform, Eq. (1.33) reduced to

B =
xλ+ρσ+1

(ρ)σΓ (γ)

∞

∑
n=0

Γ (γ +qn)Γ
(

λ+1
ρ +1+ ν

ρ n
)

m

∏
j=1

Γ (λ jn+ν j+1)Γ
(

λ +1
ρ

+1+σ +
ν
ρ
n

)

× (xν)n

n!
Γ (l+νn)Γ (k)
Γ (l+ k+νn)

(1.34)

B = Γ (k)
xλ+ρσ+1

(ρ)σ Γ (γ) 3Ψm+2

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)
,(l,ν)(

ν j+1,λ j
)m
j=1 ,

(
λ+1

ρ +σ +1, ν
ρ

)
,(l+ k,ν)

∣∣∣∣∣∣ − xν

⎤
⎦(1.35)

Theorem 4. Let x < 0,m ∈ N;σ ,ρ, λ j,ν j,γ,q,z ∈ C( j = 1, ...,m) such that
m

∑
j=1

ℜ(λ j)>max{0;ℜ(q)−1};q> 0, ℜ(ν j)>−1,ℜ(γ)> 0 and q∈ (0,1)∪N, ℜ(l)>

0,ℜ(k)> 0 > ρ > 0, then

B
{(

ρ Iσ
0−t

λ J
(λ j)m,γ
(ν j)m,q

(zt)ν
)
(x) : l,k

}
= (−1)σ Γ (k)

xλ+ρσ+1

(ρ)σ Γ (γ)

× 3Ψm+2

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)
,(l,ν)(

ν j+1,λ j
)m
j=1 ,

(
λ+1

ρ +σ +1, ν
ρ

)
,(l+ k,ν)

∣∣∣∣∣∣ − xν

⎤
⎦

(1.36)

Proof. The proof of the Theorem 4, would run parallel to those of Theorem 3, so we
omit the proof.
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3.2 Laplace Transform

The Laplace transform of f(z) is defined as [38]:

Ł{ f (z)} =
∫ ∞

0
e−sz f (z)dz (1.37)

Theorem 5. Let x > 0,m ∈ N;σ ,ρ, λ j,ν j,γ,q,z ∈ C( j = 1, ...,m) such that
m

∑
j=1

ℜ(λ j)>max{0;ℜ(q)−1};q> 0, ℜ(ν j)>−1,ℜ(γ)> 0 and q∈ (0,1)∪N, ℜ(l)>

0 and ρ > 0, then

L
{
zl−1

(
ρ Iσ

0+t
λ J

(λ j)m,γ
(ν j)m,q

(tz)ν
)
(x)

}
=

xλ+ρσ+1

sl(ρ)σ Γ (γ) 3Ψm+1

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)
,(l,ν)(

ν j+1,λ j
)m
j=1 ,

(
λ+1

ρ +σ +1, ν
ρ ,

)
∣∣∣∣∣∣−

(x
s

)ν
⎤
⎦ (1.38)

Proof. For convenience, we denote the left-hand side of the result (1.38) by L . Using
the definition of beta transform, the LHS of (1.38) becomes:

L =
∫ ∞

0
e−szzl−1

(
ρ Iσ

0+t
λ J

(λ j)m,γ
(ν j)m,q

(tz)ν
)
(x)dz (1.39)

further using (1.8) and then changing the order of integration and summation, which is
valid under the conditions of Theorem 1, then applying the result (1.15), after simplifi-
cation Eq. (1.19) reduced to

L =
xλ+ρσ+1

(ρ)σΓ (γ)

∞

∑
n=0

Γ (γ +qn)Γ
(

λ+1
ρ +1+ ν

ρ n
)

m

∏
j=1

Γ (λ jn+ν j+1)Γ
(

λ +1
ρ

+1+σ +
ν
ρ
n

)

× (kq−
α
k xν)n

n!

∫ ∞

0
e−szzl+nν−1dz

(1.40)

Equation (1.40) reduced to

L =
xλ+ρσ+1

(ρ)σΓ (γ)

∞

∑
n=0

Γ (γ +qn)Γ
(

λ+1
ρ +1+ ν

ρ n
)

m

∏
j=1

Γ (λ jn+ν j+1)Γ
(

λ +1
ρ

+1+σ +
ν
ρ
n

)

× (xν)n

n!
Γ (l+νn)
sl+νn

(1.41)

B =
xλ+ρσ+1

sl(ρ)σΓ (γ) 3Ψm+1

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)
,(l,ν)

(ν j+1,λ j)
m
j=1 ,

(
λ+1

ρ +σ +1, ν
ρ ,

)
∣∣∣∣∣∣−

(x
s

)ν
⎤
⎦ (1.42)
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Theorem 6. Let x < 0,m ∈ N;σ ,ρ, λ j,ν j,γ,q,z ∈ C( j = 1, ...,m) such that
m

∑
j=1

ℜ(λ j)>max{0;ℜ(q)−1};q> 0, ℜ(ν j)>−1,ℜ(γ)> 0 and q∈ (0,1)∪N, ℜ(l)>

0, ρ > 0, then

L
{
zl−1

(
ρ Iσ

0−t
λ J

(λ j)m,γ
(ν j)m,q

(zt)ν
)
(x)

}
= (−1)σ xρσ+σ+λ+1

sl(ρ)σΓ (γ)

× 3Ψm+1

⎡
⎣ (γ,q) ,

(
λ+1

ρ +1, ν
ρ

)
,(l,ν)

(ν j+1,λ j)
m
j=1 ,

(
λ+1

ρ +σ +1, ν
ρ

)
∣∣∣∣∣∣−

(x
s

)ν
⎤
⎦ .

(1.43)

Proof. The proof of the Theorem 6, would run parallel to those of Theorem 5, so we
omit the proof.

3.3 Whittaker Transform

Theorem 7. Let x > 0,m ∈ N;σ ,ρ, λ j,ν j,γ,q,z ∈ C( j = 1, ...,m) such that
m

∑
j=1

ℜ(λ j)> max{0;ℜ(q)−1};q> 0, ℜ(ν j)> −1,ℜ(γ)> 0 and q ∈ (0,1)∪N, then

∫ ∞

0
zξ−1e−ηz/2Wτ,ω (ηz)

{(
ρ Iσ

0+t
λ J

(λ j)m,γ
(ν j)m,q

((zt)ν )
)
(x)

}
dz=

xλ+ρσ+1

ηξ (ρ)σ Γ (γ)

× 4Ψm+2

⎡
⎣ (γ,q) ,

(
λ
ρ +1, ν

ρ

)
,(1/2+ω +ξ ,ν),(1/2−ω +ξ ,ν)(

ν j+1,λ j
)m
j=1 ,

(
λ
ρ +σ +1, ν

ρ

)
,(1/2− τ +ξ ,ν)

∣∣∣∣∣∣−
(
x
η

)ν
⎤
⎦

(1.44)

Proof. For convenience, we denote the left-hand side of the result (1.44) by W . Then
using the result from (1.21) after changing the order of integration and summation, we
get

W =
xρ+λ+ρσ

(ρ)σΓ (γ)

∞

∑
n=0

Γ (γ +qn)Γ
(

λ
ρ +1+ ν

ρ n
)

m

∏
j=1

Γ (λ jn+ν j+1)Γ
(

λ
ρ
+σ +1+

ν
ρ
n

)

× (xν)n

n!

∫ ∞

0
znν+ξ−1e−ηz/2Wτ ,ω(ηz)dz

(1.45)

by substituting η z = t, (1.45) becomes:

W =
xλ+ρσ+1

(ρ)σΓ (γ)

∞

∑
n=0

Γ (γ +qn)Γ
(

λ
ρ +1+ ν

ρ n
)

m

∏
j=1

Γ (λ jn+ν j+1)Γ
(

λ
ρ
+σ +1+

ν
ρ
n

)

× (xν)n

n!
1

ηnν+ξ

∫ ∞

0
tnν+ξ−1e−ηz/2Wτ ,ω(t)dt

(1.46)
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Now we use the following integral formula involving Whittaker function

∫ ∞

0
tν−1e−t/2Wτ ,ω (t)dt =

Γ (1/2+ω +ν)Γ (1/2−ω +ν)
Γ (1/2− τ +ν)

,

(
ℜ(ν ±ω)>

−1
2

)
(1.47)

Then we have

W =
xλ+ρσ+1

ηξ (ρ)σΓ (γ)

∞

∑
n=0

Γ (γ +qn)Γ
(

λ
ρ +1+ ν

ρ n
)

m

∏
j=1

Γ (λ jn+ν j+1)Γ
(

λ
ρ
+σ +1+

ν
ρ
n

) 1
n!

× Γ (1/2+ω +ξ +nν)Γ (1/2−ω +ξ +nν)
Γ (1/2− τ +ξ +nν)

(
x
η

)nν

(1.48)

interpreting the above Eq. (1.48) with the help of (1.11), we have the required result.

Theorem 8. Let x < 0,m ∈ N;σ ,ρ, λ j,ν j,γ,q,z ∈ C( j = 1, ...,m) such that
m

∑
j=1

ℜ(λ j)> max{0;ℜ(q)−1};q> 0, ℜ(ν j)> −1,ℜ(γ)> 0 and q ∈ (0,1)∪N, then

∫ ∞

0
zξ−1 exp−δ z/2Wτ,ω (ηz)

{(
ρ Iσ

0−t
λ J

(λ j)m,γ
(ν j)m,q

((zt)ν )
)
(x)

}
dz= (−1)σ xλ+ρσ+1

(ρ)σ Γ (γ)

× 4Ψm+2

⎡
⎣ (γ,q) ,

(
λ
ρ +1, ν

ρ

)
,(1/2+ω +ξ ,ν),(1/2−ω +ξ ,ν)(

ν j+1,λ j
)m
j=1 ,

(
λ
ρ +σ +1, ν

ρ

)
,(1/2− τ +ξ ,ν)

∣∣∣∣∣∣−
(
x
η

)ν
⎤
⎦

(1.49)

Proof. The proof of this theorem would run parallel as those of Theorem 7.

4 Conclusion

In this paper, we established some image formulas by applying generalized fractional

integral operators generalized multiindex Bessel function J
(λ j)m,γ
(ν j)m,q

(z). Then, some more

image formulas are derived by employing the integral transform. All the results are in
the form of Fox’s Wright function, hence all the results are in series form. By giving
some particular value to the parameters, we obtained some special cases of our findings.
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1 Introduction

Before we present the new definition and main theorems we shall state a few
known definitions.

Let s denote the set of all real and complex sequences x = (xk). By l∞ and
c, we denote the Banach spaces of bounded and convergent sequences x = (xn)
normed by ||x|| = supn|xn|, respectively. A linear functional ν on l∞ is said to
be a Banach limit if it has the following properties:

(1) ν(ξ) ≥ 0 if n ≥ 0 (i.e. ξn ≥ 0 for all n),
(2) ν(e) = 1 where e = (1, 1, . . .),
(3) ν(Dξ) = ν(ξ), where the shift operator D is defined by D(ξn) = {ξn+1}.

Let B be the set of all Banach limits on l∞. A sequence ξ ∈ �∞ is said to be
almost convergent if all of its Banach limits coincide. Let ĉ denote the space of
almost convergent sequences.

Lorentz [8] has shown that

ĉ =
{

x ∈ l∞ : lim
m

ϕm,n(ξ) exists uniformly in n
}

where
ϕm,n(ξ) =

ξn + ξn+1 + ξn+2 + · · · + ξn+m

m + 1
.

The space [ĉ] of strongly almost convergent sequences was introduced by
Maddox [9] and also independently by Freedman et al. [5] as follows:

[ĉ] =
{

x ∈ l∞ : lim
m

ϕm,n(|ξ − L|) = 0, uniformly in n, for some L
}

.

c© Springer Nature Switzerland AG 2020
H. Dutta et al. (Eds.): CMES 2019, AISC 1111, pp. 291–298, 2020.
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If ξ = (ξk) is a sequence and T = (tnk) is an infinite matrix, then Tξ is the
sequence whose nth term is given by Tn(ξ) =

∑∞
k=0 tnkξk. Thus we say that ξ

is T -summable to L if limn→∞ Tn(ξ) = L. Let E and F be two sequence spaces
and T = (tnk) an infinite matrix. If for each ξ ∈ E the series Tn(ξ) =

∑∞
k=0 tnkξk

converges for each n and the sequence Tξ = Tn(ξ) ∈ E we say that T maps E
into F . By (E,F ) we denote the set of all matrices which maps E into F , and
in addition if the limit is preserved then we denote the class of such matrices by
(E,F )reg.

Let λ = (λi) be a non-decreasing sequence of positive numbers tending to ∞
such that

λi+1 ≤ λi + 1, λ1 = 1.

The collection of such sequence λ will be denoted by Δ.
The generalized de la Valée-Poussin mean is defined by

Tj(ξ) =
1
λj

∑
k∈Ij

ξk

where Ij = [j − λj + 1, j]. A sequence ξ = (ξk) is said to be (V, λ)-summable to
a number L, if Tj(ξ) → L as j → ∞ (see [11]).

Quite Recently, Malkowsky and Savaş [11] defined the space [V, λ] of λ-
strongly convergent sequences as follows:

[V, λ] =

⎧
⎨
⎩ξ = (ξk) : lim

j

1
λj

∑
k∈Ij

|ξk − L| = 0, for some L

⎫
⎬
⎭ .

Note that in the special case where λj = j, the space [V, λ] reduces the space
w of strongly Cesàro summable sequences which is defined by

w =

{
ξ = (ξk) : lim

j

1
j

j∑
k=1

|ξk − L|) = 0, for some L

}
.

More results on λ - strong convergence can be seen from [12,18–23].
By a ϕ-function we understand a continuous non-decreasing function ϕ(u)

defined for u ≥ 0 and such that ϕ(0) = 0, ϕ(u) > 0, for u > 0 and ϕ(u) → ∞ as
u → ∞, (see, [25]).

A ϕ-function ϕ is called non weaker than a ϕ-function ψ if there are constants
c, b, k, l > 0 such that cψ(lu) ≤ bϕ(ku), (for all large u) and we write ψ ≺ ϕ.
(for all large u), (see, [25]).

A ϕ-function ϕ is said to satisfy (Δ2)-condition, (for all large u ) if there
exists constant K > 1 such that ϕ(2u) ≤ Kϕ(u).
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The following definition was giving in [23].

Definition 1.1. Let Δ = (μj) be same as above, ϕ be given ϕ-function and
f be given modulus function, respectively. Moreover, let T = (tnk(i)) be the
generalized three parametric real matrix and 0 < β ≤ 1 be given. Then we write,

V β
λ (T, ϕ, f, p)0 =

⎧
⎨

⎩
ξ = (ξk) : lim

j

1

λβ
j

∑

n∈Ij

f
(

∣
∣
∣
∣
∣

∞∑

k=1

tnk(i)ϕ(|ξk|)
∣
∣
∣
∣
∣

)pn
= 0, uniformly in i

⎫
⎬

⎭
.

If ξ ∈ V β
λ (T, ϕ, f, p)0, the sequence ξ is said to be λ - strong (T, ϕ) - conver-

gent of order β to zero with respect to a modulus f .

2 Main Result

The idea of statistically convergence of sequence of real numbers was intro-
duced by Fast [4] in 1951. Schoenberg [24] studied statistically convergence as a
summability method and listed some of the elementary properties of statistical
convergence. Both of these authors noted that if a bounded sequence is statisti-
cally convergent to L, then it is Cesàro summable to L. Recently in [3], Connor
extended the definition of statistical convergence to T -statistical convergence by
using nonnegative regular matrices.

Definition 2.1 ([4,6]). A complex number sequence ξ is said to be statistically
convergent to the number L if for every ε > 0

lim
n

1
n

|k ≤ n : |ξk − L| ≥ ε}| = 0,

where by k ≤ n we mean that k = 0, 1, 2, ..., n and the vertical bars indicate the
number of elements in the enclosed set. In this case we write st1 − lim ξ = L or
ξk → L(st1).

Statistical convergence turned out to be one of the most active areas of
research in summability theory after the work of Fridy [6] and Šalát [15].

In another direction, a new type of convergence called λ - statistical conver-
gence was introduced in [13] as follows.

Definition 2.2. A sequence (ξk) of real numbers is said to be λ - statistically
convergent to L (or, Sλ-convergent to L) if for any ε > 0,

lim
j→∞

1
λj

|{k ∈ Ij : |ξk − L| ≥ ε}| = 0

where |A| denotes the cardinality of A ⊂ N.
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In [13] the relation between λ - statistical convergence and statistical conver-
gence was established among other things.

Recently Savas [17] defined almost λ-statistical convergence by using the
notion of (V, λ)-summability to generalize the concept of statistical convergence.

Assume that T is a non-negative regular summability matrix. Then the
sequence ξ = (ξk) is called T -statistically convergent to L provided that, for
every ε > 0, (see, [7])

limj

∑
n:|ξk−L|≥ε

tjn = 0

We denote this by stT − limnxk = L.
Let T = (tnk(i)) be the generalized three parametric real matrix and the

sequence ξ = (ξk), the ϕ - function ϕ(u) and a positive number ε > 0 be given.
We write, for all i

K((T, ϕ), ε, i) = {n ∈ Ij :
∞∑

k=1

tnk(i)ϕ(|ξk|) ≥ ε}.

The sequence ξ is said to be (T, ϕ, λ) - statistically convergent of order β to
a number zero if for every ε > 0

limj
1

λβ
j

μ(K((T, ϕ), ε, i)) = 0,uniformly in i

where μ(K((T, ϕ, λ), ε, i)) denotes the number of elements belonging to
K((T, ϕ, λ), ε, i). We denote by Sβ

λ ((T, ϕ))0, the set of sequences ξ = (ξk) which
are (T, ϕ, λ) – statistical convergent of order β to zero.

If we take T = I and ϕ(x) = x respectively, then Sβ
λ (T, ϕ)0 reduce to Sβ

λ0

which was defined as follows, (see, Colak and Bektas [2]).

Sβ
λ0

=

{
ξ = (ξk) : limj

1

λβ
j

|{k ∈ Ij : |ξk| ≥ ε}| = 0

}
.

If we take T = I, ϕ(x) = x and β = 1 respectively, then we get the following
(see, Mursaleen [2]):

Sλ0 =
{

x = (xk) : limj
1
λj

|{k ∈ Ij : |ξk| ≥ ε}| = 0
}

.

Remark 1. (i) If for all i,

tnk(i) := {
1
n , if n ≥ k,
0, otherwise.

then Sβ
λ ((T, ϕ))0 reduce to Sβ

λ ((C,ϕ))0, i.e., uniform (C,ϕ) – statistical conver-
gence of order β to zero.
(ii) If for all i,

tnk(i) := {
pk

Pn
, if n ≥ k,

0, otherwise.
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then Sβ
λ ((T, ϕ))0 reduce to Sβ

λ ((N, p), ϕ))0, i.e., uniform ((N, p), ϕ) – statisti-
cal convergence of order β to zero, where p = pk is a sequence of nonnegative
numbers such that p0 > 0 and

Pi =
n∑

k=0

pk → ∞(n → ∞).

We now have

Theorem 2.1. If ψ ≺ ϕ then Sβ
λ (T, ψ, i)0 ⊂ Sβ

λ (T, ϕ, i)0.

Proof. By our assumptions we have ψ(|ξk|) ≤ bϕ(c|xk|) and we have for all i,
∞∑

k=1

tnk(i)ψ(|ξk|) ≤ b

∞∑
k=1

tnk(i)ϕ(c|ξk|) ≤ K

∞∑
k=1

tnk(i)ϕ(|ξk|)

for b, c > 0, where the constant K is connected with properties of ϕ. Thus, the
condition

∑∞
k=1 tnk(i)ψ(|ξk|) ≥ ε implies the condition

∑∞
k=1 tnk(i)ϕ(|ξk|) ≥ ε

and in consequence we get

μ(K((T, ϕ), ε, i)) ⊂ μ(K((T, ψ), ε, i))

and
limj

1

λβ
j

μ
(
K((T, ϕ), ε)) ≤ limj

1

λβ
j

μ(K((T, ψ), ε, i)
)
.

This completes the proof. 	

Theorem 2.2. If 0 < β ≤ γ ≤ 1 then Sβ

λ (T, ϕ, i)0 ⊂ Sγ
λ(T, ϕ, i)0.

Proof. Let 0 < β ≤ γ ≤ 1. Then

1

λβ
j

μ(K(T, ϕ), ε, i) ≤ 1
λγ

j

μ(K(T, ϕ), ε, i)

for every ε > 0 and finally we have that Sβ
λ (T, ϕ)0 ⊂ Sγ

λ(T, ϕ, i)0. This proves
the theorem. 	

Theorem 2.3. (a) If the matrix T , functions f and ϕ be given, then

V β
λ (T, ϕ, f)0 ⊂ Sβ

λ (T, ϕ, i)0.

(b) If the ϕ - function ϕ(u) and the matrix T are given, and if the modulus
function f is bounded, then

Sβ
λ (T, ϕ, i)0 ⊂ V β

λ (T, ϕ, f)0.

(c) If the ϕ - function ϕ(u) and the matrix T are given, and if the modulus
function f is bounded, then

Sβ
λ (T, ϕ, i)0 = V β

λ (T, ϕ, f)0.
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Proof. (a) Let f be a modulus function and let ε be a positive numbers. We
write the following inequalities, for all i:

1

λβ
j

∑
n∈Ir

f
( ∣∣∣∣∣

∞∑
k=1

tnk(i)ϕ(|ξk|)
∣∣∣∣∣
)pn

=
1

λβ
j

∑
n∈I1

r

f
( ∣∣∣∣∣

∞∑
k=1

tnk(i)ϕ(|ξk|)
∣∣∣∣∣
)pn

≥ 1

λβ
j

∑
n∈I1

j

[f(ε)]pn

≥ 1

λβ
j

∑
n∈I1

j

min
(
[f(ε)]inf pn , [f(ε)]H

)

≥ 1

λβ
j

μ(Kj
λ(T, ϕ), ε)min

(
[f(ε)]inf pn , [f(ε)]H),

where

I1j =

{
n ∈ Ij :

∞∑
k=1

tnk(i)ϕ(|ξk|) ≥ ε

}
.

Finally, if x ∈ V β
λ ((T, ϕ), f, p)0 then x ∈ Sβ

λ (T, ϕ, i)0.
(b) Let us suppose that x ∈ Sβ

λ (T, ϕ, i)0. If the modulus function f is a
bounded function, then there exists an integer M such that f(x) < M for x ≥ 0.
Let us take

I2j =

{
n ∈ Ij :

∞∑
k=1

tnk(i)ϕ(|ξk|) < ε

}
.

Thus we have

1

λβ
j

∑

n∈Ij

f
(

∣
∣
∣
∣
∣

∞∑

k=1

tnk(i)ϕ(|ξk|)
∣
∣
∣
∣
∣

)pn

≤ 1

λβ
j

∑

n∈I1
j

f
(

∣
∣
∣
∣
∣

∞∑

k=1

tnk(i)ϕ(|ξk|)
∣
∣
∣
∣
∣

)pn

+
1

λβ
j

∑

n∈I2
j

f
(

∣
∣
∣
∣
∣

∞∑

k=1

tnk(i)ϕ(|xk|)
∣
∣
∣
∣
∣

)pn

≤ 1

λβ
j

∑

n∈I1
j

max(M
h
, M

H
) +

1

λβ
j

∑

n∈I2
j

[f(ε)]
pn

≤ max(M
h
, M

H
)

1

λβ
j

μ(K((A, ϕ), ε)) + max([f(ε)]
h
, [f(ε)]

H
).

Taking the limit as ε → 0, we obtain that x ∈ V β
λ (T, ϕ, f, p)0.
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The proof of (c) follows from (a) and (b).
This completes the proof. 	

Theorem 2.4. If a sequence x = (ξk) is Sβ(T, ϕ, i) - convergent to L and

lim infj

(λβ
j

j

)
> 0

then it is Sβ
λ (T, ϕ, i) convergent to L, where

Sβ(T, ϕ, i) = {ξ = (ξk) : limj
1
jβ

μ(K((T, ϕ), ε, i)) = 0}.

Proof. For a given ε > 0, we have, for all i

{n ∈ Ij :
∞∑

k=0

tnk(i)ϕ(|ξk − L|) ≥ ε} ⊆ {n ≤ j :
∞∑

k=0

tnk(i)ϕ(|ξk − L|) ≥ ε}.

Hence we have,

K(T, ϕ, ε) ⊆ K(T, ϕ, ε).

Finally the proof follows from the following inequality:

1
j
μ(K(T, ϕ, ε)) ≥ 1

j
μ(K(T, ϕ, ε)) =

λβ
j

j

1

λβ
j

μ(K((T, ϕ), ε, i).

This completes the proof. 	


Theorem 2.5. If λ ∈ � be such that for a particular β, 0 < β < 1, lim
j

j − λj

jβ
=

0 then Sβ
λ (T, ϕ, i) ⊂ Sβ(T, ϕ, i).

Proof. Let ε > 0 be given. Since limj
j − λj

jβ
= 0, we can choose m ∈ N such

that j−λj

jβ < δ
2 , for all j ≥ m. Now observe that for all i,

1

jβ

∣
∣
∣
∣
∣

{

n ≤ j :
∞∑

k=0

tnk(i)ϕ(|ξk − L|) ≥ ε

}∣
∣
∣
∣
∣
=

1

jβ

∣
∣
∣
∣
∣

{

n ≤ j − λj :

∞∑

k=0

tnk(i)ϕ(|ξk − L|) ≥ ε

}∣
∣
∣
∣
∣

+
1

jβ

∣
∣
∣
∣
∣

{

n ∈ Ij :

∞∑

k=0

tnk(i)ϕ(|ξk − L|) ≥ ε

}∣
∣
∣
∣
∣

≤ j − λj

jβ
+

1

jβ

∣
∣
∣
∣
∣

{

n ∈ Ij :
∞∑

k=0

tnk(i)ϕ(|ξk − L|) ≥ ε

}∣
∣
∣
∣
∣

≤ δ

2
+

1

λj
β

∣
∣
∣
∣
∣

{

n ∈ Ij :

∞∑

k=0

tnk(i)ϕ(|ξk − L|) ≥ ε

}∣
∣
∣
∣
∣
,

for all j ≥ m. 	
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Abstract. The main objective of this paper is to explore some suffi-
cient conditions for elementary operators on the Bergman space to be
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1 Introduction

The Bergman space is the Hilbert space of all holomorphic functions f on the
open unit disk D = {z ∈ C : |z| < 1}, denoted as A2(D) for which

‖f‖A2(D) = (
∫
D

∣∣f(z)|2dA(z)
) 1

2 < ∞,

where dA(z) is the normalized Lebesgue area measure on the open unit disk D.

If h(z) =
∞∑

n=0

anzn and k(z) =
∞∑

n=0

bnzn are two functions in A2(D), then the

inner product of h and k is given by

〈h, k〉 =
∫
D

h(z)k(z)dA(z) =
∞∑

n=0

anbn

n + 1
.

The Bergman reproducing kernel is the function Kz ∈ A2(D) for z ∈ D such
that f(z) = 〈f,Kz〉 for all f ∈ A2(D) and normalized reproducing kernel kz is
the function Kz

‖Kz‖2
. Here the norm ‖.‖2 and the inner product 〈.,.〉 are taken
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in the space L2(D, dA). For any integer, n ≥ 0, let en(z) =
√

n + 1zn. Then,
{en}∞

n=0 forms an orthonormal basis for A2(D). The Toeplitz operator Tφ with
symbol φ ∈ L∞(D) on A2(D) is defined by Tφf = P (φf); here P is an orthogonal
projection from L2(D, dA) onto A2(D).

Let Aut(D) be the Lie group of all automorphisms (biholomorphic mappings)
of D. We can define for each a ∈ D, an automorphism φa in Aut(D) such that

(i) (φa o φa)(z) ≡ z;
(ii) φa(0) = a, φa(a) = 0;
(iii) φa has a unique fixed point in D.

In fact, φa(z) = a−z
1−az for all a and z in D. It is easy to verify that the derivative

of φa at z is equal to −ka(z). It implies the real Jacobian determinant of φa at z

is Jφa(z) = |ka(z)|2 = (1−|a|2)2
|1−az|4 . Given a ∈ D and f (any measurable function on

D), let us define a function Uaf on D by Uaf(w) = ka(w)f(φa(w)). Notice that
Ua is a bounded linear operator on L2(D, dA) and A2(D) for all a ∈ D. Further, it
can be verified that U2

a = I, the identity operator, U∗
a = Ua, Ua(A2(D)) ⊂ A2(D)

and Ua((A2(D))⊥) ⊂ (A2(D))⊥ for all a ∈ D. Thus, UaP = PUa for all a ∈ D

(see [8]). Let H∞(D) denote the space of bounded analytic functions on D. Let
L(H) denote the algebra of bounded linear operators from a Hilbert space H
into itself.

Let H and K be nonzero complex Hilbert spaces. The tensor product of
x ∈ H and y ∈ K is a conjugate bilinear functional x⊗ y : H ×K −→ C defined
by (x ⊗ y)(u, v) = 〈x, u〉〈y, v〉 for every (u, v) ∈ H × K. The collection of all
(finite) sums of tensors xi ⊗ yi with xi ∈ H and yi ∈ K, denoted by H ⊗ K,
is a complex linear space equipped with an inner product 〈.,.〉 : (H ⊗ K) ×

(H ⊗ K) −→ C defined, for arbitrary
N∑

i=1

xi ⊗ yi and
M∑

j=1

wj ⊗ zj in H ⊗ K,

by

〈
N∑

i=1

xi ⊗ yi,

M∑
j=1

wj ⊗ zj

〉
=

N∑
i=1

M∑
j=1

〈xi, wj〉 〈yi, zj〉 (the same notation for

the inner products on H, K and H ⊗ K). The tensor product on H ⊗ K of two
operators T in L(H) and S in L(K) is the operator T ⊗ S : H ⊗ K −→ H ⊗ K

defined by (T ⊗ S)
N∑

i=1

xi ⊗ yi =
N∑

i=1

Txi ⊗ Syi for every
N∑

i=1

xi ⊗ yi ∈ H ⊗ K,

which lies in L(H ⊗K). The complete inner product space H ⊗K is denoted by
H⊗̂K, which is the tensor product space of H and K. The extension of T ⊗ S
over the Hilbert space H⊗̂K denoted by T ⊗̂S, is the tensor product of T and S
on the tensor product space, which lies in L(H⊗̂K) (see [3,5,7]).

Let T ∈ L(H) and U |T | be the polar decomposition of T . Some interesting
concepts regarding elementary operators have been found in [2].

In this article, we explain some sufficient conditions for elementary operators
on the Bergman space to be the average of unitaries and further discuss some
conditions for positive operators to be unitarily equivalent on the Bergman space.
Moreover, unitariness of elementary operators on the Bergman space as well as
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on the tensor product of Bergman spaces are focused in Sect. 2. Finally, in Sect. 3,
we present some sufficient conditions for positive operators on the Bergman space
to be unitarily equivalent.

2 Elementary Operators on A2(D)

In this section, we obtain some sufficient conditions for elementary operators on
A2(D) to be the average of unitary operators.

For Uai
∈ L(A2(D)), ai ∈ D and i = 1, 2, · · · , n, the n – tuple U defined by

U = (Ua1 , Ua2 , · · · Uan
).

Theorem 1. Let ‖φ‖∞ ≤ 1 for a positive function φ ∈ L∞(D) and ‖T1+φ‖ < 1.
Then the elementary operator δU, U (Tφ) can be represented as n times the average
of 2n unitary operators.

Proof. Since φ ≥ 0, we have Tφ ≥ 0 on A2(D). Then by ([1], Theorem 3.1),
for every unitary operator W on A2(D), we obtain ‖W − Tφ‖ ≤ ‖I + Tφ‖ =
‖T1+φ‖ < 1.

So Tφ is invertible. Let Tφ has the polar decomposition as Tφ = V P with P
as positive operator and V as partial isometry on A2(D). Since Tφ is invertible,
V becomes unitary and P is a positive invertible operator on the Bergman space
A2(D).

Since ‖Tφ‖ ≤ 1, it implies ‖P‖ ≤ 1. Therefore, I −P 2 ≥ 0 and ‖I −P 2‖ ≤ 1.

Let us define two operators as W1 = P +i(I−P 2)
1
2 and W2 = P −i(I−P 2)

1
2 . One

can easily observe that, W ∗
1 = W2, W1W

∗
1 = P 2 + I − P 2 = I, and W ∗

1 W1 = I.
Hence, W1W

∗
1 = W ∗

1 W1 = I and also W2W
∗
2 = W ∗

2 W2 = I. That implies, W1

and W2 are unitary operators on A2(D). So, Tφ = V P = V (W1+W2
2 ) = 1

2 (V W1 +
V W2) = V1+V2

2 , where V1 = V W1 and V2 = V W2 are two unitary operators on

A2(D). Further, Tφ◦φai
= Uai

(V1+V2
2 )Uai

= Uai
V1Uai

+Uai
V2Uai

2 = W i
1+W i

2
2 , where

W i
1 = Uai

V1Uai
and W i

2 = Uai
V2Uai

are unitary operators for i = 1, 2, 3, · · · n.
Thus,

δU,U (Tφ) =
n∑

i=1

Uai
TφUai

= Ua1TφUa1 + Ua2TφUa2 + · · · Uan
TφUan

= Tφ◦φa1
+ Tφ◦φa2

+ · · · + Tφ◦φan

=
n∑

i=1

Tφ◦φai

=
n∑

i=1

W i
1 + W i

2

2
.

Hence, the theorem is proved. ��
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Corollary 1. Let φj ∈ L∞(D) for j = 1, 2, · · · , n having φj ≥ 0 with ‖φj‖∞ ≤

1
n and

∥∥∥∥∥∥∥∥∥∥
T

1+

n∑
j=1

φj

∥∥∥∥∥∥∥∥∥∥
< 1. Then the elementary operator δU,U

⎛
⎜⎜⎜⎜⎝T n∑

j=1

φj

⎞
⎟⎟⎟⎟⎠ is n

times as an average of 2n unitary operators.

Proof. Since
∑n

j=1 Tφj
= T∑n

j=1 φj
for φj ∈ L∞(D) and ‖∑n

j=1 φj‖∞ ≤ 1 as
‖φj‖∞ ≤ 1

n , then

δU,U (T∑n
j=1 φj

) =
n∑

i=1

Uai
(T∑n

j=1 φj
)Uai

=
n∑

i=1

Uai
TψUai

, where ψ =
n∑

j=1

φj .

By our assumption ψ ≥ 0, ‖ψ‖∞ ≤ 1 and ‖T1+ψ‖ < 1, it follows from Theorem

1 that δU,U

⎛
⎜⎜⎜⎜⎝T n∑

j=1

φj

⎞
⎟⎟⎟⎟⎠ is n times the average of 2n unitary operators. ��

Corollary 2. Let φj ∈ H∞(D) for j = 1, 2, · · · , n. Suppose that φj ≥
0, ‖φj‖∞ ≤ 1 and ‖T1+

∏n
j=1 φj

‖ < 1. Then the elementary operator
δU,U (T∏n

j=1 φj
) is n times the average of 2n unitary operators.

Proof. Since φj ∈ H∞(D) and ‖φj‖∞ ≤ 1 for j = 1, 2, · · · , n then,
∏n

j=1 Tφj
=

T∏n
j=1 φj

and ‖∏n
j=1 φj‖∞ ≤ 1 respectively. Now

δU,U (T∏n
j=1 φj

) =
∞∑

i=1

Uai
T∏n

j=1 φj
Uai

=
∞∑

i=1

Uai
TΞUai

, where Ξ =
n∏

j=1

φj

=
∞∑

i=1

TΞ◦φai
.

Therefore, the corollary is evident from Theorem 1. ��
For unitary operators Ui, Vi,Wi,Xi ∈ L(A2(D)), i = 1, 2, · · · , n, the n –

tuples U⊗̂V and W ⊗̂X are defined on A2(D)⊗̂A2(D) respectively, by

U⊗̂V = (U1⊗̂V1, U2⊗̂V2, · · · , Un⊗̂Vn) and W ⊗̂X = (W1⊗̂X1,W2⊗̂X2, · · · ,Wn⊗̂Xn).

We introduce here the elementary operator on tensor product Bergman space
induced by U⊗̂V and W ⊗̂X.
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Corollary 3. Let φ and ψ ∈ L∞(D) with ‖φ‖∞ ≤ 1, ‖ψ‖∞ ≤ 1. Suppose Tφ =
Q|Tφ|, Tψ = R|Tψ| are polar decompositions of Tφ and Tψ respectively. If Tφ

and Tψ are of finite rank, then the elementary operator δ
U⊗̂V ,W ⊗̂X

(Tφ⊗̂Tψ) on

A2(D)⊗̂A2(D) can be expressed as n times the average of 4n unitary operators.

Proof. Assume Tφ = Q|Tφ|, Tψ = R|Tψ| are polar decompositions of Tφ

and Tψ respectively. Given Tφ and Tψ are finite rank operators, this implies
dim ker(Tφ) = dim ker(Tφ) and dim ker(Tψ) = dim ker(Tψ). Since Tφ and Tψ are
contractions, so Q,R are unitary. Now

δ
U⊗̂V ,W ⊗̂X

(Tφ⊗̂Tψ) =
n∑

i=1

(Ui⊗̂Vi)(Tφ⊗̂Tψ)(Wi⊗̂Xi)

=
n∑

i=1

(UiTφWi)⊗̂(ViTψXi).

Therefore, Tφ is the average of two unitary operators and Tψ is also the average
of another two unitary operators. Hence, the result follows from Theorem 1. ��

3 Unitarily Equivalent Operators

In this section, we present some sufficient conditions for positive operators on
the Bergman space A2(D) to be unitarily equivalent.

Theorem 2. Let A,B be two positive operators and U, V be two unitary oper-
ators on A2(D). Suppose ‖B

1
2 Ukz‖ ≤ ‖A 1

2 kz‖ ≤ 1

‖B
1
2 kz‖

〈Re(V ∗B)kz, kz〉 for all

kz ∈ A2(D) and U(B + αI)
1
2 V has a single limit point in its spectrum for α > 0.

Then A and B are unitarily equivalent.

Proof. Since A,B are two positive operators on A2(D) and ‖B
1
2 Ukz‖ ≤

‖A
1
2 kz‖ ≤ 1

‖B
1
2 kz‖

〈Re(V ∗B)kz, kz〉 for all kz ∈ A2(D), then

〈U∗BUkz, kz〉 1
2 ≤ 〈Akz, kz〉 1

2 ≤ 1
‖B

1
2 kz‖

〈Re(V ∗B)kz, kz〉

for all kz ∈ A2(D). This implies U∗BU ≤ A. Moreover, from Heinz Inequality
[4], we obtain

〈Akz, kz〉 1
2 ≤ 1

‖B
1
2 kz‖

〈Re(V ∗B)kz, kz〉

=
1

‖B
1
2 kz‖

Re〈(V ∗B)kz, kz〉

≤ 1
‖B

1
2 kz‖

|〈(V ∗B)kz, kz〉|

≤ 1
〈Bkz, kz〉 1

2
〈Bkz, kz〉 1

2 〈BV kz, V kz〉 1
2

= 〈V ∗BV kz, kz〉 1
2 .
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This implies, A ≤ V ∗BV. Therefore, U∗BU ≤ A ≤ V ∗BV. Since B ≥ 0, choose
α > 0 such that (B + αI)

1
2 turns out to be positive and invertible. Let’s define

S = U∗(B + αI)
1
2 V. Then SS∗ ≤ A + αI ≤ S∗S. Hence, S is hyponormal.

Further, |S| = V ∗(B + αI)
1
2 V. Let S = W |S| be the polar decomposition of S

with |S| as positive and W as a partial isometry operator on A2(D). Since S
is invertible, the partial isometry W becomes a unitary operator (say V ). Now
S = V |S| = V V ∗(B + αI)

1
2 V = (B + αI)

1
2 V = UU∗(B + αI)

1
2 V = US. This

implies, U = I. Therefore, by our assumption, we obtain S is a hyponormal
operator on A2(D) with a single limit point in its spectrum. Hence it follows
from [6], that S is normal. The normality of S implies that A and B are unitarily
equivalent. ��
Corollary 4. Let A,B be two positive operators and U, V be two unitary oper-
ators on A2(D). Suppose ‖B

1
2 Ukz‖ ≤ ‖A 1

2 kz‖ ≤ 1

‖B
1
2 kz‖

〈Re(V ∗B)kz, kz〉 for all

kz ∈ A2(D). If (B + αI)
1
2 is compact for α > 0, then A and B are unitarily

equivalent.

Proof. Since ‖B
1
2 Ukz‖ ≤ ‖A 1

2 kz‖ ≤ 1

‖B
1
2 kz‖

〈Re(V ∗B)kz, kz〉 for all kz ∈ A2(D),

then by Theorem 2, U∗BU ≤ A ≤ V ∗BV. Put S = U∗(B + αI)
1
2 V. Then SS∗ ≤

A+αI ≤ S∗S. Thus, S is hyponormal. By our assumption (B + αI)
1
2 is compact

and this implies S is a compact operator on A2(D). Since S is hyponormal and
also S is normal. Hence, the result follows. ��
Corollary 5. Let Ai, Bi be positive operators on A2(D) for i = 1, 2, 3, · · · , n

and U, V be two unitary operators on A2(D). Suppose that

∥∥∥∥∥∥
(

n∑
i=1

Bi

) 1
2

Ukz

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
(

n∑
i=1

Ai

) 1
2

kz

∥∥∥∥∥∥ ≤ 1∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

n∑
i=1

Bi

⎞

⎟
⎠

1
2

kz

∥
∥
∥
∥
∥
∥
∥
∥

〈
Re

(
V ∗

n∑
i=1

Bi

)
kz, kz

〉
for all kz ∈ A2(D)

and the operator

(
n∑

i=1

(Bi + αiI)

) 1
2

is compact on A2(D) for all αi > 0. Then

n∑
i=1

Ai and
n∑

i=1

Bi are unitarily equivalent.

Proof. Since Ai, Bi are positive operators on A2(D) for i = 1, 2, 3, · · · , n and∥∥∥∥∥∥
(

n∑
i=1

Bi

) 1
2

Ukz

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
(

n∑
i=1

Ai

) 1
2

kz

∥∥∥∥∥∥ ≤ 1∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

n∑
i=1

Bi

⎞

⎟
⎠

1
2

kz

∥
∥
∥
∥
∥
∥
∥
∥

〈
Re

(
V ∗

n∑
i=1

Bi

)
kz,

kz

〉
for all kz ∈ A2(D), then 〈U∗

n∑
i=1

BiUkz, kz〉 1
2 ≤ 〈

n∑
i=1

Aikz, kz〉 1
2
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≤ 1

‖(
n∑

i=1

Bi)
1
2 kz‖

〈Re(V ∗
n∑

i=1

Bi)kz, kz〉 for all kz ∈ A2(D). From the left hand

inequality, we get U∗
n∑

i=1

BiU ≤
n∑

i=1

Ai and from the Heinz inequality [4], we

obtain

〈(
n∑

i=1

Ai)kz, kz〉 1
2 ≤ 1

‖(
n∑

i=1

Bi)
1
2 kz‖

〈Re(V ∗(
n∑

i=1

Bi))kz, kz〉

=
1

‖(
n∑

i=1

Bi)
1
2 kz‖

Re〈(V ∗
n∑

i=1

Bi)kz, kz〉

≤ 1

‖(
n∑

i=1

Bi)
1
2 kz‖

|〈(V ∗
n∑

i=1

Bi)kz, kz〉|

≤ 1

〈(
n∑

i=1

Bi)kz, kz〉 1
2

〈(
n∑

i=1

Bi)kz, kz〉 1
2 〈(

n∑
i=1

Bi)V kz, V kz〉 1
2

= 〈V ∗(
n∑

i=1

Bi)V kz, kz〉 1
2 .

This implies,
n∑

i=1

Ai ≤ V ∗(
n∑

i=1

Bi)V. Therefore, U∗(
n∑

i=1

Bi)U ≤
n∑

i=1

Ai ≤

V ∗(
n∑

i=1

Bi)V. Since Bi ≥ 0, choose αi > 0 such that (
n∑

i=1

(Bi + αiI))
1
2 turns out

to be positive. Put S = U∗(
n∑

i=1

(Bi + αiI))
1
2 V. Then SS∗ ≤

n∑
i=1

(Ai+αiI) ≤ S∗S.

Hence, S is hyponormal. By our assumption

(
n∑

i=1

(Bi + αiI)

) 1
2

is compact on

A2(D). Hence it follows from Corollary 4 that S is normal. The normality of S

implies that
n∑

i=1

Ai and
n∑

i=1

Bi are unitarily equivalent. ��

Corollary 6. Let Ai, Bi be positive operators on A2(D) for i = 1, 2, 3, · · · , n

and V be a unitary operators on A2(D). Suppose that

∥∥∥∥∥∥
(

n∑
i=1

Bi

) 1
2

kz

∥∥∥∥∥∥
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≤
∥∥∥∥∥∥
(

n∑
i=1

Ai

) 1
2

kz

∥∥∥∥∥∥ ≤ 1∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

n∑
i=1

Bi

⎞

⎟
⎠

1
2

kz

∥
∥
∥
∥
∥
∥
∥
∥

〈
Re

(
V ∗

n∑
i=1

Bi

)
kz, kz

〉
for all kz ∈

A2(D) and the operator

(
n∑

i=1

(Bi + αiI)

) 1
2

is compact on A2(D) for all αi > 0.

Then
n∑

i=1

Ai and
n∑

i=1

Bi are unitarily equivalent.

Proof. By taking U = I in Corollary 5, we get
n∑

i=1

Bi ≤
n∑

i=1

Ai ≤ V ∗
n∑

i=1

BiV.

Put T = (
n∑

i=1

(Bi + αiI))
1
2 V. Now TT ∗ ≤

n∑
i=1

(Ai + αiI) ≤ T ∗T. Thus, T is

hyponormal. Hence, the result follows. ��
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Some Relations Between the Sets
of f-Statistically Convergent Sequences
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rftcolak@gmail.com

Abstract. In this study we first established the relations between f-density and
g-density of a subset of the set of positive integers for any modulus functions f and
g. Using the obtained facts we establish the relationship between the sets Sf and
Sg of statistically convergent and BSf and BSg of statistically bounded sequences
which defined by modulus functions f and g.

Keywords: Density · Modulus function · Statistical convergence · Statistical
boundedness

1 Introduction

The idea of statistical convergence first appeared in a study by Zygmund [17] in 1935.
This concept was introduced for the first time by Steinhaus [16] and Fast [5] indepen-
dently. After then the concept studied by Schoenberg [15]. In the last decades and under
different names the subject was discussed in many different theories such as in Fourier
analysis theory, number theory, ergodic theory, measure theory, trigonometric series and
Banach spaces. It was further investigated from the sequence spaces and summability
theory point of view and via summability theory by Fridy [6], Connor [4], Salát [14]
and many others.

The idea of a modulus function was structured by Nakano [12] in 1953. Ruckle [13]
and Maddox [10] have introduced some sequence spaces by using a modulus function.
Other than them, Ghosh and Srivastava [8], Bhardwaj and Singh [2] and some others
used a modulus function in order to establish a number of sequence spaces. Statisti-
cal boundedness and some generalizations have been studied by some mathematicians
(see [9]).

Throughout the study, l∞ and c will denote the spaces of bounded and convergent
sequences of real numbers, respectively.

Now, we will remember some concepts and definitions which are needful in the
study.

Let N be the set of positive integers. The natural density of a set H ⊆ N is
defined by

δ(H) = lim
n→∞

1

n
|{k ≤ n : k ∈ H}|
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where |{k ≤ n : k ∈ H}| indicates the number of elements of H not exceeding
n. One easily may see that δ(N) = 1 and δ(K ) = 0 if K ⊂ N is a finite set and
δ(Kc) = δ(N) − δ(K ) = 1 − δ(K ), where Kc = N − K .

A number sequence (xk) is said to be statistically convergent to the number l if
for each ε > 0, the set {k ∈ N : |xk − l| ≥ ε} has natural density zero. We write
S − lim xk = l for a sequence (xk) which is statistically convergent to l.

A number sequence (xk) is said to be statistically bounded, if
δ({k ∈ N : |xk | > M}) = 0 for some real number M > 0.

Throughout the paper notations S and BS symbolize the classes of statistically
convergent and statistically bounded sequences of real numbers, respectively (see
[7, 15]).

A function f : [0,∞) → [0,∞) is called a modulus or modulus function if

(i) f (x) = 0 if and only if x = 0,
(ii) f (x + y) ≤ f (x) + f (y), for all x ≥ 0, y ≥ 0,
(iii) f is increasing,
(iv) f is continuous from the right at 0.

From these properties it is clear that a modulus function must be continuous everywhere
on [0,∞). Any modulus may be bounded or unbounded. For instance, f (x) = x

1+x is
bounded but f (x) = x p, where 0 < p ≤ 1, is unbounded.

Aizpuru et al. presented the following definition of f - density of a set A in [1].
The f − densi ty of a set A ⊆ N is defined by

δ f (A) = lim
n→∞

f (|{k ≤ n : k ∈ A}|)
f (n)

if the limit exists, where f is an unbounded modulus function.
The f − density of A reduces to the natural density δ(A) of A in case f (x) = x .
It is well known that δ(A) + δ(N − A) = 1 for the natural density. But this result is

not true for f -density, i.e. δ f (A) + δ f (N − A) = 1 does not hold in general. Indeed, if
we take unbounded modulus f (x) = log(x + 1) and A = {2n : n ∈ N} then δ f (A) =
δ f (N − A) = 1.

However, we have the fact that if δ f (A) = 0 then δ f (N − A) = 1 in case of f −
density.

For any finite set A, f − density has similar properties with naturel density of the
set, that is δ f (A) = 0 and δ f (A) + δ f (N − A) = 1.

Given any unbounded modulus function f and given a set A ⊆ N, δ f (A) = 0
implies that δ(A) = 0 (see [1]). But the converse need not be true, in general. Indeed
for the unbounded modulus f (x) = log(x + 1) and set A = {

i2 : i = 1, 2, 3, . . .
}

we
have δ(A) = 0 but δ f (A) = 1

2 . However δ(A) = 0 implies δ f (A) = 0 is always true if
A ⊆ N is finite, regardless of selection of unbounded modulus f .

In this study we establish the relations between S f and Sg , BS f and BSg , S f and
BSg for different modulus functions f and g under some conditions on the considered
modulus functions. However the relations between the sets S , S f , BS and BS f are
known already for a modulus f .
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2 Definitions and Basic Results

We need the following facts in the sequel.

Lemma 2.1 ([11]). The limit lim
t→∞

f (t)
t = β exists for any modulus f .

The following Theorem gives the relation between f − densities of a set of positive
integers for different modulus functions. This helps us to construct the relations between
statistically convergent and statistically bounded sequence sets defined by modulus
functions.

Theorem 2.2. Let f and g be two unbounded modulus functions. Then for a set A ⊆ N

(i) if

lim
t→∞

f (t)

g(t)
> 0 (1)

then δg(A) = 0 implies δ f (A) = 0 in case the limit in (1) exists;
(ii) if

0 < lim
t→∞

f (t)

g(t)
= α < ∞ (2)

then δg(A) = 0 ⇔ δ f (A) = 0 in case the limit exists.

Proof. Let A ⊆ N, A(n) = {k ≤ n : k ∈ A} and f , g be two unbounded modulus
functions.

(i) Suppose that lim
t→∞

f (t)
g(t) = α > 0. Then given any ε > 0 there exists a real number t0

such that (α − ε) g(t) < f (t) < (α + ε) g(t) if t > t0 (We may choose ε > 0 so small
that α − ε > 0). Therefore we have the inequality f (t) < 2αg(t) if t > t0. Now we
may write the inequality

g(|A(n)|)
g(n)

≥ 1

2α

f (|A(n)|)
f (n)

f (n)

g(n)

if |A(n)| > t0 (so n > t0). Since lim
t→∞

f (t)
g(t) = α > 0 from the above inequality we obtain

lim
n→∞

f (|A(n)|)
f (n)

= 0 if lim
n→∞

g(|A(n)|)
g(n)

= 0. This means that δ f (A) = 0 if δg(A) = 0.

(ii) We may write the following equality

g(|A(n)|)
g(n)

= g(|A(n)|)
f (|A(n)|) · f (|A(n)|)

f (n)
· f (n)

g(n)
.

Suppose lim
t→∞

f (t)
g(t) = α (0 < α < ∞) and so that lim

t→∞
g(t)
f (t) = 1/α. Using this fact from

the above equality we obtain lim
n→∞

f (|A(n)|)
f (n)

= 0 if and only if lim
n→∞

g(|A(n)|)
g(n)

= 0. This

means that δ f (A) = 0 if and only if δg(A) = 0.
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Corollary 2.3. For any A ⊆ N and any unbounded modulus f providing

lim
t→∞

f (t)

t
> 0 (3)

we have δ f (A) = 0 ⇔ δ(A) = 0.

Proof. It is known that δ f (A) = 0 implies δ(A) = 0 for any unbounded modulus f
(see [1]). Taking g(t) = t in Theorem 2.2 (i) we obtain δ(A) = 0 implies δ f (A) = 0.

(Note that the limit given in (3) exists by Lemma 2.1).

3 Main Results

In this section we will give the main results of this study in which the relations between
the sets S f and Sg , BS f and BSg , S f and BSg will be obtained for different unbounded
modulus functions under some conditions.

Using f − density we recall the following definition which is given by Aizpuru et al.
in [1].

Definition 3.1. Let f be an unbounded modulus function. Then it is said that the
sequence (xk) is f -statistically convergent to l or S f − convergent to l, if

lim
n→∞

1

f (n)
f (|{k ≤ n : |xk − l| ≥ ε}|) = 0,

that is δ f ({k ∈ N : |xk − l| ≥ ε}) = 0 for every ε > 0. We write S f − lim xk = l if
(xk) is f -statistically convergent to l.

Throughout, S f will denote the class of sequences which are f -statistically
convergent. We write S instead of S f in case f (t) = t.

In the light of above knowledge, we may give the following two results (see [1]) .

Lemma 3.2. If a sequence (xk) is f -statistically convergent, then its S f −lim is unique.

Lemma 3.3. Let f, g be two unbounded modulus functions. If S f − lim xk = l and
Sg − lim xk = l ′ then l = l ′ .

It easily can be checked that every convergent sequence is f -statistically convergent
for any unbounded modulus f . But the converse is not true. For example, the sequence
(xk) defined by

xk =
⎧
⎨

⎩

0, k = n2

n ∈ N

2, k �= n2

is not convergent, but it is f -statistically convergent to 2 for modulus f (x) = x p,

0 < p ≤ 1.
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Theorem 3.4. Let f and g be two unbounded modulus functions. Then

(i) if (1) holds then a sequence (xk) is f -statistically convergent (with same limit)
if it is g− statistically convergent, that is Sg ⊆ S f and the inclusion may be strict.

(ii) if (2) holds then a sequence (xk) is f -statistically convergent if and only if it is
g− statistically convergent, that is Sg = S f .

Proof. (i) Suppose (xk) is g− statistically convergent to l, that is Sg − lim xk = l.
Define A = {k ∈ N : |xk − l| ≥ ε}. Then

δg(A) = lim
n→∞

g(|{k ≤ n : |xk − l| ≥ ε}|)
g(n)

= 0

and this implies

δ f (A) = lim
n→∞

f (|{k ≤ n : |xk − l| ≥ ε}|)
f (n)

= 0

if (1) holds by Theorem 2.2 (i) . This means that (xk) is f − statistically convergent to l.
Proof of (ii) follows from Theorem 2.2 (ii)
The following example shows that the inclusion Sg ⊆ S f may be strict at least for

some special modulus functions f and g. It can easily be shown that the sequence (xk)
defined by

xk =
⎧
⎨

⎩

k, k = n2

n ∈ N

1 + 1
k , k �= n2

(4)

is f − statistically convergent to 1, but it is not g− statistically convergent, where
g(t) = log(t + 1) and f (t) = t1/2. Therefore (xk) ∈ S f − Sg and so that the inclusion
Sg ⊂ S f is strict.

Note that in Theorem 3.4 also S f − lim xk = Sg − lim xk holds if Sg − lim xk exists.
Unfortunately the existence of S f − lim xk does not require the presence of Sg − lim xk .

Corollary 3.5. Let f be an unbounded modulus function. If (3) holds then S f = S.

Proof. The inclusion S f ⊆ S is given in [1] for any unbounded modulus f . To show
that S ⊆ S f , let (3) be hold and the sequence (xk) be statistically convergent to l. Define
A = {k ∈ N : |xk − l| ≥ ε}. Using Corollary 2.3 the inclusion S ⊆ S f follows from
the fact “δ(A) = 0 implies δ f (A) = 0”.

Note that from Corollary 3.5 we obtain that S − lim xk = S f − lim xk in case
S f − lim xk exists.

The following definition may be given by using f − density.

Definition 3.6. Let f be an unbounded modulus function. Then a sequence (xk) is said
to be f -statistically Cauchy sequence, if there exists a positive integer N such that
δ f ({k ∈ N : |xk − xN | ≥ ε}) = 0 for every ε > 0.
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Theorem 3.7. Let f and g be two unbounded modulus functions. Then

(i) if (1) holds then a g− statistically Cauchy sequence is f -statistically Cauchy
sequence;
(ii) if (2) holds then a sequence (xk) is g− statistically Cauchy sequence if and only if
it is f -statistically Cauchy sequence.

Taking A = {k ∈ N : |xk − xN | ≥ ε} the proof follows from Theorem 2.2 (i) and
(ii).

One may to refer [1] for the next result.

Corollary 3.8. Let f be an unbounded modulus function. Then a sequence of real
numbers is f -statistically convergent if and only if it is an f -statistically Cauchy
sequence.

Bhardwaj et al. presented the following definition in [3].

Definition 3.9. Let f be an unbounded modulus function. Then a number sequence (xk)
is said to be f − statistically bounded, if δ f ({k ∈ N : |xk | > M}) = 0 for some real
number M > 0.

The set of all f -statistically bounded sequences of real numbers will be denoted
by BS f .

Lemma 3.10. [3] Any bounded sequence is f -statistically bounded for any unbounded
modulus f , that is l∞ ⊂ BS f but the converse does not hold in general and the inclusion
may be strict.

Theorem 3.11. Let f and g be two unbounded modulus functions. Then

(i) if (1) holds then a g− statistically bounded sequence is f -statistically bounded, that
is BSg ⊆ BS f and the inclusion may be strict;
(ii) if (2) holds then a sequence is g− statistically bounded if and only if it is f -statistically
bounded, that is BSg = BS f .

Proof. Let the sequence (xk)be g− statistically bounded. Then there exists a real number
M > 0 such that δg({k ∈ N : |xk | > M}) = 0. Taking A = {k ∈ N : |xk | > M} the
proof of (i) and (ii) follows from Theorem 2.2 (i) and (ii), respectively.

Note that the following example shows that the inclusion BSg ⊆ BS f may be strict
at least for some special modulus functions f and g. Indeed the sequence (xk) defined
by (4) is f − statistically bounded but it is not g− statistically bounded for the modulus
functions g(t) = log(t + 1) and f (t) = t1/2, since δg({k ∈ N : |xk | > 3}) = 1

2 and
δ f ({k ∈ N : |xk | > 3}) = 0. Therefore (xk) ∈ BS f − BSg and so that the inclusion
BSg ⊂ BS f is strict.
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Corollary 3.12. For any unbounded modulus f we have

(i) BS f ⊆ BS;
(ii) if (3) holds BS f = BS.

Proof. (i) follows from the fact “given a set A ⊆ N, δ f (A) = 0 implies δ(A) = 0 for
any unbounded modulus f ” and (ii) follows from Corollary 2.3.

Theorem 3.13. Let f and g be two unbounded modulus functions. If (1) holds then a
g− statistically convergent sequence is f -statistically bounded, that is Sg ⊆ BS f and
the inclusion may be strict.

Proof. Suppose that the sequence (xk) is g− statistically convergent to l. Let ε > 0 be
given and define A(n) = {k ≤ n : |xk − l| ≥ ε} and B(n) = {k ≤ n : |xk − l| ≥ M}
for a number M (> ε) large enough. Now since clearly |A(n)| ≥ |B(n)| for every n ∈ N

we have that δg(A) ≥ δg(B) and so that δg(A) = 0 implies δg(B) = 0. If (1) holds then
δg(B) = 0 implies δ f (B) = 0 by Theorem 2.2 (i). This means that (xk) is f -statistically
bounded. This completes the proof.

From Theorem 3.13. and Corollary 3.12 we obtain the following result (see also
Theorem 26 and Theorem 34 in [3]).

Corollary 3.14. An f − statistically convergent sequence is statistically bounded, that
is S f ⊆ BS for any unbounded modulus f .

Proof. If we take g(t) = f (t) then the condition (1) will be provided directly for
unbounded modulus functions f and g. From Theorem 3.13 we obtain S f ⊆ BS f in
this case. This and Corollary 3.12 (i) gives S f ⊆ BS.
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Abstract. In the present paper, we have recalled some definitions and
well known results for the field of inequality theory. Then, some new inte-
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1 Introduction

The concept of convex function, which is widely used in inequality and is known
with its applications in many fields of mathematics, has continued to be inter-
esting even though its history dates back to ancient times. Differentiable or
integrable convex functions have been the focus of many researchers and have
been the subject of many articles in the field of inequality theory. Let’s start
with the definition of this aesthetics and useful functions.

Definition 1.1. A function f : I ⊂ R → R is said to be convex on I if inequality

f (tx + (1 − t) y) ≤ tf (x) + (1 − t) f (y) (1.1)

holds for all x, y ∈ I and t ∈ [0, 1].

Some studies have been designed to form different types of convex func-
tion classes in order to carry the convex function classes to a new dimension.
Many convex function types, especially the convex function definition, are closely
related to the special means and contain the mean expressions in the definition.
c© Springer Nature Switzerland AG 2020
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We will continue with some types of convex function types that come into promi-
nence among convex function types and find application in statistics.

In [9], Niculescu mentioned definitions of geometrically convex functions as:
The arithmetic-geometric convex functions namely log −convex functions or

AG−convexity are defined as f : I ⊆ (0,∞) → (0,∞) and holds the following
inequality:

x, y ∈ I and λ ∈ [0, 1] =⇒ f (λx + (1 − λ) y) ≤ f (x)λ
f (y)1−λ

, (1.2)

i.e., for which log f is convex.
The geometric-geometric convex functions namely multiplicatively convex

functions or GG−convexity are defined as f : I ⊆ (0,∞) → J ⊆ (0,∞) and
satisfies:

x, y ∈ I and λ ∈ [0, 1] =⇒ f
(
x1−λyλ

) ≤ f (x)1−λ
f (y)λ

. (1.3)

The class of all geometric-arithmetic convex functions or namely GA−convexity
are defined as f : I ⊆ (0,∞) → (0,∞) and holds:

x, y ∈ I and λ ∈ [0, 1] =⇒ f
(
x1−λyλ

) ≤ (1 − λ)f (x) + λf (y) . (1.4)

Besides, recall that the criterion of GA−convexity is x2f ′′+xf ′ ≥ 0 which implies
all twice differentiable non-decreasing convex functions are also GA−convex.

Examples of functions that contain some important statistical definitions and
closely related to many other mathematical concepts are presented below.

Remark 1.1. [4] Some examples of log-concave and concave functions:

(1) The normal probability density function f (x) = 1√
2π

e−x2/2 is log-concave
on (0, 1), which is also concave on (0, 1) since log f (x) = −x2/2 ln 1√

2π
is a

concave function.
(2) The probability density function of the beta distribution, for 0 ≤ x ≤ 1, and

shape parameters α1, α2 > 0, is a power function of the variable x and of
its reflection (1 − x) like follows:

f (x;α1, α2) =
1

β (α1, α2)
xα1−1 (1 − x)α2−1

is concave and log-concave function for α1 = α2 = 2, where β is Euler-
Beta function. Namely f (x) = Γ(4)

Γ(2)Γ(2)x (1 − x) = 6
(
x − x2

)
is concave and

log-concave function on (0, 1).

Hermite-Hadamard inequality, which suggests bounds for the mean value of
a convex function, is given as follows.

Theorem 1.1. (See [2,3]) Let f : I ⊆ R → R be a convex function and u, v ∈ I
with u < v. The following double inequality:

f

(
u + v

2

)
≤ 1

v − u

∫ v

u

f (x) dx ≤ f (u) + f (v)
2

(1.5)
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is known in the literature as Hadamard’s inequality (or Hermite-Hadamard
inequality) for convex functions. If f is a positive concave function, then the
inequality is reversed.

It is worth remembering some special means to be used in this study. The
extended logarithmic mean Lp of a, b > 0 is given for a = b by Lp (a, a) = a and
for a 
= b by

Lp

(
a, b

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
bp+1−ap+1

(p+1)(b−a)

] 1
p

, p 
= −1, 0
b−a

ln b−ln a , p = −1

1
e

(
bb

aa

) 1
(b−a)

, p = 0

.

It is obivous that L−1

(
a, b

)
is called the logarithmic mean L

(
a, b

)
. Two important

averages subject to arithmetic geometric inequality are defined as follows.

G
(
a, b

)
=

√
ab,

A(a, b) =
a + b

2
are the geometric mean and arithmetic mean, respectively.

For more detailed information, inequalities, generalizations, and interesting
new results for special means and geometric convex function classes, please refer
to the papers [1,5,6,8–17].

Many articles listed in the bibliography section have obtained results based
on geometric convex function classes and special averages. Here we just want to
remind you a few of these results. In [7] Yang et al. established the following
results;

Theorem 1.2. Let f, g : I → (0,∞) be log-convex functions on I and a, b ∈ I
with a < b and α, β > 0 with α + β = 1 . Then the following inequality holds:

1
b − a

∫ b

a

f (x) g (x) dx ≤ α
[
L 1

α −1

(
f (a) , f (b)

)] 1−α
α

L
(
f (a) , f (b)

)

+β
[
L 1

β −1

(
g (a) , g (b)

)] 1−β
β

L
(
g (a) , g (b)

)
.

Theorem 1.3. Let f, g : I → (0,∞) be log-concave functions on I and a, b ∈ I
with a < b. Further, let α > 1 with α + β = 1 (or β > 1 with α + β = 1). Then
the following inequality holds:

1
b − a

∫ b

a

f (x) g (x) d x ≥ α
[
L 1

α −1 (f (a) , f (b))
] 1−α

α

L
(
f (a) , f (b)

)

+β
[
L 1

β −1 (g (a) , g (b))
] 1−β

β

L
(
g (a) , g (b)

)
.

The goal of this paper is to establish some new integral inequalities for log-
convex and log-concave functions by using above-mentioned classical integral
inequalities.
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2 Main Results

Theorem 2.1. Let f, g : I ⊆ (0,∞) → (0,∞) are GA−convex functions and
f, g, fg are integrable functions on [a, b] such that a, b ∈ I, b

a 
= 1. Then, we
point out the following new result:

1

ln b − ln a

∫ b

a
f (x) g

(
ab

x

)
dx ≤ T1f(b)g(a) + T2f(a)g(b) + T3 (f(a)g(a) + f(b)g(b)) (2.1)

where

T1 =
b ln2 b

a − 2b ln b
a + 2b − 2a

ln3 b
a

,

T2 =
a ln2 b

a − 2a ln b
a + 2 ln b

a − 2
ln3 b

a

,

T3 =
2b ln2 b

a − 3b ln b
a + a ln b

a + 2b − 2a

ln3 b
a

.

Proof. By using the functions f and g and conditions of Theorem, we can write

1
ln b − ln a

∫ b

a

f (x) g

(
ab

x

)
dx =

∫ 1

0

bta1−tf
(
bta1−t

)
g

(
atb1−t

)
dt.

Here we have used the change of the variables as x = bta1−t and dx =
bta1−t ln b

adt. By taking into account GA−convexity of f and g, we get

1
ln b − ln a

∫ b

a

f (x) g

(
ab

x

)
dx

≤
∫ 1

0

bta1−t [tf(b) + (1 − t)f(a)] [tg(a) + (1 − t)g(b)] dt

=
∫ 1

0

bta1−t
[
t2f(b)g(a) + t(1 − t) (f(a)g(a) + f(b)g(b)) + (1 − t)2f(a)g(b)

]
dt.

By computing the above integrals, we obtain

1
ln b − ln a

∫ b

a

f (x) g

(
ab

x

)
dx

≤
[

b ln2 b
a − 2b ln b

a + 2b − 2a

ln3 b
a

]

f(b)g(a)

+

[
a ln2 b

a − 2a ln b
a + 2 ln b

a − 2

ln3 b
a

]

f(a)g(b)

+

[
2b ln2 b

a − 3b ln b
a + a ln b

a + 2b − 2a

ln3 b
a

]

(f(a)g(a) + f(b)g(b)) .

Thus, this complete the proof of the inequality (2.1). ��
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Similar to this result can be easily obtained for GG−convex functions.

Theorem 2.2. Let f, g : I ⊆ (0,∞) → (0,∞) are GG−convex functions and
f, g, fg are integrable functions on [a, b] such that a, b ∈ I, b

a 
= 1. Then, we
have:

1
ln b − ln a

∫ b

a

f (x) g

(
ab

x

)
dx ≤ L (af(a)g(b), bf(b)g(a))

where L (u, v) is the logarithmic mean of u and v.

Proof. Procedures similar to the proof of the previous theorem should be con-
sidered, but we only need to select the functions GG−convex. So, we can write

1
ln b − ln a

∫ b

a

f (x) g

(
ab

x

)
dx

=
∫ 1

0

bta1−tf
(
bta1−t

)
g

(
atb1−t

)
dt

≤
∫ 1

0

[bf(b)g(a)]t [af(a)g(b)]1−t
dt.

By a simple calculation, we deduce

1
ln b − ln a

∫ b

a

f (x) g

(
ab

x

)
dx ≤ bf(b)g(a) − af(a)g(b)

ln bf(b)g(a) − ln af(a)g(b)
.

The proof is completed. ��
Theorem 2.3. Let f : I ⊆ (0,∞) → (0,∞) is GG−convex function and f is
integrable function on [a, b] such that a, b ∈ I, b

a 
= 1. Then, one has the following
inequality:

1
ln b − ln a

∫ b

a

f (x) f

(
ab

x

)
dx ≤ G2 (f(a), f(b)) L (a, b)

where L (u, v) is the logarithmic mean of u and v and G (u, v) is the geometric
mean of u and v.

Proof. By using the definition of GG−convexity, we have

1
ln b − ln a

∫ b

a

f (x) f

(
ab

x

)
dx

=
∫ 1

0

bta1−tf
(
bta1−t

)
f

(
atb1−t

)
dt

≤ f(a)f(b)
∫ 1

0

bta1−tdt = f(a)f(b)
b − a

ln b − ln a
.

Which completes the proof. ��
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Theorem 2.4. Suppose that f : I ⊆ (0,∞) → (0,∞) be GA−convex function,
g : I ⊆ (0,∞) → (0,∞) be GG−convex function and f, g, fg are integrable func-
tions on [a, b] such that a, b ∈ I, b

a 
= 1. Then, one has the following inequality:

1
ln b − ln a

∫ b

a

f (x) g

(
ab

x

)
dx ≤ Lp

p (f(a), f(b))
p

+
L ((ag(b))q

, (bg(a))q)
q

,

for 1
p + 1

q = 1 where L (u, v) is the logarithmic mean of u and v and G (u, v) is
the geometric mean of u and v.

Proof. The classical Young’s inequality can be represented by (see [2]):

αβ ≤ αp

p
+

βq

q
, for

1
p

+
1
q

= 1, α, β > 0.

Since f is GA−convex function and g is GG−convex function on I, we get

1
ln b − ln a

∫ b

a

f (x) g

(
ab

x

)
dx

=
∫ 1

0

bta1−tf
(
bta1−t

)
g

(
atb1−t

)
dt

≤
∫ 1

0

bta1−t [tf(b) + (1 − t)f(a)] [g(a)]t [g(b)]1−t
dt.

By using the Young inequality, we can write

1
ln b − ln a

∫ b

a

f (x) g

(
ab

x

)
dx

≤
∫ 1

0

bta1−t [tf(b) + (1 − t)f(a)] [g(a)]t [g(b)]1−t
dt

≤
∫ 1

0
[tf(b) + (1 − t)f(a)]p dt

p
+

∫ 1

0
bqtaq(1−t) [g(a)]qt [g(b)]q(1−t)

dt

q
.

By computing the above integrals, we obtain

1
ln b − ln a

∫ b

a

f (x) g

(
ab

x

)
dx

≤
(

[f(b)]p+1 − [f(a)]p+1

f(b) − f(a)

)(
1

p (p + 1)

)
+

(bg(a))q − (ag(b))q

q (ln (bg(a))q − ln (ag(b))q)
,

which completes the proof. ��
Theorem 2.5. Suppose that f, g : I ⊆ (0,∞) → (0,∞) be two functions and
|f | , |g| , |fg| are integrable functions on [a, b] such that a, b ∈ I, a < b. If |f |
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is GA−convex and |g| is GG−convex function, then, one has the following
inequality:

1
ln b − ln a

∫ b

a

|f (x)|
∣
∣
∣
∣g

(
ab

x

)∣
∣
∣
∣ dx

≤
[(

[|f(b)|]p+1 − [f(a)]p+1

|f(b)| − f(a)

)(
1

(p + 1)

)] 1
p [

(b |g(a)|)q − (a |g(b)|)q

ln (b |g(a)|)q − ln (a |g(b)|)q

] 1
q

.

for 1
p + 1

q = 1, p > 1.

Proof. By using the definition of |f | and |g| and changing of the variables, we
have

1
ln b − ln a

∫ b

a

|f (x)|
∣
∣
∣
∣g

(
ab

x

)∣
∣
∣
∣ dx

≤
∫ 1

0

bta1−t [t |f(b)| + (1 − t) |f(a)|] [|g(a)|]t [|g(b)|]1−t
dt.

By applying the well-known Hölder integral inequality, we get:

1
ln b − ln a

∫ b

a

|f (x)|
∣
∣
∣
∣g

(
ab

x

)∣
∣
∣
∣ dx

≤
(∫ 1

0

[t |f(b)| + (1 − t) |f(a)|]q dt

) 1
p

(∫ 1

0

bqtaq(1−t) [|g(a)|]qt [|g(b)|]q(1−t)
dt

) 1
q

.

By making use of necessary computations, we obtain;

1
ln b − ln a

∫ b

a

|f (x)|
∣
∣
∣
∣g

(
ab

x

)∣
∣
∣
∣ dx

≤
[(

[|f(b)|]p+1 − [f(a)]p+1

|f(b)| − f(a)

)(
1

(p + 1)

)] 1
p [

(b |g(a)|)q − (a |g(b)|)q

ln (b |g(a)|)q − ln (a |g(b)|)q

] 1
q

.

which completes the proof. ��
Theorem 2.6. Suppose that f, g : I ⊆ (0,∞) → (0,∞) be two functions and
|f | , |g| , |fg| are integrable functions on [a, b] such that a, b ∈ I, a < b. If |f | and
|g| are GG−convex function, then, one has the following inequality:

1
ln b − ln a

∫ b

a

|f (x)|
∣
∣
∣
∣g

(
ab

x

)∣
∣
∣
∣ dx

≤
[

(|f(b)|)p − (|f(a)|)p

ln (|f(b)|)p − ln (|f(a)|)p

] 1
p

[
(b |g(a)|)q − (a |g(b)|)q

ln (b |g(a)|)q − ln (a |g(b)|)q

] 1
q

= L
1
p ((|f(a)|)p

, (|f(b)|)p) L
1
q ((a |g(b)|)q

, (b |g(a)|)q) .

for 1
p + 1

q = 1, p > 1, where L (u, v) is the logarithmic mean of u and v.
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Proof. By using the definition of |f | and |g| and changing of the variables, we
have

1
ln b − ln a

∫ b

a

|f (x)|
∣
∣
∣
∣g

(
ab

x

)∣
∣
∣
∣ dx

≤
∫ 1

0

bta1−t [|f(a)|]t [|f(b)|]1−t [|g(a)|]t [|g(b)|]1−t
dt.

By applying the well-known Hölder integral inequality, we get:

1
ln b − ln a

∫ b

a

|f (x)|
∣
∣
∣
∣g

(
ab

x

)∣
∣
∣
∣ dx

≤
(∫ 1

0

[|f(b)|]pt [|f(a)|]p(1−t)
dt

) 1
p

(∫ 1

0

bqtaq(1−t) [|g(a)|]qt [|g(b)|]q(1−t)
dt

) 1
q

.

By making use of necessary computations, we obtain;

1
ln b − ln a

∫ b

a

|f (x)|
∣
∣
∣
∣g

(
ab

x

)∣
∣
∣
∣ dx

≤
[

(|f(b)|)p − (|f(a)|)p

ln (|f(b)|)p − ln (|f(a)|)p

] 1
p

[
(b |g(a)|)q − (a |g(b)|)q

ln (b |g(a)|)q − ln (a |g(b)|)q

] 1
q

.

which completes the proof. ��

3 Conclusion

In this study, we have proved some new integral inequalities for product of GA−
and GG−convex functions by using some integration techniques and elemantery
analysis. The results have been established via some classical inequalities such
as Hölder integral inequality and Young inequality. We presented the results
for special means of real numbers. The results can be extended to fractional
calculus by using some new fractional Integral operators. Also, similar results
can be found for more general convex function classes.
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Uniformly (B,λ )−Invariant Statistical
Convergence
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Abstract. In the present chapter, we consider some properties of uniformly
(B,λ )-invariant statistically convergent which is defined using the ϕ-function and
invariant mean. Also we prove some inclusion theorems.

1 Introduction and Background

Let s denote the set of all real and complex sequences x= (xk). By l∞ and c, we denote
the Banach spaces of bounded and convergent sequences x = (xk) normed by ‖x‖ =
supn |xn|, respectively.

If x= (xk) is a sequence and B= (bnk) is an infinite matrix, then Bx is the sequence
whose nth term is given by Bn(x) = ∑∞

k=0 bnkxk. Thus we say that x is B-summable to L
if lim

n→∞
Bn(x) = L. Let X and Y be two sequence spaces and B= (bnk) an infinite matrix.

If for each x ∈ X the series Bn(x) = ∑∞
k=0 bnkxk converges for each n and the sequence

Bx= Bn(x)∈Y we say that B maps X intoY . By (X ,Y ) we denote the set of all matrices
which maps X into Y , and in addition if the limit is preserved then we denote the class
of such matrices by (X ,Y )reg.

Let λ = (λi) be a non-decreasing sequence of positive numbers tending to ∞ such
that

λi+1 ≤ λi+1,λ1 = 1.

The collection of such sequence λ will be denoted by Δ .
The generalized de la Valee-Poussin mean is defined by

Ti(x) =
1
λi

∑
k∈Ii

xk

where Ii = [i−λi+1, i]. A sequence x= (xn)is said to be (V,λ )-summable to a number
L, if Ti(x) → L as i → ∞ (see [5]).

By a ϕ-function we understand a continuous non-decreasing function ϕ(u) defined
for u ≥ 0 and such that ϕ(0) = 0, ϕ(u) > 0, for u > 0 and ϕ(u) → ∞ as u → ∞ (see
[18]).

A ϕ-function ϕ is called non weaker than a ϕ-function ψ if there are constants
c,b,k, l > 0 such that cψ(lu) ≤ bϕ(ku), (for all large u) and we write ψ ≺ ϕ .

Let σ be a one-to-one mapping from the set of natural numbers into itself. A con-
tinuous linear functional φ on l∞ is said to be an invariant mean or a σ -mean if and
only if
c© Springer Nature Switzerland AG 2020

H. Dutta et al. (Eds.): CMES 2019, AISC 1111, pp. 324–329, 2020.
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1. φ(x) ≥ 0 when the sequence x= (xn) has xn ≥ 0 for all n;
2. φ(e) = 1 where e= (1,1,1, ...) and
3. φ(xσ(n)) = φ(x) for all x ∈ l∞.

For certain class of mapping σ every invariant mean ϕ extends the limit functional
on space c, in the sense that ϕ(x) = limx for all x ∈ c.

Consequently, c ⊂ Vσ where Vσ is the subset of all bounded sequences whose σ -
means are equal.

If x= (xn), set Tx= (Txk) = (xσ (n)), it can be shown that (see, Schaefer [16])

Vσ =
{
x ∈ l∞ : lim

m
tm,n(x) = L uniformly in n,L= σ − limx

}

where

tm,n(x) =
xn+ xσ(n) + ...+ xσm(n)

m+1
, t−1,n(x) = 0.

We say that a bounded sequence x= (xn) is σ -convergent if and only if x∈Vσ such that
σm(n) 	= n for all n ≥ 0, k ≥ 1.

Definition 1. Let Λ = (λ j) be same as above, ϕ be given ϕ-function and f be given
modules function, respectively. Moreover, let B = (bnk) be the real matrix. Then we
define,

V 0
λ ((B,ϕ), f ) =

{
(xk) : lim

j

1
λ j

∑
n∈I j

f

(∣∣∣∣∣
∞

∑
k=1

bnkϕ(
∣∣xσm(k)

∣∣)
∣∣∣∣∣

)
= 0, uniformly in m

}
.

If x ∈V 0
λ ((B,ϕ), f ), the sequence x is said to be λ − strong(B,ϕ)-invariant conver-

gent to zero with respect to a modulus f .

2 Uniform (B,ϕ)−Invariant Statistically Convergent

The idea of convergence of a real sequence was extended to statistical convergence
by Fast [1] (see also Schoenberg [17]). A sequence (xk) of real numbers is said to be
statistically convergent to L if for arbitrary ε > 0, the set K (ε) = {k ∈ N : |xk − l| ≥ ε}
has natural density zero.

Over the years and under different names statistical convergence was discussed in
the theory of fourier analysis, ergodic theory, number theory, measure theory, trigono-
metric series, turnpike theory and Banach spaces. Statistical convergence turned out to
be one of the most active areas of research in summability theory after the work of Fridy
[3] and Salat [15].

In another direction, Mursaleen [6] defined λ -statistical convergence as follows.
A sequence (xk) of real numbers is said to be λ -statistically convergent to L (or

Sλ -convergent to L) if for any ε > 0

lim
j→∞

1
λ j

∣∣{k ∈ I j : |xk − l| ≥ ε
}∣∣ = 0
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In [6] the relation between λ -statistical convergence and statistical convergence was
established among other things.

Recently Savas [10] defined almost λ -statistical convergence by using the notion of
(V,λ )-summability to generalize the concept of statistical convergence.

We can give the following definition.

Definition 2. A sequence x = (xk) is said to be uniformly σ -statistical convergent to
the number L if for every ε > 0,

lim
n

1
n

max
m≥0

∣∣∣
{
k ≤ n :

∣∣∣xσk(m) −L
∣∣∣ ≥ ε

}∣∣∣ = 0

In this case we write Sσ − limx= L or xk → L(Sσ ) and we define

Sσ = {x= (xk) : f or some L,Sσ − limx= L} .

Assume that B is a non-negative regular summability matrix. Then the sequence
x= (xn) is called B-statistically convergent to L provided that, for every ε > 0, (see [4])

lim
j

∑
n:|xn−L|≥ε

b jn = 0.

We denote this by stB − limn xn = L.
Let B = (bnk) be real matrix and te sequence x = (xk), the ϕ-function ϕ(u) and a

positive number ε > 0 be given. We write, for all m

K j
λ ((B,σ ,ϕ) ,ε) =

{
n ∈ I j :

∞

∑
k=1

bnkϕ
(∣∣∣xσk(m)

∣∣∣
)

≥ ε

}
.

The sequence x is said to be uniformly (B,ϕ,λ )-invariant statistically convergent to
a number zero if for every ε > 0

lim
j

1
λ j

max
m≥0

μ(K j
λ ((B,σ ,ϕ),ε) = 0,

where μ
(
K j

λ ((B,σ ,ϕ) ,ε)
)

denotes the number of elements belonging to set

K j
λ ((B,σ ,ϕ) ,ε). We denote by S0

λ (B,σ ,ϕ), the set of sequences x = (xk) which are
uniformly (B,σ ,ϕ)-statistical convergent to zero.

If we take B = I and ϕ(x) = x respectively, then S0
λ (B,σ ,ϕ) reduce to S0

(λ ,ϕ)-
invariant.

S0
(λ ,σ) =

{
x= (xk) : lim

j

1
λ j

max
m≥0

∣∣∣
{
k ∈ I j :

∣∣∣xσk(m)

∣∣∣ ≥ ε
}∣∣∣ = 0

}
.

We are now ready to state the following theorem.

Theorem 1. IfΨ ≺ ϕ then S0
λ (B,σ ,Ψ) ⊂ S0

λ (B,σ ,ϕ).
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Proof. By our assumptions we have ψ
(∣∣∣xσk(m)

∣∣∣
)

≤ bϕ
(
c
∣∣∣xσk(m)

∣∣∣
)

and we have for

all m,

∞

∑
k=1

bnkψ
(∣∣∣xσk(m)

∣∣∣
)

≤ b
∞

∑
k=1

bnkϕ(c
∣∣∣xσk(m)

∣∣∣) ≤ K
∞

∑
k=1

bnkϕ
(∣∣∣xσk(m)

∣∣∣
)

for b,c> 0, where the constant K is connected with properties of ϕ . Thus, the condi-

tion ∑∞
k=1 bnkΨ

(∣∣∣xσk(m)

∣∣∣
)

≥ ε implies the condition ∑∞
k=1 bnkϕ

(∣∣∣xσk(m)

∣∣∣
)

≥ ε and in

consequence we get for all m,

μ
(
K j

λ (B,σ ,ϕ),ε
)

⊂ μ
(
K j

λ (B,σ ,ψ),ε
)

and

lim
j

1
λ j

μ
((

K j
λ (B,σ ,ϕ),ε

))
⊂ lim

j

1
λ j

μ
((

K j
λ (B,σ ,Ψ),ε

))

This completes the proof.

Theorem 2. (a) If the matrix B, functions f and ϕ be given, then

V 0
λ ((B,σ ,ϕ) , f ) ⊂ S0

λ (B,σ ,ϕ) .

(b) If the ϕ-function ϕ(u) and the matrix B are given, and if the modulus function f
is bounded, then

S0
λ (B,σ ,ϕ) ⊂V 0

λ ((B,σ ,ϕ) , f ) .

Proof. (a) Let f be a modulus function and let ε be a positive numbers. We write the
following inequalities for all m:

1
λ j

∑
n∈I j

f

(∣∣∣∣∣
∞

∑
k=1

bnkϕ(
∣∣∣xσk(m) −L

∣∣∣)
∣∣∣∣∣

)
≥ 1

λ j
∑
n∈I1

j

f

(∣∣∣∣∣
∞

∑
k=1

bnk(i)ϕ(
∣∣∣xσk(m) −L

∣∣∣)
∣∣∣∣∣

)

≥ 1
λ j

f (ε) ∑
n∈I1

j

1

≥ 1
λ j

f (ε)μ
(
K j

λ (B,σ ,ϕ) ,ε
)

where

I1
j =

{
n ∈ I j :

∞

∑
k=1

bnkϕ
(∣∣∣xσk(m))

∣∣∣
)

≥ ε

}
.

Finally, if x ∈V 0
λ ((B,σ ,ϕ) , f ) then x ∈ S0

λ (B,σ ,ϕ).
(b) Let us suppose that x∈ S0

λ (B,σ ,ϕ). If the modulus function f is a bounded function,
then there exists an integer M such that f (x)<M for x ≥ 0. Let us take, for all m

I2
j =

{
n ∈ I j :

∞

∑
k=1

bnk(i)ϕ
(∣∣xσk(m)

∣∣) < ε

}
.
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Thus we have,

1
λ j

∑
n∈I j

f

(∣∣∣∣∣
∞

∑
k=1

bnkϕ(
∣∣∣xσk(m) −L

∣∣∣)
∣∣∣∣∣

)

≤ 1
λ j

∑
n∈I1

j

f

(∣∣∣∣∣
∞

∑
k=1

bnkϕ(
∣∣∣xσk(m) −L

∣∣∣)
∣∣∣∣∣

)

+
1
λ j

∑
n∈I2

j

f

(∣∣∣∣∣
∞

∑
k=1

bnkϕ(
∣∣∣xσk(m) −L

∣∣∣)
∣∣∣∣∣

)

≤ 1
λ j

M max
m≥0

μ
(

K j
λ ((B,ϕ) ,ε)

)
+ f (ε)

Taking the limit as ε → 0, we obtain that x ∈V 0
λ (B,σ ,ϕ, f ).

Theorem 3. If a sequence x= (xk) is S(B,σ ,ϕ)-convergent to L and

lim in f j

(
λ j

j

)
> 0

then it is Sλ (B,σ ,ϕ)-convergent to L, where

S(σ ,ϕ) =
{
x= (xk) : lim

j

1
j
μ (K (B,σ ,ϕ,ε)) = 0

}
.

Proof. For a given ε > 0, we write, for all m
{
n ∈ I j :

∞

∑
k=0

bnkϕ
(∣∣∣xσk(m) −L

∣∣∣
)

≥ ε

}
⊆

{
n ≤ j :

∞

∑
k=0

bnkϕ(xσk(m) −L) ≥ ε

}

Hence we have,
Kλ (B,σ ,ϕ,ε) ⊆ K(B,σ ,ϕ,ε).

Finally the proof follows from the following inequality:

1
j
max
m≥0

μ (K (B,σ ,ϕ,ε)) ≥ 1
j
max
m≥0

μ (Kλ (B,σ ,ϕ,ε)) =
λ j

j
1
λ j

max
m≥0

μ (Kλ (B,σ ,ϕ,ε))

This completes the proof.

3 Conclusion

In this work, we extended the previous concept of statistically convergence and gave
some new definitions as uniformly σ -statistically convergence, β -statistically conver-
gence and uniformly (B,ϕ,λ )–invariant statistically convergence where B is a real
matrix and ϕ is a function. We also give some relationship between them. This sub-
ject also has some new open problems.
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