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Abstract. Considering the classic Fibonacci sequence, we present in
this paper a geometric sequence attached to it, where the word “geo-
metric” must be understood in a literal sense: for every Fibonacci num-
ber Fn we will in fact construct an octagon Cn that we will call the
n-th Carboncettus octagon, and in this way we obtain a new sequence{
Cn

}
n

consisting not of numbers but of geometric objects. The idea of
this sequence draws inspiration from far away, and in particular from a
portal visible today in the Cathedral of Prato, supposed work of Carbon-
cettus marmorarius, and even dating back to the century before that of
the writing of the Liber Abaci by Leonardo Pisano called Fibonacci (AD
1202). It is also very important to note that, if other future evidences will
be found in support to the historical effectiveness of a Carboncettus-like
construction, this would mean that Fibonacci numbers were known and
used well before 1202. After the presentation of the sequence

{
Cn

}
n
, we

will give some numerical examples about the metric characteristics of the
first few Carboncettus octagons, and we will also begin to discuss some
general and peculiar properties of the new sequence.

Keywords: Fibonacci numbers · Golden ratio · Irrational numbers ·
Isogonal polygons · Plane geometric constructions

1 Introduction

The names here proposed of “n-th Carboncettus octagon” and “Carboncettus
sequence/family of octagons”, or better, the inspiration for these names, comes
from far away, sinking its roots in the early centuries of the late Middle
Ages. They are in fact connected to the cathedral of Prato, a jewel of Ital-
ian Romanesque architecture, which underwent a profound restructuring in the
11th century, followed by many others afterwards. The side portal shown in
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Fig. 1 (which we will later call simply the portal) at the time of its construction
seems to have been the main portal of the cathedral. The marble inlays on its
sides and the figures represented have aroused many discussions among scholars
for many years and in particular have always aroused the attention and interest
of G. Pirillo, an interest that he recently transmitted also to the other authors.
Pirillo studied the figures of the portal for a long time and traced a fascinating
symbolism, typical of medieval culture (see for example [11]). According to these
studies, the right part of the portal, for instance, through a series of very regular
and symmetrical figures, would recall the divine perfection, while the left part,
through figures that approximate the regular ones but are not themselves regu-
lar, the imperfection and the limits of human nature. The very interesting fact
is that the artist/architect who created the work (which is thought to be a cer-
tain Carboncettus Marmoriarius, very active at that time and in those places,
[11]) seems to have been in part used the mathematical language to express
these concepts and ideas, and this thing, if confirmed, would assume enormous
importance, because before the 12th century we (and many experts of the field)
have no knowledge of similar examples. The construction of the Carboncettus
octagon (or better, of the Carboncettus octagons, since they are infinitely many)
originates from Fibonacci numbers and yields a sequence not of numbers but of
geometrical figures: we will explain the details starting from Sect. 2.

From the historical point of view we cannot avoid to note an interesting,
particular coincidence: probably, the most known and most important octagonal
monument existing in Calabria dates back to the same period as the construction
of the portal of the Duomo of Prato, and it is the octagonal tower of the Norman-
Swabian Castle in Cosenza. But it is important to specify, for the benefit of the
reader, that, in Cosenza, on the site of the actual Norman-Swabian Castle, a
fortification had existed from immemorial time, which underwent considerable
changes over the years: first a Bruttuan fortress, then Roman, Norman and
Swabian, when it had the most important restructuring due to Frederick II
of Swabia. In particular, it is Frederick who wanted the octagonal tower visible
today, his preferred geometric shape: remember, for example, the octagonal plan
of the famous Castel del Monte near Bari, in Apulia.

With regard to Fibonacci numbers, we would like to point out to the reader
for completeness of information, a recent thesis by G. Pirillo often and many
times discussed within this group of authors. In [10,12–14] Pirillo presented the
audacious thesis that the first mathematicians who discovered Fibonacci num-
bers were some members of the Pythagorean School, well documented and active
in Crotone in the 6th, 5th and 4th centuries B.C., hence about 1,700 years before
that Leonardo Pisano, known as “Fibonacci”, wrote his famous Liber Abaci in
1202. Such a thesis is mainly supported by computational evidences arising
from pentagon and pentagram about the well-known Pythagorean discovery of
the existence of incommensurable numbers. The interested reader can find fur-
ther information and references on the Pythagorean School, incommensurable
lengths, Fibonacci numbers and some recent developments in [6,8,10,14–17].
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Fig. 1. The side portal of the cathedral of Prato. The two topmost figures have octag-
onal shape: the one on the right is based on a regular octagon, while the one on the
left seems to allude to a very particular construction that inspires thus paper and the
now called Carboncettus octagons.
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Similarly to the above thesis note that, since the portal in Prato is dating
back to the 12th century, if other future evidences will support the employ of
Fibonacci numbers in its geometries, this would mean that they were known
before 1202 as well, even if only a few decades.

A final remark on notations: we denote by N the set of positive integers and
by N0 the set N ∪ {0}. A sequence of numbers or other mathematical objects
is denoted by

{
an

}
n∈N

,
{
an

}
n
, or simply {an}. If, moreover, A,B,C are three

points of the plane, AB denotes the line segment with endpoints A and B, |AB|
its length, and �ABC the measure of the angle with vertex in B.

2 The Carboncettus Family of Octagons

If r is any positive real number, we denote by Γr the circumference of radius
r centered in the origin. As usual, let Fn be the n-th Fibonacci number for all
n ∈ N0, i.e.,

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, etc.

If n ∈ N we consider a couple of concentric circumferences having radii of
length Fn and Fn+2, respectively. If n = 1 they are represented in green in
Fig. 2, were the radius of the inner circumference is 1 and that of the outer
one is 2, i.e. F3. Then we draw two couples of parallel tangents, orthogonal
between them, to the inner circumference and we consider the eight intersec-
tion points A,B,C,D,E, F,G,L with the outer circumference ΓFn+2 , as in
Fig. 2. The octagon obtained by drawing the polygonal through the points
A,B,C,D,E, F,G,L,A, in red in Fig. 2, is called the n-th Carboncettus octagon
and is denoted by Cn. Therefore, the red octagon in Fig. 2, is the first Carbon-
cettus octagon C1.

From a geometrical point of view, the Carboncettus octagon Cn is more
than a cyclic polygon; it is in fact an isogonal octagon for all n ∈ N, that is, an
equiangular octagon with two alternating edge lengths.1 More recently it is also
used to say a vertex-transitive octagon: all the vertices are equivalent under the
symmetry group of the figure and, in the case of Cn, for every couple of vertices,
the symmetry which send the first in the second is unique. The symmetry group
of Cn is in fact isomorphic to the one of the square, the dihedral group D4.2

An interesting property of the Carboncettus sequence
{
Cn

}
n∈N

is the fact
that, with the exception of the first three elements C1, C2, C3 (or, at most,
also C4), all the subsequent ones are completely indistinguishable from a regular
octagon (see, for example, Fig. 3 representing C2: it is yet relatively close to a
regular octagon). Due to the lack of space, we will deepen these and other impor-
tant aspects mentioned in the following, in a subsequent paper in preparation.
1 In this view, a recent result established that a cyclic polygon is equiangular if and

only if is isogonal (see [7]). Of course, an equiangular octagon is not cyclic in general,
while it is true for 3- and 4-gons (see [2]).

2 Note, for didactic purposes, how the multiplication table of D4 emerges much more
clearly to the mind of a student thinking to C1 than thinking to a square.
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Fig. 2. The construction of the Carboncettus octagon. In the picture, in particular, it
is shown in red the octagon C1. (Color figure online)

3 The First Four Octagons of the Carboncettus Sequence:
Geometric Properties and Metric Data

In this section we will give some numerical examples looking closely at the first
elements of the sequence

{
Cn

}
n∈N

.

Example 1 (The octagon C1). The first Carboncettus octagon C1 is built starting
from the circumferences Γ1 and Γ2, as said in Sect. 2. In this case we obtain a
very particular isogonal octagon: drawing the eight radii

OA, OB, OC, OD, OE, OF , OG, OL (1)

of the circumference Γ2 as in Fig. 2, the resulting shape has commensurable angle
measures, in fact all them are integer multiples of π/12 = 15◦. Not only; in this
way C1 results formed by 4 equilateral triangles (congruent to ABO, see Fig. 2)
and 4 isosceles triangles (congruent to BCO). The lengths of their sides and
heights are

|AB| = |OA| = 2, |OH| = |KC| = √
3,

|BC| = √
6 − √

2, |ON | =
√
6+

√
2

2 ,
(2)

which, for example, are all incommensurable in pairs. Instead, for the widths of
the angles we trivially have

�AOB = �OBA = π/3 = 60◦, �BOC = �HOB = π/6 = 30◦,
�OBC = 5π/12 = 75◦. (3)
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Discussing the commensurability of the angles for all the sequence
{
Cn

}
n

is
interesting, but we are forced to postpone this elsewhere. The same, as well,
considering the commensurability, along all the sequence, of some of the side
lengths made explicit in (2). Note lastly that perimeter and area are

Per(C1) = 8 + 4
√
6 − 4

√
2, Area(C1) = 4 + 4

√
3.

The second Carboncettus octagon C2 originates from the circumferences Γ1

and Γ3, with radii F2 = 1 and F4 = 3, respectively, and the result is the black
octagon in Fig. 3, compared with a red regular one inscribed in the circumference
Γ3 itself. Using the letters disposition of Fig. 2, the lengths of the correspondent
sides and heights considered in (2), the angle widths, perimeter and area, are
those listed in the second column of Table 1.

Table 1. Some metric data relative to the first three elements of the Carboncettus
sequence, after C1. The letters are displayed in the construction as in Fig. 2.

C2 C3 C4

|OK| 1 2 3

|OA| 3 5 8

|AB| 2 4 6

|BC| 4 − √
2

√
42 − 2

√
2

√
110 − 3

√
2

|OH| 2
√

2
√

21
√

55

|ON | 2 +
√

2/2
√

2 +
√

42/2 (3
√

2 +
√

110)/2

�AOB ≈38.942◦ ≈47.156◦ ≈44.049◦

�BOC ≈51.058◦ ≈42.844◦ ≈45.951◦

�OAB ≈70.529◦ ≈66.421◦ ≈67.976◦

Perim. 24 − 4
√

2 16 + 4
√

42 − 8
√

2 24 + 4
√

110 − 12
√

2

Area 14 + 8
√

2 34 + 8
√

21 92 + 12
√

55

4 The “limit octagon” and Future Researches

Many aspects of the new sequence
{
Cn

}
n

are interesting to investigate. For
example, scaling the octagon Cn by a factor equal to the n-th Fibonacci number
Fn, the sequence will converge to a limit octagon CN

∞ (where the top N stands
for “normalized”) that can be drawn through the “Carboncettus construction”
described at the beginning of Sect. 2, by starting from the circumferences with
radii given by the following limit ratios

lim
n→∞

Fn

Fn
= 1 and lim

n→∞
Fn+2

Fn
, (4)
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Fig. 3. The second element of the Carboncettus sequence, the octagon C2, is drawn in
black. A regular octagon inscribed in the same circumference Γ3, is also represented in
red. (Color figure online)

respectively. It is well known that the limit of the ratio of two consecutive
Fibonacci numbers Fn+1/Fn converges to the golden ratio

φ := (1 +
√
5)/2 ≈ 1.618033987, (5)

hence, the second limit in (4) is simple to compute as follows3

lim
n→∞

Fn+2

Fn
= lim

n→∞
Fn+2

Fn+1
· Fn+1

Fn
= φ2 ≈ 2.618033987, (6)

and we conclude that CN
∞ can be constructed using the circumferences Γ1 and

Γφ2 .
Another approach to directly study the “limit octagon” C∞ instead of the

“limit normalized octagon” CN
∞, could come by using the computational system

introduced for example in [18–20] and applied as well to limit curves, limit poly-
topes, fractals and similar geometric shapes in [1,3–5,20] (or even to Fibonacci
numbers in [9]).

Aknowledgments. This work is partially supported by the research projects
“IoT&B, Internet of Things and Blockchain”, CUP J48C17000230006, POR Calabria
FESR-FSE 2014–2020.

3 The reader certainly remembers the well know property φ2 = 1 + φ of the golden
ratio that causes the coincidence of the fractional parts of (5) and (6).
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