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Abstract. We propose a generalization of an RSA-like scheme based on
Rédei rational functions over the Pell hyperbola. Instead of a modulus
which is a product of two primes, we define the scheme on a multi-factor
modulus, i.e. on a product of more than two primes. This results in a
scheme with a decryption which is quadratically faster, in the number of
primes factoring the modulus, than the original RSA, while preserving
a better security. The scheme reaches its best efficiency advantage over
RSA for high security levels, since in these cases the modulus can contain
more primes. Compared to the analog schemes based on elliptic curves,
as the KMOV cryptosystem, the proposed scheme is more efficient. Fur-
thermore a variation of the scheme with larger ciphertext size does not
suffer of impossible group operation attacks, as it happens for schemes
based on elliptic curves.
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1 Introduction

RSA is the most widespread asymmetric encryption scheme. Its security is based
on the fact that the trapdoor function τN,e(x) = xe mod N , where N = pq is the
product of two large prime integers, and e an invertible element in Zφ(N)(φ(N)
being the Euler totient function), cannot be inverted by a polynomial-time in N
algorithm without knowing either the integers p, q, φ(N) or the inverse d of e
modulo φ(N). Thus the pair (N, e), called the public key, is known to everyone,
while the triple (p, q, d), called the secret key, is only known to the receiver of an
encrypted message. Both encryption and decryption are performed through an
exponentiation modulo N . Precisely, the ciphertext C is obtained as C = Me

(mod N), and the original message M is obtained with the exponentiation M =
Cd (mod N). While usually the encryption exponent is chosen to be small, the
decryption exponent is about the size of N , implying much slower performances
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during decryption with respect to encryption. Through the years many proposal
have been presented trying to speed up the decryption process.

In this work we present the fastest, to the authors knowledge, of such decryp-
tion algorithms whose security is based on the factorization problem. The pre-
sented scheme exploits different properties of Rédei rational functions, which
are classical functions in number theory. The proposed decryption algorithm is
quadratically, on the number of primes composing the modulus N , faster than
RSA.

The work is divided as follows. In Sect. 2 an overview of the main schemes
based on the factorization problem which successfully improved RSA decryp-
tion step is presented. In Sect. 3 the main theoretical results underlying our
scheme are described. Section 4 is devoted to the presentation of the crypto-
graphic scheme, and in Sects. 5 and 6 its security and efficiency are discussed,
respectively. Section 7 concludes the work.

2 Related Work

In this section we briefly overview the main cryptographic schemes based on
the factorization problem that have been introduced in order to improve RSA
decryption step.

Usually, the general technique to speed up the RSA decryption step C = Me

(mod N) is to compute the exponentiation modulo each factor of N and then
obtain N using the Chinese Remainder Theorem.

2.1 Multifactor RSA

There exists variants of RSA scheme which exploit a modulus with more than
2 factors to achieve a faster decryption algorithm. This variants are sometimes
called Multifactor RSA [6], or Multiprime RSA [8,10]. The first proposal exploit-
ing a modulus of the form N = p1p2p3 has been patented by Compaq [9,10] in
1997. About at the same time Takagi [30] proposed an even faster solution using
the modulus N = prq, for which the exponentiation modulo pr is computed
using the Hensel lifting method [11, p. 137]. Later, this solution has been gener-
alized to the modulus N = prqs [28]. According to [10], the appropriate number
of primes to be chosen in order to resist state-of-the-art factorization algorithms
depends from the modulus size, and, precisely, it can be: up to 3 primes for 1024,
1536, 2048, 2560, 3072, and 3584 bit modulus, up to 4 for 4096, and up to 5 for
8192.

2.2 RSA-like Schemes

Another solution which allows to obtain even faster decryption is to use RSA-like
schemes based on isomorphism as [3,16,17,26]. As an additional property, these
schemes owns better security properties with respect to RSA, avoiding small
exponent attacks to either d [31] or e [12,13], and vulnerabilities which appear
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when switching from one-to-one communication scenario to broadcast scenario
(e.g., see [14]). The aforementioned schemes are based on isomorphism between
two groups, one of which is the set of points over a curve, usually a cubic or a
conic. A complete overview on RSA-like schemes based on conics can be found
in [3]. In general, schemes based on cubic curves have a computationally more
expensive addition operation compared to schemes based on conic equations.

2.3 Generalizing RSA-like Scheme with Multifactor Modulus

As done when generalizing from RSA to Multiprime RSA, in [7] a generalization
of [16,17] has been proposed, thus generalizing a RSA-like scheme based on
elliptic curves and a modulus N = pq to a similar scheme based on the generic
modulus N = prqs.

In this paper we present a similar generalization of the scheme [3], which
is based on the Pell’s equation, to the modulus N = pe1

1 · . . . · per
r for r > 2,

obtaining the fastest decryption of all schemes discussed in this section.

3 Product of Points over the Pell Hyperbola

In [3], we introduced a novel RSA–like scheme based on an isomorphism between
certain conics (whose the Pell hyperbola is a special case) and a set of parameters
equipped with a non–standard product. In Sect. 4, we generalize this scheme
considering a prime power modulus N = pe1

1 · · · per
r . In this section, we recall

some definitions and properties given in [3] in order to improve the readability
of the paper. Then, we study properties of the involved products and sets in Zpr

and ZN .

3.1 A Group Structure over the Pell Hyperbola over a Field

Let K be a field and x2 − D an irreducible polynomial over K[x]. Considering
the quotient field A[x] = K[x]/(x2 − D), the induced product over A[x] is

(p + qx)(r + sx) = (pr + qsD) + (qr + ps)x.

The group of unitary elements of A∗[x] = A[x] − {0A[x]}1 is {p + qx ∈ A
∗[x] :

p2−Dq2 = 1}. Thus, we can introduce the commutative group (HD,K,⊗), where

HD,K = {(x, y) ∈ K × K : x2 − Dy2 = 1}
and

(x, y) ⊗ (w, z) = (xw + yzD, yw + xz), ∀(x, y), (w, z) ∈ HD,K. (1)

It is worth noting that (1, 0) is the identity and the inverse of an element (x, y)
is (x,−y).

Remark 1. When K = R, the conic HD,K, for D a non–square integer, is called
the Pell hyperbola since it contains all the solutions of the Pell equation and ⊗
is the classical Brahamagupta product, see, e.g., [15].
1 The element 0A[x] is the zero polynomial.
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3.2 A Parametrization of the Pell Hyperbola

From now on let A = A[x].
Starting from A

∗, we can derive a parametrization for HD,K. In particular,
let us consider the group A

∗/K∗, whose elements are the equivalence classes of
A

∗ and can be written as

{[a + x] : a ∈ K} ∪ {[1K∗ ]}.

The induced product over A
∗/K∗ is given by

[a + x][b + x] = [ab + ax + bx + x2] = [D + ab + (a + b)x]

and, if a + b �= 0, we have

[a + x][b + x] = [
D + ab

a + b
+ x]

else
[a + x][b + x] = [D + ab] = [1K∗ ].

This construction allows us to define the set of parameters PK = K ∪ {α},
with α not in K, equipped with the following product:

⎧
⎨

⎩

a � b =
D + ab

a + b
, a + b �= 0

a � b = α, a + b = 0
. (2)

We have that (PK,�) is a commutative group with identity α and the inverse
of an element a is the element b such that a+ b = 0. Now, consider the following
parametrization for the conic HD,K:

y =
1
m

(x + 1) .

It can be proved that the following isomorphism between (HD,K,⊗) and (PK,�)
holds:

ΦD :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HD,K → PK

(x, y) 	→ 1 + x

y
∀(x, y) ∈ HD,K, y �= 0

(1, 0) 	→ α

(−1, 0) 	→ 0 ,

(3)

and

Φ−1
D :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PK → HD,K

m 	→
(

m2 + D

m2 − D
,

2m

m2 − D

)

∀m ∈ K

α 	→ (1, 0) ,

, (4)

see [1] and [3].
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Proposition 1. When K = Zp, p prime, (PK,�) and (HD,K,⊗) are cyclic
groups of order p + 1 and

m�(p+2) = m (mod p), ∀m ∈ PZp

or, equivalently

(x, y)⊗(p+2) = (x, y) (mod p), ∀(x, y) ∈ HD,Zp
,

where powers are performed using products � and ⊗, respectively. See [3].

The powers in PK can be efficiently computed by means of the Rédei rational
functions [27], which are classical functions in number theory. They are defined
by considering the development of

(z +
√

D)n = An(D, z) + Bn(D, z)
√

D,

for z integer and D non–square positive integer. The polynomials An(D, z) and
Bn(D, z) defined by the previous expansion are called Rédei polynomials and
can be evaluated by

Mn =
(

An(D, z) DBn(D, z)
Bn(D, z) An(D, z)

)

where

M =
(

z D
1 z

)

.

From this property, it follows that the Rédei polynomials are linear recurrent
sequences with characteristic polynomial t2 −2zt+(z2 −D). The Rédei rational
functions are defined by

Qn(D, z) =
An(D, z)
Bn(D, z)

, ∀n ≥ 1.

Proposition 2. Let m�n be the n–th power of m ∈ PK with respect to �, then

m�n = Qn(D,m).

See [2].

Remark 2. The Rédei rational functions can be evaluated by means of an algo-
rithm of complexity O(log2(n)) with respect to addition, subtraction and mul-
tiplication over rings [24].

3.3 Properties of the Pell Hyperbola over a Ring

In this section, we study the case K = Zpr that we will exploit in the next
section for the construction of a cryptographic scheme. In what follows, we will
omit from HD,K the dependence on D when it will be clear from the context.

First, we need to determine the order of HZpr
in order to have a result similar

to Proposition 1 also in this situation.
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Theorem 1. The order of the cyclic group HZpr
is pr−1(p + 1), i.e., the Pell

equation x2 − Dy2 = 1 has pr−1(p + 1) solutions in Zpr for D ∈ Z
∗
pr quadratic

non–residue in Zp.

Proof. Since, by Proposition 1, the Pell equation in Zp has p + 1 solutions, then
we need to prove the following

1. any solution of the Pell equation in Zp, generates pr−1 solutions of the same
equation in Zpr ;

2. all the solutions of the Pell equation in Zpr are generated as in the previous
step.

(1) Let (x0, y0) be a solution of x2 − Dy2 ≡ 1 (mod p). We want to prove that
for any integer 0 ≤ k < pr−1, there exists one and only one integer h such
that (x0 + kp, y0 + hp) is solution of x2 − Dy2 ≡ 1 (mod pr).
Indeed, we have

(x0 + kp)2 − D(y0 + hp)2 = 1 + vp + 2x0kp + k2p2 − 2Dy0hp − Dh2p2,

since x2
0 − Dy2

0 = 1 + vp for a certain integer v. Thus, we have that (x0 +
kp, y0 + hp) is solution of x2 − Dy2 ≡ 1 (mod pr) if and only if

Dph2 + 2Dy0h − v − 2x0k − k2p ≡ 0 (mod pr−1).

Hence, we have to prove that there is one and only one integer h that satisfies
the above identity. The above equation can be solved in h by completing the
square and reduced to

(2Dph + 2Dy0)2 ≡ s (mod pr−1), (5)

where s = (2Dy0)2 + 4(v + 2x0k + k2p)Dp. Let us prove that s is a quadratic
residue in Zpr−1 . Indeed,

s = 4D((x0 + kp)2 − 1)

and surely the Jacobi symbol

(
s

pr−1

)

=

(
s

p

)r−1

= 1 if r is odd. If r is even

we have that
(

s

pr−1

)

=

(
4

pr−1

) (
D

pr−1

) (
(x0 + kp)2 − 1

pr−1

)

= 1

since

(
4

pr−1

)

= 1,

(
D

pr−1

)

=

(
D

p

)r−1

= −1 by hypothesis on D,
(

(x0 + kp)2 − 1
pr−1

)

= −1, since (x0 + kp)2 − 1 ≡ Dy2
0 (mod p). Now, let ±t

be the square roots of s. It is easy to note that

t ≡ 2Dy0 (mod p), −t ≡ −2Dy0 (mod p)
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or
−t ≡ 2Dy0 (mod p), t ≡ −2Dy0 (mod p).

Let us call t̄ the only one between t and −t that is equal to 2Dy0 in Zp.
Hence, Eq. (5) is equivalent to the linear equation

ph ≡ (t̄ − 2Dy0)(2D)−1 (mod pr−1),

which has one and only one solution, since t̄ − 2Dy0 ≡ 0 (mod p). Note that,
if t̄ is not equal to 2Dy0 in Zp the above equation has no solutions. Thus,
we have proved that any solution of the Pell equation in Zp generates pr−1

solutions of the Pell equation in Zpr .
(2) Now, we prove that all the solutions of the Pell equation in Zpr are generated

as in step 1.
Let (x̄, ȳ) be a solution of x2 − Dy2 ≡ 1 (mod pr), i.e., x̄2 − Dȳ2 = 1 + wpr,
for a certain integer w. Then x0 = x̄ − kp and y0 = ȳ − hp, for h, k integers,
are solutions of x2 − Dy2 ≡ 1 (mod p). Indeed,

(x̄ − kp)2 − D(ȳ − hp)2 = 1 + wpr − 2x̄kp + k2p2 + 2Dȳhp − Dh2p2 .

As a consequence of the previous theorem, an analogous of the Euler theorem
holds for the product ⊗.

Theorem 2. Let p, q be prime numbers and N = prqs, then for all (x, y) ∈ HZN

we have
(x, y)⊗pr−1(p+1)qs−1(s+1) ≡ (1, 0) (mod N)

for D ∈ Z
∗
N quadratic non–residue in Zp and Zq.

Proof. By Theorem 1, we know that

(x, y)⊗pr−1(p+1) ≡ (1, 0) (mod pr)

and
(x, y)⊗qs−1(s+1) ≡ (1, 0) (mod qs).

Thus, said (a, b) = (x, y)⊗pr−1(p+1)qs−1(s+1), we have

(a, b) ≡ (1, 0) (mod pr),

i.e., a = 1 + kpr and b = hpr for some integers h, k. On the other hand, we have

(a, b) ≡ (1, 0) (mod qs) ⇔ (1 + kpr, hpr) ≡ (1, 0) (mod qs).

We can observe that 1 + kpr ≡ 1 (mod qs) if and only if k = k′qs for a certain
integer k′. Similarly, it must be h = h′qs, for an integer h′. Hence, we have that
(a, b) = (1 + k′prqs, h′prqs) ≡ (1, 0) (mod N).
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Corollary 1. Let p1, ..., pr be primes and N = pe1
1 · . . . ·per

r , then for all (x, y) ∈
HZN

we have
(x, y)⊗Ψ(N) = (1, 0) (mod N),

where
Ψ(N) = pe1−1

1 (p1 + 1) · . . . · per−1
r (pr + 1),

for D ∈ Z
∗
N quadratic non–residue in Zpi

, for i = 1, ..., r.

Now, we can observe that when we work on ZN , the map ΦD is not an
isomorphism. Indeed, the orders of HD,ZN

and PZN
do not coincide. However,

it is still a morphism and we also have |Z∗
N | = |H∗

ZN
|, because of the following

proposition.

Proposition 3. With the above notation, we have that

1. ∀(x1, y1), (x2, y2) ∈ H∗
ZN

, ΦD(x1, y1) = ΦD(x2, y2) ⇔ (x1, y1) = (x2, y2);
2. ∀m1,m2 ∈ Z

∗
N , Φ−1

D (m1) = Φ−1
D (m2) ⇔ m1 = m2;

3. ∀m ∈ Z
∗
N , we have Φ−1(m) ∈ H∗

ZN
and ∀(x, y) ∈ H∗

ZN
, we have ΦD(x, y) ∈

Z
∗
N .

See [3].

As a consequence, we have an analogous of the Euler theorem also for the
product �, i.e., for all m ∈ Z

∗
N the following holds

m�Ψ(N) = α (mod N) ,

where � is the special product in PZN
defined in Eq. 2.

4 The Cryptographic Scheme

In this section, we describe our public–key cryptosystem based on the properties
studied in the previous section.

4.1 Key Generation

The key generation is performed by the following steps:

– choose r prime numbers p1, . . . , pr, r odd integers e1, . . . , er and compute
N =

∏r
i=1 pei

i ;
– choose an integer e such that gcd(e, lcm

∏r
i=1 pei−1

i (pi + 1)) = 1;
– evaluate d = e−1 (mod lcm

∏r
i=1 pei−1

i (pi + 1)).

The public or encryption key is given by (N, e) and the secret or decryption key
is given by (p1, . . . , pr, d).
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4.2 Encryption

We can encrypt pair of messages (Mx,My) ∈ Z
∗
N ×Z

∗
N , such that

(
M2

x − 1
N

)

=

−1. This condition will ensure that we can perform all the operations. The
encryption of the messages is performed by the following steps:

– compute D =
M2

x − 1
M2

y

(mod N), so that (Mx,My) ∈ H∗
D,ZN

;

– compute M = Φ(Mx,My) =
Mx + 1

My
(mod N);

– compute the ciphertext C = M�e (mod N) = Qe(D,M) (mod N)

Notice that not only C, but the pair (C,D) must be sent through the insecure
channel.

4.3 Decryption

The decryption is performed by the following steps:

– compute C�d (mod N) = Qd(D,C) (mod N) = M ;

– compute Φ−1(M) =

(
M2 + D

M2 − D
,

2M

M2 − D

)

(mod N) for retrieving the mes-

sages (Mx,My).

5 Security of the Encryption Scheme

The proposed scheme can be attacked by solving one of the following problems:

1. factorizing the modulus N = pe1
1 · . . . · per

r ;
2. computing Ψ(N) = pe1−1

1 (p1 +1) · . . . ·per−1
r (pr +1), or finding the number of

solutions of the equation x2 − Dy2 ≡ 1 mod N , i.e. the curve order, which
divides Ψ(N);

3. computing Discrete Logarithm problem either in (H∗
ZN

,⊗) or in (P∗
ZN

,�);
4. finding the unknown d in the equation ed ≡ 1 mod Ψ(N);
5. finding an impossible group operation in PZN

;
6. computing Mx,My from D.

5.1 Factorizing N or Computing the Curve Order

It is well known that the problem of factorizing N = pe1
1 · . . . · per

r is equivalent
to that of computing the Euler totient function φ(N) = pe1−1

1 (p1 − 1) · . . . ·
per−1

r (pr − 1), e.g. see [23] or [29, Section 10.4].
In our case we need to show the following
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Proposition 4. The problem of factorizing N is equivalent to the problem of
computing Ψ(N) = pe1−1

1 (p1 + 1) · . . . · per−1
r (pr + 1) or the order of the group

P∗
ZN

(or equivalently of H∗
ZN

), which is a divisor of Ψ(N).

Proof. Clearly, knowing the factorization of N yields Ψ(N). Conversely, sup-
pose N and Ψ(N) are known. A factorization of N can be found by applying
Algorithm 1 recursively.

Remark 3. Algorithm 1 is an adaptation of the general algorithm in [29,
Section 10.4], used to factorize N by only knowing φ(N) (Euler totient func-
tion) and N itself. The main idea of the Algorithm1 comes from the fact that
x�Ψ(N) = 1 (mod N) for all x ∈ Z

∗
N , which is the analog of the Euler theorem

in PZN
. Notice that, because of Step 7, Algorithm 1 is a probabilistic algorithm.

Thus, to find a non-trivial factor, it might be necessary to run the algorithm
more than once. We expect that a deeper analysis of the algorithm will lead
to a similar probabilistic behaviour than the algorithm in [29], which returns a
non-trivial factor with probability 1/2.

Algorithm 1. Find a factor of N by knowing N and Ψ(N)
1: function Find factor(N ,Ψ(N))
2: h = 0
3: t = Ψ(N)
4: while IsEven(t) do
5: h = h + 1
6: t = t / 2

7: a = Random(N − 1)
8: d = gcd(a, N)
9: if d �= 1 then

10: return d
11: b = a�t mod N
12: for j = 0, . . . , h − 1 do
13: d = gcd(b + 1, N)
14: if d �= 1 or d �= N then
15: return d
16: b = b2 mod N
17: return 0

Since we proved that the problems 1 and 2 are equivalent, we can only focus
on the factorization problem.

According to [10], state-of-the-art factorization methods as the Elliptic Curve
Method [18] or the Number Field Sieve [4,19] are not effective if in the following
practical cases

– |N | = 1024, 1536, 2048, 2560, 3072, 3584 and N = pe1
1 pe2

2 pe3
3 with e1+e2+e3 ≤

3 and pi, i = 1, 2, 3 greater than approximately the size of 3
√

N .
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– |N | = 4096 and N = pe1
1 pe2

2 pe3
3 pe4

4 with e1+e2+e3+e4 ≤ 4 and pi, i = 1, . . . , 4
greater than approximately the size of 4

√
N .

– |N | = 8192 and N = pe1
1 pe2

2 pe3
3 pe4

4 pe5
5 with e1 + e2 + e3 + e4 + e5 ≤ 5 and

pi, i = 1, . . . , 5 greater than approximately the size of 5
√

N .

Notice that currently, the largest prime factor found by the Elliptic Curve
Method is a 274 bit digit integer [32]. Note also that the Lattice Factoring
Method (LFM) of Boneh, Durfee, and Howgrave-Graham [5] is designed to fac-
tor integers of the form N = puq only for large u.

5.2 Computing the Discrete Logarithm

Solving the discrete logarithm problem in a conic curve can be reduced to the
discrete logarithm problem in the underlying finite field [22]. In our case the
curve is defined over the ring ZN . Solving the DLP over ZN without knowing
the factorization of N is as hard as solving the DLP over a prime finite field of
approximately the same size. As for the factorization problem, the best known
algorithm to solve DLP on a prime finite field is the Number Field Sieve. When
the size of N is greater than 1024 then the NFS can not be effective.

5.3 Solving the Private Key Equation

In the case of RSA, small exponent attacks [12,13,31] can be performed to
find the unknown d in the equation ed ≡ 1 mod Ψ(N). Generalization of these
attacks can be performed on RSA variants where the modulus is of the form
N = pe1

1 pe2
2 [20]. It has already been argued in [3,16] and [16] that this kind of

attacks fails when the trapdoor function is not a simple monomial power as in
RSA, as it is in the proposed scheme.

5.4 Finding an Impossible Group Operation

In the case of elliptic curves over ZN , as in the generalized KMOV cryptosystem
[7], it could happen that an impossible addition between two curve points occurs,
yielding the factorization of N . This is due to the fact that the addition formula
requires to perform an inversion in the underlying ring ZN . However, as shown
by the same authors of [7], the occurrence of an impossible addition is very
unlikely for N with few and large prime factors.

In our case an impossible group operation may occur if a+ b is not invertible
in ZN , i.e. if gcd(a + b,N) �= 1, yielding in fact a factor of N . However, also in
our case, if N contains a few large prime factors, impossible group operations
occur with negligible probability, as shown by the following proposition.

Proposition 5. The probability to find an invertible element in PZN
is approx-

imately

1 −
(

1 − 1
p1

)

· . . . ·
(

1 − 1
pr

)
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Proof. The probability to find an invertible element in PZN
is given by dividing

the number of non-invertible elements in PZN
by the total number of elements

of this set, as follows:

|PZN
| − #{invertible elements in PZN

}
|PZN

| (6)

=
|ZN | + 1 − (#{invertible elements in ZN} + 1)

|ZN | + 1
(7)

=
N − φ(N)

N + 1
(8)

∼1 −
(

1 − 1
p1

)

· . . . ·
(

1 − 1
pr

)

(9)

where we used N ∼ N + 1 and φ(N) = N
(
1 − 1

p1

)
· . . . ·

(
1 − 1

pr

)
.

This probability tends to zero for large prime factors.
Let us notice that, in the Pell curve case, it is possible to avoid such sit-

uation, by performing encryption and decryption in H∗
ZN

, without exploiting
the isomorphism operation. Here the group operation ⊗ is defined between two
points on the Pell curve, as in Eq. 1, and does not contain the inverse operation.
In the resulting scheme the ciphertext is obtained as (Cx, Cy) = (Mx,My)⊗e,
where the operation ⊗ depends on D. Thus the triple (Cx, Cy,D) must be trans-
mitted, resulting in a non-compressed ciphertext.

5.5 Recovering the Message from D

To recover the message pair (Mx,My) from D = M2
x−1

M2
y

(mod N), the attacker

must solve the quadratic congruence M2
x − DM2

y − 1 = 0 (mod N) with respect
to the two unknowns Mx and My. Even if one of the two coordinates is known
(partially known plaintext attack), it is well known that computing square roots
modulo a composite integer N , when the square root exists, is equivalent to
factoring N itself.

5.6 Further Comments

As a conclusion to this section, we only mention that as shown in [3], RSA-
like schemes based on isomorphism own the following properties: they are more
secure than RSA in the broadcast scenario, they can be transformed to semanti-
cally secure schemes using standard techniques which introduce randomness in
the process of generating the ciphertext.

6 Efficiency of the Encryption Scheme

Recall that our scheme encrypts and decrypts messages of size 2 log N . To
decrypt a ciphertext of size 2 log N using CRT, standard RSA requires four full
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exponentiation modulo N/2-bit primes. Basic algorithms to compute xd mod p
requires O(log d log2 p), which is equal to O(log3 p) if d ∼ p.
Using CRT, if N = pe1

1 · . . . · per
r , our scheme requires at most r exponentiation

modulo N/r-bit primes.
This means that the final speed up of our scheme with respect to RSA is

4 · (N/2)3

r · (N/r)3
= r2/2 (10)

When r = 2 our scheme is two times faster than RSA, as it has already been
shown in [3]. If r = 3 our scheme is 4.5 time faster, with r = 4 is 8 times faster,
and with r = 5 is 12.5 times faster.

7 Conclusions

We generalized an RSA-like scheme based on the Pell hyperbola from a modulus
that was a product of two primes to a generic modulus. We showed that this gen-
eralization leads to a very fast decryption step, up to 12 times faster than original
RSA for the security level of a modulus of 8192 bits. The scheme preserves all
security properties of RSA-like schemes, which are in general more secure than
RSA, especially in a broadcast scenario. Compared to similar schemes based on
elliptic curves it is more efficient. We also pointed that a variation of the scheme
with non-compressed ciphertext does not suffer of impossible group operation
attacks.
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Rédei rational functions over conics. Finite Fields Appl. 39, 179–194 (2016)

4. Bernstein, D.J., Lenstra, A.K.: A general number field sieve implementation. In:
Lenstra, A.K., Lenstra, H.W. (eds.) The development of the number field sieve.
LNM, vol. 1554, pp. 103–126. Springer, Heidelberg (1993). https://doi.org/10.
1007/BFb0091541

5. Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring N = prq for large r.
Crypto 1666, 326–337 (1999)

6. Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)
7. Boudabra, M., Nitaj, A.: A new generalization of the KMOV cryptosystem. J.

Appl. Math. Comput. 57, 1–17 (2017)
8. Ciet, M., Koeune, F., Laguillaumie, F., Quisquater, J.: Short private exponent

attacks on fast variants of RSA. UCL Crypto Group Technical Report Series CG-
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27. Rédei, L.: Über eindeutig umkehrbare polynome in endlichen körpern redei. Acta
Sci. Math. 11, 85–92 (1946)

28. Lim, S., Kim, S., Yie, I., Lee, H.: A generalized takagi-cryptosystem with a modulus
of the form prqs. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS,
vol. 1977, pp. 283–294. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44495-5 25

29. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, Cambridge (2009)

ftp://15.217.49.193/pub/solutions/CompaqMultiPrimeWP.pdf
https://doi.org/10.1007/3-540-68339-9_1
https://doi.org/10.1007/3-540-39799-X_29
https://doi.org/10.1007/978-0-387-84923-2
https://doi.org/10.1007/3-540-49264-X_27
https://doi.org/10.1007/3-540-49264-X_27
https://doi.org/10.1007/3-540-46766-1_20
https://doi.org/10.1007/3-540-46766-1_20
https://doi.org/10.1007/BFb0091537
https://doi.org/10.1007/BFb0091537
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/3-540-44495-5_25
https://doi.org/10.1007/3-540-44495-5_25


Multi-factor RSA-like Scheme over Pell Hyperbola with Fast Decsryption 357

30. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055738

31. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. The-
ory 36(3), 553–558 (1990)

32. Zimmermann, S.: 50 largest factors found by ECM. https://members.loria.fr/
PZimmermann/records/top50.html. Accessed 2017

https://doi.org/10.1007/BFb0055738
https://members.loria.fr/PZimmermann/records/top50.html
https://members.loria.fr/PZimmermann/records/top50.html

	A Multi-factor RSA-like Scheme with Fast Decryption Based on Rédei Rational Functions over the Pell Hyperbola
	1 Introduction
	2 Related Work
	2.1 Multifactor RSA
	2.2 RSA-like Schemes
	2.3 Generalizing RSA-like Scheme with Multifactor Modulus

	3 Product of Points over the Pell Hyperbola
	3.1 A Group Structure over the Pell Hyperbola over a Field
	3.2 A Parametrization of the Pell Hyperbola
	3.3 Properties of the Pell Hyperbola over a Ring

	4 The Cryptographic Scheme
	4.1 Key Generation
	4.2 Encryption
	4.3 Decryption

	5 Security of the Encryption Scheme
	5.1 Factorizing N or Computing the Curve Order
	5.2 Computing the Discrete Logarithm
	5.3 Solving the Private Key Equation
	5.4 Finding an Impossible Group Operation
	5.5 Recovering the Message from D
	5.6 Further Comments

	6 Efficiency of the Encryption Scheme
	7 Conclusions
	References




