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Abstract. Colloid facilitated solute transport through porous media is
investigated. Sorption on the matrix is modelled by the linear equilib-
rium isotherm whereas sorption on colloidal sites is regulated by non-
linearly equilibrium vs nonequilibrium. A travelling wave-type solution
is obtained to describe the evolution in both the liquid and colloidal
concentration.
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1 Introduction

Aquifers’ contamination and adverse effects on the environment have become
a matter of considerable concern. Hence, it would be desirable having a pre-
dicting model to asses the effects of such a contamination risk [13]. A large
number of mathematical models have been developed in the past [11,12,15].
Current models often emphasize either physical or chemical aspects of trans-
port [2,8]. However, a general approach relies upon multicomponent transport
modelling, and it has been only recently formulated in [6]. In this case, both
adsorption and complexation in solution were taken into account along with
precipitation/dissolution phenomena. In particular, being concerned with com-
plex chemistry, such a model comes with non linear transport equations. The
main interest related to the solution for such a system of PDEs is that it allows
one to analyze the sensitivity of mass transport to the variation of different
parameters. Unfortunately, generally analytical (closed form) solutions are not
achievable, and concurrently one has to resort with numerical approximation.
However, such a stand point may arise two serious issues. One is about the
discretization in order to suppress instability and numerical dispersion [9]. The
other is that in some situations (typically at the very beginning of the transport
process) very steep concentration(s) gradients may develop. To accurately mon-
itor these gradients, very fine discretizations may be necessary: an undesirable
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situation in view of computational times [4]. Alternatively, one can introduce a
few approximations which enable one to gain analytical solution. In particular,
in the present paper a travelling wave solution is derived for the case of colloid
facilitaed mass transport with nonlinear sorption/desorption.

2 The Transport Model

We consider steady flow with constant velocity U in a one dimensional porous
medium that carries simultaneously solute and colloidal particles. In such a
system the mass flux vectors for the colloids and solute are

Jc (z, t) = nCc (z, t) Uc (z, t) , J (z, t) = nC (z, t) U (z, t) − D
∂C (z, t)

∂z
(1)

respectively, where Cc and C are the concentrations (per unit volume of fluid) of
colloidal and solute particles, D is the pore scale dispersion and n the porosity.
Generally, advection colloidal velocity Uc is larger than U , due to “exclusion
phenomena”. We model this ‘exclusion’ process by assuming that Uc depends
linearly upon U through a constant coefficient Re ≥ 1, i.e. Uc = ReU . Colloidal
generation/removal is quantified by the mass balance equation for colloidal par-
ticles. However, in the context of the present paper we neglect both generation
and removal, such that one can assume that the concentration Cc of colloidal par-
ticles is uniform. The applicability of such an assumption is throughly discussed
in [5].

Let S denote the solute concentration on colloids, defined per unit colloidal
concentration; the actual solute concentration Cs

c on colloidal particles is SCc.
Furthermore, we denote with N the solute concentration (mass of sorbed solute
per unit bulk volume) sorbed on the porous matrix. Thus, the total solute con-
centration writes as Ct = n (C + Cs

c ) + N , and concurrently the (solute) mass
balance equation is

∂

∂t
[n (C + Cs

c ) + N ] +
∂

∂z
(Jc + J) = 0. (2)

Substitution of (1) into (2) leads to the reaction diffusion equation

∂C

∂t
+

∂Cs
c

∂t
+ U

∂

∂z
(ReC

s
c + C) = − 1

n

∂N

∂t
+ D

∂2C

∂z2

(
D =

D

n

)
(3)

where, for simplicity, we have regarded n and D as constant. Generally, both
Cs

c and N depend upon C in a very complex fashion, however we shall assume
that sorption on the porous medium is governed only by the linear equilibrium
model, i.e. N = nKd C (Kd is the linear partitioning coefficient between the fluid
and sorbed phase), and we mainly focus on the effect of mass exchange between
the fluid and colloidal solute concentration. For this reason, we consider a quite
general dependence of Cs

c upon C accounting for a nonlinear mass exchange, i.e.
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∂

∂t
Cs

c = L [ϕ (C) − Cs
c ] , (4)

being L a given rate transfer coefficient. We assume that solute is continuously
injected at z = 0:

C (0, t) = C0, (5)

whit zero initial C-concentration. The nonlinear reaction function ϕ describes
the equilibrium between the two phases, and its most used expressions are those
of Langmuir and Freudlich [8]. When kinetics is fast enough, i.e. L � 1, the
left hand side of (4) may be neglected, up to a transitional boundary layer [10],
therefore leading to a non linear equilibrium sorption process.

3 Travelling Wave Solution

Overall, the system of Eqs. (3)–(4) can not be solved analytically. To obtain a
simple solution (which nevertheless keeps the main physical insights), we consider
a travelling wave type solution. Specifically, we assume that a travelling wave
solution, that generally occurs after a large time. This allows one to assume that
C at the inlet boundary is approximately equal to the feed concentration C0, so
that the initial/boundary conditions may be approximate as follows

C(z, t) �
{

C0 for z = −∞
0 for z = +∞,

(6)

for any t ≥ 0. We introduce the moving coordinate system η = z − αt, where α
represents the constant speed of the travelling wave (that will be determined later
on). We assume that each concentration, both in the liquid and in the colloidal
phase, moves with the same velocity α, which authorizes to write C (z, t) = C (η)
and Cs

c (z, t) = Cs
c (η). Of course this approximation works better and better as

the time increases. With these assumptions, the system (3)–(4) is reduced to
an ODE-problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−α
d
dη

(RC + Cs
c ) + U

d
dη

(C + Cs
c ) = 0

−α
d
dη

Cs
c = L [ϕ (C) − Cs

c ]

(7)

with boundary conditions given by

C (−∞) = C0, C (+∞) = 0 (8)
Cs

c (−∞) = ϕ0, Cs
c (+∞) = ϕ (0) = 0, (9)

where ϕ0 ≡ ϕ (C0). We now identify the wave velocity α by integrating the first
of (7) over η
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− α (RC + Cs
c ) + U (C + Cs

c ) = A = const. (10)

From boundary conditions (8)–(9), one has

A = 0 ⇒ α = U

(
C0 + ϕ0

RC0 + ϕ0

)
. (11)

that inserted in (7) yields, after some algebra, the following boundary value
problem for C:

⎧⎨
⎩

d
dη

C = τ0

[
ϕ0

C0
C − ϕ (C)

]

C (−∞) = C0, C (+∞) = 0,
(12)

with the constant τ0 defined as:

τ0 =
L

α
=

L

U

(
ϕ0 + RC0

ϕ0 + C0

)
. (13)

Solution of (12) is possible if ϕ ≡ ϕ (x) is a “convex” isotherm (i.e. d2ϕ/dx2 <
0). This is always the case for Freundlich/Langmuir type ϕ-function. Moreover,
the presence of the reaction rate L gives smooth concentration profiles that
become steeper and steeper as L increases, in particular for L → ∞ solution
of (12) asymptotically behaves as the one pertaining to the (nonlinear) equi-
librium [8]. For the application to the quantification of the pollution risk, it is
important to quantify the extent of the concentration front Sf . This latter exists
if and only if

∫ ε

0

dx

ϕ (x)
< ∞ for any ε > 0. (14)

The differential equation in (12) is expressed in integral form upon integration
with respect to an arbitrary reference C (ηr) = Cr. The final result is

τ0 (ηr − η) =
∫ Cr

C

dx
ϕ0

C0
x − ϕ (x)

= G (C,Cr) , (15)

being the shape of the G-function depending upon the structure of the reaction
function ϕ. Since the solution (15) is given as function of an arbitrary reference
value Cr ≡ C (ηr), it is important to identify the position ηr pertaining to such a
concentration value. The adopted approach relies on the method of moments [1,
3,7]. In particular, we focus on the zero-order moments [L], i.e.

ηX =
1
C0

∫ +∞

−∞
dη C (η) , ηY =

1
ϕ0

∫ +∞

−∞
dη ϕ (η) . (16)

Before proceeding further, we wish noting here that when the number (say n)
of unknown parameters is greater than 1, one has to sort with moments of
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order 0, 1, . . . , n − 1. The moment ηX can be regarded as the distance along
which C has increased from 0 to C0 (at a fixed time t). A similar physical insight
can be attached to the moment ηY pertaining to the sorbed concentration on
colloidal sites. While integrals (16) are not bounded, their difference it is. Indeed,
integration from η = −∞ to η = +∞ of the ODE in (12) by virtue of (16) leads
to ηY − ηX = C0

τ0 ϕ0
. We can now focus on how to use moments (16) to identify

the reference point ηr. Thus, we integrate (15) from 0 to C0, and division by
C0 results in ηr − ηX = ˜G

τ0 C0
, with G̃ =

∫ C0

0
dxG (x,Cr). Once G̃ has been

computed, the reference position is uniquely fixed.

4 Concluding Remarks

A travelling wave solution for colloid facilitated mass transport through porous
media has been obtained. A linear, reversible kinetic relation has been assumed
to account for mass transfer from/toward colloidal particles. This leads to a
simple BV-problem, that can be solved by means of a standard finite difference
numerical method. The present study is also the fundamental prerequisite to
investigate the dispersion mechanisms of pullatants under under (more complex)
flow configurations along the lines of [14]. Some of them are already part of
ongoing research projects.
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