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Abstract. Segmentation of the 3D human atria from late gadolinium-enhanced
(LGE)-MRIs is crucial for understanding and analyzing the underlying atrial
structures that sustain atrial fibrillation (AF), the most common cardiac
arrhythmia. However, due to the lack of a large labeled dataset, current auto-
mated methods have only been developed for left atrium (LA) segmentation.
Since AF is sustained across both the LA and right atrium (RA), an automatic
bi-atria segmentation method is of high interest. We have therefore created a 3D
LGE-MRI database from AF patients with both LA and RA labels to train a
double, sequentially used convolutional neural network (CNN) for automatic
LA and RA epicardium and endocardium segmentation. To mitigate issues
regarding the severe class imbalance and the complex geometry of the atria, the
first CNN accurately detects the region of interest (ROI) containing the atria and
the second CNN performs targeted regional segmentation of the ROI. The CNN
comprises of a U-Net backbone enhanced with residual blocks, pre-activation
normalization, and a Dice loss to improve accuracy and convergence. The
receptive field of the CNN was increased by using 5 � 5 kernels to capture large
variations in the atrial geometry. Our algorithm segments and reconstructs the
LA and RA within 2 s, achieving a Dice accuracy of 94% and a surface-to-
surface distance error of approximately 1 pixel. To our knowledge, the proposed
approach is the first of its kind, and is currently the most robust automatic bi-
atria segmentation method, creating a solid benchmark for future studies.
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1 Introduction

Atrial fibrillation (AF) is the most common form of cardiac arrhythmia and is asso-
ciated with substantial morbidity and mortality [1]. Current clinical treatments for AF
perform poorly due to a lack of basic understanding of the underlying atrial anatomical
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structure which directly sustains AF in the human atria [2]. In recent years, gadolinium-
based contrast agents are utilized in a third of all MRI scans to improve the clarity of a
patient’s internal structures such as the atria by enhancing the visibility of disease-
associated structures such as fibrosis/scarring, inflammation, tumors, and blood vessels
[3]. Late gadolinium-enhanced MRI (LGE-MRI) is widely used to study fibrosis/
scarring [4], and clinical studies on AF patients using LGE-MRIs have shown that the
extent and distribution of atrial fibrosis can be used to reliably predict ablation success
rates [5]. As a result, direct analysis of the atrial structure in patients with AF is vital to
improving the understanding and patient-specific treatment of AF.

Segmentation of both the left atrial (LA) and right atrial (RA) chambers is a crucial
task for aiding medical management for AF patients based on structural analysis of the
segmented 3D geometry. Due to the rising popularity of convolutional neural networks
(CNN) in the field of medical imaging, many algorithms have been developed utilizing
CNNs, particularly for the segmentation of the LA directly from LGE-MRIs [6]. These
methods have drastically improved on the previous traditional atlas-based or shape-
based approaches [7] in terms of both performance and adaptability due to their fully
data-driven nature. In 2018, numerous CNN methods were submitted to the STACOM
2018 Left Atrial Segmentation Challenge [8] aiming at optimizing LA segmentation
performance from LGE-MRIs. Through the challenge, the U-Net was shown to be the
most widely used and most easily adaptable architecture for the task [9]. In particular,
pipelines with enhancements to the U-Net baseline such as the addition of residual
connections, dilated convolutions, and custom loss functions achieved far superior
segmentation accuracies.

Despite the extensive research in LA segmentation, no established study has been
conducted for the fully automatic segmentation of the RA directly from LGE-MRIs.
A 2017 benchmarking study investigated methods of segmenting the LA, RA, left
ventricle (LV), and right ventricle (RV) from non-contrast MRIs [10]. However,
segmentation from LGE-MRIs compared to non-contrast MRIs is much more chal-
lenging due to the attenuation caused by the contrast agent resulting in a lack of
distinguishable features between the atrial tissue and background. Thus, there is still an
urgent need of an intelligent algorithm capable of automatically segmenting both the
LA and the RA simultaneously from LGE-MRIs.

In this paper, we propose and evaluate a robust approach for fully automatic
segmentation of the atria, particularly the RA, from 3D LGE-MRIs. In order to
effectively learn the complex geometry of the atrial chambers, we designed a double
CNN pipeline for targeted segmentation and reconstruction of the LA and RA without
human intervention. This exciting study is the first of its kind to present a method of
segmenting both atrial chambers simultaneously, and is a very important step towards
more effective and efficient patient specific diagnostics and treatment.
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2 Methods

2.1 Data and Pre-processing

20 3D LGE-MRIs from patients with AF were provided by the University of Utah [4].
The in vivo patient images were acquired at a spatial resolution of 0.625 mm
0.625 mm � 1.25 mm using either a 1.5T Avanto or 3.0T Verio clinical whole-body
scanner. All 3D LGE-MRI scans contained 44 slices along the Z direction, each with an
XY spatial size of 640 � 640 pixels or 576 � 576 pixels. The LA segmentations were
provided by the University of Utah alongside the LGE-MRIs [4]. The RA segmenta-
tions were manually performed by our team based on the protocols used for LA
segmentation to achieve consistency across both atrial chambers (Fig. 1c). Firstly, the
RA endocardium was defined by manually tracing the RA blood pool in each slice of
the LGE-MRI. The tricuspid valve connecting the RA and RV was defined by a 3D
plane to create a smooth linear surface. The RA endocardium was then morphologi-
cally dilated and manually adjusted according to the RA geometry to obtain the
boundary of the epicardium. Next, the septum, the region of tissue connecting the RA
and LA, was manually traced such that the epicardial surfaces of the LA and RA joined
together. Finally, the dilated tricuspid valve was manually removed from the RA
epicardium. Overall, the three labels for the dataset were the background, the endo-
cardium of the RA and LA, and the epicardium of the RA and LA.

Fig. 1. Data acquisition and the protocol for labelling the left atrial (LA) and right atrial
(RA) epicardium (Epi) and endocardium (Endo) from late gadolinium-enhanced magnetic
resonance imaging (LGE-MRI). (A) Clinical MRI scanners were used to acquire LGE-MRIs.
(B) The LGE-MRIs were manually segmented in a slice-by-slice manner by experts to obtain
labels of the LA/RA epicardium and LA/RA endocardium. (C) RA manual annotation based on
the LA annotation protocol provided by University of Utah [4]. AO, aorta; LV, left ventricle; PV,
pulmonary vein; LS/LIPV, left superior/inferior PV; RS/RIPV, right superior/inferior PV.
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The 20 3D LGE-MRI data were randomly split for performing 4-fold cross vali-
dation such that in each fold, 15 data was used for training and 5 data was used for
validation. All data and labels were uniformly center cropped to a size of
576 � 576 � 44 pixels, and mean and standard deviation normalization were per-
formed. Contrast limited adaptive histogram equalization (CLAHE), a type of color
intensity normalization, was also performed on the dataset during pre-processing.

2.2 Convolutional Neural Network Architecture

Our pipeline consisted of two 2D CNNs used in a sequential manner (Fig. 2a). The first
CNN performed coarse segmentation on a down-sampled version of the entire 3D
LGE-MRI (144 � 144 � 44) in a slice-by-slice manner to construct an approximate
segmentation of the atria. The center of mass of the atria was calculated from the coarse
segmentation in each slice of the LGE-MRI, and a 240 � 240 patch was cropped
around this point, leaving out the majority of background pixels which significantly
decreased computational costs. 240 � 240 was chosen it could contain the entire atria
which had a maximum size of 200 � 200 from measurements on the entire dataset.
The second CNN then performed slice-by-slice regional segmentation on the ROIs
cropped from the 3D LGE-MRI. Finally, the individual slice-by-slice segmentations
were stacked together and zero-padded to a size of 576 � 576 � 44 to obtain the final
segmentation.

The same CNN was used for both stages of our pipeline and consisted of an
enhanced U-Net architecture (Fig. 2b). The first half of the CNN was an encoder to
learn dense features from the input through several convolutional layers of increasing
depth. The convolutional layers contained 5 � 5 kernels and a stride of 1, and the
number of feature maps increased from 16 to 256. At every 1–3 convolutional layers,
residual connections were added to improve feature learning and 2 � 2 convolutions
with a stride of 2 were used to progressively down sample the image by a factor of 2.
The second half of the CNN was a decoder to reconstruct the image back to the original
resolution for segmentation through several 5 � 5 convolutional layers of decreasing
depth. The number of feature maps of the convolutions in this part of the network
increased from 128 to 32. The images were progressively up-sampled by a factor of 2
with 2 � 2 deconvolutional, or transpose convolutional, layers with stride of 2.
Residual connections were also added at every 1–3 convolutional layers. In order to
directly preserve high-resolution features from the input, feature forwarding connec-
tions were also used to concatenate the outputs of the convolutional layers in the
encoder part to those in the decoder path at 4 different points along the CNN. Batch
normalization (BN) and parametric rectified linear units (PReLU) were used after every
convolutional layer along the entire CNN for improving convergence, and 50% dropout
was used at every layer for regularization. The final output layer of the CNN contained
a 1 � 1 convolution with a stride of 1, 3 feature maps, and a softmax activation
function to predict for the 3 classes in the data (LA/RA epicardium, LA/RA endo-
cardium, background). All hyper-parameters were selected as a result of extensive
experimentation under controlled settings to derive the optimal parameter
combinations.
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The CNN was trained with the 2D Dice loss function (Eq. 2) to prioritize the
segmentation of the foreground pixels over the background. At each epoch, online
augmentation was used to randomly augment each data with a probability of 50% and
included translation, scaling, rotation and flipping. The adaptive moment estimation
gradient descent optimizer was used with a learning rate of 0.0001 and the exponential
decay rate of 0.9. After training, the CNN with the highest cross-validation accuracy
was selected as the final model. The network was developed in TensorFlow and was
trained on an Nvidia Titan V GPU with 5120 CUDA cores and 12 GB RAM. Training
took 2 h and predictions on each 3D LGE-MRI took 2 s.

2.3 Evaluation

To measure the accuracy of the first CNN in detecting of the center of mass of the atria
when extracting the ROI, the mean squared error (MSE) was defined as

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q

ð1Þ

for the ground truth co-ordinates (x, y) and the predicted coordinates (x′, y′) of the
center of mass in each 2D slice of the 3D LGE-MRIs.

To measure the accuracy of the second CNN for segmentation, the Dice score,
surface-to-surface distance (STSD), sensitivity, and specificity were used. The DICE
score was calculated as

Dice ¼ 2Ntrue positive

2Ntrue positive þNfalse positive þNfalse negative
ð2Þ

for the atrial epicardium and endocardium predictions and ground truths. The STSD
measured the average distance error between the surfaces of the predicted LA volume,
A, and the ground truth, B, and was calculated as

STSD A;Bð Þ ¼ 1
nA þ nB

XnA

p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � B2
p

þ
XnB

p0¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p02 � A2
p

� �

ð3Þ

where nA is the number of pixels in A, nB is the number of pixels in B, and p and p′
describes all points in A and B. The sensitivity and specificity were calculated and
reflected the success for segmenting the foreground and the background respectively.
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3 Results and Discussion

Table 1 summarizes the final evaluation metrics for the best performing CNN used in
our proposed double CNN pipeline. Evaluation shows that the ROI containing the atria
for each slice of could be calculated within 5 mm, or 8 pixels, of the ground truth
through the coarsely segmented atria provided by the first CNN. Individually for each
co-ordinate, the CNN had an error of 2.3 mm, or approximately 3 pixels, in the x axis
and an error of 3.8 mm, or approximately 6 pixels, in the y axis. The second CNN was
evaluated on the entire final 3D segmentations produced for each test data. The LA and
RA endocardium were segmented with a Dice score of 92.9% and a STSD of 0.63 mm.
The LA and RA epicardium were segmented with a Dice score 94.0% and a STSD of
0.68 mm. Overall, the STSD showed that the predictions were approximately within 1
pixel of the ground on average for both the endocardium and epicardium.

3D visualization of the ground truth and the predictions for the test set in one cross-
validation fold shows that the proposed CNN pipeline successfully captured the overall

Fig. 2. The proposed double 2D convolutional neural network (CNN) pipeline for fully
automatic segmentation of the left atrium (LA) and right atrium (RA) from late gadolinium-
enhanced magnetic resonance imaging (LGE-MRI). (A) Overall workflow in which the first
CNN detected the region of interest (ROI) containing the LA/RA and the second CNN performed
regional segmentation of the ROI. (B) The architecture of the proposed 2D CNN. BN, batch
normalization; PReLU, parametric rectified linear unit.
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geometry of the LA and RA endocardium with a high degree of precision (Fig. 3). 3D
visualization of the STSD errors of the predictions shows the most erroneous regions to
be the LA pulmonary veins which some parts containing an error of up to 10 mm from
the ground truth. However, minimal error can be seen on the RA in general, showing
that the RA may potentially be easier to segment considering there are no complex and
small structures such as the pulmonary veins present. Visualizations of the LA and RA
epicardium were not shown, however, had comparable accuracies as the endocardium
as seen from the higher Dice score and similar STSD.

To further analyze the regions of the predictions containing the most errors, 2D
slice-by-slice visualizations and comparisons were performed for each test LGE-MRI.
Figure 4 illustrates the segmentation results for the LA and RA endocardium and
epicardium by our proposed pipeline compared with the ground truth for selective
slices at the same depth for a test 3D LGE-MRI. The results shown are representative
of the errors seen in other test LGE-MRIs. The relative depth of each slice from the
bottom of the LGE-MRI scan is provided in millimeters. At the bottom slices of the
LGE-MRIs (12–18 mm), it can be seen that the network was not able to reproduce the
linear plane used to define the tricuspid valve, but instead, produced a more rounded
prediction at this region, potentially due to the fact that there is no anatomically visible
border between the RA and the RV. The segmentation at the middle slices (18–31 mm)
successfully captured the geometry of the RA and LA in detail, while also showing a
clear gap between the epicardium and endocardium which denotes the atrial walls. At
this region, the main source of error was also at the tricuspid and mitral valve as the
CNNs produced segmentations which were smooth and rounded. The septum, on the
other hand, was precisely captured despite the decreased contrast in this region,
showing the network was able to successfully learn the shape of the epicardium in its
entirety. At the top slices of the LGE-MRIs (31–38 mm), the pulmonary vein regions
were the main sources of error, consistent with previous the 3D error visualizations.
The predictions show that the pulmonary veins predicted by the CNN are smaller and
thinner than that of the ground truth labels, further reflecting the difficulty of seg-
menting this structure. However, the epicardium segmentation is shown to be fairly
consistent and effectively accounts for the gaps in its morphology caused by the pul-
monary veins and valves across all slices of the LGE-MRI, which was also reflected in
the higher Dice score.

Table 1. Overall evaluation results of the proposed double CNN pipeline. The first CNN was
evaluated on the accuracy of the region of interest detected and the second CNN was evaluated
on the accuracy of the final segmentation in 3D.

First CNN Second CNN

Distance (mm) Dice (%) STSD (mm) Sensitivity Specificity
Error in
(x, y)

(2.27 ± 2.78,
3.77 ± 4.67)

LA + RA
Endocardium

92.9 ± 1.4 0.63 ± 0.11 92.9 ± 1.6 99.9 ± 0.01

MSE 4.79 ± 5.09 LA + RA
Epicardium

94.0 ± 1.4 0.68 ± 0.15 93.7 ± 2.0 99.9 ± 0.01

MSE, mean squared error; STSD, surface-to-surface distance; LA/RA, left/right atrium.
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Fig. 3. 3D visualizations of the left atrial (LA) and right atrial (RA) chambers for 3
representative test late gadolinium-enhanced magnetic resonance imaging (LGE-MRI).
(A) Ground truth provided. (B) Predictions segmented by the convolutional neural network
(CNN). (C) Surface-to-surface error of the predictions from the ground truth in millimeters (mm).

Fig. 4. The left atrial (LA) and right atrial (RA) endocardium (orange) and epicardium (blue)
results from the proposed convolutional neural network (CNN) pipeline compared to the ground
truth for representative slices on the same 3D late gadolinium-enhanced magnetic resonance
imaging (LGE-MRI) for a test patient. (A) LGE-MRI scans. (B) Ground truths. (C) Predictions
by the CNN. AO, aorta; LV, left ventricle; RV, right ventricle; LPV, left pulmonary veins; RPV,
right pulmonary veins; TV, tricuspid valve; MV, mitral valve. (Color figure online)
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4 Conclusion

We have developed and evaluated a double convolutional neural network for robust
automatic bi-atria segmentation from LGE-MRIs. Our algorithm enables the recon-
struction of both the LA and RA chambers in 3D with a Dice accuracy of 94% and a
surface-to-surface distance error of approximately 1 pixel from the ground truth. Our
study is the first automated method to segment both atrial chambers, particularly the
RA, creating a solid benchmark for future studies. The exciting findings from this study
may lead to the development of a more accurate and efficient atrial reconstruction and
analysis approach, which can potentially be used for improved clinical diagnosis,
patient stratification, and clinical guidance during treatment for AF patients.
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