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Abstract. Automatic segmentation of the left ventricle (LV) of a liv-
ing human heart in a magnetic resonance (MR) image (2D+t) allows to
measure some clinical significant indices like the regional wall thicknesses
(RWT), cavity dimensions, cavity and myocardium areas, and cardiac
phase. Here, we propose a novel framework made of a sequence of two
fully convolutional networks (FCN). The first is a modified temporal-like
VGG16 (the “localization network”) and is used to localize roughly the
LV (filled-in) epicardium position in each MR volume. The second FCN
is a modified temporal-like VGG16 too, but devoted to segment the LV
myocardium and cavity (the “segmentation network”). We evaluate the
proposed method with 5-fold-cross-validation on the MICCAI 2019 LV
Full Quantification Challenge dataset. For the network used to localize
the epicardium, we obtain an average dice index of 0.8953 on validation
set. For the segmentation network, we obtain an average dice index of
0.8664 on validation set (there, data augmentation is used). The mean
absolute error (MAE) of average cavity and myocardium areas, dimen-
sions, RWT are 114.77mm2; 0.9220mm; 0.9185mm respectively. The
computation time of the pipeline is less than 2 s for an entire 3D vol-
ume. The error rate of phase classification is 7.6364%, which indicates
that the proposed approach has a promising performance to estimate all
these parameters.
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Segmentation · Fully convolutional network

1 Introduction

Left ventricle (LV) full quantification is critical to evaluate cardiac functionality
and diagnose cardiac diseases. Full quantification aims to simultaneously quan-
tify all LV indices, including the two areas of the LV (the area of its cavity and
the area of its myocardium), six RWT’s (along different directions and at differ-
ent positions), three LV dimensions (along different directions), and the cardiac
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phase (diastole or systole) [1,2], as shown in Fig. 1. However, the LV full quan-
tification is challenging: LV samples are variable, not only because the samples
can be obtained from different hospital, but also because some of them are not
concerned by cardiac diseases. It is also challenging because there are complex
correlations between the LV indices. For example, the cavity area has a direct
influence on the three LV dimensions and the cardiac phase. The MICCAI 2019
Challenge on Left Ventricle Full Quantification1 (LVQuan19) is an extension of
the one of 2018 2 with the difference that now the original data is given without
preprocessing for training and testing phases, to be closer to clinical reality.

We propose then in this paper a two-stage temporal-like FCN framework
that segments and estimates the parameters of interest in 2D+t sequences of
the MR image of a LV. First, in each temporal frame, we localize the greatest
connected component detected by the localization network, we dilate it using
a size equal to 10 pixels, and we compute the corresponding bounding box.
This results in a sequence of cropped LV’s (that we will abusively call cropped
volume). Second, we use these cropped volumes to train the LV segmentation
network. The procedure is depicted in Fig. 2. Finally, the segmentation results
are used for the LV full quantification.

The pipeline is based on our previous works [3,4] but with a new step:
we added one localization network before the segmentation network. Compared
with [5], our localization precision is higher, because we localize the entire LV
region (the filled-in epicardium) instead of the center of the bounding box con-
taining the LV structure. Compared with [6], our method is quicker and do not
have memory limit problems. To take advantages of time information, we use
3 successive 2D frames (n − 1, n, n + 1) at time n as inputs in the localization
and in the segmentation networks, yielding to better results than the traditional
approach which used only the information at time n for the nth slice.

We evaluated the proposed method using the dataset provided by LVQuan19
with 5-fold-cross-validation. Experiments with (very) limited training data have
shown that our model has a stable performance. We added pre-processing and
post-processing steps to enhance and refine our results.

Fig. 1. Illustration of LV indices, including (a) the cavity area and the myocardium
area, (b) three LV dimensions, (c) six regional wall thicknesses and (d) the cardiac
phase (diastole or systole).

1 https://lvquan19.github.io.
2 https://lvquan18.github.io.
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Fig. 2. Global overview of the proposed method.

The plan is the following: we detail our methodology in Sect. 2, we detail our
experiments in Sect. 3, and then Sect. 4 concludes.

2 Methodology

2.1 Dataset Description

LV dataset used for this work was provided by the LVQuan19 challenge. It
contains 56 patients processed SAX MR sequences. For each patient, 20 temporal
frames are given and correspond to a whole cardiac cycle. All ground truth
(GT) values of the LV indices are provided for every single frame. The pixel
spacings of the MR images range from 0.6836 mm/pixel to 1.5625 mm/pixel,
with mean values of 1.1809 mm/pixel. LV dataset includes two different image
sizes: 256 × 256 or 512 × 512 pixels.

2.2 Preprocessings

Let us recall what we call Gauss normalization: for the (2D + t)-image I corre-
sponding to a given patient, we compute I := I−μ

σ where μ is the mean of I and
σ its standard deviation (σ is assumed not to be equal to zero). There are then
two different pre-processing steps as depicted in Fig. 2.

– The first pre-processing (see preprocessing1 in Fig. 2) begins with a Gauss
normalization. When we treat training data, we crop the initial slices into a
256 × 256 image to optimize the dice of the network (we do not do this for
test datasets). Then we concatenate them for each n into a 256 × 256 × 3
pseudo-color image where R,G,B correspond respectively to n − 1, n, n + 1
(we do not detail the cases n = 1 and n = 20 because of a lack of space).
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– The second pre-processing (preprocessing2 in Fig. 2) is in four steps: (1) data
augmentation using rotations and flips, (2) resizing with a fixed inter-pixel
spacing (0.65mm), (3) Gauss normalization, and (4) we concatenate into a
pseudo-color image like above.

(a) n− 1 (b) n (c) n+ 1 (d) concatenation

Fig. 3. Illustration of our “temporal-like” procedure. (Color figure online)

Because the VGG-16 network’s input is an RGB image, we propose to take
advantage of the temporal information by stacking 3 successive 2D frames: to
segment the nth slice, we use the nth slice of the MR volume, and its neighboring
(n − 1)th and (n + 1)th slices, as green, red and blue channels, respectively. This
new image, named “temporal-like” image, enhances the area of motions, here
the heart, as shown in Fig. 3.

2.3 Network Architecture

Fig. 4. Architecture of our networks.

The localization and the segmentation networks have the same architecture
(see Fig. 4). First we downloaded the pre-trained original VGG16 [7] network
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architecture. We recall that this network has been pre-trained on millions of
natural images of ImageNet for image classification [8]. Second, we discard its
fully connected layers and this way we keep only the sub-network made of five
convolution-based “stages” (the base network). Each stage is made of two convo-
lutional layers, a ReLU activation function, and a max-pooling layer. Since the
max-pooling layers decrease the resolution of the input image, we obtain a set
of fine to coarse feature maps (with 5 levels of features). Inspired by the work
in [9,10], we added specialized convolutional layers (with a 3 × 3 kernel size)
with K (e.g. K = 16) feature maps after the up-convolutional layers placed at
the end of each stage. The outputs of the specialized layers have then the same
resolution as the input image, and are then concatenated together. We add a
1 × 1 convolutional layer at the output of the concatenation layer to linearly
combine the fine to coarse feature maps. This complete network provides the
final segmentation result.3

2.4 Postprocessing

Let us assume that we input the 20 cropped temporal slices of a patient into
an image of size 20 × width × height (where the crop is due to the localization
procedure) in preprocessing2 to obtain a 20 × width × height × 3 image. We
filter then the ouput of size 20 × width × height by keeping only the greatest
connected component in the segmented (2D + t)-image, and we compute the
inverse interpolation on the x and y axes to get back the initial inter-pixel
spacing. Finally, we add a zero-valued border to get back a 20 × 256 × 256 or a
20 × 512 × 512 image (depending on the shape of the input).

2.5 Evaluation Methods

The LV quantification as defined in LVquan19 relies on 11 parameters: the areas
of the LV cavity and the myocardium, 3 dimensions of the cavity and 6 measure-
ments of the wall thickness. We measure the areas (see Fig. 1 (a)) by computing
the number of pixels in the segmented regions corresponding to the LV cav-
ity and the myocardium. To measure the three cavity dimension values (dim1,
dim2, dim3) (see Fig. 1 (b)), we proceed this way: because our final segmenta-
tion results is the LV myocardium, we first extracted the LV cavity from the
segmentation results. We then compute the boundary of the LV cavity and cal-
culate the distances between the points of the boundary and the centroid of
the LV cavity along the integral angles θ ∈ [−30, 30[ (in degrees). Finally, we
average these distances. We do this for the six separated regions of the wall.
Finally, we compute the mean dimensions for each pair of opposite regions and
we obtain (dim1, dim2, dim3). To measure the RWT’s values, we first find the
boundaries of epicardium and endocardium respectively, and we compute the
distances between the points on the boundary of epicardium and the points on
the boundary of endocardium along the same integral angles as before where

3 Note that we designed our network’s architecture to work with any input shape.
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zero corresponds to the normal. Finally, we compute the mean among 60 dis-
tance values for each region. To classify the phase as systolic or diastolic, we
use a simple method: we detect the time nmax when the cavity is maximal, and
nmin when the cavity is minimal. Assuming that we have the case nmin > nmax,
then for each time n ∈ [nmax, nmin], we label the image as systolic phase, and
otherwise it is a diastolic phase. We do the converse when we have nmax < nmin.

3 Experiments

We implemented our experiments on Keras/TensorFlow using a NVidia Quadro
P6000 GPU. We used the multinomial logistic loss function for a one-of-many
classification task, passing real-valued predictions through a softmax to get a
probability distribution over classes. For the localization network, we used an
Adam optimizer (batchsize=4, β1=0.9, β2=0.999, epsilon=0.001, lr = 0.002) and
we did not use learning rate decay. We trained the network during 10 epochs.
We recall that we used the filled-in epicardium connected component given in
the GT as the “ones” of the output of our network. For the segmentation net-
work, we used the same optimizer and the same parameters but we changed the
batchsize to 1. Also, we considered three different classes4 in the given GT: the
background (0), the myocardum (1), the cavity (2) (we merge then 0 and 2 after
the segmentation). This way, we obtained better results than using only the wall
of the LV.

3.1 Results

We tested our method with 3- and 5-fold-cross-validations on the challenge
dataset. An example of bounding box is depicted in red (we did not do any
dilation here) in Fig. 5. We obtain an average dice index of 0.8953 on validation
set. In practice, we extend next the box by a size equal to 10 pixels to ensure
that the whole LV is included into the bounding box.

Fig. 5. Some localizations (in red) of the LV (in blue) of the 9th patient. (Color figure
online)

For the segmentation, we compared ResNet50 with VGG16 as feature extrac-
tion on 3-fold-cross-validation (18, 19, 19) (see Fig. 6). VGG16 is then more
efficient to detect boundaries than ResNet50 in our application.
4 From a technical point of view, we proceeded to a classification more than to a
segmentation.
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Fig. 6. Segmentation results (ResNet50-FCN on the left side vs. VGG16-FCN on the
right side) for one same patient. The yellow color shows the false negatives. (Color
figure online)

Table 1. Average results of compared methods on 3-fold-cross-validation. Values are
shown as mean absolute error.

Table 1 presents the average results for the two compared methods. The 11
indices of LV full quantification and dice using the VGG16-FCN are better than
when we use the ResNet50-FCN. For these reasons, we used the VGG16-FCN
for the segmentation of the LV.

To verify the stability of our algorithm, we evaluated the proposed method
with 5-fold-cross-validation (11, 11, 11, 11, 12). In Table 2, the average results
are showed. Compared with 3-fold-cross-validation, the average areas error is
improved from 122.93 mm2 to 114.77 mm2, the average dims error is improved
from 0.9978 mm to 0.9220 mm, the average RWT error is improved from
0.9518 mm to 0.9185 mm, the average phase error is improved from 8.0311%
to 7.6364% and the dice is improved from 86.04% to 86.64%.

Table 2. Average results on 5-fold-cross-validation. Values are shown as mean absolute
error.

In Table 2, we also reported the results on test dataset given by the organizers
of LVQuan19. The test dataset was composed of processed SAX MR sequences
of 30 patients. For each patient, only the SAX image sequences of 20 frames
were provided (no GT).

In Fig. 7, the segmentation results on fifth patient of test dataset are showed,
the yellow ring denotes the segmentation results.
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Fig. 7. Some segmentation results on the 5th patient of test dataset. (Color figure
online)

4 Conclusion

In this paper, we propose to use a modified VGG16 to proceed to pixelwise image
segmentation, in particular to segment the wall of the heart LV in temporal MR
images. The proposed method provides promising results at the same time in
matter of localization and segmentation, and leads to realistic physical measures
of clinical values relative to the human heart. Our perspective is to try to better
segment the boundary of the wall of the LV, either by increasing the weights rel-
ative to the boundary regions in the loss function, or by separating the boundary
and the interior of the wall into two classes during the classification procedure.
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