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Abstract. The continuous development and prolonged use of X-ray fluoro-
scopic imaging in cardiac catheter-based procedures is associated with
increasing radiation dose to both patients and clinicians. Reducing the radiation
dose leads to increased image noise and artifacts, which may reduce discernable
image information. Therefore, advanced denoising methods for low-dose X-ray
images are needed to improve safety and reliability. Previous X-ray imaging
denoising methods mainly rely on domain filtration and iterative reconstruction
algorithms and some remaining artifacts still appear in the denoised X-ray
images. Inspired by recent achievements of convolutional neural networks
(CNNs) on feature representation in the medical image analysis field, this paper
introduces an ultra-dense denoising network (UDDN) within the CNN frame-
work for X-ray image denoising in cardiac catheter-based procedures. After
patch-based iterative training, the proposed UDDN achieves a competitive
performance in both simulated and clinical cases by achieving higher peak
signal-to-noise ratio (PSNR) and signal-to-noise ratio (SNR) when compared to
previous CNN architectures.

1 Introduction

Image-guided interventions which require navigating medical therapeutic devices
through a patient’s cardiovascular system using X-ray imaging have seen growing use
[1]. Such procedures play an important role in cardiac catheter-based intervention, a
type of minimally invasive surgery for treating cardiovascular diseases, such as
arrhythmias and stenoses. Despite a much quicker recovery and less postoperative
discomfort for the patient, these procedures can result in significant X-ray exposure to
the patient as well as to the medical staff, which is a major concern especially in
paediatric patients. Given the potential risk of X-ray radiation, low-dose X-ray
fluoroscopic imaging is of great value. The most common way to lower the radiation
dose is to reduce the X-ray flux by decreasing the tube operating current, shortening the
exposure time and decreasing the frame rate. However, this increases the noise and
artifacts in the obtained images, which can reduce discernible information during the
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procedures. Therefore, it is worthwhile to develop new efficient denoising method-
ologies that allow significant X-ray dose reduction without loss of discernible
information.

Traditional image denoising approaches mainly utilise non-local statistics and
image self-similarity [4–6], and they usually suffer from complex parameter selection.
To overcome this drawback, some discriminative learning methods have been devel-
oped to learn image prior models in the context of truncated inference [7]. However,
they train a specific model for a certain noise level, which results in poor performance
when facing complex noise. Inspired by recent success of deep convolutional neural
networks (CNNs) on feature representation, several CNN-based denoising methods in
various fields [3, 4, 7–12] have been proposed to achieve a better image restoration
through a deep end-to-end mapping between low- and high-quality images. Unlike
general images, low-dose X-ray images used in cardiac catheter-based procedures
suffer from quantum noise which is often modelled by a Poisson law according to the
physics of X-ray generation and imaging. This that means homogeneous regions can
appear highly noisy and the contrast of heterogenous regions can be extremely low,
which results in complexity of denoising. Considering the strengths of CNN frame-
works in recovering high-frequency details caused by complex noise, this paper
develops this framework for cardiac catheter-based procedures as an X-ray image
denoiser. Recently, to improve the efficiency and effectiveness of feature extraction,
CNN frameworks witnessed a rapid development on their architecture [13, 14].
However, deeper architectures are particular demanding especially in the case of X-ray
images which typically have a large matrix size and frame rate. To improve feature
propagation and reuse in classification tasks, Huang et al. [16] connected each layer to
every other layer in a feed-forward manner and proposed dense convolutional network
(DenseNet). As this new architecture provides a more tenacious way to combine the
low- and high-level features, it visibly outperforms other CNN-based methods. In
addition, dense skip connection can also alleviate the vanishing-gradient problem in
training, as it enables short paths linking directly to every layer output. Despite the
increasing utilization of information, this all-round connection increases computation
burden and memory consumption to a large degree.

In this study, based on dense skip connection, a novel ultra-dense denoising network
is proposed to achieve X-ray image denoising in cardiac catheter-based procedures with
less memory consumption. This network effectively improves feature extraction by

Fig. 1. Outline of the proposed ultra-dense denoising network (UDDN).
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establishing rich correlation between multiple-path neural units in each residual block
and a better mapping between low-dose X-ray images and their full-dose ground truth
can be searched. As illustrated in Fig. 1, this network contains several ultra-dense blocks
(UDBs). As each UDB has three conventional dense blocks given the same convolution
layers, it can greatly enhance the representational power of the network. Since the
parameters between UDBs are shared with each other, this network can also release the
memory burden to a large degree. Trained with high- and low-dose X-ray image pairs, a
model specified in X-ray image denoising can be obtained. Experiments on both the
simulated and clinical datasets validate the effectiveness of this network.

2 Methodology

As illustrated in Fig. 2, the ultimate goal is to learn a non-linear mapping function which
can reconstruct the corresponding high-dose X-ray image from the given low-dose
input. Therefore, to obtain a robust model specified in X-ray image denoising, low-dose
X-ray images and their high-dose counterparts are required as samples and labels for
training respectively. Firstly, to implement the training process, noise must be added to
original high-dose X-ray images artificially to simulate the low-dose X-ray samples.
Trained with those image pairs, a robust CNN model specified in X-ray image denoising
can be obtained by iteratively minimizing the difference between the predicted high-
dose X-ray image and the ground truth. Finally, with a low-dose X-ray image and the
obtained network, its high-lose denoising result can be directly predicted.

Fig. 2. Flowchart for X-ray image denoising via the proposed UDDN. The flowchart can be
divided into two parts: training (upper) and denoising (lower).
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2.1 Poison Noise Simulation

For X-ray imaging, quantum noise is the most dominant source of noise and is usually
modelled by a Poisson law, hence, a Poisson model for the noise measurement is
calculated by (1) and (2)

Noise ¼ Poisson kð Þþ k ð1Þ

k ¼ rl ð2Þ

Where r denotes the noise level in the X-ray image and µ denotes the mean image
intensity. The network is trained from normal-dose X-ray images and their corre-
sponding low-dose images which were generated by adding Poisson noise according to
this physical model. Figure 3 makes a comparison of a high-dose X-ray image and its
simulated noisy counterpart with 60% poison noise which is approximately equivalent
to quarter-dose acquisition.

2.2 Network Architecture

In this section, we present the design of each key module under the UDDN framework
in detail. As illustrated in Fig. 1, the first convolution layer is an initial layer for
shallow feature extraction of the input X-ray image patches. Then, two stride convo-
lution layers are added to map the extracted features to low-dimensional domain and
this operation aims at reducing the amount of calculation. The main part of our network
is stacked with multiple residual blocks and this design enhances the representation of
the obtained low-dimensional features to a large degree. As shown in Fig. 4, on the
basis of the dense connection, we propose a triple-path residual block called UDB, the
black lines in it represent flat and common used skip connections and the blue lines
represent cross connections between paths which enable sharing of information.
Compared to previous dense networks, UDB contains three times as many richer paths
with the same convolution layers. For the sake of these triple-path units and transition
layer, the feature channels become shallower and the parameters become less, which
visibly decreases the computational burden and memory consumption. In particular, the

Fig. 3. An example of adding simulated noise to an X-ray image (Left: Image acquired at a high
dose. Right: Image with 60% simulated added noise)
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UDBs in our network interact with each other by skip connection, so they can utilize
the feature information of their predecessor, which facilitates the reuse of features.
Subsequently, two deconvolution layers are added to map the obtained features back to
high-dimensional domain. Finally, other convolution layers are added in our network
as a termination layer to output a residual noisy image which is as the same size as the
input one.

2.3 Loss Function

According to various CNN-based image processing methods [6, 7, 9–14], the loss
function is commonly used to fit the target image by minimizing the distance between
the output image and the ground truth based on feature level and Euclidean distance
and cosine distance are the most commonly used similarity measurements. In terms of
denoising, to obtain a substantially improved CNN architecture, as most of the previous
methods [13–15] constrain output by iteratively minimizing the mean squared error
(MSE), we use this measurement during our network training. As shown in Fig. 2, for a
certain low-dose X-ray image, the MSE of its real high-dose X-ray image yi and
predicted high-dose X-ray y0i is calculated by (3)

MSEi ¼ 1
width� height

yi � y0i
�
�

�
�

�
�

�
�
2 ð3Þ

For the whole training datasets, the loss function of our network can be calculated
by (4)

Loss ¼ 1
2N

XN

i¼1
MSEi ð4Þ

Where N represents the number of X-ray image samples for training.

Fig. 4. Outline of the proposed ultra-dense blocks (UDBs) in UDDN. (Color figure online)
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2.4 Quantitative Indicators

Besides visual perception, peak-to-signal-noise ratio (PSNR) and structural similarity
(SSIM) are usually used as evaluation metrics to assess the model performance in
previous image denoising methods [5–9]. PSNR is a widely used metric in image
reconstruction tasks and it is calculated based on MSE by (5)

PSNR ¼ 10log10
2n � 1ð Þ
MSE

ð5Þ

Both of these two metrics need reference images for comparison, hence, they are
suitable to assess the denoising results of the simulated X-ray images. However, in
clinical images, we have only low-dose X-ray images with uncertain noise level to be
denoised, as there is no corresponding high-dose reference image. Therefore, for
clinical images, we need an effective non-reference image quality assessment method.
We utilize signal-to-noise ratio (SNR) to assess the denoising performance of our
models on clinical datasets, and the SNR of a single image is the average of all patches
in it. In the experiment, the patch size of sub-image is usually set to 16. Since the
indicator used only stands for a ratio of average pixel value and standard deviation,
there are no units for it.

3 Experiments

In our experiments, we used a desktop computer with an NVIDIA GTX1060Ti GPU
with 6.0 Gb RAM, an Intel I7-8700K CPU @ 3.20 GHz with 16.0 Gb RAM for
training and testing. Our model was implemented on TensorFlow with Python3.6 under
Windows10, CUDA9.0 and CUDNN5.1.

3.1 Datasets

Table 1 shows a summary of all data used for experiments. Data sources were a
publically available data of plain chest X-ray images [18] and clinical catheter labo-
ratory images acquired at St. Thomas’ hospital during cardiac catheter procedures.

Table 1. Summary of all data used in experiments

Dataset Source Training Testing

Chest X-ray
(CXR) [18]

Standard plain chest
X-rays
108,948 frontal view
X-ray images from
32,717 patients

5,000 X-rays
images
(1024 � 1024
pixels)
30,443 patches
(96 � 96 pixels)
+ synthetic noise

300 images, 300 central patches
576 � 576 pixels
+ synthetic noise

(continued)
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3.2 Training

The training data were created by adding 60% Poisson noise to the original training
images. This represents a significant simulated reduction in radiation dose as mentioned
previously and is comparative to what can be achieved on a clinical X-ray system.
Based on the settings presented in [18], we inputted one batch consisting of 16 patches
with the size of 96 � 96 from the training datasets (CXR & CL1) to our network each
time. The learning rate was initialized to 10−3 for all layers and halved for every 104

steps up to 10−5 and we selected PReLU as our activation following each convolution
layer which contains 8 � 8 filters. The depth of UDB in our network was 6 and
training a denoising model took approximately 20 h. We compared our method with
other image denoising methods, including DnCNN [7] and DenseNet [15] (8 dense
blocks) and trained these networks with the same training data.

3.3 Validation

We firstly examined the effectiveness of the proposed UDDN on both training and
testing datasets to check whether the obtained model was overfitting or not. Figure 5
displays the comparison denoising results according to the iterations of UDDN on these
two datasets. For the training dataset we used 10% of the complete training data (CXR
& CL1) and for the testing data set we used all the data (CXR). Comparatively, the
denoising results of training dataset exhibit faster convergence and visibly higher
PSNR and SSIM than that of the testing dataset, and this superiority shows that the
obtained denoising model performs better on training dataset than testing dataset.
Accordingly, there is no overfitting for the proposed method and our UDDN is reliable
for X-ray image denoising.

Table 1. (continued)

Dataset Source Training Testing

Catheter
Laboratory
Data 1 (CL1)

1,080 X-rays
images (96 � 96
pixels)
Procedures at St.
Thomas’ Hospital,
London

800 X-rays images
(512 � 512 pixels)
10,554 patches
(96 � 96 pixels)
+ synthetic noise

Catheter
Laboratory
Data 2 (CL2)

623 X-ray
sequences from 20
patients
Procedures at St.
Thomas’ Hospital,
London

100 low-dose X-ray sequences
with 3,262 images
(400 � 400 pixels)
72 high-dose X-ray sequences
with 2,166 images (400 � 400
pixels)
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3.4 Testing on CXR Dataset

The denoising results on the test CXR data with the noise level of 60% for the proposed
approach and the comparison methods are shown in Fig. 6. We selected several but
representative images with different contained structures (i.e., rib, spine, electrode and
catheter). Subjectively it can be seen that our UDDN outperforms the other methods by
visual inspection. In terms of the evaluation results, UDDN achieves a better PSNR and
SSIM (41.4 dB and 0.914), which are about 0.4 dB and 0.015 higher than those of
DenseNet and 4 dB and 0.12 higher than those of DnCNN, respectively.

Furthermore, to validate the more general ability of the CNN-based algorithms, we
tested them with a range of noise levels from 0% to 100%. Figure 7 tabulates the
results in terms of PSNR and SSIM. From these results, we can see that both the
DenseNet and DnCNN denoising methods exhibit lower scores than our new network.
DenseNet and UDDN are less sensitive to changes in noise level than DnCNN and
UDDN shows better denoising capability when facing higher noise levels. Amongst the
methods, UDDN shows the best performance because of its ultra-dense-connection-
based effective framework for local spatial information extraction.

3.5 Testing on Clinical Data

Testing was also carried out using the CL2 clinical dataset. For these data there was no
ground truth and so we used SNR as a measure of denoising performance. The CL2
dataset had both low-dose fluoroscopic images and high-dose acquisition images as
detailed in Table 1. The results are shown in Table 2. In terms of fluoroscopic
sequences, the proposed UDDN achieves the highest SNR (25.8), which is about

Fig. 5. Training process for UDDN with the noise level of 60%. The blue lines denote the
convergence process of the training dataset and the red lines at the bottom refer to that of the
testing dataset. (Color figure online)
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Ground Truth DnCNN DenseNet       UDDN

Fig. 6. Examples of the denoising results on the CXR test data using the noise level of 60%.

Fig. 7. A comparison of denoising results on the CXR test data for carrying noise levels using
three CNN-based methods: DnCNN, DenseNet and our UDDN.
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1.5 dB higher than that of DenseNet and 6.5 dB higher than that of DnCNN,
respectively. However, both DenseNet and UDDN show less effectiveness on
acquiration X-ray images than DnCNN, this may because they are insensitive to high-
dose X-ray images.

In terms of visual perception, we selected several different but representative
structures from fluoroscopic images, i.e. vessels, electrodes and catheters to make
comparisons. Notably, the proposed UDDN and previous DenseNet surpass DnCNN

Table 2. Average denoising results on the clinical dataset CL2

Fluoroscopic Acquisition

UDDN 25.8 25.7
DenseNet 24.3 25.4
DnCNN 19.4 27.6
Input 11.5 19.0

Original         DnCNN                    DenseNet                    UDDN 

Fig. 8. The denoising results on the clinical dataset.
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significantly and UDDN is subjectively best under visual inspection. As illustrated in
Fig. 8, compared to UDDN, the other two CNN-based methods produce more
noticeable artifacts. These observations remained to be proved by future observational
study using clinical experts as observers.

Both DenseNet and the proposed UDDN show effectiveness on low-dose X-ray
image denoising, which validates the advantages of dense connection on network
design. And UDDN slightly outperforms previous DenseNet by achieving higher
quantitative Indicators but limited improvements on visual perception.

4 Conclusions and Future Works

In this study, we propose a simple but effective technique for X-ray image denoising in
cardiac catheter-based procedures. In particular, we present a multiple-path UDB for
local feature extraction. Unlike the previous DenseNet, more flexible dense connec-
tions between layers and units in our network promote information interaction and
improve reutilization. Extensive experiments on both the simulated and clinical data-
sets indicate that UDDN outperforms existing CNN-based denoising techniques. This
technique may prove valuable in dose reduction in the setting of real-time X-ray
imaging for guiding interventions, especially paediatric interventions. Future work will
focus on more extensive clinical testing (especially visual scoring of denoised imaged
by expert clinicians), real-time implementation (current frame rate is 4 frames per
second on the mentioned hardware) and real-time testing in the clinical setting.
Moreover, the noise level of X-ray images obtained in actual clinical cases is uncertain
and unpredictable. Therefore, a more flexible training method instead of using a fixed
noise level should be proposed to promote network effectiveness.
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