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Abstract. Analysis and modeling of the ventricles and myocardium
are important in the diagnostic and treatment of heart diseases. Man-
ual delineation of those tissues in cardiac MR (CMR) scans is labori-
ous and time-consuming. The ambiguity of the boundaries makes the
segmentation task rather challenging. Furthermore, the annotations on
some modalities such as Late Gadolinium Enhancement (LGE) MRI, are
often not available. We propose an end-to-end segmentation framework
based on convolutional neural network (CNN) and adversarial learning.
A dilated residual U-shape network is used as a segmentor to gener-
ate the prediction mask; meanwhile, a CNN is utilized as a discrimina-
tor model to judge the segmentation quality. To leverage the available
annotations across modalities per patient, a new loss function named
weak domain-transfer loss is introduced to the pipeline. The proposed
model is evaluated on the public dataset released by the challenge orga-
nizer in MICCAI 2019, which consists of 45 sets of multi-sequence CMR
images. We demonstrate that the proposed adversarial pipeline outper-
forms baseline deep-learning methods.

Keywords: Adversarial convolutional network · Multi-sequence
cardiac segmentation

1 Introduction

Automatic segmentation of the tissues in cardiac magnetic resonance (CMR)
images can provide the initial geometric information for surgical guidance [5].
However, manual delineation of heart structures in CMR scans is laborious and
time-consuming. Late Gadolinium Enhancement (LGE) MR imaging is one of
the most effective imaging modalities that can predict heart failure and sudden
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death [16]. It enables doctors to visually exam the changes in the myocardium
(myo) and confirm the existence of ‘cardiomyopathy’ and the degree of fibrosis.

There are three main challenges in CMR image segmentation: (1) the large
anatomy variations between individuals, and the big diversity of imaging quality
in the LGE. For example, due to microvascular occlusion, the contrast agent
cannot reach certain areas of the heart, resulting in different enhancements; (2)
the ambiguities of boundaries between different cardiac tissues, i.e., the intensity
range of the myocardium in LGE CMR overlaps with the surrounding muscle
tissue [4]; (3) Despite its clinical importance, LGE slice is much more difficult
to annotate than both T2-weight and bSSFP, thus the annotations of LGE
CMR are often not accurate or not available. In contrast, the annotations of
T2-weight and bSSFP are easier and often available. To tackle these challenges,
various methods have been proposed for whole-heart segmentation [8], ventricles
segmentation [9,10], etc.

In recent years, deep convolutional neural networks (CNNs) [11] have
achieved remarkable success in various computer vision tasks [12,13] as well as
medical image segmentation [1]. Generative adversarial networks [2] as a recent
machine learning technique, offers a promising avenue in image synthesis [6] as
well as image segmentation [7].

We propose a framework to segment ventricles and myocardium from LGE
CMR images based on CNNs and adversarial learning, when the annotations of
LGE images are rather limited for training. Our contributions in this work are
three folds: (1) we proposed an adversarial segmentation network containing two
tailored modules: a segmentation model and a discriminator model, trained and
optimized in an end-to-end fashion. The segmentation network generates the
predicted masks, and the discriminator network aims to identify the segmenta-
tion mask and the ground-truth mask. The segmentation quality is improved in
the min-max game. (2) since different modalities share structure information, we
introduced a loss function named weak domain-transfer loss to leverage informa-
tion from available modalities with rich annotations; (3) results show that the
proposed method outperforms traditional CNN-based method.

2 Method

Our adversarial segmentation framework consists of a segmentation network and
discrimination network. A dilated residual U-shape networks [14] is used as a
segmentor (i.e. mask generator) G and a CNN classifier as a discriminator D.
D is used to ensure that a generated mask being close to its ground truth mask
conditioned on the same raw image; the segmentor and the discriminator are
updated to improve the performance in an adversarial manner. We also leverage
information from other common modalities using a weak domain-transfer loss.
Figure 1 shows the framework of the proposed method.

Data and Preprocessing. The dataset is provided by the challenge orga-
nizers [3] and [4]. It consists of 45 patients, each with three MRI modalities
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Fig. 1. Adversarial segmentation network architecture. It consists of a generator based
on a dilated residual U-shape network and a CNN discriminator. The two networks
are simultaneously optimized during the process of supervised learning and adversarial
learning. Segmentation loss is a combination of individual-domain and domain-transfer
loss, while the adversarial loss is a combination of the segmentation loss and the dis-
criminator loss.

(LGE, T2-weight and bSSFP). It is noted that not all of the modalities come
with the annotations of three heart regions (i.e., left ventricles, myocardium,
and right ventricles). Annotations of all the three modalities are provided for
patients 1–5; while patients 6–35 have manual annotations of T2-weight and
bSSFP. Patients 36–45 have the raw MR scans of three modalities but with-
out any annotations. When constructing the training set, only those MR scans
with manual annotations are included. The test data contains the MR scans
of LGE from patients 6 to 45, tasked to predict the masks of the three heart
regions. Data augmentation is used for robust training. Three geometrical trans-
formations (rotation, shear, zooming) are applied to all of the images and their
corresponding masks. For each slice, we also crop a region with a fixed bounding
box (224 * 224), enclosing all the annotated regions but at different locations to
capture the shift invariance, resulting in 5 groups of cropped regions of inter-
ests. Before training the networks, the intensities of each 2D slice from three
modalities are normalized using z-scores normalization to calibrate the range of
intensities.

Weak Domain Transfer. Figure 2 shows some sample images with annotation
masks of different modalities from the same patient. In Fig. 2, we can further
observe from the annotations that the bSSFP, T2 and LGE share some anatom-
ical and structure information; For example, the right ventricle is always sur-
rounded by myocardium, left ventricle is next to myocardium. The annotation
masks of the corresponding slices from the three modalities have a certain level
of overlap. Based on those observations, we hypothesize that the information
from bSSFP and T2 can facilitate the segmentation of LGE. Hence we propose
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to use the annotation masks on bSSFP and T2 modalities as the pseudo masks
for the unlabelled LGE modalities.

Fig. 2. From left to right are the images of the bSSFP, T2, LGE modalities from the
same patient, with ground truth masks imposed (best viewed in color). (Color figure
online)

The masks of bSSFP and T2 scans are transferred to LGE by using a normal-
ized index which identifies the correspondence between axial slices from different
modalities. These masks from bSSFP or T2 are directly used as the pseudo masks
for the corresponding LGE. Specifically, for an axial slice i in bSSFP (or T2)
with annotations, its corresponding slice index j in LGE is computed as below:

j = �i ∗ n

m
� (1)

where �·� is the floor function. n denotes the number of axial slices of LGE; while
m is the number of axial slice in bSSFP (or T2) respectively. Therefore the mask
of slice i in bSSFP (or T2) is treated as the pseudo mask of the slice j in LGE.

Notably, those masks are pseudo, therefore, the domain-transfer loss should
be set as a weaker one when combined with loss defined on ground truth anno-
tations from expert. We will discuss this further in next section.

It is worth noting that our transfer is different from the conventional trans-
fer, which often used a pre-trained model (e.g. on ImageNet), or a knowledge dis-
tillation framework of teacher-student learning [15]. Instead, our transfer is built
as part of the whole model, specifically tailored for the cross-domain annotation-
transfer problem.

Generator. Figure 3 shows the overview of the generator model, where a dilated
residual U-shape network is tailored and used for the segmentation network.
Residual blocks in downsampling and upsampling parts are connected through
skip connections. In total the entire network consists of only 0.16 million train-
able parameters.

In training a segmentation model, it is aware that cross-entropy loss focuses
on individual pixels while Dice loss focuses on the overlap of regions. Thus, a
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combination of cross-entropy loss and Dice loss is chosen to optimize the network.
Images and ground truth masks from the three sequences as well as the trans-
ferred masks mentioned above are used. Therefore, the training loss includes two
parts: individual-domain loss and domain-transfer loss. Individual-domain loss,
denoted as LID, is the difference between the ground truth mask and prediction
while domain-transfer loss denoted as LDT , is the difference between transferred
masks (pseudo masks) and predicted ones.

Fig. 3. Generator network architecture, composed of a downsampling tower and an
upsampling tower.

Both of LID and LDT consist of a linear combination of the multi-class cross-
entropy loss Lce and the Dice loss LDice, formulated as:

LID = β1 · Lce + (1 − β1) · LDice (2)

LDT = β2 · Lce + (1 − β2) · LDice (3)

The total loss function LG is formulated as:

LG = λ · LID + (1 − λ) · LDT (4)

Notably, the domain-transfer loss leverages the information from bSSFP and T2
modalities. It is worth noting that λ in Eq. (4) is used to control the balance of
the transfer; and it is set to 0.9, thus giving a much lower weight of the transfer
loss 0.1 which is weak. In our experiments, β1, β2 are set to 0.9 after observing
the segmentation performance on a validation set.

Mask Discriminator. We use a CNN as a discriminator to drive the generator
to generate good-quality masks similar to the ground truth ones. The architec-
ture contains several residual blocks with max-pooling layers. The raw images
and the masks are spatially concatenated as a multi-channel input to the CNN.
A (negative) binary cross-entropy loss LD is used to train the model, defined as:
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LD(S, T ,D,G) = E(x,y)∼S [log D(y|x)] + E(x′,y′)∼T [log D(y′|x′)]+
E(x,y)∼S [log(1 − D(G(x, y)|x))]+

E(x′,y′)∼T [log(1 − D(G(x′, y′)|x′))]
(5)

where S is the set of training data x with ground truth masks y, and T is
the set of LGE data x′ without masks, but with pseudo masks y′.

Adversarial Training of Generator and Discriminator. The objective
of the proposed system is to produce appropriate segmentation masks on the
target class during the min-max game of the two networks. Firstly we perform
a supervised training on G using the MR scans with ground truth masks, the
objective of G is to generate a good mask to deceive the discriminator network
D. The goal of D is to identify the generated masks from the real masks. We
aim to improve the segmentation quality by merging the generated masks with
the original images as condition labels and putting them into the discriminator
for adversarial learning training. The adversarial model is designed to minimize
the adversarial loss which will reverse optimize the generator loss.

Equation 6 represents the total loss in the adversarial model. G and D are
simultaneously optimized.

min
G

max
D

Ladv = LD + LG (6)

Algorithm 1. Training procedure of the adversarial model

Input: training images X, training masks Y, iteration j and k, batch size n
Output: Models: Segmentation model G, Discriminator D
i = 0
while i ¡ j do

update G by LIN

i = i+1
end
while i ¡ k do

update D by maximizing Ladv using a mini-batch while keep G fixed
update G by minimizing Ladv using a mini-batch while keep D fixed.
i = i+1

end
return G

3 Experiment

Implementation. The proposed method is implemented using Keras library.
The codes are available at https://github.com/jingkunchen/MS-CMR miccai
2019. α is set as 0.9 thus, giving the weight of 0.9 for the categorical

https://github.com/jingkunchen/MS-CMR_miccai_2019
https://github.com/jingkunchen/MS-CMR_miccai_2019
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cross-entropy loss and 0.1 for Dice loss. Learning rate is set to 2× 10−4, and the
learning decay is 1 × 10−8. We use a batch size of 16. For the transfer loss LDT ,
we use the ground truth (whenever available) masks of T2-weight and bSSFP,
as the pseudo ground truth masks for the corresponding LGE slices. The corre-
spondence between the LGE slices and the T2-weight (or the bSSFP) slices are
established based on the simple index normalization along the z-axis of the 3D
MRI scans1. We use Adam optimizer.

3.1 Results

It is noted that only 5 patients have LGE annotations available, thus we per-
forme a very preliminary experiment to test the proposed method. We held
out patients 4 and 5 for testing and the rest for training. Results are reported
in Table 1 in terms of Dice score and Hausdorff distance (LV, myo, RV). We
further compare three methods: dilated residual U-shape networks with Dice
loss (U+D), adversarial model with Dice coefficient loss (U+A+D), adversarial
model with Dice coefficient loss and transfer loss (U+A+D+T). The U-shape
networks are specifically designed to segment biomedical images and perform well
in myocardial segmentation of bSSFP CMR images [3]. Here we use dilated resid-
ual U-shape networks with Dice loss (U+D) as our baseline for a comparison. It
could be observed that adding adversarial training improves the segmentation
performance on both the myocardium and right ventricles, but performs worse
on left ventricles. The proposed method with transfer loss outperforms both of
them with only one exception of the lower Dice score the right ventricle.

Table 1. Average Dice and Hausdorff distance on patients 4 and 5

Method Dice Hausdorff Dist.

LV, myo, RV LV, myo, RV

U-shape network (U+D) 70.5%, 50.0%, 70.0% 13.2, 12.0, 24.6

Adversarial model (U+A+D) 65.1%, 53.9%, 74.7% 38.0, 16.1, 19.4

Adversarial transfer (U+A+D+T) 76.0%, 59.6%, 71.7% 10.2, 12.1, 12.9

Results on Challenge Test Set. We submitted the results of the methods of
(U+A+D) and (U+A+D+T) on the testing set containing patients 6 to 45 LGE.
Tables 2 and 3 summarize the average and median values of the results returned
by the organizers. It could be seen that overall the approach of (U+A+D+T)
outperforms (U+A+D), which confirms that promise of the proposed method.

1 In practice, we find this works well. Ideally, registration could be performed to find
the correspondence, which will be investigated further.
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Table 2. Average Dice, Jaccard, Surface Distance and Hausdorff distance on patients
6 to 45

Method Dice Jaccard Surface Dist Hausdorff Dist.

LV, myo, RV LV, myo, RV LV, myo, RV LV, myo, RV

U+A+D 76.6%, 42.0%, 69.5% 0.62, 0.27, 0.54 5.5, 4.7, 5.5 22.1, 42.0, 32.7

U+A+D+T 82.4%, 61.0%, 71.0% 0.71, 0.45, 0.57 3.9, 4.0, 5.0 23.7, 24.6, 23.5

Table 3. Median of Dice, Jaccard, Surface Distance and Hausdorff distance on patients
6 to 45

Method Dice Jaccard Surface Dist Hausdorff Dist.

LV,myo,RV LV,myo,RV LV,myo,RV LV,myo,RV

U+A+D 77.8%, 42.7%, 71.1% 0.63, 0.27, 0.55 5.3, 4.3, 5.0 18.5, 41.2, 28.5

U+A+D+T 82.1%, 60.8%, 72.8% 0.70, 0.44, 0.57 3.8, 3.9, 4.6 15.4, 19.6, 22.8

O

U+D

U+A+D

U+A+D+T

Fig. 4. The results of the segmentation. Rows from top to bottom: original images (O),
dilated residual networks (U+D), adversarial model (U+A+D), adversarial model with
Dice coefficient loss and transfer loss (U+A+D+T) (best viewed in color). (Color figure
online)

Visualisation. Figure 4 shows some predicted masks of the LGE slices of four
patients. It could be seen that adversarial learning improves the results of only
using the dilated residual network, and the cross-modality transfer further refine
the segmentation masks, especially for the left ventricles. Those observations are
consistent with the results shown in Tables 1, 2 and 3.

4 Conclusions

We propose an automated method for heart segmentation based on multi-
modality MRI images, which is trained in an adversarial manner. Specifically,
our architecture consists of two modules, a multi-channel mask generator and
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a discriminator. In particular, we further introduce a domain-transfer loss func-
tion to leverage the information across different modalities for the same patients.
Results show that such an idea is effective, and the overall framework performs
better than the baseline methods.
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