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1 Dept. Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
victor.campello@ub.edu

2 BCN-MedTech, DTIC, Universitat Pompeu Fabra, Barcelona, Spain
3 Barts Heart Centre, Barts Health NHS Trust, London, UK

4 William Harvey Research Institute, NIHR Barts Biomedical Research Centre,
Queen Mary University of London, London, UK

5 ICREA, Barcelona, Spain

Abstract. Accurate segmentation of the cardiac boundaries in late
gadolinium enhancement magnetic resonance images (LGE-MRI) is a
fundamental step for accurate quantification of scar tissue. However,
while there are many solutions for automatic cardiac segmentation of
cine images, the presence of scar tissue can make the correct delineation
of the myocardium in LGE-MRI challenging even for human experts.
As part of the Multi-Sequence Cardiac MR Segmentation Challenge, we
propose a solution for LGE-MRI segmentation based on two compo-
nents. First, a generative adversarial network is trained for the task of
modality-to-modality translation between cine and LGE-MRI sequences
to obtain extra synthetic images for both modalities. Second, a deep
learning model is trained for segmentation with different combinations
of original, augmented and synthetic sequences. Our results based on
three magnetic resonance sequences (LGE, bSSFP and T2) from 45 dif-
ferent patients show that the multi-sequence model training integrating
synthetic images and data augmentation improves in the segmentation
over conventional training with real datasets. In conclusion, the accu-
racy of the segmentation of LGE-MRI images can be improved by using
complementary information provided by non-contrast MRI sequences.

Keywords: Multi-sequence cardiac MRI · Late gadolinium
enhancement MRI · Image segmentation · Image synthesis · Deep
learning

1 Introduction

Late gadolinium enhancement magnetic resonance imaging (LGE-MRI) is widely
used to assess presence, location and extent of regional scar or fibrotic tissue in
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the myocardium. Whilst LGE-MRI is a well-established technique and key to
many cardiovascular magnetic resonance (CMR) examinations there are chal-
lenges in quantification and interpretation due to a number of factors. Image
analysis depends on image quality which can be affected by suboptimal CMR
acquisition. Correct inversion times (TI) need to be identified and then TI
require appropriate adjustments to allow good ‘nulling’ of remote, unaffected
myocardium. This ensures optimal contrast between scar/fibrosis (bright) and
normal, remote myocardium (dark). Timing after contrast administration is
important to allow not only sufficient wash-out of contrast agent (gadolinium
chelate) from the remote myocardium but also from the blood pool. Images
acquired too early will leave the blood pool bright which makes differentiating
subendocardial infarct from blood pool challenging.

In the existing literature, two main families of techniques have been proposed
to automatically segment LGE-MRI data. The first one segments directly the
LGE-MRI images by using different techniques such as graph-cuts [1], atlas-
based registration [2], or more recently Convolutional Neural Networks (CNNs)
[3]. However, these techniques generally lack robustness due to the limited avail-
ability of LGE-MRI datasets for training. As a result, the second family of tech-
niques has considered exploiting other cardiac MRI sequences to provide addi-
tional signals for guiding more robustly the segmentation process. For instance,
some researchers [4,5] proposed to segment first cine-MRI images and to propa-
gate the obtained contours into the LGE-MRI images through image registration.
Similarly but by using additional sequences, the authors in [6] implemented an
atlas-based segmentation approach combining information from balanced-Steady
State Free Processing (bSSFP), LGE and T2 sequences. However, these tech-
niques are highly dependent on the image registration step, which is challenging
due to the inherent differences between the cardiac MRI sequences.

In addition, in order to improve segmentation and increase the model robust-
ness over unseen data, image synthesis has been proposed recently. The most
common model combines generative adversarial networks (GANs) with a cycle-
consistency constrain for image-to-image translation and two segmentation net-
works, one for each image domain, trained end-to-end in order to benefit from
a combined loss function. This model has been applied for cross-modality seg-
mentation improvement [7,8], domain adaptation across scanners [8] or across
modalities [9] and segmentation of an unlabeled target modality using only the
source ground truth [10,11]. Alternatively, a GAN can be trained to generate
synthetic images from masks according to some conditional value, like the dataset
style, as in the case of retinal fundus images for vessel segmentation [12].

In this paper, we propose an approach to circumvent the need for image reg-
istration, while addressing the lack of LGE-MRI images for training. Concretely,
we implement a CNN-based approach that is capable of learning key properties
of the cardiac structures simultaneously from multiple cardiac MRI sequences.
Furthermore, image synthesis and data augmentation are used to generate new
examples that take into account both the global appearance of LGE-MRI data
and the local appearance of scar tissues. With this approach, direct deep learning
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based segmentation of LGE-MRI is enabled without the need for inter-sequence
image registration and while exploiting the richness of multi-sequence cardiac
MRI.

2 Method

2.1 Dataset

Data Description. The LGE-MRI dataset used in this paper was provided
as part of the Multi-Sequence Cardiac Magnetic Resonance Segmentation Chal-
lenge (MS-CMRSeg). It consists of 45 patients from Shanghai Renji Hospital that
were scanned using three MRI sequences: bSSFP, LGE and T2. Ground truth
segmentations of the left ventricle (LV), right ventricle (RV) and myocardium
(MYO) were provided for some of the cases according to the distribution in
Table 1 (second row). Even though all sequences were acquired and selected for
the end-diastolic cardiac phase, there were differences in the shape of the cardiac
boundaries consistently between the three sequences for the same patient. More-
over, the slices were not aligned between the sequences in the direction of the
ventricular axis, which further complicates the application of image registration.
Note that all patients in the sample suffer from cardiomyopathies and that every
LGE-MRI image presents a scar of variable size within the myocardial wall.

Table 1. MS-CMRSeg sequences details.

bSSFP LGE T2

Number of patients 45 45 45

Segmented patients 35 5 35

Number of slices 8–12 10–18 3–7

Slice thickness (mm) 8–13 5 12–20

TR/TE (ms) 2.7/1.4 3.6/1.8 2000/90

In-plane resolution (mm) 1.25 × 1.25 0.75 × 0.75 1.35 × 1.35

Data Pre-processing. As a first step, intensity bias correction was applied to
all sequences to correct for potential artifacts and the intensity histograms of all
images were matched to a common one to obtain coherent appearances across
images. Furthermore, before the training process, all images were interpolated
and cropped so that they had a pixel size of 256× 256 and the same resolution.
They were also normalised such that the mean intensity and the standard devi-
ation equal 0.5, thus ensuring most of the input values to be positive in between
0 and 1 for convenience in later representation of the images.
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2.2 Increasing Training Sample

Before describing the CNN model implemented in this paper for LGE-MRI seg-
mentation, this section presents two methods used to increase the number of
training data and obtain higher LGE-MRI variability.

Data Augmentation. By using the provided segmentations, a set of 50 land-
marks were evenly placed around the epicardium and endocardium. With these,
the myocardium and left ventricle were rotated relative to the rest of the image,
as shown in the examples in Fig. 1, in order to obtain an augmented dataset with
varying locations of the scar tissues. Since the contour of the epicardium is not
perfectly round in general, a Gaussian filter of size 3× 3 was applied around the
outer boundary to smooth the transition between the rotated and fixed regions,
thus preventing image intensity discontinuities. A total of twenty 7.2 degrees
rotations were applied. Thus, the LGE-MRI dataset was multiplied by a factor
of 20 and the location of the scar in the myocardium ranged between the initial
position and 144 degrees clockwise. This augmentation technique increases the
variability in the scar locations within the myocardial wall that was otherwise
very low due to the small number of patients available for training. Further-
more, further data augmentations were obtained by applying small rotations of
the input images up to 15 degrees before training.

Fig. 1. Example of three rotations of the myocardial wall with respect to the whole
image by using the landmarks provided in the leftmost image. This shows the changes
in the location of the scar tissues

Image Synthesis. The rationale behind the proposed image synthesis is that
there are many more segmented cine-MRI datasets available open-access or in
clinical registries for training CNN models. Thus, to increase the number of
annotated LGE-MRI cases for training, image synthesis from cine-MRI images
sequences is proposed. To achieve this, the CycleGAN method [13] was imple-
mented using the PyTorch library provided at this link1.

This method translates images from one domain to another without the need
for image registration or for the sequences to be from the same patients. It con-
sists of a pair of generators GLGE , GbSSFP and a pair of discriminators DLGE ,
1 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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DbSSFP that have opposed goals. The generator GLGE (GbSSFP ) transforms
the bSSFP (resp. LGE) sequence into a realistic LGE (bSSFP) image, while the
discriminator DLGE (DbSSFP ) attempts to distinguish between real and fake
LGE (bSSFP) sequences. To achieve a good image translation between the two
sequences, the loss function contains two terms: (1) an adversarial loss for each
target domain that accounts for the similarity between the generated and real
images, and (2) a cycle consistency loss that ensures that the transformed image
GLGE(X) (GbSSFP (Y )) is transformed back to X (Y ) through GbSSFP (GLGE).

Fig. 2. Examples of synthetic LGE-MRI images. The leftmost column are the original
cine images, the central column shows the transformed images to the LGE domain and
the rightmost column is the most similar slice from the real LGE sequences, since they
were not registered/aligned.

For the training of the CycleGAN model, all slices from the 45 patients for
the LGE and bSSFP sequences were used during 200 epochs. The training took
12 h on a NVIDIA 1080 GPU with a batch size of 1. The Adam optimizer was
used with learning rate of 2×10−4, with first and second moment decay rates of
0.5 and 0.999, respectively. Some examples for the generated images are shown
in Fig. 2.

In order to evaluate the quality of the generated images, two segmentation
models (like the one described in the next subsection) were trained using the
bSSFP images and the synthetic LGE images separately. The obtained results are
presented in Table 2. In particular, the synthetic LGE images, that are anatom-
ically similar to the original bSSFP, provide more information for the task of
LGE segmentation.

2.3 CNN-based LGE Segmentation

Once a large set of training sample was obtained from the original, augmented
and synthetic images, a modified U-Net architecture [14] was used for the image
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Table 2. Average and standard deviation for the Dice score of segmentation results
over the five labeled LGE volumes.

LV MYO RV

avg. std. avg. std. avg. std.

model trained w. bSSFP 0.503 0.406 0.370 0.301 0.515 0.434

model trained w. synthetic LGE 0.809 0.116 0.688 0.145 0.820 0.065

segmentation by integrating two techniques: (1) a deep supervision term in the
upsampling path as proposed in [15] that will act as lower-resolution masks
that are convolved to condition the final predictions; and (2) a reduction of the
number of filters after each upsampling operation to match the number of labels
as proposed by [16]. Each image in the dataset was provided as a single channel
input, thus forcing the model to differentiate between sequences with a unique
set of weights. Additionally, in order to avoid overfitting given the sample size,
dropout was used after every max pooling and upsampling operations, except
for the high level features in the architecture, as shown in Fig. 3.

Fig. 3. Detailed architecture of the CNN model used for LGE segmentation. The num-
bers in the boxes correspond to the number of channels. Convolution operations have
a kernel size of 3× 3 and stride of 1, while transpose convolutions have a kernel size of
4 × 4 and stride of 2.

During training, 20% of the patients for each dataset was reserved for valida-
tion and early stopping. With a batch size of 8 images, this model took less than
36 h to achieve the best accuracy on the validation set after almost 90 epochs
on a NVIDIA TITAN X GPU. The Adam optimizer was used with a learning
rate of 10−4, with first and second moment decay rates equal to 0.9 and 0.99,
respectively.
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3 Results

In order to define the best trained CNN model for LGE-MRI segmentation,
various training sets were used by varying the input sequences and combinations
of image synthesis and scar augmentation, as follows:

1. LGE sequences only;
2. LGE and bSSFP sequences;
3. All sequences (LGE, bSSFP and T2);
4. All sequences plus MYO and LV rotations in LGE sequences;
5. Number 1 plus synthetic LGE sequences;
6. Number 2 plus synthetic LGE sequences;
7. Number 3 plus synthetic LGE sequences;
8. Number 4 plus synthetic LGE sequences.

When evaluated on the validation set, the training set number 8 resulted in
the best segmentations, showing the added value of image synthesis and data
augmentation for LGE-MRI segmentation. Thus, we applied the corresponding
CNN model to the test dataset composed of 40 LGE-MRI cases. The obtained
segmentations were sent to the organizers of MS-CMRSeg Challenge for eval-
uation. The obtained results are summarized in Table 3, showing average dice
scores of 90% (LV), 87% (MYO) and 81% (RV).

Table 3. Average and standard deviation for results over the test set.

LV MYO RV

avg. std. avg. std. avg. std.

Dice score 0.898 0.045 0.810 0.061 0.866 0.051

Jaccard index 0.817 0.072 0.685 0.084 0.768 0.078

Surface distance (mm) 2.0 0.8 1.8 0.5 2.3 0.9

Hausdorff distance (mm) 11 4 12 4 16 7

Two remarks are important to note regarding the results reported in Table 3:
(1) Despite the high variability in the LGE-MRI datasets, especially in the pres-
ence, extent and location of the scar tissues, relatively consistent results are
obtained with standard deviations for the dice scores around 5%. (2) Despite
the availability of only 5 LGE-MRI volumes for training, the proposed approach
was able to achieve comparable results to very recent deep learning techniques,
which reported dice scores of 0.915 ± 0.052 (LV), 0.812 ± 0.105 (MYO) and
0.882± 0.084 (RV) based on 5 times more training cases (25 LGE-MRI images).
[3]. This indicates the value of the proposed inter-sequence synthesis and scar
augmentation for generating richer training samples.

Finally, for visual illustration, Fig. 4 shows three segmentation examples as
obtained in this study. Model number 3 (second column) introduces errors that
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are corrected when adding synthetic images (model number 7 in the third col-
umn). The last column shows that the segmentation further improves when
integrating the scar tissue augmentation as proposed in this paper (model 8).

Fig. 4. Three segmentation examples as obtained by using different training combina-
tions, showing the improvement achieved by integrating inter-sequence image synthesis
(column 3) and scar tissue augmentation (column 4) during training.

4 Conclusions

This paper proposed to address the limited availability of training samples for
LGE-MRI segmentation by enriching the CNN models using two complimentary
methods. Firstly, since samples of annotated cine-MRI sequences are more com-
monly available, image synthesis of LGE-MRI images was implemented using a
CycleGAN approach, thus obtaining a larger number of LGE-MRI cases dur-
ing training. Secondly, we performed LGE-specific data augmentation through
shape-guided rotations of the myocardium, which increases the variability related
to the location of the scar tissues in the myocardium. The validation shows con-
sistent results across the datasets, indicating the potential of this approach for
enhancing the richness and generalization of LGE-specific CNNs.

Future work include the extension of the image synthesis to take into account
local cardiac motion abnormality for synthesizing scar tissue, as well as the
use of elastic deformations of the myocardium and scar to augment non-rigidly
the LGE-MRI examples. Furthermore, extensive validation will be performed
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to assess in detail the relative importance of the different steps and sequences
(bSSFP, T2) in enriching the CNN models for LGE segmentation.
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