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Abstract. The accurate segmentation, analysis and modelling of ventri-
cles and myocardium plays a significant role in the diagnosis and treat-
ment of patients with myocardial infarction (MI). Magnetic resonance
imaging (MRI) is specifically employed to collect imaging anatomical and
functional information about the cardiac. In this paper, we have proposed
a segmentation framework for the MS-CMRSeg Multi-sequence Cardiac
MR Segmentation Challenge, which can extract the desired regions and
boundaries. In our framework, we have designed a binary classifier to
improve the accuracy of the left ventricles (LVs). Extensive experiments
on both validation dataset and testing dataset demonstrate the effective-
ness of this strategy and give an insight towards the future work.
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1 Introduction

Recent advances in the MRI technology have led to an effective way to manage
the treatment plan for patients. Since the MR can provide a better enhancement
in the infected area and highlight the illness part with special brightness, a
variety of applications have been developed, such as the Carotid arterial plaque
stress analysis [1], the tracking of myocardial deformation [2], etc. Among these
tasks, the accurate segmentation of the MR image can help to extract the desired
regions of interest (ROIs), which plays a key role in the clinical analysis. However,
there are many challenging issues towards the performance of segmentation in
MRI. Firstly, unlike the segmentation work in natural images, a more precise
segmentation result is required in the MR image, even tiny errors may damage
the result of further diagnose. Secondly, the manual segmentation of the desired
boundaries is very time-consuming and error prone, which is not accessible in
the practical applications. Several challenging examples are shown in the Fig. 1.
What is more, it is crucial to fully utilize the provided multiple modalities of MR
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images, which may improve the segmentation accuracy. Therefore, an effective
and robust segmentation strategy is required, especially for the MS-CMRSeg
Multi-sequence Cardiac MR Segmentation Challenge [3,4].

Fig. 1. Several examples of the challenging images.

In this paper, we propose an effective segmentation framework for the pro-
vided CMR images. To figure out the given task, we have analyzed the dataset
and chosen a suitable deep learning framework first, i.e. the U-Net++ [4].
After that, some preprocessing techniques are considered before the U-Net++
to reduce the potential noise and improve the final performance. As the left
vertical usually has a fixed shape in most of slices, we have designed a binary
classifier module in the U-Net++ framework, which can significantly improve
the accuracy of left ventricle.

The rest of this paper is organized as follows. In Sect. 2, the utilized dataset
is introduced, along with a brief summary of the Multi-sequence Cardiac MR
Segmentation Challenge. The motivation and implementation of our designed
framework is detailed in Sect. 3. In Sect. 4, the experimental results and analysis
are presented and discussed. Finally, some concluding remarks are drawn in
Sect. 5.

2 Dataset

In this paper, we have conducted experiments on the dataset from MS-CMRSeg
2019 Multi-sequence Cardiac MR (CMR) Segmentation Challenge [3,4]. The
whole CMR data are come from 45 patients where each patient has been scanned
by three CMR sequences, including the late gadolinium enhancement (LGE),
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Fig. 2. Example of three different sequences from the same patient, the first row are
the original images with false color and the second are the corresponding ground truth
with false color, where the green, the cyan and the yellow pixels represents the left
ventricle, the myocardium and the right ventricle, respectively: (a) bSSFP. (b) T2. (c)
LGE (Color figure online)

T2 and balanced-Steady State Free Precession (bSSFP). In this challenge, the
dataset is separated as training set and testing set. Four classes are labelled
in the ground truth data, including the left ventricle, the right ventricle (RV),
the myocardium and the background. The training set includes the LGE CMR
images with ground truth of the first to the fifth patient, i.e. the validation
dataset, the T2-weighted and bSSFP CMR image with corresponding ground
truth for the first to the thirty-fifth patient. And for the last ten patients, only
the T2-weighted and bSSFP CMR images are provided. For the testing dataset,
the rest LGE CMR images are utilized for the final evaluation. For those three
different sequences, each LGE CMR image usually consists of 10 to 18 slices,
covering the main body of the ventricles, and the BSSFP image consist of 8 to
12 sequential slices which have been scanned at the diastolic end. Different from
the other two sequences, T2 CMR image only has a small number of slices (3,
5, 6, 7 or 8 slices), which implies the constituted testing dataset has a relatively
smaller size than the training set. In total, the number of slices from three
sequences in the training dataset is less than 500 and the size of slices from
these three sequences is inconsistent. Some examples from the training dataset
are illustrated in Fig. 2.
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Fig. 3. Three classes segmentation results (a)–(c) by using K-means++ with Hough
transform. (1) original images. (2) Results from K-means with Hough transform. (3)
Results from further Hough transform. (5) Ground truth. The segmentation accuracy
for left ventricle and myocardium after further Hough transform are 0.7443, 0.8677 and
0.5053, respectively.

3 The Proposed Framework

3.1 Motivation

In this section, our designed model will be discussed, which includes our moti-
vation and implementation. Currently, numerous methods have been proposed
for the segmentation problem, which can be classified as traditional methods
and deep learning-based methods. To design a more robust framework, we have
investigated both above methods and tried to combine them together.

First, some traditional image segmentation algorithms have been considered,
including the Hough transform [5], the watershed [6], the active contours [7], the
level set [8], and the K-means++ [9], etc. The Hough transform can achieve a
better performance in left ventricle and myocardium, but it heavily relies on the
chosen parameter. The watershed also suffers this dilemma and some redundant
boundaries could be generated if parameters are not selected appropriately. For
both active contours and the level set methods, they require some initial set of
points to evolve the final boundary, which is not efficient in dealing with the
given task. Although most of the traditional methods are not favorable, we have
found out that the fusion of the binary K-means++ and Hough transform might
be useful for the segmentation of left ventricles and myocardium, some results
from a three classes (background, left ventricle and myocardium) classifier based
on K-means++ and Hough transform are shown in the Fig. 3. What is more,
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Fig. 4. The structure of U-Net++.

the binary classification demonstrates its superiority in the segmentation of left
vertical, which can increase the accuracy.

In the last few years, the U-Net [10] framework has drawn great attention
in the medical image segmentation area due to its efficiency and simple frame-
work. With its skip connection architecture, the U-Net can better capture both
local and global features, which fulfils the requirement of the medical imaging
segmentation. According to the nested and dense skip connection, the U-Net++
is proposed to promote the performance and it has been proved to be a robust
model. Compared to the U-Net, the U-Net++ can increase the accuracy from
1% to 5% in the validation dataset. Furthermore, the U-Net++ does not suffer
from the heavy computational burden, which gives us a better option to investi-
gate more. The structure of U-Net++ is shown in the Fig. 4. For increasing the
segmentation accuracy, we have attempted to exploit some popular techniques,
like data augmentation, etc. However, these techniques could not improve the
accuracy significantly with less computational burden, which is not supportive
for this challenge. For the data augmentation problem, the details are discussed
in the experimental results.

3.2 Implementation

After the introduction of background of this challenge, the implementation of our
proposed framework is presented in this subsection. Since the desired ROIs are
located at the center of the slice and the size of each slice is inconsistent, we have
employed a pre-processing step to deal with such inconsistency. We have resized
all slices from the training dataset into the same size as both of their height and
width are set to be 256. To remove the potential noise from the background,
we have cropped the resized slices and keep the central part of each slice, where
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the final height and width are set as 128. After the pre-processing step, we
have trained two classifiers simultaneously with the training set. As discussed
above, the binary classifier aiming to distinguish the left ventricle and the rest
classes are advantageous, we have trained one binary classifier to find the left
ventricle. Another four-classes segmentation model has been trained to classify
all four classes in each slice. In the final, we combine the results from these two
classifiers simply by considering the classification map from the binary model
as the priority. The classification map generated from the four class classifier
is filtered by the classification map generated from the binary classifier. The
diagram of our framework is presented in the Fig. 5.

Fig. 5. The flowchart of our proposed framework.

Table 1. The mean and standard deviation of the Dice score on three classes.

Left ventricle Myocardium Right ventricle

Dice 0.757 ± 0.127 0.470 ± 0.117 0.539 ± 0.151

4 Results

4.1 Parameter Settings

In this part, the utilized parameters in our proposed framework will be given in
detail. The optimal parameters are chosen through the performance on valida-
tion dataset. For the training epochs, it is set to 600, and the batch size equals to
16. We have used the Adam optimizer with a learning rate of 1e-6. For achieving
better performance, we have initialized the weight of loss of both classifiers, the
binary model is set to be 1:6 for the background and the left ventricle and the
four classes model is 1:6:6:6 where the background is set to be 1 and the rest
are 6. Generally, we have only utilized the training dataset to train our model
and the validation dataset to prove the efficiency of our approach. However, for
the purpose of achieving better performance on the challenge, we have utilized
the validation dataset to train the model in the last submission. For the hard-
ware requirement, all our experiments and the training process of our proposed
framework are conducted on the Google Colab with TESLA K80 (12 GB).
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Fig. 6. The Dice score from the organizers.

4.2 Performance of Test Dataset

To evaluate the performance our proposed framework, we have tested our pro-
posed framework on the challenge test dataset and received the feedback from
organizers, including the Dice score, the Jaccard index, the Surface and Hausdorff
distance. The result about the Dice score is shown in Fig. 6 and corresponding
mean and standard derivation are depicted in the Table 1. From the result, it
can be clearly seen that the accuracy of the left ventricles is much better than
the rest, which proves that the binary classifier is suitable for the segmentation
of left ventricles.

4.3 Experimental Analysis

In this part, we will present the related experiments to discuss some interesting
issues and give some further comparison about our framework.

In our model, we have defined a pre-processing step and designed a binary
classifier. Therefore, it is crucial to prove the significance of these two ideas.
Therefore, we have done a comparison between our proposed methods and one
four classes classifier framework on the validation dataset, which is depicted as
‘Binary+Four’ and ‘Only Four’. Besides, we have also implemented the data
augmentation step to inspect its function. The rest parameters are kept the
same as above. The performance is shown in the Table 2, which includes the
‘ROI’accuracy, the total accuracy and the training time. The ‘ROI’ accuracy is
calculated only from the left ventricle, myocardium and right ventricle pixels,
which is interpreted in Fig. 8. It can be recognized that after the combination of
binary and four-class classifiers, the accuracy can be improved by 2%. As seen
in Table 2, the effect of data augmentation can be noticed, where the accuracy
is increased by 9% with more training samples from the data augmentation.
Although data augmentation can generate more training samples and improve
the accuracy, its huge computational burden seems impractical, especially for
the limited time challenge or real-time applications (Fig. 7).
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Fig. 7. Some results from the validation dataset. (a) original images. (b) segmented
mask. (c) Ground truth.

Table 2. The mean and standard deviation of the Dice score on three classes.

Model Augmentation ROI accuracy Total accuracy Training time (h)

Binary+Four Yes 0.6789 0.9803 18

Binary+Four No 0.5893 0.9764 1.8

Only Four Yes 0.6572 0.9802 9

Only Four No 0.5707 0.9762 0.9

Fig. 8. The example of defined ‘ROI’. Left top: the original image. Right top: ground
truth of original image. Left bottom: cropped ‘ROI’. Right bottom: ground truth of
cropped ‘ROI’.
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5 Conclusion

In this paper, we have proposed a U-Net++ based framework for the MRI
segmentation, especially for the MS-CMRSeg Multi-sequence Cardiac MR Seg-
mentation Challenge. Although the performance on the right ventricle and
myocardium are not good enough, we have obtained better performance on the
left ventricle with the binary classifier module, which can give an insight about
the Cardiac segmentation task.

Due to the time limitation of this challenge, there are still some unsolvable
issues about the Cardiac MR segmentation. In the future, we will focus on the
design of a more flexible model for the Cardiac MR segmentation, which can
fully utilize the multiple sequence data and capture more 3D information. What
is more, some multi-stage methods will also be investigated [11–16] and more
reliable features will be extracted [17–20] to remove the noise and further improve
the accuracy.
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