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Abstract. Myocardium segmentation of late gadolinium enhancement
(LGE) Cardiac MR images is important for evaluation of infarction
regions in clinical practice. The pathological myocardium in LGE images
presents distinctive brightness and textures compared with the healthy
tissues, making it much more challenging to be segment. Instead, the
balanced-Steady State Free Precession (bSSFP) cine images show clearly
boundaries and can be easily segmented. Given this fact, we propose a
novel shape-transfer GAN for LGE images, which can (1) learn to gen-
erate realistic LGE images from bSSFP with the anatomical shape pre-
served, and (2) learn to segment the myocardium of LGE images from
these generated images. It’s worth to note that no segmentation label
of the LGE images is used during this procedure. We test our model on
dataset from the Multi-sequence Cardiac MR Segmentation Challenge.
The results show that the proposed Shape-Transfer GAN can achieve
accurate myocardium masks of LGE images.
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1 Introduction

Late gadolinium enhancement (LGE) MRI technology can accurately identify
myocardial infarction (MI), myocardial fibrosis and cardiac amyloid and other
diseases. Its good spatial resolution and tissue specificity have unique advan-
tages in the diagnosis of various types of myocardial lesions. To this end, correct
segmentation of LGE CMR images is a prerequisite of quantitative evaluation.

While recent advancements in deep neural network have results in many accu-
rate models of automatic segmentation of cardiac left/right ventricle (LV/RV)
from bSSFP cine images, only a few efforts have been given to segmentation of
cardiac structures from LGE images. Contrary to bSSFP cine image where the
myocardium and the background blood pool have different intensity distributions
and can be well discriminated, the intensity of LGE images is heterogeneous for
the myocardium and the boundary of the pathological part is even invisible.
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Recently proposed methods of LGE segmentation include model-based [1]
and learning-based ones [2,3]. Zhuang et al. (2018) used multivariate mixture
model to describe the likelihood of multi-source images in a common space and
model the motion shift of different slices with a rigid transformation. After iter-
atively registration and segmentation, the model achieved good myocardial seg-
mentation. However, the complexity of the model may hinder it from effective
application in practice [2]. Xiong et al. (2019) proposed a dual fully convolu-
tional neural network to extract global and local structures from MRI slices
of different resolutions for 3D left atrium segmentation from LGE images. The
network was trained with a dataset of 154 subjects and achieved accurate seg-
mentation results [3]. Yue et al. (2019) used a deep neural network SRSCN,
which incorporated shape prior and slice spatial information as regularization
for LGE cardiac segmentation [1]. After being trained with LGE images of 25
patients, it can segment the LV, myocardium, and RV well. A drawback of these
learning-based methods is that they require large manually labeled LGE images
for model training, which is not always available and more prone to errors or an
accurate registration between the cine MRI and LGE MRI.

The MS-CMRSeg 2019 challenge that held in conjunction with STACOM
at MICCAI 2019 provides an open and fair platform for the multi-sequence
ventricle and myocardium segmentation. However, there are only LGE images of
5 patients with ground truth label for training. This adds more difficulty during
the development of learning-based model besides the above-mentioned ones. To
relieve the problems of insufficient training labels, we proposed to generate plenty
of image-label pairs by generative adversarial network (GAN). Goodfellow et al.
(2016) first proposed GAN and achieved impressive results in generating realistic
images from noisy input vectors [4]. Various strategies have been devoted to the
development of GAN to improve the quality of the generated fake images [6–8]
or to learn the disentangled representations that are aware of high-level semantic
context. For our work, high quality of generated image-label pair is of critical
importance to the final performance. To this end, we make use of the recently
proposed CycleGAN [5], which employed a cycled reconstruction loss to ensure
the consistency between the input and output domains.

We propose a novel method, shape-transfer GAN, for the segmentation of
LGE cardiac images, without ground truth labels. Specifically, we introduce a
shape preservation term to make the generated LGE images share the same
myocardium shape with that of the input bSSFP image. In such a way, the
proposed shape-transfer GAN is capable of generating realistic LGE images, and
in the meantime learning how to segment these generated images. Without labels
of real LGE images for finetuning, the obtained segmentor can be directly applied
for segmentation of real LGE images. The method obtains good performance on
LGE images of 40 patients, with dice metric of 0.847, 0.776, 0.686 for LV, RV
and myocardium, respectively.
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Fig. 1. Building block of shape-transfer GAN, whose loss includes three parts: adver-
sarial learning loss (Lgan), cycle-reconstruction loss (Lcyc) and shape preservation loss
(Lshape). G, D and S represent generator, discriminator and segmentation network
respectively. And x, y represent bSSFP and LGE images respectively.

2 Method

The proposed Shape-Transfer GAN can learn a mapping functions between two
domains bSSFP and LGE, with the anatomical shape of myocardium in the
bSSFP preserved while the intensity distribution being changed into the style of
LGE image. To obtain the myocardium shape and enforce the shape preservation
loss, a segmentation module is also embedded in the generator. Once the adver-
sarial learning is completed, the segmentation module can be directly applied
to novel LGE images for myocardium segmentation. Figure 1 gives the building
block of shape-transfer GAN, which contains three blocks: (1) adversarial learn-
ing (Lgan), where two generators and two discriminators are learned to generate
realistic LGE images from bSSFP images, and also the inverse mapping; (2)
Cycle-reconstruction learning (Lcyc), where the quality of the generated images
are improved by the constraint of re-generating the original input image [5]; and
(3) shape-preservation learning (Lshape), where the generated LGE images are
constrained to preserve the anatomic shape of the input bSSFP image, and a
segmentation model is embedded in the generator and learned in the meantime.

2.1 Adversarial Learning

We introduce two generators G1, G2, and two adversarial discriminators D1

and D2, where D1 aims to distinguish between real LGE images {y} and the
generated ones by {G1 (x)} from bSSFP images and D2 to distinguish between
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real bSSFP images {x} the and generated ones by {G2 (y)} from LGE images.
In such a way, a bidirectional mapping function can be learned for the two image
domains. The objective function of adversarial learning is:

LGAN1 = Ey∼PLGE(y) [log D1(y)] + Ex∼PbSSFP (x) [log(1 − D1(G1(x)))] (1)

LGAN2 = Ex∼PbSSFP (x) [log D2(x)] + Ey∼PLGE(y) [log(1 − D2(G2(y)))] (2)

LGAN (G1, G2,D1,D2) =
1
2
(LGAN1 + LGAN2) (3)

where PbSSFP (x) and PLGE (y) are the data distributions of the bSSFP and
LGE images, respectively.

2.2 Cycle-Reconstruction Learning

To ensure meaningful information can be well kept during the domain map-
ping of the adversarial learning procedure, we introduce the cycle-reconstruction
learning block. Only the previous generator and discriminator cannot necessar-
ily lead to a good domain mapping, due to the oscillation learning procedure.
The discriminator only makes global image-level decision of whether an image
is fake or real, while the detailed local information cannot be guaranteed. Given
this consideration, the cycle-reconstruction learning block is introduced, which
re-generated the original image of source domain from the generated images in
the target domain. A good mapping should keep well structure information of
the source domain during this cycle-reconstruction procedure. We express the
objective of cycle-reconstruction learning as:

Lcyc1 = Ex∼PbSSFP (x) [‖G2(G1(x)) − x‖1] (4)

Lcyc2 = Ey∼PLGE(y) [‖G1(G2(y)) − y‖1] (5)

Lcyc(G1, G2) =
1
2
(Lcyc1 + Lcyc2) (6)

2.3 Shape Preservation Learning

To make sure the generated LGE images {yG1} have clear and correct bound-
ary, we make use of the available myocardium shape masks {mx} of the
bSSFP images and introduce the shape preservation learning block, where the
myocardium shape of the generated fake LGE image is constraint to be identi-
cal to that of the input bSSFP image. To achieve this, a segmentation network
S is embedded into the generator G1 to obtain the myocardium shape of the
generated images. Shape preservation is described by the cross-entropy (CE)
loss between the shape mx of the of real bSSFP image and the output of the
segmentation network:

Lshape(S,G1) = Ex∼PbSSFP (x) [CE(mx, S(G1(x)))] (7)
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2.4 Overall Objective

The overall objective of our shape-transfer GAN is:

Ltotal(G1, G2,D1,D2, S) = LGAN + λ1Lcyc + λ2Lshape (8)

where λ1 and λ2 adjust the balance of the three terms. After the shape-transfer
GAN is learned, the segmentation network S can be directly applied to any novel
LGE images.

3 Experiment

We validate our method with the dataset provided by the MS-CMRSeg 2019
challenge. In this section, we first describe the experiment configurations, which
include details of the dataset, our experimental setup and the evaluation cri-
terion. Then we report the performance of our method and compare it with
existing state-of-art methods.

3.1 Experimental Configuration

Dataset. The Multimodal CMR data (includes bSSFP, LGE and T2 images)
used in the paper were collected from 45 patients, where ground truth (GT) of
myocardium (Myo), left ventricle (LV) and right ventricle (RV) in 35 patients
were provided for bSSFP and T2 images, while for 5 patients GT of LGE images
were provided for validation. The rest 40 patients are used for test. For each
patient, the bSSFP images consist of 8–12 slices, with in-plane resolution of
1.25×1.25 mm and slice thickness of 8 to 13 mm. The T2 images have 3–7 slices,
with in-plane resolution of 1.35 × 1.35 mm and slice thickness of 12 to 20 mm.
The LGE images have 10–18 slices with in-plane resolution of 0.75 × 0.75 mm
and slice thickness of 5 mm. The size of the images range from 256 × 256 to
512 × 512 and were resized and crop to 128 × 128 for Shape-Transfer GAN.

Fig. 2. The network details of generator, discriminator and segmentor.



276 X. Tao et al.

Experiment Setup. Figure 2 shows the network details. We used AdamOpti-
mizer with learning rate of 1e-4 for Shape-Transfer GAN and 1e-5 for segmen-
tation network. The input of Shape-Transfer GAN were 2D slices from bSSFP
images of 35 patients and LGE images of 45 patients. Note that the segmenta-
tion network was pretrained with bSSFP image-label pairs and then the Shape-
Transfer GAN was trained for 200 epochs.

Evaluation Metrics. To evaluate the segmentation performance, Dice score,
Jaccard score, average surface distance (ASD) and Hausdorff Distance (HD) were
used. Let VSeg and VGT be the segmentation and the ground truth volume, and
BSeg, BGT their boundaries. They are computed as:

Dice(VSeg, VGT ) =
2|VSeg ∩ VGT |
|VSeg + VGT | , Jaccard(VSeg, VGT ) =

2|VSeg ∩ VGT |
|VSeg ∪ VGT | (9)

ASD(BSeg, BGT ) =
1

|BSeg| + |BGT | ×
⎛
⎝ ∑

p∈BSeg

d (p,BGT ) +
∑

q∈BGT

d (q,BSeg)

⎞
⎠

(10)

HD(BSeg, BGT ) = max

{
sup

p∈BSeg

inf
q∈BGT

d (p, q) , sup
p∈BGT

inf
q∈BSeg

d (p, q)

}
(11)

3.2 Performance Evaluation and Analysis

Ablation Study. We first conduct ablation study and validate the effectiveness
of our shape-transfer GAN using the LGE images of the 5 patients for validation.
The proposed shape-transfer GAN was compared with U-net and GAN with
no shape preservation (no-shape GAN). We train the U-net directly with
bSSFP images or the generated LGE images, and the provided labels in bSSFP
domain.

As can be drawn from Table 1, when no adversarial learning is employed,
U-net cannot be applied directly to LGE images due to the different intensity
distributions. For no-shape GAN, the adversarial learning transfers this distri-
bution from the bSSFP domain to the target LGE domain, therefore make the
segmentation network trained with labels of bSSFP domain ready for the LGE
domain. But the performance is still far from satisfaction. With the proposed
shape preservation learning block, the performance can be clearly improved.
Shape-Transfer GAN can keep the myocardium shape accurately in the
generated LGE images, thus leads to better synthetic image-label pairs for
learning.
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Table 1. Ablation study of our method on validation dataset of 5 patients LGE images.
Dice score (Mean± std) is presented.

Method LV RV Myo

U-Net 0.249 ± 0.197 0.286 ± 0.069 0.043 ± 0.035

No-Shape GAN 0.589 ± 0.190 0.638 ± 0.092 0.303 ± 0.190

Shape-Transfer GAN 0.764 ± 0.125 0.738 ± 0.090 0.607 ± 0.117

Figure 3 shows the visualization results from three different slices for these
methods. As can be obviously drawn, when no LGE labels were used for training,
U-net cannot capture the shape of myocardium at all. It even makes false positive
regions in distant background regions. With adversarial learning, No-shape GAN
can well capture the shape of LV, RV and myocardium. However, there are still
some regions that are not captured or boundaries that are not well aligned.
With the shape-preservation learning, Shape-Transfer GAN can deliver accurate
segmentation results. An interest observation from the first row is that a part of
RV is missing in the ground truth label, while our method can fill it.

Table 2 shows the performance of our method on the test dataset, which has
LGE images of 40 patients (three failure cases were excluded). Without true label
information for model training, our method is still capable of segmentation well
the LV, RV and myocardium of LEG images. Especially, our method achieves
for LV segmentation Dice score of 0.847, ASD of 3.110 mm, HD of 17.986 mm.

Image Ground Truth U-Net No-Shape GAN Shape-Transfer GAN

Dice MYO : 0.731
Dice RV : 0.887
Dice LV : 0.894

Dice MYO : 0.035
Dice RV : 0.811
Dice LV : 0.454

Dice MYO : 0
Dice RV : 0
Dice LV : 0

Dice MYO : 0.821
Dice RV : 0.844
Dice LV : 0.895

Dice MYO : 0.385
Dice RV : 0.741
Dice LV : 0.743

Dice MYO : 0
Dice RV : 0
Dice LV : 0

Dice MYO : 0
Dice RV : 0.361
Dice LV : 0.660

Dice MYO : 0.310
Dice RV : 0.807
Dice LV : 0.621

Dice MYO : 0.637
Dice RV : 0.857
Dice LV : 0.662

Fig. 3. Segmentation results of different methods for ablation study. Each row repre-
sents different slice from LGE images. The proposed Shape-Transfer GAN gives the
best segmentation results.
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Table 2. Segmentation performance of Shape-Transfer GAN on test dataset of LGE
images from 40 patients with three failure cases excluded.

Metrics LV RV Myo

Dice 0.847 ± 0.054 0.776 ± 0.048 0.686 ± 0.078

Jaccard 0.738 ± 0.079 0.636 ± 0.063 0.527 ± 0.087

Metrics LV endo LV epi RV endo

ASD (mm) 3.110 ± 1.039 3.022 ± 0.736 3.953 ± 0.908

HD (mm) 17.986 ± 4.028 17.453 ± 5.902 21.974 ± 10.026

Table 3. Performance comparison of our method and existing state-of-art methods on
the same dataset.

Dice score Shape-Transfer GAN GMM+bSSFP MvMM SRSCN

LV 0.847 ± 0.054 0.836 ± 0.071 0.866 ± 0.063 0.915 ± 0.052

RV 0.776 ± 0.048 – – 0.882 ± 0.084

Myo 0.686 ± 0.078 0.635 ± 0.120 0.717 ± 0.076 0.812 ± 0.105

Performance Comparison. Table 3 compares our method with existing
state-of-art methods, including two GMM-based methods (GMM+bSSFP,
MvGMM) [2], and one deep neural network based method (SRSCN) [1]. When
compared with the GMM-based methods, our method can deliver comparable
performance, but with less application complexity. The iterative optimization
procedure adds the complexity of the GMM-based methods during practice
application. When compared with SRSCN, our method fails to show better or
comparable performance. This is due to the fact that SRSCN was trained with
ground truth labels of 25 patients’ LGE images.

4 Conclusion

We propose the Shape-Transfer GAN for cardiac segmentation of LGE MRI
images, which can learn the procedure of generating realistic LGE images with
the anatomical shape information well kept, and thus obtain an LGE segmenta-
tion network. Our method avoided the use of LGE label during the learning of
the segmentation. We validated the effectiveness of the proposed shape-transfer
technique and tested the final performance on a dataset of 40 patients. The
good segmentation results prove that our method has a great potential in cases
of medical image segmentation tasks with insufficient labeled data.
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