
Multi-sequence Cardiac MR
Segmentation with Adversarial Domain

Adaptation Network

Jiexiang Wang, Hongyu Huang, Chaoqi Chen, Wenao Ma, Yue Huang,
and Xinghao Ding(B)

School of Information Science and Engineering, Xiamen University, Xiamen, China
{wangjx,huanghy,cqchen94,wenaoma}@stu.xmu.edu.cn,

{yhuang2010,dxh}@xmu.edu.cn

Abstract. Automatic and accurate segmentation of the ventricles and
myocardium from multi-sequence cardiac MRI (CMR) is crucial for the
diagnosis and treatment management for patients suffering from myocar-
dial infarction (MI). However, due to the existence of domain shift among
different modalities of datasets, the performance of deep neural networks
drops significantly when the training and testing datasets are distinct.
In this paper, we propose an unsupervised domain alignment method
to explicitly alleviate the domain shifts among different modalities of
CMR sequences, e.g., bSSFP, LGE, and T2-weighted. Our segmentation
network is attention U-Net with pyramid pooling module, where multi-
level feature space and output space adversarial learning are proposed
to transfer discriminative domain knowledge across different datasets.
Moreover, we further introduce a group-wise feature recalibration module
to enforce the fine-grained semantic-level feature alignment that match-
ing features from different networks but with the same class label. We
evaluate our method on the multi-sequence cardiac MR Segmentation
Challenge 2019 datasets, which contain three different modalities of MRI
sequences. Extensive experimental results show that the proposed meth-
ods can obtain significant segmentation improvements compared with
the baseline models.

1 Introduction

Accurate segmentation of the ventricles and myocardium is fundamental to
the diagnosis and treatment of myocardial infarction (MI) [17]. Cardiac MRI
sequences are usually used for the MI diagnosis, in particular the T2-weighted
MRI detect damaged and ischemic areas, the balanced-Steady State Free Pre-
cession (bSSFP) MRI clearly shows the heart structure boundary, and the late
gadolinium enhancement (LGE) MRI can enhance infarcted myocardium with
distinctive brightness compared to healthy structure [16]. Manual segmenta-
tion is time-consuming, so automatic segmentation is significant in the clinic.
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(a) Source1 (b) Source2 (c) Target (d) Label (e) T-noDA (f) T-DA

Fig. 1. Performance drops due to domain shift. (a) Original T2-weighted MRI
(Source1). (b) Original bSSFP MRI (Source2). (c) Original LGE MRI (Target). (d)
LGE MRI annotation (Label). (e) The segmentation results of LGE MRI using an
established model trained on T2-weighted and bSSFP MRI data (T-noDA). (f) The
segmentation results of an LGE MRI using our model trained on T2-weighted and
bSSFP MRI data (T-DA). The yellow region denotes the right ventricle, the green
region denotes the left ventricle, and the blue region denotes the myocardium. (Color
figure online)

Recently, deep learning network has become a powerful tool for semantic seg-
mentation on heart structures [12,13]. Obviously, the ventricles and myocardium
segmentation results can be improved combining the complimentary informa-
tion from T2-weighted and bSSFP MRI sequences [16]. To save labeling time,
sometimes only the T2-weighted and bSSFP MRI sequences and corresponding
labels are available. However, a well-trained segmentation model may underper-
form when being tested on data from different modalities, which is caused by
the domain shift (as shown in Fig. 1). Fine-tuning on the target domain data
is a simple but efficient method to alleviate the performance drop. But it still
requires massive data collection and enormous annotation workload which are
impossible for many real-world medical scenarios. For this reason, constructing
a general segmentation model suitable for various modalities is promising yet
still challenging.

Unsupervised Domain Adaptation (UDA) methods have shown compelling
results on reducing the dataset shift across distinct domains. Prior efforts on
this problem intended to match the source and target data distributions to learn
a domain-invariant representation. For example, Maximum Mean Discrepancy
(MMD) was introduced to minimize the distance of source and target feature
distributions in Reproducing Kernel Hilbert Space (RKHS) [11]. CycleGAN [15]
tackled the image-to-image translation task in a fully unsupervised manner, and
thus is capable of reducing the domain shift in the pixel-level. AdaptSegNet [10]
solved the unsupervised cross domain segmentation problem by leveraging the
domain adversarial training approach. In the context of medical imaging, [3]
developed an UDA framework based on adversarial networks for lung segmenta-
tion on chest X-rays. [8] improved the UDA framework with Siamese architec-
ture for Gleason grading of histopathology tissue. [5] proposed a domain critic
module and a domain adaptation module for the unsupervised cross-modality
adaptation problem. These approaches, which based on the domain adversarial
training, required empirical feature selection. [2] proposed the synergistic fusion
of adaptations from both image and feature perspectives for heart structures
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segmentation. However, this approach, which based on image-to-image adapta-
tion, cannot be directly introduced to the multiple source domain adaptation
problems due to the presence of multiple domain shifts between different source
domains.

In this paper, we propose a domain alignment method for the UDA problem,
which helps the established model segment the ventricles and myocardium accu-
rately in the target domain without requiring target labels. Firstly, in order
to reduce the domain shift with respect to the image appearance, we pro-
pose a histogram match operation for all the data. Secondly, we introduce the
domain adversarial training in the output space, which can directly align the
predicted segmentation results across different domains. Finally, we further pro-
pose a group-wise feature recalibration module (GFRM) to improve the domain
adversarial training by integrating multi-level features without requiring manual
selection to progressively align the source and target feature distributions. The
proposed method is extensively evaluated on the multi-sequence cardiac MR
Segmentation (MS-CMRSeg) Challenge 2019 datasets, including bSSFP, LGE
and T2-weighted MRI sequences.

2 Method

Figure 2 overviews our segmentation method for ventricles and myocardium in
MRI sequences. We use modified 2D attention U-Net with pyramid pooling
module as our segmentation backbone architecture [7,14]. To align the distance
over feature and output spaces across different domain, feature-level and mask-
level discriminator are adopted. Moreover, the group-wise feature recalibration
module (GFRM) is introduced to transfer multi-level feature information. The
details of the above modules are shown in Fig. 3.

Fig. 2. Schematic view of our proposed framework.
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2.1 Network Architecture

Segmentation Network. It is essential to build upon a good baseline model
to achieve high-quality segmentation results. Our segmentation network follows
the spirit of attention U-Net architecture [7]. In encoder network, we keep the
convolution layer as the initial setting. We perform three maxpool operations
totally. Dilated convolution is adopted after third maxpool operation to cap-
ture large receptive field to alleviate loss of structural information. Inspired by
[14], pyramid pooling module is introduced to generate multi-scale features to
alleviate the variance of heart size over each patient. In decoder network, we per-
form three deconvolution operations totally. For further accurate segmentation
results, attention gate (as the black dot shown in Fig. 3(a)) is utilized to learn to
focus on ventricles and myocardium structures. In attention gate, the features in
the encoder part (as the blue rectangle shown in Fig. 3(a)) and decoder part (as
the gray rectangle shown in Fig. 3(a)) are first squeezed with 3 × 3 convolution
layer along the channel direction respectively and then added together. After
that, we squeeze the features to single channel feature map to form structure
attention with 1 × 1 convolution layer and generate final feature maps by dot
product. Finally, we use 1 × 1 convolution layer with four output channels fol-
lowed by the sigmoid activation function to generate the probability maps. To
save computational resources, we share the network with the same parameters
between source and target domain.

Fig. 3. Architecture of the sub-networks in our framework. (Color figure online)

Group-wise Feature Recalibration Module. Before we perform group-wise
feature recalibration operation, different size features from segmentation net-
work above are expanded and concatenated via upsampling and concatenating
operations. The features are send to GFRM. Our GFRM follows the spirit of [9].
Different from the above method, we divide features into four groups correspond-
ing to the segmentation categories to focus on specific heart structures and we
recalibrate features in each group (as shown in Fig. 3(b)). GFRM consists of two
parts: channel attention part and spatial attention part. In channel attention
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part, we first squeeze global spatial information with global average pooling and
fully connection layer. Then, we can generate the channel-wise attention features
by simple dot product. In the spatial attention part, we first squeeze channel
information with 1 × 1 convolution layer. Then, we can obtain the spatial-wise
attention features by simple dot product. The features from channel attention
part are added with the features from spatial attention part to generate group-
wise recalibrated features. Finally, the features from each group are concatenated
to generate final recalibrated features.

Discriminator. The feature-level and mask-level discriminator are based on
the multi-level features from GFRM and predicted mask results. We use Patch-
GAN as our discriminator [6]. The network consists of 3 convolution layers with
stride of 2 and 2 convolution layers with stride of 1. The kernel size of all convolu-
tion layers is 4× 4 and the corresponding channel number is 64, 128, 256, 256, 1.
Except for the last layer, each convolution layer is followed by a leaky ReLU
parameterized by 0.2.

2.2 Hybrid Loss Function for Source Data

Since the labels for source domain are available, we train the segmentation net-
work with a hybrid loss. The vanilla cross-entropy loss with our unbalanced
training data leads to low accuracy. We add the Jaccard loss [1] into our loss
function. The training objective for source data is

Ls
ce = −Exs∼S(

Ns∑

i=1

C∑

c=1

ys,i,c log G(xs,i;Θg)) (1)

Ls
jac = −Exs∼S(

Ns∑

i=1

C∑

c=1

ys,i,cG(xs,i;Θg)
ys,i,c + G(xs,i;Θg) − ys,i,cG(xs,i;Θg)

) (2)

S represents source domain; For each source image xs, there is one corresponding
annotation ys; Ns is the number of all source images; Exs∼S means that all xs

are from S; C is the number of all categories; G is segmentation network; Θg is
the parameters of G; ys,i,c and G(xs,i;Θg) mean the annotation and prediction
vectors, respectively. For cross entropy loss, the imbalance of training data leads
to a local optimum with inappropriate direction of gradient decreasing, especially
in the early stage. The Jaccard loss effectively helps to avoid the local optimum
due to its better perceptual quality and scale invariance [1].

2.3 Adversarial Learning for Target Data

In the target domain, due to the lack of annotations, we leverage the adversar-
ial learning to train the segmentation network by minimizing the discrepancy
across the source and target domain. Domain adaptation based on both feature
and output space is proved to be effective for heart structure segmentation [4].



Multi-sequence Cardiac MR Segmentation 259

In our framework, we employ two discriminators. The features input to feature
domain discriminator are selected empirically in [4]. To overcome this problem,
we propose the GFRM to leverage the full feature spectrum and automatically
select prominent features in the feature space. In the segmentation network, each
feature scale generates one output feature map in the same dimension via con-
volution and upsampling operations. The feature maps are further processed by
the GFRM to highlight the prominent features and suppress the irrelevant ones.
The combined feature maps are then fed to the feature discriminator network
for the adversarial learning, where the losses are defined as

LadvDf
= − Exs∼S log Df (R(G(xs;Θg);Θr);Θdf

)

− Ext∼T (1 − log Df (R(G(xt;Θg);Θr);Θdf
))

(3)

LadvGf
= −Ext∼T log Df (R(G(xt;Θg);Θr);Θdf

) (4)

T represents target domain; where xt is target data; Ext∼T means that all xt

are from T ; R is the GFRM; Θr is the parameters of R; Df is the feature
discriminator; Θdf

is the parameters of Df .
In the output space, the segmentation results of target domain should be

similar to the ones of source domain. To achieve this, we employ the adversarial
learning technique in the output space, where the losses are defined as

LadvDm
= − Exs∼S log Dm(G(xs;Θg);Θdm

)
− Ext∼T (1 − log Dm(G(xt;Θg);Θdm

))
(5)

LadvGm
= −Ext∼T log Df (G(xt;Θg);Θdm

) (6)

where Dm is the mask discriminator; Θdm
is the parameters of Dm.

Combined with the aforementioned loss, the full objective function

LFULL =λceLce + λjacLjac + λDf
LadvDf

+ λGf
Ladvgf

+ λDm
LadvDm

+ λGm
Ladvgm

(7)

3 Experiment

Dataset. The validation of the proposed method is performed in the MS-
CMRSeg Challenge 2019 dataset covering 45 patients. There are bSSFP, T2-
weighted and LGE MRI sequences in each patient data. In one patient data, the
slice number and annotation of three MRI modalities are different. We combine
labeled bSSFP and T2-weighted MRI sequences as source data, and unlabeled
LGE MRI sequences as target data. Experienced experts manually annotated
the left ventricle (LV), right ventricle(RV) and myocardium (Myo) as ground
truth. We pre-processing the data for domain adaptation. The data is resized
and cropped to 400 × 400 in the center of each slice. In order to eliminate the
inconsistency in appearance, we perform histogram match operation on both
source and target data, as shown in Fig. 4.
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Fig. 4. Visual comparison for histogram match operation: (a) T2-weighted MRI. (b)
T2-weighted MRI after histogram match. (c) bSSFP MRI. (d) bSSFP MRI after his-
togram match. (e) LGE MRI. (f) LGE MRI after histogram match.

Implementation Details. In our experiments, we implement our whole net-
work with PyTorch, using a standard PC with a single NVIDIA 1080Ti. To
train the segmentation network, we use the Stochastic Gradient Descent (SGD)
optimizer with Nesterov acceleration where the momentum is 0.9 and the weight
decay is 1e−4. The initial learning rate is set as 0.01 and is decreased to 0.001
after 80 epochs. For training the both feature and mask discriminator, we use
Adam optimizer with the fixed learning rate as 0.0002. The weight decay is set
as 5e−5. We totally trained 150 epochs with a mini-batch size of 8. We set λce,
λjac, λGf

, λDf
, λGm

and λDm
to 0.5, 0.5, 0.05, 1.0, 0.005 and 1.0. The training

time cost only 5 h to converge.

Fig. 5. Visual comparison for the LV, RV, and Myo segmentation results from ablation
setting. (a) Original image from source domain. (b) Annotation. (c) S2T. (d) S2T+HM.
(e) S2T+HM+MDA. (f) S2T+HM+MDA+FDA. (g) S2T+HM+MDA+FDA+GFRM.

Quantitative and Qualitative Analysis. In order to verify the effectiveness of
the proposed method, we adopt Dice coefficient (DSC), Jaccard coefficient (Jac)
for further evaluation. We first trained segmentation network on the source data
and then test on the target data (S2T). The results in Table 1 shows that the
mean Dice in S2T is too slow. As we can see, our method can promote about
36.09% in DSC and 38.38% in Jac than S2T, which indicates that our method
can alleviate dataset shift across different domains.
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In addition, we examine the effect of the histogram match operation (HM),
mask-level adversarial learning (MDA), feature-level adversarial learning (FDA)
and GFRM on the performance in the target domain. The result of the abla-
tion study in Table 1 shows that our proposed modules can achieve a better
performance than S2T. Figure 5 demonstrates that each proposed module can
contribute to alleviate the domain misalignment.

Table 1. Quantitative evaluation of our proposed methods

Method LV RV Myo Mean

DSC [%] Jac [%]DSC [%] Jac [%]DSC [%] Jac [%]DSC [%] Jac [%]

S2T 50.01 37.41 66.72 51.03 31.69 21.88 49.47 36.78

S2T+HM 59.80 47.66 76.02 62.98 38.13 26.73 57.98 45.79

S2T+HM+MDA 85.67 75.48 86.19 75.89 75.35 60.70 82.40 70.69

S2T+HM+MDA+FDA 88.43 79.68 85.70 75.14 78.43 64.57 84.19 73.13

S2T+HM+MDA+FDA+GFRM 89.33 81.15 87.17 77.29 80.17 67.04 85.56 75.16

4 Conclusion

In this paper, we proposed an unsupervised domain alignment method for left
ventricle (LV), right ventricle (RV) and myocardium (Myo) segmentation from
different cardiac MR sequences. We first introduced a segmentation network
with hybrid segmentation loss to generate accurate prediction. We alleviate the
dataset shift across different domains by leveraging the adversarial learning in
both feature and output spaces. The proposed GFRM can enforce the fine-
grained semantic-level feature alignment that matching features from different
networks but with the same class label. Experiments show that the proposed
method can achieve competitive results.
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