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Abstract. In this work, we attempt the segmentation of cardiac struc-
tures in late gadolinium-enhanced (LGE) magnetic resonance images
(MRI) using only minimal supervision in a two-step approach. In the
first step, we register a small set of five LGE cardiac magnetic resonance
(CMR) images with ground truth labels to a set of 40 target LGE CMR
images without annotation. Each manually annotated ground truth pro-
vides labels of the myocardium and the left ventricle (LV) and right
ventricle (RV) cavities, which are used as atlases. After multi-atlas label
fusion by majority voting, we possess noisy labels for each of the targeted
LGE images. A second set of manual labels exists for 30 patients of the
target LGE CMR images, but are annotated on different MRI sequences
(bSSFP and T2-weighted). Again, we use multi-atlas label fusion with
a consistency constraint to further refine our noisy labels if additional
annotations in other modalities are available for a given patient. In the
second step, we train a deep convolutional network for semantic seg-
mentation on the target data while using data augmentation techniques
to avoid over-fitting to the noisy labels. After inference and simple post-
processing, we achieve our final segmentation for the targeted LGE CMR
images, resulting in an average Dice of 0.890, 0.780, and 0.844 for LV cav-
ity, LV myocardium, and RV cavity, respectively.
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1 Introduction

Segmentation of cardiac structures in magnetic resonance images (MRI) has
potential uses for many clinical applications. In particular for cardiac mag-
netic resonance (CMR) images, late gadolinium-enhanced (LGE) imaging is
useful to visualize and detect myocardial infarction (MI). Another common
CMR sequence is T2-weighted imaging which highlights acute injury and
ischemic regions. Additionally, balanced-steady state free precession (bSSFP)
cine sequences can be utilized to analyze the cardiac motion of the heart [1,2].
Each CMR sequence is typically acquired independently, and they can exhibit
significant spatial deformations among each other even when stemming from the
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same patient. Nevertheless, segmentation of different anatomies from LGE could
still benefit from the combination with the other two sequences (T2 and bSSFP)
and their annotations. An example of different CMR sequences utilized in this
work can be seen in Fig. 1. LGE enhances infarcted tissues in the myocardium
and therefore is an important sequence to focus on for the detection and quantifi-
cation of myocardial infarction. The infarcted myocardium tissue appears with a
distinctively brighter intensity than the surrounding healthy regions. In partic-
ular, LGE images are important to estimate the extent of the infarct in compar-
ison to the myocardium [1]. However, manual delineation of the myocardium is
time-consuming and error-prone. Therefore, automated and robust methods for
providing a segmentation of the cardiac anatomy around the left ventricle (LV)
are needed to support the analysis of myocardial infarction. Modern semantic
segmentation methods utilizing deep learning have significantly improved the
performance in various medical imaging applications [3–6]. At the same time,
deep learning methods typically require large amounts of annotated data in order
to train sufficiently robust and accurate models depending on the difficulty of
the task. However, in many use cases, the availability of such annotated cases
may be limited for a specific targeted image modality or sequence. For CMR
applications containing multiple sequences, annotations for the same anatomy
of interest might be available for sequences other than the target one of the
same patient. In this work, we attempt the segmentation of cardiac structures in
LGE cardiac magnetic resonance (CMR) images utilizing classical methods from
multi-atlas label fusion in order to provide “noisy” pseudo labels to be used for
training deep convolutional neural network segmentation models.

(a) bSSFP (b) T2 (c) LGE

Fig. 1. Sagittal view of different cardiac magnetic resonance (CMR) image sequences
of the same patient’s heart. Images (a–c) show balanced-steady state free precession
(bSSFP), T2-weighted, and late gadolinium-enhanced (LGE) images with overlays of
the corresponding manual ground truth (g.t.) annotations [patient 2 of the challenge
dataset].

2 Method

Our method can be described in two steps. In the first step, we register a small
set, e.g. 5, LGE CMR with ground truth labels (“atlases”) to a set of target LGE
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CMR images without annotation. Each ground truth atlas provides manually
annotated labels of the myocardium, and the left and right ventricle cavities.
After multi-atlas label fusion by majority voting, we possess noisy labels for
each of the targeted LGE images. A second set of manual labels exists for some
of the patients of the targeted LGE CMR images, but are annotated on different
MRI sequences (bSSFP and T2-weighted). Again, we use multi-atlas label fusion
with a consistency constraint to further refine our noisy labels if additional
annotations in other sequences are available for that patient. In the second step,
we train a deep convolutional network for semantic segmentation on the target
data while using data augmentation techniques to avoid over-fitting to the noisy
labels. After inference and simple post-processing, we arrive at our final label
for the targeted LGE CMR images.

2.1 Multi-atlas Label Fusion of CMR

Many methods of multi-atlas label fusion exist [7]. In this work, we use a well-
established non-rigid registration framework based on a B-spline deformation
model [8] using the implementation provided by [9]. The registration is driven
by a similarity measurement S based on intensities from LGE, T2, and bSSFP
images. We perform two sets of registrations

1. Inter-patient and intra-modality registration, i.e. the registration of LGE with anno-
tations to the targeted LGE images of different patients.

2. Intra-patient and inter-modality registration, i.e. the registration of bSSFP/T2 with
annotations to the targeted LGE images of the same patient.

In both cases, an initial affine registration is performed followed by non-rigid
registration between the source image F (providing annotation, i.e. the “atlas”)
and the targeted reference image R. A coarse-to-fine registration scheme is used
in order to first capture large deformations between the images, followed by more
detailed refinements. The deformation is modeled with a 3D cubic B-spline model
using a lattice of control points {φ} and spacings between the control points of
δx, δy, and δz along the x-, y-, and z-axis of the image, respectively. Hence, the
deformation T(x) of a voxel x = (x, y, z) to the domain Ω of the target image
can be formulated as

T(x) =
∑

i,j,k

β3(
x

δx
− i) × β3(

y

δy
− j) × β3(

y

δz
− k) × φijk. (1)

Here, β3 represents the cubic B-Spline function. By maximizing an overall
objective function

O (Ip, Is (T) ; {φ}) = (1 − α − β) × S − α × Csmooth(T) − β × Cinconsistency(T), (2)

we can find the optimal deformation field between source and targeted images.
Here, the similarity measure S is constrained by two penalties Csmooth and
Cinconsistency which aim to enforce physically plausible deformations. The con-
tribution of each penalty term can be controlled with the weights α and β,
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respectively. We use normalized mutual information (NMI) [10] which is com-
monly used in inter-modality registrations [7] as our driving similarity measure

S =
H(R) + H(F (T))

H(R, F (T))
. (3)

Here, H(R) and H(F (T)) are the two marginal entropies, and H(R,F (T)) is
the joint entropy. In [9], a Parzen Window (PW) approach [11] is utilized to fill
the joint histogram necessary in order to compute the NMI between the images
efficiently. To encourage realistic deformations, we utilize bending energy which
controls the “smoothness” of the deformation field across the image domain Ω:
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In an ideal registration, the optimized transformations from F to R (forward)
and R to F (backward) are the inverse of each other. i.e. Tforward = T−1

backward

and Tbackward = T−1
forward [12]. The used implementation by [13] follows the

approach by [12] using compositions of Tforward and Tbackward in order to include
a penalty term that encourages inverse consistency of both transformations:

Cinconsistency =
∑

x∈Ω

‖Tforward (Tbackward (x))‖2 +
∑

x∈Ω

‖Tbackward (Tforward (x))‖2 (5)

At each level of the registration, both the image and control point grid reso-
lutions are doubled compared to the previous level. We find suitable registration
parameters for both type (1) and type (2) registrations using visual inspection
of the transformed image and ground truth atlases. For type (1) registrations,
multiple atlases are available to be registered with each target image. We per-
form a simple majority voting in order to generate our “noisy” segmentation
label Ŷ for each target image X.

2.2 Label Consistency with Same Patient Atlases

Because of anatomical consistency between different sequences of the same
patient, we employ inter-modality registration to obtain noisy labels for LGE
images in type (2) registrations. Two sets of segmentations, denoted by Ŷ LGE

bSSFP

and Ŷ LGE
T2 , can be obtained from the registrations: bSSFP to LGE, and T2 to

LGE. In order to make sure our noisy labels are accurate enough, we only employ
the consistent region Ŷ LGE

bSSFP

⋂
Ŷ LGE

T2 where both segmentations agree. In the
non-consistent regions, we still use the noisy label from type (1) registrations. In
type (1) registrations, we use symmetric registration with bending energy factor
α = 0.001 and inconsistency factor β = 0.001. We use five resolution levels and
the maximal number of iteration per level is 300. The final grid spacing along x,
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y and z are the same with five voxels. In type (2) registrations, we use six levels
and the maximal number of iteration per level is 4000. The final grid spacing
along x, y and z are the same with one voxel.

2.3 Deep Learning Based Segmentation with Noisy Labels

In the second step, we train different deep convolutional networks for seman-
tic segmentation on the target data while using data augmentation techniques
(rotation, scaling, adding noise, etc.) to avoid over-fitting to the noisy labels.

Given all pairs of images X and pseudo labels Ŷ , we re-sample them to 1
mm3 isotropic resolution and train an ensemble E of n fully convolutional neural
networks to segment the given foreground classes, with P (X) = E(X) standing
for the softmax output probability maps for the different classes in the image.
Our network architectures follow the encoder-decoder network proposed in [14],
named AH-Net, and [5] based on the popular 3D U-Net architecture [3] with
residual connections [15], named SegResNet. For training and implementing these
neural networks, we used the NVIDIA Clara Train SDK 1 and NVIDIA Tesla
V100 GPU with 16 GB memory. As in [14], we initialize AH-Net from ImageNet
pretrained weights using a ResNet-18 encoder branch, utilizing anisotropic (3×
3 × 1) kernels in the encoder path in order to make use of pretrained weights
from 2D computer vision tasks. While the initial weights are learned from 2D,
all convolutions are still applied in a full 3D fashion throughout the network,
allowing it to efficiently learn 3D features from the image. In order to encourage
view differences in our ensemble models, we initialize the weights in all three
major 3D image planes, i.e. 3× 3× 1, 3× 1× 3, and 1× 3× 3, corresponding to
axial, sagittal, and coronal planes of the images. This approach results in three
distinct AH-Net models to be used in our ensemble E . The Dice loss [4] has been
established as the objective function of choice for medical image segmentation
tasks. Its properties make it suitable for the unbalanced class labels common in
3D medical images:

LDice = 1 − 2
∑N

i=1 yiŷi∑N
i=1 y2

i +
∑N

i=1 ŷ2
i

(6)

Here, yi is the predicted probability from our network f and ŷi is the label
from our “noisy” label map Ŷ at voxel i. For simplicity we show the Dice loss
for one foreground class in Eq. 6. In practice, we minimize the average Dice
loss across the different foreground classes. After inference and simple post-
processing, we arrive at our final label set for the targeted LGE CMR images.
We resize the ensemble models’ prediction maps to the original image resolution
using trilinear interpolation, fuse each probability map using an median operator
in order to reduce outliers. Then, the label index is assigned using the argmax
operator:

Y (X) = argmax ( median ( {E0(X), . . . , En(X)} ) ) (7)
1 https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-

sdk.

https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk
https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk
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Finally, we apply 3D largest connected component analysis on the foreground
in order to remove isolated outliers.

3 Experiments and Results

3.1 Challenge Data

The challenge organizers provided the anonymized imaging data of 45 patients
with cardiomyopathy who underwent CMR imaging at the Shanghai Renji hos-
pital, China, with institutional ethics approval. For each patient, three CMR
sequences (LGE, T2, and bSSF) are provided as multi-slice images in the ven-
tricular short-axis views acquired at breath-hold. Slice-by-slice manual annota-
tions of the right and left ventricular, and ventricular myocardium have been
generated as gold-standard using ITK-SNAP2 for training of the mdoels and
for evaluation the segmentation results. The manual segmentation took about
20 min/case as stated by the challenge organizers. We also use ITK-SNAP for all
the visualizations shown in this paper. For more details, see the challenge web-
site3. The available training and test data have the following characteristics:

Training data:
– Patient 1-5:

• LGE CMR (image + manual
label) for validation

• T2-weighted CMR (image +
manual label)

• bSSFP CMR (image + manual
label)

– Patient 6-35:
• T2-weighted CMR (image +

manual label)
• bSSFP CMR (image + manual

label)
– Patient 36-45:

• T2-weighted CMR (only image)
• bSSFP CMR (only image)

Test data:

– Patient 6-45:
• LGE CMR (only image)

As one can see, only five ground truth annotations are available in the tar-
geted LGE images. However, 30 images have gold standard annotations available
in different image modalities, i.e. bSSFP and T2. We use all available annota-
tions for type (1) and type (2) multi-atlas label fusion approaches described in
Sect. 2. After “noisy” label generation for all testing LGE images, we train our
deep neural network ensemble to produce the final prediction labels for 40 LGE
images in the test set. The five manually annotated LGE cases are used as the
validation set during deep neural network training in order to find the best model

2 http://www.itksnap.org.
3 https://zmiclab.github.io/mscmrseg19/data.html.

http://www.itksnap.org
https://zmiclab.github.io/mscmrseg19/data.html
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Table 1. Evaluation scores on 40 LGE test images as provided by the challenge orga-
nizers. Both overlap and surface distance-based metrics are shown. LV and RV denote
the left and right ventricle, respectively.

Metric LV cavity LV myocardium RV cavity Average

Dice 0.890 0.780 0.844 0.838

Jaccard 0.805 0.642 0.735 0.727

Surface distance [mm] 2.13 2.32 2.80 2.41

Hausdorff distance [mm] 11.6 16.3 18.1 15.3

(a) LGE (b) g.t. (c) g.t. 3D (d) pred. (e) pred. 3D

Fig. 2. Comparison of the available ground truth annotation (b) and (c) in a validation
LGE dataset and our model’s prediction (d) and (e) [patient 2 of the challenge dataset].

parameters and avoid overfitting completely to the noisy labels. Throughout the
challenge, the authors are blinded to the ground truth of the test set during
model development and evaluation. Our evaluation scores on the test set are
summarized in Table 1. A comparison of the available ground truth annotation
in a validation LGE dataset and our model’s prediction is shown in Fig. 2.

(a) LGE (b) pseudo (c) pseudo (d) pred. (e) pred. 3D

Fig. 3. Comparison of the result after multi-atlas label fusion (b) and (c) in a testing
LGE dataset (a) and our model’s prediction (d) and (e) [patient 45 of the challenge
dataset].

4 Discussion and Conclusion

In this work, we combined classical methods of multi-atlas label fusion with deep
learning. We utilized the ability of multi-atlas label fusion to generate labels for
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new images using only a small set of labeled images of the targeted image modal-
ity as atlases, although resulting in less accurate (or “noisy”) labels when com-
pared to manual segmentation. Furthermore, we enhanced the noisy labels by
merging more atlas-based label fusion results if annotations of the same patient’s
anatomy are available in different image modalities. Here, they came from dif-
ferent MRI sequences, but they could potentially stem from even more different
modalities like CT, using multi-modality similarity measures to drive the reg-
istrations. After training a round of deep convolutional neural networks on the
“noisy” labels, we can see a clear visual improvement over multi-atlas label fusion
result. This points to the fact that neural networks can still learn correlations
of the data and the desired labels even when training labels are not as accurate
as ground truth supervision labels [16]. The networks are able to compensate
for some of the non-systematic errors in the “noisy” labels and hence improve
the overall segmentation. We are blinded to the test set ground truth annota-
tions and cannot quantify these improvements but visually, the improvements
are noticeable as shown in Fig. 3. In conclusion, we achieved the automatic seg-
mentation of cardiac structures in LGE magnetic resonance images by combing
classical methods from multi-atlas label fusion and modern deep learning-based
segmentation, resulting in visually compelling segmentation results.
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