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Abstract. In this work, we present a fully automatic method to seg-
ment cardiac structures from late-gadolinium enhanced (LGE) images
without using labelled LGE data for training, but instead by transferring
the anatomical knowledge and features learned on annotated balanced
steady-state free precession (bSSFP) images, which are easier to acquire.
Our framework mainly consists of two neural networks: a multi-modal
image translation network for style transfer and a cascaded segmentation
network for image segmentation. The multi-modal image translation net-
work generates realistic and diverse synthetic LGE images conditioned
on a single annotated bSSFP image, forming a synthetic LGE training
set. This set is then utilized to fine-tune the segmentation network pre-
trained on labelled bSSFP images, achieving the goal of unsupervised
LGE image segmentation. In particular, the proposed cascaded segmen-
tation network is able to produce accurate segmentation by taking both
shape prior and image appearance into account, achieving an average
Dice score of 0.92 for the left ventricle, 0.83 for the myocardium, and
0.88 for the right ventricle on the test set.

1 Introduction

Cardiac segmentation from late-gadolinium enhanced (LGE) cardiac magnetic
resonance (CMR) which highlights myocardial infarcted tissue is of great clinical
importance, enabling quantitative measurements useful for treatment planning
and patient management. To this end, the segmentation of the myocardium is
an important first step for myocardial infarction analysis.

Since manual segmentation is tedious and likely to suffer from inter-observer
variability, it is of great interest to develop an accurate automated segmenta-
tion method. However, this is a challenging task due to the fact that (1) the
infarcted myocardium presents an enhanced and heterogeneous intensity distri-
bution different from the normal myocardium region and (2) the border between
infarcted myocardium and blood pool appears blurry and ambiguous [1]. While

C. Chen and C. Ouyang—Equal contribution.

c© Springer Nature Switzerland AG 2020
M. Pop et al. (Eds.): STACOM 2019, LNCS 12009, pp. 209–219, 2020.
https://doi.org/10.1007/978-3-030-39074-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39074-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-39074-7_22


210 C. Chen et al.

the borders of the myocardium can be difficult to delineate on LGE images,
they are clear and easy to identify on the balanced steady-state free precession
(bSSFP) CMR images, which have high signal-to-noise ratio and whose contrast
is less sensitive to pathology (see red arrows in Fig. 1(a)). Conventional meth-
ods [2,3] use the segmentation result from the bSSFP CMR of the same patient
as prior knowledge to assist the segmentation on LGE CMR images. These meth-
ods generally require accurate registration between the bSSFP and LGE images,
which can be challenging as the imaging field-of-view (FOV), image contrast and
resolution between the two acquisitions can vary significantly [1,4]. Figure 1(b)
visualizes the discrepancy between the intensity distributions of the two imaging
modalities in the cardiac structures (specifically, left ventricle (LV), myocardium
(MYO), and right ventricle (RV)).

Fig. 1. The differences of image appearance (a) and intensity distributions (b) in the
cardiac region (the union of LV, MYO, RV) between LGE images and bSSFP images
(Color figure online)

Most recently, a deep neural network-based method has been proposed to
segment the three cardiac structures directly from LGE images [5], reporting
superior performance. However, this supervised segmentation method requires
a large amount of labelled LGE data. Because of the heterogeneous intensity
distribution of the myocardium in LGE images and the scarcity of experienced
image analysts, it is difficult to perform accurate manual segmentations on LGE
images and collect a large training set, compared to that on bSSFP images.

In this paper, we present a fully automatic framework that addresses the
above mentioned issues by training a segmentation model without using manual
annotations on LGE images. This is achieved by transferring the anatomical
knowledge and features learned on annotated bSSFP images, which are easier
to acquire. Our framework mainly consists of two neural networks:

– A multi-modal image translation network: this network is used for translating
annotated bSSFP images into LGE images through style transfer. Of note,
the network is trained in an unsupervised fashion where the training bSSFP
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images and LGE images are unpaired. In addition, unlike common one-to-
one translation networks, this network allows the generation of multiple
synthetic LGE images conditioned on a single bSSFP image;

– A cascaded segmentation network for LGE images consisting of two U-net [6]
models (Cascaded U-net): this network is first trained using the labelled
bSSFP images and then fine-tuned using the synthetic LGE data generated
by the image translation network.

The main contributions of our work are the following: (1) we employ a trans-
lation network that can generate realistic and diverse synthetic LGE images
given a single bSSFP image. This network enables generative model-based data
augmentation for unsupervised domain adaptation, which not only closes the
domain gap between the two modalities, but also improves the generalization
properties of the following segmentation network by increasing data variety;
(2) we demonstrate that the proposed two-stage cascaded network, which takes
both anatomical shape information and image appearance information into
account, produces accurate segmentation on LGE images, greatly outperform-
ing baseline methods; (3) the proposed framework can be easily extended to
other unsupervised cross-modality domain adaptation applications where labels
of one modality are not available.

2 Methodology

The proposed method aims at learning an LGE image segmentation model using
labelled bSSFP {(xb,yb)} and unlabelled LGE {xl} only. Specifically, the pro-
posed method is a two-stage framework. In the first stage, an unsupervised
image translation network is trained to translate each bSSFP image xb into
multiple instances of LGE-like images, noted as {xbl}. In the second stage,
these LGE-stylized bSSFP images are used together with their original labels
{(xbl,yb)} to adapt an image segmentation network pre-trained on labelled
bSSFP images to segment LGE images.

2.1 Image Translation

We employ the state-of-the-art multi-modal unsupervised image-to-image trans-
lation network (MUNIT) [7] as our multi-modal image translator. Let {xl}
and {xb} denote unpaired images from the two different imaging modalities
(domains): LGE and bSSFP, given an image drawn from one domain as input,
the network is able to change the appearance (i.e. image style) of the image
to that of the other domain while preserving the underlying anatomical struc-
ture [8]. This is achieved by learning disentangled image representations.

As shown in Fig. 2, each image x is disentangled into (a) a domain-invariant
content code c: c = Ec(x) and (b) a domain-specific style code s: s = Es(x)
using the content encoder Ec and the style encoder Es relative to its domain
where the content code captures the anatomical structure and the style code
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Fig. 2. Overview of the multi-modal image translation network. The network
employs the structure of MUNIT [7], which consists of two encoder-decoder pairs for
the two domains: bSSFP and LGE, respectively.

carries the information for rendering the structure which is determined by the
imaging modality. The image-to-image translation from one domain to the other
is achieved by swapping latent codes in two domains. For example, translating
a bSSFP image xb to be stylized as LGE, is achieved by feeding the content
code cb for the bSSFP image and the style code sl into the LGE decoder Dl:
xbl = Dl(cb, sl).

Of note, during training, each style encoder is trained to embed images into
a latent space that matches the standard Gaussian distribution N (0, I), min-
imizing the Kullback-Leibler (KL) divergence between the two. This allows to
generate an arbitrary number of synthetic LGE images given a single bSSFP
image during inference, by repeatedly sampling the style code from the prior
distribution N (0, I). Of note, although this prior distribution is unimodal, the
distribution of translated images in the output space is multi-modal thanks to
the nonlinearity of the decoder [7]. We apply this translation network to trans-
late annotated bSSFP images, resulting in a synthetic labelled LGE dataset,
which will then be used to finetune a segmentation network. For more details
about training the translation network, readers are referred to the original work
by Huang et al. [7].

2.2 Image Segmentation

Let xl be an observed LGE image, the aim of the segmentation task is to estimate
label maps yl having observed xl by modeling the posterior p(yl|xl). Inspired
by curriculum learning [9] and transfer learning, we first train a segmentation
network using annotated bSSFP images (source domain; easy examples) and
then fine-tune it to segment LGE images (target domain; hard examples). Since
labelled LGE images {(xl,yl)} are not available for finetuning, we use a synthetic
dataset Xbl : {(xbl,yb)}1..N generated by the aforementioned multi-modal image
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Fig. 3. Overview of the two-stage cascaded segmentation network. The archi-
tecture of each U-net is the same as the one of the vanilla U-net, except for two main
differences: (1) batch normalization is applied after each convolutional layer; (2) a
dropout layer (dropout rate = 0.1) is applied after each concatenation operation in the
network’s expanding path to encourage model generalizability. Of note, in this dia-
gram, we simplify the training procedure by omitting the pre-training procedure using
labelled bSSFP images.

translator. Ideally, the posterior modelled by the network p(yb|xbl) matches
p(yl|xl) when image space and label space are shared. For simplicity, we use
x and y to denote an image and its corresponding label map from the synthetic
dataset in the following paragraphs.

The segmentation network is a two-stage cascaded network which consists
of two U-nets [6], see Fig. 3. Specifically, given an image x as input, the first
U-net (U-net 1) aims at predicting four-class pixel-wise probabilistic maps
p1 = f1

U-net(x; θ) for the three cardiac structures (i.e. LV, MYO, RV) and the
background class (BG). Inspired by the auto-context architecture [10], we com-
bine these learned probabilistic maps p1 from the first network with the raw
image x to form a 5-channel input to train the second U-net (U-net 2) for
fine-grained segmentation: p2 = f2

U-net(x,p1;φ). By combining the appearance
information from the image x with the shape prior information from the initial
segmentation p1 as input, the cascaded network has the potential to produce
more precise and robust segmentations even in the presence of unclear bound-
aries for the different cardiac structures.

To train the network, we use a composite segmentation loss function Lseg

which consists of two loss terms: Lseg = Lwce + λLedge. The first term Lwce is
a weighted cross entropy loss: Lwce = −∑

m ωmym log (pm) where wm denotes
the weight for class m and pm is the corresponding predicted probability map.
We set the weight for myocardium ωMYO to be higher than the weights for the
other three classes to address class imbalance problem since there is a lower
percentage of pixels that corresponds to the myocardium class in CMR images.
The second term Ledge is an edge-based loss which penalizes the disagreement on
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the contours of the cardiac structures. Specifically, we apply two 2D 3 × 3 Sobel
filters [11] Sk (k = 1, 2) to the soft prediction maps p as well as the one-hot
heatmaps y of the ground truth to extract edge information along horizontal
and vertical directions. The edge loss is then computed by calculating the l2
distance between the predicted edge maps and the ground truth edge maps:
Ledge =

∑
m,m �=BG

∑
k=1,2 ‖fSk

(pm) − fSk
(ym)‖2, where fSk

(pm) is the edge
map extracted by applying the sobel filter Sk to the predicted probabilistic map
pm for foreground class m.

By using the edge loss together with the weighted cross entropy for opti-
mization, the network is encouraged to focus more on the contours of the three
structures and the myocardium, which are usually more difficult to delineate. In
our experiments, we set λ = 0.5 to balance the contribution of the two losses.

2.3 Post-processing

At inference time, each slice from a previously unseen LGE stack is fed to the
cascaded network to get the probabilistic maps for the four classes. Dense con-
ditional random field (CRF) [12] is then applied to refine the 2D predicted seg-
mentation mask slice by slice. After that, 3D morphological dilation and erosion
operations are applied to the whole segmentation stack to further improve the
global smoothness. In particular, we perform the operations in a hierarchical
order: first we apply them to the binary map covering all the three structures,
then to the MYO and the LV labels, separately.

3 Experiments and Results

3.1 Data

The framework was trained and evaluated on the Multi-sequence Cardiac MR
Segmentation Challenge (MS-CMRSeg 2019) dataset1. We used a subset of 40
bSSFP and 40 LGE images to train the image translation network. Then, we
created a synthetic dataset by applying the learned translation network to 30
labelled bSSFP images. Specifically, for each bSSFP image, we randomly sam-
pled the style code from N (0, I) five times, resulting in a set of 150 synthetic
LGE images in total. This synthetic dataset and the original 30 bSSFP images
with corresponding labels formed the training set for the segmentation network.
Exemplar results of these synthetic LGE images are provided in the supple-
mental material. For validation, we used a subset of 5 annotated LGE images
provided by the challenge organizers.

3.2 Implementation Details

Image Preprocessing. To deal with the different image size and heterogeneous
pixel spacing between different imaging modalities, all images were resampled to
1 https://zmiclab.github.io/mscmrseg19/.

https://zmiclab.github.io/mscmrseg19/


Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation 215

a pixel spacing of 1.25mm×1.25mm and then cropped to 192×192 pixels, with
the heart roughly at the center of each image. This spatial normalization would
reduce the computational cost and task complexity in the following training pro-
cedure of image translation and segmentation, making the networks focus on the
relevant regions. To identify the heart, we trained a localization network based
on U-net using the 30 annotated bSSFP images in the training set to produce
rough segmentations for the three structures. The localization network employs
instance normalization layers which perform style normalization [13], encour-
aging the network invariance to image style changes (e.g. image contrast). As
a result, the network is able to produce coarse masks localizing the heart on
all bSSFP images and most LGE images even though it was trained on bSSFP
images only. In case that this network might fail to locate the heart on certain
LGE slices, we summed the segmentation masks across slices in each volume
and then cropped them according to the center of the aggregated mask. After
cropping, each image was intensity normalized.

Network Training. (1) For the image translation network, we used the official
implementation2 of [7]. Network configuration and hyper-parameters were kept
the same as in [7] except the input and output images are 2D, single-channel. It
was trained for 20k iterations with a batch size of 1. (2) For the segmentation
network, we first trained the first U-net with the labelled bSSFP images and
then fine-tuned it with synthetic LGE images. This procedure was replicated to
train the second U-net with the parameters of the first U-net being fixed. Both
networks were optimized using the composite loss Lseg where adam was used for
stochastic gradient descent. The learning rate was initially set to 0.001 and was
then decreased to 1 × 10−5 for fine-tuning. The weights for BG, LV, MYO, and
RV in Lwce were empirically set to 0.2 : 0.25 : 0.3 : 0.25. During training, we
applied data augmentation on the fly. Specifically, elastic deformations, random
scaling and random rotations as well as gamma augmentation [14] were used.
The algorithm was implemented using python and PyTorch and was trained for
1000 epochs in total on an NVIDIA Tesla P40 GPU.

3.3 Results

To evaluate the accuracy of segmentation results, the Dice metric and the aver-
age surface distance (ASD) between the automatic segmentation and the corre-
sponding manual segmentation for each volume were calculated.

We compare the proposed method with two baseline methods: (1)
a registration-based method and (2) a single U-net. Specifically, for the
registration-based method, each LGE segmentation result was obtained by
directly registering the corresponding bSSFP labels to the LGE image using
MIRTK toolkit3 for ease of comparison. The transformation matrix was
learned by applying mutual information-based registration (Rigid+Affine+FFD)

2 https://github.com/NVlabs/MUNIT.
3 https://mirtk.github.io/.

https://github.com/NVlabs/MUNIT
https://mirtk.github.io/


216 C. Chen et al.

between the two images. For U-net, we trained it with two settings: (a) U-net:
trained on labelled bSSFP images only; (b) U-net with fine-tuning (FT):
trained on labelled bSSFP images and then fine-tuned using the synthetic LGE
data, which is the same training procedure of the proposed method. Quantitative
and qualitative results are shown in Table 1 and Fig. 4.

While the registration-based method (MIRTK) outperforms the U-net (see
row 1 and row 2 in Table 1), it still fails to produce accurate segmentation on the
myocardium (see the italic number in row 1), indicating the limitation of this
registration-based method. However, by contrast, neural network-based meth-
ods (row 3–5) fine-tuned using the synthetic LGE dataset significantly improves
the segmentation accuracy, increasing the Dice score for MYO by ∼15%. This
improvement demonstrates the learned translation network is capable of generat-
ing realistic LGE images while preserving the domain-invariant structural infor-
mation that is informative to optimize the segmentation network. In particular,
compared to U-net (FT), the proposed Cascaded U-net (FT) achieves more
accurate segmentation performance with improvement in terms of both Dice and
ASD (see bold numbers). The model even produces robust segmentation results
on the challenging apical and basal slices (please see the last column in Fig. 4).
This demonstrates the benefit of integrating the high-level shape knowledge and
low-level image appearance to guide the segmentation procedure. In addition,
the proposed post-processing further refines the segmentation results through
smoothing, reducing the average ASD from 1.37 to 1.26 (see the last row in
Table 1).

Table 1. Dice scores and ASD (mm) of the proposed segmentation method
(Cascaded U-net) and baseline methods on the validation set. Bold numbers
indicate the best scores among the results obtained by those methods before post-
processing (PP) whereas italic numbers are those mean Dice scores under 0.700. FT:
fine-tuning using the synthetic LGE dataset. N/A means that the ASD value cannot
be calculated due to missing predictions for that cardiac structure.

Method Dice ASD

LV MYO RV AVGa LV MYO RV AVGa

MIRTK 0.819 0.665 0.831 0.772 2.56 1.65 2.11 2.11

U-net 0.624 0.441 0.577 0.547 10.03 6.07 N/A N/A

U-net (FT) 0.874 0.781 0.896 0.850 1.78 1.50 1.28 1.52

Cascaded U-net (FT) 0.895 0.812 0.898 0.868 1.41 1.46 1.23 1.37

Cascaded U-net (FT) + PP 0.897 0.816 0.895 0.869 1.17 1.42 1.18 1.26
aFor ease of comparison, we calculate the average (AVG) Dice score and the average

ASD score over the three structures for each method.

Finally, we applied ensemble learning to improve our model’s performance
in the test phase. Specifically, we trained the proposed segmentation network
for multiple times, each time regenerating a new synthetic LGE dataset for fine-
tuning. We trained four models in total. Our final submission result for each
test image was obtained by averaging the probabilistic maps from these models
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Fig. 4. Segmentation results for the proposed Cascaded U-net and the base-
line approaches. Our proposed method (the right-most column) produces more
anatomically plausible segmentation results on the images, greatly outperforming the
baseline methods, especially in the challenging cases: the apical (the top row) and the
basal slices (the bottom row).

and then assigning to each pixel the class with the highest score. In the testing
stage of the competition, the method achieves very promising segmentation per-
formance on a relative large test set (40 subjects), with an average Dice score
of 0.92 for LV, 0.83 for MYO, and 0.88 for RV; an ASD of 1.66 for LV, 1.76 for
MYO, and 2.16 for RV.

4 Conclusion

In this paper, we showed that synthesizing multi-modal LGE images from
labelled bSSFP images to finetune a pre-trained segmentation network shows
impressive segmentation performance on LGE images even though the network
has not seen real labelled LGE images before. We also demonstrated that the
proposed segmentation network (Cascaded U-net) outperformed the baseline
methods by a significant margin, suggesting the benefit of integrating the high-
level shape knowledge and low-level image appearance to guide the segmentation
procedure. More importantly, our cascaded segmentation network is indepen-
dent of the particular architecture of underlying convolutional neural networks.
In other words, the basic neural network (U-net) in our work can be replaced
with any of the state-of-the-art segmentation network to potentially improve the
prediction accuracy and robustness. Moreover, the proposed solution based on
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unsupervised multi-modal style transfer is not only limited to the cardiac image
segmentation but can be extended to other multi-modal image analysis tasks
where the manual annotations of one modality are not available. Future work
will focus on the application of the method to the problems such as domain
adaptation for multi-modality brain segmentation.

Supplemental Material

See Fig. 5.

Fig. 5. Exemplar synthetic LGE images generated from bSSFP images using
the multi-modal image translation network. Given one bSSFP image (column
1), the translation network translates the image into multi-modal LGE-like images
(column 2 to 4). These translated images differ in image brightness and contrast as well
as the intensity distribution in the cardiac region, while preserving the same cardiac
anatomy. These synthetic images, in together with the annotations on the original
bSSFP images (the last column) contribute to the synthetic dataset which is used to
fine-tune the proposed segmentation network.
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