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Abstract. Right heart catheterisation is considered as the gold stan-
dard for the assessment of patients with suspected pulmonary hyper-
tension. It provides clinicians with meaningful data, such as pulmonary
capillary wedge pressure and pulmonary vascular resistance, however its
usage is limited due to its invasive nature. Non-invasive alternatives,
like Doppler echocardiography could present insightful measurements of
right heart but lack detailed information related to pulmonary vascu-
lature. In order to explore non-invasive means, we studied a dataset
of 95 pulmonary hypertension patients, which includes measurements
from echocardiography and from right-heart catheterisation. We used
data extracted from echocardiography to conduct cardiac circulation
model personalisation and tested its prediction power of catheter data.
Standard machine learning methods were also investigated for pul-
monary artery pressure prediction. Our preliminary results demonstrated
the potential prediction power of both data-driven and model-based
approaches.
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1 Introduction

Pulmonary arterial hypertension (PAH) is a pathological hemodynamic condi-
tion defined as mean pulmonary arterial pressure (mPAP) at rest >25 mmHg,
measured by gold standard - right heart catheterisation (RHC) [12]. Pul-
monary arterial hypertension can originate in lungs, heart, pulmonary artery and
blood, and eventually leads to right heart failure or death. Standard diagnos-
tic procedure requires clinical evaluation, non-invasive imaging and right heart
catheterisation [8].

However, some patients do not receive RHC as part of their diagnostic rou-
tine and this may be related to lack of training or the potential perception of
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RHC invasive risk, especially in the pediatric population [13]. This phenomenon
increases the possibility of incomplete diagnosis, which diminishes the effect of
targeted therapies [4]. In reality, echocardiography and catheterisation are usu-
ally conducted in separated labs. In order to combine the hemodynamic infor-
mation provided by RHC and echocardiography, in our work, we explored the
possibility of incorporating catheter-based data prediction, specifically, mean
pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR),
into routine echocardiography diagnosis.

There exists very simple ways to estimate PVR [11] and mPAP [3] but most
of them only rely on one or two echocardiographic measurements, which largely
propagates measurement uncertainty to prediction and constrains their usage
under different physiological conditions. Recently, with the advance of machine
learning techniques, data-driven algorithms demonstrated good performance in
cardiac tasks [5]. Besides, numerical modeling of pulmonary circulation also
showed the ability to assess hemodynamic values non-invasively [9]. In our work,
we used a simplified cardiac lumped model which can be easily personalised
from clinical data in order to simulate cardiac indicators. In addition, machine-
learning based regression methods were also tested for their prediction power.

2 Methods

2.1 Data Presentation

Our retrospective dataset was collected from the records of Nice Univer-
sity Hospital in 123 patients with known or suspected pulmonary hyperten-
sion. Echocardiography-based cardiac indicators, such as ejection fraction, end-
diastolic left and right ventricular volumes, were extracted by an experienced
cardiologist. Complete or incomplete catheterisation measurement records (44%
received both echocardiography and catheterisation within 48 h) are available for
all the patients (see detailed data description in Table 1*). Specifically, RAP in
echocardiography data is estimated from inferior vena cava (IVC) diameter and
its respirophasic variations, which leads to an ordinal value with possible values
from {5,10,15,20}. sPAP is then calculated by sPAP = 4« TRV?2, . + RAP,

max

“Abbreviations: Body Surface Area (BSA), Pulmonary Artery HyperTension
(PAHT), Heart Rate (HR), Brain Natriuretic Peptide (BNP), Blood Pressure (BP),
Left Ventricle Ejection Fraction (LVEF), Left Ventricle Outflow Track Diameter
(Drvor), Velocity Time Integral of Left Ventricle Outflow Tract (VTIrvor), Left
Ventricle End-Diastolic Diameter (LVEDD), Left Ventricle End-Systolic Diameter
(LVESD), Left Ventricle End-Diastolic volume (LVEDV), Right Ventricle Ejection
Fraction 3D (RVEF 3D), Right Ventricle Outflow Tract Diameter (Drvor), Veloc-
ity Time Integral of Right Ventricle Outflow Tract (VTIrvor), Right Ventricle End-
Systolic Diameter (RVESD), Right Ventricle End-Diastolic Volume (RVEDV), Sys-
tolic Pulmonary Artery Pressure (sPAP), Tricuspid Annular Plane Systolic Excursion
(TAPSE), Right Atrium Pressure (RAP), Mean Pulmonary Artery Pressure (mPAP),
Pulmonary Capillary Wedge Pressure (Pcap), Pulmonary Vascular Resistance (PVR),
Cardiac Output (CO), Cardiac Index (CI)
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Table 1. Detailed description of patient data

Feature ‘ Missing ‘ Statistics ‘ Feature ‘ Missing ‘ Statistics
Clinical information
Age 0 62+ 18 Sex 0 50.5% female
Height (cm) 1 166.2 + 9.5 Weight (kg) 1 68.2 + 16.6
BSA 5 1.75+ 0.23 BNP (ng/L) 7 275.4 £ 508.6
HR 24 76 + 13 BP (mmHg) 72 132+ 22 & 81+ 16
61.0% (1), 22.1% (3) 36.8%, (2), 46.3% (3)
PAHT group 1 13.6% (4), 2.1% (5) | NYHA 3 13.6% (4)
1.2% (NAN) 3.3% (NAN)
Echocardiography data
LVEF (%) 2 67.5 + 8.9 RVEF 3D (%) 8 35.0 £ 9.8
Drvor (mm) 59 18.9 + 4.6 Dryvor (mm) 85 26.3 £ 5.2
VTIryvor (cm) | 59 19.4 £+ 5.7 VTIgyor (cm) |3 14.6 £ 4.5
LVEDD (mm) 18 43.7+ 6.7 RVEDD (mm) 21 46.2+6.4
LVESD (mm) 42 26.1 £6.3 RVEDV (mL) 8 98.1 +£39.7
sPAP (mmHg) 1 73.5+ 23.5 RAP (mmHg) 0 10.6 + 4.6
TAPSE (mm) 1 199+ 5.5 S’"Wave (cm/s) 1 11.3+3.0
Catheter data
mPAP (mmHg) |0 43.5+13.0 Pcap (mmHg) 1 11.4+4.0
RAP (mmHg) 0 8.9+4.3 PVR (UW) 4 7.5+4.0
CO (L/min) 4 4.7+1.4 CI (L/min/m?) |6 2.74+0.7

where T RV, 4, refers to tricuspid regurgitation maximum velocity. In our anal-
ysis, records of 95 patients were included. The other 28 records were discarded
because of lack of catheter measurement.

2.2 Modeling-Based Prediction

Cardiovascular 0D Model. To incorporate cardiovascular dynamics into the
prediction model, we consider a 0D model of the whole cardiovascular circulation
system [2]. Derived from a 3D cardiac electromechanical model, the 0D model
not only consists of less ordinary differential equation but also preserves the
capacity to describe the important properties of the heart. Under the assump-
tion of the spherical ventricle symmetry in 0D model, the inner radius (Ry) is
directly related to the myocardial size. Reduced deformation and stress tensors
demonstrate good representation of important cardiac characteristics, such as
heart contractility (o¢) and stiffness (Cy).

This 0D model has manifested its modeling potential in solving personalisa-
tion problems [10]. Consider a 0D model M, with a set of parameters Py; and
model states Op;. We take a subset § C P, which contains parameters such
as heart contractility (o) and myocardial stiffness (C1), and fix all the other
parameters with default values. Interesting model states O C Oy, such as pul-
monary artery pressure and ejection fraction, present cardiac indicators of the
heart model. Given a set of clinical observations O the aim of personalisation
is to find suitable varying parameters 6 so that the corresponding output of
the fitted 0D model is as close as possible to clinical references, i.e. O() ~ O

(Fig.1).
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Fig. 1. Schema of used cardiac 0D model (Adapted from [1]).

We assume Gaussian distribution priors for both interested parameters 6 and
model states O, i.e. § ~ N(u, X) and 0|0 ~ N'(O(6), A). Essentially, the person-
alisation problem equals to Maximum A Posterior. With Gaussian distribution,
the objective function is derived as:

min{(0(6) — 0)" A~ (0(8) — 0) +7(6 — W)™ T (0 — )}

where O refers to observed model states and A, a diagonal covariance matrix,
represents the tolerance interval for each dimension of model states. The second
term is regarded as a regulariser. vy controls to what extent we forces the param-
eter 6 to follow the prior distribution, which helps to attenuate the non-unique
solution effect of this ill-posed inverse problem.

We solve this high-dimensional and non-convex problem by applying a non-
parametric evolutionary strategy CMA-ES [6]. Tteratively Updated Prior (IUP)
method, as defined in [10], is deployed to iteratively update the prior distribution
based on former population personalisation results.

Experiments. We first investigate the intrinsic prediction power of the 0D
cardiovascular model. Based on the available clinical data, we chose the fol-
lowing 5 features extracted from echocardiography for personalisation: systolic
pulmonary artery pressure (sPAP), right ventricle ejection fraction (RVEF),
right ventricle end-diastolic volume (RVEDV), left ventricle ejection fraction
(LVEF). In order to assure equal stroke volume of left and right heart, the
left ventricle end-diastolic volume (LVEDV) is calculated from available data:
LVEDV = W. Considering the uncertainty of measurement, we
assign a tolerance interval for every selected feature: 200 Pa for sPAP, 5% for
LVEF and RVEF and 10 mL for RVEDV and LVEDV. Available RAP values are
not included in our setting. Finally, parameters of both left heart and right heart
are selected for personalisation: left and right heart contractility (og), left and
right myocardial stiffness (c¢;), right ventricle inner radius (Rp), pulmonary prox-
imal resistance (Z.) and pulmonary distal resistance(R,,). Left ventricle radius
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is set by (LVEDD + LVESD)/4 if both LVEDD and LVESD are available. Or
else it is set to 18 mm, the mean value in the population. Since every patient
possesses at least one target feature, we fit the model on the whole dataset of
95 patients. We assume the covariance X' of varying parameters is a full matrix
and - is selected from {0.1, 0.5, 1, 2}.

We follow the same protocol as the cardiologist to extract mPAP and PVR
from model output curves: mPAP is calculated as the mean value of pulmonary
pressure-time integral during one cardiac cycle, and PVR is calculated as PVR
(UW) = (mPAP — Pcap)/CO, where CO comes from flow-time integral and
heart rate and Pcap is fixed at 10 mmHg.

A supervised method is also proposed based on personalisation. We split our
dataset into training data and test data with a configuration of 5-fold cross-
validation. In the training phase, echocardiography and catheter features are
fitted iteratively with v = 0.5 for 10 iterations. Then the fitted parameter dis-
tribution of the 10*" iteration of training data is used as test prior. We then
perform one iteration of personalisation to fit only echocardiography features
for test data with v € {0.5,1,2}.

The optimisation of 0D model personalisation is performed over the logarithm
of the parameter values (Table 2).

Table 2. Selected features and parameters for 0D model personalisation

Echo Catheter | Varying parameters

sPAP mPAP Left heart contractility oo
RVEF |CO Left heart stiffness c1
LVEF | Pcap Right heart contractility oo
RVEDV | PVR Right heart stiffness c;
LVEDV Right ventricular radius Ry

Pulmonary proximal resistance Z,

Pulmonary distal resistance R,

Model Implementation. Our cardiac 0D model is originally implemented
in CellML language. It was exported into C language and incorporated into a
Python program which enables flexible experiments. The 0D model is very fast
and it takes less than 1s to output cardiac curves. CMA package implemented by
Hansen et al. [7] is used in our optimisation. With parallel computation, optimal
parameters for one patient can be found in 3min on a computer with 8 cores
(Intel i7-8650U CPU 1.90 GHz).

2.3 Learning-Based Prediction

5 regression methods implemented in scikit — learn(0.21.2 were tested using
echocardiographic cardiac features to predict catheter data: lasso regres-
sion, ridge regression (RR), k-nearest neighbour regression (KNN), par-
tial least-square regression (PLR) and ada-boosting decision tree regression
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(ADAT). Optimal hyper-parameters of different estimators were determined
through nested 10-fold cross-validation grid search. Specifically, we search o €
{1073,1072,...10%} for Lasso and Ridge, number of neighbors N € {2,3,...10}
for KNN , number of components N € {1,2,...15} for PLR and number of
estimators N € {2,4,8, 16,50, 100,200} for ADAT.

We use all the data except catheter data to perform regression analysis. Cat-
egory data, such as NYHA, Group PAH, and columns with more than 40%
missing values (VTIrvor, Drvor, Drvor, LVESD and BP) were eliminated.
From available data, we are able to calculate TRV}, and %, the later
of which is reported correlated with PVR [11]. A correlation analysis on the 18
predictors shows linearity between some predictors (correlation coefficient larger
than 0.6) and finally we have 11 predictors left for regression analysis: age, BSA,
LVEF, RVEF, HR, RAP, sPAP, LVEDD, RVEDV, VT Igyor, TAPSE. Consid-
ering the missing value problem of our dataset, simple and multiple imputation
methods implemented in scikit — learn 0.21.2 are also conducted before every
regression learning: mean imputation, median imputation, Bayesian ridge regres-
sion iterative imputation, k-nearest neighbour iterative imputation, decision tree
regression iterative imputation and extra-tree iterative imputation. We report
R? score (coefficient of determination) and root mean squared error (RMSE) for
each regression method based on a 5-fold cross validation.

We also test simple estimation (SIMPLE) methods for mPAP and PVR based
on formulas mPAP = 0.61 «x PAPs + 2(mmHg) following the work of [3] and
PVR =29.7T% (TRVyaz/VTIrvor) — 0.29 following the work of [11].

3 Results

Modelling-Based Prediction. With only echocardiography-based indicators,
our result of 0D model personalisation indicate that a reasonable v improves
prediction accuracy. A large v will nominate objective function and forces varying
parameter to follow prior distribution, while a small v enables more accurate
feature fitting. In our case, with v = 0.5, estimated mPAP correlates modestly
with ground truth ( r = 0.65,p < 0.0001) and demonstrates a reasonable error
(shown in Table 3: MF0.5). With v = 1, estimated PVR has the lowest error and
correlates slightly with ground truth (r = 0.40,p < 0.001).

Table 3. 0D cardiac model based prediction results

State |Metrics MF0.1|MF0.5| MF1 | MF2 | MF-CV0.5 MF-CV1|MF-CV2

mPAP RM;S’E 11.08 11.44| 13.01 12.76 12.92
R 0.26 0.21 -0.05 -0.01 -0.05

PVR RMSE| 6.17 5.00 10.55 9.44 9.34
R? -1.36 -0.55| -7.33 -6.30 -5.53
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However, in modelling-based supervised method (MF-CV), when echocardio-
graphy and catheter data are mixed for personalistion, the discrepancy between
ECHO and CAT data mislead parameter prior direction. After training phase,
we obtain prior distribution from last iteration of group personalisation. When
new test data comes, personalisation is moving to a biased direction.

Learning-Based Prediction. In Fig.2, we observe that LASSO and PLR
estimators not only demonstrate less prediction error, but also are more stable
to various imputed data. Lasso coefficients show that both sPAP and TAPSE
are significant factors for mPAP and PVR regression. This is consistent with the
fact that mPAP and PVR are highly correlated (r = 0.81,p < 0.01).
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Fig. 2. Mean Pulmonary Artery Pressure (mPAP) and Pulmonary Vascular Resis-
tance (PVR) prediction results (Data-driven methods). Results of models with different
imputation methods are averaged to distinguish the performance of estimators. Results
shown in mean + std. (a) RMSE and R2 metric of different estimator for mPAP. (b)
Lasso regression coefficient (alpha = 0.1) for mPAP prediction. (c) RMSE and R2 met-
ric of different estimator for PVR. (d) Lasso regression coefficient (alpha = 0.01) for
PVR prediction.
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Prediction Summary. We present the averaged metric value (based on dif-
ferent imputation methods) and involved features for all estimators. With lasso
regression result, we exclude the features with normalized coefficient smaller than
0.01 for mPAP and 0.2 for PVR, e.t. we have sPAP, TAPSE, LVEDD and age
for mPAP and BSA, sPAP, TAPSE for PVR. We then redo LASSO RIDGE and
PLR with those selected features. Here mPAP’s best prediction is with tuned
hyperparameter: o = 0.01 for Lasso, « = 0.1 for RR, N = 8 for KNN, N = 2
for PLR and N = 500 for ADAT. PVR best result is with hyperparameters:
a = 0.01 for Lasso, @ = 0.5 for RR, N = 7 for KNN, N = 2 for PLR and

N =500 for ADAT (Table4).

Table 4. Best regression results of different estimators for mPAP and PVR

State | Metrics |[LASSO| RR |PLR|KNN|ADAT | SIMPLE |MF-CV1|MF1
10.12| 10.18 11.52 12.76 |10.83
0.35| 0.36 0.20 -0.01 |0.30

sPAP
mPAP sPAP All LVEF
Features Age 11 sPAP LVEDV
LVEDD Features RVEF
RVEDV
RMSE 3.56 | 3.09 3.96 9.44 | 4.84
R? 0.16 | 0.35 0.04 -6.30 |-0.45
TAPSE sPAP
sPAP All LVEF

PVR Features BSA 11 TRVjpax LVEDV

Features |VTIrvor RVEF
RVEDV

Using LASSO regression, we average the coefficient from different imputation
methods and get the following estimation formula:

mPAP = 0.32x«sPAP—0.65+TAPSE—0.12% Age—0.12x LVEDD+45.83 (1)

(2)

Supervised 0D model prediction (MD-CV1) fails to retain a good parameter
prior for prediction however, echocardiography-based group optimisation demon-
strates a prediction potential, which reveals the regularizing effect of population-
based prior distribution. Here, best result is reached at v = 1.

SIMPLE methods provide simple approximation of mPAP and PVR but their
validity is restricted due to their dependence on one single measurement. Besides,
regression methods surpass model-based estimation approaches. There may be
two main reasons for their difference. First, we are not using all the available
information for 0D model personalisation. For example, TAPSE, who is of signif-
icance in regression, are difficult to incorporate into 0D personalisation system.

PVR=0.05«sPAP —0.33«TAPSE —4.94x BSA + 18.83
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Fig. 3. Estimated value and ground truth comparison (lasso formulas). (a) The plot of
mPAP ground truth and its estimated value using Eq. 1. (b) The plot of PVR ground
truth and its estimated value using Eq. 2. (¢) Bland-Altman analysis demonstrating the
limits of agreement between invasive mPAP and mPAP determined via echocardiog-
raphy, using Eq. 1. (d) Bland-Altman analysis demonstrating the limits of agreement
between invasive PVR and PVR determined via echocardiography, using Eq. 2.

Secondly, our 0D model is highly reduced, some important measurements like
VTIgyvor and TR,,., which exhibit important hemodynamic characteristics,
is not compatible. Whereas, unlike the imperative demand of complete data for
regression methods, 0D model personalisation can deal with missing data issue
naturally [10] (Table4).

4 Conclusion

Our preliminary results show a good potential of using data-driven methods
and model-based approaches for estimating pulmonary pressure in pulmonary
hypertension patients. Data-driven method is fast, simple and give good approx-
imation of pulmonary pressure, but it strongly demands complete observation.
Model-based approach captures complex hemodynamics from observed data and
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deals with missing data issue naturally. Compared with data-driven methods, it
exhibits a slightly poorer prediction accuracy. Based on current exploration,
there are two directions of future work. One is to extend 0D model personal-
isation method so as to integrate more observed data into system. The other
is adopting data-driven methods to predict accurate parameter distribution for
personalisation.
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