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Abstract. Accurate segmentation of the shape of the left atrium (LA)
is important for treatment of atrial fibrillation (AF) by catheter ablation.
Interventional 3D rotational angiography (3DRA) can be used to obtain
3D images during the intervention. Low dose 3DRA poses segmentation
challenges due to high image noise. There is a significant amount of
research focusing on the automatic segmentation from 3DRA images, all
based on an active shape or atlas-based approaches.

We present an algorithm based on a 3D deep convolutional neural
network (CNN) for automated segmentation of 3DRA images to predict
the shape of the LA. The CNN is based on the U-Net architecture and
consists of an encoder and a decoder part. It is designed to be trained
end-to-end from scratch on interactive semi-automated 3DRA images,
which include the body of the LA and the proximal pulmonary veins
up to the first branching vessel.

The CNN is trained and validated using 5-fold cross-validation on
20 3DRA images by computing the Dice score (0.959 ± 0.015), recall
(0.962 ± 0.026), precision (0.957 ± 0.021) and mean surface distance
(0.716 ± 0.276 mm). We further validated the algorithm on an additional
data set of 5 images. The algorithm achieved a Dice score and mean
surface distance of 0.937 ± 0.016 and 1.500 ± 0.368 respectively.
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1 Introduction

Atrial fibrillation (AF) is one of the most common cardiac arrhythmias [13].
The irregular heart beats originate from abnormal electrical discharges in the
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LA. AF is treated by performing catheter ablation to isolate the pulmonary veins
from the atrial body [1]. The ablation procedure is typically guided by X-ray
fluoroscopy and electroanatomical mapping (EAM). Although a 3D surface of
the LA can be generated by a roving catheter. A lot of centers use an image-based
anatomical representation because of its superior anatomical detail. This image-
based representation can be obtained from CT, MRI or interventional 3DRA and
can be integrated in the EAM system. Furthermore, it improves patient outcome
and reduces radiation dose from fluoroscopy [8]. Thus, a correct segmentation of
the LA is important for the success of the ablation procedure.

The use of preoperative CT or MRI has already been proven useful to facil-
itate the guidance during interventions [4]. However, preoperative CT and MRI
imaging is often performed days or weeks before the actual intervention and pos-
sibly under different cardiac loading conditions. As a consequence, the anatomi-
cal structures of the patient can differ between the preoperative acquisition and
the intervention. Besides resulting in a more complicated workflow, CT or MRI
may be contra-indicated and often associated with an additional financial cost
[12]. Interventional 3DRA can address some of these shortcomings.

Previously, automated LA segmentation methods were primarily based on
model-based approaches. These approaches make use of a prior shape of the
LA and intensity values of a stack of known LA 3DRA images. Model-based
methods have been implemented for CT and MR [2,11]. The success of these
methods relies on both the excellent image quality of CT and MRI acquisitions
and sufficiently large data sets. However, model-based methods can be less robust
on low dose 3DRA due to the limited image quality in combination with a rather
small data set [11]. The limited image quality is caused by the variable contrast
density, catheter streak artefacts, low X-ray dose and possibly a reduced frame
rate [3]. Recently, CNNs were used to segment the LA from MRI [7]. They
proposed a multi-view 2D CNN with an adaptive fusion strategy to segment the
pulmonary veins (PVs) and LA. However, automated LA segmentation based
on CNN is nonexistent for 3DRA.

In this paper, we present DeepLA, an automated LA segmentation method
for low dose 3DRA. Our method is based on a modified version of the U-Net
architecture [10]. In order to train the CNN, 3D patches were sampled from
low dose 3DRA images. Furthermore, we implemented a preprocessing step.
It reduces redundant information to improve the learning process. The overall
segmentation process for a given 3DRA takes on average 19.6 ± 5.2 s on a GPU
(Geforce GTX 1080 Ti) at test time.

2 Method

The method is composed of two parts: preprocessing and training. First, we
discuss the preprocessing step. This is important to optimize the training process.
Then, we elucidate the architecture and training process.
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2.1 Preprocessing

Preprocessing aims at making the data more meaningful to the CNN. This is
accomplished by removing redundant information and ensuring that the intensity
value range matches across images of the entire data set. The latter avoids an
initial bias in the CNN at test time. The preprocessing is realized in two steps.
First, we construct a LA region that consists of all voxels with an intensity value
higher than zero. The region outside the LA is set to zero. In addition, the gaps
in the LA region are filled with morphological closing operations. Secondly, we
normalize every patient’s image by subtracting its mean and dividing by its
standard deviation.

2.2 Network Architecture

In this paper, we propose a modified 3D U-Net architecture. The network consists
of a contracting path and an expanding path. The contracting path contains
successive convolutions and pooling layers to extract semantic features at the
expense of spatial information. Two max pooling layers are used to reduce the
dimensions of the image, first by 3 × 3 × 3 and then by 3 × 3 × 1. Before every
max-pooling layer, we find two successive convolutional layers with a filter size of
3×3×3 and 3×3×1, respectively. In addition, we used batch normalization and
a Parametric Rectified Linear Unit (PReLU) activation after every convolution.
The PReLU activation function is a function with a learnable parameter. It
follows: f(x) = α ∗ x for x < 0 , f(x) = x for x >= 0, where α is learned [5].

However, in order to perform a correct segmentation, both spatial and seman-
tic information is needed. The U-Net recovers the spatial information by shortcut
connections from the feature maps in the contracting path of the same resolution.
First the feature maps of the expanding path are cropped and then concatenated
with the feature maps in the expanding path of the same resolution. Further-
more, the semantic information is passed on from bottom to top by up-sampling.
The convolutional layers in the expanding path have the same configurations as
in the contracting path. Due to the valid padding of the CNNs, the output size
(38 × 38 × 13) of the U-Net is smaller than the input. In order to allow for
sharper boundaries between voxels, the output of the U-Net is connected to two
successive convolutional layers with 32 filters of size 1 × 1 × 1. In front of each
of the final convolutional layers, we added dropout with a probability of 0.25
to improve the generalization of the network. The final layer of the network
includes a convolution with a filter size of 1 and a sigmoid activation function
for generating a probability score for each voxel. Eventually, the LA shapes are
produced by thresholding the probabilities of the output at 0.5. The algorithm is
implemented in Keras (Python). A summary of the CNN is presented in Fig. 1.

2.3 Training Procedure

The training procedure is an important step to learn the right features in order
to perform a correct segmentation of the LA. The whole training procedure was
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Fig. 1. Details of the U-Net architecture. Conv* refers to a convolutional, a batch
normalization and PReLU activation layer.

designed using the DeepVoxNet [9]. This is a framework that enables a fast imple-
mentation of neural networks on medical images. DeepVoxNet provides compo-
nents to handle the memory requirements, the various image modalities and data
augmentation. The proposed network architecture is trained with input-patches
of size 142 × 142 × 41 and corresponding output-patches of size 38 × 38 × 13.
These patches are sampled via a class weighted sampler to compensate the class
imbalance between the background and foreground. We define one epoch as 128
batches, with one batch consisting of 8 samples. The training is terminated early
if there is no improvement during 70 epochs in the validation Dice coefficient.
The weights of the network are optimized by the ADAM optimizer with an initial
learning rate of 10−3. The learning rate is divided by a factor of 2 when the val-
idation Dice coefficient did not improved over the last 20 epochs. Furthermore,
the network is regularized by L1 and L2 weight delay, both with a weight of
10−5. Lastly, we use the binary cross-entropy loss function to train our network.

3 Validation

The 3DRA images were obtained through a floor-mounted Siemens Axiom Artis
dBC biplane fluoroscopy system (Siemens). During joint rapid atrial and ventric-
ular pacing at 250 ms, contrast was injected directly into the left atrium. Iomeron
350 contrast (Bracco) was diluted up to 50% using normal saline. Ninety millil-
itres of diluted contrast was injected at a rate of 20 mL/s, starting 4 s before the
actual start of the C-arm rotation. The X-ray tube rotates around the patient
over a course of 200◦. During the rotation, fluoroscopic images were sequentially
acquired with target detector entrance doses of 0.24 µGy/frame. In total, 62
frames were acquired. These 62 frames were used to reconstruct a 3D volume.
This 3D volume is also called a 3DRA image. Further information about the
image acquisition can be found in [3].

Twenty subjects were interactively semi-automated annotated by an expert.
The annotated images include the body of the LA and the proximal pulmonary
veins up to the first branching vessel. The 20 3DRA images were randomly
divided into 5 subsets of 4 images. The learning process was repeated for 5 times
while each time a different validation set of 4 images was used. In addition,
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Table 1. Mean, median and standard deviation of the metrics for LA segmentation

Mean STD

DICE 0.959 0.015
sDICE 0.932 0.020
PRE 0.957 0.021
REC 0.962 0.026
MSD 0.716 0.276
HD 11.088 4.770
HD95 2.451 1.686

(a) Validation set

Mean STD

DICE 0.937 0.016
sDICE 0.915 0.024
PRE 0.961 0.035
REC 0.917 0.038
MSD 1.500 0.368
HD 32.390 13.390
HD95 6.888 2.749

(b) Test set

Fig. 2. Box plots for Dice, soft Dice, precision, recall and mean-surface-distance in the
validation set

Table 2. Clinical usefulness

Case 1 2 3 4 5 Mean

Overall segmentation of the LA and PVs 4 4 4 4 4 4.0

Ridge between the LPVs and LAA 3 3 4 4 5 3.8

Position of the Mitral valve 4 3 4 4 5 4.0

Number of PVs correctly segmented 4 3 4 4 4 3.8

5 unseen 3DRA images were independently collected. These 5 3DRA images were
semi-automated annotated by a different reviewer. This resulted in slightly differ-
ent ground truth masks compared to the other 20 3DRA images. The automatic
LA segmentation on the test data were generated by the model that yielded the
highest Dice score on the validation set. For evaluation of the proposed method,
we computed the Dice coefficient (DICE), soft Dice coefficient (sDICE), recall
(REC) and precision (PRE) for both validation and test set. In addition, we
assessed the mean-surface-distance (MSD) maximal Hausdorff distance (HD)
and 95 percentile Hausdorff distance (HD95).
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Axial Coronal Sagittal

(a)

Axial Coronal Sagittal

(b)

Fig. 3. Visualization of segmentation in validation (a) and test set (b). The first row
of each table presents 3DRA slices from axial, coronal and sagittal views. The white
contour is the ground truth. The red contour was generated by the proposed method.
The second row visualizes the difference between surface of the ground truth and the
surface of the output. (Color figure online)
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Using 5-fold cross-validation on the training and validation set, we obtained
a DICE (0.959 ± 0.015) and MSD (0.716 ± 0.276 mm). Similar, in almost all
evaluation metrics in the test set, the algorithm achieved promising performance
(DICE 0.937 ± 0.016 and MSD 1.500 ± 0.368 mm). More details about the per-
formance and the distributions of the evaluation metrics are presented in Table 1
and Fig. 2. Furthermore, an additional test is performed to assess the clinical use-
fulness. The generated shapes in the test set were reviewed by a physician. Every
shape is scored on the base of three criteria, namely the overall segmentation of
the LA and PVs, the ridge between the Left PVs (LPVs) and the Left Atrial
Appendage (LAA) and the position of the Mitral valve. The score per criterion
ranges from 0 (very poor) to 5 (excellent). Moreover, the number of correctly
segmented PV ostia were counted. The results of the review are presented in
Table 2. It can be noticed that on average the proposed method scored a 3.9 out
of 5 on the three criteria. In order to perform this qualitative evaluation, we used
surface rendering of the predictions in the test set and compared them with the
ground truth (Fig. 3).

Figure 3 shows an example of a segmentation in the validation and test set.
The first row of the figure shows 3DRA slices from axial, coronal and sagittal
views. The white contour represents the contour of the ground truth and the red
contour was generated by the proposed method. The second row visualizes the
difference between the surface of the ground truth and the surface of the pre-
dicted segmentation. The differences between the ground truth and the predicted
segmentation of the proposed method is around 1.00 mm.

4 Conclusion and Discussion

Accurate knowledge of the shape of the LA is important for treatment of AF by
cardiac ablation. In this paper we present DeepLA, an automated LA segmen-
tation tool for 3DRA images. DeepLA was trained and optimized on 20 3DRA
images by 5-fold cross-validation. Additionally, DeepLA is tested on 5 3DRA
images and assessed by a physician. To the best of our knowledge, we are first to
present results of a CNN based approach to segment the LA from 3DRA images.

We were able to achieve promising performance in Dice coefficient and MSD
on the training and test set through a deep learning algorithm. Despite over-
all promising results on the validation and test sets, some local discrepancies
between the ground truth and predictions can be found in the test set as reflected
by the MSD values (Table 1b). This can possibly be explained by the differences
in annotations of the ground truth in the training and test set (Fig. 3b). In terms
of clinical usefulness, the segmentation of the LA scores well (Table 2).

We cannot directly compare our approach with those reported in the lit-
erature due to the difference in imaging modalities used and datasets. In [7],
the LA is segmented from cardiac MRI data sets provided by the STACOM
2013 challenge through a 2D multi-view CNN. Their method achieved a Dice
score of 0.905. Furthermore, Zheng et. al [14] and Manzke et. al [6] proposed a
model-based method to segment LA from 3DRA images and obtained a mean
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segmentation error of 1.30 and 1.50 mm respectively. Even though they obtained
a slightly smaller mean segmentation error than our method, DeepLA is trained
with 3DRA images which were acquired with a lower radiation dose and conse-
quently higher image noise.

We can conclude that we are able to successfully segment the LA and PVs as
a whole. Our method achieves a mean accuracy of 1.5 ± 0.368 mm with a mean
processing time of 19.6 ± 5.2 s. Hence, it may be easily implemented for online
use during PVI, given an ablation lesion size ≥ 5 mm.
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