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Abstract. Cardiac anatomy and function are interrelated in many ways,
and these relations can be affected by multiple pathologies. In particu-
lar, this applies to ventricular shape and mechanical deformation. We
propose a machine learning approach to capture these interactions by
using a conditional Generative Adversarial Network (cGAN) to pre-
dict cardiac deformation from individual Cardiac Magnetic Resonance
(CMR) frames, learning a deterministic mapping between end-diastolic
(ED) to end-systolic (ES) CMR short-axis frames. We validate the pre-
dicted images by quantifying the difference with real images using mean
squared error (MSE) and structural similarity index (SSIM), as well as
the Dice coefficient between their respective endo- and epicardial seg-
mentations, obtained with an additional U-Net. We evaluate the ability
of the network to learn “healthy” deformations by training it on ∼33,500
image pairs from ∼12,000 subjects, and testing on a separate test set of
∼4,500 image pairs from the UK Biobank study. Mean MSE, SSIM and
Dice scores were 0.0026 ± 0.0013, 0.89 ± 0.032 and 0.89 ± 0.059 respec-
tively. We subsequently re-trained the network on specific patient group
data, showing that the network is capable of extracting physiologically
meaningful differences between patient populations suggesting promising
applications on pathological data.
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1 Introduction

Cardiovascular diseases account for 31% of annual fatalities worldwide [5], mak-
ing them the most common cause of death. Reasons for this include the poor
understanding of many such diseases, which frequently results in the ineffective
treatment of patients and sub-optimal clinical outcomes. In particular, the rela-
tionship between disease phenotype and clinical outcome is often poorly under-
stood. This is a particular challenge for pathologies such as hypertrophic car-
diomyopathy, which present with high phenotype heterogeneity, with a wide
range of structural cardiac abnormalities such as myocardial wall thickening
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or aortic outflow obstructions. Structural changes such as these can affect the
mechanical function of the heart, i.e. cardiac contraction, in a variety of ways.
However, the exact relationships are not well understood. Since it is largely car-
diac function that determines clinical outcomes, a better understanding of the
relationship between cardiac structure and function could lead to more effective
risk estimation, diagnosis and treatment.

Whilst structure-function relationships have been studied, this has mostly
occurred in isolated approaches typically examining specific global parameters
and clinical biomarkers (e.g. cardiac wall thickness/ventricular volumes vs ejec-
tion fraction (EF)). Although such biomarkers are clinically established, there
is agreement that they are often too coarse for accurate clinical prognosis.

To better understand these relationships and to subsequently improve out-
come predictions and treatments, we believe that a more comprehensive app-
roach is necessary which could be achieved using generative methods. We have
developed an approach based on conditional Generative Adversarial Networks
(cGANs). cGANs, as shown by Isola et al. [6], can be used for image trans-
formation and are therefore suitable for transforming one frame of the cardiac
sequence into another, thereby modelling the cardiac sequence and the functional
behaviour of the heart. Here, we are primarily interested in the transformation of
end-diastolic (ED) to end-systolic (ES) frames, which represent the two extreme
states in the cardiac cycle and contain a large part of the functional information.

It is therefore the hypothesis of this paper that by training a cGAN to trans-
form ED to ES frames we can model healthy cardiac motion. Moreover, we
hypothesise that our network is capable of capturing cardiac motion that is
specific to individual patient groups. In order to validate these hypotheses we
conduct two stages of experiments. Firstly, the network is trained on a data set of
healthy volunteers representative of a heterogeneous population as given in the
UKBiobank study (https://www.ukbiobank.ac.uk/). The network is evaluated
based on how accurately the ES frame predictions match the acquired images
for a test set using image and segmentation similarity metrics (MSE, SSIM &
Dice). Our assumption is that an accurate prediction of ES frames indicates
that the cGAN has captured healthy cardiac motion. Secondly, the network is
re-trained on data from specific patient groups and tested on separate test sets
from the same and different groups. The assumption is that the cGAN will per-
form sub-optimally when tested on the latter groups, thereby indicating that
it has captured features of the cardiac structure-function relationships that are
specific to certain patient groups.

2 Related Work

cGANs form an extension to the original GAN network as proposed by Good-
fellow et al. [4] in 2014, which functions on the principle of adversarial learning
whereby two networks compete in a minimax two-player game. In [10] this prin-
ciple has been extended by adding conditional inputs to the GAN structure,
allowing for outputs to be generated which are conditioned on input labels.

https://www.ukbiobank.ac.uk/
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This has been taken further in a method proposed in [2], which allows for pro-
gressively increased information capacity of the latent space and more distinct
modes of data variation. Isola et al. [6] have shown that cGANs can be adapted
for multi-modal image transformation tasks whereby the input condition is the
image itself. This paper is primarily based on their method. Further genera-
tive methods include Variational Autoencoders (VAEs) [7] and their conditional
extension (cVAE) [12]. These, however, have been shown to struggle with image
blurriness, due to injected noise in the re-sampling process and the fact that
cVAE loss, in contrast to adversarial GAN loss, does not penalise unrealistic
images. GANs/cGANs have been used in medical image analysis for a variety
of tasks including reconstruction and registration. Specifically in cardiac imag-
ing, GANs have been used for tasks such as image synthesis, for example CMR
image synthesis using a Cycle-GAN based on CT scans [3]. Work on image seg-
mentation in cardiology using GANs include quantification of myocardial infarc-
tion by Xu et al. [13]. GANs have also been used in identifying cardiac images
with incomplete information using SCGANs by Zhang et al. [14]. Generative
models for modelling cardiac motion have been proposed by Krebs et al. [8,9]
who have investigated probabilistic approaches of modelling cardiac deformation
using generative methods including cVAEs.

3 Methods

3.1 Conditional GANs

The cGAN used in this paper is based on the method proposed by Isola et al.
[6] Two networks, namely a generator G and a discriminator D, compete in a
minimax two-player game, causing them to learn in an adversarial fashion. The
generator, a U-Net (Fig. 1), takes a grayscale ED image as an input and generates
a “fake” transformed ES image as its output. The discriminator, which is a
PatchGAN with the same structure as the encoder part of G with an additional
softmax layer at the end, takes both fake and real ES images and learns to
discriminate between them in a supervised manner. The discriminator loss given
in Eq. 1 is used to train both D and G using mini-batch gradient descent and
the Adam optimizer.

G = arg min
G

max
D

LcGAN (G,D) + λLL1(G), (1)

where

LcGAN (G,D) = Ex,y[log D(x, y)] + Ex,z[log(1 − D(x,G(x, z))] (2)

In addition to the LcGAN , which is a conditioned version of the GAN loss,
Eq. 1 also incorporates an L1 reconstruction loss which forces the transformed
image to be close to the ground truth in an L1 sense. Hyperparameters and
general methodology are based on the Isola method. However, we have adapted
the number of layers and filters in G and D following empirical cross-validation.
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We validate the performance of the cGAN at accurately predicting ES frames
by computing the Mean Squared Error (MSE) and Structural Similarity Index
(SSIM) between ES predictions and ground truth images. These metrics are
computed over the entire image.

Fig. 1. cGAN U-Net generator architecture; numbers indicate number of filters × image
dimensions for each layer. The discriminator architecture is equivalent to the encoding
part of the generator, followed by a softmax layer at the end.

3.2 Segmentation U-Net

As seen in the workflow diagram of Fig. 2, following the ED to ES image trans-
formation, the ES prediction and ground truth images are fed into the U-Net
segmentation network created by Bai et al. [1], who trained it on data from the
UKBiobank to segment short-axis frames into a four-label segmentation out-
put, namely left ventricle (LV) cavity, LV myocardium, right ventricle (RV) and
background. ED frames are pre-processed in order to fit the orientation and size
of the segmentation network input. The binary LV cavity segmentations from
predicted and ground truth ES images are compared using Dice coefficients.

4 Experiments

4.1 Healthy Cardiac Motion Prediction

The data for all experiments was obtained from the UK Biobank study. The
initial experiment was conducted using the data of a heterogeneous group of
healthy volunteers. Short-axis mid-axial cardiac sequences were selected from
∼12,000 patients from which ED and ES frames were extracted. The images
were subsequently cropped with a 128 × 128 pixel window centred on the LV
endocardium, using as guidance rough LV automated segmentations included in
UKBiobank. Images intensities were normalised to [0–1]. The image pairs were
split into independent training and test sets, with no inter-subject overlap, with
∼33,500 ED-ES image pairs for training and a further ∼4,500 for testing. No
image augmentation was applied, given the size of the training set. The cGAN
was trained on a 5 GB 1060 Nvidia GPU for 200 epochs (∼8 h training time).
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Fig. 2. Workflow diagram: ED ground truth (GT) frames are fed into cGAN generator
to produce ES predictions from which MSE and SSIM are computed; predictions and
ES GTs are segmented by U-Net from which Dice and AEF are computed.

4.2 Subject Group Re-training

Following the evaluation of the ES frame prediction for a general population of
healthy volunteers, the network was re-trained with data from specific subject
groups, differentiated by gender, age and Body Mass Index (BMI), also drawn
from the UK Biobank study. For gender, the cGAN was separately re-trained
on ∼27,500 ED-ES image pairs from female healthy volunteers and tested on
separate data sets of female and male healthy volunteers with ∼4,500 image
pairs each. For age, the network was re-trained on ∼5,300 ED-ES image pairs
from “young” healthy volunteers (ages 40–45) and tested on separate data sets
of young and old (ages 65–70) healthy volunteers with ∼700 image pairs each.
Lastly, the network was trained on ∼6,000 ED-ES image pairs from volunteers
with low BMIs (BMI < 22) and tested on separate sets of subjects with low and
high BMIs (BMI > 38) with ∼800 image pairs each.

5 Results

5.1 cGAN ES Frame Predictions

Example results of cGAN ES frame predictions when trained on a general healthy
population can be seen in Fig. 4. Mean MSE and SSIM scores between the ES
ground truth and ES prediction were 0.0026 ± 0.0013 and 0.89 ± 0.032 respec-
tively. The mean Dice score between the LV myocardial segmentations of ES
ground truth and predictions for the general population was 0.89 ± 0.059 (Fig. 3).

5.2 Subject Group Differences

The analysed subject groups were: female/male, young/old and low/high BMI.
For each pair the network has been trained on the former group and tested
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Fig. 3. cGAN prediction of ES frame for Patient A, including segmentations and dif-
ference between ES seg and ES pred.seg.; MSE, SSIM and Dice scores of [0.0035, 0.89
& 0.91] respectively.

Fig. 4. cGAN prediction of ES frame for Patient B, including segmentations and dif-
ference between ES seg and ES pred.seg.; MSE, SSIM and Dice scores of [0.0047, 0.85
& 0.94] respectively.

on separate validation sets from both groups. MSE and SSIM values have been
computed using the ES gold standard images and ES predictions for each patient
group. Subsequently, all images have been segmented and Dice coefficients of
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the segmentations have been computed. Using the LV cavity segmentations,
area ejection fractions (AEF) were computed according to AEF = (EDA −
ESA)/EDA, where EDA is the end-diastolic area and ESA the end-systolic
area. The mean percentage differences between the AEF of ground truth images
and predictions were computed, as seen in Table 1. The SSIM and Dice scores
of the individual patient groups have been plotted on normalised histograms
to display frequency distributions, as seen in Fig. 5, which also shows p-values
between the distributions calculated using the Kolmogorov-Smirnov test.

Table 1. MSE (in 10−3s), SSIM, Dice scores and AEF differences for patient groups.
Note that lower MSE and AEF, and higher SSIM and Dice, indicate better predictions.

Subject group MSE score SSIM score Dice score AEF diff.

A: Female 2.4 ± 1.2 0.90 ± 0.027 0.88 ± 0.058 14.9 ± 12.7

B: Male 3.2 ± 1.6 0.87 ± 0.038 0.87 ± 0.056 17.1 ± 20.3

A: Young 2.8 ± 1.2 0.88 ± 0.033 0.89 ± 0.048 14.8 ± 12.9

B: Old 3.3 ± 1.6 0.88 ± 0.037 0.87 ± 0.072 18.7 ± 19.0

A: Low BMI 2.7 ± 1.4 0.90 ± 0.032 0.88 ± 0.071 15.1 ± 13.7

B: High BMI 3.8 ± 1.8 0.86 ± 0.039 0.85 ± 0.092 22.6 ± 18.5

Fig. 5. Subject group histograms; Y-axis = frequency; X-axis = Metric; Group A in
green, Group B in blue (Color figure online)

6 Discussion

The prediction of ES frames, shown in Fig. 4, can be evaluated qualitatively and
quantitatively. Visual inspection shows that the cGAN is capable of predicting
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ES frames with a high degree of accuracy resulting in remarkably realistic pre-
dictions. The cGAN can accurately predict LV myocardial wall movements and
ES shapes, showing clear delineations of myocardial contours. RV contraction
is also captured. It needs to be emphasised, however, that the cGAN does not
explicitly capture motion in the sense of predicting motion vector fields, but
rather predicts cardiac states as a result of cardiac motion. Quantitative evalua-
tion confirms the quality of cGAN performance with low MSE scores and SSIM
scores close to 1. Yet, since these metrics take into account differences across the
entire image, local myocardial deformations might be masked by larger feature
changes located outside the heart. Hence Dice coefficients based on LV cavity
segmentations were used to compare LV shapes. The segmentations showed high
agreement between the ground truth and predicted ES frames, which confirms
that the cGAN has captured the structure-function interactions in a diverse
population of healthy volunteers, thereby validating our first hypothesis.

Nevertheless some limitations can be appreciated, particularly on the RV
shape which occasionally lacks crisp delineation of its contours. The edges of the
LV myocardium also experience occasional blurriness. The intensities of pixels
within the myocardium are sometimes not as homogeneous as in the ground
truth. Furthermore, some images display difficulties with capturing papillary
muscles or valve movements. Figure 5 and Table 1, together with their p-values,
show that when trained on a specific sub-group, the cGAN performs significantly
better when tested on separate subjects from that group, as compared to sub-
jects not from that group. Whilst MSE/SSIM/Dice/AEF difference scores are
significantly better for trained populations across all tested groups, the level of
difference varies between patient group categories. For gender, statistically sig-
nificant differences can predominately be observed in MSE/SSIM values. This
could potentially indicate that image differences other than heart deformation
between male and female subjects are responsible for the performance difference.
For age groups, the opposite is true. Whilst MSE/SSIM values are more similar,
Dice scores differ significantly, indicating significant differences in mechanical
function between volunteers of different age groups. In the case of BMI, signifi-
cant differences can be observed in both Dice and MSE/SSIM scores.

The difference in the metrics clearly suggests that the network has learned
what “normal deformation” during the cardiac cycle looks like, because when
subjected to a different population, where a physiological difference might be
expected [11], the ES predictions are not as accurate. Whilst this performance
may be expected, it has to be emphasised that both test groups were drawn from
the same study and only varied in the test variable (age, gender and BMI respec-
tively) whilst the distribution of the all other variables was consistent across the
groups. Hence a difference in performance could potentially not be present and
there requires experimental evaluation. The positive outcome of this experiment
validates the hypothesis that cGANs can be used to learn structure-function
interactions unique to specific subject groups, and suggests that when using
this method for pathological data, we might be able to detect differences due
to pathological cardiac function. Furthermore, by analysing the regions with
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greatest differences between prediction and ground truth, further anatomical
and physiological understanding of structure-function interactions and clinical
outcomes might be derived. The technique could potentially be improved by
training the cGAN directly on segmented ED-ES image pairs. Advantages of
this approach include the focus on the relevant area around the heart and the
reduction of ambiguity in fuzzy areas, however, disadvantages are that the seg-
mentations themselves have to be very precise to begin with and that organ
texture for example in the form of intensity variations within the myocardium
are not taken into account.
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