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Preface

Integrative models of cardiac function are important for understanding disease, eval-
uating treatment, and planning intervention. In recent years, there has been consider-
able progress in cardiac image analysis techniques, cardiac atlases, and computational
models, which can integrate data from large-scale databases of heart shape, function,
and physiology. However, significant clinical translation of these tools is constrained
by the lack of complete and rigorous technical and clinical validation, as well as
benchmarking of the developed tools. For doing so, common and available
ground-truth data capturing generic knowledge on the healthy and pathological heart is
required. Several efforts have been established to provide web-accessible structural and
functional atlases of the normal and pathological heart for clinical, research, and
educational purposes. We believe that these approaches will only be effectively
developed through collaboration across the full research scope of the cardiac imaging
and modeling communities.

The 10th edition of the Statistical Atlases and Computational Modelling of the Heart
workshop, STACOM 2019 (http://stacom2019.cardiacatlas.org), was held in con-
junction with the MICCAI 2019 international conference (Shenzhen, China), following
the past nine editions: STACOM 2010 (Beijing, China), STACOM 2011 (Toronto,
Canada), STACOM 2012 (Nice, France), STACOM 2013 (Nagoya, Japan), STACOM
2014 (Boston, USA), STACOM 2015 (Munich, Germany), STACOM 2016 (Athens,
Greece), STACOM 2017 (Quebec City, Canada), and STACOM 2018 (Granada,
Spain). STACOM 2019 provided a forum to discuss the latest developments in various
areas of computational imaging and modeling of the heart, as well as statistical cardiac
atlases.

The topics of this 10th anniversary edition of the STACOM workshop included:
cardiac imaging and image processing, machine learning applied to cardiac imaging
and image analysis, atlas construction, statistical modeling of cardiac function across
different patient populations, cardiac computational physiology, model customization,
atlas based functional analysis, ontological schemata for data and results, integrated
functional and structural analyzes, as well as the pre-clinical and clinical applicability
of these methods. Besides regular contributing papers, additional efforts of the
STACOM 2019 workshop were also focused on three challenges: Multi-Sequence
Cardiac MR Segmentation Challenge; Cardiac Resynchronization Therapy
CRT-EPiggy Electrophysiology Modelling Challenge; and Left Ventricle Full
Quantification Challenge. These challenges are described more in detail below.

From an initial submission of 76 papers (regular and challenges), 44 papers were
accepted for presentation at the workshop and 42 papers were invited for publication in
this LNCS proceedings volume.

MS-CMR Seg Challenge 2019 (Multi-Sequence Cardiac MR Segmentation
Challenge): Accurate computing, analysis, and modeling of the ventricle and myo-
cardium from medical images is important, especially in the diagnosis and treatment

http://stacom2019.cardiacatlas.org


management for patients suffering from myocardial infarction (MI). Late gadolinium
enhancement cardiac magnetic resonance (LGE CMR) image is an important means to
visualize MI, appearing with distinctive brightness compared with the health tissues. It
is widely used to study the presence, location, and extent of MI. Before the analysis of
MI, accurate segmentation of myocardium is required. However, automating this
segmentation remains challenging due to the indistinguishable boundaries, heteroge-
neous intensity, and complex enhancement patterns of pathological myocardium from
LGE CMR. Combing the complementary information of multi-sequence CMR from
the same patient can assist the myocardial segmentation.

MS-CMR Seg Challenge 2019 provided an open and fair competition for various
research groups to test and validate their methods, particularly for the ventricle and
myocardium segmentation. The aim of the challenge was not only to benchmark
various segmentation algorithms, but also to cover the topic of general cardiac image
segmentation, registration, and modeling, and to raise discussions for further technical
development and clinical deployment. The challenge received great interest from
participants all over the world and the proposed methods have achieved substantial
methodological innovations and significant performance improvement. The organizers
aim at keeping the MS-CMR Seg Challenge as a long-term event for participants who
were not be able to enter the competition, but are interested in further developments.
Relevant information and challenge results can be found at: https://zmiclab.github.io/
mscmrseg19/.

CRT-EPiggy19 Challenge: The spirit of the (not machine learning) CRT-EPiggy19
Challenge was to collectively review the current state of the art for computational
cardiology models and their ability to predict pacing-based therapy outcomes, as well
as the identification of the most critical phases and more promising solutions in the
personalization modeling pipeline. More specifically, participants were asked to predict
the electrical response of Cardiac Resynchronization Therapy (CRT) and to propose the
optimal device configuration in a swine model of left bundle branch block, given fully
controlled data. The unique multi-modal experimental data available in the challenge
has helped to calibrate electrophysiological solvers based on different mathematical
models. One key of the CRT-EPiggy19 Challenge has been to work in a collaborative
way between the different participants, rather than competitively, fostering reproducible
research and Open Science. Preliminary results from five international participant
teams were presented during the STACOM 2019 workshop on the available data.
Additionally, some lessons learned from the organization of a Biophysical Modelling
Challenge and suggestions for joint initiatives between medical data science and
physiological modeling communities were summarized. More information can be
found here: http://crt-epiggy19.surge.sh/.

The Left Ventricle Full Quantification Challenge (LVQuan19): LVQuan19
aimed to promote effective machine learning models for efficiently assessing the heart’s
function. LVQuan19 provided original cardiac MRI data without preprocessing for
training and testing phases, which is more clinical than the data providing by
LVQuan18. In this challenge, the extraction of the LV’s cavity and myocardium and
subsequently the regression of regional wall thicknesses, LV dimensions and the
classification of the phase of the cardiac cycle were to be performed. These are
common and significant parameters to assess the LV function. However, in clinical
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routine, these are time consuming and prone to error and inter-observer variability.
Here, the four revised full workshop papers were carefully reviewed and selected from
five submissions. In these submissions, state-of-the-art technologies including transfer
learning, statistical models, incorporated 2D+3D, and multi-task learning were devel-
oped, and the performance achieved to 106mm2, 0.9920mm, and 0.9185mm of mean
absolute error for area, dimension, and regional wall thickness, as well as
6.7% of error rate for phase classification. More information can be found here:
https://lvquan19.github.io/

We hope that the results obtained by the challenges, along with the regular paper
contributions will act to accelerate progress in the important areas of heart function and
structure analysis. A total of 48 papers (i.e., regular papers and from the 3 challenges)
were accepted for oral or poster presentations at STACOM 2019. The selected papers
are published in this Springer Lecture Notes in Computer Science (LNCS) proceedings
volume.
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Co-registered Cardiac ex vivo DT Images
and Histological Images

for Fibrosis Quantification

Peter Lin1,2, Anne Martel1,2, Susan Camilleri3, and Mihaela Pop1,2(B)

1 Sunnybrook Research Institute, Toronto, Canada
mihaela.pop@utoronto.ca

2 Medical Biophysics, University of Toronto, Toronto, Canada
3 Lunenfeld Research Institute, Toronto, Canada

Abstract. Cardiac magnetic resonance (MR) imaging can detect infarct
scar, a major cause of lethal arrhythmia and heart failure. Here, we
describe a robust image processing pipeline developed to quantita-
tively analyze collagen density and features in a pig model of chronic
fibrosis. Specifically, we use ex vivo diffusion tensor imaging (DTI)
(0.6 × 0.6 × 1.2 mm resolution) to calculate fractional anisotropy maps
in: healthy tissue, infarct core (IC) and gray zone (GZ) (i.e., a mixture
of viable myocytes and collagen fibrils bordering IC and healthy zones).
The 3 zones were validated using collagen-sensitive histological slides co-
registered with MR images. Our results showed a significant (p < 0.05)
reduction in the mean FA values of GZ (by 17%) and IC (by 44%) com-
pared to healthy areas; however, we found that these differences do not
depend on the location of occluded coronary artery (LAD vs LCX). This
work validates the utility of DTI-MR imaging for fibrosis quantification,
with histological validation.

Keywords: Myocardial infarct · DTI · Fibrosis · Image registration

1 Introduction

Ventricular arrhythmia and progressive heart failure associated with structural
disease (e.g. chronic infarction) are major causes of death worldwide. In the
clinics, the location of the fibrotic infarct is evaluated non-invasively using MR
imaging [1]. In these MR images, heterogeneous fibrosis has an intermediate
signal intensity between healthy (H) tissue and infarct core (IC), and is there-
fore named ‘gray zone’ (GZ) [9]. However, the clinical spatial MR resolution is
often inadequate (i.e., 8–10 mm slice thickness) resulting in an overestimated
GZ and IC extent due to partial volume effects [6,7]. Furthermore, in post-
infarction patients, subtle fibrosis characteristics (e.g. alteration in myocardial
tissue anisotropy) cannot be properly detected due to motion-related MR arti-
facts nor they can be histologically validated.

c© Springer Nature Switzerland AG 2020
M. Pop et al. (Eds.): STACOM 2019, LNCS 12009, pp. 3–11, 2020.
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Fractional anisotropy (FA) is a scalar metric calculated from DTI-derived
eigenvectors that describes the degree of diffusivity of water molecules in tissue.
Regions with replacement fibrosis have lower FA due to increased myocardial
fiber disarray resulting from local necrosis, ventricular remodeling, and infiltra-
tion of thin collagen fibrils, thus increasing the diffusivity of water molecules
[8,13].

Our broad aim is to use high-resolution MR to identify subtle characteristics
of heterogeneous fibrosis in a pre-clinical model of chronic infarction with his-
tological validation, and construct 3D MRI-based models for simulations [3,10].
This type of fibrosis harbors the foci of lethal arrhythmia and is comprised of
a mixture of healthy myocytes and collagen fibrils, bordering dense scar areas
[4]. In this work, we aim to develop an image analysis pipeline to study myocar-
dial anisotropy in GZ by means of high-resolution diffusion-weighted MR images
acquired in explanted pig hearts. Specifically, we use DTI to calculate FA (as a
measure of fiber disarray in GZ/IC), and correlate these FA maps with collagen
density from co-registered histological images using affine registration.

2 Materials and Methods

2.1 Animal Model of Myocardial Infarction

Myocardial infarction was generated in Yorkshire swines (N = 10) using a 90-min
occlusion-reperfusion method under x-ray fluoroscopy, as previously described in
[8]. The infarctions were induced in the LAD territory of 5 pigs, and in the LCX
territory of another 5 pigs. They were then allowed to heal for 5–6 weeks prior to
animal sacrifice, heart explantation, and MR imaging. All animal experiments
received ethical approval from Sunnybrook Research Institute, Toronto and were
conducted in accordance with protocols instated by the Animal Care Committee
of Sunnybrook Health Sciences Centre, Toronto.

2.2 Ex Vivo Diffusion-Weighted MR Imaging

All diffusion-weighted MR images were acquired using a 1.5T GE Sigma Excite
scanner. The explanted hearts were fixed in 10% formalin for 3–4 days and
then placed in a Plexiglas phantom box filled with Fluorinert (3MTM, USA)
for imaging. Each heart phantom was placed in an eight-channel head coil. The
following MR parameters for diffusion-weighted imaging were used: echo time
= 35 ms, repetition time = 700 ms, FOV = 160 × 160 mm, slice thickness =
1.2 mm, matrix = 256 × 256, b value = 0 s/mm2 for unweighted images, and b =
500 s/mm2 for diffusion-weighted images in 7 diffusion sampling gradients. The
in-plane image resolution was 0.6×0.6×1.2 mm and the total scan time for each
heart was approximately 10 h.
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2.3 Fractional Anisotropy Map Calculation

The equations describing DT imaging and eigenanalysis are described below [2].
The DWI echo signal intensity S is calculated by the following:

S = S0e
−b·D (1)

where S0 is the signal of the unweighted image (b = 0). The b value is a diffusion
weighing factor that describes the strength and timing of diffusion gradients,
which is used to compute the diffusion-weighted image. D is a diffusion coefficient
of water molecules and can be represented by a 3 × 3 tensor as shown in Eq. 2:

D =

⎡
⎣

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤
⎦ = ET

⎡
⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦ E (2)

This tensor is derived from directional diffusivities and is symmetric such that
Dij = Dji, with i, j = x, y, z. Thus, there are only six independent variables in
this tensor. E represents a matrix of three eigenvectors, indicating the direction
of the principle axes of the tensor model. λ1, λ2 and λ3 represent eigenvalues
describing the size of principle axes.

Equation 3 shows the formula for FA for each voxel. For a perfect isotropic
medium, λ1 = λ2 = λ3 and FA = 0, whereas with progressive diffusion
anisotropy, FA → 1 (e.g. healthy myocardial muscle fibers).

FA =
√

3√
2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2√

λ2
1 + λ2

2 + λ2
3

(3)

2.4 Histopathology

From each heart, one representative 4 mm thick slab was cut in short-axis ori-
entation (matching one DT image), sectioned to focus on the infarcted region,
and then paraffin embedded. Thin slices were cut from these slabs at 4µm thick-
ness using a microtome, mounted on small 1 × 3 inch glass slides and stained.
To visualize collagenous fibrosis, the slides were stained with picrosirius red and
scanned at 40× magnification using a TISSUEscope TM 4000 confocal micro-
scope (Huron Technologies International Inc.).

2.5 Fibrosis Quantification

In this work, we aimed to quantify fibrosis in FA maps (calculated from DTI)
for each myocardial zone defined by the collagen density in histological images:
H, GZ and IC. The pipeline for this process is briefly outlined in Fig. 1.

For each heart, FA maps were reviewed to manually select the slice corre-
sponding to the histology image. Histology images and FA maps were then over-
laid in the open source software Sedeen Viewer (Pathcore 2018)1 for manual reg-
istration using anatomical landmarks (e.g., papillary muscles, scar morphology).
1 https://pathcore.com/sedeen/.

https://pathcore.com/sedeen/
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Fig. 1. Illustration of the image processing pipeline. FA maps were manually registered
with histology images for collagen quantification. H, GZ and IC regions were validated
with ground truth histology.

Affine registration was performed to correct non-uniform tissue shrinkage effects
from tissue fixation and histology processing. This approach is more appropriate
than rigid registration because it allows image scaling. Once registered, 3 × 3
MR pixel regions of interest (ROI) were selected on the histology image for stain
quantification. For each heart, 2 ROIs were selected from each of H, GZ and
IC zones. The stain analysis plugin [5] in Sedeen was used to quantify tissues
with a positive stain for collagen and return a percent collagen composition for
each ROI. Using our previous grading system, this plugin was used to classify
each tissue category as either H (<20% collagen), GZ (20–70% collagen) or IC
(>70% collagen) [8]. Once classified, the same ROI was imposed onto a FA map
for mean FA calculations using DSI Studio (Labsolver 2018)2.

2.6 Statistical Analysis

Mean FA values were expressed as mean ±1 SD. Tukey boxplots were used
to compare mean FA values in each of the 3 cardiac zones (H, GZ and IC).
Student’s t-tests were performed to evaluate levels of significance between groups
(p < 0.05). One-way analysis of variance (ANOVA) was performed to determine
statistically significant differences in mean FA values in H, GZ and IC regions.
All statistical tests were performed using RStudio Version 1.1.463 (RStudio Inc.
2018).

3 Results

Figure 2 shows the steps of quantitatively analyzing FA values in one heart. The
bottom-right image illustrates an analyzed ROI showing pixels with a positive
stain for collagen (red). The bottom-left image shows the corresponding ROI on
the FA map, which is a gray-scale display of FA values across the image with
brighter areas being more anisotropic than darker areas (i.e., IC).

Figure 3 shows the resulting mean FA for the 3 zones: H (0.52 ± 0.12), GZ
(0.43 ± 0.13) and IC (0.29 ± 0.17). We observed a significant difference in FA

2 http://dsi-studio.labsolver.org.

http://dsi-studio.labsolver.org
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Input

Output

Analysis

Fig. 2. Example of a co-registered histology image and FA map for quantitative colla-
gen analysis, where the white arrow points to the infarct generated in the LCX territory.
The magnified ROI in the bottom right figure shows an example of GZ classification
(34% collagen) using the stain analysis plugin in Sedeen. Once the histology-based ROI
was classified, a mean FA value (0.38) for its corresponding ROI in the FA map was
calculated as shown in the bottom-left figure. (Color figure online)

values between all 3 zones (one way ANOVA = 1.8 × 10−5). Figure 4 shows the
comparison of FA values between the LAD and LCX sub-groups for each region.
Notably, we found no statistical difference between these 2 groups.

Figure 5 illustrates an exemplary snapshot taken from the visualization and
analysis software Sedeen, in which we co-registered the FA map and the picrosir-
ius red image at 50% opacity. Here, 2 ROIs selected from each of: H, GZ and IC
regions are visible on the registered image (yellow squares).
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Anova, p = 1.8e−05
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Fig. 3. Results from FA analysis. Mean FA values in healthy, gray zone and infarct
core myocardium illustrated using a Tukey boxplot. Lines in the boxplots represent
the statistical median. Error bars reflect the lowest and highest data point within 1.5
interquartile range of the lower and upper quartiles respectively. (* = p < 0.05 in an
independent samples t-test).
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Fig. 4. Results from FA analysis. Bar graph displaying FA values in each cardiac
region stratified by infarct type. Error bars reflect ±1 SD. (ns = not significant in an
independent samples t-test).
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Fig. 5. Visualization of the Sedeen user interface, including its native file manager
(left menu) and analysis manager (right menu). (A) shows a magnified image of one
analyzed ROI. The left image is acquired from the raw histology image and the right
image is the same region following analysis of the collagen stain. (B) shows the user-
interface for algorithm selection. For stain quantification, we used the stain analysis
plugin. (C) is a magnified image of showing the output of the stain analysis plugin.
Here, we can quantitatively assess the percent collagen composition of this ROI and
thus classify it as one of: H, GZ or IC. (Color figure online)

4 Discussion and Conclusion

In this work, we describe an image processing pipeline focused on co-registered
histology and MR images to quantitatively assess the extent of collagenous fibro-
sis in H, GZ and IC myocardium using FA, a measure of the diffusivity of water
molecules reflecting tissue architecture and alignment.

In histologically-classified ROIs, we found that mean FA decreases signifi-
cantly in GZ (reduction of 17%, from 0.52 ± 0.12 → 0.43 ± 0.13, p = 0.034) and
IC (reduction of 44%, from 0.52 ± 0.12 → 0.29 ± 0.17, p = 0.00005) myocardial
zones when compared to healthy tissue. Our results are consistent with find-
ings from Wu et al. [17], who investigated FA in porcine hearts with myocardial
infarction and observed a decrease in the IC (38.4%) and GZ (6.1%). Unlike our
study which performed mean FA calculations on small histologically-classified
ROIs, they performed calculations on 8 large radial segments of the left ventri-
cle which may represent a confounding mixture of both healthy and scar tissue.
These FA values, in addition to the patterns of FA reduction, are similar to stud-
ies using human models of myocardial infarction, further validating our porcine
model for studying myocardial infarction as seen in the clinic [14,15].
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This decrease in FA is likely multifactorial, involving the loss of healthy
myocyte architecture and the deposition of replacement fibrosis. Healthy
myocardium is known to be highly anisotropic, reflecting its directionally orga-
nized fibers and conductive properties; however, following myocardial infarction,
networks of functional myocytes are replaced by collagenous fibrosis [11,12].

Notably, we report no differences in FA between LAD and LCX sub-groups,
suggesting that tissue anisotropy in H, GZ, and IC myocardial zones may not
depend on infarct location. This finding is also consistent with Wu et al. [16] who
compared non-reperfused occlusion-induced LAD and LCX infarctions in pig.
Comparable results between two different models of infarction (our occlusion-
reperfusion model vs the non-reperfusion occlusion model in [16]) indicates that
patterns of tissue fibrosis, as characterized by FA measurements, are also largely
independent of infarct location.

Lastly, we acknowledge limitations in our method. For the calculation of
diffusion tensor, our fitting model used only 2 b-values (0 and 500) rather than
3. Our ex vivo high-resolution image acquisition time was roughly 10 h; thus, it
was unfeasible to perform another scan for the additional fitting. Additionally,
we registered ex vivo MR images with heart tissue using affine registration for
scaling. This approach is acceptable for our work since all images (diffusion-
weighted and histology) were acquired ex vivo following fixation; however, further
investigations using in vivo MR images are warranted to better reflect tissue
anisotropy under physiological conditions. These MR images would be subject to
motion-related artifacts and differences in morphology due to in vivo conditions.
As such, deformable image registration techniques using anisotropy scale factors
may be necessary in addition to metrics for registration confidence. Notably,
Sedeen can perform manual anisotropic transformations with the potential for
semi-automatic registration plugins. As such, this image processing pipeline may
be applied to in vivo studies in the future.

To conclude, this study describes a robust image processing pipeline for
anisotropy characterization in myocardial infarction using high resolution DTI
and histologically-classified ROIs in a chronic fibrotic scar. In doing so, we find
that FA, a measure of tissue fibrosis, decreases significantly from H to GZ to IC
myocardial zones. We also report that the degree of collagenous fibrosis as quan-
tified by FA is largely independent of infarct territory (LAD or LCX). Overall,
we demonstrate that DTI as a non-invasive imaging modality can identify subtle
differences between H, GZ and IC tissue.
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Abstract. Valve-related heart disease affects 27 million patients worldwide and
is associated with inflammation, fibrosis and calcification which progressively
lead to organ structure change. Aortic stenosis is the most common valve
pathology with controversies regarding its optimal management, such as the
timing of valve replacement. Therefore, there is emerging demand for analysis
and simulation of valves to help researchers and companies to test novel
approaches. This paper describes how to build ultrasound- and MRI-compatible
aortic valves compliant phantoms with a two-part mold technique using 3D
printing. The choice of the molding material, PVA, was based on its material
properties and experimentally tested dissolving time. Different diseased valves
were then manufactured with ecoflex silicone, a commonly used tissue-
mimicking material. The valves were mounted with an external support and
tested in physiological flow conditions. Flow images were obtained with both
ultrasound and MRI, showing physiologically plausible anatomy and function of
the valves. The simplicity of the manufacturing process and low cost of mate-
rials should enable an easy adoption of proposed methodology. Future research
will focus on the extension of the method to cover a larger anatomical area (e.g.
aortic arch) and the use of this phantom to validate the non-invasive assessment
of blood pressure differences.

Keywords: Aortic stenosis � Valve fabrication � 3D printing � US-MRI
compatible

1 Background and Introduction

Aortic stenosis (AS) is the most common valve-related disease, associated with
inflammation, fibrosis and calcification, which can lead to progressive organ structure
change [1]. AS can result from differing underlying pathologies and the macroscopic
appearance is typically classified into one of the following categories: calcified valve,
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rheumatic valve and bicuspid valve. The prevalence of aortic stenosis increases with
age, and if left untreated high mortality is observed [2]. Moreover, left ventricular
outflow tract obstruction increases the workload of the left ventricle ultimately leading
to heart failure [3]. Treatment of the valve, by means of surgical or minimally invasive
methods, is required as no pharmacological methods demonstrate efficacy at preventing
progression. However, current diagnostic methods are inadequate regarding optimal
management, such as the timing of valve replacement. In-vitro studies of valve disease
and pre-procedural interventional planning can benefit from advances in 3D printing
[4]. Due to the need of ultrasound- and MRI- compatibility, compliance, flexibility and
durability when connected to a hemodynamic pump, the valve material needs to be
chosen carefully while the valve shape should be realistic. Silicone is an optimal
material because it is a room temperature-vulcanized material with stiffness similar to
soft tissue [5]. However, the structure of the aortic valve is complicated and direct
silicone printing technology is not available in the current market.

Despite the current technical limitation of rapid prototyping and 3D printing in the
literature [6], it offers a significant tool for making and validating pathological valves,
as well as an important education tool for trainees involved in the treatment of valvular
disease. Given the difficulties of making a durable and compliant aortic valve model,
several patient-specific tissue-mimicking phantoms were previously printed directly
using TangoPlus and VeroBlackPlus, which can achieve a layer thickness of 30
microns. However, replication of these methods requires high printing cost even though
these two materials are reported to be much stiffer than ecoflex silicone [7]. Motivated
by practicing the surgical procedure, a detailed soft organ phantom was created by a
technique of 3D wax printing and polymer molding [8]. The outer molds are printed
with VeroClear and the inner molds are printed with wax. But the wax molding
material needs to be dissolved in ethanol at 70 �C, which makes it more complicated
and potentially unachievable in most labs.

Here, we present a low-cost and simple two-part mold-based technology of man-
ufacturing a realistic aortic valve and with the use of PVA, the internal mold can be
easily dissolved in water at room temperature. Besides a normal silicone valve, some
typical pathological valves were also fabricated for comparison and the imaging
compatibility was validated using both ultrasound and MRI. 3D-printable PVA was
chosen as the molding material for its easy printability, fast water-soluble property, as
well as the good performance under great external forces. The use of 3D-printed valve
models and experience is expected to be broadened in the near future, with the progress
in material engineering, computer aided design and diagnostic imaging systems [9].
Although it seems a far stretch of imagination, in vivo implantation of 3D-printed aortic
valves may become the finale goal [10].

2 Materials and Methods

The whole procedure of making the anthropomorphic silicone valve is illustrated in
Fig. 1, which contains following three main parts: suitable molding material selection,
silicone perfusion and mold dissolving, final imaging validation using ultrasound and
MRI.
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2.1 Molding Material Selection

Before using silicone to make the aortic valve phantom, a suitable molding material
needs to be selected based on the following requirements: easy to dissolve with no
additional solvents; stable when external force applied and slightly more flexible than
general rigid printing materials like Polylactic acid (PLA). There are several water-
soluble materials available on the printing market including Polyvinyl alcohol (PVA),
High-T-Lay, Lay-PVA which fulfil these criteria [11]. In order to choose a suitable
printing infill density and the best dissolving temperature, the chosen three molding
materials were compared with different infills and at different water temperatures. The
specimen for the infill density experiment was 3�3�3 cm3 cube with a discrete infill
density range from 0% to 100%, while the specimen for the water temperature
experiment was 1 � 1 � 1 cm3 cube with only 0% infill. The whole dissolving
procedure was monitored by a surveillance camera (YI Dome Camera) and recorded
from the starting point to fully dissolving point manually.

Meanwhile, a three-point bending test [12] was performed to compare the material
flexibility and stability. The specimens for this test were 10 � 2 � 1 cm3 cuboids with
infill density range from 20% to 100%. The machine used was a Zwick Roell Z010
tensile testing system and the experimental setup is shown in Fig. 2. The recorded data
were analyzed in Matlab 2019. The failure force when the sample cracks is simply the
maximum loading force and the flexural modulus that represents the materials’ flexi-
bility needs to be calculated using Eq. 1 [12], where Ef is flexural modulus, L is
support span, b is the width and d is the depth of the specimen and m is the gradient of
the initial straight-line portion of the load-deflection curve:

Ef ¼ L3m
� �

= 4bd3
� � ð1Þ

2.2 Valve Manufacturing

After performing the above experiments, it was found that the most suitable molding
material to make the internal mold is PVA, while the external mold can be printed with
normal PLA for reuse. The original solid valve model was segmented from a healthy
human chest CT scan using ITK-SNAP (University of Pennsylvania, USA) thresh-
olding and region growing, then smoothed using a median filter in Seg3D (The

Fig. 1. Manufacturing procedure illustration & imaging compatibility validation
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University of Utah, USA). Finally the hollow model was generated using the erosion-
dilation method in Seg3D, the thickness of the valve being 2 mm and the whole
segmentation can be viewed in Fig. 3.

After completing the valve segmentation, the 3D mold was designed using
Solidworks 2018. The cavity was created based on the hollow model and the mold was
then extracted as the external part (Fig. 4(a)) and the internal part (Fig. 4(b)). The
external part was printed using rigid plastic PLA while the internal part was printed
using PVA. With the assembled prints held with clamps Fig. 4(c), the degassed

Fig. 2. Three-point bending test setup

Fig. 3. Aortic valve model generation (a) Solid valve segmentation (b) Hollow valve
segmentation and (c) 3D hollow valve model
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ecoflex-silicone 0030 was poured into the mold and the basic normal valve model was
manufactured as depicted in Fig. 4(d). Based on the normal silicone model, some
pathological valve models were created as depicted in Fig. 5, including a rheumatic one
(Fig. 5(b)), a calcified one Fig. 5(c) and a bicuspid one Fig. 5(d). Each valve model
started with fused valve cusps. The rheumatic valve was created by ensuring the
anatomical orifice consisted of cuts made one third down each valve closure line to
recreate circumferential fusion of the cusps. The calcified valve was created by paint-
brushing more silicone to replicate leaflet thickening and stiffening, while the bicuspid
one was created by leaving one commissure fused to mimic a raphe.

2.3 US and MRI Imaging

To validate whether the valve phantoms can give the desired imaging results, the four
types of silicone valves were imaged using 2D ultrasound and 3D MRI. The 2D
ultrasound images were acquired on the Philips IE33 system with a S5-1 probe in water
using the standard aortic valve short-axis view. For the 2D MR imaging, the silicone
valves were connected to a commercial flexible silicone aorta phantom (T-S-N 005,
Elastrat) and perfused by an MRI-compatible pulsatile flow pump (CardioFlow 5000

Fig. 4. Two-part mold-based silicone valve manufacturing (a) External mold (b) Internal mold
(c) Two-part mold assembly and (d) Normal silicone valve

Fig. 5. [13]. Pathological valve models (a) Normal valve (b) Rheumatic valve (c) Calcified
valve and (d) Bicuspid valve
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MR). This time the images were acquired in 1% Agar for optimized imaging results.
Both imaging procedures are demonstrated in Fig. 6, with Fig. 6(a) showing the
ultrasound imaging and Fig. 6(b) showing the MR imaging.

3 Results and Discussions

3.1 Molding Material Selection

The mold material dissolving comparisons are presented in Tables 1 and 2. From
Table 1, it is clear that PVA is the easiest to dissolve while High-T-Lay is the most
difficult and the dissolving time increases non-linearly with the tested infill densities.
Table 2 gives a similar result showing that PVA is the best water-soluble material at
various water temperatures, while with higher temperature, all the tested materials will
dissolve faster. Table 3 gives the failure force results of the materials, from which we
can see Lay-PVA can withstand the highest external force and PVA can withstand the
least, while with higher infill density, all the specimens’ failure force increases.
Regarding to the flexibility, PVA has the smallest flexural modulus and Lay-PVA has
the largest, which means PVA is the best option with the requirement for flexible
molding materials. With less infill density, the mold will be very fragile and the final
printing option for the internal molding material was chosen to be PVA with 40% infill
density (Table 4).

Fig. 6. Imaging validation (a) Ultrasound imaging and (b) MR imaging

Table 1. Molding material dissolving time comparison with different infill densities (@ room
temperature 25 �C).

Infill density (%) Time taken to dissolve (hours)
PVA High-T-Lay Lay-PVA

0 1.62 36.08 4.75
20 10.43 163.08 58.38
40 24.43 367.50 173.42
60 116.42 656.42 284.73
80 263.33 858.25 397.57
100 377.83 1028.17 494.28
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3.2 Valve Manufacturing

Figure 7 demonstrates the final fabricated valves using ecoflex-silicone 0030. From the
results we can see the normal valve can open fully under pressure, while the rheumatic
one can only open partially as the leaflets stick to each other, the calcified valve can
barely open due to the abnormal thickness of the leaflets and the bicuspid one opens
only on one side due to the incomplete leaflets. However, there is still the need for
validating the valves’ performance under different imaging modalities.

Table 2. Molding material dissolving time comparison with different temperatures (@ 0% infill
density).

Temperature (�C) Time taken to dissolve
(minutes)
PVA High-T-Lay Lay-PVA

25 93 2124 311
40 72 1324 314
60 50 1293 309
80 42 1290 310
100 33 1285 306

Table 3. Molding material failure force comparison

Infill density (%) Maximum load force (N)
PVA High-T-Lay Lay-PVA

20 134 111 216
40 163 157 497
60 165 297 546
80 326 429 737
100 435 522 1152

Table 4. Molding material flexural modulus comparison

Infill density (%) Flexural modulus (MPa)
PVA High-T-Lay Lay-PVA

20 137 489 612
40 144 705 906
60 148 972 1276
80 276 1244 1815
100 506 1656 2454
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3.3 US and MRI Imaging

Figure 8 shows both the ultrasound and MR images of the four types of aortic valves
from the short-axis view. Even though the ultrasound images are less clear and the
difference is less significant, we can still see the normal valve has a perfect clear leaflet
structure, while the rheumatic and calcified one have more vague anatomies and the
bicuspid one demonstrates the abnormal opening from one side of the leaflets. The MR

Fig. 7. Manufactured silicone valves, close on top, and open on the bottom (a) Normal valve
(b) Rheumatic valve (c) Calcified valve and (d) Bicuspid valve

Fig. 8. 2D Ultrasound images of (a) Normal valve (b) Rheumatic valve (c) Calcified valve and
(d) Bicuspid valve; MR Images of (e) Normal valve (f) Rheumatic valve (g) Calcified valve and
(h) Bicuspid valve
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images show the full opening of the normal valve, however, under the same pressure,
the rheumatic valve and calcified valves open much less, while the bicuspid one opens
eccentrically.

These imaging results qualitatively demonstrate the imaging compatibility and
functionality of the artificial valves made using 3D printing.

4 Conclusion and Future Work

In this paper, we propose a novel and easy method to fabricate soft aortic valve models,
using PVA, the best water-soluble printing material, to make an internal mold and PLA
to make the external mold. The molding material was chosen based on its dissolving
performance and flexural modulus. The fabricated silicone valves are compliant, as the
human heart valves and were shown to be ultrasound- and MRI- compatible. These
valves may be useful in the future for studying valve function under normal and
pathological conditions.

Future work will focus on quantitative evaluation of 3D-printed valve performance
and development of direct silicone printing for manufacturing these valves, thus sim-
plifying the process further.
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Abstract. Maintaining good cardiac function for as long as possible is a
major concern for healthcare systems worldwide and there is much inter-
est in learning more about the impact of different risk factors on cardiac
health. The aim of this study is to analyze the impact of systolic blood
pressure (SBP) on cardiac function while preserving the interpretability
of the model using known clinical biomarkers in a large cohort of the
UK Biobank population. We propose a novel framework that combines
deep learning based estimation of interpretable clinical biomarkers from
cardiac cine MR data with a variational autoencoder (VAE). The VAE
architecture integrates a regression loss in the latent space, which enables
the progression of cardiac health with SBP to be learnt. Results on 3,600
subjects from the UK Biobank show that the proposed model allows us
to gain important insight into the deterioration of cardiac function with
increasing SBP, identify key interpretable factors involved in this pro-
cess, and lastly exploit the model to understand patterns of positive and
adverse adaptation of cardiac function.

Keywords: Cardiac function · Variational autoencoder · Cardiac risk
factors

1 Introduction

Preventing the development of heart disease in patients with known risk fac-
tors, such as hypertension, represents a major challenge for healthcare systems
worldwide. Although much is known about how these risk factors influence devel-
opment of disease, the recent availability of large scale databases such as the UK
Biobank represents an excellent opportunity to extend this knowledge. Learn-
ing from a large number of highly detailed, multidimensional cardiac magnetic
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resonance (CMR) datasets can help further understanding of how risk factors
impact cardiac function, and tailor medical interventions to individual patients.

Traditionally, machine learning techniques have relied on the use of hand-
crafted features to effectively perform a specific task without using explicit
instructions. In some cases, the accuracy of these models was limited by the
model being restricted to the use of these features. Recently, deep learning (DL)
techniques have demonstrated a significant increase in performance over tradi-
tional machine learning methods. DL allows features to be learned from the data
themselves, without preselection. One drawback of DL approaches is the lack of
interpretability, as the learned relationships and features are often abstract and
opaque to human users. Especially in medicine, interpretability and account-
ability are vital for two main reasons: (a) they can promote clinician trust in
the learned models; and (b) the use of well-established, interpretable biomarkers
allows the models to be used to better understand disease processes, translate
the results to other populations and to interpret the newly learned information
in the light of already existing clinical scientific evidence. For example, complex
full 3D cardiac motion of the heart can be used to outperform current models in
survival estimation for patients with pulmonary hypertension [1]. While methods
like this demonstrate the power of DL, it is difficult for clinicians to understand
the features underlying the predictions and to use the model to better under-
stand the disease.

A large number of biomarkers can be calculated from CMR. These are well-
understood by clinicians and provide comprehensive information about under-
lying physiological processes. However, estimating them all is labour-intensive.
In this paper, we employ a fully automated DL-based pipeline for estimating a
wide range of biomarkers of cardiac function from cine CMR data. Our main
contribution is to propose a framework that enables the interpretability of these
automatically computed biomarkers to be combined with the power of learned
features in DL. This framework is based on the use of a variational autoencoder
with a latent space regression loss (R-VAE), in which the input data are the
clinical biomarkers. In addition, we use a dummy variable in the regression to
differentiate between population groups. We use the proposed method to inves-
tigate the impact of systolic blood pressure (SBP: a measure of hypertension)
on cardiac function in the healthy population differentiated by gender.

Related Work: In the clinical literature, many groups have investigated the
relationship between SBP and ventricular structure, function and geometry [2,3].
However, most studies only investigated the influence of SBP on global parame-
ters or only in the left ventricle. The proposed pipeline enables a more detailed
investigation of the impact of SBP on cardiac function, as we demonstrate in
Sect. 4. VAEs have previously been used for identification and visualization of
features in medical image-based classification tasks [4–6], but the features were
still learnt from the data and were not well-established clinical biomarkers as in
our work. DL models have also previously been proposed for regression using
interpretable features. For example, Xie et al. [7] proposed an autoencoder-
based deep belief regression network to forecast daily particulate matter
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concentrations. Similarly, Bose et al. [8] proposed a stacked autoencoder based
regression framework to optimize process control and productivity in intelligent
manufacturing. Both techniques combined handcrafted features obtained from
the image domain with autoencoders. In the medical field, Xie et al. [9] have pro-
posed a deep autoencoder model for regression of gene expression profiles from
genotype. Similar to these works we integrate a regression loss into the autoen-
coder to learn relationships between the latent space and another variable (SBP
in our case). Our work is methodologically distinct from [7–9] as we employ a
VAE, which enables us to sample from the distribution of the latent space and
decode the clinical biomarkers for these samples. We also employ a dummy vari-
able in the regression to enable the investigation to be stratified by gender. Our
work also represents the first time that a regression-based autoencoder has been
applied to investigate the impact of risk factors on cardiac function.

2 Materials

We evaluate our approach on subjects selected from the UK Biobank data set,
which contains multiple imaging and non-imaging information from more than
half a million 40–69 year-olds. We included only participants with CMR imaging
data. From this group, we excluded participants with a history of cardiovascu-
lar disease, respiratory disease, renal disease, cancer, rheumatological disease,
symptoms of chest pain or dyspnoea. For each subject, the following cine CMR
acquisitions were used; a short-axis (SA) stack covering the full heart, and two
orthogonal long-axis (LA) acquisitions (2-chamber (2Ch) and 4-chamber (4Ch)
views). For each image slice 50 temporal frames were available covering a full car-
diac cycle (temporal resolution ≈14–24 ms/frame). All CMR imaging was carried
out on a 1.5 T scanner (Siemens Healthcare, Erlangen, Germany). Details of the
image acquisition protocol can be found in [10]. Blood pressure was measured
using the HEM-70151T digital blood pressure monitor (Omron, Hoofddorp, The
Netherlands) [11].

3 Methods

In the following sections we first describe the automated estimation of biomark-
ers of cardiac function from CMR images, and secondly present the R-VAE net-
work used to learn the relationship between cardiac function and SBP. Figure 1
summarizes these steps and how they interrelate.

3.1 Biomarker Estimation from CMR

The procedure used to extract the clinical biomarkers of cardiac function is based
on the work published in [12] and is briefly summarized below.

Automatic Segmentation Network: We first used a fully-convolutional net-
work with a 17 convolutional layer VGG-like architecture for automatic segmen-
tation of the left ventricle (LV) blood pool, LV myocardium and right ventricle
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Fig. 1. Overview of the proposed framework for a VAE regression model based on
automatically estimated clinical biomarkers.

(RV) blood pool from SA and LA slices in all frames through the cardiac cycle
[13,14]. After this, all segmentations were aligned to correct for breath-hold
induced motion artefacts using the iterative registration algorithm proposed in
[14].

Biomarker Calculation: LV and RV blood volume curves were calculated from
the obtained segmentations. From these curves, end-diastolic volume (EDV),
end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), LVED
mass (LVEDM), peak ejection rate (PER), peak early filling rate (PEFR),
atrial contribution (AC) and peak atrial filling rate (PAFR) were obtained.
Cardiac volumes were indexed to body surface area (BSA) using the Dubois
and Dubois formula [15]. The complete list of biomarkers calculated was:
iLVEDV (indexed LVEDV), iLVSV, LVEDM, LVPER, LVPFR, LVPAFR,
LVAC, iRVEDV, RVPER, RVPFR, RVPAFR and RVAC.

Quality Control: Similar to [12], two quality control (QC) methods were imple-
mented to automatically reject subjects with insufficient image quality or incor-
rect segmentations, ensuring the robustness of the estimated biomarkers. The
first QC step (QC1) used trained DL models to reject any image with poor
quality or incorrect planning, and the second QC step (QC2) detected incor-
rect segmentation results using an SVM model that identified physiologically
unrealistic or unusual volume curves.

3.2 Deep Learning Regression Model

To combine the interpretability of handcrafted features with the power of DL we
propose to use a VAE featuring a regression loss in the latent space to simulta-
neously learn efficient representations of cardiac function and map their change
with regard to differences in SBP. As a regression model we used the multivari-
able regression modelling commonly used in epidemiological studies [16], where
the effect of different independent variables are included as confounders on the
regression model. As a result, the VAE linearizes the relationship between differ-
ent clinical biomarkers and the variable of interest (SBP in this case), and these
features are incorporated in a standard regression model.

Variational Autoencoder: The encoding part of a VAE allows a number of
features, x, to be mapped into a lower dimensional representation (the latent
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space), whilst the decoder maps this representation back to the original higher
dimensional space. The proposed VAE has N = 13 input units representing the
clinical biomarkers, two hidden layers with 8 and 4 hidden units respectively and
a latent space of dimensionality 2. To avoid over-fitting we apply dropout with
probability 0.3 after each hidden layer during training.

Linear Regression with Indicator (Dummy) Variable: We use a linear
regression model in the latent space to estimate SBP, that incorporates a dummy
variable (encoded as 0 or 1) to differentiate between population groups. In our
experiments we used gender as a dummy variable, but the method is general
and could be used to investigate a wide range of other factors. Mathematically,
the linear regression model can be formulated as follows: y = wT (z + D) + ε,
where z are the latent space activations, D the dummy variable, y the ground
truth label (i.e. SBP) and w the regression coefficients. The regression loss is the

mean squared error: Lregression =
1
N

N∑

t=1

(yi − wT
i (zi + Di))2.

Joint Learning for Regression: We denote the input data by x =
[x1, x2, ...xN ] (i.e. a vector of N = 13 clinical biomarkers) and its corresponding
latent space representation as z = [z1, z2]. The decoded clinical biomarkers are
denoted by x̂ = [x̂1, x̂2, ...x̂N ], and the predicted label by ŷ = Regressor(z). We
combine the VAE loss and the regression loss by minimising the following joint
loss function:

LR−VAE = Lrecon + αLKL + βLregression (1)

where α and β control the weights of the components of the loss function, LKL

is the Kullback-Leibler divergence between the learnt latent distribution and a
unit Gaussian, and Lregression is the Huber loss for the regression task. We first
train the model only using the VAE loss, i.e. β = 0, and secondly train both the
VAE and the regression together using β = 2. We set α = 0.3 throughout.

4 Experiments and Results

Using our selection criteria, 3,781 subjects were included in our experiments. Of
these, 54 subjects were rejected during QC1, and a further 127 during QC2. The
remaining 3,600 cases were used to build the models. Of these cases, 1,321 had
normotension (SBP < 120 mmHg), 1,697 hypertension (SBP > 140 mmHg) and
582 cases had prehypertension (a SBP between 120 and 140 mmHg).

Experiment 1 - Comparative Evaluation on Regression Task:
We compared our proposed R-VAE model with two state-of-the-art techniques
for multivariate regression: (1) Lasso regression, a linear regression model with a
l1 regularizer [17]; and (2) Random Forest regression [18], an ensemble method
that has shown excellent performance in complex regression and classification
tasks. For all methods, we used a five-fold cross validation to obtain the optimal
model. We split the dataset into training, validation and test (60/20/20), and
optimized the hyperparameters using a grid search strategy. We calculated the
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root-mean-square deviation (RMSD), the normalized root-mean-square devia-
tion (nRMSD), and the coefficient of determination (R2) between the ground
truth SBP and the predicted SBP. Table 1 shows these results. It can be seen
that all methods performed similarly with regard to regression. However, note
that the next two experiments are only made possible by our use of the R-VAE
architecture and would not be possible with the other regression techniques.

Table 1. Comparison of R-VAE, Lasso regression and Random Forest regression.

Methods RMSD (mmHg) nRMSD (mmHg) R2(%)

Lasso [17] 13.2 0.11 0.35

Random Forest [18] 12.98 0.12 0.33

R-VAE 11.36 0.10 0.69

Experiment 2 - Investigating the Effect of SBP on Cardiac Function:
We applied our R-VAE network to investigate how cardiac function changes
with increasing SBP in healthy individuals, stratified by gender. We applied
our R-VAE network to investigate how cardiac function changes with increasing
SBP in healthy individuals, stratified by gender. We sampled the latent space
of the model along the regression line for different SBP values (between 100
to 170 mmHg in steps of 10 mmHg). At each step, we took 20 random samples
from a normal distribution in a perpendicular direction to the regression line and
used the R-VAE to decode the clinical biomarkers. Figure 2 shows the means and
standard deviations for a selection of the decoded biomarkers stratified by gen-
der. The results show that iLVEDV (indexed LVEDV) decreases with increasing
SBP, while iRVEDV (indexed RVEDV) remains constant. LVPAFR and LVPER
increase with increasing SBP. For both iLVEDV and LVPER, the change seems
to be larger in males compared to females. Overall, the observed changes in the
models’ predictions suggest that parameters associated with diastolic function of
the LV are mostly affected by SBP, while the RV was less affected. These results
suggest that stiffening of the LV myocardium could be an important disease
process in deterioration of cardiac function in the light of increased SBP.

Experiment 3 - Identifying Abnormal Response:
In the normal population, some individuals with prehypertension might be pre-
disposed to increased risk of cardiac disease, while others are not. We used our
R-VAE model to identify subjects from the prehypertension group in whom
predicted SBP was lower (i.e. predicted normotension) or higher (i.e. predicted
hypertension) based on the latent space regression, assuming that being wrongly
classified as normotensive or hypertensive identifies individuals with low versus
increased risk of developing cardiac disease. Subsequently, we decoded the car-
diac biomarkers for these cases using latent features at the regression line of



28 E. Puyol-Antón et al.

Fig. 2. SBP-related changes in iLVEDV, iRVEDV, LVPAFR and LVPER. Red rep-
resents females and blue represents males. Bars represent standard deviations. Black
dotted lines represent the linear tendency curves between the cardiac biomarkers and
ground-truth SBP data. (Color figure online)

their true SBP as well as using latent features at their predicted SBP. We cal-
culated the percentage difference for each biomarker for the cases of under- and
over-prediction respectively and investigated which factors contributed most to
the lower or higher prediction in these subjects. Figure 3 shows the mean dif-
ference of selected biomarkers that lead to classification as normotensive (dark)
and hypertensive (light). Biomarkers related to LV diastolic function (blue bars)
showed the largest changes with regard to the under- and overprediction. These
results show again that diastolic function of the LV was a major contributor to
the model predictions of SBP. Moreover, they suggest that biomarkers related
to LV diastolic function might be effective when trying to stratify cardiac risk,
in particular in subjects with ‘prehypertension’.

Fig. 3. Mean change (percentage) of each biomarker in prehypertension cases that were
classified by the regression model as normotensive (dark) and hypertensive (light) with
respect to values predicted by the model using the actual observed SBP. Values further
away from zero mean a larger impact of these biomarkers. (Color figure online)
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5 Discussion

In this paper, we have presented an automated DL method for analysing cardiac
function and predicting cardiac risk profiles from CMR. Our framework encom-
passes all steps from CMR segmentation through quality control to modelling of
the impact of SBP, a known cardiovascular risk factor, on cardiac function.

Instead of inputting CMR images directly into the R-VAE, we chose to first
automatically estimate clinical biomarkers from the images. Combined, these
biomarkers give a comprehensive description of cardiac function and are well-
understood by clinicians. While some of the information of the high dimensional
image data is inevitably lost by this approach, it allows the model to be inter-
pretable by clinicians directly.

The combination of the VAE with the regression loss allowed us to decode the
clinical biomarkers from the latent space, while also providing a mapping of these
biomarkers to another variable, SBP. As we show in Experiment 2, this design
enabled us to get a clear description of the changes in cardiac function that
occur with increasing SBP. Using the trained model, we showed that increases
in SBP are mainly linked to changes in diastolic LV function. This suggests
that SBP results in slowly progressive changes in the myocardium that increase
ventricular stiffening. As shown in Experiment 3, the model also allowed us to
identify key factors separating high and low risk subjects. Again, due to the
interpretability of the framework, this allowed us to identify biomarkers that
could be further investigated for their utility in screening patients in clinical
practice. SBP is not the only factor influencing cardiac function and that explains
the relatively low R2 of the regression models. In this paper, we used SBP as
an example to illustrate the potential power of our proposed method. We aim
to further extend our model in the following ways: we plan to include image
and segmentation data directly into the model, in combination with the clinical
biomarkers to maintain interpretability; we also plan to extend the model to
investigate more risk factors. In conclusion, this work represents a novel use of DL
which has produced an important contribution to furthering our understanding
of the influences on cardiac function.
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Abstract. The continuous development and prolonged use of X-ray fluoro-
scopic imaging in cardiac catheter-based procedures is associated with
increasing radiation dose to both patients and clinicians. Reducing the radiation
dose leads to increased image noise and artifacts, which may reduce discernable
image information. Therefore, advanced denoising methods for low-dose X-ray
images are needed to improve safety and reliability. Previous X-ray imaging
denoising methods mainly rely on domain filtration and iterative reconstruction
algorithms and some remaining artifacts still appear in the denoised X-ray
images. Inspired by recent achievements of convolutional neural networks
(CNNs) on feature representation in the medical image analysis field, this paper
introduces an ultra-dense denoising network (UDDN) within the CNN frame-
work for X-ray image denoising in cardiac catheter-based procedures. After
patch-based iterative training, the proposed UDDN achieves a competitive
performance in both simulated and clinical cases by achieving higher peak
signal-to-noise ratio (PSNR) and signal-to-noise ratio (SNR) when compared to
previous CNN architectures.

1 Introduction

Image-guided interventions which require navigating medical therapeutic devices
through a patient’s cardiovascular system using X-ray imaging have seen growing use
[1]. Such procedures play an important role in cardiac catheter-based intervention, a
type of minimally invasive surgery for treating cardiovascular diseases, such as
arrhythmias and stenoses. Despite a much quicker recovery and less postoperative
discomfort for the patient, these procedures can result in significant X-ray exposure to
the patient as well as to the medical staff, which is a major concern especially in
paediatric patients. Given the potential risk of X-ray radiation, low-dose X-ray
fluoroscopic imaging is of great value. The most common way to lower the radiation
dose is to reduce the X-ray flux by decreasing the tube operating current, shortening the
exposure time and decreasing the frame rate. However, this increases the noise and
artifacts in the obtained images, which can reduce discernible information during the
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procedures. Therefore, it is worthwhile to develop new efficient denoising method-
ologies that allow significant X-ray dose reduction without loss of discernible
information.

Traditional image denoising approaches mainly utilise non-local statistics and
image self-similarity [4–6], and they usually suffer from complex parameter selection.
To overcome this drawback, some discriminative learning methods have been devel-
oped to learn image prior models in the context of truncated inference [7]. However,
they train a specific model for a certain noise level, which results in poor performance
when facing complex noise. Inspired by recent success of deep convolutional neural
networks (CNNs) on feature representation, several CNN-based denoising methods in
various fields [3, 4, 7–12] have been proposed to achieve a better image restoration
through a deep end-to-end mapping between low- and high-quality images. Unlike
general images, low-dose X-ray images used in cardiac catheter-based procedures
suffer from quantum noise which is often modelled by a Poisson law according to the
physics of X-ray generation and imaging. This that means homogeneous regions can
appear highly noisy and the contrast of heterogenous regions can be extremely low,
which results in complexity of denoising. Considering the strengths of CNN frame-
works in recovering high-frequency details caused by complex noise, this paper
develops this framework for cardiac catheter-based procedures as an X-ray image
denoiser. Recently, to improve the efficiency and effectiveness of feature extraction,
CNN frameworks witnessed a rapid development on their architecture [13, 14].
However, deeper architectures are particular demanding especially in the case of X-ray
images which typically have a large matrix size and frame rate. To improve feature
propagation and reuse in classification tasks, Huang et al. [16] connected each layer to
every other layer in a feed-forward manner and proposed dense convolutional network
(DenseNet). As this new architecture provides a more tenacious way to combine the
low- and high-level features, it visibly outperforms other CNN-based methods. In
addition, dense skip connection can also alleviate the vanishing-gradient problem in
training, as it enables short paths linking directly to every layer output. Despite the
increasing utilization of information, this all-round connection increases computation
burden and memory consumption to a large degree.

In this study, based on dense skip connection, a novel ultra-dense denoising network
is proposed to achieve X-ray image denoising in cardiac catheter-based procedures with
less memory consumption. This network effectively improves feature extraction by

Fig. 1. Outline of the proposed ultra-dense denoising network (UDDN).

32 Y. Luo et al.



establishing rich correlation between multiple-path neural units in each residual block
and a better mapping between low-dose X-ray images and their full-dose ground truth
can be searched. As illustrated in Fig. 1, this network contains several ultra-dense blocks
(UDBs). As each UDB has three conventional dense blocks given the same convolution
layers, it can greatly enhance the representational power of the network. Since the
parameters between UDBs are shared with each other, this network can also release the
memory burden to a large degree. Trained with high- and low-dose X-ray image pairs, a
model specified in X-ray image denoising can be obtained. Experiments on both the
simulated and clinical datasets validate the effectiveness of this network.

2 Methodology

As illustrated in Fig. 2, the ultimate goal is to learn a non-linear mapping function which
can reconstruct the corresponding high-dose X-ray image from the given low-dose
input. Therefore, to obtain a robust model specified in X-ray image denoising, low-dose
X-ray images and their high-dose counterparts are required as samples and labels for
training respectively. Firstly, to implement the training process, noise must be added to
original high-dose X-ray images artificially to simulate the low-dose X-ray samples.
Trained with those image pairs, a robust CNN model specified in X-ray image denoising
can be obtained by iteratively minimizing the difference between the predicted high-
dose X-ray image and the ground truth. Finally, with a low-dose X-ray image and the
obtained network, its high-lose denoising result can be directly predicted.

Fig. 2. Flowchart for X-ray image denoising via the proposed UDDN. The flowchart can be
divided into two parts: training (upper) and denoising (lower).

Ultra-DenseNet for Low-Dose X-Ray Image Denoising 33



2.1 Poison Noise Simulation

For X-ray imaging, quantum noise is the most dominant source of noise and is usually
modelled by a Poisson law, hence, a Poisson model for the noise measurement is
calculated by (1) and (2)

Noise ¼ Poisson kð Þþ k ð1Þ

k ¼ rl ð2Þ

Where r denotes the noise level in the X-ray image and µ denotes the mean image
intensity. The network is trained from normal-dose X-ray images and their corre-
sponding low-dose images which were generated by adding Poisson noise according to
this physical model. Figure 3 makes a comparison of a high-dose X-ray image and its
simulated noisy counterpart with 60% poison noise which is approximately equivalent
to quarter-dose acquisition.

2.2 Network Architecture

In this section, we present the design of each key module under the UDDN framework
in detail. As illustrated in Fig. 1, the first convolution layer is an initial layer for
shallow feature extraction of the input X-ray image patches. Then, two stride convo-
lution layers are added to map the extracted features to low-dimensional domain and
this operation aims at reducing the amount of calculation. The main part of our network
is stacked with multiple residual blocks and this design enhances the representation of
the obtained low-dimensional features to a large degree. As shown in Fig. 4, on the
basis of the dense connection, we propose a triple-path residual block called UDB, the
black lines in it represent flat and common used skip connections and the blue lines
represent cross connections between paths which enable sharing of information.
Compared to previous dense networks, UDB contains three times as many richer paths
with the same convolution layers. For the sake of these triple-path units and transition
layer, the feature channels become shallower and the parameters become less, which
visibly decreases the computational burden and memory consumption. In particular, the

Fig. 3. An example of adding simulated noise to an X-ray image (Left: Image acquired at a high
dose. Right: Image with 60% simulated added noise)

34 Y. Luo et al.



UDBs in our network interact with each other by skip connection, so they can utilize
the feature information of their predecessor, which facilitates the reuse of features.
Subsequently, two deconvolution layers are added to map the obtained features back to
high-dimensional domain. Finally, other convolution layers are added in our network
as a termination layer to output a residual noisy image which is as the same size as the
input one.

2.3 Loss Function

According to various CNN-based image processing methods [6, 7, 9–14], the loss
function is commonly used to fit the target image by minimizing the distance between
the output image and the ground truth based on feature level and Euclidean distance
and cosine distance are the most commonly used similarity measurements. In terms of
denoising, to obtain a substantially improved CNN architecture, as most of the previous
methods [13–15] constrain output by iteratively minimizing the mean squared error
(MSE), we use this measurement during our network training. As shown in Fig. 2, for a
certain low-dose X-ray image, the MSE of its real high-dose X-ray image yi and
predicted high-dose X-ray y0i is calculated by (3)

MSEi ¼ 1
width� height

yi � y0i
�
�

�
�

�
�

�
�
2 ð3Þ

For the whole training datasets, the loss function of our network can be calculated
by (4)

Loss ¼ 1
2N

XN

i¼1
MSEi ð4Þ

Where N represents the number of X-ray image samples for training.

Fig. 4. Outline of the proposed ultra-dense blocks (UDBs) in UDDN. (Color figure online)
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2.4 Quantitative Indicators

Besides visual perception, peak-to-signal-noise ratio (PSNR) and structural similarity
(SSIM) are usually used as evaluation metrics to assess the model performance in
previous image denoising methods [5–9]. PSNR is a widely used metric in image
reconstruction tasks and it is calculated based on MSE by (5)

PSNR ¼ 10log10
2n � 1ð Þ
MSE

ð5Þ

Both of these two metrics need reference images for comparison, hence, they are
suitable to assess the denoising results of the simulated X-ray images. However, in
clinical images, we have only low-dose X-ray images with uncertain noise level to be
denoised, as there is no corresponding high-dose reference image. Therefore, for
clinical images, we need an effective non-reference image quality assessment method.
We utilize signal-to-noise ratio (SNR) to assess the denoising performance of our
models on clinical datasets, and the SNR of a single image is the average of all patches
in it. In the experiment, the patch size of sub-image is usually set to 16. Since the
indicator used only stands for a ratio of average pixel value and standard deviation,
there are no units for it.

3 Experiments

In our experiments, we used a desktop computer with an NVIDIA GTX1060Ti GPU
with 6.0 Gb RAM, an Intel I7-8700K CPU @ 3.20 GHz with 16.0 Gb RAM for
training and testing. Our model was implemented on TensorFlow with Python3.6 under
Windows10, CUDA9.0 and CUDNN5.1.

3.1 Datasets

Table 1 shows a summary of all data used for experiments. Data sources were a
publically available data of plain chest X-ray images [18] and clinical catheter labo-
ratory images acquired at St. Thomas’ hospital during cardiac catheter procedures.

Table 1. Summary of all data used in experiments

Dataset Source Training Testing

Chest X-ray
(CXR) [18]

Standard plain chest
X-rays
108,948 frontal view
X-ray images from
32,717 patients

5,000 X-rays
images
(1024 � 1024
pixels)
30,443 patches
(96 � 96 pixels)
+ synthetic noise

300 images, 300 central patches
576 � 576 pixels
+ synthetic noise

(continued)
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3.2 Training

The training data were created by adding 60% Poisson noise to the original training
images. This represents a significant simulated reduction in radiation dose as mentioned
previously and is comparative to what can be achieved on a clinical X-ray system.
Based on the settings presented in [18], we inputted one batch consisting of 16 patches
with the size of 96 � 96 from the training datasets (CXR & CL1) to our network each
time. The learning rate was initialized to 10−3 for all layers and halved for every 104

steps up to 10−5 and we selected PReLU as our activation following each convolution
layer which contains 8 � 8 filters. The depth of UDB in our network was 6 and
training a denoising model took approximately 20 h. We compared our method with
other image denoising methods, including DnCNN [7] and DenseNet [15] (8 dense
blocks) and trained these networks with the same training data.

3.3 Validation

We firstly examined the effectiveness of the proposed UDDN on both training and
testing datasets to check whether the obtained model was overfitting or not. Figure 5
displays the comparison denoising results according to the iterations of UDDN on these
two datasets. For the training dataset we used 10% of the complete training data (CXR
& CL1) and for the testing data set we used all the data (CXR). Comparatively, the
denoising results of training dataset exhibit faster convergence and visibly higher
PSNR and SSIM than that of the testing dataset, and this superiority shows that the
obtained denoising model performs better on training dataset than testing dataset.
Accordingly, there is no overfitting for the proposed method and our UDDN is reliable
for X-ray image denoising.

Table 1. (continued)

Dataset Source Training Testing

Catheter
Laboratory
Data 1 (CL1)

1,080 X-rays
images (96 � 96
pixels)
Procedures at St.
Thomas’ Hospital,
London

800 X-rays images
(512 � 512 pixels)
10,554 patches
(96 � 96 pixels)
+ synthetic noise

Catheter
Laboratory
Data 2 (CL2)

623 X-ray
sequences from 20
patients
Procedures at St.
Thomas’ Hospital,
London

100 low-dose X-ray sequences
with 3,262 images
(400 � 400 pixels)
72 high-dose X-ray sequences
with 2,166 images (400 � 400
pixels)
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3.4 Testing on CXR Dataset

The denoising results on the test CXR data with the noise level of 60% for the proposed
approach and the comparison methods are shown in Fig. 6. We selected several but
representative images with different contained structures (i.e., rib, spine, electrode and
catheter). Subjectively it can be seen that our UDDN outperforms the other methods by
visual inspection. In terms of the evaluation results, UDDN achieves a better PSNR and
SSIM (41.4 dB and 0.914), which are about 0.4 dB and 0.015 higher than those of
DenseNet and 4 dB and 0.12 higher than those of DnCNN, respectively.

Furthermore, to validate the more general ability of the CNN-based algorithms, we
tested them with a range of noise levels from 0% to 100%. Figure 7 tabulates the
results in terms of PSNR and SSIM. From these results, we can see that both the
DenseNet and DnCNN denoising methods exhibit lower scores than our new network.
DenseNet and UDDN are less sensitive to changes in noise level than DnCNN and
UDDN shows better denoising capability when facing higher noise levels. Amongst the
methods, UDDN shows the best performance because of its ultra-dense-connection-
based effective framework for local spatial information extraction.

3.5 Testing on Clinical Data

Testing was also carried out using the CL2 clinical dataset. For these data there was no
ground truth and so we used SNR as a measure of denoising performance. The CL2
dataset had both low-dose fluoroscopic images and high-dose acquisition images as
detailed in Table 1. The results are shown in Table 2. In terms of fluoroscopic
sequences, the proposed UDDN achieves the highest SNR (25.8), which is about

Fig. 5. Training process for UDDN with the noise level of 60%. The blue lines denote the
convergence process of the training dataset and the red lines at the bottom refer to that of the
testing dataset. (Color figure online)

38 Y. Luo et al.



Ground Truth DnCNN DenseNet       UDDN

Fig. 6. Examples of the denoising results on the CXR test data using the noise level of 60%.

Fig. 7. A comparison of denoising results on the CXR test data for carrying noise levels using
three CNN-based methods: DnCNN, DenseNet and our UDDN.

Ultra-DenseNet for Low-Dose X-Ray Image Denoising 39



1.5 dB higher than that of DenseNet and 6.5 dB higher than that of DnCNN,
respectively. However, both DenseNet and UDDN show less effectiveness on
acquiration X-ray images than DnCNN, this may because they are insensitive to high-
dose X-ray images.

In terms of visual perception, we selected several different but representative
structures from fluoroscopic images, i.e. vessels, electrodes and catheters to make
comparisons. Notably, the proposed UDDN and previous DenseNet surpass DnCNN

Table 2. Average denoising results on the clinical dataset CL2

Fluoroscopic Acquisition

UDDN 25.8 25.7
DenseNet 24.3 25.4
DnCNN 19.4 27.6
Input 11.5 19.0

Original         DnCNN                    DenseNet                    UDDN 

Fig. 8. The denoising results on the clinical dataset.
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significantly and UDDN is subjectively best under visual inspection. As illustrated in
Fig. 8, compared to UDDN, the other two CNN-based methods produce more
noticeable artifacts. These observations remained to be proved by future observational
study using clinical experts as observers.

Both DenseNet and the proposed UDDN show effectiveness on low-dose X-ray
image denoising, which validates the advantages of dense connection on network
design. And UDDN slightly outperforms previous DenseNet by achieving higher
quantitative Indicators but limited improvements on visual perception.

4 Conclusions and Future Works

In this study, we propose a simple but effective technique for X-ray image denoising in
cardiac catheter-based procedures. In particular, we present a multiple-path UDB for
local feature extraction. Unlike the previous DenseNet, more flexible dense connec-
tions between layers and units in our network promote information interaction and
improve reutilization. Extensive experiments on both the simulated and clinical data-
sets indicate that UDDN outperforms existing CNN-based denoising techniques. This
technique may prove valuable in dose reduction in the setting of real-time X-ray
imaging for guiding interventions, especially paediatric interventions. Future work will
focus on more extensive clinical testing (especially visual scoring of denoised imaged
by expert clinicians), real-time implementation (current frame rate is 4 frames per
second on the mentioned hardware) and real-time testing in the clinical setting.
Moreover, the noise level of X-ray images obtained in actual clinical cases is uncertain
and unpredictable. Therefore, a more flexible training method instead of using a fixed
noise level should be proposed to promote network effectiveness.
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Abstract. Automatic anatomical landmark detection is beneficial to
many other medical image analysis tasks. In this paper, we propose
a two-stage cascade regression model to make coarse-to-fine landmark
detection. Specifically, in the first stage, a Gaussian heatmap regression
model customized from U-Net is exploited to make primary prediction,
which takes the downsampled entire image as input. In the second stage,
we develop a CNN to regress displacements from the primary prediction
to the landmarks, using patches in original resolution centered at the
previous localization as input. Owing to the different sizes and resolu-
tions of inputs in two stages, the global context information and local
appearance can be integrated by our algorithm. The spacial relationships
among landmarks can also be exploited by predicting all the landmarks
simultaneously. In evaluation on the coronary and aorta CTA images,
we show that our proposed method is widely applicable and delivers
state-of-the-art performance even with limited training data.

Keywords: Anatomical landmark detection · Heatmap regression ·
Cascade model

1 Introduction

Anatomical landmark detection plays an important assisted role in many medical
image analysis tasks, such as organ segmentation, registration and vessel extrac-
tion [1]. However, for accurate landmark detection, there still remain many chal-
lenges: (a) anatomical differences between patients are widespread, (b) while
detecting multiple landmarks simultaneously, spatial constrains among land-
marks should be taken into account, (c) detection of 3D anatomical landmarks
aggravates the computational cost intensively, making real-time application chal-
lenging, (d) limited annotated training data available restricts algorithmic design
typically. Although many methods have been proposed [2–5], there is still room
for improvement. Among these methods, our method is more related to [3,4].
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For landmark detection, an intuitive patch-based approach is to regress dis-
placements from patches center to the target landmark [3]. Then the landmark
position is calculated by these displacements following a majority/average vot-
ing strategy. Trained by numerous patches, it is possible to design deep networks
which can capture discriminative information and perform better than the shal-
low ones. Nonetheless, these methods always focus on local appearance merely
and global information is not well utilized. The large number of patches also
leads to a heavy computational burden. For improvement, Noothout et al. [6]
proposed a model performing classification and regression jointly, in which only
displacements of patches classified as containing landmarks contributed to the
final result.

Another interesting method is based on regressing heatmaps [4]. With entire
image as input, these models are supposed to output synthetic heatmap, denoting
the probability of each voxel belonging to the target landmark. The prediction
position is simply chosen to be the output voxel with the maximum temperature.
Apparently, they can utilize global context information and have good spatial
generalization. However, the input volume shrinks in methods using FCN [7],
which causes theoretical lower bound of prediction error. For instance, output
heatmap of size 128 with input of size 512 leads to 3 voxels error at most. Fur-
thermore, the total number of network weights for 3D medical images increases
intensively, making the training difficult with limited training data at hand.

Combining the advantages of the two methods above, we propose a cascade
regression model combining heatmap regression and displacement regression.
The proposed method makes coarse-to-fine prediction, taking entire image in
lower resolution and patches in higher resolution as input respectively, which
combines global information and local appearance. The spatial relationships
among landmarks are also taken into account by learning long-range context,
which improves overall performance. The cascade structure is similar to the
method of He et al. [9], in which the facial landmark localizations were refined
via finer and finer modeling. In contrast, instead of the deep CNN, a carefully
designed heatmap regression model is exploited to make initial prediction in our
method. Besides, the local patches are extracted as input in the subsequent stage
[10], rather than entire image in [9].

We evaluated our method on the coronary and aorta CTA images by detect-
ing 5 and 9 anatomical landmarks respectively. These landmarks are of great
clinical significance: cardiac landmarks contribute to diagnosis, prognosis, and
therapy of cardiovascular diseases [1]; detection of aortic landmarks is an effec-
tive assistant tool in aortic vascular modeling [6]. The results demonstrate our
method is competent for the cardiac and aortic landmark detection task and
achieves performance comparable to the state-of-the-art approach [6].
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Fig. 1. The overview of our cascade regression model.

2 Proposed Method

Figure 1 illustrates the overall cascade regression model framework for single
landmark detection. We show the 2D case for clarity but the model works simi-
larly in 3D. In the first stage, a modified U-Net is employed to get a relatively
accurate initial localization, taking the entire image in lower resolution as input
and heatmaps as output. Owing to the skip architecture, this module can cap-
ture multi-scale knowledge. Aiming to learn more precise context information,
in the second stage, the patch centered at initial localization in higher resolution
is extracted and fed to the displacement regression model. The CNN adjusts the
initial localization by moving it toward ground truth position. The different sizes
and resolutions of two stages emphasize that they focus on long-range context
and local appearance, respectively.

2.1 Primary Prediction

We exploit heatmap regression to make the first stage prediction. In this scheme,
each landmark has a separate output channel where a Gaussian heat spot is
centered at its location. During inference, the predicted position is simply deter-
mined by the maximum response. Following the principle of classification, for Nl

landmarks, the model is trained for Nl + 1 channels, where the first Nl channels
describe the probability belonging to the corresponding landmark and the last
channel belonging to background. Particularly, considering that softmax oper-
ation may influence the status of landmark positions in heatmap ground truth
(e.g. for 5 landmarks, the values of 1th landmark in 6 channels are changed
from (1, 0, ..., 0) to (0.35, 0.13, ..., 0.13) after softmax, which can be smaller than
its neighbors), we adjust the sum of all channels to 1 by fixing the background
channel and scaling the others.
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Fig. 2. The architecture of the proposed model in the first stage.

The temperature ti for ith landmark (i.e. ith channel) can be defined as:

f(x) =

{
kexp(−(v−pi)

2

2σ2 ), i = 1, 2, 3, ..., Nl,

1 − kexp(−(v−pclosest)
2

2σ2 ), i = Nl + 1.
(1)

The heatmaps of first Nl channels are determined by the distance from the
voxel v to the landmark position pi, while the heatmap of background channel is
according to the closest landmark position pclosest. σ is standard deviation and
k is Gaussian height.

As shown in Fig. 2, our model realizes this scheme by customizing the orig-
inal 3D U-Net [8]. Similar to its standard version, the network is comprised of
3D convolution, max-pooling, deconvolution (up sampling) and short-cut con-
nections from layers in contracting path to the ones in expansive path with
equal resolution. Each convolution layer follows ‘same mode’ (i.e. ouput has the
same size as input) and uses RELU activation function. The model takes entire
downsampled image as input and outputs heatmap volumes. Benefiting from the
natural superiority of U-Net, the model can capture long-range context infor-
mation, where the spatial relationships among landmarks can also be taken into
account, increasing overall accuracy.

Aiming to tackle the problem of class imbalance, namely heat spot only
occupies a small proportion of volume, we employ a weighted mean squared
error (MSE) loss function between the predicted and ground truth heatmaps.
The weights are chosen to be the exponential powers of the predicted values
in the output. On the other hand, to deal with gradient vanishing problem, we
shorten the backpropagation path of gradient flow signals by incorporating three
side-paths auxiliary loss. The final formulation of loss function is expressed as:

L(P ;HGT ) = Lmse(P ;HGT ) +
∑

s=1,2,3

βsLs
mse(p

s;HGT ) (2)

where HGT is the ground truth heatmap, P is the final output, βs is the weight
of different side-path ps and set as 0.3, 0.6, 0.9 corresponding s as 1, 2, 3.
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Fig. 3. The architecture of the displacement regression module in the second stage.

2.2 Refinement Strategy

In the second stage, we propose a CNN model to refine the primary prediction.
Given the first stage model taking the entire image as input, we assume that
landmarks should be distributed around the initial prediction. The CNN takes
patches in original resolution centered at the inital prediction to capture more
precise local information. Considering that local appearance of certain landmarks
may be ambiguous (e.g. locally similar vascular structures), we restrict this stage
model to change the initial prediction in a small range.

The CNN is trained to predict the displacement vector �S from the primary
prediction S0 to the true landmark position SGT . Given a volume V , a training
sample is represented by (Γ (V, q),�SGT ) where q is a point randomly sampled
around S0 in a small range from V and Γ (V, q) is its associated patch. The
ground truth displace vector �SGT is given by �SGT = SGT − S0. During
inference, patch Γ (V, S0) is fed to the model and the final prediction is obtained
by S = S0 +�S. The CNN is trained by minimising Euclidean loss between the
predicted and the true displacement vector.

As shown in Fig. 3, the CNN model contains 4 convolutional layers followed
by max-pooling layers, and 2 fully-connected layers. Each layer except the last
one employs RELU activation function. Considering that certain landmarks may
have distinct appearance than the others (e.g. the apex cordis), we refine them
separately. That is, we train a refinement network per landmark. Since the CNN
is trained by patches, a small number of training data is sufficient in this stage.

3 Experiments and Results

3.1 Data and Experiment Settings

We evaluated the proposed method on the two datasets of coronary and aorta
CTA images. As shown in Figs. 4 and 5 cardiac landmarks and 9 aortic landmarks
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Fig. 4. Landmarks defined on the coronary and aorta CTA images.

are annotated manually by a expert. For both datasets, we do not apply data
augmentation such as scaling and rotation, which may increase the complexity
of landmark distribution.

Coronary dataset is randomly divided into training data with 75 scans and
test data with 40 scans. All volumes were zero-padded to 512× 512 × 512 voxels
with isotropic voxel size 0.4 mm. Then they were downsampled 4 times and fed
into the model in the first stage. In the second stage, patches size 64 in the
original resolution were extracted and the batch size was set to 4. The model
was trained using Adam with a learning rate of 0.001 for 11,250 and 45,000
iterations in the two stages, respectively.

Aorta dataset consists of training data with 25 scans and test data with 23
scans. which has an average size of 512 × 512 × 777 voxels, with a voxel size of
0.71×0.71×0.81 mm3. The annotated landmarks are located at the bifurcation
of the aorta and its main branches. Considering that aortic landmark detection
is more challenging due to its low resolution and complex organ distribution, the
volumes were manually cropped first and downsampled 2 times to fed into the
first stage model. The rest of the training process is similar.

3.2 Results

Summary metrics obtained by different networks on the coronary dataset are
listed in Table 1. We use average Euclidean distance between ground truth and
estimated landmark positions as evaluation measure. We first compared two-
stage cascade model and only the first stage model. After refinement, the detec-
tion accuracy improves significantly, demonstrating the benefit of our cascade
architecture.
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Table 1. Average Euclidean distance errors expressed in mm, for the detection of 5
cardiac landmarks on the coronary dataset. The results are obtained by the two-stage
model and the first stage model only, which takes either patches or entire image as
input, comparing with the algorithms of Noothout et al. [6].

1 2 3 4 5 Mean

First Stage

Patch-based 3.14 1.45 8.43 17.12 1.12 6.25

Entire image 3.18 4.79 3.23 6.17 2.60 3.99

Two-stage model

Our proposed 2.58 1.48 1.37 3.51 1.46 2.08

Noothout et al. [6] - 2.88 2.19 3.78 2.10 -

Table 2. Average with standard deviation Euclidean distance errors in mm for the
detection of 14 landmarks on the two datasets by the proposed algorithm.

Landmarks 1 2 3 4 5 Overall

Cardiac 2.58±1.33 1.48±1.87 1.37±0.84 3.51 ±2.1 1.46±0.86 2.08±1.71

Landmarks 6 7 8 9 10 11 12 13 14 Overall

Aortic 5.62±3.53 7.43±4.72 6.38±4.34 5.60±4.71 7.38±4.17 6.22±3.68 7.82±5.99 4.40±3.35 4.39±1.57 6.14±4.33

To demonstrate that integrating spatial relationships among landmarks can
improve overall performance, we adjusted the model in the first stage to take
patches size of 48 as input instead of entire image. In this way, the network
can only utilize the context information around one landmark at a time. It was
trained to predict heatmap patch according to the input. The predicted position
was determined by the maximum response in the volume composed of predicted
patches. The experiment results show our method in the first stage performs
better overall. Specifically, the patch-based network is superior in detecting the
left coronary ostium and the origin of the non-coronary aortic valve commis-
sure, which may be more dependent on precise context information. On the
other hand, our proposed model performs much better in detecting the right
coronary ostium and the bifurcation of the LM, where the relationships among
landmarks are probably necessary for accurate detection (e.g. the position of the
left coronary ostium is important for localizing the bifurcation of the LM).

Furthermore, we compared our model with the method of Noothout et al.
[6], which detected 6 anatomical landmarks in cardiac CT scans (4 of them are
the same as us). The metrics are quoted directly from [6] since that dataset is
not publicly available. Although our dataset is different from that in [6], we can
conclude that the performance of the proposed algorithm is at least comparable
to [6].

Table 2 lists more detailed metrics of detection for each landmark on the
two datasets using our algorithm. The high detection error of aortic landmarks
is due to the low resolution of aortic images. In the model design, we do not
utilize unique atlas information related to coronary or aorta, which guarantees
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the method capable for the anatomical landmark detection tasks in different
regions of the human body. Some visual results are shown in Fig. 5.

Fig. 5. Visualisation of landmark detection in coronary and aorta images by the cascade
regression model. The ground truth and predictions are indicated by green and red dots,
respectively. (Color figure online)

4 Conclusion

We have proposed a two-stage cascade regression model for detecting anatomi-
cal landmarks in coronary and aorta CTA images. Owing to different sizes and
resolutions of input in two stages, the model combines the global information
and local appearance. By learning long-range context, the spatial relationships
among landmarks are also taken into account, increasing overall performance.
The experiment results demonstrate that our method achieved performance com-
parable to the state-of-the-art algorithm [6]. Limited by memory and computa-
tion time, we used downsampled image in the first stage. It is foreseeable that the
model would gain better performance with images of higher resolution as input.
Another limitation is we only have one annotator, which makes it impossible to
assess inter-observer error for landmarks. It is also worthwhile to apply multi-
stage refinement to capture more precise information. The experiment results
have demonstrated that our method is generic for anatomical landmarks detec-
tion and the next step is to extend it to other medical images.
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Abstract. The generation of kinematic models of the heart using 3D
echocardiography (echo) can be difficult due to poor image contrast and
signal dropout, particularly at the epicardial surface. 2D echo images gen-
erally have a better contrast-to-noise ratio compared to 3D echo images,
thus wall thickness (WT) estimates from 2D echo may provide a reliable
means to constrain model fits to 3D echo images. WT estimates were cal-
culated by solving a pair of differential equations guided by a vector field,
which is constructed from the solution of Laplace’s equation on binary
segmentations of the left ventricular myocardium. We compared 2D echo
derived WT estimates against values calculated using gold-standard car-
diac cine magnetic resonance imaging (MRI) to assess reliability. We
found that 2D echo WT estimates were higher compared to WT val-
ues from MRI at end-diastole with a mean difference of 1.3 mm (95%
CI: 0.74–1.8 mm), 1.5 mm (95% CI: 0.91–2.1 mm) and 2.1 mm (95% CI:
1.6–2.6 mm) for basal, mid-ventricular and apical segments respectively.
At end-systole, the WT estimates from MRI were higher compared to
those derived from 2D echo with a mean difference of 2.6 mm (95% CI:
2.0–3.1 mm), 2.1 mm (95% CI: 1.5–2.7 mm) and 1.1 mm (95% CI: 0.49–
1.7 mm) for basal, mid-ventricular and apical segments, respectively. The
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quantitative WT comparison in this study will contribute to the ongo-
ing efforts to better translate kinematic modelling analyses from gold-
standard cardiac MRI to the more widely accessible echocardiography.

Keywords: Wall thickness · Echocardiography · Cardiac MRI

1 Introduction

Kinematic modelling of the heart is important to the understanding of the under-
lying mechanisms of heart failure, which is a complex, multifactorial disease with
divergent characteristics [1]. Cardiovascular disease is the world’s leading cause
of mortality and morbidity. It is estimated that 23 million people worldwide
are suffering from heart failure, which has a mortality rate of 50% within five
years [1]. Recent advances in pharmacologic therapy and implantable cardiac
devices have improved survival, however continued advancements in diagnostics
and therapeutics are needed to further reduce the economic burden of heart fail-
ure as the current therapies rarely prove curative [1]. The new knowledge that
can be gathered from kinematic modelling can be key for the development of
novel treatments that are patient specific [12].

In order to create a model of the heart, an accurate representation of its
geometry is needed from cardiac imaging techniques. Magnetic resonance imag-
ing (MRI) is the gold standard imaging technique for assessing cardiac function,
due to its high contrast-to-noise ratio, resolution and reproducibility compared
to other imaging techniques [4]. However MRI is expensive, time consuming
and often not suitable for patients with implantable devices [9]. Echocardiogra-
phy (echo) remains the work-horse for diagnostic imaging in hospitals, due to its
portability and relative low cost. It is also widely available and deeply embedded
in clinical decision making for patients with heart disease [9].

3D echo evaluations of left ventricular (LV) mass and volume are known
to be systematically different to those acquired from MRI, due to shadowing
artefacts in patients with poor acoustic windows and a lower contrast-to-noise
ratio, which makes the quantification of LV shapes from 3D echo images difficult
[14]. Previous research has shown the feasibility of building cardiac statistical
shape atlasses using MRI and 3D echo, but also using 3D echo alone by applying
a multi-view subspace learning algorithm to establish the discrepancy between
the image modalities [11].

In this study, both 2D and 3D echo images, as well as MRI acquisitions from
the same person were gathered. 3D echo images have poor epicardial surface
definition which increases difficulty in accurately defining wall thickness from
these images. 2D echo images generally have a better image quality compared
to 3D echo images, thus 2D echo may be used to constrain kinematic model
generation from 3D echo. This can be done using wall thickness (WT) estimates
from 2D echo to obtain a more accurate geometry as well as wall mass.

We quantified regional WT from 2D echo data by solving a pair of differential
equations guided by a vector field, constructed from the solution of Laplace’s
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equation on binary segmentation’s of the LV myocardium. These WT measure-
ments were compared against values calculated using gold-standard cardiac cine
MRI taken from the same participants to assess the reliability of WT estimates
from 2D echo.

2 Methods

2.1 Data Collection

18 participants underwent cardiac MRI and echocardiographic examinations
within 1 h of each other. Ethical approval for this study was obtained from
the health and disability ethics committee of New Zealand (17/CEN/226). All
participants gave written informed consent to participate in the study. The MRI
was performed on a 1.5T Siemens AvantoFit. All cine images were acquired
in long and short axis orientations with a steady-state free precession (SSFP)
sequence with the following standard imaging parameters: echo time (TE) of
1.6 ms, repetition time (TR) of 3.7 ms, flip angle of 45◦, field of view of 360 cm
× 360 cm, temporal resolution of 48 ms, voxel size of 1.5 mm × 1.5 mm, and slice
thickness of 6 mm. The echocardiographic examination was performed using a
Siemens Acuson SC2000 ultrasound system. A standard 2D echo examination
was performed in line with guidelines [6], and the cardiac cycle was captured
three times for each acquisition. Four 3D echo datasets were acquired using a
4Z1c 3D transducer which captures the cardiac geometry in one heart beat. The
field of view and frame rate were varied to fit the patient geometry, and optimise
image quality. All apical two chamber (A2C), apical four chamber (A4C) and
apical long axis (ALX) views with the best image quality were chosen for the
WT measurements.

2.2 Segmentation of the LV Myocardium from 2D Echo Images and
Cardiac Cine MRI

Segmentation of the LV myocardium in 2D echo images was performed manually
in ITK-SNAP 3.8.01 [18]. Both end-diastolic (ED) and end-systolic (ES) frames
in each of the three views were manually segmented, resulting in six annotated
images for each of the 18 participants. Each of the manual contours were free
drawn by hand, with no image processing techniques utilized. The ED and ES
frames were selected according to the recommendation of the American Society
of Echocardiography and the European Association of Cardiovascular Imaging
[6]. The segmentations of the endocardial and epicardial borders were closed at
the level of the mitral valve. Trabeculae and papillary muscles were excluded
from the LV wall mass. 3D geometric models of the LV were made for all points
in the cardiac cycle using CIM (v8.1.7), and the protocol defined in [17]. An
example pair of contours on a 2D echo image and a 3D model overlayed on a
MR image of the same patient is shown in Fig. 1. The triangular mesh defining
1 www.itksnap.org.

www.itksnap.org
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the endo- and epicardial surfaces was converted into a mask of the myocardium
using a voxelization methodology based on a ray intersection method similar to
that described by [8]. The voxel size in the resulting mask was set to 0.75 mm ×
0.75 mm × 0.75 mm.

Fig. 1. Segmentation of a MR image and echo image of the same patient. Left: 3D
geometric model overlayed on an A4C MRI view. Right: endo- and epicardial contours
overlayed on an A4C echo view.

2.3 Estimation of Regional Wall Thickness

The LV WT estimates from 2D echo and MRI were calculated using Laplace’s
equation. This is an established method to calculate regional WT, for example,
to identify cortical thickness [5]. It has also been used to calculate regional WT
of the myocardium from MRI [10]. Solving Laplace’s equation over the myocar-
dial domain provided a gradient field indicating the correspondence trajectories
between the endocardial and epicardial surfaces of the domain. These corre-
spondence trajectories have desirable properties as they are orthogonal to each
surface, do not intersect, and are nominally parallel. The WT is then defined as
the arc length of these correspondence trajectories, and is defined at each point
(pixel) [16]. For the numerical implementation of Laplace’s equation (Δφ = 0),
Dirichlet boundary conditions with values of 300 and 100 were applied on the
endocardial (Γendo) and epicardial (Γepi) borders of the domain, respectively.
The Laplace solver was implemented in MATLAB (R2018a) and adjusted from
[15]. Solving for φ by a finite difference scheme, the gradient field T is calculated
according to Eq. 1.

T =
∇φ

||∇φ|| (1)
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Regional WT was calculated by solving two partial differential equations
(PDEs) that determine two length functions: L0(x) and L1(x) (see Eqs. 2 and 3).

∇L1(x) · T = 1 with L1|Γepi = 0 (2)
−∇L0(x) · T = 1 with L0|Γendo = 0 (3)

Given a point x on the correspondence trajectory, L0(x) gives the arc length
between the endocardial border and x and L1(x) returns the arc length of the
correspondence trajectory between the epicardial border and x. The WT is then
defined by Eq. 4 [16].

WT (x) = L0(x) + L1(x) (4)

2.4 Intra- and Inter-observer Variability Analyses

To assess the reproducibility of cardiac labelling on 2D echo images, both intra-
and inter-observer variability analyses were performed on a randomly generated
10% sample (12 images) of the dataset. Each of the images was segmented three
times with 2–3 days between measurements by an observer that had received
some basic training in echo image segmentation. Furthermore, the most recent
segmentations were chosen for evaluation against an independent segmentation
provided by an observer with one year experience in image analysis. The intra-
and inter-observer variabilities were evaluated using the Dice score (DSC) and
Hausdorff distance (HD) and were also assessed on the derived WT estimates,
after which paired t-tests were performed to test for significant differences.

2.5 Comparison of Regional WT Estimates

The WT was compared for each region in the American Heart Association (AHA)
17-segment model [6] using the clinical guidelines described in [2] for 2D echo.
For cardiac cine MRI, the same guidelines were used to divide the 3D participant
specific model derived from the cines at ED and ES into regions so that regional
comparison of WT estimates could be performed. The AHA regions are shown
in Fig. 2.

The mean of all the pixels/voxels in each surface region for 2D echo and
each volume region for MRI were taken for comparison. First, WT estimates
were compared using a correlation and an unpaired t-test at the levels of base,
mid-ventricular and apex at ED and ES separately. Then, a two-way ANOVA
was performed to assess the dependency of the WT estimates on the imaging
modality and the different regions from the AHA 17-segment model. If signifi-
cant terms were found in the ANOVA model, a Tukey multiple comparison of
means (Tukey HSD) was performed to investigate the importance of each of the
individual terms. The ANOVA model was analysed for the basal, mid-ventricular
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Fig. 2. AHA regions overlayed on a 3D mask of the myocardium generated from cardiac
cine MRI.

and apical segments at ED and ES separately, to be able to examine the differ-
ences between the individual segments at each level. All analyses were performed
with R 3.4.3 and R Commander 2.4-4 [3].

3 Results

Results from the Laplace solver for the calculation of the WT are displayed on
a model fitted to cardiac cine MRI in Fig. 3.

The intra- and inter-observer variability analyses is shown in Table 1. The
intra-observer differences in WT were not significant when assessed using a
paired t-test, while the inter-observer differences were found to be significant.

Results for the regional comparison of WT estimates from 2D echo to cardiac
cine MRI are shown in Table 2. At ED, the WT was found significantly higher
for 2D echo compared to cardiac cine MRI. At ES, this relationship is reversed.
There was no correlation between the WT estimates from the two modalities.

Two-way ANOVA showed significant terms for the main effects, which were
the imaging modality and the AHA region. Furthermore, there was a significant
interaction term between the AHA region and the modality. The only exception
was encountered for the two-way ANOVA model at the basal level at ES. The
mean WT derived from 2D echo and cardiac cine MRI are shown in Figs. 4 and
5. Post-hoc analysis (Tukey multiple comparison of means) showed significant
differences for regions 4, 5, 10, 11, 13, 15 and 16 at ED and regions 2, 3, 6, 8, 9
and 14 at ES.
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Fig. 3. Wall thickness (mm) computed from a 3D model based on MRI data. Short
and long axis sections through the 3D model are shown.

Fig. 4. Mean ED values of WT estimates calculated in each region of the AHA 17-
segment model in both 2D echo (red) and cardiac cine MRI (black) for the 18 partici-
pants. The bars on each point display the standard errors on the means.The asterisks
indicate the regions that were found to be significantly different in WT estimates using
Tukey multiple comparison of means. (Color figure online)
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Table 1. Intra- and inter-observer variability analyses on manual contours from 2D
echo. The intra-observer comparisons were done for the three different days (t1, t2 and
t3) separately. The Dice score (DSC), Hausdorff distance (HD) and relative difference
in WT is reported as mean values from the 12 images.

t1 - t2 t1 - t3 t2 - t3 Inter-observer

DSC (mean± std) 0.84± 0.058 0.83± 0.059 0.82± 0.059 0.68± 0.16

HD (mean± std) 5.6± 2.9 mm 5.3± 2.1 mm 6.2± 2.5 mm 6.7± 3.5 mm

Mean diff. WT base 0.23 mm (2.3%) 0.55 mm (6.7%) 0.79 mm (8.1%) 1.9 mm (24%)

Mean diff. WT mid 1.1 mm (11.5%) 0.97 mm (10.3%) 0.11 mm (1.2%) 2.6 mm (34%)

Mean diff. WT apex 0.25 mm (3.3%) 0.063 mm (0.8%) 0.32 mm (4.2%) 2.8 mm (42%)

Table 2. Regional comparison of WT estimates from 2D echo and cardiac cine MRI at
the basal, mid-ventricular and apical levels at ED and ES separately. Mean values for
the relative difference in WT between the two modalities in all 18 participants and 95%
confidence intervals (CI) are shown. The relative difference is reported as the difference
between the WT from 2D echo minus the WT from cardiac cine MRI.

Base mid-ventricular Apex

Mean relative difference at ED 1.3 mm (15%) 1.5 mm (19%) 2.1 mm (37%)

95% CI (ED) [0.74, 1.8] mm [0.91, 2.1] mm [1.6, 2.6] mm

Mean relative difference at ES −2.6 mm (24%) −2.1 mm (21%) −1.1 mm (13%)

95% CI (ES) [−3.1, −2.0] mm [−2.7, −1.5] mm [−1.7, −0.49] mm

4 Discussion

From the regional comparison of WT estimates, there was a clear difference in
WT estimations for segmentations of ED and ES. At ED, the estimated WT from
2D echo is larger than when derived from cardiac MRI. At ES, this relationship
is reversed. In cardiac MRI during systole, the trabeculae appear to combine
with the compact myocardium, making the boundary between these structures
difficult to distinguish, whereas in 2D echo this boundary is well defined [7].

Tukey HSD indicated that several segments differed significantly in WT
derived from 2D echo and MRI at ED and ES. At ED, the segments with the
largest differences in WT between the modalities were located in the inferior and
inferolateral side of the heart. At ES, significant differences in WT were found on
the septal side of the heart. Also within each modality, variations in WT across
the different AHA regions were found. Whether these differences are consistent
needs to be evaluated on a larger dataset and could be used to provide better
translation in clinical indices between echo and MRI.

WT estimates were calculated using Laplace’s equation and PDE constraints.
There are alternative techniques for calculating regional WT, such as the cen-
terline method [13]. It has been reported that the use of the Laplace solver is
more accurate than the centerline method because the latter carries the implicit
assumption that the myocardial wall is always perpendicular to the acquisition
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Fig. 5. Mean ES values of WT estimates calculated in each region of the AHA 17-
segment model in both 2D echo (red) and cardiac cine MRI (black) for the 18 partici-
pants. The bars on each point display the standard errors on the means. The asterisks
indicate the regions that were found to be significantly different in WT estimates using
Tukey multiple comparison of means. (Color figure online)

plane [10]. Some limitations in the WT estimation include the fact that part of
the basal myocardium needed to be excluded from the solution analysis. This
was because an edge artefact occurred here due to the way the boundary condi-
tions were defined. This could have been solved by adjusting the geometry only
for the computation, although it would have required more computation time.

While the accuracy of the Laplace solver is good (in the order of 1 pixel),
the use of manual segmentations for the delineation of the myocardial domain
reduces the accuracy of the WT estimates on 2D echo, as there are inter- and
intra-observer errors. The intra-observer error was relatively small (about 5%),
which indicates a good consistency. The inter-observer error was much larger at
about 35%. However, with a more detailed protocol for the segmentations and
more training of the observers, the error is expected to decrease. It is important
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to investigate how these uncertainties in the 2D echo WT estimates can influence
kinematic model predictions.

The comparison of regional WT estimates was performed based on the mean
values found across one AHA region. These mean values come from a distribution
of WT values and could be considered for future research.

5 Conclusions

This study has shown that WT estimates derived from 2D echo images of the
heart are significantly different to WT estimates derived from 3D geometric
models of the LV fitted to cardiac cine MRI using Laplace’s equation. As a next
step, the WT estimates from 2D echo will be used to constrain model fits to
3D echo images. This knowledge contributes towards ongoing efforts to better
translate kinematic modelling analyses from gold-standard cardiac MRI to the
more widely accessible echocardiography.
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Abstract. Segmentation of the 3D human atria from late gadolinium-enhanced
(LGE)-MRIs is crucial for understanding and analyzing the underlying atrial
structures that sustain atrial fibrillation (AF), the most common cardiac
arrhythmia. However, due to the lack of a large labeled dataset, current auto-
mated methods have only been developed for left atrium (LA) segmentation.
Since AF is sustained across both the LA and right atrium (RA), an automatic
bi-atria segmentation method is of high interest. We have therefore created a 3D
LGE-MRI database from AF patients with both LA and RA labels to train a
double, sequentially used convolutional neural network (CNN) for automatic
LA and RA epicardium and endocardium segmentation. To mitigate issues
regarding the severe class imbalance and the complex geometry of the atria, the
first CNN accurately detects the region of interest (ROI) containing the atria and
the second CNN performs targeted regional segmentation of the ROI. The CNN
comprises of a U-Net backbone enhanced with residual blocks, pre-activation
normalization, and a Dice loss to improve accuracy and convergence. The
receptive field of the CNN was increased by using 5 � 5 kernels to capture large
variations in the atrial geometry. Our algorithm segments and reconstructs the
LA and RA within 2 s, achieving a Dice accuracy of 94% and a surface-to-
surface distance error of approximately 1 pixel. To our knowledge, the proposed
approach is the first of its kind, and is currently the most robust automatic bi-
atria segmentation method, creating a solid benchmark for future studies.

Keywords: Atrial segmentation � Convolutional neural network � MRI

1 Introduction

Atrial fibrillation (AF) is the most common form of cardiac arrhythmia and is asso-
ciated with substantial morbidity and mortality [1]. Current clinical treatments for AF
perform poorly due to a lack of basic understanding of the underlying atrial anatomical
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structure which directly sustains AF in the human atria [2]. In recent years, gadolinium-
based contrast agents are utilized in a third of all MRI scans to improve the clarity of a
patient’s internal structures such as the atria by enhancing the visibility of disease-
associated structures such as fibrosis/scarring, inflammation, tumors, and blood vessels
[3]. Late gadolinium-enhanced MRI (LGE-MRI) is widely used to study fibrosis/
scarring [4], and clinical studies on AF patients using LGE-MRIs have shown that the
extent and distribution of atrial fibrosis can be used to reliably predict ablation success
rates [5]. As a result, direct analysis of the atrial structure in patients with AF is vital to
improving the understanding and patient-specific treatment of AF.

Segmentation of both the left atrial (LA) and right atrial (RA) chambers is a crucial
task for aiding medical management for AF patients based on structural analysis of the
segmented 3D geometry. Due to the rising popularity of convolutional neural networks
(CNN) in the field of medical imaging, many algorithms have been developed utilizing
CNNs, particularly for the segmentation of the LA directly from LGE-MRIs [6]. These
methods have drastically improved on the previous traditional atlas-based or shape-
based approaches [7] in terms of both performance and adaptability due to their fully
data-driven nature. In 2018, numerous CNN methods were submitted to the STACOM
2018 Left Atrial Segmentation Challenge [8] aiming at optimizing LA segmentation
performance from LGE-MRIs. Through the challenge, the U-Net was shown to be the
most widely used and most easily adaptable architecture for the task [9]. In particular,
pipelines with enhancements to the U-Net baseline such as the addition of residual
connections, dilated convolutions, and custom loss functions achieved far superior
segmentation accuracies.

Despite the extensive research in LA segmentation, no established study has been
conducted for the fully automatic segmentation of the RA directly from LGE-MRIs.
A 2017 benchmarking study investigated methods of segmenting the LA, RA, left
ventricle (LV), and right ventricle (RV) from non-contrast MRIs [10]. However,
segmentation from LGE-MRIs compared to non-contrast MRIs is much more chal-
lenging due to the attenuation caused by the contrast agent resulting in a lack of
distinguishable features between the atrial tissue and background. Thus, there is still an
urgent need of an intelligent algorithm capable of automatically segmenting both the
LA and the RA simultaneously from LGE-MRIs.

In this paper, we propose and evaluate a robust approach for fully automatic
segmentation of the atria, particularly the RA, from 3D LGE-MRIs. In order to
effectively learn the complex geometry of the atrial chambers, we designed a double
CNN pipeline for targeted segmentation and reconstruction of the LA and RA without
human intervention. This exciting study is the first of its kind to present a method of
segmenting both atrial chambers simultaneously, and is a very important step towards
more effective and efficient patient specific diagnostics and treatment.
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2 Methods

2.1 Data and Pre-processing

20 3D LGE-MRIs from patients with AF were provided by the University of Utah [4].
The in vivo patient images were acquired at a spatial resolution of 0.625 mm
0.625 mm � 1.25 mm using either a 1.5T Avanto or 3.0T Verio clinical whole-body
scanner. All 3D LGE-MRI scans contained 44 slices along the Z direction, each with an
XY spatial size of 640 � 640 pixels or 576 � 576 pixels. The LA segmentations were
provided by the University of Utah alongside the LGE-MRIs [4]. The RA segmenta-
tions were manually performed by our team based on the protocols used for LA
segmentation to achieve consistency across both atrial chambers (Fig. 1c). Firstly, the
RA endocardium was defined by manually tracing the RA blood pool in each slice of
the LGE-MRI. The tricuspid valve connecting the RA and RV was defined by a 3D
plane to create a smooth linear surface. The RA endocardium was then morphologi-
cally dilated and manually adjusted according to the RA geometry to obtain the
boundary of the epicardium. Next, the septum, the region of tissue connecting the RA
and LA, was manually traced such that the epicardial surfaces of the LA and RA joined
together. Finally, the dilated tricuspid valve was manually removed from the RA
epicardium. Overall, the three labels for the dataset were the background, the endo-
cardium of the RA and LA, and the epicardium of the RA and LA.

Fig. 1. Data acquisition and the protocol for labelling the left atrial (LA) and right atrial
(RA) epicardium (Epi) and endocardium (Endo) from late gadolinium-enhanced magnetic
resonance imaging (LGE-MRI). (A) Clinical MRI scanners were used to acquire LGE-MRIs.
(B) The LGE-MRIs were manually segmented in a slice-by-slice manner by experts to obtain
labels of the LA/RA epicardium and LA/RA endocardium. (C) RA manual annotation based on
the LA annotation protocol provided by University of Utah [4]. AO, aorta; LV, left ventricle; PV,
pulmonary vein; LS/LIPV, left superior/inferior PV; RS/RIPV, right superior/inferior PV.
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The 20 3D LGE-MRI data were randomly split for performing 4-fold cross vali-
dation such that in each fold, 15 data was used for training and 5 data was used for
validation. All data and labels were uniformly center cropped to a size of
576 � 576 � 44 pixels, and mean and standard deviation normalization were per-
formed. Contrast limited adaptive histogram equalization (CLAHE), a type of color
intensity normalization, was also performed on the dataset during pre-processing.

2.2 Convolutional Neural Network Architecture

Our pipeline consisted of two 2D CNNs used in a sequential manner (Fig. 2a). The first
CNN performed coarse segmentation on a down-sampled version of the entire 3D
LGE-MRI (144 � 144 � 44) in a slice-by-slice manner to construct an approximate
segmentation of the atria. The center of mass of the atria was calculated from the coarse
segmentation in each slice of the LGE-MRI, and a 240 � 240 patch was cropped
around this point, leaving out the majority of background pixels which significantly
decreased computational costs. 240 � 240 was chosen it could contain the entire atria
which had a maximum size of 200 � 200 from measurements on the entire dataset.
The second CNN then performed slice-by-slice regional segmentation on the ROIs
cropped from the 3D LGE-MRI. Finally, the individual slice-by-slice segmentations
were stacked together and zero-padded to a size of 576 � 576 � 44 to obtain the final
segmentation.

The same CNN was used for both stages of our pipeline and consisted of an
enhanced U-Net architecture (Fig. 2b). The first half of the CNN was an encoder to
learn dense features from the input through several convolutional layers of increasing
depth. The convolutional layers contained 5 � 5 kernels and a stride of 1, and the
number of feature maps increased from 16 to 256. At every 1–3 convolutional layers,
residual connections were added to improve feature learning and 2 � 2 convolutions
with a stride of 2 were used to progressively down sample the image by a factor of 2.
The second half of the CNN was a decoder to reconstruct the image back to the original
resolution for segmentation through several 5 � 5 convolutional layers of decreasing
depth. The number of feature maps of the convolutions in this part of the network
increased from 128 to 32. The images were progressively up-sampled by a factor of 2
with 2 � 2 deconvolutional, or transpose convolutional, layers with stride of 2.
Residual connections were also added at every 1–3 convolutional layers. In order to
directly preserve high-resolution features from the input, feature forwarding connec-
tions were also used to concatenate the outputs of the convolutional layers in the
encoder part to those in the decoder path at 4 different points along the CNN. Batch
normalization (BN) and parametric rectified linear units (PReLU) were used after every
convolutional layer along the entire CNN for improving convergence, and 50% dropout
was used at every layer for regularization. The final output layer of the CNN contained
a 1 � 1 convolution with a stride of 1, 3 feature maps, and a softmax activation
function to predict for the 3 classes in the data (LA/RA epicardium, LA/RA endo-
cardium, background). All hyper-parameters were selected as a result of extensive
experimentation under controlled settings to derive the optimal parameter
combinations.
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The CNN was trained with the 2D Dice loss function (Eq. 2) to prioritize the
segmentation of the foreground pixels over the background. At each epoch, online
augmentation was used to randomly augment each data with a probability of 50% and
included translation, scaling, rotation and flipping. The adaptive moment estimation
gradient descent optimizer was used with a learning rate of 0.0001 and the exponential
decay rate of 0.9. After training, the CNN with the highest cross-validation accuracy
was selected as the final model. The network was developed in TensorFlow and was
trained on an Nvidia Titan V GPU with 5120 CUDA cores and 12 GB RAM. Training
took 2 h and predictions on each 3D LGE-MRI took 2 s.

2.3 Evaluation

To measure the accuracy of the first CNN in detecting of the center of mass of the atria
when extracting the ROI, the mean squared error (MSE) was defined as

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q

ð1Þ

for the ground truth co-ordinates (x, y) and the predicted coordinates (x′, y′) of the
center of mass in each 2D slice of the 3D LGE-MRIs.

To measure the accuracy of the second CNN for segmentation, the Dice score,
surface-to-surface distance (STSD), sensitivity, and specificity were used. The DICE
score was calculated as

Dice ¼ 2Ntrue positive

2Ntrue positive þNfalse positive þNfalse negative
ð2Þ

for the atrial epicardium and endocardium predictions and ground truths. The STSD
measured the average distance error between the surfaces of the predicted LA volume,
A, and the ground truth, B, and was calculated as

STSD A;Bð Þ ¼ 1
nA þ nB

XnA

p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � B2
p

þ
XnB

p0¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p02 � A2
p

� �

ð3Þ

where nA is the number of pixels in A, nB is the number of pixels in B, and p and p′
describes all points in A and B. The sensitivity and specificity were calculated and
reflected the success for segmenting the foreground and the background respectively.
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3 Results and Discussion

Table 1 summarizes the final evaluation metrics for the best performing CNN used in
our proposed double CNN pipeline. Evaluation shows that the ROI containing the atria
for each slice of could be calculated within 5 mm, or 8 pixels, of the ground truth
through the coarsely segmented atria provided by the first CNN. Individually for each
co-ordinate, the CNN had an error of 2.3 mm, or approximately 3 pixels, in the x axis
and an error of 3.8 mm, or approximately 6 pixels, in the y axis. The second CNN was
evaluated on the entire final 3D segmentations produced for each test data. The LA and
RA endocardium were segmented with a Dice score of 92.9% and a STSD of 0.63 mm.
The LA and RA epicardium were segmented with a Dice score 94.0% and a STSD of
0.68 mm. Overall, the STSD showed that the predictions were approximately within 1
pixel of the ground on average for both the endocardium and epicardium.

3D visualization of the ground truth and the predictions for the test set in one cross-
validation fold shows that the proposed CNN pipeline successfully captured the overall

Fig. 2. The proposed double 2D convolutional neural network (CNN) pipeline for fully
automatic segmentation of the left atrium (LA) and right atrium (RA) from late gadolinium-
enhanced magnetic resonance imaging (LGE-MRI). (A) Overall workflow in which the first
CNN detected the region of interest (ROI) containing the LA/RA and the second CNN performed
regional segmentation of the ROI. (B) The architecture of the proposed 2D CNN. BN, batch
normalization; PReLU, parametric rectified linear unit.
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geometry of the LA and RA endocardium with a high degree of precision (Fig. 3). 3D
visualization of the STSD errors of the predictions shows the most erroneous regions to
be the LA pulmonary veins which some parts containing an error of up to 10 mm from
the ground truth. However, minimal error can be seen on the RA in general, showing
that the RA may potentially be easier to segment considering there are no complex and
small structures such as the pulmonary veins present. Visualizations of the LA and RA
epicardium were not shown, however, had comparable accuracies as the endocardium
as seen from the higher Dice score and similar STSD.

To further analyze the regions of the predictions containing the most errors, 2D
slice-by-slice visualizations and comparisons were performed for each test LGE-MRI.
Figure 4 illustrates the segmentation results for the LA and RA endocardium and
epicardium by our proposed pipeline compared with the ground truth for selective
slices at the same depth for a test 3D LGE-MRI. The results shown are representative
of the errors seen in other test LGE-MRIs. The relative depth of each slice from the
bottom of the LGE-MRI scan is provided in millimeters. At the bottom slices of the
LGE-MRIs (12–18 mm), it can be seen that the network was not able to reproduce the
linear plane used to define the tricuspid valve, but instead, produced a more rounded
prediction at this region, potentially due to the fact that there is no anatomically visible
border between the RA and the RV. The segmentation at the middle slices (18–31 mm)
successfully captured the geometry of the RA and LA in detail, while also showing a
clear gap between the epicardium and endocardium which denotes the atrial walls. At
this region, the main source of error was also at the tricuspid and mitral valve as the
CNNs produced segmentations which were smooth and rounded. The septum, on the
other hand, was precisely captured despite the decreased contrast in this region,
showing the network was able to successfully learn the shape of the epicardium in its
entirety. At the top slices of the LGE-MRIs (31–38 mm), the pulmonary vein regions
were the main sources of error, consistent with previous the 3D error visualizations.
The predictions show that the pulmonary veins predicted by the CNN are smaller and
thinner than that of the ground truth labels, further reflecting the difficulty of seg-
menting this structure. However, the epicardium segmentation is shown to be fairly
consistent and effectively accounts for the gaps in its morphology caused by the pul-
monary veins and valves across all slices of the LGE-MRI, which was also reflected in
the higher Dice score.

Table 1. Overall evaluation results of the proposed double CNN pipeline. The first CNN was
evaluated on the accuracy of the region of interest detected and the second CNN was evaluated
on the accuracy of the final segmentation in 3D.

First CNN Second CNN

Distance (mm) Dice (%) STSD (mm) Sensitivity Specificity
Error in
(x, y)

(2.27 ± 2.78,
3.77 ± 4.67)

LA + RA
Endocardium

92.9 ± 1.4 0.63 ± 0.11 92.9 ± 1.6 99.9 ± 0.01

MSE 4.79 ± 5.09 LA + RA
Epicardium

94.0 ± 1.4 0.68 ± 0.15 93.7 ± 2.0 99.9 ± 0.01

MSE, mean squared error; STSD, surface-to-surface distance; LA/RA, left/right atrium.
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Fig. 3. 3D visualizations of the left atrial (LA) and right atrial (RA) chambers for 3
representative test late gadolinium-enhanced magnetic resonance imaging (LGE-MRI).
(A) Ground truth provided. (B) Predictions segmented by the convolutional neural network
(CNN). (C) Surface-to-surface error of the predictions from the ground truth in millimeters (mm).

Fig. 4. The left atrial (LA) and right atrial (RA) endocardium (orange) and epicardium (blue)
results from the proposed convolutional neural network (CNN) pipeline compared to the ground
truth for representative slices on the same 3D late gadolinium-enhanced magnetic resonance
imaging (LGE-MRI) for a test patient. (A) LGE-MRI scans. (B) Ground truths. (C) Predictions
by the CNN. AO, aorta; LV, left ventricle; RV, right ventricle; LPV, left pulmonary veins; RPV,
right pulmonary veins; TV, tricuspid valve; MV, mitral valve. (Color figure online)
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4 Conclusion

We have developed and evaluated a double convolutional neural network for robust
automatic bi-atria segmentation from LGE-MRIs. Our algorithm enables the recon-
struction of both the LA and RA chambers in 3D with a Dice accuracy of 94% and a
surface-to-surface distance error of approximately 1 pixel from the ground truth. Our
study is the first automated method to segment both atrial chambers, particularly the
RA, creating a solid benchmark for future studies. The exciting findings from this study
may lead to the development of a more accurate and efficient atrial reconstruction and
analysis approach, which can potentially be used for improved clinical diagnosis,
patient stratification, and clinical guidance during treatment for AF patients.
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Abstract. We propose a 4D convolutional neural network (CNN) for
the segmentation of retrospective ECG-gated cardiac CT, a series of
single-channel volumetric data over time. While only a small subset of
volumes in the temporal sequence is annotated, we define a sparse loss
function on available labels to allow the network to leverage unlabeled
images during training and generate a fully segmented sequence. We
investigate the accuracy of the proposed 4D network to predict tempo-
rally consistent segmentations and compare with traditional 3D segmen-
tation approaches. We demonstrate the feasibility of the 4D CNN and
establish its performance on cardiac 4D CCTA (video: https://drive.
google.com/uc?id=1n-GJX5nviVs8R7tque2zy2uHFcN Ogn1.).

1 Introduction

Cardiovascular disease is responsible for 18 million deaths annually, making it
one of the leading causes of mortality globally [13]. Coronary computed tomogra-
phy angiography (CCTA) uses contrast-enhanced CT to evaluate cardiac muscle
morphology, function, and vascular patency. Two measurements derived from
CCTA with significant diagnostic and prognostic importance are the Left Ven-
tricular Ejection Fraction (LVEF) and Left Ventricular Wall Thickness. Both
measurements require the segmentation of the left ventricular muscle, with the
former requiring temporal segmentation over the cardiac cycle. The American
College of Radiology (ACR) has highlighted the importance of these measure-
ments by listing them among the most important initial ‘use cases’ of artificial
intelligence as applied to radiology [1]. A segmentation model of the left ven-
tricular muscle and cavity over the cardiac cycle, especially the end-systole and
end-diastole time points, would allow for automated determination of both mea-
surements from 4D CCTA studies. The clinical utility of such a model is highly
relevant as it reduces study reading time and improves the consistency of mea-
surements, thereby potentially preventing missed pathology in cases where the
measurements may not have otherwise been performed.
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Modern 4D CCTA images are acquired over the entire cardiac cycle, including
end-systole and end-diastole. A typical 4D scan includes 20 3D volumes reflecting
the cardiac anatomy at equally-spaced time points within a 240 ms time interval.
This allows for enough temporal resolution to study the heart’s function. In order
to limit the amount of effort required to annotate these images, we restrict the
annotation to only certain frames, an example of which is shown in Fig. 2.

While convolutional neural networks (CNNs) have demonstrated state-of-
the-art performance across a variety of segmentation tasks [8], the adoption of
4D CNNs for 4D medical imaging (3D + time – e.g., CT or ultrasound) has
been limited due to the high computational complexity and lack of manually
segmented data. The cost of annotating volumetric imaging is significant, mak-
ing 4D labeling prohibitively expensive. Nevertheless, the temporal dimension
offers valuable information that is otherwise lost when treating each volume
independently.

In this work, we propose a 4D CNN for the segmentation of the left ventricle
(LV) and left ventricular myocardium (LVM) from 4D CCTA images, enabling
the computation of the aforementioned cardiac measurements. To reduce anno-
tation costs, our 4D dataset is sparsely labeled across the temporal dimension –
only a fraction of volumes in the sequence are labeled. This enables us to leverage
a 4D CNN with a sparse loss function, allowing our algorithm to take advantage
of unlabeled images which would otherwise be discarded in a 3D model. The
network jointly segments the sequence of volumes, implicitly learning temporal
correlations and imposing a soft temporal smoothness constraint. We describe
the 4D convolution layer generalization in Sect. 3.1 and introduce a sparse Dice
loss function as well as a temporal consistency regularization in Sect. 3.2. We
demonstrate the feasibility of a 4D CNN and compare its performance to a
traditional 3D CNN in Sect. 4.

2 Related Work

Deep learning has achieved state-of-the-art segmentation performance in 2D nat-
ural images [2] and 2D [8] & 3D medical images [6,7]. To leverage the temporal
dependency and account for segmentation continuity, recurrent neural networks
(RNNs) have been adopted for videos [11] and 2D + T cardiac MRI datasets [16].
3D CNNs have also been applied spatio-temporally and proven effective in seg-
mentation of videos [9,10] and 2D + T cardiac MRIs [15].

For sequences of volumetric imaging, such as 3D + T CT or ultrasound, 4D
CNNs are a natural extension. Wang et al. [12] proposed a CNN for 4D light-field
material recognition incorporating separable 4D convolutions to reduce compu-
tational complexity. Clark et al. [3] adopted a 4D CNN for the de-noising of
low-dose CT, where three independent 3D convolutions (with fixed cyclic time
delay) were used to simulate 4D convolutions.

To date, 4D CNNs for semantic segmentation have not been explored in
similar depth to 2D and 3D CNNs, in part due to their high computational
requirements and lack of available annotations. In this work, we demonstrate
the feasibility and advantageousness of a true 4D CNN.
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Fig. 1. 4D network architecture: input is a single channel (grayscale) 4D CT crop,
followed by initial 3 × 3 × 3 × 3 4D convolution with 8 filters. Each green building
block is a ResNet-like block with GroupNorm normalization. The output has three
channels followed by a softmax: background, left ventricle, and myocardium. For a
detailed description of the building blocks see Table 1. (Color figure online)

3 Methods

Our 4D segmentation network architecture follows an encoder-decoder semantic
segmentation strategy, typical for 2D and 3D images. Throughout the network,
we use 4D convolutions with a kernel size of 3×3×3×3, where the last dimension
corresponds to time. The network architecture follows the one proposed in [7],
where only the main decoder branch is used and modified to fit 4D images within
GPU memory limits. The input size of the network is 1 × 1 × 96 × 96 × 64 × 16
(corresponding to a batch size of 1, input channel 1, and a spatial crop of 96 ×
96 × 64 with 16 frames). We randomly crop this 4D array from the input data
during training. No other form of augmentation is employed in this study.

Each building block of the network consists of two convolutions with group
normalization [14] and ReLU, followed by identity skip-connections similar to
ResNet [5] blocks. A sequence of the building blocks is applied sequentially at
different spatial levels. In the encoder part of the network, we downscale the
spatial dimension after each level and double the feature dimension. We use
strided convolutions (stride of 2) for downsizing, and all convolutions are 3×3×
3 × 3. We use one block at level 0 (initial size), two blocks at level 1, and four
blocks at level 2. At the smallest scale, the input image crop is downsized by a
factor of 4 (to 24×24×16×4), which provides a balance between network depth
and GPU memory limits. For the encoder branch, we leverage a similar structure
with a single block per each spatial level. To upsample, we use 4D nearest-
neighbor interpolation after 1×1×1×1 convolution. Finally, we use additive skip-
connections between the corresponding levels. The details of network structure
are shown in Table 1 and in Fig. 1.

3.1 4D Convolutions

While 4D convolutional layers are not available in common deep-learning frame-
works (such as TensorFlow1 of PyTorch2), they can be represented as a sum

1 https://www.tensorflow.org.
2 https://pytorch.org.

https://www.tensorflow.org
https://pytorch.org
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Table 1. Network structure, where GN stands for group normalization (with group
size of 8), Conv - 3×3×3×3 convolution, AddId - addition of identity/skip connection.
Repeat column shows the number of repetitions of the block. The output, after softmax,
has 3 channels (background and 2 foreground classes)

Name Ops Repeat Output size

Input 1× 96× 96× 64× 16

InitConv Conv 3× 3× 3× 3 8× 96× 96× 64× 16

EncoderBlock0 GN,ReLU,Conv,GN,ReLU,Conv, AddId 8× 96× 96× 64× 16

EncoderDown1 Conv 3× 3× 3× 3 stride 2 16× 48× 48× 32× 8

EncoderBlock1 GN,ReLU,Conv,GN,ReLU,Conv, AddId ×2 16× 48× 48× 32× 8

EncoderDown2 Conv 3× 3× 3× 3 stride 2 32× 24× 24× 16× 4

EncoderBlock2 GN,ReLU,Conv,GN,ReLU,Conv, AddId ×4 32× 24× 24× 16× 4

DecoderUp1 Conv1, UpNearest, +EncoderBlock1 16× 48× 48× 32× 8

DecoderBlock1 GN,ReLU,Conv,GN,ReLU,Conv, AddId 16× 48× 48× 32× 8

DecoderUp0 Conv1, UpNearest, +EncoderBlock0 8× 96× 96× 64× 16

DecoderBlock0 GN,ReLU,Conv,GN,ReLU,Conv, AddId 8× 96× 96× 64× 16

DecoderEnd Conv 1× 1× 1× 1, Softmax 3× 96× 96× 64× 16

over a sequence of 3D convolutions along the fourth (temporal) dimension. For
efficiency, we rearranged the loop to avoid repeated 3D convolutions by imple-
menting 4D convolution as a custom TensorFlow layer. This strategy allows for
a true (non-separable) 4D convolution. A common approach to maintain the
same image dimension is to zero-pad prior to a convolution. We were concerned
that such an approach may introduce boundary effect for the very first and last
frames (when padding with zeros). We have experimented with several padding
strategies for the 4th dimension only, including zero padding, mirror reflection,
and replication but did not observe any noticeable performance differences, thus
we decided to use conventional zero padding.

3.2 Loss

Our training dataset is sparsely labeled along the temporal dimension since
labeling medical images in 4D (and even in 3D) is complex and time-consuming.
Therefore, we have defined a sparse loss function that is applied only to the
labeled time-frames and includes a regularization term to ensure temporal con-
sistency between frames.

The proposed loss function is therefore composed of two terms,

L =
∑

i∈labeled

D(pi
true, p

i
pred) +

K−2∑

i=0

||pi+1
pred − pi

pred||2 (1)
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where D is a soft dice loss [6] applied only to labeled time points (3D images)
ptrue to match the corresponding outputs ppred:

D(ptrue, ppred) = 1 − 2 ∗ ∑
ptrue ∗ ppred∑

p2true +
∑

p2pred + ε
(2)

K is the number of frames (K=16 in our case, since we use the 96× 96× 64× 16
crop size). The second term in (1) is a first-order derivative over time to enforce
similarity between frames. Re-weighting the contributions between the loss terms
did not show consistent difference, so we kept the equal contributions.

3.3 Optimization

Similar to [7], we apply the Adam optimizer with an initial learning rate of
α0 = 1e−3 and progressively decrease it according to the following schedule
α = α0 (1 − η/Nη)0.9, where η is an epoch counter, and Nη is the total number
of training epochs.

We use a batch size of 1 and sample input sequences randomly (ensuring
that each training sequence is drawn once per epoch). From each 4D sequence,
we apply a random crop of size 96× 96× 64× 16 centered on a foreground (with
a probability of 0.6), otherwise centered on a background voxel. Thus, at each
iteration, a different number of ground truth labels is available, depending on
the location of the crop window (16) of the time dimension.

3.4 Dataset

Our dataset consists of 61 4D CCTA sequences, each of 512 × 512 × (40–108) ×
20 size (512 × 512 axial size, with 40–108 slices of variable thickness and 20
time points). The spatial image resolution is (0.24–0.46)×(0.24–0.46) × 2 mm. All
images were acquired at Massachusetts General Hospital, Boston, USA, using a
128-slice dual-source multi-detector CT with retrospective ECG gating and tube
current modulation. Sequences were reconstructed from multiple R-R3 intervals,
measured via electrocardiogram.

All images were resampled to an isotropic spatial resolution of 1 × 1 × 1 mm,
retaining the temporal resolution. After re-sampling, the 4D image sizes vary
between 112×122×80×20 and 238×238×158×20 voxels. We apply a random
data split, with 49 4D images used for training and 12 4D images for validation.

The number of annotated frames in each sequence varies widely, ranging from
only 2 out 20 (i.e. end-systole and end-diastole) to 9 (every second time point).
Overall, 247 time-points have been annotated throughout the dataset, which
represents approximately 20% of all frames. We include studies with differing
numbers of annotated frames in both training and validation splits to maximize
temporal coverage during both training and validation.

As a second form of validation, we compare our model’s segmentation results
with clinical findings. One such clinical finding is the ejection fraction measure
which typically is being judged as reduced when less than 55% [4].
3 R corresponds to the peak of the QRS complex in the ECG wave.
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Axial Sagittal Coronal 3D Rendering

Fig. 2. A typical segmentation example of our 4D network in axial, sagittal and coro-
nal views of a single 3D frame. Notice that the predicted results look better and much
smoother than manual annotations in sagittal and coronal cross sections. Manual label-
ing was done by a trained clinician slice-by-slice, which results in noisy out-of-plane
ground-truth labels. The 4D segmentation network is able to average out these errors
when learning such noisy data examples.

4 Results

We implemented our 4D network in Tensorflow and trained it on an NVIDIA
Tesla P100 SXM2 GPU with 16 GB memory based on the NVIDIA Clara Train
SDK 4. Data is normalized to [−1, 1] using a fixed scaling from input CT range
[−1024, 1024]. We train for 500 epochs and use the model at the end of training
for evaluations.

For comparison, we also implemented a 3D network largely following the same
architecture as in Fig. 1, except that all convolutions are 3D and include a greater
number of layers with one additional down-sampling level (the end of the encoder
being of size 12×12×8) as GPU memory requirements permit deeper architecture
in the 3D case. For the 3D network, we use a crop of size 96 × 96 × 64 and train
it only on labeled 3D frames. The 3D network learns to predict segmentation
without any temporal constraint considerations. We acknowledge that such a
3D network is trained on less number of images (only the annotate frames), and
weakly-supervised 3D segmentation might be a candidate for better comparison.

Segmentation performance: We evaluate both networks on the validation set,
using only the labeled frames, in terms of average Dice score. In addition, we
assess the temporal continuity of the produced results. A temporal smoothness

4 https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-
sdk.

https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk
https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk
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Table 2. Performance evaluation of the 4D semantic segmentation network. LVM - left
ventricular myocardium and LV - left ventricle. We also measure temporal smoothness
in the result using the L2 norm of temporal derivative of the predictions and average
surface distance between the consecutive frames. The proposed 4D network produces
temporally smoother results with comparable dice scores.

Arch Dice Smoothness

LVM LV L2 Surf

3D network 0.85 0.91 1.28 0.74

4D network 0.85 0.90 1.05 0.59

metric, we compute the L2 norm of the first-order time derivative of segmentation
labels, as well as the average surface distance between the consecutive frames.
Intuitively, accurate segmentation results must respect the temporal continuity
of the heart motion, and are expected to be smoother in the time domain.

The evaluation results are shown in Table 2. In terms of the dice score alone,
the proposed 4D network demonstrated only comparable results, with one of the
structures (LV cavity) 1% better dice of the 3D network. One reason for this
might be that 4D network is not as deep as its 3D counterpart and the dice
score is estimated frame by frame; frame-by-frame Dice score may not be the
most representative accuracy measure of temporal sequence segmentations as it
does not account for consistency across frames.

Visually, the 4D CNN segmentation results have superior temporal consis-
tency, where the label changes more “fluidly” between time-frames. Our smooth-
ness metric confirms this observation, with the proposed 4D network achieving
lower smoothness loss than its 3D counterpart (see Table 2). We also observe that
in many cases, 4D CNN results look better than the ground truth (See Fig. 2).
The manual annotations are done slice-by-slice, which results in jittery out-of-
plane annotation profiles; this especially visible in sagittal and coronal views.
The proposed 4D segmentation network is able to average out these errors while
learning from the overall dataset and produce coherent results both spatially
and temporally. In future work, manual relabeling of some cases in all 2D planes
consistently (in spatial and time dimensions) could result in a clearer advantage
of our 4D approach.

Ejection Fraction: We computed the ejection fraction for 12 cases (10 with
normal and 2 with reduced ejection fraction) based on the ratio of minimum
and maximum LV cavity volume throughout the cardiac cycle as predicted by
our models. For both, 3D and 4D models, we achieve a 100% sensitivity and
specificity in detecting reduced ejection fraction when compared to the findings
reported in the clinical reports (provided by radiologists).
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5 Conclusion

We proposed a 4D convolutional neural network for semantic segmentation of
the left ventricle (LV) and left ventricular myocardium (LVM) from 4D CCTA
studies. The network is fully convolutional and jointly segments a temporal
sequence of volumetric images from CCTA.

We utilize a sparse Dice loss function and a temporal consistency regular-
ization to handle the problem of sparse temporal annotation. We have demon-
strated the feasibility and advantageousness of a true 4D CNN compared to 3D
CNNs, where the first shows improvement in segmentation temporal consistency.
The model’s result showed promise in being useful for automatically quantifying
clinically measures, such as ejection fraction.
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Abstract. Atrial fibrillation (AF) is the most common sustained heart rhythm
disturbance and a leading cause of hospitalization, heart failure and stroke. In
the current medical practice, atrial segmentation from medical images for clin-
ical diagnosis and treatment, is a labor-intensive and error-prone manual pro-
cess. The atrial segmentation challenge held in conjunction with the 2018 the
Medical Image Computing and Computer Assisted Intervention Society
(MICCAI) conference and Statistical Atlases and Computational Modelling of
the Heart (STACOM), offered the opportunity to develop reliable approaches to
automatically annotate and perform segmentation of the left atrial (LA) chamber
using the largest available 3D late gadolinium-enhanced MRI (LGE-MRI)
dataset with 154 3D LGE-MRIs and labels. For this challenge, 11 out the 27
contestants achieved more than 90% Dice score accuracy, however, a critical
question remains as which is the optimal approach for LA segmentation. In this
paper, we propose a two-stage 2D fully convolutional neural network with
extensive data augmentation and achieves a superior segmentation accuracy
with a Dice score of 93.7% using the same dataset and conditions as for the
atrial segmentation challenge. Thus, our approach outperforms the methods
proposed in the atrial segmentation challenge while employing less computa-
tional resources than the challenge winning method.

Keywords: Automatic cardiac segmentation � LGE-MRI � Atrial fibrillation

1 Introduction

Atrial fibrillation (AF), is the most common sustained heart rhythm disturbance, with
nearly 33 millions of people affected worldwide. The current overall prevalence of AF
is 2% to 5% of the general population worldwide and is projected to more than double
in the following couple of decades, becoming a global epidemic [1]. Currents treat-
ments remain sub-optimal [2] and recent clinical studies, using late gadolinium
enhancement MRI (LGE-MRI), suggest that this is probably due to the lack of
understanding of the underlying left atrial (LA) structures which sustain AF. Unfor-
tunately, most studies that use LGE-MRIs have relied on labor-intensive and error-
prone manual segmentation methods [3], and therefore cannot reach beyond research
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studies to be implemented in clinical practice. Alas, initial attempts for automatic
segmentation using conventional approaches or some early machine learning strategies
have also achieved limited efficacy [5, 6].

However, in 2018, new approaches were proposed for the atrial segmentation
challenge held by the Statistical Atlases and Computational Modeling of the Heart
(STACOM) workshop [7], during the 2018 edition of the Medical Image Computing
and Computer-Assisted Intervention (MICCAI) conference. The challenge was a
success with 18 teams attending the conference and proposing diverse approaches, with
the winning team, Xia et al. [8], reaching 93.2% Dice score with a fully convolutional
neural network (CNN). Nevertheless, the best score of the challenge was obtained
using a 3D approach to render accurately the volume of the LA, we argue that such a
small 3D dataset (100 3D LGE-MRIs) might not provide enough learning material for
the CNN to reach the maximum score possible. Moreover, 3D segmentation approa-
ches usually require more computational resources and are less efficient than CNN
using 2D images. Furthermore, data augmentation, proven to be an effective method to
extend and enrich the dataset, would remain of limited efficacy for 3D images, as the
dataset can only be so much extended, and therefore we argue that a 2D approach is
more appropriate to exploit the full potential of the dataset.

Our study addresses these problems. Firstly, we built a two-stage 2D convolutional
neural network using extensive data augmentation to fully exploit the dataset potential.
Secondly, we investigated the impact of the main transformations employed for data
augmentation in medical segmentation tasks. Finally, we analyzed the volumetric
prediction yielded from the aggregated 2D predictions.

2 Methods

2.1 Dataset

For this study, we employed the 3D LGE-MRI dataset used in the 2018 atrial seg-
mentation challenge in conjunction with the 2018 MICCAI and STACOM work-
shop. The dataset was acquired and labeled by experts’ consensus at the University of
Utah and consists of 154 original 3D LGE-MRIs with a spatial resolution of
0.625 � 0.625 � 0.625 mm3 and dimensions of 640 � 640 � 88 and 576 � 576
� 88 assorted with their respective manual segmentation of the LA cavity and used as
ground truth (labels).

For the challenge, the dataset was divided into a training set (100 3D LGE-MRIs)
and a testing set (54 3D LGE-MRIs) yielding a grand total of 8800 2D images MRIs
and labels for training and 4752 MRIs and labels for testing, respectively. For our
approach development, and fair comparison with other approaches published in the
2018 STACOM proceedings [7], we split the original training dataset into 80 3D LGE-
MRIs for training and 20 3D LGE-MRIs for validation. Finally, our approach was
evaluated using the other 54 3D LGE-MRIs kept unseen during training and fine-tuning
of the network hyper-parameters, to replicate the challenge testing conditions.
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2.2 Network Architectures

For each 3D LGE-MRI, the atrial cavity represents only a small fraction of the image
volume, therefore creates a severe class imbalance (*0.7% cavity pixels versus
*99.3% of background). As class imbalance is a recurrent and serious problem in
segmentation tasks [9] the first stage of our two-stage 2D CNN approach was dedicated
to reduce the background predominance by extracting the region of interest (ROI). To
this end, the first network (Vnet 1), using an image-based regression approach, was
employed to precisely locate the LA by determining the coordinate of the LA cavity
center of mass on each 2D image. Once the LA was localized, the images were cropped
to an optimized size (240 � 240 pixels), increasing speed and accuracy of the training
process. The second network (Vnet 2) was dedicated to accurately segment the LA
from the cropped image. The final prediction image was reconstructed to the original
image input size as illustrated in Fig. 1.

For this study, both of the CNNs we used were based on the V-net [10] architecture
as depicted in Fig. 2. In order to make the best of the dataset, we implemented a 2D
version of V-net which allowed us to process 8800 2D LGE-MRIs. Our approach used
a fully convolutional neural network in which the convolution operations were used to
extract information, reduce the image resolution and reconstruct the image for the final
output (prediction). The architecture of our V-net can be described in two parts: an
initial encoder part in which the image information is extracted in a local-to-global
manner, and a subsequent decoder part mirroring the encoding part and used to
reconstruct the predicted segmentation. In our approach, we used 5 encoding and 5
decoding blocks where each block consisted of a batch normalization [11] followed by
a succession of 5 � 5 of padded 2D convolutions keeping constant image size, and an
increasing number of feature maps as the network goes deeper (respectively
8/16/32/64/128 features maps). Each block was followed by a strided 2D convolution
layer for the encoding part allowing image down-sampling and global features
extraction, and a strided 2D deconvolution layer for the decoding part permitting image

3D LGE-MRIs 
dataset

LA centroid 
detection

Vnet 1 Vnet 2

Atrial 
segmentation

ROI extraction Image
reconstruction

Fig. 1. Framework of our proposed two-stage 2D convolutional neural network (CNN) ap-
proach. The first network (Vnet 1) was used to determinate the center of the region of interest
(ROI), i.e., left atrium (LA) cavity, on each MRI, then the images were cropped to an optimized
region with a dimension of 240 � 240 pixels. The second network (Vnet 2) was used to
accurately segment LA cavity.
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up-sampling and prediction reconstruction. Each convolution or deconvolution layer
was followed by a leaky rectifier linear unit (Leaky ReLU) activation function (using
a = 0.1) to ensure non-linearity while limiting vanishing gradient problems. In addi-
tion, we applied 25% dropout on every layer to prevent overfitting. Moreover, we used
skip connections to keep proper information forwarding as usually used in residual
block architectures [12], by merging (element-wise sum) the first layer input and the
final layer output of a residual block before each strided convolution or deconvolution
layer. Furthermore, our network utilized horizontal features map forwarding between
same level residual blocks from the encoding path, to the decoding path to avoid
network singularities [13].

The two networks differ in the loss function that we used and the activation
function for the final layer of the network. For the first network (Vnet 1) we used mean
squared error loss function and sigmoid activation function in the regression approach
to determine the coordinates of the centroid of the LA. Whereas for the segmentation

Fig. 2. Our proposed 2D V-net architecture consists of an encoder part extracting features and a
decoder part reconstructing the predicted image.
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task of the second network (Vnet 2), we used Dice loss as loss function and softmax
activation function to distinguish background information from LA cavity information.

2.3 Data Augmentation

Data augmentation is a worthy tool for many application in machine learning and
image processing, but every dataset presents their specificities and therefore requires
tailored data augmentation. As the utilized dataset was of limited size, we applied
online data augmentation, a more efficient approach than the alternative offline strategy,
to train the network over a wider range of biological variations to obtain the best
coverage of the human heart shape variability. To this end, we investigated the impact
of four different image augmentation, two transformations – rotation and left/right flip,
and two shape deformation– scaling and perspective alteration. Rotation and left/right
flip addressed the relative position of the heart within the image, whereas scaling and
perspective alteration varied the cavity volume and the contours of the LA, respec-
tively. For our approach we used a rotation angle randomly selected between −25° and
25°, a scaling coefficient randomly selected between 0.5 and 1.5 for x and y, and a
perspective factor ranging from 0.05 and 0.1. Moreover, we also investigated the
effects of two image histogram augmentations, “add” and “gamma” addressing the
contrast and brightness variations generally encountered in LGE-MRIs. Add consisted
of adding selected values to each pixel values on the image (between −40 and 40), and
gamma adjusted the contrast of the image by scaling each pixel value using 255 � (Iij/
255)c (with c between 0.3 and 1.7).

As image transformation can generate artifacts on the LGE-MRIs, it is important to
control the emergence of these aberrant features, in order to prevent the network to
learn them. Moreover, using multiple image augmentation at the same time amplifies
the risk of artifacts appearance and therefore can impair the learning process. To avoid
these effects, we only applied data augmentation on 50% of the dataset and only one
type of image transformation and one type of image histogram augmentation to each
image.

2.4 Metrics

In order to evaluate our results, several commonly used metrics were utilized to rep-
resent different aspects of the predictions. We used Dice score to evaluate the similarity
between the ground truth and the predictions. We also employed Jacquard index (in-
tersection over union) more sensible and severe upon small variation than Dice score.
Moreover, we also included surface distance metrics, such as mean symmetric surface
distance and Hausdorff distance, which are more representative of shape and contour
accuracy of the LA than the Dice score. Finally, we added antero-posterior diameter
error and volume error calculations used clinically to assess the medical relevance of
the predicted reconstructed LA volumes.
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3 Results

We implemented our approach using TFLearn, a high-level API of TensorFlow, and
ran all experiments on Nvidia Tesla V100-PCIe with cuDNN. Our final results were
obtained after training our network for 300 epochs with a learning rate of 0.001 using
Adam optimizer and a maximum batch size up to 44 for speed and performance.
Weights were initialized once using He normalization [14], saved, and re-employed for
each experiments in order to avoid weights bias from initialization.

Performance of the Two-Stage 2D CNN Approach. Our two-stage 2D CNN
achieved 93.72% Dice score accuracy, outperforming the proposed approaches for the
2018 atrial segmentation challenge. Moreover, our framework also obtained better
accuracy for most of the other metrics (Jacquard index, Mean surface distance, LA
diameter error and volume error) as shown in Table 1, only, the Hausdorff distance
appeared larger than for the other approaches compared. We believe that the superiority
of our approach relies on its two-stage architecture, the total exploitation of the dataset
using 2D images and the optimized data augmentation employed. Furthermore, our
approach alleviated the class imbalance issue by using small patch size images centered
on the ROI, and improved the ROI learning process, providing by centering the image
on the centroid of the LA cavity allowing to obtain a better Dice score. Finally, we
employed carefully selected image augmentation to improve the learning process and
provide an enlarged shape variability database increasing the segmentation accuracy
further.

Patch Size and Centroid Cropping. As the LA on a 3D LGE-MRI represented only a
fraction of the image to segment, we first investigated the effects of cropping the image
to different patch size on the Dice score with decreasing patch sizes (from 512 � 512
to 240 �240 Fig. 3A). Using image centered cropping (blue bars Fig. 3A) we
observed a minor increase on the Dice score using small patches (240 � 240 to

Table 1. Comparison between our approach (2D V-net), the top participants [7] of the 2018
atrial segmentation challenge and Unet 2D [15] using various metrics (Dice score, Jacquard
index, Mean square distance (MSD), Hausdorff distance, Diameter error and Volume error).

Metrics
Network Dice score

(%)
Jacquard
(%)

MSD
(mm)

Hausdorff
(mm)

Diam. Err
(%)

Volume Err
(%)

Xia et al. 93.2 87.4 0.748 8.892 4.0 4.9
Huang
et al.

93.1 87.2 0.754 8.495 3.6 4.9

Bian et al. 92.6 86.9 0.759 9.213 3.9 4.4
Yang
et al.

92.5 86.1 0.850 9.759 3.6 6.1

Unet 2D 92.5 86.2 0.842 15.88 3.1 4.9

2D V-net 93.7 88.2 0.614 10.60 2.7 4.2
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320 � 320) rather than large patches (400 � 400 to 512 � 512). Secondly, we eval-
uated the importance of the location of the LA within the selected region using LA
centroid cropping (red bars Fig. 3A). To this end, the first network of our approach,
dedicated to locate the centroid of the LA, was able to precisely determine the coor-
dinates of the LA centroid with a 15 pixels mean precision (mean square error = 0.35).
Applying LA centroid cropping, we observed a significant Dice score increase com-
pared to image centered cropping (form 92% to 92.56%, p-value > 0.01) for all patch
size (Fig. 3A). Moreover, applying LA centroid cropping we noticed a significant
accuracy increase using small patches (92.86% versus 92.26% for large patches, p-
value < 0.01). These results show the importance of controlling the background, by,
for example removing irrelevant background (appropriate patch size) associated with
pertinent centering (LA centroid cropping), to improve the learning process, and obtain
a better prediction.

Data Augmentation. Then, we investigated individually the effect of various online
data augmentation usually employed for segmentation tasks (Fig. 3B). We showed that
4 out of the 6 image modifications employed (rotation, scaling, left/right flip, and
gamma) yielded significant Dice score improvement compared with no data augmen-
tation. However, perspective alteration worsened the results (p-value < 0.01), and

A B

* * *

*

*
*

*
*

* *

Fig. 3. Effects of patch size, region of interest extraction method, and data augmentation on
Dice score. A: Comparison between the different patch size and cropping method. Using small
patch size and LA centroid cropping yields better accuracy. B: Comparison of the effect on the
Dice score of various data augmentation on 240 � 240 images using atrial centroid cropping.
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“add” didn’t improve the Dice score significantly. This shows that whole shape
alterations (rotation, scale, left/right flip) can be beneficial for the learning process
while local contours modification (perspective alteration) using Dice loss can impair
the learning process. Moreover, gamma also improved the Dice score, this can indicate
the importance of considering the contrast as part of the data augmentation. Thus,
combined inline data augmentation (rotation, scale, left/right flip and gamma) with
240x240 centroid cropped images allowed us to rise the Dice score to 93.72%
(Table 1).

Segmentation Error Analysis. By examining 3D predictions, we observed that the
best segmentation results were obtained at the center of the atrial volume reaching a
Dice score 98.6% and a lower accuracy, mostly due to over-prediction (false positive),
on the atrial regions presenting the smallest surface area, corresponding to the upper
region of the LA (LA roof, Dice score 28.2%), and LA lower region (mitral valve
opening, Dice score 66.9%). This can be explained by the use of the Dice loss function
which weighs more towards the volume rather than the boundary of the atrium,
therefore smaller labeled regions (LA roof and valve) can become over-weighted,
leading, in fine, to false positive prediction error and a lower Dice score.

4 Conclusion

In this paper, we have proposed and extensively validated a novel two-stage 2D CNN
architecture using the same dataset and conditions as the 2018 atrial segmentation
challenge. Our segmentation approach achieves a segmentation accuracy with a Dice
score of 93.7% outperforming all previously proposed approaches. In this study, we
showed the importance of controlling the background by reducing the class imbalance
using appropriate patch size and relevant region of interest centering for the learning
process, we also displayed the impact of selecting pertinent data augmentation for
dataset enrichment, yielding, in fine, better accuracy.
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Abstract. Accurate left ventricular (LV) segmentation in cardiac MRI
facilitates quantification of clinical parameters such as LV volume and
ejection fraction (EF). We present a CNN-based method to obtain a
3D representation of LV by integrating information from 2D short-axis
and horizontal and vertical long-axis images. Our CNN is flexible to the
number of input slices and uses an additional input of image coordinates
as spatial context. This concept is validated on variations of two well-
known CNN architectures for medical image segmentation: U-Net and
DeepMedic. Five-fold cross validation on a dataset of 20 patients achieved
a correlation of 95.0/93.1% for quantification of end-diastolic volume,
91.6/90.8% for end-systolic volume and 80.5/84.5% for EF for the two
architectures respectively. We show that (1) incorporating long-axis data
improves segmentation performance and (2) providing spatial context by
adding image coordinates as input to the CNN yields similar performance
with a smaller receptive field.

Keywords: 3D cardiac MRI segmentation · Integration of short and
long axis views · 3D CNN with spatial context

1 Introduction

Accurate left ventricular (LV) segmentation in cardiac MRI facilitates quantifi-
cation of clinical parameters such as LV volume and ejection fraction (EF). To
this end, numerous convolutional neural network (CNN) approaches have been
published in the past years, for example in the STACOM 2017 ACDC challenge
[1]. In clinical practice, generally a stack of thick (8–10 mm) short-axis (SA) 2D
slices instead of a 3D volume is acquired, since acquiring a 2D slice is faster and
requires consequently a shorter breath hold. Due to the low through-plane res-
olution of this SA stack, the extent of the heart in longitudinal direction (from
apex to base) is difficult to perceive accurately, especially at the apex, such that
c© Springer Nature Switzerland AG 2020
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two long-axis (LA) 2D cine images are generally additionally acquired to obtain
information on cardiac geometry in longitudinal direction.

State-of-the-art methods for LV segmentation are mainly using 2D SA
images, occasionally integrating information of adjacent SA images to improve
robustness [2,3]. To cope with incomplete information from 2D slices instead of
3D volumes, two approaches can be taken: (1) introduce a shape prior or (2)
use additional images of complementary views i.e. LA images. Since CNNs make
a voxelwise prediction of the probability of being part of LV, they are missing
explicit shape constraints. In this respect, several authors have proposed to inte-
grate a shape prior in their CNN. Examples are use of an atlas [4], the average
of aligned training ground truths [5], a hidden representation of anatomy [6], or
a statistical shape model fitted to a prior segmentation [7]. Combining informa-
tion of both SA and LA images in a CNN is done by [8] to generate a super
resolution 3D cardiac image from 2D SA and LA image stacks. Furthermore, SA
and LA images are also used by [9] and in [10] to estimate end-diastolic (ED)
and end-systolic (ES) volume. While [9] uses three views, mid-cavity SA, basal
SA and two chamber LA, as input to a regression CNN, in [10], an ensemble of
volume predictions obtained from 2D segmentations of different views is used.
However, both approaches do not calculate a 3D segmentation and thus do not
provide visual feedback on the performance of the CNN.

In this paper, we present a CNN-based method to obtain a 3D representation
of LV from 2D SA and LA images. To ensure spatial consistency between the
slices, every slice is transformed to the 3D world coordinate system (WCS) before
being used as CNN input. Furthermore, we augment our network with image
coordinates [11] to automatically learn spatial constraints as a weak shape prior
during training.

2 Methods

2.1 From 2D to 3D: Transformation to Spatially Consistent
Volumes

For each patient, a set of cine SA and LA slices, which can vary in number
between patients, is available to predict the 3D LV. These 2D images are each
transformed to a separate 3D volume in a common reference space. Before trans-
forming the slices to volumes, we first correct for respiratory motion between
them. This is performed jointly for all time points in a cine scan using a two step
approach: first, large motion is corrected based on ground truth ED endo- and
epicardial contours and second, motion correction is refined with the algorithm
of [12] which uses the image content of the full cine scan. During contour-based
initialization, motion of SA images is restricted to an in-plane translation and
motion of LA images to a 3D translation. In the final breath hold correction
[12], 3D translation and rotation parameters are obtained for every slice. The
same correction parameters are applied to every time point in the cine scan.
After breath hold correction, every 2D slice is transformed to a 3D volume with
an isotropic resolution of 1 mm in scanner world coordinates using position and
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orientation parameters of the DICOM header. The transformation is performed
with linear interpolation and voxels outside the respective slices are set to zero.
To adjust for varying position of the subjects in the scanner, the middle point
of LV in the central slice of the SA image stack is defined to be the center of
the WCS. This results in a separate, sparse, 3D volume for every slice spanning
each the same field of view (FOV) (Fig. 1).

Since our dataset lacks a true 3D ground truth, we artificially create a 3D LV
model for each patient from breath hold corrected 2D expert contours for training
and validation. The contours of every 2D SA image are first converted to 2D
distance images which contain in every pixel the distance to the contour. Pixels
in- and outside the contour are given respectively negative and positive values.
Every distance image is then transformed to a 3D volume in SA orientation
using linear interpolation and the breath hold correction parameters calculated
before. Voxels outside the respective slices are set to “not a number” (nan).
Since the slices are not inherently parallel anymore after breath hold correction,
we use a heuristic approach to obtain the breath hold corrected SA contours:
for every SA slice position, the contour is calculated from the distance volume
with the least nan’s at that specific slice position. The final model is created
in SA image space: all breath-hold corrected SA contours are sampled every 5◦

and intermediate contours are calculated by linearly interpolating corresponding
SA points of adjacent slices to obtain an interslice distance of 1 mm. The LA
contours are transformed to SA orientation and used to extend the 3D model
towards apex and base. This 3D model in SA orientation is then transformed to
the WCS, identically as the MR images, to obtain the final 3D high resolution
model.

2.2 CNN with Arbitrary Number of Inputs and Spatial Context

Since the number of SA slices in a clinical exam varies among subjects, we pro-
pose a CNN architecture where an undetermined number of 3D volumes, each
containing information of one slice, can be imported. The concept is illustrated
in Fig. 2: a first subnetwork (CNN1) extracts relevant features at different res-
olutions for every volume separately by running each volume through the same
CNN. The features of all volumes are then combined by averaging and a sec-
ond subnetwork (CNN2) processes this combined information and outputs the
probability map for LV. Second, we also use additional spatial information by
importing volumes of WCS x, y, z image coordinates in the CNN (Fig. 2) and
hypothesize that this allows to decrease the receptive field (RF) of the CNN
while preserving similar segmentation performance. To validate the concepts
introduced above, we use variations on two established CNN architectures for
medical image segmentation. Our first network (A1) is inspired by U-Net [13]
and the second (A2) has two pathways of different resolution as in DeepMedic
[14] (Fig. 3). Both A1 and A2 have a limited receptive field (A1: RF = 25 ×
25 × 25, A2: RF = 21 × 21 × 21) and are thus only capable of using inten-
sity information of a small part of the heart for voxelwise predictions. We also
use a baseline architecture (A3) with a substantially larger receptive field
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Fig. 1. SA, HLA and VLA (left to right) cross sections of 3D volumes of apical, mid
and basal SA slices, HLA and VLA slices and 3D GT (top to bottom). The SA cross
sections for HLA, VLA and GT are taken at mid-cavity position.

(RF = 69 × 69 × 69) but without a coordinate input to test our hypothe-
sis on the benefit of incorporation of image coordinates in CNNs with limited
RF. Like A2, A3 is inspired by DeepMedic but has three pathways of different
resolutions. Details on the different architectures can be found in Fig. 3.

2.3 Training

We use a patch based training approach and extract every epoch 2000 samples
of 3D patches from the training set. The training samples are chosen to have
an equal class distribution of center voxels: half of the patches have a LV center
voxel and the other half has a background center voxel. For every subject in
the training set, an equal number of patches is randomly chosen from the two
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Fig. 2. Concept of proposed network architecture. Besides a variable number of SA
views, also LA views and image coordinates are used as input.

Fig. 3. Implementation details of architectures used for CNN1 (left) and CNN2 (right)
in Fig. 3. The shape of the feature maps (FMs) in every step is given as (patch size) ×
(number of FMs). Besides full resolution (FR) input patches, A2 and A3 have also low
resolution (LR) input patches with downsampling factors of 4 and 8. Each convolutional
layer (Conv) is followed by batch normalization (BN) [15] and a parametric rectified
linear unit (PReLU) activation function [16].

classes. The network is trained end-to-end over 200 epochs with stochastic gra-
dient descent (SGD) optimizer with Nestrov momentum of 0.99 and an adaptive
learning rate (lr) which is halved every 25 epochs (max lr = 0.016, min lr =
1e-5) to minimize the binary cross entropy. The network weights are initialized
according to [17].
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3 Experiments

We use clinical datasets of 20 subjects with variable pathology, acquired with
a 1.5T MR scanner (Ingenia, Philips Healthcare, Best, the Netherlands), and a
32-channel cardiac phased array receiver coil setup. For each patient, 10 to 14 SA
images (interslice distance = 8 mm), covering the heart from apex to base, and
one horizontal (HLA) and one vertical (VLA) LA view are available. The endo-
and epicardium in ED and the endocardium in end-systole (ES) were manually
delineated by a clinical expert. The 2D images have a FOV of 350 × 350 mm2 and
an in-plane voxelsize of 0.99 mm which is transformed to a volume with FOV 201
× 201 × 201 mm3 and an isotropic voxelsize of 1 mm. Before transformation, all
images are intensity normalized to have zero mean and unit variance. After CNN
prediction, we use simple postprocessing consisting of binarization, maintaining
the largest connected component and hole filling.

We explore the effect of introducing additional spatial context by incorpo-
rating LA images and image coordinates with three variations on A1 and A2:
(1) only SA images without image coordinates are used for CNN training and
validation, (2) both SA and LA images but no image coordinates are used, (3)
SA, LA and image coordinates are used. This last variation is compared to A3,
which has a larger RF and uses both SA and LA images but no image coordi-
nates. These experiments are performed for ED phase only. Additionally, we also
test the performance of our approach on ES images and investigate the effect
of training two CNNs for ED and ES phase separately or training one CNN
for both cardiac phases. For all experiments, we use a five-fold cross validation
and calculate Dice similarity coefficient (DSC), precision, sensitivity and aver-
age symmetric surface distance (ASSD) with respect to the created 3D ground
truths. Furthermore, the correlation coefficients (ρ) for LV volume at ED and
ES (EDV, ESV), and EF are calculated. Statistical significance of the results is
assessed using the two-sided Wilcoxon signed rank test with a significance level
of 5%.

4 Results

Figure 4 shows an example of the impact of breath hold correction. Before cor-
rection, the myocardium in SA stack appears to be discontinuous along the LA
orientation, which is resolved after breath hold correction. Proper 3D consistency
after breath hold correction was visually verified for every dataset.

The impact of incorporating LA images and image coordinates is presented in
Table 1. All measures show improvement after introduction of LA data but not all
differences are statistically significant. For both A1 and A2, incorporating spatial
context significantly improves DSC, sensitivity and ASSD. The comparison of
CNNs with small receptive field and spatial context (A1 and A2) and a CNN with
larger receptive field (A3) does not show a statistically significant difference in
DSC and ASSD, but A3 is significantly better in precision and significantly worse
in sensitivity. A1 achieved the highest correlation for EDV. Figure 5 visualizes LV
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Fig. 4. Left to right: SA stack reformatted to LA orientation before breath hold correc-
tion, after correction and LA image. Red are the intersection points of the SA expert
segmentation before correction and green is our 3D LV model in LA orientation. (Color
figure online)

as predicted with the different CNNs, together with the distance to the ground
truth, for one subject. Without additional spatial information, CNNs with small
receptive field are prone to oversegmentation by not distinguishing between left
and right ventricle. A3 tends to undersegment LV.

Table 2 presents the segmentation results in ED and ES for the two proposed
architectures and two training strategies. While no obvious conclusions can be
drawn about which training strategy is to be preferred based on the measures
calculated for ED or ES separately, the correlation of EF increases respectively
with 19.2% and 31.0% for A1 and A2 when training on ED and ES together.

Table 1. DSC, precision, sensitivity and ASSD (mean (std)) and ρEDV. Significant
improvement of including LA (*) or coordinates (+) is assessed for A1 and A2 sepa-
rately. Significant differences between A3 and A1 (SA+LA+c)(*) or A2 (SA+LA+c)(+)
are indicated on A3 results. Best results are shown in bold.

ED DSC [%] Precision [%] Sensitivity [%] ASSD [mm] ρEDV [%]

A1: SA 76.3 (19.1) 84.1 (19.7) 79.3 (24.9) 4.93 (3.23) 20.7

A1: SA+LA 86.0 (7.4) 91.9 (8.3) 82.7 (12.9) 3.41 (2.15)* 60.0

A1: SA+LA+c 91.7 (2.3)+ 88.3 (4.9)+ 95.6 (2.6)+ 1.84 (0.53)+ 95.3

A2: SA 80.0 (9.1) 75.6 (16.8) 88.9 (10.0) 5.77 (2.99) 46.0

A2: SA+LA 85.5 (7.6)* 84.0 (13.8)* 89.1 (7.7) 4.02 (2.99) 53.4

A2: SA+LA+c 91.1 (3.7)+ 88.5 (7.5) 94.5 (3.8)+ 1.96 (0.96)+ 88.5

A3: SA+LA 91.5 (2.6) 93.3 (3.9)*+ 90.2 (5.7)*+ 1.68 (0.45) 92.8
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Fig. 5. 3D representation of LV ground truth and CNN predictions. The distance of
predicted LV to ground truth LV is color coded. Blue and red represents respectively
undersegmentation and oversegmentation. (Color figure online)

Table 2. DSC, precision, sensitivity and ASSD (mean (std)) and correlation coefficient
for volumes and EF. Significant difference between training on ED and ES separately
(S) or together (T) is indicated with #. Best results are shown in bold.

DSC [%] Precision [%] Sensitivity [%] ASSD [mm] ρV [%] ρEF [%]

ED A1 S 91.7 (2.3) 88.3 (4.9) 95.6 (2.6) 1.84 (0.53) 95.3

T 93.0 (2.4)# 92.9 (4.9)# 93.5 (3.1)# 1.47 (0.61)# 95.0

A2 S 91.1 (3.7) 88.5 (7.5) 94.5 (3.8) 1.96 (0.96) 88.5

T 92.3 (2.3)# 91.4 (4.9)# 93.4 (4.1) 1.60 (0.47)# 93.1

ES A1 S 88.0 (7.0) 85.9 (10.9) 91.3 (5.4) 1.86 (1.41) 93.3 61.3

T 86.3 (8.6) 82.1 (12.2)# 92.5 (5.2) 2.30 (1.78)# 91.6 80.5

A2 S 86.2 (6.0) 82.7 (11.1) 91.3 (5.4) 2.15 (0.92) 91.3 53.5

T 81.1 (9.4)# 72.6 (13.0)# 93.5 (5.9) 3.39 (1.64)# 90.8 84.5

5 Discussion

We presented an approach to obtain a 3D segmentation of LV from 2D SA and
LA images. In our experiments, we show that introducing additional information
by incorporating LA images and image coordinates improves the segmentation
results. Another advantage of our network architecture is that it allows to input
an arbitrary number of 3D volumes. If, for example, a SA image set with more
slices is available than the network was trained on, no retraining is needed since
every volume uses the same filter weights in the first subnetwork (CNN1). This
network configuration allows in principle also to readily input other modalities
such as late gadolinium enhanced (LGE) images, provided that images of simi-
lar contrast and resolution are used during training. Additionally, we also show
that augmenting a CNN with image coordinates allows to substantially decrease
the required receptive field while maintaining similar segmentation results. It is
argued that the RF of A1 and A2 is on itself too small for this segmentation
task such that information about the position of each voxel in the image largely
improves the segmentation. Once the CNN has a sufficiently large RF, we don’t
expect that the inclusion of additional spatial context will further improve the
results which we noticed with initial experiments on A3 with image coordinate
input. A1 and A2 have respectively a 64% and 70% smaller receptive field com-
pared to A3 and have 55% and 47% less parameters to train (97,705 and 114,225
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vs 216,849). The image coordinates were introduced towards the end of the net-
work to not unnecessarily complicate the network and to avoid loss of coordinate
information due to premature mixing of coordinate data with the more complex
image data. Although a first experiment where the coordinates were introduced
at the start of the network confirms this hypothesis, finding the undeniably best
point for the introduction of image coordinates is a heuristic process and is out
of the scoop of this paper. In this study, we showed the feasibility of our 3D
segmentation approach on a clinical dataset of 20 patients using five-fold cross
validation. The results in Table 1 were thus obtained by training from scratch
on only 16 LV volumes, which is rather limited. To thoroughly compare the
presented method in terms of segmentation accuracy or EDV, ESV and EF
correlation with literature, evaluation on a public dataset would be beneficial.
Furthermore, the 3D ground truth LV used for training and validation of the
CNNs, was constructed from 2D contours. For a true 3D ground truth, a full 3D
scan will be needed. However, we put great effort in making our 3D model as
accurate as possible and visually verified model correspondence with SA and LA
images. The main limitation of our presented approach is that CNN training and
validation are performed on motion corrected datasets, while manual contours
are used for this motion correction itself. Future work is thus to fully automate
3D LV prediction without contours as input for breath hold correction. Possible
solutions are: (1) adapt breath hold correction initialization, (2) use a 2D CNN
for rough initial segmentation in every slice or (3) train the 3D CNN with motion
corrupted input data and a motion free output segmentation.

6 Conclusion

We presented an approach to obtain a 3D segmentation of LV from 2D SA and
LA images and showed that introducing additional information by incorporating
LA images and image coordinates improves the results.
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Abstract. This paper presents a method for frame-based finite element
models in order to develop fast personalised cardiac electromechanical
models. Its originality comes from the choice of the deformation model:
it relies on a reduced number of degrees of freedom represented by affine
transformations located at arbitrary control nodes over a tetrahedral
mesh. This is motivated by the fact that cardiac motion can be well rep-
resented by such poly-affine transformations. The shape functions use
then a geodesic distance over arbitrary Voronöı-like regions containing
the control nodes. The high order integration of elastic energy density
over the domain is performed at arbitrary integration points. This inte-
gration, which is associated to affine degrees of freedom, allows a lower
computational cost while preserving a good accuracy for simple geome-
tries. The method is validated on a cube under simple compression and
preliminary results on simplified cardiac geometries are presented, reduc-
ing by a factor 100 the number of degrees of freedom.

Keywords: Model reduction · Finite elements method · Affine
transformation

1 Introduction

Patient specific cardiac modelling is important for understanding pathologies,
planning therapy or rehearsing a surgery. In order to be used in routine by
clinicians, models have to be fast enough while providing an accurate solution to
given boundary and initial conditions. The finite element method is a classical
approach to solve physics-based deformation problems where the computational
domain depends on an underlying mesh, implying that the computation time
and the accuracy will depend on the mesh discretisation. Particle-based meshless
frameworks have recently been proposed [2,3] and have the advantage of being
less dependent from the topology. Particles, called control nodes, can be placed
arbitrarily. It has also been shown in the literature [5,7] that cardiac motion
can be well represented by mixing affine transformations located at the centre
of sub-regions of the American Heart Association (AHA) segments, see Fig. 1.
Furthermore, the decomposition into a mixture of affine transformations provides
clinically meaningful parameters related to cardiac regional strain.
c© Springer Nature Switzerland AG 2020
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The key idea of this paper is to combine these approaches to propose an
efficient reduced model. Compared to other reduction approaches using statis-
tical learning of a reduced basis, this approach builds upon prior physiological
knowledge of the cardiac function.

2 Frame-Based Deformation

We first define the degrees of freedom (DOFs), regions and integration points.
The internal forces resulting from the deformation of the solid are computed
based on the minimisation of an elastic energy density, itself resulting from the
relation between strain and stress.

Fig. 1. 29 AHA regions (left) and oriented control nodes (right)

Figure 2 presents the framework used in our simulation of elastic solids. The
different elements and the link between them through mappings will be described
in further sections.

Our scheme relies on a reduced number of affine frames as degrees of free-
dom acting on a tetrahedral mesh V. If N is the number of vertices of V, the
classical approach is to define a displacement field based on the displacement
of each vertex, which makes this field of dimension 3N . Yet the cardiac motion
usually does not require such a high number of DOFs since the motion of neigh-
bouring vertices is highly correlated. This is why we propose to discretise the
displacement field as a combination of n affine frame motions which makes it
a 12n dimensional space. Instead of the 3-coordinate vector displacement field
classically used, we propose to use a poly-affine displacement field for which at
each control node qi, 1 ≤ i ≤ n, the 12 DOFs are the 12 coefficients of the affine
transformation T(qi) = Ti ∈ M3×4 (3 coefficients for the 3D translation and 9
for the linear transformation combining rotation, scaling and shearing).

The whole computational domain Ω is partitioned into n non overlapping
regions Ωi, centred on qi, each region being defined as a set of tetrahedra.
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Fig. 2. Three levels continuum mechanics. The shape functions map the degrees of
freedom, supported by the control nodes, to the deformation gradients located in the
sample regions (grey square). Then, the material law computes the internal forces from
the stress and strain. These forces are finally mapped back to the degrees of freedom.
This process is repeated at each simulation step. Source: Flexible plugin documentation
(Sofa-framework).

At a point x in the domain, the local affine transformation T(x) is defined
as a weighted sum of DOFs Ti:

∀x ∈ Ω, T(x) =
n∑

i=1

φi(x)Ti

The weights φ(x) are the shape functions and represent the influence of the
control frames over the domain. Their definition depends on the mesh geodesic
signed distance Di(x) of a point x with respect to region i:

∀x ∈ Ω, ∀i ∈ �1, n�, Di(x)

⎧
⎨

⎩

= 0 on the border ofΩi

< 0 inside Ωi

> 0 outside Ωi

(a) Elements of the region (b) Geodesic distance (c) Shape function

Fig. 3. Example on a cardiac topology
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This distance is computed after solving an Eikonal problem with the fast
marching method [6]. It is normalised as D̄i(x) such that its minimum value is
−1 at its centre qi.

If σa is the sigmoid function, the shape function φi is defined as:

φi(x) = σa

[D̄i(x)
]
, σa(x) =

1
1 + eax

The parameter a controls the overlap of the kernel function over neighbouring
regions. We observed better results with a = 2.25, thus φi(qi) = 0.90. It has been
noticed that a big overlap (a small) leads to a smooth solution while a small one
leads to more independent regions, in both cases introducing unrealistic values
in the solution. An example with a = 2.25 is presented in Fig. 3(c).

3 Numerical Integration Method

The elastic energy of a deformable solid is the work done by the elastic forces
between the undeformed and deformed positions, integrated across the whole
domain. The numerical integration of the elastic forces is classically performed
at the tetrahedron level in regular finite element methods. In our approach, we
partition the domain Ω into M integration regions V m consisting of a set of
tetrahedra. In the spirit of our affine frame control nodes, we use a high order
integration rule called elastons introduced in [4] and generalised in [2]. The
classical integration approach assumes a constant force within each integration
region V m. The elaston framework relies on a first order Taylor expansion of
the field to be integrated in order to reach a higher level of accuracy. More
precisely, a field f(x) is locally approximated as f(x) ≈ F p̃ where F is a vector
containing the value of the field and its derivatives at the centre of V m, and p̃ is
the polynomial basis of order α in dimension d, for example [1, x, y, z] at order
1, in 3D. Finally, the integration is performed as:

∫

Ω

f(x) dx =
∑

m

∫

V m

f(xm) dx =
∑

m

Fm

∫

V m

p̃ dx

In our approach, the strain and stress are approximated by a first order
polynomial function in the vicinity of each integration sample which is estimated
thanks to a Generalised Moving Least Square (GMLS) interpolation scheme [4].

4 Kinematic Mappings

The mappings are templated functions allowing to project forces, displacement
and their derivatives between the affine frame DOFs and the tetrahedral mesh.
We present the well known linear blend skinning and the GMLS mapping, very
suitable with our first order framework.
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4.1 Position and Force Mappings

The mesh vertices are displaced based on a linear blending of the affine frame
DOFs using the shape functions defined in Sect. 2.

Let x̄j be the rest position of the jth mesh vertex. Its deformed position xj

is computed as a function of the affine transformations Ti:

∀j ∈ �1, N�, xj =
n∑

i=1

φi(x̄j)Ti

[
x̄j

1

]

Conversely, to compute the resulting force Fi applied to the ith frame DOF,
we gather all the forces fj applied to the vertices with the weighted sum:

∀i ∈ �1, n�, Fi =
N∑

j=1

φi (x̄j) fj

4.2 GMLS Mapping

The GMLS method was shown [1,4] to be an efficient method to approximate
globally a function from sparse discrete values with a minimisation problem. This
problem seeks new shape functions Ni(x) representing accurately the function
over the whole domain.

T(x) =
n∑

i=1

TiNi(x)

In our framework, this mapping is used to compute the deformation gradients
from vertices position at integration points. See [4] for an analytical formulation
of Ni(x).

5 Results

The proposed method was tested on different geometries, increasing in com-
plexity. The simulation was performed on an Intel(R) Core(TM) i7-8650U CPU
@ 1.90 GHz laptop, using the SOFA framework. The method widely uses the
Flexible plugin approach of Fig. 2.

5.1 Cube Under Simple Compression

First, we simulate the compression of a cube [0, 1]3 m3 discretised with 420 points
and 1402 tetrahedra. Forces of 2000N are applied to the bottom and upper faces
while other faces are free. The Young modulus is E = 15MPa and the Poisson
ratio is ν = 0.49.

At each simulation, regions are randomly generated by picking seeds among
the tetrahedra, then extended according to a classic Voronöı sampling followed
by a Lloyd relaxation.
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Fig. 4. Thickness of the cube under compression. Top left figure corresponds to the
deformed cube with 9 regions and 200 integration points. The yellow crosses represent
the deformation gradients at these points. Frames indicate the position of the control
nodes. (Color figure online)

The integration samples are generated with the same process within the
regions. Their number is proportional to the volume of the zone. To evaluate the
simulation results, we use a full order finite element model referred as FEM in
which the control nodes are placed at the mesh vertices and the DOFs are the
3 components of the displacement vector. Barycentric shape functions are used
within the elements and the integration is performed within the tetrahedra.

Table 1 shows the computation time increasing accordingly to the number
of affine control nodes and integration points (from 0.088 to 2.669 s). Choosing
suitable numbers of DOFs and integration points will consist in a trade off
between speed and accuracy, depending on the complexity of the deformation
to approximate. When selecting as many integration points as the number of
tetrahedra, the simulation time of the proposed method is similar to the FEM.

The thickness of the cube under compression is studied for one, five and nine
control nodes. The relative error compared to FEM is listed in Table 1. The
compression, consisting in a simple scaling, is exactly represented by one affine
transformation. In this case, one integration sample is sufficient to represent
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Table 1. Cube computation time and relative error comparison. The error uncertainty
represents the tilting of the upper and bottom faces. FEM computation time is 2.41 s.

Gauss Points \Zones 1 5 9

200 Time (s) 0.088 0.575 1.157

Error (%) 0.0 3.796 ± 9.864 4.511 ± 4.469

500 Time (s) 0.116 0.891 1.823

Error (%) 0.0 1.142 ± 1.297 2.192 ± 3.987

800 Time (s) 0.144 1.125 2.263

Error (%) 0.0 0.312 ± 1.228 0.646 ± 1.608

1100 Time (s) 0.173 1.409 2.669

Error (%) 0.0 0.104 ± 1.203 0.115 ± 1.064

1400 Time (s) 0.204 1.293 2.402

Error (%) 0.0 0.081 ± 0.272 0.081 ± 0.380

the deformation. The results for one region validate the simulation in this sense
but are not physically interesting. The other experiments show that a denser
sampling will lead to a more accurate solution. This is expected since the defor-
mations are captured in more local areas.

Since the regions are randomly generated, their size and position can vary,
leading to areas less represented in integration points. We observed that the
stiffness is higher in the well sampled areas. Such a heterogeneity causes the
upper and bottom faces to tilt. This phenomena can be observed for a high
number of regions and low number of integration points, corresponding to a
high uncertainty in Table 1. For example, the top left figure in Fig. 4 shows the
random sampling of integration points. At the bottom of the cube, the lack in
integration points introduces errors in the deformations leading to the bending
of the cube edge.

5.2 Inflation of a Truncated Ellipsoid

The second experiment deals with Dirichlet boundary conditions on an axially
symmetric shape. We studied the deformations of a truncated ellipsoid discre-
tised with 1801 points and 6181 tetrahedra. The regions are linearly generated.
One fixed-size region is placed at the apex. A pressure force of 1000 N is applied
on the interior triangles along the normal surface. The following results are
obtained with 4000 integration points, E = 1GPa and ν = 0.49.

The top mesh vertices are fixed with a projective constraint. To do so, we
modify the control node location and shape function of all regions sharing at
least one mesh vertex with the boundary. For these regions, the affine control
node is arbitrary placed on the boundary. The shape function is equal to 1 on the
boundary vertices and then classically decreases on the remaining vertices. We
finally project the constraint on the previously selected DOFs, thus constraining
the mesh vertices on the boundary.
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Fig. 5. Left: ellipsoid at rest (blue with edges) and deformed with full (orange wire-
frame) and reduced (plain brown) models. Right: position of the points on the external
surface in the plane

(
x+, 0, z

)
. nz corresponds to the number of zones on the vertical

axis and nt along the circumference of the ellipsoid (plus one zone for the apex). The
number of DOFs of each model is indicated in parenthesis. (Color figure online)

The orange curve on Fig. 5 represents the converged FEM deformation. Our
method tends to converge toward the FEM one when increasing the number of
control nodes. These results are two to three times faster than the full order
method.

6 Discussion

On the ellipsoid case, we can notice that the external surface position is directly
dependent on the number of regions.

Furthermore, it is good to notice that with the projective constraint, the slope
of the curve near the Dirichlet boundary condition is well approximated. Another
solution is to apply very stiff forces on the top nodes as boundary condition.
However, this leads to stiffer top regions. In this case, the forces are mapped
to the control nodes, thus influencing other vertices contained in these regions.
This problem does not appear in the classical FEM since the shape functions
are defined at the element level. With the projective constraint applied to the
control nodes on the boundary and smoothly decreasing shape functions, this
problem is tackled.
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Finally, we observed small bumps on the deformed mesh, more visible for a
large number of regions and probably due to the shape functions definition. The
inflation seems more pronounced at the center of the regions than the reference
one as it is visible on the ellipsoid Fig. 5. This phenomenon is reduced when
a, the parameter of the sigmoid shape function, is high but leads to a smaller
deformation.

7 Conclusion

The method presented in this paper shows promising advances in reducing the
degrees of freedom for cardiac models, with an impact on computation time.
Deformations on simple geometries are well approached with suitable parame-
ters and validate the method. More complex geometries, such as the truncated
ellipsoid, which is a simplified model of a ventricle, are also well approached
by poly-affine deformations providing a sufficient number of DOFs. To be effi-
cient, this hybrid method still requires a fine mesh for the offline computation
of the geodesic distance as well as the regions volume. With circular shapes, the
required number of control nodes to obtain an accurate solution is still high to
efficiently use the large regions defined by the AHA segments. Finally, simple
boundary conditions are well handled providing an extra care on the control
nodes location and the mapping between the mesh vertices and the basis of
affine degrees of freedom.
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Abstract. Cardiac anatomy and function are interrelated in many ways,
and these relations can be affected by multiple pathologies. In particu-
lar, this applies to ventricular shape and mechanical deformation. We
propose a machine learning approach to capture these interactions by
using a conditional Generative Adversarial Network (cGAN) to pre-
dict cardiac deformation from individual Cardiac Magnetic Resonance
(CMR) frames, learning a deterministic mapping between end-diastolic
(ED) to end-systolic (ES) CMR short-axis frames. We validate the pre-
dicted images by quantifying the difference with real images using mean
squared error (MSE) and structural similarity index (SSIM), as well as
the Dice coefficient between their respective endo- and epicardial seg-
mentations, obtained with an additional U-Net. We evaluate the ability
of the network to learn “healthy” deformations by training it on ∼33,500
image pairs from ∼12,000 subjects, and testing on a separate test set of
∼4,500 image pairs from the UK Biobank study. Mean MSE, SSIM and
Dice scores were 0.0026 ± 0.0013, 0.89 ± 0.032 and 0.89 ± 0.059 respec-
tively. We subsequently re-trained the network on specific patient group
data, showing that the network is capable of extracting physiologically
meaningful differences between patient populations suggesting promising
applications on pathological data.

Keywords: cGANs · Image transformation · Cardiac contraction ·
UK Biobank

1 Introduction

Cardiovascular diseases account for 31% of annual fatalities worldwide [5], mak-
ing them the most common cause of death. Reasons for this include the poor
understanding of many such diseases, which frequently results in the ineffective
treatment of patients and sub-optimal clinical outcomes. In particular, the rela-
tionship between disease phenotype and clinical outcome is often poorly under-
stood. This is a particular challenge for pathologies such as hypertrophic car-
diomyopathy, which present with high phenotype heterogeneity, with a wide
range of structural cardiac abnormalities such as myocardial wall thickening
c© Springer Nature Switzerland AG 2020
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or aortic outflow obstructions. Structural changes such as these can affect the
mechanical function of the heart, i.e. cardiac contraction, in a variety of ways.
However, the exact relationships are not well understood. Since it is largely car-
diac function that determines clinical outcomes, a better understanding of the
relationship between cardiac structure and function could lead to more effective
risk estimation, diagnosis and treatment.

Whilst structure-function relationships have been studied, this has mostly
occurred in isolated approaches typically examining specific global parameters
and clinical biomarkers (e.g. cardiac wall thickness/ventricular volumes vs ejec-
tion fraction (EF)). Although such biomarkers are clinically established, there
is agreement that they are often too coarse for accurate clinical prognosis.

To better understand these relationships and to subsequently improve out-
come predictions and treatments, we believe that a more comprehensive app-
roach is necessary which could be achieved using generative methods. We have
developed an approach based on conditional Generative Adversarial Networks
(cGANs). cGANs, as shown by Isola et al. [6], can be used for image trans-
formation and are therefore suitable for transforming one frame of the cardiac
sequence into another, thereby modelling the cardiac sequence and the functional
behaviour of the heart. Here, we are primarily interested in the transformation of
end-diastolic (ED) to end-systolic (ES) frames, which represent the two extreme
states in the cardiac cycle and contain a large part of the functional information.

It is therefore the hypothesis of this paper that by training a cGAN to trans-
form ED to ES frames we can model healthy cardiac motion. Moreover, we
hypothesise that our network is capable of capturing cardiac motion that is
specific to individual patient groups. In order to validate these hypotheses we
conduct two stages of experiments. Firstly, the network is trained on a data set of
healthy volunteers representative of a heterogeneous population as given in the
UKBiobank study (https://www.ukbiobank.ac.uk/). The network is evaluated
based on how accurately the ES frame predictions match the acquired images
for a test set using image and segmentation similarity metrics (MSE, SSIM &
Dice). Our assumption is that an accurate prediction of ES frames indicates
that the cGAN has captured healthy cardiac motion. Secondly, the network is
re-trained on data from specific patient groups and tested on separate test sets
from the same and different groups. The assumption is that the cGAN will per-
form sub-optimally when tested on the latter groups, thereby indicating that
it has captured features of the cardiac structure-function relationships that are
specific to certain patient groups.

2 Related Work

cGANs form an extension to the original GAN network as proposed by Good-
fellow et al. [4] in 2014, which functions on the principle of adversarial learning
whereby two networks compete in a minimax two-player game. In [10] this prin-
ciple has been extended by adding conditional inputs to the GAN structure,
allowing for outputs to be generated which are conditioned on input labels.

https://www.ukbiobank.ac.uk/
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This has been taken further in a method proposed in [2], which allows for pro-
gressively increased information capacity of the latent space and more distinct
modes of data variation. Isola et al. [6] have shown that cGANs can be adapted
for multi-modal image transformation tasks whereby the input condition is the
image itself. This paper is primarily based on their method. Further genera-
tive methods include Variational Autoencoders (VAEs) [7] and their conditional
extension (cVAE) [12]. These, however, have been shown to struggle with image
blurriness, due to injected noise in the re-sampling process and the fact that
cVAE loss, in contrast to adversarial GAN loss, does not penalise unrealistic
images. GANs/cGANs have been used in medical image analysis for a variety
of tasks including reconstruction and registration. Specifically in cardiac imag-
ing, GANs have been used for tasks such as image synthesis, for example CMR
image synthesis using a Cycle-GAN based on CT scans [3]. Work on image seg-
mentation in cardiology using GANs include quantification of myocardial infarc-
tion by Xu et al. [13]. GANs have also been used in identifying cardiac images
with incomplete information using SCGANs by Zhang et al. [14]. Generative
models for modelling cardiac motion have been proposed by Krebs et al. [8,9]
who have investigated probabilistic approaches of modelling cardiac deformation
using generative methods including cVAEs.

3 Methods

3.1 Conditional GANs

The cGAN used in this paper is based on the method proposed by Isola et al.
[6] Two networks, namely a generator G and a discriminator D, compete in a
minimax two-player game, causing them to learn in an adversarial fashion. The
generator, a U-Net (Fig. 1), takes a grayscale ED image as an input and generates
a “fake” transformed ES image as its output. The discriminator, which is a
PatchGAN with the same structure as the encoder part of G with an additional
softmax layer at the end, takes both fake and real ES images and learns to
discriminate between them in a supervised manner. The discriminator loss given
in Eq. 1 is used to train both D and G using mini-batch gradient descent and
the Adam optimizer.

G = arg min
G

max
D

LcGAN (G,D) + λLL1(G), (1)

where

LcGAN (G,D) = Ex,y[log D(x, y)] + Ex,z[log(1 − D(x,G(x, z))] (2)

In addition to the LcGAN , which is a conditioned version of the GAN loss,
Eq. 1 also incorporates an L1 reconstruction loss which forces the transformed
image to be close to the ground truth in an L1 sense. Hyperparameters and
general methodology are based on the Isola method. However, we have adapted
the number of layers and filters in G and D following empirical cross-validation.
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We validate the performance of the cGAN at accurately predicting ES frames
by computing the Mean Squared Error (MSE) and Structural Similarity Index
(SSIM) between ES predictions and ground truth images. These metrics are
computed over the entire image.

Fig. 1. cGAN U-Net generator architecture; numbers indicate number of filters × image
dimensions for each layer. The discriminator architecture is equivalent to the encoding
part of the generator, followed by a softmax layer at the end.

3.2 Segmentation U-Net

As seen in the workflow diagram of Fig. 2, following the ED to ES image trans-
formation, the ES prediction and ground truth images are fed into the U-Net
segmentation network created by Bai et al. [1], who trained it on data from the
UKBiobank to segment short-axis frames into a four-label segmentation out-
put, namely left ventricle (LV) cavity, LV myocardium, right ventricle (RV) and
background. ED frames are pre-processed in order to fit the orientation and size
of the segmentation network input. The binary LV cavity segmentations from
predicted and ground truth ES images are compared using Dice coefficients.

4 Experiments

4.1 Healthy Cardiac Motion Prediction

The data for all experiments was obtained from the UK Biobank study. The
initial experiment was conducted using the data of a heterogeneous group of
healthy volunteers. Short-axis mid-axial cardiac sequences were selected from
∼12,000 patients from which ED and ES frames were extracted. The images
were subsequently cropped with a 128 × 128 pixel window centred on the LV
endocardium, using as guidance rough LV automated segmentations included in
UKBiobank. Images intensities were normalised to [0–1]. The image pairs were
split into independent training and test sets, with no inter-subject overlap, with
∼33,500 ED-ES image pairs for training and a further ∼4,500 for testing. No
image augmentation was applied, given the size of the training set. The cGAN
was trained on a 5 GB 1060 Nvidia GPU for 200 epochs (∼8 h training time).
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Fig. 2. Workflow diagram: ED ground truth (GT) frames are fed into cGAN generator
to produce ES predictions from which MSE and SSIM are computed; predictions and
ES GTs are segmented by U-Net from which Dice and AEF are computed.

4.2 Subject Group Re-training

Following the evaluation of the ES frame prediction for a general population of
healthy volunteers, the network was re-trained with data from specific subject
groups, differentiated by gender, age and Body Mass Index (BMI), also drawn
from the UK Biobank study. For gender, the cGAN was separately re-trained
on ∼27,500 ED-ES image pairs from female healthy volunteers and tested on
separate data sets of female and male healthy volunteers with ∼4,500 image
pairs each. For age, the network was re-trained on ∼5,300 ED-ES image pairs
from “young” healthy volunteers (ages 40–45) and tested on separate data sets
of young and old (ages 65–70) healthy volunteers with ∼700 image pairs each.
Lastly, the network was trained on ∼6,000 ED-ES image pairs from volunteers
with low BMIs (BMI < 22) and tested on separate sets of subjects with low and
high BMIs (BMI > 38) with ∼800 image pairs each.

5 Results

5.1 cGAN ES Frame Predictions

Example results of cGAN ES frame predictions when trained on a general healthy
population can be seen in Fig. 4. Mean MSE and SSIM scores between the ES
ground truth and ES prediction were 0.0026 ± 0.0013 and 0.89 ± 0.032 respec-
tively. The mean Dice score between the LV myocardial segmentations of ES
ground truth and predictions for the general population was 0.89 ± 0.059 (Fig. 3).

5.2 Subject Group Differences

The analysed subject groups were: female/male, young/old and low/high BMI.
For each pair the network has been trained on the former group and tested
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Fig. 3. cGAN prediction of ES frame for Patient A, including segmentations and dif-
ference between ES seg and ES pred.seg.; MSE, SSIM and Dice scores of [0.0035, 0.89
& 0.91] respectively.

Fig. 4. cGAN prediction of ES frame for Patient B, including segmentations and dif-
ference between ES seg and ES pred.seg.; MSE, SSIM and Dice scores of [0.0047, 0.85
& 0.94] respectively.

on separate validation sets from both groups. MSE and SSIM values have been
computed using the ES gold standard images and ES predictions for each patient
group. Subsequently, all images have been segmented and Dice coefficients of
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the segmentations have been computed. Using the LV cavity segmentations,
area ejection fractions (AEF) were computed according to AEF = (EDA −
ESA)/EDA, where EDA is the end-diastolic area and ESA the end-systolic
area. The mean percentage differences between the AEF of ground truth images
and predictions were computed, as seen in Table 1. The SSIM and Dice scores
of the individual patient groups have been plotted on normalised histograms
to display frequency distributions, as seen in Fig. 5, which also shows p-values
between the distributions calculated using the Kolmogorov-Smirnov test.

Table 1. MSE (in 10−3s), SSIM, Dice scores and AEF differences for patient groups.
Note that lower MSE and AEF, and higher SSIM and Dice, indicate better predictions.

Subject group MSE score SSIM score Dice score AEF diff.

A: Female 2.4 ± 1.2 0.90 ± 0.027 0.88 ± 0.058 14.9 ± 12.7

B: Male 3.2 ± 1.6 0.87 ± 0.038 0.87 ± 0.056 17.1 ± 20.3

A: Young 2.8 ± 1.2 0.88 ± 0.033 0.89 ± 0.048 14.8 ± 12.9

B: Old 3.3 ± 1.6 0.88 ± 0.037 0.87 ± 0.072 18.7 ± 19.0

A: Low BMI 2.7 ± 1.4 0.90 ± 0.032 0.88 ± 0.071 15.1 ± 13.7

B: High BMI 3.8 ± 1.8 0.86 ± 0.039 0.85 ± 0.092 22.6 ± 18.5

Fig. 5. Subject group histograms; Y-axis = frequency; X-axis = Metric; Group A in
green, Group B in blue (Color figure online)

6 Discussion

The prediction of ES frames, shown in Fig. 4, can be evaluated qualitatively and
quantitatively. Visual inspection shows that the cGAN is capable of predicting
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ES frames with a high degree of accuracy resulting in remarkably realistic pre-
dictions. The cGAN can accurately predict LV myocardial wall movements and
ES shapes, showing clear delineations of myocardial contours. RV contraction
is also captured. It needs to be emphasised, however, that the cGAN does not
explicitly capture motion in the sense of predicting motion vector fields, but
rather predicts cardiac states as a result of cardiac motion. Quantitative evalua-
tion confirms the quality of cGAN performance with low MSE scores and SSIM
scores close to 1. Yet, since these metrics take into account differences across the
entire image, local myocardial deformations might be masked by larger feature
changes located outside the heart. Hence Dice coefficients based on LV cavity
segmentations were used to compare LV shapes. The segmentations showed high
agreement between the ground truth and predicted ES frames, which confirms
that the cGAN has captured the structure-function interactions in a diverse
population of healthy volunteers, thereby validating our first hypothesis.

Nevertheless some limitations can be appreciated, particularly on the RV
shape which occasionally lacks crisp delineation of its contours. The edges of the
LV myocardium also experience occasional blurriness. The intensities of pixels
within the myocardium are sometimes not as homogeneous as in the ground
truth. Furthermore, some images display difficulties with capturing papillary
muscles or valve movements. Figure 5 and Table 1, together with their p-values,
show that when trained on a specific sub-group, the cGAN performs significantly
better when tested on separate subjects from that group, as compared to sub-
jects not from that group. Whilst MSE/SSIM/Dice/AEF difference scores are
significantly better for trained populations across all tested groups, the level of
difference varies between patient group categories. For gender, statistically sig-
nificant differences can predominately be observed in MSE/SSIM values. This
could potentially indicate that image differences other than heart deformation
between male and female subjects are responsible for the performance difference.
For age groups, the opposite is true. Whilst MSE/SSIM values are more similar,
Dice scores differ significantly, indicating significant differences in mechanical
function between volunteers of different age groups. In the case of BMI, signifi-
cant differences can be observed in both Dice and MSE/SSIM scores.

The difference in the metrics clearly suggests that the network has learned
what “normal deformation” during the cardiac cycle looks like, because when
subjected to a different population, where a physiological difference might be
expected [11], the ES predictions are not as accurate. Whilst this performance
may be expected, it has to be emphasised that both test groups were drawn from
the same study and only varied in the test variable (age, gender and BMI respec-
tively) whilst the distribution of the all other variables was consistent across the
groups. Hence a difference in performance could potentially not be present and
there requires experimental evaluation. The positive outcome of this experiment
validates the hypothesis that cGANs can be used to learn structure-function
interactions unique to specific subject groups, and suggests that when using
this method for pathological data, we might be able to detect differences due
to pathological cardiac function. Furthermore, by analysing the regions with
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greatest differences between prediction and ground truth, further anatomical
and physiological understanding of structure-function interactions and clinical
outcomes might be derived. The technique could potentially be improved by
training the cGAN directly on segmented ED-ES image pairs. Advantages of
this approach include the focus on the relevant area around the heart and the
reduction of ambiguity in fuzzy areas, however, disadvantages are that the seg-
mentations themselves have to be very precise to begin with and that organ
texture for example in the form of intensity variations within the myocardium
are not taken into account.

Acknowledgements. This research has been conducted using the UK Biobank
Resource under Application Number 40161. This work was supported by funding
from the Engineering and Physical Sciences Research Council (EPSRC) and Medical
Research Council (MRC) [grant number EP/L016052/1].

References

1. Bai, W., et al.: Automated cardiovascular magnetic resonance image analysis with
fully convolutional networks. J. Cardiovasc. Magn. Reson. 20(1), 65 (2018)

2. Burgess, C.P., et al.: Understanding disentangling in β-vae. arXiv preprint.
arXiv:1804.03599 (2018)

3. Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A.: Adversarial image syn-
thesis for unpaired multi-modal cardiac data. In: Tsaftaris, S.A., Gooya, A., Frangi,
A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 3–13. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68127-6 1

4. Goodfellow, I., et L.: Generative adversarial nets. In: Advances in Neural Informa-
tion Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014)

5. Institute for Health Metrics and Evaluation (IHME): Global burden of disease
collaborative network. Global Burden of Disease Study 2017 (GBD 2017) Results
(2018)

6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (July 2017)

7. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint.
arXiv:1312.6114 (2013)

8. Krebs, J., Mansi, T., Ayache, N., Delingette, H.: Probabilistic motion modeling
from medical image sequences: application to cardiac cine-MRI. arXiv preprint.
arXiv:1907.13524 (2019)
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Abstract. Cardiac shape and deformation are two relevant descriptors
for the characterization of cardiovascular diseases. It is also known that
strong interactions exist between them depending on the disease. In clin-
ical routine, these high dimensional descriptors are reduced to scalar
values (ventricular ejection fraction, volumes, global strains...), leading
to a substantial loss of information. Methods exist to better integrate
these high-dimensional data by reducing the dimension and mixing het-
erogeneous descriptors. Nevertheless, they usually do not consider the
interactions between the descriptors. In this paper, we propose to apply
dimensionality reduction on high dimensional cardiac shape and defor-
mation descriptors and take into account their interactions. We investi-
gated two unsupervised linear approaches, an individual analysis of each
feature (Principal Component Analysis), and a joint analysis of both
features (Partial Least Squares) and related their output to the main
characteristics of the studied pathology. We experimented both methods
on right ventricular meshes from a population of 254 cases tracked along
the cycle (154 with pulmonary hypertension, 100 controls). Despite sim-
ilarities in the output space obtained by the two methods, substantial
differences are observed in the reconstructed shape and deformation pat-
terns along the principal modes of variation, in particular in regions of
interest for the studied disease.

1 Introduction

Clinical routine mainly uses simplified measurements of the cardiac function to
characterize cardiovascular diseases, among which scalars such as ejection frac-
tion or volumes, and myocardial strain. These scalars summarize high dimen-
sional information about the cardiac shape and its deformation, and may there-
fore represent a substantial loss of information for complex pathologies.

Dimensionality Reduction Methods (DRM) have been used in cardiac imag-
ing applications to better consider high-dimensional descriptors encoding shape
c© Springer Nature Switzerland AG 2020
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and deformation, either individually [1–4] or jointly [5]. Very recently, [6] went
beyond these techniques and used auto-encoders on dynamic cardiac shapes to
compute a latent low-dimensional space optimized for survival prediction.

However, cardiac shape and deformation undergo strong interactions depend-
ing on the disease. For example, in the case of pulmonary hypertension, a pres-
sure overload forces the Right Ventricle (RV) to adapt by increasing its con-
tractility to maintain a normal RV function. After a certain amount of time,
the contractility can no longer increase and a progressive RV shape dilation and
motion abnormalities may appear [7].

Methods that mix several high-dimensional heterogeneous descriptors all at
once do not take into account their interactions and redundancy, which may limit
the analysis. In methods reported in [8–10], an affinity matrix is established as
composed of blocks that represent either the affinity between samples according
to a single descriptor (diagonal blocks), or the interactions between two descrip-
tors (extra diagonal blocks). Because of the nonlinearity of the methods and
the unique output space returned, the reconstruction to the input space is not
obvious. Other works proposed to link two learnt representations using addi-
tional constraints that express the hypothesized interactions between descrip-
tors [11,12]. These methods first determine the low-dimensional representations
independently and then consider interactions, which can substantially alter the
initially learnt representations. In [13], linear techniques consider interactions
while learning the low-dimensional representation, demonstrated for linking two
different imaging modalities from the same heart. Nonetheless, this application
concerned two descriptors that theoretically represent very similar information,
while we target the study of shape and deformation descriptors, with known but
only partial interactions.

In this paper, we explore the interactions between two partially interacting
high-dimensional descriptors (cardiac shape and deformation), with unsuper-
vised linear DRM either applied to descriptors independently or to both descrip-
tors jointly. In the perspective of risk stratification from the low-dimensional out-
put space, we notably evaluate how critical DRM can be for the assessment of
the main local characteristics of a given disease: pulmonary hypertension, looked
at through 3D RV echocardiographic data. In particular, we consider deforma-
tion patterns or shape as whole entities and not at each location independently
from the others [14–16].

2 Methods

2.1 Data and Pre-processing

We processed a database of right ventricular meshes tracked on 3D echocardio-
graphic images along the cardiac cycle, obtained from the commercial software
4D-RV Function 2.0 (TomTec Imaging Systems GmbH, Unterschleißheim, Ger-
many). The meshes have 822 cells and 1587 points. The database is composed
of 254 cases with 100 controls and 154 patients with pulmonary hypertension.
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Point-to-point correspondences already exist between the meshes from dif-
ferent subjects, which allows straightforward comparisons within a population.
Nonetheless, to reduce the bias due to different spatial heart positions, we
realigned the meshes rigidly with Procrustes alignment (limited to global trans-
lations and rotations) [17]. This also provides an average shape for the controls
population, used as template for display and analysis.

Then, two descriptors representing shape and deformation respectively were
computed. The first one, called area strain (Fig. 1a), is the relative area change
(in %) of each mesh cell between End-Diastole (ED) and End-Systole (ES). It
summarizes the deformation of the RV over the systole. The second one char-
acterizes shape at ED, through a distance vector (Fig. 1b) computed at each
mesh point between a given case and the average shape of the controls, used as
reference for normality.

These two features are high-dimensional: 822 × 1 for area strain (a scalar at
each mesh point) and 822× 3 for the distance vector (a 3D vector at each mesh
point).

(a) Deformation feature (b) Shape feature

Fig. 1. (a) Area strain pattern at end-systole for a healthy case expressed in % (b)
Distance vector (mm) colored by magnitude for the same healthy case. The blue mesh
stands for the reference mesh used for the computations. (Color figure online)

2.2 Dimensionality Reduction

DRM take as input high-dimensional data and return a low-dimensional space
encoding the main characteristics of the input space. Here, we focus on the
following two linear approaches. Principal Component Analysis (PCA) looks for
the main directions of variance in the data. This can be written as the following
eigenvalues problem, for a single descriptor x:

Cxw = λw, (1)

where Cx is the covariance matrix of the studied descriptor, w and λ are the
eigenvectors and the eigenvalues of Cx, respectively.



122 M. Di Folco et al.

The second considered method is the two-block Partial Least Square (PLS)
regression [18], which mutually maximizes the covariance between the set of
projections for two features, which amounts at solving the following eigenvalues
problem:

CxyCyxwx = λ2
PLSwx, (2a)

wy =
1

λPLS
wy, (2b)

where Cxy and Cyx are the cross-covariance matrices of the descriptors x and y,
and wx and λPLS are the eigenvectors and eigenvalues of the matrix CxyCyx.
Note that with PLS, we obtain at once two output spaces, one for each descriptor.

Due to the linearity of both methods, the inverse transformation (from the
output space to the input space) is known. Therefore, the reconstruction of
meaningful points from the output space is straightforward in particular along
the first components. Note that for the shape descriptors, the reconstruction
from the output space provides a vector field encoding distances from the tem-
plate shape: a final step is needed for visualization and analysis purposes, which
consists in reconstructing the corresponding shape by applying this vector field
to the template shape.

3 Experiments and Results

The following section reports on the application of the DRM to the entire pop-
ulation (patients and controls). Considering patients and controls at the same
time allows to study the continuum that exists from normality to the most
severe grades of pulmonary hypertension, in line with what has recently been
recommended for cardiac applications [19].

3.1 Output Spaces

We first compare the two methodologies (individual analysis of each features
using PCA and joint analysis using PLS) based on their output spaces. Each
analysis returns two output spaces (one per descriptor, Fig. 2).

A comparison between the obtained components by each strategy reveals
that the first and second components are highly correlated (shape: r2 = 0.99
first component, r2 = −0.59 second component; deformation: r2 = 0.98 first
component, r2 = −0.69 second component).

Nevertheless, another way of comparing the output spaces reveals differences
unseen with the previous assessment. We evaluated the correlation between the
components of the two output spaces, for each strategy (Table 1). With PCA, the
first components of a given descriptor are linked with all the other components
of the other descriptor. This is different with PLS, where each component of
a given descriptor is only linked to the corresponding component of the other
descriptor (low extra-diagonal coefficients in the table). This comes from the
fact that PLS maximizes the covariance of both spaces at the same time, so the
corresponding components are linked together but not with the others. This link
is the main difference between the output spaces of both analysis.
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Fig. 2. Output spaces for each descriptor, from the two different strategies. Crosses
indicate the samples at [−2,−1, 0, +1, +2] σ used to reconstruct the modes of variations
examined in Sect. 3.2.

Table 1. Correlation coefficient (r2) between the components of the two output spaces.

(a) Individual analysis (PCA)

Deformation

1st 2nd 3rd

Shape 1st −0.39 0.19 −0.28

2nd −0.27 0.023 −0.13

3rd −5e−3 4e−3 −0.065

(b) Joint analysis (PLS)

Deformation

1st 2nd 3rd

Shape 1st 0.51 1e−17 1.5e−16

2nd −4.3e−18 0.48 3.8e−16

3rd 1e−17 2.4e−16 0.37
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3.2 Principal Modes of Variations

The first mode of variations for the shape descriptor quantifies the size of the
right ventricle (Fig. 3). The differences plotted on the right side of the figure
correspond to the point-to-point distance between the PCA and PLS shapes at
+2σ. Samples around +2σ (+2 standard deviations) lie in the side of the out-
put space where pulmonary hypertension patients predominate, and have bigger
shapes (characteristic RV dilatation in pulmonary hypertension). The second
mode of variations encodes the intra-valve distance. The meshes obtained from
the two DRM substantially differ close to the apex (near 10 mm for a ventricle
around 80 mm long). The third mode encodes changes in the curvature of the
septum, and corresponds to reported changes in this zone for severe pulmonary
hypertension cases (“septal bowing”, which means that the septum bows itself
and becomes almost straight [20]).

Note that the differences between meshes at −2σ is equal to the differences
at +2σ due to the linear dimensionality reduction and reconstruction methods,
if the differences are unsigned (absolute differences). If signed, differences at −2σ
are the exact opposite of differences at +2σ.

We should also keep in mind that the commercial software that tracks the
RV along the cycle uses a surface model adjusted to the image data [21], which
may reduce the amount of modes of variation in the mesh data we study.

Fig. 3. Comparison of the first three modes of variations for the shape descriptor for
both dimensionality reduction strategies.

The first mode of variations for area strain mostly quantifies the global ampli-
tude of deformation (increase of the absolute strain values along the component).
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Lower strain is observed for samples at +2σ, which corresponds to the lower
deformation observed in pulmonary hypertension cases [14] (Fig. 4). Differences
between the two DRM (difference between the two area strain pattern at +2σ)
stay under 10% except close to the pulmonary valve (top left when facing the
septum). The second mode encodes more local information and in particular
the location of the maximal strain on the free wall (moving from left to right)
and on the septum (close to the valve, positive to negative strain). Up to 30%
differences are observed in some zones of the ventricle, although these do not
correspond to characteristics zones reported for this disease.

Fig. 4. Comparison of the first three modes of variations for the strain descriptor for
both dimensionality reduction strategies. We show both septal and free wall views for
better visualization.

4 Conclusion

In this paper, we explored ways to analyse cardiac shape and deformation, which
are two high-dimensional descriptors partially interacting. We aimed at obtain-
ing a relevant low-dimensional space that can be used later on for risk stratifica-
tion. To take into account the interaction between both descriptors, we assessed
two unsupervised linear dimensionality reduction strategies that consider the
descriptors either independently or jointly. Similarities exist between the out-
puts of the two strategies (correlated first dimensions, similar patterns encoded
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along the first dimensions). Nevertheless, some substantial differences have been
identified on zones of the right ventricle that convey relevant information for the
study of pulmonary hypertension.

Recent work explored supervised techniques to represent shape data against
survival in the context of pulmonary hypertension [6]. We preferred unsupervised
learning for our analysis, as it allows identifying hidden data structures that can
be used for risk stratification (for example, identifying clusters of patients at
higher risk, or situating a new patient’s risk against known cases) without being
conditioned by clinical labels, which may be arguable in some cases [5].

Nonetheless, PLS may be restrictive in the sense that it does not allow con-
trolling the weight given to the interactions between descriptors, which may limit
the analysis on partially interacting heterogeneous descriptors such as cardiac
shape and deformation. Further work will also extend the analysis to non-linear
methods, which may better preserve the structure of the data spaces associated
to each descriptor. It may also include recent developments for transporting
spatiotemporal shape data among a population through diffeomorphic trans-
formations [22], which explicitly aims at preserving the structure of the space
encoding cardiac meshes.
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Abstract. Magnetic Resonance (MR) protocols use several sequences
to evaluate pathology and organ status. Yet, despite recent advances,
the analysis of each sequence’s images (modality hereafter) is treated in
isolation. We propose a method suitable for multimodal and multi-input
learning and analysis, that disentangles anatomical and imaging factors,
and combines anatomical content across the modalities to extract more
accurate segmentation masks. Mis-registrations between the inputs are
handled with a Spatial Transformer Network, which non-linearly aligns
the (now intensity-invariant) anatomical factors. We demonstrate appli-
cations in Late Gadolinium Enhanced (LGE) and cine MRI segmenta-
tion. We show that multi-input outperforms single-input models, and
that we can train a (semi-supervised) model with few (or no) annota-
tions for one of the modalities. Code is available at https://github.com/
agis85/multimodal segmentation.

Keywords: Multimodal segmentation · Disentanglement ·
Representation learning · Cardiac MR

1 Introduction

MR is non-invasive and offers high soft-tissue contrast suitable for numerous
applications. Multiple sequences are used in a single MR session, producing
images of different contrast (modalities), that are characterised by disparities
in overall image quality and signal-to-noise ratio, but also provide complemen-
tary information of anatomy and function. Developing methods to automatically
segment tissue from such multimodal data remains important: for example in
cardiac MR, cine and LGE needs to be jointly assessed to characterise myocar-
dial infarction [11], since cine contains high anatomical information, whereas
LGE focuses on nulling myocardial signal to detect hyper-intense infarct zones.
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To this date, processing of such multimodal data treats each modality in
isolation. Yet, jointly considering different modalities should be beneficial to
obtain information from another modality that better captures anatomy (see
Fig. 1 for a motivating example). Herein, we offer a step change: we propose
a model designed to overcome challenges presented by multimodal analysis in
cardiac MR solving the core problems of representation learning, cross-modal
registration, information fusion and segmentation all in a joint end-to-end fashion
in a semi-supervised setting, without requiring exhaustive annotations.

Deep learning has been successfully used for automating segmentation, how-
ever, most methods in the heart focus on single modalities. This is mainly
because of the high variability observed in signal intensity patterns across differ-
ent MR modality data and organ characteristics. While, in the brain, multimodal
images are commonly used together [6], in the heart, multi-input processing and
multimodal learning are substantially challenging due to inherent spatiotem-
poral and signal intensity differences (between modalities). These compromise
learning direct pixel-to-pixel correspondences.

Fig. 1. Cine-MR and LGE images with corresponding anatomical factors. Common and
unique information is marked with green and red boxes. Low tissue contrast (myocar-
dial nulling) in LGE leads to poor separation in distinct channels between myocardium
and surrounding tissues (e.g. ventricle). This can be corrected using the cine anatomy.
(Color figure online)

We address the above difficulties, for the first time, with disentangled rep-
resentations, i.e. mappings from multimodal images to corresponding anatom-
ical and imaging factors. Anatomical factors contain structure (multi-channel
binary maps); imaging factors contain input signal intensity characteristics. A
Spatial Transformer Network (STN) [9] co-registers the corresponding (intensity-
invariant) anatomical factors, avoiding the co-registration in image space (diffi-
cult in cardiac and other soft-tissue organs). We then combine (fuse) the aligned
anatomical factors to find complementary features useful for segmentation.

Contributions: (1) Multimodal learning based on disentangled representa-
tions, that combines information present in different modalities without the
explicit requirement for registered image pairs. (2) An application in cardiac
segmentation, in which we improve on the segmentation accuracy of single-input
(unimodal) models. (3) Semi-supervised learning: when few (or no) labels are
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available, we transfer information from the other modality and use reconstruc-
tion costs.

2 Related Work

Disentangled Representations: Decomposing the feature space into spatial
and style-like factors has shown success in computer vision [7,13], and recently
in semi-supervised cardiac segmentation [2] and multimodal registration [17]. In
medical imaging, disentangled representations have more stringent requirements,
since the anatomical factors must have semantic and quantifiable meaning (e.g.
be useful for segmentation). Our proposed method thus differs significantly from
related multimodal methods; it strives for anatomical factors to be semantic and
geometrically consistent across modalities, as well as maintain the image dimen-
sions to allow a direct mapping to segmentations. These properties are essential
for anatomical registration and fusion, as well as semi-supervised learning.

Multiple Inputs in Cardiac: Level sets have been applied for cine-MR and
LGE segmentation given shape constraints, generated by convolutional networks
[14]. In [8], unannotated data were translated into a modality with annota-
tions using “style transfer”. However, this relies on learning good pixel-wise
transformations, which is not always possible [23]. Also the lack of an explicit
fusion mechanism may be problematic when images exhibit low contrast-to-noise
between different organs. Non-deep learning approaches include multimodal
atlases [25], whereas simultaneous segmentation and registration of multimodal
cardiac MR images has been proposed with Multivariate Mixture Models [24].

Multimodal Learning: In medical imaging, e.g. brain MRI, most multimodal
approaches assume perfect alignment between the inputs. Many methods have
been proposed for synthesis [10], and segmentation, for example with concate-
nated multi-channel inputs [5,6]. To aid the learning process, in [20] they use
cross-modal convolutions and convolutional LSTMs, whereas in [4] they propose
densely connected streams (one per modality) to fuse high and low level features.

One approach to handle unregistered multimodal data is to treat them sep-
arately and share parts of single-input models. An empirical study of different
sharing options [22] concluded that a common feature space connected with indi-
vidual encoders and decoders has the best performance. Small mis-registrations
have been previously handled with an affine STN [10]. Our method is able to
fuse multimodal information, and differently from [10], uses a non-linear STN.

3 Proposed Approach

Multimodal Spatial Decomposition Network (MMSDNet) consists of multiple
components (see Fig. 2), described in Sects. 3.1 and 3.2. At inference time, MMS-
DNet can take as input a 2D image (of either modality) or two images (of differ-
ent modalities) simultaneously. One encoder per modality extracts anatomical
factors, which are used for segmentation or input reconstruction. If multimodal
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image pairs are available, anatomical factors are aligned by a STN, and combined
to produce a fused anatomy, which is used for the final segmentation mask.

Fig. 2. MMSDNet components. Top left: anatomy encoders (one per modality) extract
anatomical factors from images. Top right: misalignments are corrected with a STN;
aligned factors are then fused to produce one factor. Bottom left: imaging factors
are extracted by a modality encoder. Bottom right: the anatomical factor produces a
segmentation; anatomical and imaging factors together reconstruct an image.

3.1 Model

Encoding: Assuming two input modalities, and image samples xi (of height
H and width W ), where i ∈ {1, 2}, the anatomy factor is derived from an
encoder fanatomy with parameters θi: si = fanatomy(xi|θi). Anatomy encoders
are fully convolutional networks (architecture is shown in Fig. 3), which output
si ∈ {0, 1}H×W×8, a one-hot encoding (in the channel dimension), 8-channel
binary feature map of the same spatial dimension as the input (each channel rep-
resents a different anatomical area). These two restrictions encourage a semantic
representation, since each tissue will be present only in one channel. They also
disentangle anatomy from imaging, since a binary image does not encode any
modality information in gray levels.

Alignment: The two anatomical factors are aligned using a Spatial Trans-
former Network (STN) [9] (architecture is shown in Fig. 3), which, through non-
rigid registration, generates two deformed anatomies sdeformed

1 = stn(s1, s2) and
sdeformed
2 = stn(s2, s1). The STN learns a matrix of 5 × 5 control points that

define the displacement field, which registers the second to the first anatomi-
cal factor. Thin plate spline [1] is applied to interpolate the surface that passes
through each control point.

Fusion: The deformed anatomy sdeformed
1 is an approximation of the anatomy

s2 corresponding to image x2. Thus, it can be fused with s2 to produce a single
representation of x2 that preserves the encoded multimodal anatomical features.
We require the union of the aligned features, and thus use the pixel-wise max:
sfused1 = max(sdeformed

1 , s2). Accordingly, sfused2 is also generated.

Segmentation: The previous steps produce six anatomical factors, namely s1,
s2, sdeformed

1 , sdeformed
2 , sfused1 and sfused2 , which are used as input (one at a

time) to a convolutional network h(.) (architecture is shown in Fig. 3) to obtain
the final segmentation masks. Depending on the inference task, we can get a
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Fig. 3. Architectures of the MMSDNet components. Top left: the anatomy encoder fol-
lows a U-Net [18] architecture and maps an image to an anatomical factor s. Downsam-
pling and upsampling are performed with max pooling and nearest neighbour interpo-
lation respectively. Bottom left: the segmentation network is a small fully convolutional
network that given s, produces a segmentation mask. Top right: the spatial transformer
network consists of three convolutional and one fully connected layers and predicts the
interpolation parameters used to register s1 to s2. Middle right: the modality encoder is
a convolutional network that predicts the modality factor z. Bottom right: the decoder
is a convolutional network that modulates an anatomy factor s with a modality factor
z to generate an image.

segmentation using the appropriate anatomy, as also demonstrated in Sect. 4. If
only xi is available, the segmentation is obtained from si, whereas if both x1, x2

are available the fused anatomy sfusedi produces the most accurate result.

3.2 Additional Networks and Losses

Our end-to-end strategy enables the model to learn from multimodal data to
separate anatomy from imaging characteristics, whilst doing good segmenta-
tion, registration and reconstruction. Critically, reconstruction enables semi-
supervised learning, aided via adversarial objectives on segmentation masks.
Below we detail the breakdown of the overall training loss, L = λ1LKL+λ2Lseg+
λ3Ladv + λ4Lrec + λ5Lzrec . (The λ’s are set to 0.1, 10, 1, 10, 1 respectively.)

LKL and Lzrec : Given an image xi, from modality i, then a corresponding
anatomy s can either be the encoded si = fanatomy(xi|θi), or the deformed
sdeformed
j and fused anatomies sfusedj if xi has a paired slice xj in modality j.

Key is the disentanglement of the latent space into anatomical si and imag-
ing factors zi (8-dimensional vector), which requires a modality encoder,
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zi = fmodality(xi, si), and a decoder. The decoder reconstructs the input,
x̂i = g(s, zi), using FiLM [16], by modulating s with scaling and offset param-
eters β and γ, that are learned from zi. The network architectures of both the
modality encoder and the decoder are shown in Fig. 3. The posterior distribu-
tion given the inputs q(z|x, s) is modelled after the Variational Autoencoder
[12] to follow a Gaussian prior p(z) = N (0, 1), by minimising the KL-divergence
between q and p: LKL = DKL(q(z|x, s)‖p(z)). The representation disentan-
glement is further encouraged by a z−reconstruction cost using the �1 loss:
Lzrec = ‖z − fmodality(x̂i, fanatomy(x̂i|θi))‖1, where x̂i is produced by a z that is
sampled from the Gaussian prior.

Lrec: Image reconstruction between the input and synthetic image is trained with
Lrec =

∑
s∈{si,sdeformed

j ,sfused
j } ‖xi − g(s, zi)‖1. Essential for disentanglement is

the cross-reconstruction between modalities by properly mixing the anatomical
and modality factors. In addition, the reconstruction error is back-propagated
to the STN and provides the learning signal for aligning anatomical factors.

Lseg: When segmentation masks mi, corresponding to the input xi, are avail-
able, then a supervised cost is defined using differentiable Dice between real and
predicted masks: Lseg =

∑
s∈{si,sdeformed

j ,sfused
j } Dice(mi, h(s)).

Ladv: Finally, an unsupervised cost with least-squares adversarial loss [15] is
defined, Ladv =

∑
s∈{si,sdeformed

j ,sfused
j }[DM (h(s))2 + (DM (m) − 1)2], using a

discriminator over masks DM . Here, the encoder fanatomy and segmentor h are
trained to minimise Ladv adversarially against DM which maximises it.

Fig. 4. Two segmentation examples from LGE+cine dataset. Each row shows a
paired cine-MR and LGE with their respective ground truth masks (mcine and
mLGE); the MMSDNet predicted mask (mfused); and finally, the absolute difference
of mLGE with mcine and mfused respectively. Row-wise: Dice(mcine,mLGE)=0.51,
Dice(mfused,mLGE)=0.81, Dice(mcine,mLGE)=0.77, Dice(mfused,mLGE)=0.89.

4 Experiments and Discussion

Data: We evaluate MMSDNet in LGE segmentation using a private dataset
acquired at Edinburgh Imaging Facility QMRI with image pairs of 28 patients
from cine-MR and LGE [19]. Myocardial contours are provided for the end
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diastolic frame of the cine-MR and the LGE data. The spatial resolution is
1.562 mm2 per pixel, and the slice thickness is 9 mm. The dataset contains 358
expertly paired cine-MR and LGE images and their corresponding segmentation
masks. The image resolution is 208 × 208 pixels.

Baselines: A lower-bound is obtained from the Dice between the real masks of
both modalities, referred as “copy masks”. This is repeated after affine image reg-
istration using mutual information, followed by symmetric diffeomorphic using
cross-correlation [21]. We also consider uni- and multi-modal single-input U-
Nets by mixing training data. The uni-modal UNet is trained only with the
LGE images (UNet-single), whereas the multi-modal UNet is trained with both
LGE and cine images (UNet-both). Finally, we compare with DualStream [22]
setup of two encoders and decoders, the most recent deep learning method for
unpaired multimodal segmentation.

Training and Evaluation: We train, using data augmentations of rotation,
translation and scaling in Keras [3], with the Adam optimiser and a learning rate
of 0.0001. Results are produced by held-out test sets on 3-fold cross-validation,
where the training, validation and test sets are split using 70%, 15% and 15% of
the dataset subjects, respectively.

4.1 Multi-input vs. Single-input Segmentation

Initially, we test whether multiple inputs benefit LGE segmentation, compared to
single-input models. Two experimental scenarios are considered: LGE masks are
available during training or not. Table 1 compares the performance of MMSDNet
with the baselines and presents the mean test Dice score of Left Ventricle (LV)
and myocardium (MYO) segmentation, as well as their average.

Given fully annotated LGE data (100% column of Table 1), the highest Dice
is achieved when using multiple inputs at inference time (MMSDNet-multi),
confirming knowledge transfer from source to target modality. The effect of mul-
timodal registration is qualitatively demonstrated in Fig. 4, which shows the
improvement achieved by MMSDNet compared with the cine segmentation.
MMSDNet, which is trained with multiple inputs, outperforms a single-input
U-Net, even when at inference time the paired cine-MR image is not available
(referred to as MMSDNet-single in Table 1). Most importantly, when LGE masks
are not available during training, but only images (0% column of Table 1), the
U-Net and DualStream baselines fail to achieve accurate LGE segmentation
since they are only trained on cine-MR data. MMSDNet, with the use of its
unsupervised objectives, can still learn multimodal features and outperforms
the registration baseline. The achieved Dice scores are comparable with the ones
reported in related works [14,24].

4.2 Segmentation with a Varying Number of Annotations

Here we vary the amount of LGE annotations during training to demonstrate
the unique capabilities of semi-supervised learning in our approach. In this
experiment a fixed number of annotated cine-MR images is used, that is equal
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Table 1. Average myocardium and left ventricle test Dice results when training with a
varying amount of masks. Best results are underlined; * denotes statistical significance
at 0.05 compared to the best baseline. Number of cine-MR masks is always at 100%.

LGE masks: 100% 50% 25% 0%

MYO LV avg MYO LV avg MYO LV avg MYO LV avg

Copy masks 5005 8106 676 5005 8106 6706 5005 8106 676 5005 8106 6706

Registration 5108 8007 6807 5108 8007 6807 5108 8007 6807 5108 8007 6807

UNet-single 6607 8703 7804 6411 8313 7612 5110 7515 6614 - - -

UNet-both 6902 8902 8103 6410 8408 7608 5609 7912 7110 2717 4427 3823

DualStream 6501 8603 8006 6405 8404 7603 4808 6917 6113 2717 4427 3823

MMSDNet-single 6902 8604 8004 6408 8110 7508 6107 8406 7506 5607 8304 7206

MMSDNet-multi 6903 8902 8102 6504 8504 7704 63∗
03 87∗

04 77∗
03 59∗

05 84∗
03 74∗

04

Fig. 5. LGE segmentations when training with varying amounts of LGE annotations.

Fig. 6. LGE segmentations when training with varying amounts of LGE annotations.
Observe that the baselines did not produce any segmentation mask when trained only
with cine-MR data, i.e. for the 0% case.
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to the number of LGE images at 100%. Qualitative testing set examples in Fig. 5
and Fig. 6, show the predictions of baseline and MMSDNet models with varying
amount of training data. Observe how our approach offers more consistency.

Table 1 reinforces these observations quantitatively on segmentation accuracy
for MMSDNet and various baselines. When the number of images is high (above
50%), all methods perform on par. However, as they decrease, the performance
of the baselines also decreases. MMSDNet though is consistent and maintains
a good performance even when training with no LGE masks. The performance
of MMSDNet-multi is always higher than MMSDNet-single, suggesting that our
method can leverage information from cine-MR to improve segmentation.

5 Conclusion

We demonstrated multimodal segmentation using input images of different
modalities. We devise representation disentanglement to extract the individ-
ual anatomical factors, and then use these factors to fuse common and unique
information. Our results show that accurate segmentation can be achieved when
combining multimodal images, even when no annotations of the target modality
are available (during training). We used two MR modalities with expert pairing
of the inputs. Our methodology can be extended for additional modalities, by
adding new encoders and by accordingly learning a pairing mechanism. Both are
under investigation, along with further applications in other organs.

Acknowledgements. This work was supported by UK EPSRC (EP/P022928/1) and
US National Institutes of Health (1R01HL136578-01), and used resources from the
Edinburgh Compute and Data Facility. S.A. Tsaftaris acknowledges the Royal Academy
of Engineering and the Research Chairs and Senior Research Fellowships scheme.

References

1. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of defor-
mations. IEEE PAMI 11(6), 567–585 (1989)

2. Chartsias, A., et al.: Disentangled representation learning in cardiac image analysis.
Med. Image Anal. 58, 101535 (2019)

3. Chollet, F.: Keras (2015). https://keras.io
4. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ayed, I.B.:

HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmen-
tation. In: IEEE TMI (2018)

5. Fidon, L., et al.: Scalable multimodal convolutional networks for brain tumour
segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins,
D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 285–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66179-7 33

6. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med.
Image Anal. 35, 18–31 (2017)

7. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-
image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01219-9 11

https://keras.io
https://doi.org/10.1007/978-3-319-66179-7_33
https://doi.org/10.1007/978-3-030-01219-9_11
https://doi.org/10.1007/978-3-030-01219-9_11


Multimodal Cardiac Segmentation 137

8. Huo, Y., et al.: SynSeg-Net: synthetic segmentation without target modality
ground truth. In: IEEE TMI (2018)

9. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: NIPS, pp. 2017–2025 (2015)

10. Joyce, T., Chartsias, A., Tsaftaris, S.A.: Robust multi-modal MR image synthesis.
In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne,
S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 347–355. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66179-7 40

11. Kim, H.W., Farzaneh-Far, A., Kim, R.J.: Cardiovascular magnetic resonance in
patients with myocardial infarction: current and emerging applications. JACC
55(1), 1–16 (2009)

12. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)
13. Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-

image translation via disentangled representations. In: Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5 3

14. Liu, J., Xie, H., Zhang, S., Gu, L.: Multi-sequence myocardium segmentation with
cross-constrained shape and neural network-based initialization. CMIG 71, 49–57
(2019)

15. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: On the effectiveness
of least squares generative adversarial networks. In: IEEE PAMI (2019)

16. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: visual rea-
soning with a general conditioning layer. In: Thirty-Second AAAI Conference on
Artificial Intelligence (2018)

17. Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised
deformable registration for multi-modal images via disentangled representations.
In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS,
vol. 11492, pp. 249–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-20351-1 19

18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

19. Stirrat, C.G., et al.: Ferumoxytol-enhanced magnetic resonance imaging assessing
inflammation after myocardial infarction. Heart 103(19), 1528–1535 (2017)

20. Tseng, K.-L., Lin, Y.-L., Hsu, W., Huang, C.-Y.: Joint sequence learning and cross-
modality convolution for 3D biomedical segmentation. In: CVPR, pp. 6393–6400
(2017)

21. Tustison, N.J., Yang, Y., Salerno, M.: Advanced normalization tools for cardiac
motion correction. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant,
M., Young, A. (eds.) STACOM 2014. LNCS, vol. 8896, pp. 3–12. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-14678-2 1

22. Valindria, V., et al.: Multi-modal learning from unpaired images: application to
multi-organ segmentation in CT and MRI. In: WACV (2018)

23. Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medi-
cal volumes with cycle-and shape-consistency generative adversarial network. In:
CVPR, pp. 9242–9251 (2018)

24. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining
multi-source images. In: IEEE PAMI (2019)

25. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart
segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

https://doi.org/10.1007/978-3-319-66179-7_40
https://doi.org/10.1007/978-3-030-01246-5_3
https://doi.org/10.1007/978-3-030-20351-1_19
https://doi.org/10.1007/978-3-030-20351-1_19
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-14678-2_1


DeepLA: Automated Segmentation
of Left Atrium from Interventional 3D
Rotational Angiography Using CNN

Kobe Bamps1(B), Stijn De Buck2,3,4(B), Jeroen Bertels4(B), Rik Willems3(B),
Christophe Garweg3(B), Peter Haemers3(B), and Joris Ector1,3(B)

1 Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
kobe.bamps@kuleuven.be

2 Radiology UZ Leuven, Leuven, Belgium
stijn.debuck@uzleuven.be

3 Cardiology UZ Leuven, Leuven, Belgium
{rik.willems,christophe.garweg,peter.haeners,joris.ector}@uzleuven.be

4 Department of Electrical Engineering, KU Leuven, Leuven, Belgium
jeroen.bertels@kuleuven.be

Abstract. Accurate segmentation of the shape of the left atrium (LA)
is important for treatment of atrial fibrillation (AF) by catheter ablation.
Interventional 3D rotational angiography (3DRA) can be used to obtain
3D images during the intervention. Low dose 3DRA poses segmentation
challenges due to high image noise. There is a significant amount of
research focusing on the automatic segmentation from 3DRA images, all
based on an active shape or atlas-based approaches.

We present an algorithm based on a 3D deep convolutional neural
network (CNN) for automated segmentation of 3DRA images to predict
the shape of the LA. The CNN is based on the U-Net architecture and
consists of an encoder and a decoder part. It is designed to be trained
end-to-end from scratch on interactive semi-automated 3DRA images,
which include the body of the LA and the proximal pulmonary veins
up to the first branching vessel.

The CNN is trained and validated using 5-fold cross-validation on
20 3DRA images by computing the Dice score (0.959 ± 0.015), recall
(0.962 ± 0.026), precision (0.957 ± 0.021) and mean surface distance
(0.716 ± 0.276 mm). We further validated the algorithm on an additional
data set of 5 images. The algorithm achieved a Dice score and mean
surface distance of 0.937 ± 0.016 and 1.500 ± 0.368 respectively.

Keywords: Segmentation · Atrial fibrillation · Left atrium · CNNs

1 Introduction

Atrial fibrillation (AF) is one of the most common cardiac arrhythmias [13].
The irregular heart beats originate from abnormal electrical discharges in the
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LA. AF is treated by performing catheter ablation to isolate the pulmonary veins
from the atrial body [1]. The ablation procedure is typically guided by X-ray
fluoroscopy and electroanatomical mapping (EAM). Although a 3D surface of
the LA can be generated by a roving catheter. A lot of centers use an image-based
anatomical representation because of its superior anatomical detail. This image-
based representation can be obtained from CT, MRI or interventional 3DRA and
can be integrated in the EAM system. Furthermore, it improves patient outcome
and reduces radiation dose from fluoroscopy [8]. Thus, a correct segmentation of
the LA is important for the success of the ablation procedure.

The use of preoperative CT or MRI has already been proven useful to facil-
itate the guidance during interventions [4]. However, preoperative CT and MRI
imaging is often performed days or weeks before the actual intervention and pos-
sibly under different cardiac loading conditions. As a consequence, the anatomi-
cal structures of the patient can differ between the preoperative acquisition and
the intervention. Besides resulting in a more complicated workflow, CT or MRI
may be contra-indicated and often associated with an additional financial cost
[12]. Interventional 3DRA can address some of these shortcomings.

Previously, automated LA segmentation methods were primarily based on
model-based approaches. These approaches make use of a prior shape of the
LA and intensity values of a stack of known LA 3DRA images. Model-based
methods have been implemented for CT and MR [2,11]. The success of these
methods relies on both the excellent image quality of CT and MRI acquisitions
and sufficiently large data sets. However, model-based methods can be less robust
on low dose 3DRA due to the limited image quality in combination with a rather
small data set [11]. The limited image quality is caused by the variable contrast
density, catheter streak artefacts, low X-ray dose and possibly a reduced frame
rate [3]. Recently, CNNs were used to segment the LA from MRI [7]. They
proposed a multi-view 2D CNN with an adaptive fusion strategy to segment the
pulmonary veins (PVs) and LA. However, automated LA segmentation based
on CNN is nonexistent for 3DRA.

In this paper, we present DeepLA, an automated LA segmentation method
for low dose 3DRA. Our method is based on a modified version of the U-Net
architecture [10]. In order to train the CNN, 3D patches were sampled from
low dose 3DRA images. Furthermore, we implemented a preprocessing step.
It reduces redundant information to improve the learning process. The overall
segmentation process for a given 3DRA takes on average 19.6 ± 5.2 s on a GPU
(Geforce GTX 1080 Ti) at test time.

2 Method

The method is composed of two parts: preprocessing and training. First, we
discuss the preprocessing step. This is important to optimize the training process.
Then, we elucidate the architecture and training process.
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2.1 Preprocessing

Preprocessing aims at making the data more meaningful to the CNN. This is
accomplished by removing redundant information and ensuring that the intensity
value range matches across images of the entire data set. The latter avoids an
initial bias in the CNN at test time. The preprocessing is realized in two steps.
First, we construct a LA region that consists of all voxels with an intensity value
higher than zero. The region outside the LA is set to zero. In addition, the gaps
in the LA region are filled with morphological closing operations. Secondly, we
normalize every patient’s image by subtracting its mean and dividing by its
standard deviation.

2.2 Network Architecture

In this paper, we propose a modified 3D U-Net architecture. The network consists
of a contracting path and an expanding path. The contracting path contains
successive convolutions and pooling layers to extract semantic features at the
expense of spatial information. Two max pooling layers are used to reduce the
dimensions of the image, first by 3 × 3 × 3 and then by 3 × 3 × 1. Before every
max-pooling layer, we find two successive convolutional layers with a filter size of
3×3×3 and 3×3×1, respectively. In addition, we used batch normalization and
a Parametric Rectified Linear Unit (PReLU) activation after every convolution.
The PReLU activation function is a function with a learnable parameter. It
follows: f(x) = α ∗ x for x < 0 , f(x) = x for x >= 0, where α is learned [5].

However, in order to perform a correct segmentation, both spatial and seman-
tic information is needed. The U-Net recovers the spatial information by shortcut
connections from the feature maps in the contracting path of the same resolution.
First the feature maps of the expanding path are cropped and then concatenated
with the feature maps in the expanding path of the same resolution. Further-
more, the semantic information is passed on from bottom to top by up-sampling.
The convolutional layers in the expanding path have the same configurations as
in the contracting path. Due to the valid padding of the CNNs, the output size
(38 × 38 × 13) of the U-Net is smaller than the input. In order to allow for
sharper boundaries between voxels, the output of the U-Net is connected to two
successive convolutional layers with 32 filters of size 1 × 1 × 1. In front of each
of the final convolutional layers, we added dropout with a probability of 0.25
to improve the generalization of the network. The final layer of the network
includes a convolution with a filter size of 1 and a sigmoid activation function
for generating a probability score for each voxel. Eventually, the LA shapes are
produced by thresholding the probabilities of the output at 0.5. The algorithm is
implemented in Keras (Python). A summary of the CNN is presented in Fig. 1.

2.3 Training Procedure

The training procedure is an important step to learn the right features in order
to perform a correct segmentation of the LA. The whole training procedure was



Automated Segmentation of Left Atrium 141

Fig. 1. Details of the U-Net architecture. Conv* refers to a convolutional, a batch
normalization and PReLU activation layer.

designed using the DeepVoxNet [9]. This is a framework that enables a fast imple-
mentation of neural networks on medical images. DeepVoxNet provides compo-
nents to handle the memory requirements, the various image modalities and data
augmentation. The proposed network architecture is trained with input-patches
of size 142 × 142 × 41 and corresponding output-patches of size 38 × 38 × 13.
These patches are sampled via a class weighted sampler to compensate the class
imbalance between the background and foreground. We define one epoch as 128
batches, with one batch consisting of 8 samples. The training is terminated early
if there is no improvement during 70 epochs in the validation Dice coefficient.
The weights of the network are optimized by the ADAM optimizer with an initial
learning rate of 10−3. The learning rate is divided by a factor of 2 when the val-
idation Dice coefficient did not improved over the last 20 epochs. Furthermore,
the network is regularized by L1 and L2 weight delay, both with a weight of
10−5. Lastly, we use the binary cross-entropy loss function to train our network.

3 Validation

The 3DRA images were obtained through a floor-mounted Siemens Axiom Artis
dBC biplane fluoroscopy system (Siemens). During joint rapid atrial and ventric-
ular pacing at 250 ms, contrast was injected directly into the left atrium. Iomeron
350 contrast (Bracco) was diluted up to 50% using normal saline. Ninety millil-
itres of diluted contrast was injected at a rate of 20 mL/s, starting 4 s before the
actual start of the C-arm rotation. The X-ray tube rotates around the patient
over a course of 200◦. During the rotation, fluoroscopic images were sequentially
acquired with target detector entrance doses of 0.24 µGy/frame. In total, 62
frames were acquired. These 62 frames were used to reconstruct a 3D volume.
This 3D volume is also called a 3DRA image. Further information about the
image acquisition can be found in [3].

Twenty subjects were interactively semi-automated annotated by an expert.
The annotated images include the body of the LA and the proximal pulmonary
veins up to the first branching vessel. The 20 3DRA images were randomly
divided into 5 subsets of 4 images. The learning process was repeated for 5 times
while each time a different validation set of 4 images was used. In addition,
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Table 1. Mean, median and standard deviation of the metrics for LA segmentation

Mean STD

DICE 0.959 0.015
sDICE 0.932 0.020
PRE 0.957 0.021
REC 0.962 0.026
MSD 0.716 0.276
HD 11.088 4.770
HD95 2.451 1.686

(a) Validation set

Mean STD

DICE 0.937 0.016
sDICE 0.915 0.024
PRE 0.961 0.035
REC 0.917 0.038
MSD 1.500 0.368
HD 32.390 13.390
HD95 6.888 2.749

(b) Test set

Fig. 2. Box plots for Dice, soft Dice, precision, recall and mean-surface-distance in the
validation set

Table 2. Clinical usefulness

Case 1 2 3 4 5 Mean

Overall segmentation of the LA and PVs 4 4 4 4 4 4.0

Ridge between the LPVs and LAA 3 3 4 4 5 3.8

Position of the Mitral valve 4 3 4 4 5 4.0

Number of PVs correctly segmented 4 3 4 4 4 3.8

5 unseen 3DRA images were independently collected. These 5 3DRA images were
semi-automated annotated by a different reviewer. This resulted in slightly differ-
ent ground truth masks compared to the other 20 3DRA images. The automatic
LA segmentation on the test data were generated by the model that yielded the
highest Dice score on the validation set. For evaluation of the proposed method,
we computed the Dice coefficient (DICE), soft Dice coefficient (sDICE), recall
(REC) and precision (PRE) for both validation and test set. In addition, we
assessed the mean-surface-distance (MSD) maximal Hausdorff distance (HD)
and 95 percentile Hausdorff distance (HD95).
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Axial Coronal Sagittal

(a)

Axial Coronal Sagittal

(b)

Fig. 3. Visualization of segmentation in validation (a) and test set (b). The first row
of each table presents 3DRA slices from axial, coronal and sagittal views. The white
contour is the ground truth. The red contour was generated by the proposed method.
The second row visualizes the difference between surface of the ground truth and the
surface of the output. (Color figure online)
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Using 5-fold cross-validation on the training and validation set, we obtained
a DICE (0.959 ± 0.015) and MSD (0.716 ± 0.276 mm). Similar, in almost all
evaluation metrics in the test set, the algorithm achieved promising performance
(DICE 0.937 ± 0.016 and MSD 1.500 ± 0.368 mm). More details about the per-
formance and the distributions of the evaluation metrics are presented in Table 1
and Fig. 2. Furthermore, an additional test is performed to assess the clinical use-
fulness. The generated shapes in the test set were reviewed by a physician. Every
shape is scored on the base of three criteria, namely the overall segmentation of
the LA and PVs, the ridge between the Left PVs (LPVs) and the Left Atrial
Appendage (LAA) and the position of the Mitral valve. The score per criterion
ranges from 0 (very poor) to 5 (excellent). Moreover, the number of correctly
segmented PV ostia were counted. The results of the review are presented in
Table 2. It can be noticed that on average the proposed method scored a 3.9 out
of 5 on the three criteria. In order to perform this qualitative evaluation, we used
surface rendering of the predictions in the test set and compared them with the
ground truth (Fig. 3).

Figure 3 shows an example of a segmentation in the validation and test set.
The first row of the figure shows 3DRA slices from axial, coronal and sagittal
views. The white contour represents the contour of the ground truth and the red
contour was generated by the proposed method. The second row visualizes the
difference between the surface of the ground truth and the surface of the pre-
dicted segmentation. The differences between the ground truth and the predicted
segmentation of the proposed method is around 1.00 mm.

4 Conclusion and Discussion

Accurate knowledge of the shape of the LA is important for treatment of AF by
cardiac ablation. In this paper we present DeepLA, an automated LA segmen-
tation tool for 3DRA images. DeepLA was trained and optimized on 20 3DRA
images by 5-fold cross-validation. Additionally, DeepLA is tested on 5 3DRA
images and assessed by a physician. To the best of our knowledge, we are first to
present results of a CNN based approach to segment the LA from 3DRA images.

We were able to achieve promising performance in Dice coefficient and MSD
on the training and test set through a deep learning algorithm. Despite over-
all promising results on the validation and test sets, some local discrepancies
between the ground truth and predictions can be found in the test set as reflected
by the MSD values (Table 1b). This can possibly be explained by the differences
in annotations of the ground truth in the training and test set (Fig. 3b). In terms
of clinical usefulness, the segmentation of the LA scores well (Table 2).

We cannot directly compare our approach with those reported in the lit-
erature due to the difference in imaging modalities used and datasets. In [7],
the LA is segmented from cardiac MRI data sets provided by the STACOM
2013 challenge through a 2D multi-view CNN. Their method achieved a Dice
score of 0.905. Furthermore, Zheng et. al [14] and Manzke et. al [6] proposed a
model-based method to segment LA from 3DRA images and obtained a mean
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segmentation error of 1.30 and 1.50 mm respectively. Even though they obtained
a slightly smaller mean segmentation error than our method, DeepLA is trained
with 3DRA images which were acquired with a lower radiation dose and conse-
quently higher image noise.

We can conclude that we are able to successfully segment the LA and PVs as
a whole. Our method achieves a mean accuracy of 1.5 ± 0.368 mm with a mean
processing time of 19.6 ± 5.2 s. Hence, it may be easily implemented for online
use during PVI, given an ablation lesion size ≥ 5 mm.
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Abstract. Right heart catheterisation is considered as the gold stan-
dard for the assessment of patients with suspected pulmonary hyper-
tension. It provides clinicians with meaningful data, such as pulmonary
capillary wedge pressure and pulmonary vascular resistance, however its
usage is limited due to its invasive nature. Non-invasive alternatives,
like Doppler echocardiography could present insightful measurements of
right heart but lack detailed information related to pulmonary vascu-
lature. In order to explore non-invasive means, we studied a dataset
of 95 pulmonary hypertension patients, which includes measurements
from echocardiography and from right-heart catheterisation. We used
data extracted from echocardiography to conduct cardiac circulation
model personalisation and tested its prediction power of catheter data.
Standard machine learning methods were also investigated for pul-
monary artery pressure prediction. Our preliminary results demonstrated
the potential prediction power of both data-driven and model-based
approaches.

Keywords: Cardiac modelling · Machine learning · Pulmonary
hypertension

1 Introduction

Pulmonary arterial hypertension (PAH) is a pathological hemodynamic condi-
tion defined as mean pulmonary arterial pressure (mPAP) at rest >25 mmHg,
measured by gold standard - right heart catheterisation (RHC) [12]. Pul-
monary arterial hypertension can originate in lungs, heart, pulmonary artery and
blood, and eventually leads to right heart failure or death. Standard diagnos-
tic procedure requires clinical evaluation, non-invasive imaging and right heart
catheterisation [8].

However, some patients do not receive RHC as part of their diagnostic rou-
tine and this may be related to lack of training or the potential perception of
c© Springer Nature Switzerland AG 2020
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RHC invasive risk, especially in the pediatric population [13]. This phenomenon
increases the possibility of incomplete diagnosis, which diminishes the effect of
targeted therapies [4]. In reality, echocardiography and catheterisation are usu-
ally conducted in separated labs. In order to combine the hemodynamic infor-
mation provided by RHC and echocardiography, in our work, we explored the
possibility of incorporating catheter-based data prediction, specifically, mean
pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR),
into routine echocardiography diagnosis.

There exists very simple ways to estimate PVR [11] and mPAP [3] but most
of them only rely on one or two echocardiographic measurements, which largely
propagates measurement uncertainty to prediction and constrains their usage
under different physiological conditions. Recently, with the advance of machine
learning techniques, data-driven algorithms demonstrated good performance in
cardiac tasks [5]. Besides, numerical modeling of pulmonary circulation also
showed the ability to assess hemodynamic values non-invasively [9]. In our work,
we used a simplified cardiac lumped model which can be easily personalised
from clinical data in order to simulate cardiac indicators. In addition, machine-
learning based regression methods were also tested for their prediction power.

2 Methods

2.1 Data Presentation

Our retrospective dataset was collected from the records of Nice Univer-
sity Hospital in 123 patients with known or suspected pulmonary hyperten-
sion. Echocardiography-based cardiac indicators, such as ejection fraction, end-
diastolic left and right ventricular volumes, were extracted by an experienced
cardiologist. Complete or incomplete catheterisation measurement records (44%
received both echocardiography and catheterisation within 48 h) are available for
all the patients (see detailed data description in Table 1∗). Specifically, RAP in
echocardiography data is estimated from inferior vena cava (IVC) diameter and
its respirophasic variations, which leads to an ordinal value with possible values
from {5,10,15,20}. sPAP is then calculated by sPAP = 4 ∗ TRV 2

max + RAP ,

∗Abbreviations: Body Surface Area (BSA), Pulmonary Artery HyperTension
(PAHT), Heart Rate (HR), Brain Natriuretic Peptide (BNP), Blood Pressure (BP),
Left Ventricle Ejection Fraction (LVEF), Left Ventricle Outflow Track Diameter
(DLV OT ), Velocity Time Integral of Left Ventricle Outflow Tract (V TILV OT ), Left
Ventricle End-Diastolic Diameter (LVEDD), Left Ventricle End-Systolic Diameter
(LVESD), Left Ventricle End-Diastolic volume (LVEDV), Right Ventricle Ejection
Fraction 3D (RVEF 3D), Right Ventricle Outflow Tract Diameter (DRV OT ), Veloc-
ity Time Integral of Right Ventricle Outflow Tract (V TIRV OT ), Right Ventricle End-
Systolic Diameter (RVESD), Right Ventricle End-Diastolic Volume (RVEDV), Sys-
tolic Pulmonary Artery Pressure (sPAP), Tricuspid Annular Plane Systolic Excursion
(TAPSE), Right Atrium Pressure (RAP), Mean Pulmonary Artery Pressure (mPAP),
Pulmonary Capillary Wedge Pressure (Pcap), Pulmonary Vascular Resistance (PVR),
Cardiac Output (CO), Cardiac Index (CI)
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Table 1. Detailed description of patient data

Feature Missing Statistics Feature Missing Statistics

Clinical information

Age 0 62± 18 Sex 0 50.5% female

Height (cm) 1 166.2 ± 9.5 Weight (kg) 1 68.2 ± 16.6

BSA 5 1.75± 0.23 BNP (ng/L) 7 275.4± 508.6

HR 24 76± 13 BP (mmHg) 72 132± 22 & 81± 16

61.0% (1), 22.1% (3) 36.8%, (2), 46.3% (3)

PAHT group 1 13.6% (4), 2.1% (5) NYHA 3 13.6% (4)

1.2% (NAN) 3.3% (NAN)

Echocardiography data

LVEF (%) 2 67.5 ± 8.9 RVEF 3D (%) 8 35.0 ± 9.8

DLV OT (mm) 59 18.9 ± 4.6 DRV OT (mm) 85 26.3 ± 5.2

V TILV OT (cm) 59 19.4 ± 5.7 V TIRV OT (cm) 3 14.6± 4.5

LVEDD (mm) 18 43.7± 6.7 RVEDD (mm) 21 46.2± 6.4

LVESD (mm) 42 26.1 ± 6.3 RVEDV (mL) 8 98.1± 39.7

sPAP (mmHg) 1 73.5± 23.5 RAP (mmHg) 0 10.6 ± 4.6

TAPSE (mm) 1 19.9± 5.5 S’Wave (cm/s) 1 11.3± 3.0

Catheter data

mPAP (mmHg) 0 43.5± 13.0 Pcap (mmHg) 1 11.4± 4.0

RAP (mmHg) 0 8.9± 4.3 PVR (UW) 4 7.5± 4.0

CO (L/min) 4 4.7± 1.4 CI (L/min/m2) 6 2.7± 0.7

where TRVmax refers to tricuspid regurgitation maximum velocity. In our anal-
ysis, records of 95 patients were included. The other 28 records were discarded
because of lack of catheter measurement.

2.2 Modeling-Based Prediction

Cardiovascular 0D Model. To incorporate cardiovascular dynamics into the
prediction model, we consider a 0D model of the whole cardiovascular circulation
system [2]. Derived from a 3D cardiac electromechanical model, the 0D model
not only consists of less ordinary differential equation but also preserves the
capacity to describe the important properties of the heart. Under the assump-
tion of the spherical ventricle symmetry in 0D model, the inner radius (R0) is
directly related to the myocardial size. Reduced deformation and stress tensors
demonstrate good representation of important cardiac characteristics, such as
heart contractility (σ0) and stiffness (C1).

This 0D model has manifested its modeling potential in solving personalisa-
tion problems [10]. Consider a 0D model M , with a set of parameters PM and
model states OM . We take a subset θ ⊆ PM , which contains parameters such
as heart contractility (σ0) and myocardial stiffness (C1), and fix all the other
parameters with default values. Interesting model states O ⊆ OM , such as pul-
monary artery pressure and ejection fraction, present cardiac indicators of the
heart model. Given a set of clinical observations Ô, the aim of personalisation
is to find suitable varying parameters θ̂ so that the corresponding output of
the fitted 0D model is as close as possible to clinical references, i.e. O(θ̂) ≈ Ô
(Fig. 1).
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Fig. 1. Schema of used cardiac 0D model (Adapted from [1]).

We assume Gaussian distribution priors for both interested parameters θ and
model states O, i.e. θ ∼ N (μ,Σ) and O|θ ∼ N (Ô(θ),Δ). Essentially, the person-
alisation problem equals to Maximum A Posterior. With Gaussian distribution,
the objective function is derived as:

min{(O(θ) − Ô)TΔ−1(O(θ) − Ô) + γ(θ − μ)TΣ−1(θ − μ)}
where Ô refers to observed model states and Δ, a diagonal covariance matrix,
represents the tolerance interval for each dimension of model states. The second
term is regarded as a regulariser. γ controls to what extent we forces the param-
eter θ to follow the prior distribution, which helps to attenuate the non-unique
solution effect of this ill-posed inverse problem.

We solve this high-dimensional and non-convex problem by applying a non-
parametric evolutionary strategy CMA-ES [6]. Iteratively Updated Prior (IUP)
method, as defined in [10], is deployed to iteratively update the prior distribution
based on former population personalisation results.

Experiments. We first investigate the intrinsic prediction power of the 0D
cardiovascular model. Based on the available clinical data, we chose the fol-
lowing 5 features extracted from echocardiography for personalisation: systolic
pulmonary artery pressure (sPAP), right ventricle ejection fraction (RVEF),
right ventricle end-diastolic volume (RVEDV), left ventricle ejection fraction
(LVEF). In order to assure equal stroke volume of left and right heart, the
left ventricle end-diastolic volume (LVEDV) is calculated from available data:
LV EDV = RV EDV ∗RV EF

LV EF . Considering the uncertainty of measurement, we
assign a tolerance interval for every selected feature: 200 Pa for sPAP, 5% for
LVEF and RVEF and 10 mL for RVEDV and LVEDV. Available RAP values are
not included in our setting. Finally, parameters of both left heart and right heart
are selected for personalisation: left and right heart contractility (σ0), left and
right myocardial stiffness (c1), right ventricle inner radius (R0), pulmonary prox-
imal resistance (Zc) and pulmonary distal resistance(Rp). Left ventricle radius
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is set by (LV EDD + LV ESD)/4 if both LVEDD and LVESD are available. Or
else it is set to 18 mm, the mean value in the population. Since every patient
possesses at least one target feature, we fit the model on the whole dataset of
95 patients. We assume the covariance Σ of varying parameters is a full matrix
and γ is selected from {0.1, 0.5, 1, 2}.

We follow the same protocol as the cardiologist to extract mPAP and PVR
from model output curves: mPAP is calculated as the mean value of pulmonary
pressure-time integral during one cardiac cycle, and PVR is calculated as PVR
(UW) = (mPAP − Pcap)/CO, where CO comes from flow-time integral and
heart rate and Pcap is fixed at 10 mmHg.

A supervised method is also proposed based on personalisation. We split our
dataset into training data and test data with a configuration of 5-fold cross-
validation. In the training phase, echocardiography and catheter features are
fitted iteratively with γ = 0.5 for 10 iterations. Then the fitted parameter dis-
tribution of the 10th iteration of training data is used as test prior. We then
perform one iteration of personalisation to fit only echocardiography features
for test data with γ ∈ {0.5, 1, 2}.

The optimisation of 0D model personalisation is performed over the logarithm
of the parameter values (Table 2).

Table 2. Selected features and parameters for 0D model personalisation

Echo Catheter Varying parameters

sPAP mPAP Left heart contractility σ0

RVEF CO Left heart stiffness c1

LVEF Pcap Right heart contractility σ0

RVEDV PVR Right heart stiffness c1

LVEDV Right ventricular radius R0

Pulmonary proximal resistance Zp

Pulmonary distal resistance Rp

Model Implementation. Our cardiac 0D model is originally implemented
in CellML language. It was exported into C language and incorporated into a
Python program which enables flexible experiments. The 0D model is very fast
and it takes less than 1 s to output cardiac curves. CMA package implemented by
Hansen et al. [7] is used in our optimisation. With parallel computation, optimal
parameters for one patient can be found in 3 min on a computer with 8 cores
(Intel i7-8650U CPU 1.90 GHz).

2.3 Learning-Based Prediction

5 regression methods implemented in scikit − learn 0.21.2 were tested using
echocardiographic cardiac features to predict catheter data: lasso regres-
sion, ridge regression (RR), k-nearest neighbour regression (KNN), par-
tial least-square regression (PLR) and ada-boosting decision tree regression
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(ADAT). Optimal hyper-parameters of different estimators were determined
through nested 10-fold cross-validation grid search. Specifically, we search α ∈
{10−3, 10−2, ...102} for Lasso and Ridge, number of neighbors N ∈ {2, 3, ...10}
for KNN , number of components N ∈ {1, 2, ...15} for PLR and number of
estimators N ∈ {2, 4, 8, 16, 50, 100, 200} for ADAT.

We use all the data except catheter data to perform regression analysis. Cat-
egory data, such as NYHA, Group PAH, and columns with more than 40%
missing values (V TILV OT , DRV OT , DLV OT , LVESD and BP) were eliminated.
From available data, we are able to calculate TRVmax and TRVmax

V TIRV OT
, the later

of which is reported correlated with PVR [11]. A correlation analysis on the 18
predictors shows linearity between some predictors (correlation coefficient larger
than 0.6) and finally we have 11 predictors left for regression analysis: age, BSA,
LVEF, RVEF, HR, RAP, sPAP, LVEDD, RVEDV,V TIRV OT , TAPSE. Consid-
ering the missing value problem of our dataset, simple and multiple imputation
methods implemented in scikit − learn 0.21.2 are also conducted before every
regression learning: mean imputation, median imputation, Bayesian ridge regres-
sion iterative imputation, k-nearest neighbour iterative imputation, decision tree
regression iterative imputation and extra-tree iterative imputation. We report
R2 score (coefficient of determination) and root mean squared error (RMSE) for
each regression method based on a 5-fold cross validation.

We also test simple estimation (SIMPLE) methods for mPAP and PVR based
on formulas mPAP = 0.61 ∗ PAPs + 2(mmHg) following the work of [3] and
PV R = 29.7 ∗ (TRVmax/V TIRVOT ) − 0.29 following the work of [11].

3 Results

Modelling-Based Prediction. With only echocardiography-based indicators,
our result of 0D model personalisation indicate that a reasonable γ improves
prediction accuracy. A large γ will nominate objective function and forces varying
parameter to follow prior distribution, while a small γ enables more accurate
feature fitting. In our case, with γ = 0.5, estimated mPAP correlates modestly
with ground truth ( r = 0.65, p < 0.0001) and demonstrates a reasonable error
(shown in Table 3: MF0.5). With γ = 1, estimated PVR has the lowest error and
correlates slightly with ground truth (r = 0.40, p < 0.001).

Table 3. 0D cardiac model based prediction results

State Metrics MF0.1 MF0.5 MF1 MF2 MF-CV0.5 MF-CV1 MF-CV2

mPAP
RMSE 11.08 10.61 10.83 11.44 13.01 12.76 12.92

R2 0.26 0.32 0.30 0.21 -0.05 -0.01 -0.05

PVR
RMSE 6.17 5.72 4.84 5.00 10.55 9.44 9.34

R2 -1.36 -1.04 -0.45 -0.55 -7.33 -6.30 -5.53
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However, in modelling-based supervised method (MF-CV), when echocardio-
graphy and catheter data are mixed for personalistion, the discrepancy between
ECHO and CAT data mislead parameter prior direction. After training phase,
we obtain prior distribution from last iteration of group personalisation. When
new test data comes, personalisation is moving to a biased direction.

Learning-Based Prediction. In Fig. 2, we observe that LASSO and PLR
estimators not only demonstrate less prediction error, but also are more stable
to various imputed data. Lasso coefficients show that both sPAP and TAPSE
are significant factors for mPAP and PVR regression. This is consistent with the
fact that mPAP and PVR are highly correlated (r = 0.81, p < 0.01).

(a) (b)

(c) (d)

Fig. 2. Mean Pulmonary Artery Pressure (mPAP) and Pulmonary Vascular Resis-
tance (PVR) prediction results (Data-driven methods). Results of models with different
imputation methods are averaged to distinguish the performance of estimators. Results
shown in mean ± std. (a) RMSE and R2 metric of different estimator for mPAP. (b)
Lasso regression coefficient (alpha = 0.1) for mPAP prediction. (c) RMSE and R2 met-
ric of different estimator for PVR. (d) Lasso regression coefficient (alpha = 0.01) for
PVR prediction.
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Prediction Summary. We present the averaged metric value (based on dif-
ferent imputation methods) and involved features for all estimators. With lasso
regression result, we exclude the features with normalized coefficient smaller than
0.01 for mPAP and 0.2 for PVR, e.t. we have sPAP, TAPSE, LVEDD and age
for mPAP and BSA, sPAP, TAPSE for PVR. We then redo LASSO RIDGE and
PLR with those selected features. Here mPAP’s best prediction is with tuned
hyperparameter: α = 0.01 for Lasso, α = 0.1 for RR, N = 8 for KNN, N = 2
for PLR and N = 500 for ADAT. PVR best result is with hyperparameters:
α = 0.01 for Lasso, α = 0.5 for RR, N = 7 for KNN, N = 2 for PLR and
N = 500 for ADAT (Table 4).

Table 4. Best regression results of different estimators for mPAP and PVR

State Metrics LASSO RR PLR KNN ADAT SIMPLE MF-CV1 MF1

mPAP

RMSE 8.75 8.72 8.76 10.12 10.18 11.52 12.76 10.83
R2 0.52 0.53 0.52 0.35 0.36 0.20 -0.01 0.30

Features

TAPSE

sPAP

sPAP
sPAP All LVEF
Age 11 LVEDV

LVEDD Features RVEF
RVEDV

PVR

RMSE 2.99 2.98 2.94 3.56 3.09 3.96 9.44 4.84
R2 0.41 0.41 0.42 0.16 0.35 0.04 -6.30 -0.45

Features

TAPSE

TRVmax
V TIRV OT

sPAP
sPAP All LVEF
BSA 11 LVEDV

Features RVEF
RVEDV

Using LASSO regression, we average the coefficient from different imputation
methods and get the following estimation formula:

mPAP = 0.32∗sPAP −0.65∗TAPSE−0.12∗Age−0.12∗LV EDD+45.83 (1)

PV R = 0.05 ∗ sPAP − 0.33 ∗ TAPSE − 4.94 ∗ BSA + 18.83 (2)

Supervised 0D model prediction (MD-CV1) fails to retain a good parameter
prior for prediction however, echocardiography-based group optimisation demon-
strates a prediction potential, which reveals the regularizing effect of population-
based prior distribution. Here, best result is reached at γ = 1.

SIMPLE methods provide simple approximation of mPAP and PVR but their
validity is restricted due to their dependence on one single measurement. Besides,
regression methods surpass model-based estimation approaches. There may be
two main reasons for their difference. First, we are not using all the available
information for 0D model personalisation. For example, TAPSE, who is of signif-
icance in regression, are difficult to incorporate into 0D personalisation system.
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Fig. 3. Estimated value and ground truth comparison (lasso formulas). (a) The plot of
mPAP ground truth and its estimated value using Eq. 1. (b) The plot of PVR ground
truth and its estimated value using Eq. 2. (c) Bland-Altman analysis demonstrating the
limits of agreement between invasive mPAP and mPAP determined via echocardiog-
raphy, using Eq. 1. (d) Bland-Altman analysis demonstrating the limits of agreement
between invasive PVR and PVR determined via echocardiography, using Eq. 2.

Secondly, our 0D model is highly reduced, some important measurements like
V TIRV OT and TRmax which exhibit important hemodynamic characteristics,
is not compatible. Whereas, unlike the imperative demand of complete data for
regression methods, 0D model personalisation can deal with missing data issue
naturally [10] (Table 4).

4 Conclusion

Our preliminary results show a good potential of using data-driven methods
and model-based approaches for estimating pulmonary pressure in pulmonary
hypertension patients. Data-driven method is fast, simple and give good approx-
imation of pulmonary pressure, but it strongly demands complete observation.
Model-based approach captures complex hemodynamics from observed data and
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deals with missing data issue naturally. Compared with data-driven methods, it
exhibits a slightly poorer prediction accuracy. Based on current exploration,
there are two directions of future work. One is to extend 0D model personal-
isation method so as to integrate more observed data into system. The other
is adopting data-driven methods to predict accurate parameter distribution for
personalisation.
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Abstract. Recently, the risk of thrombus formation in the left atrium
(LA) has been assessed through patient-specific computational fluid
dynamic (CFD) simulations, characterizing the complex 4D nature of
blood flow in the left atrial appendage (LAA). Nevertheless, the vast
computational resources and long computing times required by tradi-
tional CFD methods prevents its embedding in the clinical workflow
of time-sensitive applications. In this study, two distinct deep learning
(DL) architectures have been developed to receive the patient-specific
LAA geometry as an input and predict the endothelial cell activation
potential (ECAP), which is linked to the risk of thrombosis. The first
network is based on a simple fully-connected network, while the latter
also performs a dimensionality reduction of the variables. Both mod-
els have been trained with a synthetic dataset of 210 LAA geometries
being able to accurately predict the ECAP distributions with an average
error of 4.72% for the fully-connected approach and 5.75% for its coun-
terpart. Most importantly, the obtention of the ECAP predictions was
quasi-instantaneous, orders of magnitude faster than conventional CFD.

Keywords: Deep learning · Computational Fluid Dynamics ·
Thrombus formation · Hemodynamics · Left Atrial Appendage

1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia of clinical significance,
often leading to wall rigidity of the left atrium (LA), which severely disrupts
local hemodynamics [4]. This may lead to blood stagnation increasing the risk
of thrombosis. In fact, around 90% of such intracardiac thrombus formation in
AF patients takes place in the left atrial appendage (LAA) [10]. At the moment,
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blood flow velocity can only be assessed through noisy imaging data from trans-
esophageal echocardiography (TEE) at one single point in space and time, vastly
oversimplifying the characterization of the 4D nature of cardiac hemodynamics.

Recently, computational fluid dynamics (CFD) have been applied to image-
based LA geometries seeking to assess the risk of thrombogenesis more quantita-
tively [6]. CFD has proven to be an invaluable tool in establishing a mechanistic
relation between patient-specific organ morphology and its characteristic hemo-
dynamics. Nevertheless, traditional CFD methods are renowned for their large
memory requirements and long computing times [5], which severely hinders its
suitability for time-sensitive clinical applications. Moreover, the studies available
on the LAA are few and with very limited number of real or synthetic cases.

Hence, this study seeks to harness the immense potential of deep learning
(DL) with the objective of generating a fast and accurate surrogate of CFD
analysis on the LAA. For this purpose, two distinct deep neural networks (DNN)
have been developed, which receive the specific LAA geometry as an input, and
accurately predict its corresponding endothelial cell activation potential (ECAP)
map, parameter linked to the risk of thrombosis. To the best of our knowledge,
this study represents the first successful implementation of a DL surrogate of
finite element analysis in a biological structure as complex and heterogeneous as
the LAA, which had only been previously attempted in the aorta [5].

2 Methods

The general pipeline of the study is shown in Fig. 1. Initially, the virtual LAA
geometries are created, assembled to the oval LA and aligned (steps 1–3 in the
figure, respectively). Afterwards, the 3D volumetric mesh is generated (4) to
carry out the CFD simulations (5) before calculating the ECAP maps (6). Once
the training data has been generated, the DNNs are trained (in red). As the
final step, the performance of the networks is evaluated through Monte Carlo
cross-validation (in green).

2.1 Geometry

Due to the high anatomical complexity and variability of both the LA and the
LAA, several assumptions had to be made to keep the model simple. Based
on the work by Garćıa-Isla et al. [3], the LA cavity was approximated to an
ovoid structure, aiming to disregard the effect of LA heterogeneity on atrial
hemodynamics and focus on the LAA.

The spatial (x, y, z) coordinates of the nodes conforming the LAA surface
mesh were chosen as the input to the DNNs. Therefore, correspondence between
LAA geometries was set as a requirement, that is, each geometry had to share
the same number of nodes and maintain inter-nodal connectivity. In addition,
training of DNNs requires huge datasets, which can rarely be achieved with real
patient geometries. To fulfill such demands, a virtual dataset of 300 LAAs was
generated from a statistical shape model (SSM) based on principal component
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Fig. 1. General pipeline of the project. LAA: Left Atrial Appendage, SSM: Statistical
Shape Model, CFD: Computational Fluid Dynamics, ECAP: Endothelial Cell Activa-
tion Potential. (Color figure online)

analysis (PCA) [8], by varying the 10 most meaningful eigenvalues according to
a normal distribution N(0, 1). Each virtual LAA consists on a triangular mesh
of 2536 nodes and 5000 elements.

The assembly to the ovoid structure was done on Meshmixer1. Afterwards,
the mitral valve of the geometries were longitudinally aligned on the z-axis on
Space Claim2. Finally, the tetrahedral volumetric mesh was generated on gmsh3,
composed of approximately 350,000 elements each. It should be noted that while
correspondence was imposed on the LAA surface mesh, being the input to the
DNN, the same does not apply to the volumetric and LA surface meshes.

2.2 Generation of Risk Indices for Thrombus Formation - ECAP

The ECAP, defined by Di Achille et al. [1], was the parameter chosen to evaluate
the risk of thrombus formation. High values are linked with high endothelial
susceptibility and thrombogenesis risk. The ECAP is defined as the oscillatory
shear index (OSI) divided by the time averaged wall shear stress (TAWSS).

The in silico ECAP distributions for the training of the DNNs were obtained
through CFD simulations performed on Ansys Fluent 19.24. They were com-
pleted automatically by leveraging the MATLAB AAS toolbox (R2018b Aca-
demic license)5. Each simulation encompasses a whole cardiac cycle with a sys-
tole and diastole lasting 0.4 s and 0.65 s respectively. An input blood flow was
1 http://www.meshmixer.com/.
2 https://www.ansys.com/academic/free-student-products.
3 http://gmsh.info/.
4 https://www.ansys.com/products/fluids/ansys-fluent.
5 https://es.mathworks.com/products/matlab.html.

http://www.meshmixer.com/
https://www.ansys.com/academic/free-student-products
http://gmsh.info/
https://www.ansys.com/products/fluids/ansys-fluent
https://es.mathworks.com/products/matlab.html
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Fig. 2. Architecture of the dimensionality reduction network. no = Number of
mesh nodes, U = Number of activation units, LAA: Left Atrial Appendage, ECAP:
Endothelial Cell Activation Potential, M − N : Number of retained principal compo-
nents. Figure adapted from Liang et al. [5].

imposed on the PVs obtained from clinical observations made by Fernandez-
Perez et al. [2]. In addition, the mitral valve was considered as a wall boundary
during diastole, while an outlet pressure of 1067 Pa was set through the sys-
tole. The rest of the setup of the CFD simulations was implemented similarly to
Garćıa-Isla et al. [3] Moreover, to simulate the LA motion and preventing mass-
imbalance during the cardiac cycle, a diffusion-based smoothing dynamic mesh
was applied in the longitudinal direction (z-axis) of the mitral valve annulus [7]
with data from real-time 3D echocardiography measurements by Veronesi et al.
[9]. After a qualitative visual quality control of fluid simulation results, seeking
to discard unrealistic flow patterns or exceedingly high or low ECAP values (by
several orders of magnitude), the final training dataset was comprised by 210
LAA geometries and its corresponding ECAP maps.

2.3 Deep Learning Model

Keras 2.2.46, with TensorFlow 1.13.17 backend, was chosen as the high-level
neural network API. Two distinct DNN architectures were developed.

First and simplest, a fully-connected feed-forward (SFC) network was imple-
mented to perform a non-linear regression between the space coordinate triplets
and their corresponding ECAP values. The final layout was comprised of two
equally sized hidden layers, counting a total of 5000 nodes each.

Alternatively, another network was developed which performed dimension-
ality reduction of the variables as a first step. The spatial coordinates and the
ECAP maps were reduced to a small set of scalar values through truncated PCA,

6 https://keras.io/.
7 https://www.tensorflow.org/.

https://keras.io/
https://www.tensorflow.org/
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aiming to simplify the non-linear mapping between the input and the output.
Each node can be expressed as follows:

X = X +
M∑

i=1

αi

√
λiWi, (1)

where X is the mean shape and Wi and λi is the set of eigenvectors and eigenval-
ues of the covariance matrix for the retained number, i, of principal components
(PC). If the variability of the dataset is explained by a small set of PCs, the
data can be accurately represented by a small set of scalar values as:

βm =
WT

m(X − X)√
λm

, εn =
WT

n (Y − Y )√
λn

, (2)

βm and εn being the low-dimensional representation of the geometry and the
ECAP respectively. A total of m = n = 32 PCs were kept retaining 97.6% of vari-
ability for the shape and 90.3% for the ECAP. Afterwards, non-linear mapping
between the low dimensional scalars was completed through a fully-connected
feed-forward neural network composed of 3 hidden layers of 512 units, as shown
on Fig. 2. Once successfully trained, predicted ECAP values were reconstructed
from its low-dimensional representations reversing Eq. 2:

Y = Y +
N∑

n=1

(
εn ·

√
λn

)
Wn (3)

Adam was chosen as a compiler and the mean square error (MSE) was
selected as the loss function. A batch size of 20 was employed on both networks.
Likewise, ReLU units were chosen over other non-linear units, such as Leaky
ReLU or Softplus, due to superior performance. The predictive capabilities of
both DL models were evaluated through a 10-fold Monte Carlo cross-validation
with 100 repetitions, randomly selecting 90% of the dataset for each training
round. The mean absolute error (MAE) on ECAP values and its normalized
counterpart (NMAE) were chosen as metrics, following Liang et al. [5].

MAE =
1
n

n∑

j=1

| yj − yj | NMAE =
MAE

max (| yj |) · 100 (4)

3 Results

The training of the PCA network was quick, requiring just 30 s to complete
each cross-validation round, while it took almost 25 min for the SFC model.
However, considering that each CFD simulation required up to 2 h to complete
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Fig. 3. Set of ECAP values on a random test dataset of 21 shapes from a single iteration
of the Monte Carlo cross-validation, 9 of which are shown in here. Each row corresponds
to a given geometry while the columns from left to right represent: (1) Ground truth
(GT) obtained from CFD simulations, (2) Prediction of the dimensionality reduction
PCA network, (3) Predicted ECAP from the simple fully-connected (SFC) network, (4)
Difference between GT and PCA prediction, (5–6) Binary classification with positive
condition ECAP > 4. (5) Front face and (6) Posterior face. TN: True negative, FN:
False negative, TP: True positive, FP: False positive.
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the improvement is substantial. Especially, if we consider that once trained, the
ECAP predictions were obtained almost instantaneously.

The accuracy achieved by each of the networks is shown on Table 1. Both
our DL models achieve very similar accuracy, attaining an average MAE ∼0.64
and a NMAE ∼5%. Furthermore, the predicted ECAP maps alongside with its
ground truth, can be visualized for 9 representative LAA shapes in Fig. 3. These
specific set of LAA shapes, belong to one single iteration of the Monte Carlo
cross-validation.

Table 1. Performance of DL models on a 10-fold Monte Carlo cross-validation. MAE:
Mean Absolute Error, NMAE: Normalized Mean Absolute Error.

Network MAE NMAE

PCA 0.6457 ± 0.0493 4.7197 ± 1.4625%

SFC 0.6486 ± 0.0462 5.7558 ± 1.523%

Additionally, the predictive capability of the DL networks to detect the areas
with the highest thrombi formation risk was assessed. Following the study by
Di Achille et al. [1] on thrombotic abdominal aortic aneurysms, a value of 4,
corresponding to the upper 99th percentile, was chosen as the lower bound of
thrombosis risk, being more robust than only considering isolated peak values.
Consequently, a binary classification was performed with the positive condition
being ECAP > 4. The results are shown on column (5) and (6) of Fig. 3. In
addition, pursuing a more quantitative assessment, a couple of confusion matrices
were constructed for each network which are reported on Table 2.

Table 2. Confusion matrices for both PCA and SFC predicted ECAP values

PCA Prediction outcome

DL Risk DL Safe

GT Risk
233.95
0.5967

158.14
0.4118

GT Safe
55.57
0.0268

2018.3
0.9732

289.5 2176.5

SFC Prediction outcome

DL Risk DL Safe Total

230.62
0.5882

161.48
0.4033 2073.9

50.19
0.0242

2023.7
0.9758 392.1

280.8 2185.2
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4 Discussion

Upon close inspection of Fig. 3, the developed DNNs seem to successfully grasp
the non-linear function relating the LAA geometry and its ECAP maps. Nev-
ertheless, interpreting the results is highly challenging due to the “black box”
nature of DNN methods. Interestingly, there are no striking visual or quantita-
tive differences between the accuracy achieved by each of the DL models. This
was unexpected, since the non-linear mapping relating the LAA shape and the
ECAP is far more simple in the dimensionality reduction PCA network.

Afterwards, the accuracy attained by both developed networks was bench-
marked against that achieved by Liang et al. [5], which attained an NMAE of
0.492%. While it may look like a huge drop in accuracy, there are a number of rea-
sons that explain such a disparity with the obtained results. Firstly, compared to
the LAA, the aorta is a very simple geometry with mainly laminar flow, making
DNN-based surrogate estimation easier. Secondly, this very complexity of LAA
morphology, severely restricted the possibility of applying structured grids. This
entails that potentially more successful DL methods such as convolutional neural
networks could not be employed.

Regarding the detection of high ECAP values, both networks exhibit an
almost identical number of correctly classified nodes. On the other hand, it
seems that the developed DL networks are not capable of properly adjusting to
the most extreme ECAP values, as false negative (FN) nodes are 3-fold more
numerous than false positives (FP). This is probably due to the lower frequency
of occurrence of ECAP values far from the mean in the training dataset. Nonethe-
less, although the true positive rate is rather low at ∼0.6, it must be stated that
almost all significantly large FP and FN areas on Fig. 3 are found surrounding
the edges of true positive patches. This means that the developed DL architec-
tures managed to grasp the overall layout of the areas in high risk of thrombus
formation with few misclassifications outside of these regions.

Finally, it is worth mentioning the limitations and assumptions faced by
this study due to the complexity of the task in hand. First and foremost, the
network has been trained exclusively with synthetic populations of both, the
LA and the LAA. Therefore, the developed DL models would most certainly be
unable to successfully predict the ECAP maps on patient-specific geometries at
the moment. Nevertheless, this could be overcome if a sufficiently big dataset of
real LA and LAA geometries is obtained, so that it does fully capture the real
heterogeneity and complexity of their morphologies. Afterwards, the geometries
would have to be registered to a template to share the same number of nodes
and preserve connectivity similarly to Slipsager et al. [8]. On the other hand,
solely geometric parameters (3D spatial coordinates) have been fed to the neural
networks during training, including no flow-specific parameters since all the CFD
simulations have been carried out with the same boundary conditions. This
implies that the networks would fail on patients with different systolic pressure
or inlet velocity profile. Finally, the CFD and DL based ECAP values could not
be properly validated as it is currently impossible to measure the ECAP on the
LAA until technologies such as 4D-Flow MRI are further developed.
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5 Conclusion

To the best of our knowledge, this study represents the first successful imple-
mentation of a DL surrogate of CFD in a biological structure as complex and
heterogeneous as the LAA, which had only been previously attempted in the
aorta [5]. The developed DNNs managed to capture the non-linear function
relating the geometry of the LAA and its ECAP distributions, which resulted
in accurate predictions consistent with the ground truth. Moreover, the overall
layout of the LAA regions with higher risk of thrombosis were also successfully
detected by the networks. Most importantly, the task was completed order of
magnitudes faster than any conventional CFD approach.
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Abstract. Ultrasound imaging is a very versatile and fast medical imag-
ing modality, however it can suffer from serious image quality degrada-
tion. The origin of such loss of image quality is often difficult to identify
in detail, therefore it makes it difficult to design probes and tools that
are less impacted. The objective of this manuscript is to present an end-
to-end simulation pipeline that makes it possible to generate synthetic
ultrasound images while controlling every step of the pipeline, from the
simulated cardiac function, to the torso anatomy, probe parameters, and
reconstruction process. Such a pipeline enables to vary every parameter
in order to quantitatively evaluate its impact on the final image quality.
We present here first results on classical ultrasound phantoms and a dig-
ital heart. The utility of this pipeline is exemplified with the impact of
ribs on the resulting cardiac ultrasound image.

Keywords: Ultrasound · Cardiac modelling · Probe design · Image
quality

1 Introduction

Simulation of medical images has been an active research area for several years.
Synthetic images are often associated with ground-truth information on the
underlying anatomy and function used to generate the images [2].

Therefore, it enables to evaluate image processing algorithms [4] as well as
generating data for machine learning. Approaches vary from simulating the whole
physics of medical image acquisition to warping an existing image, including all
the intermediate combinations.

In this work, we developed an original approach integrating a full simulation
pipeline in order to leverage image simulation for image quality understanding
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Fig. 1. End-to-end modelling pipeline for echocardiography simulation.

(see Fig. 1). It includes detailed modelling of both human anatomy and ultra-
sound probe. This is the first time that such simulations are directly linked to
probe parameters in order to understand better the relationship between these
parameters and image quality. Moreover, some modifications of our anatomy
numerical model such as addition, removal and resizing of organs, tissues and
bones can be easily done and their impacts studied.

2 Cardiac Model

Modelling cardiac electromechanical activity has been an active research area
for the last decades, as can be seen in references from recent reviews like [3].
Simulating 3D cardiac function enables to completely control the multi-physics
phenomena including electrophysiology, biomechanics and blood flows. In the
context of simulating ultrasound images, cardiac modelling enables to gener-
ate ground-truth data on position, motion, strain, velocities, etc. for the subse-
quently generated images.

Fig. 2. (a) 3D cardiac model and probe location. Corresponding 2D imaging slice
without (b) and with the rib cage (c).
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In this work, we used a detailed segmentation of the heart available from the
Visible Human Project [1]. We only simulated a static ultrasound image as a
proof-of-concept of the whole pipeline. See Fig. 2 for the anatomy of the heart
and the imaging slice used in this manuscript.

3 Torso Model

Once cardiac activity has been simulated, it is necessary to include it within a
digital representation of the human torso, as the heterogeneities within the tho-
rax are responsible for an important part of artifacts and echogenicity problems.
We used a detailed segmentation of the human torso from the Visible Human
project. It enables to introduce various structures of the human body and to see
their influence on the simulated images (Fig. 3).

Fig. 3. 3D torso model (a) and imaging plan (b).

4 Probe Model

Numerical simulations were performed using k-Wave, a k-space pseudospectral
method-based solver [8]. The k-Wave toolbox solves coupled first-order acoustic
equations. An ultrasonic source, a medium (heterogeneous or not) and a sensor
should be defined within these equations. In our case, the ultrasonic source
and the sensor are modeled by the 3Sc-RS sector probe designed for cardiac
applications (General Electric Healthcare, Illinois, USA.) The k-Wave solution
enables the definition of every physical property of the probe: the number of
piezoelectric elements and their width, height and spatial positioning. It also
allows the complete tuning of the emission and reception beam-forming with the
definition of the focal distance in azimuth, the focal distance in elevation as well
as transmitted and received apodizations.

We could have chosen Field II [5,6] but k-Wave was selected for two main rea-
sons. Firstly, it defines the medium of propagation as a grid where the physical
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parameters influencing the propagation of the ultrasonic wave (speed of sound,
density, absorption, acoustic non-linearity parameter B/A) can be defined inho-
mogeneously. In contrast, Field II defines it as a collection of scatterers defined
by their positions and amplitudes. The final objective of this project was to
study the anatomical causes of the image degradation so we decided to keep a
simulation tool that allowed us to model these physical parameters precisely.
Secondly, k-Wave offers a free parallel version on GPU whereas the parallel ver-
sion of Field II is not open-source. Considering that we can use a GPU cluster
for the project, k-Wave was chosen.

The input signal used to drive the piezoelectric elements was made of n
sinusoidal periods (0.5 < n < 3) at a central frequency f0 = 1.7 MHz. Results
are presented with harmonic imaging (reception at 2f0 = 3.4 MHz).

5 Reconstruction

B-mode imaging consists in a gray-scaled representation of the echogenicity of
the tissue. A mechanical wave is sent in the body and is back-scattered because
of the speed of sound and density heterogeneities. k-Wave models the medium
of propagation as a speed of sound and a density distribution mapped on a
Cartesian grid. Other parameters like absorption or the non-linearity coefficient
B/A can also be defined on this grid. This medium of propagation can be defined
in 2D or 3D. The choice made should be studied case by case.

To do 2D modeling is equivalent to ignore the influence of the planes parallel
to the imaging plane. Clearly, this hypothesis is directly satisfied if the medium of
propagation is invariant along the elevation direction of the probe. The 3D case
can be considered to verify this hypothesis or in all other situations where the
parallel planes are important. 3D simulations can be made using an optimized
version of k-Wave running on Graphics Processing Unit (GPU) which drastically
reduces the computation time (up to 10 times faster than the original code on
Matlab). This version is currently unavailable in 2D and 2D simulations can only
be run in Matlab (The MathWorks Inc., Massachusetts, USA.) Nonetheless, the
memory available on current GPU limits the size of the Cartesian grid that has
to be modeled. This essential drawback will be discussed in Sect. 7.

6 Results

6.1 Theoretical Validation of the Point Spread Function (PSF)

The Point Spread Function (PSF) of any imaging system is its response to a
point source. For B-mode imaging, such a source consists in an infinitesimally
small region where the speed of sound and the density distributions slightly differ
from the rest of the medium. Recovering the physical PSF of the 3Sc sector probe
within our pipeline is a key step towards its validation.

We here present this validation for the 2D case (see the Discussion section
for its extension in 3D). Nonetheless, the spatial steps and the number of points
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used for the simulation grid have a direct impact on the quality of the PSF
recovering. In fact, the maximum frequency that can propagate and be solved
in the numerical simulations is inversely proportional to the smallest spatial
step used. Here we chose a 2008× 2008 2D grid with respectively 90µm and
75µm spatial steps. The corresponding dimensions of the modeled medium are
180mm (depth) and 150mm (width). Thus the maximum frequency respecting
the Nyquist theorem of two points-per-wavelength is fmax = 8.6MHz.

The emitted signal is made of 2.56 sinusoidal cycles at f0 = 1.7MHz. No
apodization or filtering is applied to this signal. The imaging sequence is com-
posed of 120 angles between −30◦ and 30◦. The modeled medium consists in an
homogeneous speed of sound of c0 = 1540 m.s−1 and an homogeneous density
of d0 = 1035 kg.m−3, apart from the point source where c1 = 1600m.s−1 and
d1 = 1040 kg.m−3. This point source is made of one single point of the simulation
grid aligned with the middle of the simulated probe and placed at 100mm.

An intensity profile is extracted from the 100 mm-radius circle centered in
the middle of the 1D-transducer. A log compression is applied and relative inten-
sities are displayed with respect to the orientation of the point with the probe
(Fig. 4). Both profiles are normalized to the maximum intensity obtained in the
simulation. The simulated profile is in excellent agreement with the theoretical
expectation. The agreement (in particular for the five main lobes) is nonetheless
sufficient to validate the PSF recovery within our simulations. This result also
confirms the relevance of the spatial steps chosen in our study.

Fig. 4. Simulated (blue line) and theoretical (red line) PSF. (Color figure online)

6.2 Experimental Validation on an Acoustic Phantom

The theoretical validation of the PSF has been completed by an experimental
validation of the simulations. B-mode images of an acoustic phantom 403GS LE
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(Gammex Inc., Middleton, Wisconsin, USA.) have been acquired with the 3Sc
probe connected to a commercial console Vivid S70 (General Electric Healthcare,
Illinois, USA.) Contrary to more complex modeling (like in Sect. 6.3), simulating
the phantom in 2D is still relevant since it is invariant in one direction (height
direction). Elevation imaging plane is thus not impacted by structural hetero-
geneities. The grid parameters used for the theoretical validation are conserved
(90µm and 75µm spatial steps, 2008× 2008 points, 180× 150 mm dimensions).
Here we chose to use an emission frequency at 2.3MHz and to focus on harmonic
imaging (reception at 4.6MHz). The spatial steps upper defined guarantee 3
points-per-wavelength at 4.6MHz.

Fig. 5. (a) Simulated B-mode image of the Gammex phantom. (b) Corresponding
experimental B-mode image of the Gammex phantom acquired with the 3Sc probe on
the Vivid S70 console.

Figure 5 provides both the experimental and simulated B-mode images. The
agreement between the two images is fairly good. Both pin targets and anechoic
cysts’ acoustic behaviours are caught up within our simulation (respectively
higher and lower reflection than the background). Speckle pattern of the phantom
background is also well recovered.

6.3 Numerical Simulation of a Cardiac Image in Apical View

An echographic image of the numeric heart phantom described in Sect. 2 has
been simulated. In that case, the elevation dimension has to be modeled leading
to the realization of simulations in 3D. The imaging slice used here is shown in
Fig. 2(b). The grid dimensions are 1024× 512× 64 (depth×width× height) with
respectively 189µm, 219µm and 200µm spatial steps. These grid dimensions
correspond to the largest grid that can fit the memory of GPU currently available
and used in this study. The corresponding dimensions of the modeled medium
are 193mm (depth), 112mm (width) and 15mm (height). Thus, the maxi-
mum frequency respecting the Nyquist theorem of two points-per-wavelength
is fmax = 4.1MHz in depth, fmax = 3.4MHz in width and fmax = 2.3MHz in
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height. In that case we study fundamental imaging at f0 = 2.8MHz. The simu-
lated image is provided in Fig. 6(a). Myocardium as well as both ventricles and
atria are well recovered. Speckle pattern is coherent near the probe but spatial
resolution is slightly too high further away from it (see Discussion). Such an
image can be obtained in about 30 min.

Finally we provide preliminary results showing how our pipeline can be used
to study the impact of anatomical structures on image quality. We have added
a modelling of the rib cage on our previous imaging slice (see Fig. 2(c)). The
corresponding simulated image is provided in Fig. 6(b). One can see that the rib
cage causes a shadowing of the right ventricle that makes disappear its walls. Ribs
also cause a blurring of left atrium and left ventricle. This leads to an apparent
thickening of the mitral valve as well as a distortion of the atria’s shape. These
results are coherent with physicians experience during clinical exams.

Nonetheless both images of Fig. 6 display a numerical artefact because of
the limited number of points along the height direction. As mentioned above
the maximum frequency that satisfies the Nyquist theorem in that direction
is fmax = 2.3MHz which is lower than our fundamental frequency at emission
(f0 = 2.8MHz). Thus a bright point can be seen around the coordinate (100,60)
on both images. This is due to aliasing and the non-propagation of frequencies
above fmax = 2.3MHz.

7 Discussion

The accuracy of our simulations has been demonstrated both theoretically and
experimentally in the 2D case where smaller spatial steps can be used with rea-
sonable computational costs. The extension to 3D simulations is still limited by
the memory size currently available on GPU. Video cards used in this study
(GeForce GTX 1080 Ti, NVIDIA Corporation, California, USA) have a memory
of 11 GB which can contain a grid made of 225 points. Cardiac simulations pre-
sented in this study are designed to meet the best trade-off between this memory
constraint, the spatial steps needed to propagate relevant frequencies and the
actual size of the medium to simulate. To do so, we had to increase the step size
in the height direction leading to aliasing and poor spatial resolution far from
the probe.

Nonetheless we believe these limitations will soon disappear. First, the mem-
ory available on GPU is rapidly increasing. Second, a discussion with the creators
of k-Wave lets us think that a new version of the optimized code, distributed
over several GPUs, will soon be available. This will lead to smaller computation
times and will also allow running simulations on a far larger grid than today,
therefore improving precision and complexity.

For now, absorption and non-linearity are not taken into account. These two
features can directly be set in k-Wave when defining the medium of propagation.
Their addition will increase the accuracy of our pipeline.

Moreover, the propagation of shear-waves in bony structures like ribs would
also have to be studied. The k-Wave toolbox provides a wave-equation solver
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Fig. 6. Simulated B-mode image of the heart model without (a) and with (b) ribs
within the imaging field.

based on a visco-elastic definition of the medium of propagation [7]. This solver
has not been used in this study but its implementation should be straightforward.

Finally, the cardiac modeling could benefit from many add-ons related to
many anatomic or functional diseases that have to be studied. Important com-
putational improvements can even lead to a 4D (3 spatial dimensions and time)
modeling of the heart. In such a case, complex dysfunctions like arrhythmia and
their translation into an echographic image could be developed.

8 Conclusion

An end-to-end simulation pipeline including realistic cardiac, torso and ultra-
sonic probe modelling has been presented. The control over every simulation
steps offers a great freedom for investigating the echographic image quality. The
simulations’ accuracy has been confirmed by recovering a theoretical PSF and the
comparison of 2D simulations with experimental B-mode images of an acoustic
phantom. Finally, simulated B-mode images of the heart model with and without
the rib cage have been created to investigate its impact on the image quality. The
inclusion of more advanced anatomical and physiological features together with
current computational improvements, making this simulation pipeline a useful
tool to investigate the key aspects of image quality.
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Abstract. We propose to learn a probabilistic motion model from a
sequence of images. Besides spatio-temporal registration, our method
offers to predict motion from a limited number of frames, useful for tem-
poral super-resolution. The model is based on a probabilistic latent space
and a novel temporal dropout training scheme. This enables simulation
and interpolation of realistic motion patterns given only one or any sub-
set of frames of a sequence. The encoded motion also allows to be trans-
ported from one subject to another without the need of inter-subject
registration. An unsupervised generative deformation model is applied
within a temporal convolutional network which leads to a diffeomorphic
motion model – encoded as a low-dimensional motion matrix. Applied
to cardiac cine-MRI sequences, we show improved registration accuracy
and spatio-temporally smoother deformations compared to three state-
of-the-art registration algorithms. Besides, we demonstrate the model’s
applicability to motion transport by simulating a pathology in a healthy
case. Furthermore, we show an improved motion reconstruction from
incomplete sequences compared to linear and cubic interpolation.

1 Introduction

In medical imaging, an important task is to analyze temporal image sequences to
understand physiological processes of the human body. Dynamic organs, such as
the heart or lungs, are of particular interest to study as detected motion patterns
are helpful for the diagnosis and treatment of diseases. Moreover, recovering the
motion pattern allows to track anatomical structures, to compensate for motion,
to do temporal super-resolution and motion simulation.

Motion is typically studied by computing pairwise deformations – the regis-
tration of each of the images in a sequence with a target image. The resulting
dense deformation fields track moving structures from the beginning to the end of
the sequence. Providing an invertible and smooth transformation, diffeomorphic
registration algorithms such as the SyN algorithm [2], the LCC-demons [11] or
recent learning-based algorithms [6,10] are especially suited for the registration
c© Springer Nature Switzerland AG 2020
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of sequential images. One difficulty is to acquire temporally smooth deformations
that are fundamental for tracking. That is why registration algorithms with a
temporal regularizer have been proposed [7,12,13,15]. In the computer vision
community, temporal video super-resolution and motion compensation are of
related interest [5].

However, while these methods produce accurate dense deformations, they do
not aim to extract intrinsic motion parameters crucial for building a compre-
hensive motion model useful for analysis tasks such as motion classification or
simulation. Rohé et al. [14] proposed a parameterization, the Barycentric Sub-
spaces, as a regularizer for cardiac motion tracking. Yang et al. [16] generated a
motion prior using manifold learning from low-dimensional shapes.

We propose to learn a probabilistic motion model from image sequences
directly. Instead of defining a parameterization explicitly or learning from
pre-processed shapes, our model captures relevant motion features in a low-
dimensional motion matrix in a generic but data-driven way. This learned latent
space can be used to fill gaps of missing frames (motion reconstruction), to pre-
dict the next frames in the sequence or to generate an infinite number of new
motion patterns given only one image (motion simulation). Motion can be also
transported by applying the motion matrix on an image of another subject.

The probabilistic motion encoding is learned by generalizing a pair-wise regis-
tration method [10] based on Bayesian inference [9] using a temporal regularizer
with explicit time dependence. Furthermore, to enforce temporal consistency,
we introduce a novel self-supervised training scheme called temporal dropout
sampling. The framework is learned in an unsupervised fashion from image
sequences of varying lengths. Smooth, diffeomorphic and symmetric deforma-
tions are ensured by applying an exponentiation layer, spatio-temporal regular-
ization and a symmetric local cross-correlation metric. Besides motion simula-
tion, the model demonstrates state-of-the-art registration results for diffeomor-
phic tracking of cardiac cine-MRI. The main contributions are as follows:

• An unsupervised probabilistic motion model learned from image sequences
• A generative model using explicit time-dependent temporal convolutional net-

works trained with self-supervised temporal dropout sampling
• Demonstration of cardiac motion tracking, simulation, transport and tempo-

ral super-resolution.

2 Methods

The motion observed in an image sequence with T + 1 frames is typically
described by deformation fields φt between a moving image I0 and the fixed
images It with t ∈ [1, T ]. Inspired by the probabilistic deformation model of [10]
based on conditional variational autoencoder (CVAE) [9], we define a motion
model for temporal sequences. The model is conditioned on the moving image
and parameterizes the set of diffeomorphisms φt in a low-dimensional probabilis-
tic space, the motion matrix z ∈ R

d×T , where d is the size of the deformation
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Fig. 1. Probabilistic motion model (a): The encoder qω projects the image pair (I0, It)
to a low-dimensional deformation encoding z̃t from which the temporal convolutional
network pγ (b) constructs the motion matrix z ∈ R

d×T conditioned on the normalized
time t̄. The decoder pθ maps the motion matrix to the deformations φt. The temporal
dropout sampling procedure (c) randomly chooses to sample z̃t either from the encoder
qω or the prior distribution.

encoding per image pair. Each column’s zt-code corresponds to the deforma-
tion φt. To take temporal dependencies into account, zt is conditioned on all
past and future time steps. To learn this temporal regularization directly from
data, we apply Temporal Convolutional Networks [3] with explicit time depen-
dence and temporal dropout sampling enforcing the network to fill time steps
by looking at given past and future deformations. An illustration of the model
is shown in Fig. 1a.

Probabilistic Motion Model. Our motion model consists of three distri-
butions. First, the encoder qω(z̃t|I0, It) maps each of the image pairs (I0, It)
independently to a latent space denoted by z̃t ∈ R

d. Second, as the key com-
ponent of temporal modeling, these latent vectors z̃t are jointly mapped to the
motion matrix z by conditioning them in all past and future time steps and on
the normalized time t̄: pγ(z|z̃1:T , t̄1:T ). Finally, the decoder pθ(It|zt, I0) aims to
reconstruct the fixed image It by warping the moving image I0 with the defor-
mation φt. This deformation φt is extracted from the temporally regularized
zt-codes. The decoder is conditioned on the moving image by concatenating the
features at each scale with down-sampled versions of I0.
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The distributions qω, pγ , pθ are approximated by three neural networks with
trainable parameters ω, γ, θ. During training, a lower bound on the data likeli-
hood is maximized with respect to a prior distribution p(z̃t) of the latent space z̃t

(cf. CVAE [9]). The prior p(z̃t) is assumed to follow a multivariate unit Gaussian
distribution with spherical covariance I: p(z̃t) ∼ N (0, I). The objective function
results in optimizing the expected log-likelihood pθ and the Kullback-Leibler
(KL) divergence enforcing the posterior distribution qω to be close to the prior
p(z̃t) for all time steps:

T∑

t=1

Ezt∼pγ(·|z̃1:T ,t̄1:T )

[
log pθ(It|zt, I0)

]
− KL [qω(z̃t|I0, It)‖p(z̃)] . (1)

Unlike the traditional CVAE model, the temporal regularized zt-code is used in
the log-likelihood term pθ instead of the z̃t. We model pθ as a symmetric local
cross-correlation Boltzmann distribution with the weighting factor λ. Encoder
and decoder weights are independent of the time t. Their network architec-
ture consists of convolutional and deconvolutional layers with fully-connected
layers for mean and variance predictions in the encoder part [9]. We use an
exponentiation layer for the stationary velocity field parameterization of dif-
feomorphisms [10], a linear warping layer and diffusion-like regularization with
smoothing parameters σG in spatial and σT in temporal dimension.

Temporal Convolutional Networks with Explicit Time Dependence.
Since the parameters of encoder qω and decoder pθ are independent of time, the
temporal conditioning pγ plays an important role in merging information across
different time steps. In our work, this regularization is learned by Temporal
Convolutional Networks (TCN). Consisting of multiple 1-D convolutional layers
with increasing dilation, TCN can handle input sequences of different lengths.
TCN have several advantages compared to recurrent neural networks such as a
flexible receptive field and more stable gradient computations [3].

The input of the TCN is the sequence of z̃ concatenated with the normalized
time t̄ = t/T . Providing the normalized time explicitly, provides the network
with information on where each z̃ is located in the sequence. This supports the
learning of a motion model from data representing the same type of motion
with varying sequence lengths. The output of the TCN is the regularized motion
matrix z. We use non-causal instead of causal convolutional layers to also take
future time steps into account. We follow the standard implementation using
zero-padding and skip connections. Each layer contains d filters. A schematic
representation of our TCN is shown in Fig. 1b. For cyclic sequences, one could
use a cyclic padding instead of zero-padding, for example by linking z̃T to z̃0.
However, in case of cardiac cine-MRI, one can not assume the end of a sequence
coincides with the beginning as 5–10% of the cardiac cycle are often omitted [4].

Training with Temporal Dropout Sampling. Using Eq. 1 for training could
lead to learning the identity transform z ≈ z̃ in the TCN pγ such that defor-
mations of the current time step are independent of past and future time steps.



180 J. Krebs et al.

To avoid this and enforce the model to search for temporal dependencies during
the training, we introduce the concept of temporal dropout sampling (TDS). In
TDS, some of the z̃t are sampled from the prior distribution p(z̃) instead of only
sampling from the posterior distribution qω(z̃t|I0, It) as typical for CVAE. At
the time steps the prior has been used for sampling, the model has no knowledge
of the target image It and is forced to use the temporal connections within the
TCN in order to minimize the objective.

More precisely, at each time step t, a sample from the prior distribution
z̃priort ∼ p(z̃t) is selected instead of a posterior sample z̃postt ∼ qω(z̃t|I0, It) using a
binary Bernoulli random variable rt. All independent Bernoulli random variables
r ∈ R

T have the success probability δ. The latent vector z̃t can be defined as:

z̃t = rt ∗ z̃priort + (1 − rt) ∗ z̃postt . (2)

Figure 1c illustrates the TDS procedure. At test time, for each time step inde-
pendently, one can either draw z̃t from the prior or take the encoder’s prediction.

3 Experiments

We evaluate our motion model on 2-D cardiac MRI-cine data. First, we demon-
strate accurate temporal registration by evaluating motion tracking and com-
pensation of the cardiac sequence, taking the end-diastolic (ED) frame as the
moving image I0. Stabilization, is accomplished by warping all frames It to the
ED frame. Pair-wise registration results are presented for ED-ES (end-systolic)
frame pairs. Second, we present motion transport, motion sampling and recon-
struction with a limited number of frames.

Data. We used 334 short-axis sequences acquired from different hospitals includ-
ing 150 sequences from the Automatic Cardiac Diagnosis Challenge 2017 (ACDC
[4]). The remaining cases were obtained from the EU FP7-funded project MD-
Paedigree (Grant Agreement 600932), mixing congenital heart diseases with
healthy and pathological images from adults. The cine images were acquired
in breath hold using 1R-R or 2R-R intervals with a retrospective or prospec-
tive gating. The sequence length T varied from 13 to 35 frames. We used the
100 cases from ACDC that contain ED-ES segmentation information for testing
while the remaining sequences were used for training. All slices were resampled
with a spacing of 1.5 × 1.5 mm and cropped to a size of 128 × 128 pixels.

Implementation Details. The encoder qω consisted of 4 convolutional layers
with strides (2, 2, 2, 1) and dense layers of size d for mean and variance estimation
of the VAE. The TCN consisted of four 1-D convolutional layers with dilations
(1, 2, 4, 8), same padding, a kernel size of 3 and skip connections (cf. Fig. 1b).
The decoder pθ had 3 deconvolutional and 1 convolutional layer before the expo-
nentiation and warping layers (Fig. 1a). The regularization parameters σG and
σT were set to 3 mm respectively 1.5. The loss weighting factor λ was chosen
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Fig. 2. Tracking results showing RMSE, spatial and temporal gradient of the displace-
ment fields, DICE scores and Hausdorff distances. LV volumes in ml are shown for
two test sequences (ground truth ED/ES volumes marked with points). The proposed
algorithms (Our and Our w/o TDS) show slightly higher registration accuracy and
temporally smoother deformations than the state-of-the-art algorithms: SyN [2], LPR
[10] and 4D-Elastix [12].

empirically as 6·104. The deformation encoding size d was set to 32. The dropout
sampling probability δ was 0.5. We applied a first-order gradient-based method
for stochastic optimization (Adam [8]) with a learning rate of 0.00015 and a batch
size of one. We performed data augmentation on-the-fly by randomly shifting,
rotating, scaling and mirroring images. We implemented the model in Tensorflow
[1] with Keras1. The training time was 15 h on a NVIDIA GTX TITAN X GPU.

3.1 Registration: Tracking and Motion Compensation

We compare our model with and without the temporal dropout sampling (Our
w/o TDS) with three state-of-the-art methods: SyN [2], the learning-based prob-
abilistic registration (LPR, 2-D single-scale version [10]) and the b-spline-based
4D algorithm in elastix [12]. In contrast to the results in [10], in this work, LPR
was trained in 2-D taking all images from a sequence into account, not only
ED/ES pairs. The following results are reported for full sequences, except the

1 https://github.com/fchollet/keras.

https://github.com/fchollet/keras
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Fig. 3. Visual results of one test sequence, showing tracking, the Jacobian determinant
(Det.-Jac.) and motion compensation (Comp.).

metrics based on segmentations which are only reported on frame pairs with
provided ground truth information (ED/ES pairs).

In Fig. 2, tracking results are visualized for the test data taking sequences of
all slices where segmentation in ED and ES frames are available, resulting in 677
sequences. We report the root mean square error (RMSE), the spatial (Spatial
Grad.) and temporal gradient (Temp. Grad.) of the displacement fields for eval-
uating the smoothness of the resulting deformations. Our model shows spatially
and temporally smoother deformations. We also report DICE scores and 95%-tile
Hausdorff distances (HD in mm) on five anatomical structures: myocardium (LV-
Myo) and epicardium (LV) of the left ventricle, left bloodpool (LV-BP), right
ventricle (RV) and LV+RV. Note, that DICE scores and HD were evaluated on
ED-ES frame pairs only. The proposed method showed improved mean DICE
scores and smaller mean HD of 84.6%, 6.2 mm (w/o TDS: 84.7%, 6.1 mm) com-
pared to SyN, LPR, 4D-Elastix with (82.7%, 7.0 mm), (82.1%, 6.6 mm) respec-
tively (83.7%, 6.3 mm%). Compared to training without temporal dropout sam-
pling, HD and DICE scores show minimal differences, indicating that using TDS
does not degrade registration accuracy while improving deformation regularity.
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Fig. 4. Left Top: LV volume curves from simulated and reconstructed motion by pro-
viding only a subset of frames and predicting the complete motion sequence from them.
We provided only the first frame I0 (sampling), every second, every fifth, the first five
frames or only the tenths frame of the same sequence. Left Bottom: Mean volume errors
with respect to the tracking volumes of all 677 testing cases comparing our sampling
procedure with linear interpolation between velocity fields of the given frames. Right:
The motion matrix z from a pathological (first row: dilated myopathy DCM) and a
healthy subject (second row) are transported from one to the other (bottom rows).

Furthermore, only TDS offers consistent motion simulation and temporal inter-
polation.

In the bottom right of Fig. 2, LV volume curves computed by warping the ED
mask are plotted. One can see that the SyN algorithm underestimates big defor-
mations. Both, the volume and the gradient metrics show smoother deformations
for both versions of our motion model compared to the SyN, LPR and 4D-Elastix
algorithms. Visual results for one case including tracking, determinant of Jaco-
bians and compensated motion are shown in Fig. 3. Motion compensation was
done by warping the It’s frame with inverted diffeomorphisms.

3.2 Sampling, Sequence Reconstruction and Motion Transport

We then evaluate motion sampling, reconstruction and transport. We extract
simulated reconstructed motion patterns if we provide our model with different
subsets of images from the original sequence. In the time steps without frames,
the motion matrix z is created by randomly sampling z̃t from the prior distribu-
tion as depicted in Fig. 1c (take same z̃t for all slices of one volume). Here, we
choose sampling over interpolation in z̃-space to remain an uncertain, a proba-
bilistic, estimation of the interpolated deformations. The left side of Fig. 4 shows
LV volume curves and reconstruction errors if every second, every fifth, only the
10th, no frame (sampling) or the first 5 frames are provided besides the moving
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frame (ED). The LV volume errors are computed on all test sequences by taking
the mean absolute differences between sampled and tracking volumes. We com-
pare with linear and cubic interpolation of velocities (extracted from tracking)
between given times. One can see that our model performs better in recovering
the LV volume, compared to linear and cubic interpolation when fewer frames are
provided. Given the first five frames or only one additional frame (10th frame),
the model estimates the motion consistently with plausible cardiac motion pat-
terns for the missing time steps. In the cases of providing every second and every
fifth frame, our method performs equally good or marginally better. Note, the
motion simulation given only the ED frame (sampling) does not overlap with the
original motion, which is not intended. Nevertheless, one can see cardiac specific
motion patterns such as the plateau phase before the atrial systole.

Motion can be transported by taking the motion matrix z from one sequence
and apply it on the ED frame I0 of another sequence. The right side of Fig. 4
shows the transport of a pathological motion to a healthy subject and vice versa.
The resulting simulated motion shows similar heart contractions and motion
characteristics as the originating motion while the transported deformations are
adapted to the target image without requiring explicit inter-subject registration.

4 Conclusions

In this paper, we presented an unsupervised approach for learning a motion
model from image sequences. Underlying motion factors are encoded in a low-
dimensional probabilistic space, the motion matrix, in which each column rep-
resents the deformation between two frames of the sequence. Our model demon-
strated accurate motion tracking and motion reconstruction from missing frames,
which can be useful for shorter acquisition times and temporal super-resolution.
We also showed motion transport and simulation by using only one frame. Lim-
itations of the presented approach include the support for 3-D image sequences
and the generalization to other use cases such as respiratory motion.

For future work, we aim to explore these points and especially the spatial
coherence between slices for 3-D applications and the influence of using differ-
ent training datasets (pathological and non-pathological) on the learned motion
matrix.

Disclaimer: The concepts and information presented in this paper are based
on research results that are not commercially available.
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Abstract. Deep learning based registration methods have emerged as
alternatives to traditional registration methods, with competitive accu-
racy and significantly less runtime. Two different strategies have been
proposed to train such deep learning registration networks: supervised
training strategy where the model is trained to regress to generated
ground truth deformation; and unsupervised training strategy where the
model directly optimises the similarity between the registered images.
In this work, we directly compare the performance of these two training
strategies for cardiac motion estimation on cardiac cine MR sequences.
Testing on real cardiac MRI data shows that while the supervised train-
ing yields more regular deformation, the unsupervised more accurately
captures the deformation of anatomical structures in cardiac motion.

1 Introduction

Cardiac motion analysis assesses regional deformation parameters such as vol-
ume output, strain and torsion, which are indicative for the diagnosis and treat-
ment for patients with cardiovascular diseases [8,9]. The deformation parameters
can be derived from displacement field estimated from cardiac magnetic reso-
nance (MR) images. Traditionally cardiac motion estimation is cast as a series
of pairwise registration tasks. Shen et al. [8] extended a hierarchical attribute-
matching based registration method to simultaneously estimate cardiac motion
of all frames in a sequence by formulating cardiac motion as spatial-temporal
4D registration. Shi et al. [9] applied B-spline free-form deformation (FFD) reg-
istration [7] on both cine and tagged cardiac MR images by spatially weighting
the complementary information from the two modalities.

Deep learning methods have been successfully applied to deformable registra-
tion, demonstrating competitive performances with significantly superior speed.
Several methods that train deep convolutional neural networks (ConvNets) to
perform one-shot prediction of the deformation between two images have been
proposed. A critical difference in the proposed methods is the supervision signal
used during training. On the one hand, networks are trained to perform a regres-
sion task using ground truth deformation that are acquired either via random
c© Springer Nature Switzerland AG 2020
M. Pop et al. (Eds.): STACOM 2019, LNCS 12009, pp. 186–194, 2020.
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simulation [3,10] or traditional registration algorithms [2,12]. These methods
are termed supervised methods since the ground truth of the deformation is
used in training. On the other hand, several recent unsupervised methods opt
to directly optimise the parameters of the network to maximise intensity-based
similarity for all image pairs in a training dataset [1,11]. Most related to this
work, [6] incorporated unsupervised registration method to provide complemen-
tary motion information for cardiac segmentation. Despite the advances of both
supervised and unsupervised methods, it remains unclear which training strategy
is more suitable for cardiac motion estimation.

In this work, we trained a deep learning registration network to perform car-
diac motion estimation using both supervised and unsupervised training strategy,
and compared the performances on both the accuracy and the regularity of the
estimated motion. We show that the unsupervised model was able to extract
motion that describes the deformation of anatomical structure more accurately,
while the supervised model produced spatially smoother and more topology-
preserving deformation.

2 Background

The objective of cardiac motion estimation is to determine the spatial transfor-
mation of cardiac structures over time. Let {It}t=0,1,2,...,NT

represent a sequence
of cardiac cine MR images where NT is the total number of frames and let
p0 ∈ R

2 denotes the position of a point on the first frame (t = 0). We can
determine the spatial transformation T (·) using image registration such that
I0(p0) and It(Tt(p0)) represent the same anatomical structure. The transforma-
tion can be described by a dense displacement field (DDF), denoted by ut where
ut(p0) = pt − p0.

Deep learning has been used to perform the registration with one-step predic-
tion by modelling a complex function fθ(I0, It) = ut that maps a pair of images
to the optimal displacement field using convolutional neural network (ConvNet),
where θ is the parameters of the network. The parameters θ in the registration
network can be trained using two different supervision signals: ground truth DDF
uGT (supervised), or the similarity between the pairs of images after registration
(unsupervised).

3 Method

This paper adapts and compares two training strategies, supervised and unsu-
pervised, for a deep learning based cardiac motion estimation in cine MR image
sequences. The registration networks and the training strategies were set up in
a comparable manner for a fair comparison. An overview of both the supervised
and unsupervised registration frameworks is illustrated in Fig. 1.
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(a) Supervised

(b) Unsupervised

Fig. 1. Supervised and unsupervised registration framework

3.1 Supervised Training

Ground Truth Deformation. The ground truth deformation is required for
supervised training of the registration network. Existing deep learning meth-
ods for deformable registration usually generate the ground truth displacement
uGT using traditional registration methods [2], and use the original image pair
{(I0, It)} as input to the network. The network sees the real image pairs during
training but the ground truth deformation does not completely capture the trans-
formation due to residual errors from the traditional registration methods used
to estimate the ground truth deformation. Alternatively, the deformation field
acquired from traditional registration can be used to deform image It to generate
a pseudo-target image I ′

0 = It ◦ Tut
. We then use the image pairs {(I ′

0, It)} as
input to the network. The ground truth in this setting fully captures the defor-
mation between the input image pair (I ′

0, It) and thus is not limited by residual
registration errors. These two variants of supervised training are compared in
Sect. 4.2. B-spline FFD [7] is used for traditional registration.

Training. As shown in Fig. 1(a), the network predicts the DDF ut from each
pair of input images. For cardiac motion estimation, a sequence of image pairs
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{(I0, It)}t=1,2,3,...,NT
is given as input to the network in one batch such that

each training iteration optimises the group registration of the sequence [6,8].
The end-diastolic (ED) frame is used as the first frame (or the target frame) and
is repeated in each pair in the batch. To train the model, we use Mean Square
Error (MSE) between the predicted and ground truth DDF as the regression
loss:

Lsupervised =
1

NT

NT∑

t=1

⎛

⎝ 1
|Ω|

∑

p∈Ω

(ut(p) − uGT (p))2

⎞

⎠ (1)

where NT is the number of frames in one batch/sequence and Ω is the spatial
domain of the images.

3.2 Unsupervised Training

As illustrated in Fig. 1(b), we use image intensity-based similarity as loss func-
tion with an additional regularisation on the predicted displacements. The loss
function that the training minimises at each iteration is:

L = LMSE + λLsmooth (2)

The first term in the loss function measures the pixel-wise difference between
the target image and the registered source image:

LMSE =
1

NT

NT∑

t=1

⎛

⎝ 1
|Ω|

∑

p∈Ω

(I ′
0(p) − I0(p))2

⎞

⎠ (3)

Here It is transformed to I ′
0 using differentiable bi-linear sampling in the

spatial transformation network [4], enabling backpropagation for training. The
second term in the loss function encourages spatially smooth deformation by
minimising the variation of displacements using approximated Huber loss [6] on
first-order spatial derivatives of ut,

Lsmooth =
1

NT

NT∑

t=1

⎛

⎝ 1
|Ω|

∑

p∈Ω

√∣∣∣∣
∂ut(p)

∂x

∣∣∣∣
2

+
∣∣∣∣
∂ut(p)

∂y

∣∣∣∣
2
⎞

⎠ (4)

Similar to the supervised training, one sequence of image pairs from one
cardiac sequence is used in each input batch. The weight λ of the smoothness
regularisation loss is set to 10−4 which is selected based on the performance on
the validation dataset.

3.3 Network Architecture

A schematic of the network is shown in Fig. 2. The same network architecture
is used in both training strategies and is adapted from the motion estimation
branch of the joint segmentation and motion estimation framework proposed
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in [6]. The network employs two encoder branches with 3 × 3 convolutional
kernels to extract features from the images. A stride of 2 is used every two
convolutional layers to reduce the resolution of feature maps by 2 and increase
the size of receptive field [1]. The features from all levels of the two encoders
are concatenated before a convolution layer and upsampling to full resolution.
Further convolutional layers are applied to fuse information from different scales
before making the final prediction.

Fig. 2. Architecture of the registration network. The coloured blocks represent images
or feature maps with the number of channels written inside. The resolution of the
feature maps with respect to the input is written underneath the blocks. The final
output has 2 channels encoding the displacement in 2 directions. (Color figure online)

4 Experiments

4.1 Set up

Data. The two training strategies are evaluated using short-axis view cardiac
MR images of healthy subjects from the UK BioBank study1. Randomly selected
image sequences of 120 subjects were used for training and validation with
another 100 subjects used for testing. Each sequence contains temporally pre-
aligned 2D stacks of images of 50 consecutive time points in a complete cardiac
cycle. In-plane resolution of the images is 1.8 × 1.8mm per pixel while through-
plane resolution is 10mm per pixel. The low resolution between planes could

1 UK Biobank Imaging Study. http://imaging.ukbiobank.ac.uk.

http://imaging.ukbiobank.ac.uk
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lead to physically implausible displacements of anatomical structure in 3D reg-
istration, which is the reason that our motion estimation is performed in 2D
plane. The segmentation of the left-ventricular cavity (LV), myocardium wall
(MYO) and right-ventricular cavity (RV) on the ED frame and the end-systolic
(ES) frame is used to evaluate the accuracy of the estimated motion.

Metrics. The estimated cardiac motion is evaluated on both accuracy and
smoothness. To evaluate the accuracy, we first estimate the motion between
the ED frame and the ES frame. Then we apply the estimated motion to deform
the segmentation mask of the ES frame towards the ED frame, and measure its
overlap with the ground true ED frame segmentation using the Dice score and
Hausdorff Distance (HD). HD is measured on the outer contours of the anatom-
ical structures. To evaluate regularity of deformation, we calculate the determi-
nant of the Jacobian matrix Jφ(p) = ∇φ(p), or simply the Jacobian, where φ
denotes the transformation. We compute the percentage of points that exhibit
non-diffeomorphic deformation, indicated by |Jφ(p)| ≤ 0. We also calculate mag-
nitudes of the gradient of the Jacobian, i.e. |∇|Jφ|| which is a second-order metric
measuring the spatial smoothness of deformation [5].

Comparison. To ensure fairness of the comparison, the supervised and unsu-
pervised model use exactly the same network architecture described in Sect. 3.3.
Both models are trained using the same amount of data for the same number
of iterations and tested on data of the same testing subjects. As a reference of
performance, the traditional B-spline FFD registration algorithm is also evalu-
ated on the same testing data. The FFD algorithm is set to use the sum squared
difference (SSD) as dissimilarity measure and Bending Energy (BE) as regular-
isation [7]. A 3-level hierarchical multi-resolution approach is used where the
spacing of B-spline control points on the highest resolution is set to 8mm. The
same setting of FFD was used to generate the ground truth deformation for
supervised training. The regularisation weights in the unsupervised method and
FFD introduce a trade-off between accuracy and deformation regularity, making
the selection of these parameters for fair comparison non-trivial. In this paper,
both regularisation weights were selected to maximise the accuracy performance
on the validation dataset.

Implementation Details. Input images are pre-processed by cropping to the
size of 160×160 so that the registration is focused on the region of interest. The
intensity value of input images is normalised to [0, 1]. The deep learning regis-
tration networks were implemented in Pytorch and trained for 500 epochs on
NVIDIA R© GeForce R© Titan Xp GPUs. The B-spline FFD registration was per-
formed using the implementation in MIRTK2. The runtime of FFD is measured
on an Intel R© CoreTM i7-8700 CPU.

2 https://mirtk.github.io/.

https://mirtk.github.io/
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4.2 Results

Table 1 shows the results of the accuracy and regularity of different methods.
When comparing the results of different methods, the Wilcoxon signed-rank test
is performed to assess the statistical significance. It can be observed that the
unsupervised training outperforms (p � 0.001) supervised training in terms of
accuracy especially on left ventricle and right ventricle, and on-par with B-spline
FFD on most metrics. Between supervised models, the one trained using the
{(I ′

0, It)} image pair (“sup+warp.”) performs similar to the one trained using the
{(I0, It)} image pair (“sup+orig.”) except better on myocardium measurements.
In terms of regularity, the supervised methods produce deformations that are
spatially smoother (lower |∇|Jφ||) and significantly less topology-altering (lower
%|J | ≤ 0).

Table 1. Accuracy and regularity of cardiac motion estimated by different methods.
The accuracy metrics are also evaluated on unregistered input images (“Unreg”) as a
reference. The mean and standard deviation over 100 testing subjects are presented.
The best results with statistical significant advantage (p � 0.001) are highlighted in
bold.

Method
Dice HD |∇|Jφ|| %|J | ≤ 0

LV Myo RV LV Myo RV

Unreg 0.641(0.058) 0.322(0.086) 0.551(0.077) 11.40(1.40) 8.90(2.00) 11.50(1.90) - -
FFD 0.941(0.049) 0.754(0.084) 0.671(0.109) 4.52(2.33) 4.73(1.44) 8.93(2.16) 0.021(0.023) 0.081(0.119)

DL(unsup) 0.943(0.046) 0.740(0.077) 0.709(0.087) 4.05(1.47) 4.62(1.25) 9.34(2.13) 0.047(0.014) 0.375(0.162)
DL(sup+warp.) 0.920(0.049) 0.735(0.080) 0.668(0.101) 4.61(1.11) 4.84(1.48) 9.06(1.91) 0.040(0.007) 0.025(0.038)
DL(sup+orig.) 0.926(0.048) 0.702(0.0801) 0.657(0.089) 4.41(1.35) 5.29(1.22) 9.22(1.88) 0.019(0.004) 0.030(0.040)

Figure 3 visually demonstrates the difference amongst different motion esti-
mation methods on one exemplar subject. The deep learning model trained using
supervised strategy performs inferior to its unsupervised counterpart. It can be
observed, from the ED frame image reconstructed by deforming the ES frame
image, that the supervised method significantly underestimates the deformation
and produces some artefacts in the middle of the LV blood pool. The unsu-
pervised method captures the deformation better but violates some topological
structure especially around epicardial contour, as illustrated by the folding that
can be observed on the deformed meshgrid.

Runtime Advantage. Despite not achieving significant performance advantage
over the traditional method, the deep learning models are able to register a
sequence of 50 2D frames in 80.05 ms whereas FFD takes 23.18 s. The runtimes
are measured and averaged over 100 test subjects.
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Fig. 3. Visualisation of motion estimation results. The target ED frame image IED is
shown on the top left. The rest of the first row shows the ED frame reconstructed by
deforming the ES frame image using deformation estimated by the various methods
(I ′

ED), overlaid by the meshgrid deformed using the same estimated deformation. The
second row shows the error maps (with RMSE values) between the reconstructed image
and the ED frame.

5 Conclusion and Discussion

In this work, we evaluated and compared the effect of different training strategy
on the performance of deep learning registration network on the task of cardiac
motion estimation. In terms of accuracy, we found that unsupervised training,
which uses only image similarity, outperforms the supervised training strategies.
This could be attributed to the fact that the unsupervised learning optimise
directly on the image intensity difference, while the supervised training is either
restricted by the registration error from FFD (“sup+orig.”) or the difference
between the testing target images and training target images (“sup+warp”).
Although performing inferior on accuracy, the supervised methods produce spa-
tially smoother and more topology-preserving deformation.

The superior regularity of the supervised methods could be a result of inher-
iting spatial smoothness property from the B-spline basis functions in FFD and
further regularisation in the regression. It is also possible that the better reg-
ularity can only be achieved while under-estimating deformation. This will be
further investigated in the future. Future studies should also include a supervised
model trained using randomly generated or permuted deformation ground truth
in the comparison. This will help to understand the need for realistic ground
truth deformation for the supervised method. Another limitation of the paper
is that only two representative supervised and unsupervised designs are experi-
mented whereas a study of more existing methods under the same experimental
setting would be able to draw a more general conclusion.
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1 Inria, Université Côte d’Azur, Sophia Antipolis, France
buntheng.ly@inria.fr

2 IHU Liryc, University of Bordeaux, Pessac, France

Abstract. We propose a data augmentation method to improve the
segmentation accuracy of the convolutional neural network on multi-
modality cardiac magnetic resonance (CMR) dataset. The strategy aims
to reduce over-fitting of the network toward any specific intensity or con-
trast of the training images by introducing diversity in these two aspects.
The style data augmentation (SDA) strategy increases the size of the
training dataset by using multiple image processing functions including
adaptive histogram equalisation, Laplacian transformation, Sobel edge
detection, intensity inversion and histogram matching. For the segmenta-
tion task, we developed the thresholded connection layer network (TCL-
Net), a minimalist rendition of the U-Net architecture, which is designed
to reduce convergence and computation time. We integrate the dual U-
Net strategy to increase the resolution of the 3D segmentation target.
Utilising these approaches on a multi-modality dataset, with SSFP and
T2 weighted images as training and LGE as validation, we achieve 90%
and 96% validation Dice coefficient for endocardium and epicardium seg-
mentations. This result can be interpreted as a proof of concept for a gen-
eralised segmentation network that is robust to the quality or modality
of the input images. When testing with our mono-centric LGE image
dataset, the SDA method also improves the performance of the epi-
cardium segmentation, with an increase from 87% to 90% for the single
network segmentation.

Keywords: Image segmentation · Multi-modality · Cardiac magnetic
resonance imaging · Late Gadolinium enhanced · Deep learning

1 Introduction

The combination of different MRI sequences, signal weighting techniques and
contrast agents that are currently used for MRI gives rise to diverse modalities
and qualities of the output image. Although each technique yields exploitable
results, the variation in the image contrast can be detrimental for the develop-
ment of automatic analysis tools in medical imaging.
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To answer to the input diversity problem in machine learning segmentation,
Seeböck et al. used an unpaired modality transfer generator network to reduce
the variability between multi-centric datasets [12]. On the other hand, Isensee et
al. proposed the nnU-Net (no-new U-Net), which automatically generates a CNN
pipeline that is optimised for each specific dataset [5]. However, these methods
require a sufficient mono-modality dataset, as they were built to be used for
mono-modality segmentation.

In this study, we propose an alternative approach to this problem. We design a
data augmentation method to train a single Deep Learning model to be robust to
multi-modality input, including the modality that was not used for optimisation,
thus the trained model can be used as a generalised segmentation tool. The
style data augmentation introduces diversity of image contrast into the training
dataset, with the goal to prevent the model from over-fitting toward the training
image modality and to focus the network attention to the fundamental geometry
features of the target. We base this method on the idea that despite having
different contrasts, the organ geometry features are consistent between MRI
modalities.

In this study, we use a 3D convolutional neural network for the segmentation
[1]. Nonetheless, this method can be costly in term of memory usage and compu-
tation time. We have devised two strategies to combat these issues. Firstly, we
proposed a minimalist U-Net inspired network, tailored to accelerate the conver-
gence speed and to decrease memory usage. Secondly, we adopt the dual network
strategy [6], which allows for the segmentation of high resolution targets.

2 Method

2.1 Thresholded Connection Layer Network

We propose a segmentation convolutional neural network called thresholded con-
nection layer or TCL-Net. The network architecture is shown in Fig. 1. This
architecture is an iteration of the U-Net architecture, originally proposed by
Ronneberger et al. [11]. As such, the network follows the same U-shape design
and is made up of an encoder and a decoder.

The architecture of TCL-Net exploits the segmentation network ultimate
objective, which is to eliminate non-target pixels and to highlight the target
pixels of the input image. TCL-Net uses, as the building unit, two consecutive,
padded, 3 × 3 × 3 convolutional layers, each followed by a normalisation and a
non-linear activation layer. At the end of each encoder unit, a 2 × 2 × 2 max
pooling is applied. Correspondingly, a 2 × 2 × 2 upsampling is applied to the
output of the decoder unit.

For the normalisation layer, we use the instance normalisation function [13],
since the training is done with a single-input batch. We used the LeakyReLU [9]
as the activation function of both convolutional layers of the encoder unit. For
the decoder units, the LeakyReLU layer is used after the first convolutional and
the ThresholdedReLU [7] is used after the second convolutional layer, before the
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Fig. 1. Thresholded connection layer network. Noted that the ThresholdedReLU layers
(red boxes) are only used at the end of each decoder unit. The number indicates the
filter of each convolutional layer. X is set according to the segmentation label (1 for
single label segmentation). (Color figure online)

upsampling layer. We used 0.3 as the coefficient of the LeakyReLU layer and 0.5
as the threshold value of the ThresholdedReLU layer.

The LeakyReLU layer would allow the negative pixels of the feature matrices
to pass through, while the ThresholdedReLU would reduce pixels smaller than
the threshold to zero. The goal is to let the features to be liberally processed
through each level of the encoder and to only apply thresholding at the very
end of each resolution level. In order for the network to preserve the elimination
progress from the thresholding, we used multiplication to connect the output
of the encoder with the decoder, instead of concatenation. Additionally, the
multiplication operation could greatly amplify or reduce the value of the output
features, which influences the elimination likelihood of each pixel in the next
thresholded layer.

Toward the end of TCL-Net, the sigmoid activation layer is added to scale
each pixel’s value down to between 0 and 1. The output of the sigmoid function
can be used to gauge the certainty of the segmentation at the pixel level. The final
ThresholdedReLU layer is used as the final processing function to eliminate the
pixels less than 0.5 from the output segmentation. The last two activation layers
would facilitate the integration of the Dice loss function detailed in Subsect. 2.4.

2.2 Dual U-Net Strategy

In this study, we implement the dual U-Net strategy [6], where two networks
are trained independently but can be used consecutively in the segmentation
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pipeline. The first network is trained to segment the target from the low reso-
lution inputs, as the original image has to be shrunk down to reduce memory
consumption. The segmented results of the first network are used to crop the
original images, which will be used as input for the second network.

To crop the output of the first network, we round up all the nonzero pixel
values to 1, then only one biggest region of connected positive pixels is kept. Note
that we integrate this strategy with TCL-Net, where thresholding is applied at
the end of the network. Additional thresholding might be necessary with other
architecture. To take into account the segmentation error, we apply the binary
dilation transformation on the cluster using a 5×5×5 spherical structure element.
Finally, the original image is cropped using the bonding box of the dilated region.

For this study, we are interested in left ventricular segmentation from CMR
images, specifically from late Gadolinium enhanced (LGE) images, in which the
myocardial scar is visible. The first network is used to locate the epicardium,
and then second network can either be used to refine the segmentation of the
same target or smaller targets such as endocardium and myocardial scar.

2.3 Style Data Augmentation

The style data augmentation strategy focuses on introducing contrast diversity
in the training dataset, via different image processing algorithms. The aim is
to prevent the model from over-fitting to any specific contrast and to focus the
optimisation toward the fundamental geometry features of target.

The image transformation algorithms were selected arbitrarily, as the goal is
to simply increase the variety of the training images. For this study, we selected
5 transformation functions, including adaptive histogram equalisation [3], Lapla-
cian transformation, Sobel edge detection, intensity inversion and histogram
matching [10], as shown in Fig. 2.

The histogram matching method can be used to convert the histogram of
the original training images (C0 and T2) toward the histogram of the validation
images (LGE) without the ground truth mask. More details on the dataset used
for this study is described in Subsect. 3.1. These functions were applied to the
normalized original image using the functions provided by SimpleITK’s python
package [8,14].

Our goal is to pre-train a segmentation model that is robust to any unknown-
to-the-model modality. As the method focuses on the geometry features, it is only
suited to be used for the image modalities where the target shape is consistent.

2.4 Experimental Setting

To validate the effectiveness of TCL-Net, we compare the validation result of
the new architecture with a baseline network proposed by Isensee et al. [4].
Both networks were trained using a single 3D input per batch. The 3D images
are interpolated to equalise the spacing of each dimension, thus the extracted
data would closely correspond to the physical size. We use linear and near-
est neighbour interpolation methods on the greyscale and mask images, respec-
tively. The interpolated images are then resized to 128 × 128 × 128. Finally, the
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Fig. 2. Different variations of input training images and the image processing methods.
C0 denotes the steady-state free precession CMR modality image.

images are normalised using linear normalisation function to bring the greyscale
value between [0–255]. To test the validity of our method, we do not apply any
shape transformation for additional augmentation or any complex pre-processing
method on the validation or training images.

We use an initial learning rate of 1e− 4, which decays by half each 5 epochs
with no validation improvement. An early stop is also programmed after 20
epochs of no increase in validation performance. At each epoch, 100 images will
be chosen randomly from the training dataset to be used to train the network.
The network is updated using Adam optimisation and Dice loss, calculated using
Eq. 1, where Ŷ is the prediction mask, and Y is the manual labelled mask.
During the training, we also measure the original Dice coefficient [2] between the
prediction and the manual mask, by applying the “half to even” round function to
binarise the output segmentation, Eq. 2. The round function breaks the gradient
chain, which prevents Dice coefficient from being used for backpropagation.

DiceLoss = 1 − 2 ∗
∑

(Ŷ ∗ Y )
∑

Ŷ +
∑

Y
(1)

DiceCoeff = 2 ∗
∑

(round(Ŷ ) ∗ Y )
∑

round(Ŷ ) +
∑

Y
(2)
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3 Evaluation on Clinical Data

3.1 Materials

For the multi-modal dataset, we use the dataset provided in MS-CMRSeg 2019
segmentation challenge [15,16]. The challenge dataset consists of 135 3D CMR
images of 45 patients taken under three modalities: T2-Weighted (T2), balanced-
Steady State Free Precession (C0) and late Gadolinium enhanced (LGE), Fig. 3.
The manually labelled masks were provided for the first 35 images of T2 and
C0 but only for the first 5 images of LGE modality. The provided labels include
epicardium and endocardium of the left ventricle and endocardium of the right
ventricle. By applying our data augmentation method, we trained the network
with 420 images of different variations of the original C0 and T2 images and
validated the network with the 5 LGE images.

Fig. 3. Short-axis view of original LGE, C0 and T2 CMR images. Note that despite
having different contrasts, all these images show the same anatomical structure.

While the SDA method was not designed to be used with mono-modal
datasets, we still wish to study the effectiveness of the training input’s con-
trast diversity under this context. We used our local dataset, which consists of
119 mono-centric LGE-CMR images provided by IHU Lyric. Since the dataset
is mono-modal, we remove histogram matching from the SDA algorithms. The
original dataset was first split in 9:1 ratio for training and validation, before the
augmentation method was applied to the training images. We then compare the
mean of best validation scores from 5 different sets of validation images of the
model trained with and without SDA method.

3.2 Results

Multi-modality. The Table 1 shows the validation results of TCL-Net and
Isensee on the multi-modal dataset. Using the TCL-Net with dual network and
SDA method, the validation scores reach 0.967 and 0.904 for the epicardium and
endocardium segmentations. This is a considerable improvement from 0.833 and
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Table 1. The validation Dice coefficient on multi-modality dataset. *: the best results;
w/o HM: without Histogram Matching.

Single Network Dual Network

TCL-Net Isensee’s TCL-Net Isensee’s

Epi

Original(C0&T2) 0.833 ± 0.020 0.791 ± 0.015 0.878 ± 0.006 0.787 ± 0.007

+SDA *0.915 ± 0.006 0.845 ± 0.013 *0.9677 ± 0.012 0.866 ± 0.011

+SDA(w/o HM) 0.908 ± 0.007 0.854 ± 0.129 0.9671 ± 0.004 0.874 ± 0.007

Endo

Original(C0&T2) 0.692 ± 0.041 0.651 ± 0.008 0.767 ± 0.008 0.787 ± 0.005

+SDA *0.865 ± 0.021 0.805 ± 0.038 *0.904 ± 0.003 0.836 ± 0.006

+SDA(w/o HM) 0.857 ± 0.011 0.780 ± 0.019 0.900 ± 0.007 0.839 ± 0.010

0.692 without these two improvements. There is a slight decrease in performance
when histogram matching is removed from the SDA algorithms. Nonetheless, the
network still performs better compared to training with only original images.

As shown in Fig. 4, TCL-Net performance is enhanced considerably with
multi-modality training set (SDA and C0&T2) compared with mono-modality.
We can observe in Fig. 4b that the model would quickly overfit to the train-
ing modality, as the gap between training and validation scores get higher each
epoch. On the contrary, the over-fitting becomes less severe when there is diver-
sity in the training input, as shown in Fig. 4c. The validation also appears more
stable at the end of the training with SDA compared with the training with only
original C0&T2.

The Fig. 5 shows the validation output of epicardium and endocardium seg-
mentations using the dual TCL-Net models trained with SDA method. Both
models perform well and produce accurate segmentation in the region where
there is no myocardial scar. Yet, the models struggle at the scar regions, as
pointed by the arrows in the Fig. 5b and c.

Mono-modality. When testing on the mono-centric and mono-modal dataset
the SDA method does show improvement in validation Dice coefficients from
0.874 to 0.905 for the epicardium segmentation in the first TCL-Net, Table 2.
However, the method has an adverse effect on the myocardial scar segmentation
in the second TCL-Net. Figure 6 shows the validation segmentation output of
the myocardial scar using the TCL-Net models trained with and without SDA
method. Despite the poor Dice scores, both models can adequately detect the
scar regions, Fig. 6c and b.

TCL-Net. As shown in Tables 1 and 2, TCL-Net achieves better final validation
score than the baseline model, both in multi- and mono-modal datasets with or
without SDA. Figure 7 shows the validation Dice coefficient of both networks
during the first network training. Figure 7a shows that TCL-Net required less
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Fig. 4. Validation results of epicardium segmentation of the first TCL-Net on multi-
modal dataset.

(a) Original image (b) Epicardium (c) Endocardium (d) Epi&Endo

Fig. 5. Epicardium and endocardium segmentation from LGE image using models
trained with original and augmented C0 & T2 images (multi-modality dataset, dual
TCL-Net with SDA). Blue: Ground Truth; Orange, Green: Predicted Segmentations.
(Color figure online)

Table 2. The validation Dice coefficient on mono-modality dataset. *: best results.

Single Network Dual Network

Epicardium Scar

TCL-Net

Original(LGE) 0.874 ± 0.002 *0.462 ± 0.070

+SDA *0.905 ± 0.011 0.444 ± 0.061

Isensee’s

Original(LGE) 0.853 ± 0.012 0.439 ± 0.042

+SDA 0.851 ± 0.012 0.348 ± 0.040

epochs for the optimisation. When factoring the training time in Fig. 7b, TCL-
Net has faster training speed than the baseline network, with the validation Dice
coefficient reaching 85% in less than 5 min.
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(a) Manual Segmentation

(b) Without SDA (c) With SDA

Fig. 6. Myocardial scar segmentation using dual U-Net strategy. Blue: manual seg-
mentation (Color figure online)

(a) Corrected by training epoch. (b) Corrected by training time.

Fig. 7. Training and validation results of TCL-Net vs. Isensee’s (multi-modality
dataset, first network with SDA).

Dual Network Segmentation. The results from Tables 1 and 2 show that
the dual network strategy increases significantly the segmentation accuracy. On
top of that, compared with the single network, the dual network also produces
higher resolution segmentation output, Fig. 8.

4 Discussion

SDA-Epicardium and Endocardium. The image processing functions
implemented in SDA create images of different contrasts with defined border
and geometric features, thus making the method applicable to the target regu-
lar structure such as the epicardium and endocardium. The results in Sect. 3.2
show the increase in performance in both mono- and multi-modal datasets for
the segmentation of the epicardium. As shown in multi-modal experiments, the
SDA improves segmentation validation score of the LGE images, without any
optimisation with the actual LGE data.

The slight decrease in performance when histogram matching was not
included in SDA further proves that the strategy does not overly depend on this
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(a) Single Network (b) Dual Network

Fig. 8. Segmentation output of single vs. dual network.

particular transformation. It also validates that the increase in contrast diver-
sity in augmentation algorithms leads to the increase in performance, rather than
over-fitting. Nevertheless, the trained model still reaches a limit, as observed in
dual network segmentation in Table 1.

SDA-Myocardial Scar. Because the model can no longer depend on image
contrast for the segmentation when training with SDA method, it has to rely
on the patterns of the target, such as the traces of the myocardium wall and
the homogeneity of the intensity of each structure. Therefore, the method might
not be suitable for the targets without uniform structure, such as the myocardial
scar. For instance, when training on C0 and T2 images of MS-CMRSeg challenge,
the model is only familiar with homogeneous myocardium. Thus, it does not
perform well when scar is present on the myocardium of LGE images, Fig. 5.

The inconsistency in contrast of the myocardial scar may explain why the
network achieves better result without SDA for the scar segmentation on the
mono-modal dataset. As shown in Fig. 6a by the red arrow, the scar region does
not include the entire area of the same intensity, since the upper area belongs
to the cavity of the ventricle. Because the scar does not have specific geometric
shape like the epicardium or endocardium, the model trained with only the
original image would perform better, since it can depend more on the specific
contrast of the LGE modality during optimisation than the model trained with
SDA.

TCL vs. Isensee. In their original paper [4], Isensee et al. integrate a more
elaborate preprocessing technique on the input image than what is done in this
experiment. Therefore, our experiment might not present the optimal condition
for the baseline network. Our goal is to simply compare the performance of the
larger network with our new architecture on the minimal processing datasets.
The TCL-Net architecture used in the experiment is considerably smaller with
only 3,529,635 trainable parameters, than Isensee’s model, which has 8,294,659.
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The experiment shows that compared to Isensee’s, our architecture achieves
faster convergence and better validation performance.

5 Conclusion

We proposed a data augmentation strategy that increases the accuracy of the
segmentation and is invariant to the modality of the validation image. The SDA
strategy forces the network to be independent from the input image modality and
prevents it from over-fitting to any specific contrast. This validates our theory
that the diversity in training input increases the neural network performance.

The image transformation algorithms in SDA can also be seen as placeholders
and be easily replaced by the real world MR modalities. Our current experiment
uses the validation result of LGE images to terminate the training, thus making
the trained coefficients bias toward the LGE modality. A more diverse real-
world multi-modality dataset is needed to improve the universality of the trained
network.

The efficiency of SDA method also challenges the traditional concept of com-
plex normalisation or equalisation of the dataset in medical image segmentation.
It pushes the boundary of the convolutional neural network in term of its flexi-
bility and adaptability toward the input quality in semantic segmentation task.
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Abstract. In this work, we present a fully automatic method to seg-
ment cardiac structures from late-gadolinium enhanced (LGE) images
without using labelled LGE data for training, but instead by transferring
the anatomical knowledge and features learned on annotated balanced
steady-state free precession (bSSFP) images, which are easier to acquire.
Our framework mainly consists of two neural networks: a multi-modal
image translation network for style transfer and a cascaded segmentation
network for image segmentation. The multi-modal image translation net-
work generates realistic and diverse synthetic LGE images conditioned
on a single annotated bSSFP image, forming a synthetic LGE training
set. This set is then utilized to fine-tune the segmentation network pre-
trained on labelled bSSFP images, achieving the goal of unsupervised
LGE image segmentation. In particular, the proposed cascaded segmen-
tation network is able to produce accurate segmentation by taking both
shape prior and image appearance into account, achieving an average
Dice score of 0.92 for the left ventricle, 0.83 for the myocardium, and
0.88 for the right ventricle on the test set.

1 Introduction

Cardiac segmentation from late-gadolinium enhanced (LGE) cardiac magnetic
resonance (CMR) which highlights myocardial infarcted tissue is of great clinical
importance, enabling quantitative measurements useful for treatment planning
and patient management. To this end, the segmentation of the myocardium is
an important first step for myocardial infarction analysis.

Since manual segmentation is tedious and likely to suffer from inter-observer
variability, it is of great interest to develop an accurate automated segmenta-
tion method. However, this is a challenging task due to the fact that (1) the
infarcted myocardium presents an enhanced and heterogeneous intensity distri-
bution different from the normal myocardium region and (2) the border between
infarcted myocardium and blood pool appears blurry and ambiguous [1]. While
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the borders of the myocardium can be difficult to delineate on LGE images,
they are clear and easy to identify on the balanced steady-state free precession
(bSSFP) CMR images, which have high signal-to-noise ratio and whose contrast
is less sensitive to pathology (see red arrows in Fig. 1(a)). Conventional meth-
ods [2,3] use the segmentation result from the bSSFP CMR of the same patient
as prior knowledge to assist the segmentation on LGE CMR images. These meth-
ods generally require accurate registration between the bSSFP and LGE images,
which can be challenging as the imaging field-of-view (FOV), image contrast and
resolution between the two acquisitions can vary significantly [1,4]. Figure 1(b)
visualizes the discrepancy between the intensity distributions of the two imaging
modalities in the cardiac structures (specifically, left ventricle (LV), myocardium
(MYO), and right ventricle (RV)).

Fig. 1. The differences of image appearance (a) and intensity distributions (b) in the
cardiac region (the union of LV, MYO, RV) between LGE images and bSSFP images
(Color figure online)

Most recently, a deep neural network-based method has been proposed to
segment the three cardiac structures directly from LGE images [5], reporting
superior performance. However, this supervised segmentation method requires
a large amount of labelled LGE data. Because of the heterogeneous intensity
distribution of the myocardium in LGE images and the scarcity of experienced
image analysts, it is difficult to perform accurate manual segmentations on LGE
images and collect a large training set, compared to that on bSSFP images.

In this paper, we present a fully automatic framework that addresses the
above mentioned issues by training a segmentation model without using manual
annotations on LGE images. This is achieved by transferring the anatomical
knowledge and features learned on annotated bSSFP images, which are easier
to acquire. Our framework mainly consists of two neural networks:

– A multi-modal image translation network: this network is used for translating
annotated bSSFP images into LGE images through style transfer. Of note,
the network is trained in an unsupervised fashion where the training bSSFP
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images and LGE images are unpaired. In addition, unlike common one-to-
one translation networks, this network allows the generation of multiple
synthetic LGE images conditioned on a single bSSFP image;

– A cascaded segmentation network for LGE images consisting of two U-net [6]
models (Cascaded U-net): this network is first trained using the labelled
bSSFP images and then fine-tuned using the synthetic LGE data generated
by the image translation network.

The main contributions of our work are the following: (1) we employ a trans-
lation network that can generate realistic and diverse synthetic LGE images
given a single bSSFP image. This network enables generative model-based data
augmentation for unsupervised domain adaptation, which not only closes the
domain gap between the two modalities, but also improves the generalization
properties of the following segmentation network by increasing data variety;
(2) we demonstrate that the proposed two-stage cascaded network, which takes
both anatomical shape information and image appearance information into
account, produces accurate segmentation on LGE images, greatly outperform-
ing baseline methods; (3) the proposed framework can be easily extended to
other unsupervised cross-modality domain adaptation applications where labels
of one modality are not available.

2 Methodology

The proposed method aims at learning an LGE image segmentation model using
labelled bSSFP {(xb,yb)} and unlabelled LGE {xl} only. Specifically, the pro-
posed method is a two-stage framework. In the first stage, an unsupervised
image translation network is trained to translate each bSSFP image xb into
multiple instances of LGE-like images, noted as {xbl}. In the second stage,
these LGE-stylized bSSFP images are used together with their original labels
{(xbl,yb)} to adapt an image segmentation network pre-trained on labelled
bSSFP images to segment LGE images.

2.1 Image Translation

We employ the state-of-the-art multi-modal unsupervised image-to-image trans-
lation network (MUNIT) [7] as our multi-modal image translator. Let {xl}
and {xb} denote unpaired images from the two different imaging modalities
(domains): LGE and bSSFP, given an image drawn from one domain as input,
the network is able to change the appearance (i.e. image style) of the image
to that of the other domain while preserving the underlying anatomical struc-
ture [8]. This is achieved by learning disentangled image representations.

As shown in Fig. 2, each image x is disentangled into (a) a domain-invariant
content code c: c = Ec(x) and (b) a domain-specific style code s: s = Es(x)
using the content encoder Ec and the style encoder Es relative to its domain
where the content code captures the anatomical structure and the style code
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Fig. 2. Overview of the multi-modal image translation network. The network
employs the structure of MUNIT [7], which consists of two encoder-decoder pairs for
the two domains: bSSFP and LGE, respectively.

carries the information for rendering the structure which is determined by the
imaging modality. The image-to-image translation from one domain to the other
is achieved by swapping latent codes in two domains. For example, translating
a bSSFP image xb to be stylized as LGE, is achieved by feeding the content
code cb for the bSSFP image and the style code sl into the LGE decoder Dl:
xbl = Dl(cb, sl).

Of note, during training, each style encoder is trained to embed images into
a latent space that matches the standard Gaussian distribution N (0, I), min-
imizing the Kullback-Leibler (KL) divergence between the two. This allows to
generate an arbitrary number of synthetic LGE images given a single bSSFP
image during inference, by repeatedly sampling the style code from the prior
distribution N (0, I). Of note, although this prior distribution is unimodal, the
distribution of translated images in the output space is multi-modal thanks to
the nonlinearity of the decoder [7]. We apply this translation network to trans-
late annotated bSSFP images, resulting in a synthetic labelled LGE dataset,
which will then be used to finetune a segmentation network. For more details
about training the translation network, readers are referred to the original work
by Huang et al. [7].

2.2 Image Segmentation

Let xl be an observed LGE image, the aim of the segmentation task is to estimate
label maps yl having observed xl by modeling the posterior p(yl|xl). Inspired
by curriculum learning [9] and transfer learning, we first train a segmentation
network using annotated bSSFP images (source domain; easy examples) and
then fine-tune it to segment LGE images (target domain; hard examples). Since
labelled LGE images {(xl,yl)} are not available for finetuning, we use a synthetic
dataset Xbl : {(xbl,yb)}1..N generated by the aforementioned multi-modal image
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Fig. 3. Overview of the two-stage cascaded segmentation network. The archi-
tecture of each U-net is the same as the one of the vanilla U-net, except for two main
differences: (1) batch normalization is applied after each convolutional layer; (2) a
dropout layer (dropout rate = 0.1) is applied after each concatenation operation in the
network’s expanding path to encourage model generalizability. Of note, in this dia-
gram, we simplify the training procedure by omitting the pre-training procedure using
labelled bSSFP images.

translator. Ideally, the posterior modelled by the network p(yb|xbl) matches
p(yl|xl) when image space and label space are shared. For simplicity, we use
x and y to denote an image and its corresponding label map from the synthetic
dataset in the following paragraphs.

The segmentation network is a two-stage cascaded network which consists
of two U-nets [6], see Fig. 3. Specifically, given an image x as input, the first
U-net (U-net 1) aims at predicting four-class pixel-wise probabilistic maps
p1 = f1

U-net(x; θ) for the three cardiac structures (i.e. LV, MYO, RV) and the
background class (BG). Inspired by the auto-context architecture [10], we com-
bine these learned probabilistic maps p1 from the first network with the raw
image x to form a 5-channel input to train the second U-net (U-net 2) for
fine-grained segmentation: p2 = f2

U-net(x,p1;φ). By combining the appearance
information from the image x with the shape prior information from the initial
segmentation p1 as input, the cascaded network has the potential to produce
more precise and robust segmentations even in the presence of unclear bound-
aries for the different cardiac structures.

To train the network, we use a composite segmentation loss function Lseg

which consists of two loss terms: Lseg = Lwce + λLedge. The first term Lwce is
a weighted cross entropy loss: Lwce = −∑

m ωmym log (pm) where wm denotes
the weight for class m and pm is the corresponding predicted probability map.
We set the weight for myocardium ωMYO to be higher than the weights for the
other three classes to address class imbalance problem since there is a lower
percentage of pixels that corresponds to the myocardium class in CMR images.
The second term Ledge is an edge-based loss which penalizes the disagreement on
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the contours of the cardiac structures. Specifically, we apply two 2D 3 × 3 Sobel
filters [11] Sk (k = 1, 2) to the soft prediction maps p as well as the one-hot
heatmaps y of the ground truth to extract edge information along horizontal
and vertical directions. The edge loss is then computed by calculating the l2
distance between the predicted edge maps and the ground truth edge maps:
Ledge =

∑
m,m �=BG

∑
k=1,2 ‖fSk

(pm) − fSk
(ym)‖2, where fSk

(pm) is the edge
map extracted by applying the sobel filter Sk to the predicted probabilistic map
pm for foreground class m.

By using the edge loss together with the weighted cross entropy for opti-
mization, the network is encouraged to focus more on the contours of the three
structures and the myocardium, which are usually more difficult to delineate. In
our experiments, we set λ = 0.5 to balance the contribution of the two losses.

2.3 Post-processing

At inference time, each slice from a previously unseen LGE stack is fed to the
cascaded network to get the probabilistic maps for the four classes. Dense con-
ditional random field (CRF) [12] is then applied to refine the 2D predicted seg-
mentation mask slice by slice. After that, 3D morphological dilation and erosion
operations are applied to the whole segmentation stack to further improve the
global smoothness. In particular, we perform the operations in a hierarchical
order: first we apply them to the binary map covering all the three structures,
then to the MYO and the LV labels, separately.

3 Experiments and Results

3.1 Data

The framework was trained and evaluated on the Multi-sequence Cardiac MR
Segmentation Challenge (MS-CMRSeg 2019) dataset1. We used a subset of 40
bSSFP and 40 LGE images to train the image translation network. Then, we
created a synthetic dataset by applying the learned translation network to 30
labelled bSSFP images. Specifically, for each bSSFP image, we randomly sam-
pled the style code from N (0, I) five times, resulting in a set of 150 synthetic
LGE images in total. This synthetic dataset and the original 30 bSSFP images
with corresponding labels formed the training set for the segmentation network.
Exemplar results of these synthetic LGE images are provided in the supple-
mental material. For validation, we used a subset of 5 annotated LGE images
provided by the challenge organizers.

3.2 Implementation Details

Image Preprocessing. To deal with the different image size and heterogeneous
pixel spacing between different imaging modalities, all images were resampled to
1 https://zmiclab.github.io/mscmrseg19/.

https://zmiclab.github.io/mscmrseg19/
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a pixel spacing of 1.25mm×1.25mm and then cropped to 192×192 pixels, with
the heart roughly at the center of each image. This spatial normalization would
reduce the computational cost and task complexity in the following training pro-
cedure of image translation and segmentation, making the networks focus on the
relevant regions. To identify the heart, we trained a localization network based
on U-net using the 30 annotated bSSFP images in the training set to produce
rough segmentations for the three structures. The localization network employs
instance normalization layers which perform style normalization [13], encour-
aging the network invariance to image style changes (e.g. image contrast). As
a result, the network is able to produce coarse masks localizing the heart on
all bSSFP images and most LGE images even though it was trained on bSSFP
images only. In case that this network might fail to locate the heart on certain
LGE slices, we summed the segmentation masks across slices in each volume
and then cropped them according to the center of the aggregated mask. After
cropping, each image was intensity normalized.

Network Training. (1) For the image translation network, we used the official
implementation2 of [7]. Network configuration and hyper-parameters were kept
the same as in [7] except the input and output images are 2D, single-channel. It
was trained for 20k iterations with a batch size of 1. (2) For the segmentation
network, we first trained the first U-net with the labelled bSSFP images and
then fine-tuned it with synthetic LGE images. This procedure was replicated to
train the second U-net with the parameters of the first U-net being fixed. Both
networks were optimized using the composite loss Lseg where adam was used for
stochastic gradient descent. The learning rate was initially set to 0.001 and was
then decreased to 1 × 10−5 for fine-tuning. The weights for BG, LV, MYO, and
RV in Lwce were empirically set to 0.2 : 0.25 : 0.3 : 0.25. During training, we
applied data augmentation on the fly. Specifically, elastic deformations, random
scaling and random rotations as well as gamma augmentation [14] were used.
The algorithm was implemented using python and PyTorch and was trained for
1000 epochs in total on an NVIDIA Tesla P40 GPU.

3.3 Results

To evaluate the accuracy of segmentation results, the Dice metric and the aver-
age surface distance (ASD) between the automatic segmentation and the corre-
sponding manual segmentation for each volume were calculated.

We compare the proposed method with two baseline methods: (1)
a registration-based method and (2) a single U-net. Specifically, for the
registration-based method, each LGE segmentation result was obtained by
directly registering the corresponding bSSFP labels to the LGE image using
MIRTK toolkit3 for ease of comparison. The transformation matrix was
learned by applying mutual information-based registration (Rigid+Affine+FFD)

2 https://github.com/NVlabs/MUNIT.
3 https://mirtk.github.io/.

https://github.com/NVlabs/MUNIT
https://mirtk.github.io/
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between the two images. For U-net, we trained it with two settings: (a) U-net:
trained on labelled bSSFP images only; (b) U-net with fine-tuning (FT):
trained on labelled bSSFP images and then fine-tuned using the synthetic LGE
data, which is the same training procedure of the proposed method. Quantitative
and qualitative results are shown in Table 1 and Fig. 4.

While the registration-based method (MIRTK) outperforms the U-net (see
row 1 and row 2 in Table 1), it still fails to produce accurate segmentation on the
myocardium (see the italic number in row 1), indicating the limitation of this
registration-based method. However, by contrast, neural network-based meth-
ods (row 3–5) fine-tuned using the synthetic LGE dataset significantly improves
the segmentation accuracy, increasing the Dice score for MYO by ∼15%. This
improvement demonstrates the learned translation network is capable of generat-
ing realistic LGE images while preserving the domain-invariant structural infor-
mation that is informative to optimize the segmentation network. In particular,
compared to U-net (FT), the proposed Cascaded U-net (FT) achieves more
accurate segmentation performance with improvement in terms of both Dice and
ASD (see bold numbers). The model even produces robust segmentation results
on the challenging apical and basal slices (please see the last column in Fig. 4).
This demonstrates the benefit of integrating the high-level shape knowledge and
low-level image appearance to guide the segmentation procedure. In addition,
the proposed post-processing further refines the segmentation results through
smoothing, reducing the average ASD from 1.37 to 1.26 (see the last row in
Table 1).

Table 1. Dice scores and ASD (mm) of the proposed segmentation method
(Cascaded U-net) and baseline methods on the validation set. Bold numbers
indicate the best scores among the results obtained by those methods before post-
processing (PP) whereas italic numbers are those mean Dice scores under 0.700. FT:
fine-tuning using the synthetic LGE dataset. N/A means that the ASD value cannot
be calculated due to missing predictions for that cardiac structure.

Method Dice ASD

LV MYO RV AVGa LV MYO RV AVGa

MIRTK 0.819 0.665 0.831 0.772 2.56 1.65 2.11 2.11

U-net 0.624 0.441 0.577 0.547 10.03 6.07 N/A N/A

U-net (FT) 0.874 0.781 0.896 0.850 1.78 1.50 1.28 1.52

Cascaded U-net (FT) 0.895 0.812 0.898 0.868 1.41 1.46 1.23 1.37

Cascaded U-net (FT) + PP 0.897 0.816 0.895 0.869 1.17 1.42 1.18 1.26
aFor ease of comparison, we calculate the average (AVG) Dice score and the average

ASD score over the three structures for each method.

Finally, we applied ensemble learning to improve our model’s performance
in the test phase. Specifically, we trained the proposed segmentation network
for multiple times, each time regenerating a new synthetic LGE dataset for fine-
tuning. We trained four models in total. Our final submission result for each
test image was obtained by averaging the probabilistic maps from these models
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Fig. 4. Segmentation results for the proposed Cascaded U-net and the base-
line approaches. Our proposed method (the right-most column) produces more
anatomically plausible segmentation results on the images, greatly outperforming the
baseline methods, especially in the challenging cases: the apical (the top row) and the
basal slices (the bottom row).

and then assigning to each pixel the class with the highest score. In the testing
stage of the competition, the method achieves very promising segmentation per-
formance on a relative large test set (40 subjects), with an average Dice score
of 0.92 for LV, 0.83 for MYO, and 0.88 for RV; an ASD of 1.66 for LV, 1.76 for
MYO, and 2.16 for RV.

4 Conclusion

In this paper, we showed that synthesizing multi-modal LGE images from
labelled bSSFP images to finetune a pre-trained segmentation network shows
impressive segmentation performance on LGE images even though the network
has not seen real labelled LGE images before. We also demonstrated that the
proposed segmentation network (Cascaded U-net) outperformed the baseline
methods by a significant margin, suggesting the benefit of integrating the high-
level shape knowledge and low-level image appearance to guide the segmentation
procedure. More importantly, our cascaded segmentation network is indepen-
dent of the particular architecture of underlying convolutional neural networks.
In other words, the basic neural network (U-net) in our work can be replaced
with any of the state-of-the-art segmentation network to potentially improve the
prediction accuracy and robustness. Moreover, the proposed solution based on
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unsupervised multi-modal style transfer is not only limited to the cardiac image
segmentation but can be extended to other multi-modal image analysis tasks
where the manual annotations of one modality are not available. Future work
will focus on the application of the method to the problems such as domain
adaptation for multi-modality brain segmentation.

Supplemental Material

See Fig. 5.

Fig. 5. Exemplar synthetic LGE images generated from bSSFP images using
the multi-modal image translation network. Given one bSSFP image (column
1), the translation network translates the image into multi-modal LGE-like images
(column 2 to 4). These translated images differ in image brightness and contrast as well
as the intensity distribution in the cardiac region, while preserving the same cardiac
anatomy. These synthetic images, in together with the annotations on the original
bSSFP images (the last column) contribute to the synthetic dataset which is used to
fine-tune the proposed segmentation network.
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Abstract. LGE CMR is an efficient technology for detecting infarcted myo-
cardium. An efficient and objective ventricle segmentation method in LGE can
benefit the location of the infarcted myocardium. In this paper, we proposed an
automatic framework for LGE image segmentation. There are just 5 labeled
LGE volumes with about 15 slices of each volume. We adopted histogram
match, an invariant of rotation registration method, on the other labeled
modalities to achieve effective augmentation of the training data. A CNN seg-
mentation model was trained based on the augmented training data by leave-
one-out strategy. The predicted result of the model followed a connected
component analysis for each class to remain the largest connected component as
the final segmentation result. Our model was evaluated by the 2019 Multi-
sequence Cardiac MR Segmentation Challenge. The mean testing result of 40
testing volumes on Dice score, Jaccard score, Surface distance, and Hausdorff
distance is 0.8087, 0.6976, 2.8727 mm, and 15.6387 mm, respectively. The
experiment result shows a satisfying performance of the proposed framework.
Code is available at https://github.com/Suiiyu/MS-CMR2019.

Keywords: Ventricle segmentation � Histogram match � LGE-CMR � Data
augmentation

1 Introduction

Cardiac MRI is a significant technology for cardiac function analysis. Benefiting from
this technology, the doctor can evaluate the heart function noninvasively. There are
many kinds of Cardiac MRI modalities, such as balanced-Steady State Free Precession
(b-SFFP) and LGE. b-SSFP can learn the cardiac motions and obtain a clear boundary
of cardiac. LGE CMR can enhance the infarcted myocardium, appearing with dis-
tinctive brightness compared with the healthy tissues. LGE CMR is widely used to
study the presence, location, and extent of myocardium infarction (MI) in clinical
studies [1, 2]. Exactly extracting the ventricles and myocardium from LGE is crucial
for MI therapy. However, the infarcted myocardium is enhanced, meanwhile, the
healthy myocardium is suppressed. Hence, the boundaries of the ventricles and myo-
cardium are bedimmed on the LGE CMR.
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In the clinical application, ventricle segmentation on LGE CMR image still relies on
manual segmentation. However, manual segmentation is tedious and subjective. The
automatic segmentation method is more efficient and objective. Kurzendorfer et al. [3]
proposed an automatic framework to segment left ventricle (LV). They firstly initialized
the LV by a two-step registration method and then adopted principal components to
estimate the LV. At last, the myocardium was refined on the poly space. Oktay et al. [4]
incorporated global shape information into CNN. They utilized auto-encoder to estimate
the global shape information of LV and then it was adopted to constrain the segmen-
tation model. Duan et al. [5] proposed a combined CNN and level set model to segment
ventricles. The probability maps of ventricles and myocardium are estimated by CNN.
Then they initialized the energy function of the level set by the probability maps.
Khened et al. [6] adopted a densely connected CNN model with inception block to
segment 2D cardiac MRI. There are also other researchers interesting on the ventricles,
myocardium and other tissues MR segmentation [7–13]. Their methods are mostly
based on CNN. Besides, these methods rely on a large number of training data. How-
ever, in our situation, there are just 5 labeled and 40 unlabeled LGE CMR with about 15
slices of each volume. The rare data cannot guarantee training an efficient cardiac
segmentation model from scratch. Although the registration method, such as atlas, is
often utilized on the rare data segmentation, it has some shortages. In order to obtain the
label for the unlabeled data, the atlas set must be labeled data. Moreover, it will deform
the original data and decreases the data diversity. Hence, we utilize histogram match
technology to achieve effective augmentation based on b-SSFP modality CMR data,
which has 35 labeled volumes, to solve the lack of data problem. Histogram matching
[14] technology is efficient and does not deform the shape of the original data. Hence,
we can adopt other modalities data while the data diversity is maintained. Then, we
adopt this augmented dataset to train a cardiac segmentation model. At last, we utilize a
label-vote strategy and connected component analysis to get the final segmentation.

The rest of this manuscript is organized as follows: we introduce our method in
Sect. 2. Results are analyzed in Sect. 3. Finally, we conclude this manuscript in
Sect. 4.

2 Method

The whole structure of the proposed framework is shown in Fig. 1. There are three
steps. Firstly, we pre-process the volumes into images and then we map the b-SSFP
images on the LGE images to generate fake LGE images. Secondly, the fake images
are fed into the Res-UNet [15, 16] model. Our model is trained based on the leave-one-
out strategy. The final prediction is determined by all models. Thirdly, the predicted
results are reconstructed to the original shape and a connected component analysis is
adopted to keep the maximum component for each class as the final segmentation
result.
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2.1 Data Processing

The dataset is coming from the 2019 Multi-sequence Cardiac MR Segmentation
Challenge (MS-CMR2019)1. It published 45 patients CMR data with three modalities,
T2, b-SSFP, and LGE. There are 35 labeled T2 CMR data with about 3 slices of each
patient, and 35 labeled b-SSFP CMR data with about 11 slices of each patient, and just
5 labeled LGE CMR data with about 15 slices of each patient. The rest volumes are un-
labeled data. The main purpose of this challenge is segmenting left ventricle (LV), right
ventricle (RV) and left ventricle myocardium (LVM) from LGE CMR data. The rarely
labeled target data increases the challenge sharply. To enlarge the number of labeled
LGE CMR data, we utilize histogram match on the other labeled modalities.

According to the data analysis, the b-SSFP data has the similarity slices with LGE
data of each patient and it has a clearer boundary than T2 modality data. Considering
the data-matching problem and data quality, we just utilize b-SFFP data to assist the
cardiac segmentation on LGE data. We find that the main difference between LGE
image and b-SSFP image is the appearance. The shape of the heart among the same
patient is similar. Hence, we utilize histogram match to generate the fake LGE data.
Histogram match is an easy and efficient data pre-process for this challenge. It matches
the histogram of the source image to the target histogram by establishing the rela-
tionship between the source image and the target image. Moreover, the shape of the
source image is still maintained. That is mean that the label of fake LGE CMR images
is still consistent with the original b-SSFP CMR images.

In order to retain the data diversity, each b-SSFP image has its own target LGE
image histogram. Because of the original b-SSFP data and LGE data have different data
scope. The scope of the short axis of LGE data is about twice larger than b-SSFP’s.
Hence, we resize the LGE data into the shape of b-SSFP data. Then, we obtain 2D
images of the short axis from the resized data. So far, we have got the consistent image
size and number of b-SSFP and LGE. The target histogram for each b-SSFP image is
calculating from the corresponding LGE image. Figure 2 presents an example of a
resized LGE image, b-SSFP image, and fake LGE image. a, b are corresponding to the
short axis of LGE and b-SSFP; d, e are corresponding to the long axis of LGE and b-

Fig. 1. The proposed framework for ventricles and myocardium segmentation on LGE CMR
image. The white, light gray and dark gray correspond to represent right ventricle, left ventricle
and left ventricle myocardium.

1 https://zmiclab.github.io/mscmrseg19/.
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SSFP; c, f are the short axis and long axis of fake LGE which are generating from real
LGE and b-SSFP. Image c and f owns the shape information of b-SSFP image and the
appearance information of LGE image.

Our model is trained on 2D images, which are extracting from fake LGE data and
real original labeled LGE data. In order to keep the same input to the model, we resize
all images into (256, 256). After data analysis, we center crop the resized images into
(144, 144) to filter the unrelated background. The output of the model will do the
inverse operation to keep the data consistency. Moreover, the evaluation is performed
on the 3D volumes.

2.2 Implementation

The segmentation model is a Res-UNet, which utilizes residual connection on the
convolutional block. Each convolutional block contains two 3*3 convolutional layers
with ReLU activation function and batch normalization. We adopt 4 down-sampling
blocks as the encoder and corresponding up-sampling blocks as the decoder. The last
block utilizes a dropout layer with 0.5 drop rate to overcome the over-fitting problem.
The output layer is a 1*1 convolutional layer with a Softmax activate function. The
model is implemented using Keras based on NVIDIA 2080 Ti GPU.

In order to maximize the data utilization, we divide the 5 labeled LGE volumes into
5 groups by the leave-one-out strategy. At last, we have trained 5 models, and the
training data of each model consists of 35 fake LGE volumes and 4 real LGE volumes.
The rest one real LGE volume is utilized to evaluate the model. The final prediction is
determined by the average of these models. Each model has trained 300 epochs with
0.001 learning rate and 8 batch size. The training time is about 1 h for each model.
Moreover, we utilize a weighted cross entropy loss function to solve the class imbal-
ance problem. The loss function is shown in Eq. 1:

Fig. 2. The example of LGE, b-SSFP, and fake LGE. a–c: Corresponding to the short axis LGE,
b-SSFP, and fake LGE generating from a and b; d–f: Corresponding to the long axis LGE, b-
SSFP, and fake LGE.
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where c is the class index; i is the pixel index; gci and pci represent the ground truth
class and prediction class of pixel i. The weight wc is calculated by the ratio of each
class in the all labeled set. And g is the all labeled pixels set.

After training the segmentation model, we reconstruct the prediction results in the
original shape. Then, a connected component analysis is performed to remain the
largest connected region for each class as the final segmentation result. Our segmen-
tation model is evaluated by the official evaluation metrics, which are Dice score,
Jaccard score, Surface distance, and Hausdorff distance. Dice score and Jaccard score
are overlapped metrics. They evaluate the overlap ratio between the ground truth and
predicted result. However, they have a shortage on the boundary details of the subject.
Although similarity metrics, Surface distance and Hausdorff distance, are mainly
focused on the similarity between the ground truth and predicted result, they are
sensitive on the noisy. Utilizing both of these metrics can complement one another
perfectly. Hence, the segmentation model can be over-all evaluated. Notice that the
Dice score is the main metric.

3 Experimental Results

The score of metrics during the validation stage is shown in Table 1. These scores are
the mean value of the three classes, which are calculated by average operation without
weighted. The segmentation model has a satisfying performance on the overlap met-
rics. Due to the model is trained on the short axis, the performance on the similarity
metrics are worse than overlap metrics. Figure 3 represents the segmentation results
and corresponding ground truths of patient 1 and patient 2. The green and red contours
represent ground truth and segmentation result, respectively. We select three repre-
sentative slices to show the result. The result shows that our prediction contours can
perfectly fit the ground truth.

Table 1. Segmentation results of the validation stage. SD and HD correspond to the
abbreviation of Surface distance and Hausdorff distance.

Patient Dice score Jaccard score SD (mm) HD (mm)

#1 0.9289 0.8685 0.3873 6.6570
#2 0.9461 0.8997 0.3012 14.2289
#3 0.9277 0.8665 0.3761 5.8568
#4 0.9416 0.8899 0.2801 4.8050
#5 0.9128 0.8439 0.4608 5.7329
Mean 0.9315 0.8737 0.3611 7.4561
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Figure 4 exhibits the metrics of 40 patients during the testing stage. The testing
segmentation result is evaluated by the organizer. The patient IDs are anonymous, but
their orders are consistent across the four metrics. We obtain a satisfying result on the
testing set except for three worse results, 5th, 19th, and 39th. From these sub-pictures,
we can find that the LV cavity has the regular shape and largest area in the three
classes. It gets the highest scores across all metrics. On the opposite, the model per-
forms worse on the irregular RV.

Figure 5 exhibits the segmentation results of patient 6 and patient 24, which are
randomly chosen from the testing dataset. The green, red and yellow contours represent
LVM, RV and LV, respectively. The three columns of each patient are from three

Fig. 3. Segmentation result and ground truth of patient 1 and patient 2. The first row is the short
axis view; the second row is the long axis view. Color representation: green-ground truth; red-
segmentation result. (Color figure online)

Fig. 4. The metrics of 40 testing volumes. The patient IDs are anonymous, but their orders are
consistent across the four metrics. SD and HD correspond to the abbreviation of Surface distance
and Hausdorff distance.

An Automatic Cardiac Segmentation Framework 225



different slices in order to demonstrate a comprehensive result of the proposed model.
The model obtains a perfect performance on the short axis, especially the LV. How-
ever, there still some shortages on the long axis view due to our segmentation model is
processed on the short axis.

4 Conclusion

LGE CMR is an efficient technology to identify infarcted myocardium. In this paper,
we proposed an automatic framework for LGE CMR segmentation. This framework
contains three steps. Firstly, we adopted a histogram match process on the b-SSFP
images to generate fake LGE images. Secondly, we divided the labeled LGE images
into 5 groups through the leave-one-out strategy. Our segmentation model, Res-UNet,
was trained based on the fake LGE images and labeled LGE images. Thirdly, the final
prediction of the model was reconstructed and a connected component analysis process
was done on these data to keep the maximum connected component for each class as
the final segmentation. The final segmentation is evaluated by the organizer, and the
mean metrics score of Dice score, Jaccard score, Surface distance, and Hausdorff
distance are corresponding to 0.8087, 0.6976, 2.8727 mm, and 15.6387 mm. There are
three worse volumes out of 40 testing volumes. The performance on the most volumes
are satisfied.
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Abstract. In this work, we attempt the segmentation of cardiac struc-
tures in late gadolinium-enhanced (LGE) magnetic resonance images
(MRI) using only minimal supervision in a two-step approach. In the
first step, we register a small set of five LGE cardiac magnetic resonance
(CMR) images with ground truth labels to a set of 40 target LGE CMR
images without annotation. Each manually annotated ground truth pro-
vides labels of the myocardium and the left ventricle (LV) and right
ventricle (RV) cavities, which are used as atlases. After multi-atlas label
fusion by majority voting, we possess noisy labels for each of the targeted
LGE images. A second set of manual labels exists for 30 patients of the
target LGE CMR images, but are annotated on different MRI sequences
(bSSFP and T2-weighted). Again, we use multi-atlas label fusion with
a consistency constraint to further refine our noisy labels if additional
annotations in other modalities are available for a given patient. In the
second step, we train a deep convolutional network for semantic seg-
mentation on the target data while using data augmentation techniques
to avoid over-fitting to the noisy labels. After inference and simple post-
processing, we achieve our final segmentation for the targeted LGE CMR
images, resulting in an average Dice of 0.890, 0.780, and 0.844 for LV cav-
ity, LV myocardium, and RV cavity, respectively.

Keywords: LGE MRI · CMR · Cardiac segmentation · Deep
learning · Multi-atlas label fusion · Noisy labels

1 Introduction

Segmentation of cardiac structures in magnetic resonance images (MRI) has
potential uses for many clinical applications. In particular for cardiac mag-
netic resonance (CMR) images, late gadolinium-enhanced (LGE) imaging is
useful to visualize and detect myocardial infarction (MI). Another common
CMR sequence is T2-weighted imaging which highlights acute injury and
ischemic regions. Additionally, balanced-steady state free precession (bSSFP)
cine sequences can be utilized to analyze the cardiac motion of the heart [1,2].
Each CMR sequence is typically acquired independently, and they can exhibit
significant spatial deformations among each other even when stemming from the
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same patient. Nevertheless, segmentation of different anatomies from LGE could
still benefit from the combination with the other two sequences (T2 and bSSFP)
and their annotations. An example of different CMR sequences utilized in this
work can be seen in Fig. 1. LGE enhances infarcted tissues in the myocardium
and therefore is an important sequence to focus on for the detection and quantifi-
cation of myocardial infarction. The infarcted myocardium tissue appears with a
distinctively brighter intensity than the surrounding healthy regions. In partic-
ular, LGE images are important to estimate the extent of the infarct in compar-
ison to the myocardium [1]. However, manual delineation of the myocardium is
time-consuming and error-prone. Therefore, automated and robust methods for
providing a segmentation of the cardiac anatomy around the left ventricle (LV)
are needed to support the analysis of myocardial infarction. Modern semantic
segmentation methods utilizing deep learning have significantly improved the
performance in various medical imaging applications [3–6]. At the same time,
deep learning methods typically require large amounts of annotated data in order
to train sufficiently robust and accurate models depending on the difficulty of
the task. However, in many use cases, the availability of such annotated cases
may be limited for a specific targeted image modality or sequence. For CMR
applications containing multiple sequences, annotations for the same anatomy
of interest might be available for sequences other than the target one of the
same patient. In this work, we attempt the segmentation of cardiac structures in
LGE cardiac magnetic resonance (CMR) images utilizing classical methods from
multi-atlas label fusion in order to provide “noisy” pseudo labels to be used for
training deep convolutional neural network segmentation models.

(a) bSSFP (b) T2 (c) LGE

Fig. 1. Sagittal view of different cardiac magnetic resonance (CMR) image sequences
of the same patient’s heart. Images (a–c) show balanced-steady state free precession
(bSSFP), T2-weighted, and late gadolinium-enhanced (LGE) images with overlays of
the corresponding manual ground truth (g.t.) annotations [patient 2 of the challenge
dataset].

2 Method

Our method can be described in two steps. In the first step, we register a small
set, e.g. 5, LGE CMR with ground truth labels (“atlases”) to a set of target LGE
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CMR images without annotation. Each ground truth atlas provides manually
annotated labels of the myocardium, and the left and right ventricle cavities.
After multi-atlas label fusion by majority voting, we possess noisy labels for
each of the targeted LGE images. A second set of manual labels exists for some
of the patients of the targeted LGE CMR images, but are annotated on different
MRI sequences (bSSFP and T2-weighted). Again, we use multi-atlas label fusion
with a consistency constraint to further refine our noisy labels if additional
annotations in other sequences are available for that patient. In the second step,
we train a deep convolutional network for semantic segmentation on the target
data while using data augmentation techniques to avoid over-fitting to the noisy
labels. After inference and simple post-processing, we arrive at our final label
for the targeted LGE CMR images.

2.1 Multi-atlas Label Fusion of CMR

Many methods of multi-atlas label fusion exist [7]. In this work, we use a well-
established non-rigid registration framework based on a B-spline deformation
model [8] using the implementation provided by [9]. The registration is driven
by a similarity measurement S based on intensities from LGE, T2, and bSSFP
images. We perform two sets of registrations

1. Inter-patient and intra-modality registration, i.e. the registration of LGE with anno-
tations to the targeted LGE images of different patients.

2. Intra-patient and inter-modality registration, i.e. the registration of bSSFP/T2 with
annotations to the targeted LGE images of the same patient.

In both cases, an initial affine registration is performed followed by non-rigid
registration between the source image F (providing annotation, i.e. the “atlas”)
and the targeted reference image R. A coarse-to-fine registration scheme is used
in order to first capture large deformations between the images, followed by more
detailed refinements. The deformation is modeled with a 3D cubic B-spline model
using a lattice of control points {φ} and spacings between the control points of
δx, δy, and δz along the x-, y-, and z-axis of the image, respectively. Hence, the
deformation T(x) of a voxel x = (x, y, z) to the domain Ω of the target image
can be formulated as

T(x) =
∑

i,j,k

β3(
x

δx
− i) × β3(

y

δy
− j) × β3(

y

δz
− k) × φijk. (1)

Here, β3 represents the cubic B-Spline function. By maximizing an overall
objective function

O (Ip, Is (T) ; {φ}) = (1 − α − β) × S − α × Csmooth(T) − β × Cinconsistency(T), (2)

we can find the optimal deformation field between source and targeted images.
Here, the similarity measure S is constrained by two penalties Csmooth and
Cinconsistency which aim to enforce physically plausible deformations. The con-
tribution of each penalty term can be controlled with the weights α and β,
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respectively. We use normalized mutual information (NMI) [10] which is com-
monly used in inter-modality registrations [7] as our driving similarity measure

S =
H(R) + H(F (T))

H(R, F (T))
. (3)

Here, H(R) and H(F (T)) are the two marginal entropies, and H(R,F (T)) is
the joint entropy. In [9], a Parzen Window (PW) approach [11] is utilized to fill
the joint histogram necessary in order to compute the NMI between the images
efficiently. To encourage realistic deformations, we utilize bending energy which
controls the “smoothness” of the deformation field across the image domain Ω:
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In an ideal registration, the optimized transformations from F to R (forward)
and R to F (backward) are the inverse of each other. i.e. Tforward = T−1

backward

and Tbackward = T−1
forward [12]. The used implementation by [13] follows the

approach by [12] using compositions of Tforward and Tbackward in order to include
a penalty term that encourages inverse consistency of both transformations:

Cinconsistency =
∑

x∈Ω

‖Tforward (Tbackward (x))‖2 +
∑

x∈Ω

‖Tbackward (Tforward (x))‖2 (5)

At each level of the registration, both the image and control point grid reso-
lutions are doubled compared to the previous level. We find suitable registration
parameters for both type (1) and type (2) registrations using visual inspection
of the transformed image and ground truth atlases. For type (1) registrations,
multiple atlases are available to be registered with each target image. We per-
form a simple majority voting in order to generate our “noisy” segmentation
label Ŷ for each target image X.

2.2 Label Consistency with Same Patient Atlases

Because of anatomical consistency between different sequences of the same
patient, we employ inter-modality registration to obtain noisy labels for LGE
images in type (2) registrations. Two sets of segmentations, denoted by Ŷ LGE

bSSFP

and Ŷ LGE
T2 , can be obtained from the registrations: bSSFP to LGE, and T2 to

LGE. In order to make sure our noisy labels are accurate enough, we only employ
the consistent region Ŷ LGE

bSSFP

⋂
Ŷ LGE

T2 where both segmentations agree. In the
non-consistent regions, we still use the noisy label from type (1) registrations. In
type (1) registrations, we use symmetric registration with bending energy factor
α = 0.001 and inconsistency factor β = 0.001. We use five resolution levels and
the maximal number of iteration per level is 300. The final grid spacing along x,
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y and z are the same with five voxels. In type (2) registrations, we use six levels
and the maximal number of iteration per level is 4000. The final grid spacing
along x, y and z are the same with one voxel.

2.3 Deep Learning Based Segmentation with Noisy Labels

In the second step, we train different deep convolutional networks for seman-
tic segmentation on the target data while using data augmentation techniques
(rotation, scaling, adding noise, etc.) to avoid over-fitting to the noisy labels.

Given all pairs of images X and pseudo labels Ŷ , we re-sample them to 1
mm3 isotropic resolution and train an ensemble E of n fully convolutional neural
networks to segment the given foreground classes, with P (X) = E(X) standing
for the softmax output probability maps for the different classes in the image.
Our network architectures follow the encoder-decoder network proposed in [14],
named AH-Net, and [5] based on the popular 3D U-Net architecture [3] with
residual connections [15], named SegResNet. For training and implementing these
neural networks, we used the NVIDIA Clara Train SDK 1 and NVIDIA Tesla
V100 GPU with 16 GB memory. As in [14], we initialize AH-Net from ImageNet
pretrained weights using a ResNet-18 encoder branch, utilizing anisotropic (3×
3 × 1) kernels in the encoder path in order to make use of pretrained weights
from 2D computer vision tasks. While the initial weights are learned from 2D,
all convolutions are still applied in a full 3D fashion throughout the network,
allowing it to efficiently learn 3D features from the image. In order to encourage
view differences in our ensemble models, we initialize the weights in all three
major 3D image planes, i.e. 3× 3× 1, 3× 1× 3, and 1× 3× 3, corresponding to
axial, sagittal, and coronal planes of the images. This approach results in three
distinct AH-Net models to be used in our ensemble E . The Dice loss [4] has been
established as the objective function of choice for medical image segmentation
tasks. Its properties make it suitable for the unbalanced class labels common in
3D medical images:

LDice = 1 − 2
∑N

i=1 yiŷi∑N
i=1 y2

i +
∑N

i=1 ŷ2
i

(6)

Here, yi is the predicted probability from our network f and ŷi is the label
from our “noisy” label map Ŷ at voxel i. For simplicity we show the Dice loss
for one foreground class in Eq. 6. In practice, we minimize the average Dice
loss across the different foreground classes. After inference and simple post-
processing, we arrive at our final label set for the targeted LGE CMR images.
We resize the ensemble models’ prediction maps to the original image resolution
using trilinear interpolation, fuse each probability map using an median operator
in order to reduce outliers. Then, the label index is assigned using the argmax
operator:

Y (X) = argmax ( median ( {E0(X), . . . , En(X)} ) ) (7)
1 https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-

sdk.
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Finally, we apply 3D largest connected component analysis on the foreground
in order to remove isolated outliers.

3 Experiments and Results

3.1 Challenge Data

The challenge organizers provided the anonymized imaging data of 45 patients
with cardiomyopathy who underwent CMR imaging at the Shanghai Renji hos-
pital, China, with institutional ethics approval. For each patient, three CMR
sequences (LGE, T2, and bSSF) are provided as multi-slice images in the ven-
tricular short-axis views acquired at breath-hold. Slice-by-slice manual annota-
tions of the right and left ventricular, and ventricular myocardium have been
generated as gold-standard using ITK-SNAP2 for training of the mdoels and
for evaluation the segmentation results. The manual segmentation took about
20 min/case as stated by the challenge organizers. We also use ITK-SNAP for all
the visualizations shown in this paper. For more details, see the challenge web-
site3. The available training and test data have the following characteristics:

Training data:
– Patient 1-5:

• LGE CMR (image + manual
label) for validation

• T2-weighted CMR (image +
manual label)

• bSSFP CMR (image + manual
label)

– Patient 6-35:
• T2-weighted CMR (image +

manual label)
• bSSFP CMR (image + manual

label)
– Patient 36-45:

• T2-weighted CMR (only image)
• bSSFP CMR (only image)

Test data:

– Patient 6-45:
• LGE CMR (only image)

As one can see, only five ground truth annotations are available in the tar-
geted LGE images. However, 30 images have gold standard annotations available
in different image modalities, i.e. bSSFP and T2. We use all available annota-
tions for type (1) and type (2) multi-atlas label fusion approaches described in
Sect. 2. After “noisy” label generation for all testing LGE images, we train our
deep neural network ensemble to produce the final prediction labels for 40 LGE
images in the test set. The five manually annotated LGE cases are used as the
validation set during deep neural network training in order to find the best model

2 http://www.itksnap.org.
3 https://zmiclab.github.io/mscmrseg19/data.html.

http://www.itksnap.org
https://zmiclab.github.io/mscmrseg19/data.html
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Table 1. Evaluation scores on 40 LGE test images as provided by the challenge orga-
nizers. Both overlap and surface distance-based metrics are shown. LV and RV denote
the left and right ventricle, respectively.

Metric LV cavity LV myocardium RV cavity Average

Dice 0.890 0.780 0.844 0.838

Jaccard 0.805 0.642 0.735 0.727

Surface distance [mm] 2.13 2.32 2.80 2.41

Hausdorff distance [mm] 11.6 16.3 18.1 15.3

(a) LGE (b) g.t. (c) g.t. 3D (d) pred. (e) pred. 3D

Fig. 2. Comparison of the available ground truth annotation (b) and (c) in a validation
LGE dataset and our model’s prediction (d) and (e) [patient 2 of the challenge dataset].

parameters and avoid overfitting completely to the noisy labels. Throughout the
challenge, the authors are blinded to the ground truth of the test set during
model development and evaluation. Our evaluation scores on the test set are
summarized in Table 1. A comparison of the available ground truth annotation
in a validation LGE dataset and our model’s prediction is shown in Fig. 2.

(a) LGE (b) pseudo (c) pseudo (d) pred. (e) pred. 3D

Fig. 3. Comparison of the result after multi-atlas label fusion (b) and (c) in a testing
LGE dataset (a) and our model’s prediction (d) and (e) [patient 45 of the challenge
dataset].

4 Discussion and Conclusion

In this work, we combined classical methods of multi-atlas label fusion with deep
learning. We utilized the ability of multi-atlas label fusion to generate labels for
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new images using only a small set of labeled images of the targeted image modal-
ity as atlases, although resulting in less accurate (or “noisy”) labels when com-
pared to manual segmentation. Furthermore, we enhanced the noisy labels by
merging more atlas-based label fusion results if annotations of the same patient’s
anatomy are available in different image modalities. Here, they came from dif-
ferent MRI sequences, but they could potentially stem from even more different
modalities like CT, using multi-modality similarity measures to drive the reg-
istrations. After training a round of deep convolutional neural networks on the
“noisy” labels, we can see a clear visual improvement over multi-atlas label fusion
result. This points to the fact that neural networks can still learn correlations
of the data and the desired labels even when training labels are not as accurate
as ground truth supervision labels [16]. The networks are able to compensate
for some of the non-systematic errors in the “noisy” labels and hence improve
the overall segmentation. We are blinded to the test set ground truth annota-
tions and cannot quantify these improvements but visually, the improvements
are noticeable as shown in Fig. 3. In conclusion, we achieved the automatic seg-
mentation of cardiac structures in LGE magnetic resonance images by combing
classical methods from multi-atlas label fusion and modern deep learning-based
segmentation, resulting in visually compelling segmentation results.
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Abstract. Deep learning approaches have been regarded as a powerful
model for cardiac magnetic resonance (CMR) image segmentation. How-
ever, most current deep learning approaches do not fully utilize the infor-
mation from multi-sequence (MS) cardiac magnetic resonance. In this
work, the deep learning method is used to fully-automatic segment the
MS CMR data. The balanced-Steady State Free Precession (bSSFP) cine
sequence is used to perform left ventricular positioning as a priori knowl-
edge, and then the Late Gadolinium Enhancement (LGE) cine sequence
is used for precise segmentation. This segmentation strategy makes full
use of the complementary information from the MS CMR data. More-
over, to solve the anisotropy of volumetric medical images, we employ
the Pseudo-3D convolution neural network structure to segment the LGE
CMR data, which combines the advantage of 2D networks and preserving
the spatial structure information in 3D data without compromising seg-
mentation accuracy. Experimental results of the Multi-sequence Cardiac
MR Segmentation Challenge (MS-CMRSeg 2019) show that our app-
roach has achieved gratifying results even with limited GPU computing
resources and small amounts of annotated data. The full implementation
and configuration files in this article are available at https://github.com/
liut969/Multi-sequence-Cardiac-MR-Segmentation.

Keywords: Multi-sequence · Pseudo-3D network · Segmentation

1 Introduction

Heart disease is the leading cause of death globally, cardiac magnetic resonance
(CMR) imaging is the gold-standard for assessment and diagnosis of a wide range
of heart diseases. Usually, the ventricle and myocardium need to be manually
segmented from the CMR data by clinicians, and then ventricle volume, mass
and ejection fraction can be calculated from the segmentation results to diag-
nose the heart disease. With the increasing medical image data, time-consuming,
laborious and tedious manual segmentation methods are considered to be ineffi-
cient. Therefore, it is imperative to develop computer-aided techniques to analyze
medical images automatically [6].
c© Springer Nature Switzerland AG 2020
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Multi-sequence (MS) CMR usually include three-sequence CMR images: the
Late Gadolinium Enhancement (LGE) cine sequence, the T2-weighted (T2) and
the balanced-Steady State Free Precession (bSSFP) cine sequence. The difficul-
ties of MS CMR segmentation have been mainly composed of the following points
[12,13]: (i) CMR image presence poor contrast between the myocardium and the
surrounding structure, for example, in LGE CMR, the infarcted myocardium is
similar to the blood pools, and the healthy myocardium is similar to the adja-
cent liver or lung; (ii) the location, size and shape of the heart are different in
different people, and the lesions exacerbate this difference; (iii) efficient fusion
strategies are lacking to take fully utilize the information from MS CMR data;
(iv) some other factors, such as the inherent noise caused by motion artifacts
and cardiac dynamics. Therefore, ventricular segmentation based on MS CMR
data is still a challenging task.

Automatic heart segmentation and diagnosis has become more and more
necessary. In the last decade, the international challenge has released a large
number of CMR datasets and brought together the state-of-the-art methods.
The automatic CMR data segmentation method based on deep learning has
achieved gratifying results. For example, in the Automated Cardiac Diagnosis
Challenge - MICCAI 20171, the 8 highest-ranked segmentation methods were all
neural network-based methods, so deep learning approaches have been regarded
as a powerful model for CMR image segmentation.

In this work, we employed the deep learning method to fully-automatic seg-
ment the MS CMR data. The main contributions of this study consist of the
following:

– We segment the ventricles combining the complementary information from
two-sequence CMR data. The bSSFP cine sequence is used to perform left
ventricular positioning as a priori knowledge, and then the LGE cine sequence
is used for precise segmentation. Our segmentation strategy makes full use of
the complementary information in the MS CMR data.

– In order to solve the anisotropy of volumetric medical images [1], the Pseudo-
3D [8] convolution neural network structure is used to segment the LGE CMR
data. Compared to 2D convolution and 3D convolution, the Pseudo-3D con-
volution neural network structure combining the advantage of 2D networks
and preserving the spatial structure information in 3D data without compro-
mising segmentation accuracy.

2 Related Work

Typically for MS CMR data, two-sequence CMR is widely used for automated
myocardial segmentation. For example, Rajchl et al. [9] used the segmentation
results of the bSSFP cine CMR as a priori knowledge, and then performed
ventricular segmentation on the LGE CMR, which compensates for differences
between slices of different sequences. In [13], a unified framework combining
1 https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html.
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three-sequence CMR (bSSFP, T2 and LGE) was proposed to align the MS CMR
data from the same patient into a common space for segmentation.

Present, MS CMR data segmentation based on deep learning also has a
good performance. In [4], a multi-task deep learning network for automatic 3D
bi-ventricular segmentation of CMR was proposed, this network combines high-
resolution and low-resolution CMR volume. However, it should be noted that this
network requires additional landmark localization information, which undoubt-
edly increased the requirements for data. Also, Tseng et al. [11] proposed a deep
encoder-decoder structure with cross-modality convolution layers to incorporate
different modalities of MRI data. However, this multi-modal encoder method
does not apply to MS CMR data due to misalignment between image slices, the
resolution is not uniform, the difference in slice thickness between the short-axis.

Fig. 1. Proposed pipeline for multi-sequence cardiac MR segmentation. (a) Input
bSSFP CMR; (b) ventricular segmentation from bSSFP CMR; (c) the ROI (marked
with a red square) obtained after positioning; (d) the ROI on the bSSFP CMR is
mapped onto the input LGE CMR; (e) cropped LGE CMR; (f) segmentation result;
(g) final output. Different sized rectangles represent different resolutions, smaller rect-
angular represents low-resolution CMR volume, and conversely, larger rectangular rep-
resents high-resolution CMR volume. (Color figure online)

For the segmentation of volumetric medical image data, a slice-by-slice learn-
ing strategy is frequently used. This method processed the 3D volumetric medical
image data into multiple 2D slices and then performed semantic segmentation
on each 2D slice. However, simply connecting 2D segmentations into 3D will
lose spatial correlation between the z−direction. A straightforward way to learn
spatial structure information in volumetric medical image data is to extend the
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Fig. 2. The Pseudo-3D convolution.

2D convolution kernel to 3D convolution kernel, such as 3D U-Net [3] or V-Net
[7]. Although 3D convolutional networks can learn more information, 3D con-
volutional networks require more computing resources (high memory consump-
tion and more learning parameters) than 2D convolutional networks. Further-
more, volumetric medical image data are usually anisotropic [1]. For example,
the Multi-sequence Cardiac MR Segmentation Challenge (MS-CMRSeg 20192)
data used in this work, the LGE CMR consisting of 10 to 18 slices, typically,
the voxel scale in depth (the z−direction, 5 mm) is much larger than that in the
xy plane (0.75 mm). To solve the above problems we employ the Pseudo-3D [8]
convolution neural network structure to segment the LGE CMR data.

In [8], the Pseudo-3D network was first proposed and applied to learn spatio-
temporal video representation. The Pseudo-3D convolution factorizes a standard
3 × 3 × 3 convolution into two successive convolutional layers: 3 × 3 × 1 convo-
lutional filter to learn spatial features and 1 × 1 × 3 convolutional filter to learn
temporal features. This spatio-temporal separation network structure has been
widely applied for video processing. Chen et al. [2] extended the Pseudo-3D
network structure to the medical image field and segmented the small cell lung
cancer, inspired by this, our study used this lightweight network structure to
segment the ventricles in LGE CMR data.

3 Methods

Figure 1 illustrates the framework for multi-sequence cardiac MR segmentation,
which can be roughly divided into two steps: (i) left ventricular positioning. First,
the bSSFP CMR is taken as input, the left ventricle is obtained by segmentation
network, and then the center position and radius of the left ventricle are obtained
by Gaussian kernel-based circular Hough transform approach. Finally, the left
ventricle position in the bSSFP CMR is mapped into the LGE CMR, and the
region of interest (ROI) is obtained by the cropping operation. (ii) ventricle and
myocardium segmentation. First, the ROI of the LGE CMR is taken as input,
and the ventricular and myocardial segmentation results are obtained through
a customized Pseudo-3D network structure. Finally, the filled image is used as
the final output result.

2 https://zmiclab.github.io/mscmrseg19/data.html.
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3.1 Left Ventricular Positioning

In this work, we choose to use bSSFP CMR for left ventricular positioning for
the following reasons: (i) compared with other modal CMRs, the bSSFP CMR
captures cardiac motions and presents clear boundaries; (ii) compared to LGE
CMR, the bSSFP CMR has more manual labels; (iii) each set of bSSFP CMR
has more slices than the T2 CMR. Typically, the T2 CMR slice has a thickness
of 20 mm, and a set of data usually consists of 3 to 5 slices, but the bSSFP CMR
slice has a thickness of 8–13 mm and a set of data consists of 8 to 12 slices, more
slices help the left ventricle to locate.

Fig. 3. An overview of the customized Pseudo-3D network framework.

First, the ventricle is segmented from the bSSFP CMR through a segmenta-
tion network. U-Net [10] only needs a small number of annotations to get better
results, and is widely used in medical image segmentation, so U-Net is selected
as our first segmentation network.

Next, the left ventricle is positioned on the segmented result to obtain a ROI.
There are many interfering tissues around the ventricle. By locating the position
of the left ventricle center point and extracting a ROI with a size of 256 × 256
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centered around it, the interference tissue can be effectively reduced. At the same
time, ROI operations can reduce computing resources and normalize data sizes.
In this study, the left ventricular center point is extracted by Gaussian kernel-
based circular Hough transform approach. The main idea of the algorithm we
implemented is from [5], a little different from [5] is that this study calculates
the left ventricular center point directly from the 3D data. In addition, it is
difficult to calculate the left ventricular center point directly from the original
data. Therefore, we first segment the original data and then perform ventricular
positioning. Our left ventricle position method greatly improves the calculation
accuracy of the center point.

Finally, the LGE CMR is used as the input, because each set of MS CMR
is from the same location of the same patient, so the ROI of the bSSFP CMR
can be mapped to the LGE CMR, and the original LGE CMR can be cropped
according to the ROI. The cropped image is used as the input for the next stage
(Sect. 3.2).

3.2 Ventricle and Myocardium Segmentation

Using the cropped LGE CMR as input, the customized Pseudo-3D network
structure is used to obtain the segmentation result. Now, we explain the details
of the customized Pseudo-3D network structure used in this study. The Pseudo-
3D convolution, as shown in Fig. 2, splits one 3×3×3 convolution into a 3×3×1
convolution to learn intra-slice features and a 1×1×3 convolution to learn inter-
slice features. Such decoupled 3D convolutions not only reduce the model size
significantly, but also address the problem of anisotropic dimensions.

Here, 3D U-Net [3] is used as a submodule of our customized Pseudo-3D
network framework. As shown in Fig. 3, in this study, the original framework of
3D U-Net is preserved, and the 3D convolutional layer in the network structure
is replaced by the Pseudo-3D structure (as shown in Fig. 2). This lightweight
network structure is more suitable for CMR data of different heterogeneities.

4 Materials and Experiments

We validated the algorithm in this study on the MS CMRSeg 20193 (Multi-
sequence Cardiac MR Segmentation Challenge). MS CMRSeg 2019 not only
provides a multi-sequence ventricle and myocardium dataset with manual labels,
but also provides an open and fair competitive platform to validate the ventric-
ular segmentation algorithm. We implemented our framework using Keras with
cuDNN, and ran all experiments on a personal computer with NVIDIA-GeForce-
GTX-1080-Ti GPU, Intel Core i7–4790 CPU @ 3.60 GHz and 32 GB RAM.

The MS CMRSeg 2019 consisted of 45 patients with cardiomyopathy, and
each set of patient data consists of three CMR sequences (the LGE, T2, and
bSSFP), all of which were breath-hold, multi-slice, acquired in the ventricular

3 https://zmiclab.github.io/mscmrseg19/.
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short-axis views. In this study, our use of data is roughly divided into two steps.
In the first step, 45 sets of bSSFP CMR were used for left ventricular positioning,
35 of which had manually labeled data as training sets, and the remaining 10
sets contained only image data as test sets. In the second step, 45 sets of LGE
CMRs were used for fine segmentation, of which 5 sets of data containing tags
were used as training sets, and the remaining 40 sets of unlabeled data were
used as test sets. Finally, we send the segmentation results of the test set to the
organizer of MS CMRSeg 2019. The test performance of the organizer feedback
is shown in Table 1.

Table 1. Segmentation accuracy. Note: LV : Left ventricle; RV : Right ventricle; Myo:
Myocardium.

Segmentation accuracy LV blood cavity Myo of LV RV blood cavity

Dice 0.807 (±0.074) 0.617 (±0.086) 0.680 (±0.118)

Jaccard 0.683 (±0.103) 0.452 (±0.090) 0.526 (±0.129)

Surface distance (mm) 4.094 (±1.493) 5.687 (±1.794) 8.730 (±3.437)

Hausdorff distance (mm) 40.773 (±11.361) 43.351 (±7.186) 56.379 (±15.505)

From the Table 1 we can see that our method left ventricular Dice score is
0.807. Here, the Dice score, Jaccard, average surface distance and Hausdorff
distance will be used as evaluation metrics, the Dice score and Jaccard can be
computed as:

Dice(Vmanual, Vauto) =
2 |Vmanual ∩ Vauto|
|Vmanual| + |Vauto| (1)

Jaccard(Vmanual, Vauto) =
|Vmanual ∩ Vauto|

|Vmanual| + |Vauto| − |Vmanual ∩ Vauto| (2)

where, Vauto is the segmented volume and the Vmanual is the manual marker
result. The scores of Dice and Jaccard represent the amount of overlap between
the automatic segmentation results and the manually labeled results, which give
a measurement value between 0 and 1. The average surface distance and the
Hausdorff distance measure the distance between the automatic segmentation
result and the manual marker result, and the smaller distance value represents
a better segmentation result. It should be noted here that the LGE CMR data
only provides 5 sets of training sets with labels, such a small amount of training
data is also one of the challenges of this segmentation task.

5 Conclusions

This study detailed a simple but effective approach for automatic ventricle and
myocardium segmentation from MS CMR, which uses the bSSFP CMR to per-
form left ventricular positioning, and use the LGE CMR to precise segmentation.
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This segmentation method combines multiple sequences of CMR information. In
addition, for the segmentation of LGE CMR, we used a customized Pseudo-3D
convolution neural network, this framework not only reduces the size of the
network, but also learns spatial structure information. In future work, we will
continue to challenge the issue of multi-sequence CMR segmentation.
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Abstract. In the clinical environment, myocardial infarction (MI) as one
common cardiovascular disease is mainly evaluated based on the late gadolin-
ium enhancement (LGE) cardiac magnetic resonance images (CMRIs). The
automatic segmentations of left ventricle (LV), right ventricle (RV), and left
ventricular myocardium (LVM) in the LGE CMRIs are desired for the aided
diagnosis in clinic. To accomplish this segmentation task, this paper proposes a
modified U-net architecture by combining multi-sequence CMRIs, including the
cine, LGE, and T2-weighted CMRIs. The cine and T2-weighted CMRIs are
used to assist the segmentation in the LGE CMRIs. In this segmentation net-
work, the squeeze-and-excitation residual (SE-Res) and selective kernel
(SK) modules are inserted in the down-sampling and up-sampling stages,
respectively. The SK module makes the obtained feature maps more informative
in both spatial and channel-wise space, and attains more precise segmentation
result. The utilized dataset is from the MICCAI challenge (MS-CMRSeg 2019),
which is acquired from 45 patients including three CMR sequences. The cine
and T2-weighted CMRIs acquired from 35 patients and the LGE CMRIs
acquired from 5 patients are labeled. Our method achieves the mean dice score
of 0.922 (LV), 0.827 (LVM), and 0.874 (RV) in the LGE CMRIs.

Keywords: Cardiac magnetic resonance � Late gadolinium enhancement �
Multi-Sequence Image � SK-Unet framework

1 Introduction

Cardiac magnetic resonance images (CMRIs) with the capacity of discriminating
various types of tissues are primarily used in the diagnosis and treatment of cardio-
vascular diseases, such as the myocardial infarction (MI). Late gadolinium
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enhancement (LGE) cardiac magnetic resonance (CMR) sequence has the capacity to
visualize the infarcted myocardium that has the enhanced brightness compared with the
healthy myocardium [1, 2]. Thus, accurate delineation of the left ventricle (LV), right
ventricle (RV), and left ventricular myocardium (LVM) in the LGE CMRIs is
important in the clinical diagnosis. The manual delineation by a clinical radiologist for
these three parts is time-consuming, tedious, and rater-dependent [1, 3]. Hence, an
automatic segmentation method for this task is desirable in clinical setups.

Currently, a majority of studies for the automatic cardiac segmentation are based on
the cine CMR sequence [3–8], since the cine CMR sequence has the ability to capture
the cardiac motions during the whole cardiac cycle and can present clear boundary [1].
The LGE CMR sequence enhances the representation of the infarcted myocardium and
is routinely used in the clinical diagnosis of MI. However, there is few research on
automatic cardiac segmentation directly in the LGE CMR sequence, since the CMRIs
with poor image quality have heterogenetic intensity distribution. The current
LGE CMR based cardiac segmentation research mainly targets to delineate the contour
of LVM [1, 9–14]. They accomplish the segmentation task utilizing a semi-automated
approach [12] or combining the prior segmentation contour in the corresponding cine
CMR sequence from the same patient with the same phase [9–11, 13, 14]. The prior
knowledge based methods usually require the assistance of various image registration
algorithms. The result of image registration may produce errors due to the varied slice
thickness and spatial resolution in different patients.

To the best of our knowledge, there is almost no research focusing on the simul-
taneously automatic segmentation of the LV, RV, and LVM in the LGE CMRIs.
Manual delineation in the LGE CMRIs is particularly arduous. This paper proposes an
automatic segmentation algorithm for these three parts in the LGE CMRIs. The utilized
dataset is from the MICCAI challenge (MS-CMRSeg 2019), which is collected from 45
patients. Only 5 of 45 patients have their LGE CMRIs labeled, and 35 of 45 patients
have their cine and T2-weighted CMRIs labelled. In this paper, the LGE CMRIs with a
small amount of manual delineations are segmented by combing anther two CMR
sequences (cine and T2-weighted CMRIs) acquired from the same patient. This paper
achieves this segmentation based on a modified U-net architecture. The squeeze-and-
excitation residual (SE-Res) [15] and selective kernel (SK) modules [16] are respec-
tively inserted in the down-sampling and up-sampling stages of the conventional U-net
architecture. The SE-Res module considers more channel dependencies and lacks the
spatial information of feature maps. The spatial information is important for the pixel-
level localization in the image segmentation task. The SK module is utilized to relieve
this problem, which adaptively adjusts the size of local respective field in the convo-
lutional operation to collect multi-scale spatial information [16]. The proposed SK-
Unet framework has achieved robust segmentation performance in the LGE CMR
sequences.
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2 Methodology

The modified architecture used for this cardiac segmentation task is based on the
classical U-net architecture. The proposed LV, RV, and LVM segmentation algorithm
includes three parts: image preprocessing, SK-Unet model based image segmentation,
and image postprocessing.

2.1 Image Preprocessing

In order to remove the influence of the surrounding organ of heart in the CMRIs, region
of interest (ROI) extraction is a crucial step in the prepossessing stage. The distribution
range of intensity, image contrast, and image size are different in these three CMR
sequences. It is difficult to develop a robust ROI detection method. Since the three
CMR sequences of each patient are acquired in same session and with the same cardiac
phase, the anatomical structure is consistent in the three CMR sequences. Thus, this
paper performs a statistical work to roughly locate the position of the heart.

The second step in the preprocessing process is to normalize the input images as the
distribution of zero mean and variance of 1. Then, due to the limited training images,
the data augmentation is applied to create an expanded dataset from the original dataset.
The adopted data augmentation methods include image transpose, flipping, cropping,
and rotation. Finally, to fully utilize the dependences between slices, the neighbored
three slices are stacked as the new three-channel image that has the same mechanism as
the RGB channel in the color image.

2.2 SK-Unet Based Image Segmentation Model

The proposed SK-Unet based CMR segmentation model consists of the encoding and
decoding stages. The skip connections exist between encoder and decoder blocks with
the same image spatial resolution. Figure 1 illustrates the overall structure of the
proposed SK-Unet based CMR segmentation model.

As shown in Fig. 1(a), the input is the neighbored three slices in one CMRI, and the
output is the probability that each pixel in the CMRI is classified as the background,
LV, RV, and LVM. The left part performs the encoding operation with pooling layer,
convolution layers, and SE-Res module, and the decoding operation with up-sampling
unit, convolution layers, and SK module is performed in the right part. The horizontal
connections mean that the extracted features in the encoding stage are forwarded to the
corresponding decoding stage.

The pooling layers reduce the spatial resolution of feature maps to attain high-level
feature representation. As shown in Fig. 1(a), the stride in pooling layers is adopted as
2. The up-sampling unit has the inverse operation as the pooling layer.

The convolution operation at each convolution layer applies filters to learn infor-
mative features by combining the spatial and channel-wise information within the local
receptive fields. In order to attain global feature fusion, the SE-Res and SK modules are
inserted in the conventional U-net architecture. The SE-Res module factors out the
spatial correlations among features and captures the relationships among channels,
which is effective in the classification task. In this CMR image segmentation task, the
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Fig. 1. The overall structure of the proposed SK-Unet based CMR segmentation model. The SK
and SE-Res modules are shown in (b) and (c).
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spatial information with the representation of texture, boundary, and gray-level, is also
important. The SK module can adaptively adjust the size of local respective field in the
procedure of the CNN operation, which helps capture multi-scale spatial correlations
among features. Thus, the SK module makes the obtained feature maps more infor-
mative in both spatial and channel-wise space. The proposed architecture has robust-
ness for the classification between the target region and background, and for the precise
localization of the target region in the CMR image segmentation task.

2.3 Image Postprocessing

The image postprocessing process aims to refine the result of the cardiac segmentation.
First, the hole filling technique is applied to attain more complete segmentation. Then,
a connected component analysis for all the obtained segmentation is performed. The
largest connected component of all slices in each patient is found, which is set as the
constraint for modifying the segmentation of the remaining slices in each patient.
Segmentations that exceed the largest connected range will be removed.

3 Experimental and Results

3.1 Dataset: MS-CMRSeg 2019

Our algorithm is evaluated on the Multi-sequence Cardiac MR Segmentation Chal-
lenge MICCAI 2019 (MS-CMRSeg 2019) dataset [1, 2]. This dataset covers 45
patients with cardiomyopathy, and each patient has been scanned by the cine, T2-
weighted, and LGE CMR sequences from the short-axis orientation. The cine CMRIs
acquired with the balanced-steady state free precession (bSSPF) sequence covers the
full ventricles, which are selected in the same cardiac phase as the following LGE and
T2-weighted CMRIs. The LGE and T2-weighted CMRIs cover the main body of the
ventricles, which are collected at the end-diastolic phase. Since the number of labelled
samples is limited, the cine and the T2-weighted CMRIs collected from 35 patients, and
the LGE CMRIs collected from 5 patients are used as the training data. The testing data
adopts the LGE CMRIs collected from 40 patients.

3.2 The Overall Performance of the Proposed Approach

Four commonly used indicators in medical image segmentation are used to evaluate the
performance of the model. These four indicators include dice score, Hausdorff distance,
average surface distance, and Jaccard index, which are listed in Table 1.

As shown in Table 1, the segmentation for the LV cavity reaches the highest
performance in term of dice score, Jaccard index, Hausdorff distance, and surface
distance. The segmentation of LV myocardium is relatively difficult since the existence
of the invalid tissue. The invalid tissue, for instance the MI, has the same appearance as
the blood pool, which results in the difficulty in the localization of the LV myocardium.
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3.3 Comparison with Various Image Segmentation Architectures

In order to intuitively represent the segmentation performance of the proposed algo-
rithm, the visual segmentation results for the LV, LVM, and RV are compared with
various architectures including DenseUnet [17], Linknet [18], and U-net [19], which
are represented in Fig. 2.

As shown in Fig. 2, the SK-Unet based algorithm achieves the best segmentation
result. The Linknet and U-net based methods produce unsmooth segmentation in the
boundary. The DenseUnet has difficulty in segmenting the RV part.

Table 1. The mean and standard deviation of the dice score, Hausdorff distance, surface
distance, and Jaccard index in the cardiac segmentation task.

Mean ± standard deviation

LV blood cavity LV myocardium RV blood
Dice score (%) 0.922 ± 0.036 0.827 ± 0.060 0.874 ± 0.058
Jaccard index (%) 0.857 ± 0.059 0.709 ± 0.084 0.781 ± 0.089

LV endocardium LV epicardium RV endocardium
Hausdorff distance (mm) 10.058 ± 3.820 11.426 ± 3.574 16.721 ± 7.509
Surface distance (mm) 1.589 ± 0.637 1.696 ± 0.585 2.208 ± 1.016

Fig. 2. The visual segmentation results for the LV, LVM, and RV of the same slices from one
specific patient using various architectures. The results from the first to the last columns are
obtained using SK-Unet, DenseUnet, Linknet, and U-net, respectively.
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The SK-Unet module fully utilizes the information of channels in the feature maps
through the inserted SE-Res module. Meanwhile, the adaptive adjust of the receptive
field size helps capture multi-scale spatial information. The combination of the channel
and spatial information could learn more inter-slices and intra-slice features, and then
produce more precise segmentation result.

4 Conclusion

This paper proposes an approach for the multi-sequence ventricle and myocardium
segmentation using deep learning technique. We employ a modified U-net architecture
with SE-Res and SK model. The SK model with concurrent spatial and channel
information is beneficial for the target localization and pixel-level based classification
in this segmentation task. These results suggest that our approach has the potential to
provide aided diagnoses for clinical cardiac surgeon.
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Abstract. Automatic and accurate segmentation of the ventricles and
myocardium from multi-sequence cardiac MRI (CMR) is crucial for the
diagnosis and treatment management for patients suffering from myocar-
dial infarction (MI). However, due to the existence of domain shift among
different modalities of datasets, the performance of deep neural networks
drops significantly when the training and testing datasets are distinct.
In this paper, we propose an unsupervised domain alignment method
to explicitly alleviate the domain shifts among different modalities of
CMR sequences, e.g., bSSFP, LGE, and T2-weighted. Our segmentation
network is attention U-Net with pyramid pooling module, where multi-
level feature space and output space adversarial learning are proposed
to transfer discriminative domain knowledge across different datasets.
Moreover, we further introduce a group-wise feature recalibration module
to enforce the fine-grained semantic-level feature alignment that match-
ing features from different networks but with the same class label. We
evaluate our method on the multi-sequence cardiac MR Segmentation
Challenge 2019 datasets, which contain three different modalities of MRI
sequences. Extensive experimental results show that the proposed meth-
ods can obtain significant segmentation improvements compared with
the baseline models.

1 Introduction

Accurate segmentation of the ventricles and myocardium is fundamental to
the diagnosis and treatment of myocardial infarction (MI) [17]. Cardiac MRI
sequences are usually used for the MI diagnosis, in particular the T2-weighted
MRI detect damaged and ischemic areas, the balanced-Steady State Free Pre-
cession (bSSFP) MRI clearly shows the heart structure boundary, and the late
gadolinium enhancement (LGE) MRI can enhance infarcted myocardium with
distinctive brightness compared to healthy structure [16]. Manual segmenta-
tion is time-consuming, so automatic segmentation is significant in the clinic.
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(a) Source1 (b) Source2 (c) Target (d) Label (e) T-noDA (f) T-DA

Fig. 1. Performance drops due to domain shift. (a) Original T2-weighted MRI
(Source1). (b) Original bSSFP MRI (Source2). (c) Original LGE MRI (Target). (d)
LGE MRI annotation (Label). (e) The segmentation results of LGE MRI using an
established model trained on T2-weighted and bSSFP MRI data (T-noDA). (f) The
segmentation results of an LGE MRI using our model trained on T2-weighted and
bSSFP MRI data (T-DA). The yellow region denotes the right ventricle, the green
region denotes the left ventricle, and the blue region denotes the myocardium. (Color
figure online)

Recently, deep learning network has become a powerful tool for semantic seg-
mentation on heart structures [12,13]. Obviously, the ventricles and myocardium
segmentation results can be improved combining the complimentary informa-
tion from T2-weighted and bSSFP MRI sequences [16]. To save labeling time,
sometimes only the T2-weighted and bSSFP MRI sequences and corresponding
labels are available. However, a well-trained segmentation model may underper-
form when being tested on data from different modalities, which is caused by
the domain shift (as shown in Fig. 1). Fine-tuning on the target domain data
is a simple but efficient method to alleviate the performance drop. But it still
requires massive data collection and enormous annotation workload which are
impossible for many real-world medical scenarios. For this reason, constructing
a general segmentation model suitable for various modalities is promising yet
still challenging.

Unsupervised Domain Adaptation (UDA) methods have shown compelling
results on reducing the dataset shift across distinct domains. Prior efforts on
this problem intended to match the source and target data distributions to learn
a domain-invariant representation. For example, Maximum Mean Discrepancy
(MMD) was introduced to minimize the distance of source and target feature
distributions in Reproducing Kernel Hilbert Space (RKHS) [11]. CycleGAN [15]
tackled the image-to-image translation task in a fully unsupervised manner, and
thus is capable of reducing the domain shift in the pixel-level. AdaptSegNet [10]
solved the unsupervised cross domain segmentation problem by leveraging the
domain adversarial training approach. In the context of medical imaging, [3]
developed an UDA framework based on adversarial networks for lung segmenta-
tion on chest X-rays. [8] improved the UDA framework with Siamese architec-
ture for Gleason grading of histopathology tissue. [5] proposed a domain critic
module and a domain adaptation module for the unsupervised cross-modality
adaptation problem. These approaches, which based on the domain adversarial
training, required empirical feature selection. [2] proposed the synergistic fusion
of adaptations from both image and feature perspectives for heart structures
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segmentation. However, this approach, which based on image-to-image adapta-
tion, cannot be directly introduced to the multiple source domain adaptation
problems due to the presence of multiple domain shifts between different source
domains.

In this paper, we propose a domain alignment method for the UDA problem,
which helps the established model segment the ventricles and myocardium accu-
rately in the target domain without requiring target labels. Firstly, in order
to reduce the domain shift with respect to the image appearance, we pro-
pose a histogram match operation for all the data. Secondly, we introduce the
domain adversarial training in the output space, which can directly align the
predicted segmentation results across different domains. Finally, we further pro-
pose a group-wise feature recalibration module (GFRM) to improve the domain
adversarial training by integrating multi-level features without requiring manual
selection to progressively align the source and target feature distributions. The
proposed method is extensively evaluated on the multi-sequence cardiac MR
Segmentation (MS-CMRSeg) Challenge 2019 datasets, including bSSFP, LGE
and T2-weighted MRI sequences.

2 Method

Figure 2 overviews our segmentation method for ventricles and myocardium in
MRI sequences. We use modified 2D attention U-Net with pyramid pooling
module as our segmentation backbone architecture [7,14]. To align the distance
over feature and output spaces across different domain, feature-level and mask-
level discriminator are adopted. Moreover, the group-wise feature recalibration
module (GFRM) is introduced to transfer multi-level feature information. The
details of the above modules are shown in Fig. 3.

Fig. 2. Schematic view of our proposed framework.
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2.1 Network Architecture

Segmentation Network. It is essential to build upon a good baseline model
to achieve high-quality segmentation results. Our segmentation network follows
the spirit of attention U-Net architecture [7]. In encoder network, we keep the
convolution layer as the initial setting. We perform three maxpool operations
totally. Dilated convolution is adopted after third maxpool operation to cap-
ture large receptive field to alleviate loss of structural information. Inspired by
[14], pyramid pooling module is introduced to generate multi-scale features to
alleviate the variance of heart size over each patient. In decoder network, we per-
form three deconvolution operations totally. For further accurate segmentation
results, attention gate (as the black dot shown in Fig. 3(a)) is utilized to learn to
focus on ventricles and myocardium structures. In attention gate, the features in
the encoder part (as the blue rectangle shown in Fig. 3(a)) and decoder part (as
the gray rectangle shown in Fig. 3(a)) are first squeezed with 3 × 3 convolution
layer along the channel direction respectively and then added together. After
that, we squeeze the features to single channel feature map to form structure
attention with 1 × 1 convolution layer and generate final feature maps by dot
product. Finally, we use 1 × 1 convolution layer with four output channels fol-
lowed by the sigmoid activation function to generate the probability maps. To
save computational resources, we share the network with the same parameters
between source and target domain.

Fig. 3. Architecture of the sub-networks in our framework. (Color figure online)

Group-wise Feature Recalibration Module. Before we perform group-wise
feature recalibration operation, different size features from segmentation net-
work above are expanded and concatenated via upsampling and concatenating
operations. The features are send to GFRM. Our GFRM follows the spirit of [9].
Different from the above method, we divide features into four groups correspond-
ing to the segmentation categories to focus on specific heart structures and we
recalibrate features in each group (as shown in Fig. 3(b)). GFRM consists of two
parts: channel attention part and spatial attention part. In channel attention
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part, we first squeeze global spatial information with global average pooling and
fully connection layer. Then, we can generate the channel-wise attention features
by simple dot product. In the spatial attention part, we first squeeze channel
information with 1 × 1 convolution layer. Then, we can obtain the spatial-wise
attention features by simple dot product. The features from channel attention
part are added with the features from spatial attention part to generate group-
wise recalibrated features. Finally, the features from each group are concatenated
to generate final recalibrated features.

Discriminator. The feature-level and mask-level discriminator are based on
the multi-level features from GFRM and predicted mask results. We use Patch-
GAN as our discriminator [6]. The network consists of 3 convolution layers with
stride of 2 and 2 convolution layers with stride of 1. The kernel size of all convolu-
tion layers is 4× 4 and the corresponding channel number is 64, 128, 256, 256, 1.
Except for the last layer, each convolution layer is followed by a leaky ReLU
parameterized by 0.2.

2.2 Hybrid Loss Function for Source Data

Since the labels for source domain are available, we train the segmentation net-
work with a hybrid loss. The vanilla cross-entropy loss with our unbalanced
training data leads to low accuracy. We add the Jaccard loss [1] into our loss
function. The training objective for source data is

Ls
ce = −Exs∼S(

Ns∑

i=1

C∑

c=1

ys,i,c log G(xs,i;Θg)) (1)

Ls
jac = −Exs∼S(

Ns∑

i=1

C∑

c=1

ys,i,cG(xs,i;Θg)
ys,i,c + G(xs,i;Θg) − ys,i,cG(xs,i;Θg)

) (2)

S represents source domain; For each source image xs, there is one corresponding
annotation ys; Ns is the number of all source images; Exs∼S means that all xs

are from S; C is the number of all categories; G is segmentation network; Θg is
the parameters of G; ys,i,c and G(xs,i;Θg) mean the annotation and prediction
vectors, respectively. For cross entropy loss, the imbalance of training data leads
to a local optimum with inappropriate direction of gradient decreasing, especially
in the early stage. The Jaccard loss effectively helps to avoid the local optimum
due to its better perceptual quality and scale invariance [1].

2.3 Adversarial Learning for Target Data

In the target domain, due to the lack of annotations, we leverage the adversar-
ial learning to train the segmentation network by minimizing the discrepancy
across the source and target domain. Domain adaptation based on both feature
and output space is proved to be effective for heart structure segmentation [4].
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In our framework, we employ two discriminators. The features input to feature
domain discriminator are selected empirically in [4]. To overcome this problem,
we propose the GFRM to leverage the full feature spectrum and automatically
select prominent features in the feature space. In the segmentation network, each
feature scale generates one output feature map in the same dimension via con-
volution and upsampling operations. The feature maps are further processed by
the GFRM to highlight the prominent features and suppress the irrelevant ones.
The combined feature maps are then fed to the feature discriminator network
for the adversarial learning, where the losses are defined as

LadvDf
= − Exs∼S log Df (R(G(xs;Θg);Θr);Θdf

)

− Ext∼T (1 − log Df (R(G(xt;Θg);Θr);Θdf
))

(3)

LadvGf
= −Ext∼T log Df (R(G(xt;Θg);Θr);Θdf

) (4)

T represents target domain; where xt is target data; Ext∼T means that all xt

are from T ; R is the GFRM; Θr is the parameters of R; Df is the feature
discriminator; Θdf

is the parameters of Df .
In the output space, the segmentation results of target domain should be

similar to the ones of source domain. To achieve this, we employ the adversarial
learning technique in the output space, where the losses are defined as

LadvDm
= − Exs∼S log Dm(G(xs;Θg);Θdm

)
− Ext∼T (1 − log Dm(G(xt;Θg);Θdm

))
(5)

LadvGm
= −Ext∼T log Df (G(xt;Θg);Θdm

) (6)

where Dm is the mask discriminator; Θdm
is the parameters of Dm.

Combined with the aforementioned loss, the full objective function

LFULL =λceLce + λjacLjac + λDf
LadvDf

+ λGf
Ladvgf

+ λDm
LadvDm

+ λGm
Ladvgm

(7)

3 Experiment

Dataset. The validation of the proposed method is performed in the MS-
CMRSeg Challenge 2019 dataset covering 45 patients. There are bSSFP, T2-
weighted and LGE MRI sequences in each patient data. In one patient data, the
slice number and annotation of three MRI modalities are different. We combine
labeled bSSFP and T2-weighted MRI sequences as source data, and unlabeled
LGE MRI sequences as target data. Experienced experts manually annotated
the left ventricle (LV), right ventricle(RV) and myocardium (Myo) as ground
truth. We pre-processing the data for domain adaptation. The data is resized
and cropped to 400 × 400 in the center of each slice. In order to eliminate the
inconsistency in appearance, we perform histogram match operation on both
source and target data, as shown in Fig. 4.
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Fig. 4. Visual comparison for histogram match operation: (a) T2-weighted MRI. (b)
T2-weighted MRI after histogram match. (c) bSSFP MRI. (d) bSSFP MRI after his-
togram match. (e) LGE MRI. (f) LGE MRI after histogram match.

Implementation Details. In our experiments, we implement our whole net-
work with PyTorch, using a standard PC with a single NVIDIA 1080Ti. To
train the segmentation network, we use the Stochastic Gradient Descent (SGD)
optimizer with Nesterov acceleration where the momentum is 0.9 and the weight
decay is 1e−4. The initial learning rate is set as 0.01 and is decreased to 0.001
after 80 epochs. For training the both feature and mask discriminator, we use
Adam optimizer with the fixed learning rate as 0.0002. The weight decay is set
as 5e−5. We totally trained 150 epochs with a mini-batch size of 8. We set λce,
λjac, λGf

, λDf
, λGm

and λDm
to 0.5, 0.5, 0.05, 1.0, 0.005 and 1.0. The training

time cost only 5 h to converge.

Fig. 5. Visual comparison for the LV, RV, and Myo segmentation results from ablation
setting. (a) Original image from source domain. (b) Annotation. (c) S2T. (d) S2T+HM.
(e) S2T+HM+MDA. (f) S2T+HM+MDA+FDA. (g) S2T+HM+MDA+FDA+GFRM.

Quantitative and Qualitative Analysis. In order to verify the effectiveness of
the proposed method, we adopt Dice coefficient (DSC), Jaccard coefficient (Jac)
for further evaluation. We first trained segmentation network on the source data
and then test on the target data (S2T). The results in Table 1 shows that the
mean Dice in S2T is too slow. As we can see, our method can promote about
36.09% in DSC and 38.38% in Jac than S2T, which indicates that our method
can alleviate dataset shift across different domains.
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In addition, we examine the effect of the histogram match operation (HM),
mask-level adversarial learning (MDA), feature-level adversarial learning (FDA)
and GFRM on the performance in the target domain. The result of the abla-
tion study in Table 1 shows that our proposed modules can achieve a better
performance than S2T. Figure 5 demonstrates that each proposed module can
contribute to alleviate the domain misalignment.

Table 1. Quantitative evaluation of our proposed methods

Method LV RV Myo Mean

DSC [%] Jac [%]DSC [%] Jac [%]DSC [%] Jac [%]DSC [%] Jac [%]

S2T 50.01 37.41 66.72 51.03 31.69 21.88 49.47 36.78

S2T+HM 59.80 47.66 76.02 62.98 38.13 26.73 57.98 45.79

S2T+HM+MDA 85.67 75.48 86.19 75.89 75.35 60.70 82.40 70.69

S2T+HM+MDA+FDA 88.43 79.68 85.70 75.14 78.43 64.57 84.19 73.13

S2T+HM+MDA+FDA+GFRM 89.33 81.15 87.17 77.29 80.17 67.04 85.56 75.16

4 Conclusion

In this paper, we proposed an unsupervised domain alignment method for left
ventricle (LV), right ventricle (RV) and myocardium (Myo) segmentation from
different cardiac MR sequences. We first introduced a segmentation network
with hybrid segmentation loss to generate accurate prediction. We alleviate the
dataset shift across different domains by leveraging the adversarial learning in
both feature and output spaces. The proposed GFRM can enforce the fine-
grained semantic-level feature alignment that matching features from different
networks but with the same class label. Experiments show that the proposed
method can achieve competitive results.
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Abstract. Accurate modelling and segmentation of the ventricles and myo-
cardium in cardiac MR (CMR) image is crucial for diagnosis and treatment
management for patients suffering from myocardial infarction (MI). As the
infarcted myocardium can be enhanced in LGE CMR through appearing with
distinctive brightness compared with the healthy tissues, it can help doctors
better study the presence, location, and extent of MI in clinical diagnosis. Hence
it is of great significance to delineate ventricles and myocardium from
LGE CMR images. In this study, we proposed a multi-modal cardiac MR image
segmentation strategy via combining the T2-weighted CMR and the balanced-
Steady State Free Precession (bSSFP) CMR sequence. Specifically, the T2-
weighted CMR and bSSFP are co-registered and set as the input of the con-
volution neural network to do the first stage segmentation in bSSFP space. By
predicting all the labels, we further registered T2-weighted CMR, bSSFP and
the corresponding labels into LGE space, and as an input to the convolution
neural network to do the second stage segmentation. In the end, we post-
processed the output masks to further ensure the accuracy of the segmentation
results. The dice score of the proposed method in test set of Multi-sequence
Cardiac MR (MS-CMR) Challenge 2019 achievers 0.8541, 0.7131 and 0.7924
for left ventricular (LV), left ventricular myocardium (LV myo), and right
ventricular (RV).

Keywords: Myocardial infarction � Multi-modal � Cardiac MR � Image
segmentation � Convolution neural network

1 Introduction

Cardiovascular diseases (CVDs) consistently rank among the top major causes of
morbidity and mortality [1], and early detection and prevention of cardiovascular
disease is a hot topic of research in recent years. Cardiac magnetic resonance imaging
has many different sequences which can reveals observe structural information as well
as respond to certain functional information, e.g., myocardial infarction (MI) can be
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observed clearly in late sputum enhancement (LGE) cardiac magnetic resonance
(CMR) sequences, while local area acute injury is shown apparently in T2-weighted
CMR images, and the cardiac motions and clear boundaries can be delineated through
the balanced-Steady State Free Precession (bSSFP) cine sequence [2]. Meanwhile,
CMR has great potential to be used in structural (e.g. volume) and functional (e.g.
ejection fraction) cardiac parameters estimation, which is helpful in clinical diagnosis
and disease management. However, it’s extremely time consuming to manually iden-
tify and delineate the corresponding structure in cardiac, and the result depends on the
professional ability of doctors and varies from person to person. Automatic cardiac
segmentation algorithm is far more efficient and robust and commonly has higher
accuracy than human. Many studies have been proposed for right and left ventricular,
and ventricular myocardium segmentation in cardiac segmentation field [3–5]. For
example, Gaussian mixture model (GMM)-based segmentation, which depended on the
different intensity distributions in different issues [3], atlas-based segmentation based
on large samples and EM algorithm [6]. Otherwise, some deep learning model based on
various neural network structure have been also described in literature, e.g. the Fully
Convolutional Neural Network [7], and the U-net [8]. However, most of the mentioned
studies were based on a specific CMR imaging sequence, which may encounter the
problem of valuable information missing and lead to a not good result. Differently,
Zhuang proposed the multivariate mixture model (MvMM) segmentation model based
multi-sequence CMR [9], and Liu developed a new segmentation framework based on
conditional generative adversarial network (cGAN) technique, which integrated the
LGE and T2-weight sequence information for accuracy improvement in cardiac seg-
mentation [10]. In general, accurate cardiac MR segmentation is still facing challenges
due to the high heterogeneity in cardiac MR imaging.

In this work, we proposed a deep learning based cardiac registration and seg-
mentation model for RV, LV and LV myo segmentation in LGE space. The model
combined valuable information in T2-weighted CMR, bSSFP CMR and LGE CMR for
more accurate and robust cardiac segmentation.

2 Method

Our cardiac MR image segmentation framework comprised several stages. The cardiac
segmentation was firstly performed in C0 (bSSFP cine sequence is referred as C0)
space combining C0 images and the registered T2 images, followed by registered C0
images, T2 images and the corresponding segmented labels into LGE space. After that,
we performed segmentation processing combining three series (C0, T2, and LGE) in
LGE space, followed by neural network fine tune with the provided ground truth labels
for LGE images. Finally, some post processing methods were applied for further
segmentation accuracy improvement. The entire framework is shown in Fig. 1.

2.1 Stage1: Automatic Cardiac Segmentation in T2 and C0

As the final purpose of our work was to combine T2, C0 assisting cardiac segmentation
in LGE images, the first stage of our work was the achievement of fully automatic
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cardiac segmentation in T2 and C0. It is believed that images of T2-weighted CMR has
the better contrast to show acute injury and ischemic regions, and the C0 CMR is
superior in cardiac motions capture and presents clear boundaries. Here we proposed
deep learning based segmentation scenario which used T2 and C0 images as two-
channel input. Co-registration was performed between T2 and C0, specifically, we
registered the T2 CMR images into C0 space based on Normalized Mutual Information
criterion [11] Eq. 1:

NMI A;Bð Þ ¼ H Að ÞþH Bð Þ
H A;Bð Þ ð1Þ

where H Að Þ and H Bð Þ is the Shannon entropy of image A and image B, and H A;Bð Þ
represents the joint entropy.

The registration processing can be built as Eq. 2:

rIT2 ¼ yT2 bSSFPIT2 ð2Þ

where yT2 bSSFP is the estimated transformation matrix from T2 to C0, IT2 represents
for the original T2 images, and rIT2 stands for the registered T2 images. The inter-
polation method is using 4th degree B-spline.

After co-registration, C0 images and T2 images were used as two-channel input of
the U-net based neural network [12], and the ground truth was the provided C0 labels.
The reason for directly choosing C0 labels as the ground truth is the spatial resolution of
C0 and LGE was closer compared to T2, as we further registered these two sequences
into LGE space in the next step, the registration error of C0 label was relatively small. In
addition, label fusion did not seem to be helpful for our segmentation.

Fig. 1. Framework diagram of the proposed cardiac segmentation model
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2.2 Stage2: Automatic Cardiac Segmentation in LGE

Here we performed the segmentation processing based on three sequence (C0, T2,
LGE) in LGE space. C0, registered T2 images and the corresponding segmented labels
in stage1 were registered into LGE space firstly. It should be mentioned that the image
and label were using the same transformation matrix, however, 4th degree B-spline
interpolation method was applied for image data and nearest neighborhood interpola-
tion algorithm was used for label(performed in SPM12), which can ensure the regis-
tered labels would not generate new values. Furthermore, rather than directly registered
T2 data into LGE space, we firstly registered C0 image into LGE space and obtained
the transformation matrix, followed by applied the estimated transformation matrix on
the registered T2 data in C0 space performed in stage1. As the difference of Inter-layer
resolution between T2 and LGE data is relatively large, the strategy of using C0 image
as a transition can improve the registration accuracy of T2 in LGE space.

The registration processing can be expressed as Eqs. 3, 4, 5:

rIC0 ¼ yC0 LGEIC0 ð3Þ

rrIT2 ¼ yC0 LGErIT2 ð4Þ

rLC0T2 ¼ yC0 LGELC0T2 ð5Þ

where yC0 LGE is the estimated transformation matrix from C0 to LGE, IC0 stands for
original C0 images, rIC0 refers to registered C0 images in LGE space, rIT2 represents
the registered T2 image in C0 space performed in stage1, LC0T2 is the segmented labels
in stage1 and rLC0T2 means the corresponding registered labels in LGE space.

The neural network training was performed on the co-registered three sequence MR
images and used the registered label as the ground truth. Actually, this label was a kind
of ‘pseudo-ground truth’ due to the registration error, and the network training pro-
cessing can be also referred as potential calibration processing. In other word, the
training processing was not expected to have perfect similarity with original ground
truth, and the registration error is promising to be reduced during learning processing.
Some regularization techniques were applied in our work to strengthen this effect.

3 Stage3: Fine Tune and Post-processing

With the trained network in stage2, we fine-tuned the model with the provided 5 true
labels of LGE data for more accurate cardiac segmentation in LGE space. The
remaining LGE test data were predicted via the final model.

Finally, some post-processing techniques were applied for further accurateness and
robustness of our segmentation model. The threshold of output probability segmen-
tation maps was set according to the accuracy in validation set. Meanwhile a network
of whole label was also trained, which means the right and left ventricular, and ven-
tricular myocardium label formed a whole label as the ground truth of the neural
network. It was found that the segmented boundary of the cardiac based on whole
label training was more reliable than the composition of separate segmentation of three
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sub-labels, hence the segmentation of whole label can be regarded as a constraint of our
segmentation scenario of RV, LV and LV myo, which means the part of positive
segmentation results in separate RV, LV and LV myo segmentation processing outside
the whole label region will be removed.

4 Experimental Setting and Results

4.1 Dataset

In this study, the proposed model was trained and evaluated on the dataset of multi-
sequence cardiac MR image segmentation competition in MICCAI 2019. The dataset
comprised 45 patients with T2 CMR, bSSFP CMR, and LGE CMR. The RV, LV and
myo labels of T2 CMR, bSSFP CMR in first 35 patients were provided [9, 13], while
for LGE CMR, only the labels of the first 5 patients was available, and the remain
LGE CMR data was regarded as the test set.

4.2 Image Processing and Training Setting

The registration processing was based on Normalized Mutual Information criterion. For
the image data, the interpolation method was 4th degree B-spline, while nearest
neighborhood interpolation algorithm was chosen for label data. All the registration
processing was performed in MATLAB SPM12.

The segmentation was performed on RV, LV and LV myo, and the whole label,
respectively. All the input images were normalized using z-score (zero mean and unit
std), and data augmentation was applied using axis flip, elastic transformation and
rotation. The structure of the neural network was based on U-net framework, while the
‘valid padding’ was replaced by ‘same padding’, and L2 norm regularization was
applied on the convolutional kernel parameters with a weight of 1e�5. Furthermore, a
batch normalization layer was added after each convolution layer. The loss function
was the common soft Dice loss. Our networks were implemented in Keras, Adaptive
Moment Estimation (Adam) was used in the training, with initial learning rate 1e�4,
batch size 10 and maximum epoch 200. Training was implemented on an NVIDIA
Volta V100 32 GB GPU.

5 Results

Figure 2 shows the segmentation result of RV, LV and myo and whole label respec-
tively for a case in the test set. The first line is the co-registered C0, T2 and LGE
images input into the network, and the second line is the segmentation results of LV
(red), LV myo (blue) and RV (green), while the results of whole label (yellow) and the
integrated label of RV, LV and LV myo are shown in the third line.

We evaluated the purposed segmentation model on the test dataset of the compe-
tition, the evaluation metrics included Dice score, average surface distance and Haus-
dorff distance. Our model achieves Dice score of 0.8541 ± 0.0581, 0.7131 ± 0.1001
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and 0.7924 ± 0.0871 for left ventricular, ventricular myocardium and right ventricular,
respectively. The detailed performance is shown in Table 1 and Fig. 3, and we don’t
compared our results with other represented methods limited to the test set which don’t
released.

Fig. 2. Segmentation results of a case in the testing dataset. (a) (b) (c): co-registered C0, T2 and
LGE CMR images, (d) (e) (f) separate segmentation results of LV, myo and RV, (g) segmentation
result of the whole label, (h) the integrated label of separate segmentation (Color figure online)

Table 1. Detailed performance of the proposed segmentation model in test dataset

Dice Average surface distance (mm) Hausdorff distance (mm)

LV LV myo RV LV end LV epi RV end LV end LV end RV end

0.8541 ±

0.0581
0.7131 ±

0.1001
0.7924 ±

0.0871
3.1939 ±

1.3595
3.0312 ±

1.1450
3.5774 ±

1.2711
14.9099 ±

6.4417
17.2826 ±

5.5731
16.9357 ±

5.5100

LV: left ventricular, RV: right ventricular, myo: myocardium, end: endocardium, epi: epicardium.
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6 Discussion and Conclusion

In this work, we described a deep learning based registration and segmentation
framework for multi-sequence MR segmentation. T2 CMR, bSSFP CMR and
LGE CMR were effectively combined for cardiac segmentation in LGE space. The
registration in our model was based on Normalized Mutual Information criterion and
various interpolation algorithms were applied for image data and label. The segmen-
tation processing was a cascaded U-Net framework, followed by some post-processing
techniques. All the MR sequences were covered in our work for a better segmentation
performance, however, the provided labels for C0, T2 and LGE were not fully utilized.
A more effective strategy of label fusion for better utilization would be studied in the
future work. Otherwise, some other modeling methods (e.g. learning based method) for
motion correction between C0, T2 and LGE sequences in addition to simply using
criterion based registration algorithm should be explored for this challenge for further
better segmentation performance. As of now, the label of the test set and the perfor-
mance rank has not been published, hence we cannot compare the performance of the
proposed method with other works well, and this part will be improved later. The
proposed method finally achieves average Dice scores of 0.8541, 0.7131 and 0.7924
for LV, LV myo and RV respectively in test set of MS-CMR Challenge 2019.
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Abstract. Myocardium segmentation of late gadolinium enhancement
(LGE) Cardiac MR images is important for evaluation of infarction
regions in clinical practice. The pathological myocardium in LGE images
presents distinctive brightness and textures compared with the healthy
tissues, making it much more challenging to be segment. Instead, the
balanced-Steady State Free Precession (bSSFP) cine images show clearly
boundaries and can be easily segmented. Given this fact, we propose a
novel shape-transfer GAN for LGE images, which can (1) learn to gen-
erate realistic LGE images from bSSFP with the anatomical shape pre-
served, and (2) learn to segment the myocardium of LGE images from
these generated images. It’s worth to note that no segmentation label
of the LGE images is used during this procedure. We test our model on
dataset from the Multi-sequence Cardiac MR Segmentation Challenge.
The results show that the proposed Shape-Transfer GAN can achieve
accurate myocardium masks of LGE images.

Keywords: Segmentation · LGE · Cross-modality · Shape transfer

1 Introduction

Late gadolinium enhancement (LGE) MRI technology can accurately identify
myocardial infarction (MI), myocardial fibrosis and cardiac amyloid and other
diseases. Its good spatial resolution and tissue specificity have unique advan-
tages in the diagnosis of various types of myocardial lesions. To this end, correct
segmentation of LGE CMR images is a prerequisite of quantitative evaluation.

While recent advancements in deep neural network have results in many accu-
rate models of automatic segmentation of cardiac left/right ventricle (LV/RV)
from bSSFP cine images, only a few efforts have been given to segmentation of
cardiac structures from LGE images. Contrary to bSSFP cine image where the
myocardium and the background blood pool have different intensity distributions
and can be well discriminated, the intensity of LGE images is heterogeneous for
the myocardium and the boundary of the pathological part is even invisible.
c© Springer Nature Switzerland AG 2020
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Recently proposed methods of LGE segmentation include model-based [1]
and learning-based ones [2,3]. Zhuang et al. (2018) used multivariate mixture
model to describe the likelihood of multi-source images in a common space and
model the motion shift of different slices with a rigid transformation. After iter-
atively registration and segmentation, the model achieved good myocardial seg-
mentation. However, the complexity of the model may hinder it from effective
application in practice [2]. Xiong et al. (2019) proposed a dual fully convolu-
tional neural network to extract global and local structures from MRI slices
of different resolutions for 3D left atrium segmentation from LGE images. The
network was trained with a dataset of 154 subjects and achieved accurate seg-
mentation results [3]. Yue et al. (2019) used a deep neural network SRSCN,
which incorporated shape prior and slice spatial information as regularization
for LGE cardiac segmentation [1]. After being trained with LGE images of 25
patients, it can segment the LV, myocardium, and RV well. A drawback of these
learning-based methods is that they require large manually labeled LGE images
for model training, which is not always available and more prone to errors or an
accurate registration between the cine MRI and LGE MRI.

The MS-CMRSeg 2019 challenge that held in conjunction with STACOM
at MICCAI 2019 provides an open and fair platform for the multi-sequence
ventricle and myocardium segmentation. However, there are only LGE images of
5 patients with ground truth label for training. This adds more difficulty during
the development of learning-based model besides the above-mentioned ones. To
relieve the problems of insufficient training labels, we proposed to generate plenty
of image-label pairs by generative adversarial network (GAN). Goodfellow et al.
(2016) first proposed GAN and achieved impressive results in generating realistic
images from noisy input vectors [4]. Various strategies have been devoted to the
development of GAN to improve the quality of the generated fake images [6–8]
or to learn the disentangled representations that are aware of high-level semantic
context. For our work, high quality of generated image-label pair is of critical
importance to the final performance. To this end, we make use of the recently
proposed CycleGAN [5], which employed a cycled reconstruction loss to ensure
the consistency between the input and output domains.

We propose a novel method, shape-transfer GAN, for the segmentation of
LGE cardiac images, without ground truth labels. Specifically, we introduce a
shape preservation term to make the generated LGE images share the same
myocardium shape with that of the input bSSFP image. In such a way, the
proposed shape-transfer GAN is capable of generating realistic LGE images, and
in the meantime learning how to segment these generated images. Without labels
of real LGE images for finetuning, the obtained segmentor can be directly applied
for segmentation of real LGE images. The method obtains good performance on
LGE images of 40 patients, with dice metric of 0.847, 0.776, 0.686 for LV, RV
and myocardium, respectively.
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Fig. 1. Building block of shape-transfer GAN, whose loss includes three parts: adver-
sarial learning loss (Lgan), cycle-reconstruction loss (Lcyc) and shape preservation loss
(Lshape). G, D and S represent generator, discriminator and segmentation network
respectively. And x, y represent bSSFP and LGE images respectively.

2 Method

The proposed Shape-Transfer GAN can learn a mapping functions between two
domains bSSFP and LGE, with the anatomical shape of myocardium in the
bSSFP preserved while the intensity distribution being changed into the style of
LGE image. To obtain the myocardium shape and enforce the shape preservation
loss, a segmentation module is also embedded in the generator. Once the adver-
sarial learning is completed, the segmentation module can be directly applied
to novel LGE images for myocardium segmentation. Figure 1 gives the building
block of shape-transfer GAN, which contains three blocks: (1) adversarial learn-
ing (Lgan), where two generators and two discriminators are learned to generate
realistic LGE images from bSSFP images, and also the inverse mapping; (2)
Cycle-reconstruction learning (Lcyc), where the quality of the generated images
are improved by the constraint of re-generating the original input image [5]; and
(3) shape-preservation learning (Lshape), where the generated LGE images are
constrained to preserve the anatomic shape of the input bSSFP image, and a
segmentation model is embedded in the generator and learned in the meantime.

2.1 Adversarial Learning

We introduce two generators G1, G2, and two adversarial discriminators D1

and D2, where D1 aims to distinguish between real LGE images {y} and the
generated ones by {G1 (x)} from bSSFP images and D2 to distinguish between
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real bSSFP images {x} the and generated ones by {G2 (y)} from LGE images.
In such a way, a bidirectional mapping function can be learned for the two image
domains. The objective function of adversarial learning is:

LGAN1 = Ey∼PLGE(y) [log D1(y)] + Ex∼PbSSFP (x) [log(1 − D1(G1(x)))] (1)

LGAN2 = Ex∼PbSSFP (x) [log D2(x)] + Ey∼PLGE(y) [log(1 − D2(G2(y)))] (2)

LGAN (G1, G2,D1,D2) =
1
2
(LGAN1 + LGAN2) (3)

where PbSSFP (x) and PLGE (y) are the data distributions of the bSSFP and
LGE images, respectively.

2.2 Cycle-Reconstruction Learning

To ensure meaningful information can be well kept during the domain map-
ping of the adversarial learning procedure, we introduce the cycle-reconstruction
learning block. Only the previous generator and discriminator cannot necessar-
ily lead to a good domain mapping, due to the oscillation learning procedure.
The discriminator only makes global image-level decision of whether an image
is fake or real, while the detailed local information cannot be guaranteed. Given
this consideration, the cycle-reconstruction learning block is introduced, which
re-generated the original image of source domain from the generated images in
the target domain. A good mapping should keep well structure information of
the source domain during this cycle-reconstruction procedure. We express the
objective of cycle-reconstruction learning as:

Lcyc1 = Ex∼PbSSFP (x) [‖G2(G1(x)) − x‖1] (4)

Lcyc2 = Ey∼PLGE(y) [‖G1(G2(y)) − y‖1] (5)

Lcyc(G1, G2) =
1
2
(Lcyc1 + Lcyc2) (6)

2.3 Shape Preservation Learning

To make sure the generated LGE images {yG1} have clear and correct bound-
ary, we make use of the available myocardium shape masks {mx} of the
bSSFP images and introduce the shape preservation learning block, where the
myocardium shape of the generated fake LGE image is constraint to be identi-
cal to that of the input bSSFP image. To achieve this, a segmentation network
S is embedded into the generator G1 to obtain the myocardium shape of the
generated images. Shape preservation is described by the cross-entropy (CE)
loss between the shape mx of the of real bSSFP image and the output of the
segmentation network:

Lshape(S,G1) = Ex∼PbSSFP (x) [CE(mx, S(G1(x)))] (7)
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2.4 Overall Objective

The overall objective of our shape-transfer GAN is:

Ltotal(G1, G2,D1,D2, S) = LGAN + λ1Lcyc + λ2Lshape (8)

where λ1 and λ2 adjust the balance of the three terms. After the shape-transfer
GAN is learned, the segmentation network S can be directly applied to any novel
LGE images.

3 Experiment

We validate our method with the dataset provided by the MS-CMRSeg 2019
challenge. In this section, we first describe the experiment configurations, which
include details of the dataset, our experimental setup and the evaluation cri-
terion. Then we report the performance of our method and compare it with
existing state-of-art methods.

3.1 Experimental Configuration

Dataset. The Multimodal CMR data (includes bSSFP, LGE and T2 images)
used in the paper were collected from 45 patients, where ground truth (GT) of
myocardium (Myo), left ventricle (LV) and right ventricle (RV) in 35 patients
were provided for bSSFP and T2 images, while for 5 patients GT of LGE images
were provided for validation. The rest 40 patients are used for test. For each
patient, the bSSFP images consist of 8–12 slices, with in-plane resolution of
1.25×1.25 mm and slice thickness of 8 to 13 mm. The T2 images have 3–7 slices,
with in-plane resolution of 1.35 × 1.35 mm and slice thickness of 12 to 20 mm.
The LGE images have 10–18 slices with in-plane resolution of 0.75 × 0.75 mm
and slice thickness of 5 mm. The size of the images range from 256 × 256 to
512 × 512 and were resized and crop to 128 × 128 for Shape-Transfer GAN.

Fig. 2. The network details of generator, discriminator and segmentor.
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Experiment Setup. Figure 2 shows the network details. We used AdamOpti-
mizer with learning rate of 1e-4 for Shape-Transfer GAN and 1e-5 for segmen-
tation network. The input of Shape-Transfer GAN were 2D slices from bSSFP
images of 35 patients and LGE images of 45 patients. Note that the segmenta-
tion network was pretrained with bSSFP image-label pairs and then the Shape-
Transfer GAN was trained for 200 epochs.

Evaluation Metrics. To evaluate the segmentation performance, Dice score,
Jaccard score, average surface distance (ASD) and Hausdorff Distance (HD) were
used. Let VSeg and VGT be the segmentation and the ground truth volume, and
BSeg, BGT their boundaries. They are computed as:

Dice(VSeg, VGT ) =
2|VSeg ∩ VGT |
|VSeg + VGT | , Jaccard(VSeg, VGT ) =

2|VSeg ∩ VGT |
|VSeg ∪ VGT | (9)

ASD(BSeg, BGT ) =
1

|BSeg| + |BGT | ×
⎛
⎝ ∑

p∈BSeg

d (p,BGT ) +
∑

q∈BGT

d (q,BSeg)

⎞
⎠

(10)

HD(BSeg, BGT ) = max

{
sup

p∈BSeg

inf
q∈BGT

d (p, q) , sup
p∈BGT

inf
q∈BSeg

d (p, q)

}
(11)

3.2 Performance Evaluation and Analysis

Ablation Study. We first conduct ablation study and validate the effectiveness
of our shape-transfer GAN using the LGE images of the 5 patients for validation.
The proposed shape-transfer GAN was compared with U-net and GAN with
no shape preservation (no-shape GAN). We train the U-net directly with
bSSFP images or the generated LGE images, and the provided labels in bSSFP
domain.

As can be drawn from Table 1, when no adversarial learning is employed,
U-net cannot be applied directly to LGE images due to the different intensity
distributions. For no-shape GAN, the adversarial learning transfers this distri-
bution from the bSSFP domain to the target LGE domain, therefore make the
segmentation network trained with labels of bSSFP domain ready for the LGE
domain. But the performance is still far from satisfaction. With the proposed
shape preservation learning block, the performance can be clearly improved.
Shape-Transfer GAN can keep the myocardium shape accurately in the
generated LGE images, thus leads to better synthetic image-label pairs for
learning.
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Table 1. Ablation study of our method on validation dataset of 5 patients LGE images.
Dice score (Mean± std) is presented.

Method LV RV Myo

U-Net 0.249 ± 0.197 0.286 ± 0.069 0.043 ± 0.035

No-Shape GAN 0.589 ± 0.190 0.638 ± 0.092 0.303 ± 0.190

Shape-Transfer GAN 0.764 ± 0.125 0.738 ± 0.090 0.607 ± 0.117

Figure 3 shows the visualization results from three different slices for these
methods. As can be obviously drawn, when no LGE labels were used for training,
U-net cannot capture the shape of myocardium at all. It even makes false positive
regions in distant background regions. With adversarial learning, No-shape GAN
can well capture the shape of LV, RV and myocardium. However, there are still
some regions that are not captured or boundaries that are not well aligned.
With the shape-preservation learning, Shape-Transfer GAN can deliver accurate
segmentation results. An interest observation from the first row is that a part of
RV is missing in the ground truth label, while our method can fill it.

Table 2 shows the performance of our method on the test dataset, which has
LGE images of 40 patients (three failure cases were excluded). Without true label
information for model training, our method is still capable of segmentation well
the LV, RV and myocardium of LEG images. Especially, our method achieves
for LV segmentation Dice score of 0.847, ASD of 3.110 mm, HD of 17.986 mm.

Image Ground Truth U-Net No-Shape GAN Shape-Transfer GAN

Dice MYO : 0.731
Dice RV : 0.887
Dice LV : 0.894

Dice MYO : 0.035
Dice RV : 0.811
Dice LV : 0.454

Dice MYO : 0
Dice RV : 0
Dice LV : 0

Dice MYO : 0.821
Dice RV : 0.844
Dice LV : 0.895

Dice MYO : 0.385
Dice RV : 0.741
Dice LV : 0.743

Dice MYO : 0
Dice RV : 0
Dice LV : 0

Dice MYO : 0
Dice RV : 0.361
Dice LV : 0.660

Dice MYO : 0.310
Dice RV : 0.807
Dice LV : 0.621

Dice MYO : 0.637
Dice RV : 0.857
Dice LV : 0.662

Fig. 3. Segmentation results of different methods for ablation study. Each row repre-
sents different slice from LGE images. The proposed Shape-Transfer GAN gives the
best segmentation results.
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Table 2. Segmentation performance of Shape-Transfer GAN on test dataset of LGE
images from 40 patients with three failure cases excluded.

Metrics LV RV Myo

Dice 0.847 ± 0.054 0.776 ± 0.048 0.686 ± 0.078

Jaccard 0.738 ± 0.079 0.636 ± 0.063 0.527 ± 0.087

Metrics LV endo LV epi RV endo

ASD (mm) 3.110 ± 1.039 3.022 ± 0.736 3.953 ± 0.908

HD (mm) 17.986 ± 4.028 17.453 ± 5.902 21.974 ± 10.026

Table 3. Performance comparison of our method and existing state-of-art methods on
the same dataset.

Dice score Shape-Transfer GAN GMM+bSSFP MvMM SRSCN

LV 0.847 ± 0.054 0.836 ± 0.071 0.866 ± 0.063 0.915 ± 0.052

RV 0.776 ± 0.048 – – 0.882 ± 0.084

Myo 0.686 ± 0.078 0.635 ± 0.120 0.717 ± 0.076 0.812 ± 0.105

Performance Comparison. Table 3 compares our method with existing
state-of-art methods, including two GMM-based methods (GMM+bSSFP,
MvGMM) [2], and one deep neural network based method (SRSCN) [1]. When
compared with the GMM-based methods, our method can deliver comparable
performance, but with less application complexity. The iterative optimization
procedure adds the complexity of the GMM-based methods during practice
application. When compared with SRSCN, our method fails to show better or
comparable performance. This is due to the fact that SRSCN was trained with
ground truth labels of 25 patients’ LGE images.

4 Conclusion

We propose the Shape-Transfer GAN for cardiac segmentation of LGE MRI
images, which can learn the procedure of generating realistic LGE images with
the anatomical shape information well kept, and thus obtain an LGE segmenta-
tion network. Our method avoided the use of LGE label during the learning of
the segmentation. We validated the effectiveness of the proposed shape-transfer
technique and tested the final performance on a dataset of 40 patients. The
good segmentation results prove that our method has a great potential in cases
of medical image segmentation tasks with insufficient labeled data.
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Abstract. The accurate segmentation, analysis and modelling of ventri-
cles and myocardium plays a significant role in the diagnosis and treat-
ment of patients with myocardial infarction (MI). Magnetic resonance
imaging (MRI) is specifically employed to collect imaging anatomical and
functional information about the cardiac. In this paper, we have proposed
a segmentation framework for the MS-CMRSeg Multi-sequence Cardiac
MR Segmentation Challenge, which can extract the desired regions and
boundaries. In our framework, we have designed a binary classifier to
improve the accuracy of the left ventricles (LVs). Extensive experiments
on both validation dataset and testing dataset demonstrate the effective-
ness of this strategy and give an insight towards the future work.

Keywords: Cardiac image segmentation · Binary classifier · U-Net++

1 Introduction

Recent advances in the MRI technology have led to an effective way to manage
the treatment plan for patients. Since the MR can provide a better enhancement
in the infected area and highlight the illness part with special brightness, a
variety of applications have been developed, such as the Carotid arterial plaque
stress analysis [1], the tracking of myocardial deformation [2], etc. Among these
tasks, the accurate segmentation of the MR image can help to extract the desired
regions of interest (ROIs), which plays a key role in the clinical analysis. However,
there are many challenging issues towards the performance of segmentation in
MRI. Firstly, unlike the segmentation work in natural images, a more precise
segmentation result is required in the MR image, even tiny errors may damage
the result of further diagnose. Secondly, the manual segmentation of the desired
boundaries is very time-consuming and error prone, which is not accessible in
the practical applications. Several challenging examples are shown in the Fig. 1.
What is more, it is crucial to fully utilize the provided multiple modalities of MR
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images, which may improve the segmentation accuracy. Therefore, an effective
and robust segmentation strategy is required, especially for the MS-CMRSeg
Multi-sequence Cardiac MR Segmentation Challenge [3,4].

Fig. 1. Several examples of the challenging images.

In this paper, we propose an effective segmentation framework for the pro-
vided CMR images. To figure out the given task, we have analyzed the dataset
and chosen a suitable deep learning framework first, i.e. the U-Net++ [4].
After that, some preprocessing techniques are considered before the U-Net++
to reduce the potential noise and improve the final performance. As the left
vertical usually has a fixed shape in most of slices, we have designed a binary
classifier module in the U-Net++ framework, which can significantly improve
the accuracy of left ventricle.

The rest of this paper is organized as follows. In Sect. 2, the utilized dataset
is introduced, along with a brief summary of the Multi-sequence Cardiac MR
Segmentation Challenge. The motivation and implementation of our designed
framework is detailed in Sect. 3. In Sect. 4, the experimental results and analysis
are presented and discussed. Finally, some concluding remarks are drawn in
Sect. 5.

2 Dataset

In this paper, we have conducted experiments on the dataset from MS-CMRSeg
2019 Multi-sequence Cardiac MR (CMR) Segmentation Challenge [3,4]. The
whole CMR data are come from 45 patients where each patient has been scanned
by three CMR sequences, including the late gadolinium enhancement (LGE),
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Fig. 2. Example of three different sequences from the same patient, the first row are
the original images with false color and the second are the corresponding ground truth
with false color, where the green, the cyan and the yellow pixels represents the left
ventricle, the myocardium and the right ventricle, respectively: (a) bSSFP. (b) T2. (c)
LGE (Color figure online)

T2 and balanced-Steady State Free Precession (bSSFP). In this challenge, the
dataset is separated as training set and testing set. Four classes are labelled
in the ground truth data, including the left ventricle, the right ventricle (RV),
the myocardium and the background. The training set includes the LGE CMR
images with ground truth of the first to the fifth patient, i.e. the validation
dataset, the T2-weighted and bSSFP CMR image with corresponding ground
truth for the first to the thirty-fifth patient. And for the last ten patients, only
the T2-weighted and bSSFP CMR images are provided. For the testing dataset,
the rest LGE CMR images are utilized for the final evaluation. For those three
different sequences, each LGE CMR image usually consists of 10 to 18 slices,
covering the main body of the ventricles, and the BSSFP image consist of 8 to
12 sequential slices which have been scanned at the diastolic end. Different from
the other two sequences, T2 CMR image only has a small number of slices (3,
5, 6, 7 or 8 slices), which implies the constituted testing dataset has a relatively
smaller size than the training set. In total, the number of slices from three
sequences in the training dataset is less than 500 and the size of slices from
these three sequences is inconsistent. Some examples from the training dataset
are illustrated in Fig. 2.
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Fig. 3. Three classes segmentation results (a)–(c) by using K-means++ with Hough
transform. (1) original images. (2) Results from K-means with Hough transform. (3)
Results from further Hough transform. (5) Ground truth. The segmentation accuracy
for left ventricle and myocardium after further Hough transform are 0.7443, 0.8677 and
0.5053, respectively.

3 The Proposed Framework

3.1 Motivation

In this section, our designed model will be discussed, which includes our moti-
vation and implementation. Currently, numerous methods have been proposed
for the segmentation problem, which can be classified as traditional methods
and deep learning-based methods. To design a more robust framework, we have
investigated both above methods and tried to combine them together.

First, some traditional image segmentation algorithms have been considered,
including the Hough transform [5], the watershed [6], the active contours [7], the
level set [8], and the K-means++ [9], etc. The Hough transform can achieve a
better performance in left ventricle and myocardium, but it heavily relies on the
chosen parameter. The watershed also suffers this dilemma and some redundant
boundaries could be generated if parameters are not selected appropriately. For
both active contours and the level set methods, they require some initial set of
points to evolve the final boundary, which is not efficient in dealing with the
given task. Although most of the traditional methods are not favorable, we have
found out that the fusion of the binary K-means++ and Hough transform might
be useful for the segmentation of left ventricles and myocardium, some results
from a three classes (background, left ventricle and myocardium) classifier based
on K-means++ and Hough transform are shown in the Fig. 3. What is more,
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Fig. 4. The structure of U-Net++.

the binary classification demonstrates its superiority in the segmentation of left
vertical, which can increase the accuracy.

In the last few years, the U-Net [10] framework has drawn great attention
in the medical image segmentation area due to its efficiency and simple frame-
work. With its skip connection architecture, the U-Net can better capture both
local and global features, which fulfils the requirement of the medical imaging
segmentation. According to the nested and dense skip connection, the U-Net++
is proposed to promote the performance and it has been proved to be a robust
model. Compared to the U-Net, the U-Net++ can increase the accuracy from
1% to 5% in the validation dataset. Furthermore, the U-Net++ does not suffer
from the heavy computational burden, which gives us a better option to investi-
gate more. The structure of U-Net++ is shown in the Fig. 4. For increasing the
segmentation accuracy, we have attempted to exploit some popular techniques,
like data augmentation, etc. However, these techniques could not improve the
accuracy significantly with less computational burden, which is not supportive
for this challenge. For the data augmentation problem, the details are discussed
in the experimental results.

3.2 Implementation

After the introduction of background of this challenge, the implementation of our
proposed framework is presented in this subsection. Since the desired ROIs are
located at the center of the slice and the size of each slice is inconsistent, we have
employed a pre-processing step to deal with such inconsistency. We have resized
all slices from the training dataset into the same size as both of their height and
width are set to be 256. To remove the potential noise from the background,
we have cropped the resized slices and keep the central part of each slice, where
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the final height and width are set as 128. After the pre-processing step, we
have trained two classifiers simultaneously with the training set. As discussed
above, the binary classifier aiming to distinguish the left ventricle and the rest
classes are advantageous, we have trained one binary classifier to find the left
ventricle. Another four-classes segmentation model has been trained to classify
all four classes in each slice. In the final, we combine the results from these two
classifiers simply by considering the classification map from the binary model
as the priority. The classification map generated from the four class classifier
is filtered by the classification map generated from the binary classifier. The
diagram of our framework is presented in the Fig. 5.

Fig. 5. The flowchart of our proposed framework.

Table 1. The mean and standard deviation of the Dice score on three classes.

Left ventricle Myocardium Right ventricle

Dice 0.757 ± 0.127 0.470 ± 0.117 0.539 ± 0.151

4 Results

4.1 Parameter Settings

In this part, the utilized parameters in our proposed framework will be given in
detail. The optimal parameters are chosen through the performance on valida-
tion dataset. For the training epochs, it is set to 600, and the batch size equals to
16. We have used the Adam optimizer with a learning rate of 1e-6. For achieving
better performance, we have initialized the weight of loss of both classifiers, the
binary model is set to be 1:6 for the background and the left ventricle and the
four classes model is 1:6:6:6 where the background is set to be 1 and the rest
are 6. Generally, we have only utilized the training dataset to train our model
and the validation dataset to prove the efficiency of our approach. However, for
the purpose of achieving better performance on the challenge, we have utilized
the validation dataset to train the model in the last submission. For the hard-
ware requirement, all our experiments and the training process of our proposed
framework are conducted on the Google Colab with TESLA K80 (12 GB).
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Fig. 6. The Dice score from the organizers.

4.2 Performance of Test Dataset

To evaluate the performance our proposed framework, we have tested our pro-
posed framework on the challenge test dataset and received the feedback from
organizers, including the Dice score, the Jaccard index, the Surface and Hausdorff
distance. The result about the Dice score is shown in Fig. 6 and corresponding
mean and standard derivation are depicted in the Table 1. From the result, it
can be clearly seen that the accuracy of the left ventricles is much better than
the rest, which proves that the binary classifier is suitable for the segmentation
of left ventricles.

4.3 Experimental Analysis

In this part, we will present the related experiments to discuss some interesting
issues and give some further comparison about our framework.

In our model, we have defined a pre-processing step and designed a binary
classifier. Therefore, it is crucial to prove the significance of these two ideas.
Therefore, we have done a comparison between our proposed methods and one
four classes classifier framework on the validation dataset, which is depicted as
‘Binary+Four’ and ‘Only Four’. Besides, we have also implemented the data
augmentation step to inspect its function. The rest parameters are kept the
same as above. The performance is shown in the Table 2, which includes the
‘ROI’accuracy, the total accuracy and the training time. The ‘ROI’ accuracy is
calculated only from the left ventricle, myocardium and right ventricle pixels,
which is interpreted in Fig. 8. It can be recognized that after the combination of
binary and four-class classifiers, the accuracy can be improved by 2%. As seen
in Table 2, the effect of data augmentation can be noticed, where the accuracy
is increased by 9% with more training samples from the data augmentation.
Although data augmentation can generate more training samples and improve
the accuracy, its huge computational burden seems impractical, especially for
the limited time challenge or real-time applications (Fig. 7).
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Fig. 7. Some results from the validation dataset. (a) original images. (b) segmented
mask. (c) Ground truth.

Table 2. The mean and standard deviation of the Dice score on three classes.

Model Augmentation ROI accuracy Total accuracy Training time (h)

Binary+Four Yes 0.6789 0.9803 18

Binary+Four No 0.5893 0.9764 1.8

Only Four Yes 0.6572 0.9802 9

Only Four No 0.5707 0.9762 0.9

Fig. 8. The example of defined ‘ROI’. Left top: the original image. Right top: ground
truth of original image. Left bottom: cropped ‘ROI’. Right bottom: ground truth of
cropped ‘ROI’.
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5 Conclusion

In this paper, we have proposed a U-Net++ based framework for the MRI
segmentation, especially for the MS-CMRSeg Multi-sequence Cardiac MR Seg-
mentation Challenge. Although the performance on the right ventricle and
myocardium are not good enough, we have obtained better performance on the
left ventricle with the binary classifier module, which can give an insight about
the Cardiac segmentation task.

Due to the time limitation of this challenge, there are still some unsolvable
issues about the Cardiac MR segmentation. In the future, we will focus on the
design of a more flexible model for the Cardiac MR segmentation, which can
fully utilize the multiple sequence data and capture more 3D information. What
is more, some multi-stage methods will also be investigated [11–16] and more
reliable features will be extracted [17–20] to remove the noise and further improve
the accuracy.
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Abstract. Accurate segmentation of the cardiac boundaries in late
gadolinium enhancement magnetic resonance images (LGE-MRI) is a
fundamental step for accurate quantification of scar tissue. However,
while there are many solutions for automatic cardiac segmentation of
cine images, the presence of scar tissue can make the correct delineation
of the myocardium in LGE-MRI challenging even for human experts.
As part of the Multi-Sequence Cardiac MR Segmentation Challenge, we
propose a solution for LGE-MRI segmentation based on two compo-
nents. First, a generative adversarial network is trained for the task of
modality-to-modality translation between cine and LGE-MRI sequences
to obtain extra synthetic images for both modalities. Second, a deep
learning model is trained for segmentation with different combinations
of original, augmented and synthetic sequences. Our results based on
three magnetic resonance sequences (LGE, bSSFP and T2) from 45 dif-
ferent patients show that the multi-sequence model training integrating
synthetic images and data augmentation improves in the segmentation
over conventional training with real datasets. In conclusion, the accu-
racy of the segmentation of LGE-MRI images can be improved by using
complementary information provided by non-contrast MRI sequences.

Keywords: Multi-sequence cardiac MRI · Late gadolinium
enhancement MRI · Image segmentation · Image synthesis · Deep
learning

1 Introduction

Late gadolinium enhancement magnetic resonance imaging (LGE-MRI) is widely
used to assess presence, location and extent of regional scar or fibrotic tissue in
c© Springer Nature Switzerland AG 2020
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the myocardium. Whilst LGE-MRI is a well-established technique and key to
many cardiovascular magnetic resonance (CMR) examinations there are chal-
lenges in quantification and interpretation due to a number of factors. Image
analysis depends on image quality which can be affected by suboptimal CMR
acquisition. Correct inversion times (TI) need to be identified and then TI
require appropriate adjustments to allow good ‘nulling’ of remote, unaffected
myocardium. This ensures optimal contrast between scar/fibrosis (bright) and
normal, remote myocardium (dark). Timing after contrast administration is
important to allow not only sufficient wash-out of contrast agent (gadolinium
chelate) from the remote myocardium but also from the blood pool. Images
acquired too early will leave the blood pool bright which makes differentiating
subendocardial infarct from blood pool challenging.

In the existing literature, two main families of techniques have been proposed
to automatically segment LGE-MRI data. The first one segments directly the
LGE-MRI images by using different techniques such as graph-cuts [1], atlas-
based registration [2], or more recently Convolutional Neural Networks (CNNs)
[3]. However, these techniques generally lack robustness due to the limited avail-
ability of LGE-MRI datasets for training. As a result, the second family of tech-
niques has considered exploiting other cardiac MRI sequences to provide addi-
tional signals for guiding more robustly the segmentation process. For instance,
some researchers [4,5] proposed to segment first cine-MRI images and to propa-
gate the obtained contours into the LGE-MRI images through image registration.
Similarly but by using additional sequences, the authors in [6] implemented an
atlas-based segmentation approach combining information from balanced-Steady
State Free Processing (bSSFP), LGE and T2 sequences. However, these tech-
niques are highly dependent on the image registration step, which is challenging
due to the inherent differences between the cardiac MRI sequences.

In addition, in order to improve segmentation and increase the model robust-
ness over unseen data, image synthesis has been proposed recently. The most
common model combines generative adversarial networks (GANs) with a cycle-
consistency constrain for image-to-image translation and two segmentation net-
works, one for each image domain, trained end-to-end in order to benefit from
a combined loss function. This model has been applied for cross-modality seg-
mentation improvement [7,8], domain adaptation across scanners [8] or across
modalities [9] and segmentation of an unlabeled target modality using only the
source ground truth [10,11]. Alternatively, a GAN can be trained to generate
synthetic images from masks according to some conditional value, like the dataset
style, as in the case of retinal fundus images for vessel segmentation [12].

In this paper, we propose an approach to circumvent the need for image reg-
istration, while addressing the lack of LGE-MRI images for training. Concretely,
we implement a CNN-based approach that is capable of learning key properties
of the cardiac structures simultaneously from multiple cardiac MRI sequences.
Furthermore, image synthesis and data augmentation are used to generate new
examples that take into account both the global appearance of LGE-MRI data
and the local appearance of scar tissues. With this approach, direct deep learning
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based segmentation of LGE-MRI is enabled without the need for inter-sequence
image registration and while exploiting the richness of multi-sequence cardiac
MRI.

2 Method

2.1 Dataset

Data Description. The LGE-MRI dataset used in this paper was provided
as part of the Multi-Sequence Cardiac Magnetic Resonance Segmentation Chal-
lenge (MS-CMRSeg). It consists of 45 patients from Shanghai Renji Hospital that
were scanned using three MRI sequences: bSSFP, LGE and T2. Ground truth
segmentations of the left ventricle (LV), right ventricle (RV) and myocardium
(MYO) were provided for some of the cases according to the distribution in
Table 1 (second row). Even though all sequences were acquired and selected for
the end-diastolic cardiac phase, there were differences in the shape of the cardiac
boundaries consistently between the three sequences for the same patient. More-
over, the slices were not aligned between the sequences in the direction of the
ventricular axis, which further complicates the application of image registration.
Note that all patients in the sample suffer from cardiomyopathies and that every
LGE-MRI image presents a scar of variable size within the myocardial wall.

Table 1. MS-CMRSeg sequences details.

bSSFP LGE T2

Number of patients 45 45 45

Segmented patients 35 5 35

Number of slices 8–12 10–18 3–7

Slice thickness (mm) 8–13 5 12–20

TR/TE (ms) 2.7/1.4 3.6/1.8 2000/90

In-plane resolution (mm) 1.25 × 1.25 0.75 × 0.75 1.35 × 1.35

Data Pre-processing. As a first step, intensity bias correction was applied to
all sequences to correct for potential artifacts and the intensity histograms of all
images were matched to a common one to obtain coherent appearances across
images. Furthermore, before the training process, all images were interpolated
and cropped so that they had a pixel size of 256× 256 and the same resolution.
They were also normalised such that the mean intensity and the standard devi-
ation equal 0.5, thus ensuring most of the input values to be positive in between
0 and 1 for convenience in later representation of the images.
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2.2 Increasing Training Sample

Before describing the CNN model implemented in this paper for LGE-MRI seg-
mentation, this section presents two methods used to increase the number of
training data and obtain higher LGE-MRI variability.

Data Augmentation. By using the provided segmentations, a set of 50 land-
marks were evenly placed around the epicardium and endocardium. With these,
the myocardium and left ventricle were rotated relative to the rest of the image,
as shown in the examples in Fig. 1, in order to obtain an augmented dataset with
varying locations of the scar tissues. Since the contour of the epicardium is not
perfectly round in general, a Gaussian filter of size 3× 3 was applied around the
outer boundary to smooth the transition between the rotated and fixed regions,
thus preventing image intensity discontinuities. A total of twenty 7.2 degrees
rotations were applied. Thus, the LGE-MRI dataset was multiplied by a factor
of 20 and the location of the scar in the myocardium ranged between the initial
position and 144 degrees clockwise. This augmentation technique increases the
variability in the scar locations within the myocardial wall that was otherwise
very low due to the small number of patients available for training. Further-
more, further data augmentations were obtained by applying small rotations of
the input images up to 15 degrees before training.

Fig. 1. Example of three rotations of the myocardial wall with respect to the whole
image by using the landmarks provided in the leftmost image. This shows the changes
in the location of the scar tissues

Image Synthesis. The rationale behind the proposed image synthesis is that
there are many more segmented cine-MRI datasets available open-access or in
clinical registries for training CNN models. Thus, to increase the number of
annotated LGE-MRI cases for training, image synthesis from cine-MRI images
sequences is proposed. To achieve this, the CycleGAN method [13] was imple-
mented using the PyTorch library provided at this link1.

This method translates images from one domain to another without the need
for image registration or for the sequences to be from the same patients. It con-
sists of a pair of generators GLGE , GbSSFP and a pair of discriminators DLGE ,
1 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


294 V. M. Campello et al.

DbSSFP that have opposed goals. The generator GLGE (GbSSFP ) transforms
the bSSFP (resp. LGE) sequence into a realistic LGE (bSSFP) image, while the
discriminator DLGE (DbSSFP ) attempts to distinguish between real and fake
LGE (bSSFP) sequences. To achieve a good image translation between the two
sequences, the loss function contains two terms: (1) an adversarial loss for each
target domain that accounts for the similarity between the generated and real
images, and (2) a cycle consistency loss that ensures that the transformed image
GLGE(X) (GbSSFP (Y )) is transformed back to X (Y ) through GbSSFP (GLGE).

Fig. 2. Examples of synthetic LGE-MRI images. The leftmost column are the original
cine images, the central column shows the transformed images to the LGE domain and
the rightmost column is the most similar slice from the real LGE sequences, since they
were not registered/aligned.

For the training of the CycleGAN model, all slices from the 45 patients for
the LGE and bSSFP sequences were used during 200 epochs. The training took
12 h on a NVIDIA 1080 GPU with a batch size of 1. The Adam optimizer was
used with learning rate of 2×10−4, with first and second moment decay rates of
0.5 and 0.999, respectively. Some examples for the generated images are shown
in Fig. 2.

In order to evaluate the quality of the generated images, two segmentation
models (like the one described in the next subsection) were trained using the
bSSFP images and the synthetic LGE images separately. The obtained results are
presented in Table 2. In particular, the synthetic LGE images, that are anatom-
ically similar to the original bSSFP, provide more information for the task of
LGE segmentation.

2.3 CNN-based LGE Segmentation

Once a large set of training sample was obtained from the original, augmented
and synthetic images, a modified U-Net architecture [14] was used for the image
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Table 2. Average and standard deviation for the Dice score of segmentation results
over the five labeled LGE volumes.

LV MYO RV

avg. std. avg. std. avg. std.

model trained w. bSSFP 0.503 0.406 0.370 0.301 0.515 0.434

model trained w. synthetic LGE 0.809 0.116 0.688 0.145 0.820 0.065

segmentation by integrating two techniques: (1) a deep supervision term in the
upsampling path as proposed in [15] that will act as lower-resolution masks
that are convolved to condition the final predictions; and (2) a reduction of the
number of filters after each upsampling operation to match the number of labels
as proposed by [16]. Each image in the dataset was provided as a single channel
input, thus forcing the model to differentiate between sequences with a unique
set of weights. Additionally, in order to avoid overfitting given the sample size,
dropout was used after every max pooling and upsampling operations, except
for the high level features in the architecture, as shown in Fig. 3.

Fig. 3. Detailed architecture of the CNN model used for LGE segmentation. The num-
bers in the boxes correspond to the number of channels. Convolution operations have
a kernel size of 3× 3 and stride of 1, while transpose convolutions have a kernel size of
4 × 4 and stride of 2.

During training, 20% of the patients for each dataset was reserved for valida-
tion and early stopping. With a batch size of 8 images, this model took less than
36 h to achieve the best accuracy on the validation set after almost 90 epochs
on a NVIDIA TITAN X GPU. The Adam optimizer was used with a learning
rate of 10−4, with first and second moment decay rates equal to 0.9 and 0.99,
respectively.



296 V. M. Campello et al.

3 Results

In order to define the best trained CNN model for LGE-MRI segmentation,
various training sets were used by varying the input sequences and combinations
of image synthesis and scar augmentation, as follows:

1. LGE sequences only;
2. LGE and bSSFP sequences;
3. All sequences (LGE, bSSFP and T2);
4. All sequences plus MYO and LV rotations in LGE sequences;
5. Number 1 plus synthetic LGE sequences;
6. Number 2 plus synthetic LGE sequences;
7. Number 3 plus synthetic LGE sequences;
8. Number 4 plus synthetic LGE sequences.

When evaluated on the validation set, the training set number 8 resulted in
the best segmentations, showing the added value of image synthesis and data
augmentation for LGE-MRI segmentation. Thus, we applied the corresponding
CNN model to the test dataset composed of 40 LGE-MRI cases. The obtained
segmentations were sent to the organizers of MS-CMRSeg Challenge for eval-
uation. The obtained results are summarized in Table 3, showing average dice
scores of 90% (LV), 87% (MYO) and 81% (RV).

Table 3. Average and standard deviation for results over the test set.

LV MYO RV

avg. std. avg. std. avg. std.

Dice score 0.898 0.045 0.810 0.061 0.866 0.051

Jaccard index 0.817 0.072 0.685 0.084 0.768 0.078

Surface distance (mm) 2.0 0.8 1.8 0.5 2.3 0.9

Hausdorff distance (mm) 11 4 12 4 16 7

Two remarks are important to note regarding the results reported in Table 3:
(1) Despite the high variability in the LGE-MRI datasets, especially in the pres-
ence, extent and location of the scar tissues, relatively consistent results are
obtained with standard deviations for the dice scores around 5%. (2) Despite
the availability of only 5 LGE-MRI volumes for training, the proposed approach
was able to achieve comparable results to very recent deep learning techniques,
which reported dice scores of 0.915 ± 0.052 (LV), 0.812 ± 0.105 (MYO) and
0.882± 0.084 (RV) based on 5 times more training cases (25 LGE-MRI images).
[3]. This indicates the value of the proposed inter-sequence synthesis and scar
augmentation for generating richer training samples.

Finally, for visual illustration, Fig. 4 shows three segmentation examples as
obtained in this study. Model number 3 (second column) introduces errors that
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are corrected when adding synthetic images (model number 7 in the third col-
umn). The last column shows that the segmentation further improves when
integrating the scar tissue augmentation as proposed in this paper (model 8).

Fig. 4. Three segmentation examples as obtained by using different training combina-
tions, showing the improvement achieved by integrating inter-sequence image synthesis
(column 3) and scar tissue augmentation (column 4) during training.

4 Conclusions

This paper proposed to address the limited availability of training samples for
LGE-MRI segmentation by enriching the CNN models using two complimentary
methods. Firstly, since samples of annotated cine-MRI sequences are more com-
monly available, image synthesis of LGE-MRI images was implemented using a
CycleGAN approach, thus obtaining a larger number of LGE-MRI cases dur-
ing training. Secondly, we performed LGE-specific data augmentation through
shape-guided rotations of the myocardium, which increases the variability related
to the location of the scar tissues in the myocardium. The validation shows con-
sistent results across the datasets, indicating the potential of this approach for
enhancing the richness and generalization of LGE-specific CNNs.

Future work include the extension of the image synthesis to take into account
local cardiac motion abnormality for synthesizing scar tissue, as well as the
use of elastic deformations of the myocardium and scar to augment non-rigidly
the LGE-MRI examples. Furthermore, extensive validation will be performed
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to assess in detail the relative importance of the different steps and sequences
(bSSFP, T2) in enriching the CNN models for LGE segmentation.

Acknowledgements. This work was partly funded by the European Union’s Horizon
2020 research and innovation programme under grant agreement No 825903 (euCan-
SHare project). SEP acts as a paid consultant to Circle Cardiovascular Imaging Inc.,
Calgary, Canada and Servier. SEP acknowledges support from the National Institute
for Health Research (NIHR) Cardiovascular Biomedical Research Centre at Barts, from
the SmartHeart EPSRC programme grant (EP/P001009/1) and the London Medical
Imaging and AI Centre for Value-Based Healthcare. SEP and KL acknowledge sup-
port from the CAP-AI programme, London’s first AI enabling programme focused on
stimulating growth in the capital’s AI Sector.

References

1. Alba, X., Figueras i Ventura, R.M., Lekadir, K., Tobon-Gomez, C., Hoogendoorn,
C., Frangi, A.F.: Automatic cardiac LV segmentation in MRI using modified graph
cuts with smoothness and interslice constraints. Magn. Reson. Med. 72(6), 1775–
1784 (2014)

2. Kurzendorfer, T., Forman, C., Schmidt, M., Tillmanns, C., Maier, A., Brost, A.:
Fully automatic segmentation of left ventricular anatomy in 3-D LGE-MRI. Com-
put. Med. Imaging Graph. 59, 13–27 (2017)

3. Yue, Q., Luo, X., Ye, Q., Xu, L., Zhuang, X.: Cardiac segmentation from LGE MRI
using deep neural network incorporating shape and spatial priors. arXiv preprint
arXiv:1906.07347 (2019)

4. Wei, D., Sun, Y., Chai, P., Low, A., Ong, S.H.: Myocardial segmentation of late
gadolinium enhanced MR images by propagation of contours from cine MR images.
In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp.
428–435. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-
6 53

5. Tao, Q., Piers, S.R., Lamb, H.J., van der Geest, R.J.: Automated left ventricle seg-
mentation in late gadolinium-enhanced MRI for objective myocardial scar assess-
ment. J. Magn. Reson. Imaging 42(2), 390–399 (2015)

6. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining
multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946
(2018)

7. Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical
volumes with cycle-and shape-consistency generative adversarial network. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9242–9251 (2018)

8. Cai, J., Zhang, Z., Cui, L., Zheng, Y., Yang, L.: Towards cross-modal organ trans-
lation and segmentation: a cycle-and shape-consistent generative adversarial net-
work. Medical Image Anal. 52, 174–184 (2019)

9. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature
adaptation: towards cross-modality domain adaptation for medical image segmen-
tation. arXiv preprint arXiv:1901.08211 (2019)

10. Huo, Y., et al.: Synseg-net: synthetic segmentation without target modality ground
truth. IEEE Trans. Med. Imaging 38(4), 1016–1025 (2018)

http://arxiv.org/abs/1906.07347
https://doi.org/10.1007/978-3-642-23626-6_53
https://doi.org/10.1007/978-3-642-23626-6_53
http://arxiv.org/abs/1901.08211


Multi-Sequence and Synthetic Images for LGE-MRI Segmentation 299

11. Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsu-
pervised domain adaptation: application to X-ray image segmentation. In: Frangi,
A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.)
MICCAI 2018. LNCS, vol. 11071, pp. 599–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00934-2 67

12. Zhao, H., Li, H., Maurer-Stroh, S., Guo, Y., Deng, Q., Cheng, L.: Supervised
segmentation of un-annotated retinal fundus images by synthesis. IEEE Trans.
Med. Imaging 38(1), 46–56 (2018)

13. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE interna-
tional conference on computer vision, pp. 2223–2232 (2017)

14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

15. Isensee, F., Jaeger, P.F., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.:
Automatic cardiac disease assessment on cine-MRI via time-series segmentation
and domain specific features. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol.
10663, pp. 120–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75541-0 13

16. Baumgartner, C.F., Koch, L.M., Pollefeys, M., Konukoglu, E.: An exploration of
2D and 3D deep learning techniques for cardiac MR image segmentation. In: Pop,
M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 111–119. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75541-0 12

https://doi.org/10.1007/978-3-030-00934-2_67
https://doi.org/10.1007/978-3-030-00934-2_67
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-75541-0_13
https://doi.org/10.1007/978-3-319-75541-0_13
https://doi.org/10.1007/978-3-319-75541-0_12


Automated Multi-sequence Cardiac MRI
Segmentation Using Supervised Domain

Adaptation

Sulaiman Vesal1(B), Nishant Ravikumar1,2, and Andreas Maier1

1 Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Erlangen, Germany

sulaiman.vesal@fau.de
2 CISTIB, Centre for Computational Imaging and Simulation Technologies in

Biomedicine, School of Computing, LICAMM Leeds Institute of Cardiovascular and
Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK

Abstract. Left ventricle segmentation and morphological assessment
are essential for improving diagnosis and our understanding of cardiomy-
opathy, which in turn is imperative for reducing risk of myocardial infarc-
tions in patients. Convolutional neural network (CNN) based methods for
cardiac magnetic resonance (CMR) image segmentation rely on supervi-
sion with pixel-level annotations, and may not generalize well to images
from a different domain. These methods are typically sensitive to varia-
tions in imaging protocols and data acquisition. Since annotating multi-
sequence CMR images is tedious and subject to inter- and intra-observer
variations, developing methods that can automatically adapt from one
domain to the target domain is of great interest. In this paper, we pro-
pose an approach for domain adaptation in multi-sequence CMR seg-
mentation task using transfer learning that combines multi-source image
information. We first train an encoder-decoder CNN on T2-weighted and
balanced-Steady State Free Precession (bSSFP) MR images with pixel-
level annotation and fine-tune the same network with a limited number
of Late Gadolinium Enhanced-MR (LGE-MR) subjects, to adapt the
domain features. The domain-adapted network was trained with just
four LGE-MR training samples and obtained an average Dice score of
∼85.0% on the test set comprises of 40 LGE-MR subjects. The proposed
method significantly outperformed a network without adaptation trained
from scratch on the same set of LGE-MR training data.

Keywords: Multi-sequence MRI · Deep learning · Domain
adaptation · Myocardial infraction · MRI segmentation

1 Introduction

Myocardial infarction (MI) is the leading cause of mortality and morbidity world-
wide [1,2]. Accurate analysis and modeling of the ventricles and myocardium

c© Springer Nature Switzerland AG 2020
M. Pop et al. (Eds.): STACOM 2019, LNCS 12009, pp. 300–308, 2020.
https://doi.org/10.1007/978-3-030-39074-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39074-7_32&domain=pdf
https://doi.org/10.1007/978-3-030-39074-7_32


Automated Multi-sequence MRI Segmentation Using Domain Adaptation 301

from medical images are essential steps for diagnosis and treatment of patients
with MI [3]. MR imaging is used in the clinical workflow to provide anatomical
and functional information of the heart. Different types of CMR sequences are
acquired to provide complimentary information to each other, for example, T2-
weighted images highlight the acute injury and ischemic regions, and the bSSFP
cine sequence captures cardiac motion and presents clear boundaries. Moreover,
LGE CMR can enhance the infarcted myocardium, appearing with distinctive
brightness compared with healthy tissue [4]. It is widely used to study the pres-
ence, location, and extent of MI in clinical studies. Thus, segmenting ventricles
and myocardium from LGE CMR images is important to predict risk of infarcts,
identify the extent of infarcted tissue and for patient prognosis [5]. However,
manual delineation is generally time-consuming, tedious and subject to inter-
and intra-observer variations [6]. In the medical image domain, heterogeneous
domain shift is a severe problem, given the diversity in imaging modalities. For
example, as shown in Fig. 1, cardiac regions visually appear significantly differ-
ent in images acquired using different MR sequences. Generally, deep learning
models trained on one set of MR sequence images perform poorly when tested
on another type of MR sequence. One approach to maintain model performance
in such a setting is to employ domain adaptation e.g. image to image translation
or transfer learning. Domain adaptation attempts to reduce the shift between
the distribution of data within the source and target domain.

Related Work. Existing methods have approached multi-modal CMR segmen-
tation using techniques such as cross-constrained shape [7], generative adversar-
ial networks or 3D CNN. In [8,9], the authors first trained a CNN on the source
domain and then transformed the target domain images into the appearance of
source images, such that they could be analyzed using the network pre-trained on
the source domain. However, these methods are based on generative adversarial
networks and required substantial training data to achieve stable performance.
On the other hand, there are limited works focusing on automatic LGE-CMR
segmentation, which is a crucial prerequisite in a number of clinical applications
of cardiology. Recently, few studies have attempted CMR multi-sequence seg-
mentation. This type of method uses complementary information from multiple
sequences to segment heart structures. [6] proposed an unsupervised method
using a multivariate mixture model (MvMM) for multi-sequence segmentation.
MvMM adopted to model the joint intensity distribution of the multi-sequence
images. The performance of this method depends on the quality of registration.

Contributions. In this study, we develop a deep learning-based method to seg-
ment the ventricles and myocardium in LGE CMR, combined with two other
sequences (T2 and bSSFP) from the same patients. T2 and bSSFP sequences
are used to assist the LGE CMR segmentation. Our method introduces a fea-
ture adaptation mechanism using transfer learning which explicitly adapts the
features from T2 and bSSFP sequences to LGE images with few target training
data. We first train an encoder-decoder CNN on T2 and bSSFP images with
pixel-level annotation and re-train the same network with a limited number of
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LGE images, to adapt the learned features and imbue domain invariance between
source and target domains.

Fig. 1. Illustration of different CMR sequences: (a) bSSFP slice, (b) T2-weighted slice
and (c) LGE slice. The red arrows point to left ventricle on different sequences. (Color
figure online)

2 Method

2.1 Domain Adaptation

Deep learning methods are typically sensitive to domain shift and perform poorly
on a new set of data with a different marginal probability distribution. However,
annotating data for every new domain is a very expensive task, particularly in
the medical area that requires clinical expertise. To segment LGE CMR images
with very few annotated subjects, we attempted to get complementary informa-
tion from other sequences with pixel-level annotations, and transfer the domain
knowledge and initialize a second network with pre-trained weights. This is called
as supervised domain adaptation [10].

Let’s consider Dtb as the image domain for T2+bSSFP sequences and Dl

for LGE sequences respectively. Dtb can be expressed with feature space S and
associated probability distribution of P (X) where X = {x1, x2, ..., xn} ∈ S [11,
12]. In a supervised learning task, domain Dtb = {S, P (X)} consists of a model
with associated objective function Ftb, learning task of Ttb and a label space of
Y . The objective function Ftb for task segmentation Ttb can be optimised using
a pair of samples {xi, yi} where xi ∈ X and yi ∈ Y . After the training process,
the learned model F̂tb can be used to predict on new samples of T2 and bSSFP
images from Dtb domain. Now, if we consider Dl with LGE segmentation task
Tl, we can transfer the learned weights from domain Dtb to improve objective
function of Fl for segmenting LGE images in domain Dl where Dtb �= Dl and
Ttb �= Tl. In this way, domain Dl uses information from domain Dtb to segment
LGE images. The final model trained on T2+bSSFP domain and adapted to
target domain (LGE) can be denoted as Flge.
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To construct the model Flge, we transferred the learned weights from Ftb,
then we retrain all the layers and fine-tuned the model on the limited training
data from domain Dl. This is demonstrated in Fig. 2. All hyperparameters asso-
ciated with the optimizer, the loss function, and the data augmentation scheme
employed were kept the same for both models.

Fig. 2. Overview of our network architecture for feature transfer learning between
different CMR sequences. The encoder-decoder first trained with T2+bSSFP images
and in the second stage the network with learned weights retrained with LGE iamges.

2.2 Network Architecture

Our network architecture is a fully convolutional network inspired from [13]
which comprises four encoder and decoder blocks, separated by a bottleneck
block (refer to Fig. 2). The architecture includes skip connections between all
encoder and decoder blocks at the same spatial resolution. Each encoder/decoder
block consists of two 2D convolution layers, where, each convolution layer is fol-
lowed by a batch-normalization and a Rectifier Linear Unit (ReLU) layer. In each
encoder-convolution block, the input of the first convolution layer is concatenated
with the output of the second convolution layer and zero-padded accordingly. The
subsequent 2D max-pooling layer reduces the dimensions of the image by half.
The use of residual connections [14] between convolution layers of each block
in the encoder, help improve the flow of gradients in the backward pass of the
network. The network utilizes a 1× 1 convolution to aggregate the feature maps
from the final decoder block. This operation improves discriminative power as
feature maps with lower activations are more likely to be suppressed through the
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assignment of lower weights. Finally, a softmax activation function was used in
the last layer of the first network to classify the background from the foreground
classes. Compared to U-Net, we replace the bottleneck convolution layers of the
network with dilated convolutions [15] of size 3×3, to enlarge the receptive field
and enable the network to capture both local and global contextual information.
The dilation rate of the four convolution layers is increased successively from
1 − 8, and subsequently, their feature maps are summed together, enabling the
network to capture the entire image’s field of view.

Multi-class Dice Loss: To train the proposed network, a modified version
of the soft-Dice loss is used which is less sensitive to class imbalance. This is
motivated by the successful recent works [13,16] for medical image segmentation.
The Dice score is computed for each class individually, and then averaged over
the number of classes. In order to segment an N × N input image (for example,
a T1-weighted image with LV, RV, Myo and background as labels), the output
of softmax layer is four probabilities for classes k = 0, 1, 2, 3 where,

∑
c yn,k =

1 for each pixel. Given the one-hot encoded ground truth label ŷn,k for that
corresponding pixel, the multi-class soft Dice loss is defined as follows:

ζdc(y, ŷ) = 1 − 1
K

(
∑

k

∑
n ynkŷnk∑

n ynk +
∑

n ŷnk
) (1)

2.3 Data Acquisitions

We validated our proposed method on the STACOM MS-CMRSeg1 2019 chal-
lenge dataset with short-axis cardiac MR images of 45 patients diagnosed with
cardiomyopathy. The dataset was collected in Shanghai Renji hospital with insti-
tutional ethics approval [6]. Each patient had been scanned using three CMR
sequences: LGE, T2, and bSSFP. Ground truth masks of cardiac structures were
provided for 35 training samples (T2 and bSSFP only) and 5 validation samples,
including the Left ventricle cavity (LV), the right ventricle cavity (RV), and the
myocardium of the left ventricle (Myo). The LGE CMR was a T1-weighted,
inversion-recovery, gradient-echo sequence, consisting of 10 to 18 slices covering
the main body of the ventricles. The acquisition matrix was 512× 512, yielding
an in-plane resolution of 0.75× 0.75 mm and slice thickness of 5 mm. The bSSFP
CMR images consist of 8 to 12 contiguous slices, covering the full ventricles from
the apex to the basal plane of the mitral valve, with some cases having several
slices beyond the ventricles. These sequences have a slice thickness of 8–13 mm
and an image resolution of 1.25× 1.25 mm. The T2-weighted CMR images con-
sist of a small number of slices. Few cases have comprise just three slices, and
the others have five (13 subjects), six (8 subjects) or seven (one subject) slices.
The slice thickness is 12–20 mm and an in-plane resolution of 1.35× 1.35 mm.
Since T1 and bSSFP images have very few slices, we combined both sequences
together for the training of our backbone network.

1 http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mscmrseg19/.

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mscmrseg19/
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Preprocessing: There is a large degree of variance in contrast and brightness
across the MS-CMRSeg 2019 challenge images. The variability results from dif-
ferent system settings, and data acquisition which makes it harder for neural
networks to process the images. Due to low contrast, we enhanced the image
contrast slice-by-slice, using contrast limited adaptive histogram equalization
(CLAHE). We normalized each MR volume individually to have zero mean and
unit variance and cropped all images to 224× 224 to remove the black areas
(background regions). Figure 1 shows MR slices of three different sequences of
a patient after prepossessing. Furthermore, we use common training data aug-
mentation strategies including random rotation, random scaling, random elastic
deformations, random flips, and small shifts in intensity to increase training
data. We employed the augmentation only on x and y axes and kept the volume
depth the same. In this way, we do not degrade image quality.

2.4 Network Training

The organizers of the MS-CMRSeg challenge already split the data into training,
validation and testing sets. In the first stage, we trained our model on 35 T2 and
bSSFP sequences with pixel-level annotations and validated on 5 subjects using
the adaptive moment estimation (ADAM) optimizer. For the second stage, we
re-trained the model with five LGE subjects using 5-fold cross validation. The
learning rate was fixed at 0.0001, and the exponential decay rates of the 1st and
2nd-moment estimates were set to 0.9 and 0.999, respectively. During training,
segmentation accuracy was evaluated on the validation set after each epoch of the
network. Networks were trained until the validation accuracy stopped increasing,
and the best performing model was selected for evaluation on the test set. The
batch size for training T2+bSSFP images was set to 16 and during fine-tuning
for LGE-MRI, to 4. We employed connected component (CC) analysis as a post-
processing step to remove the small miss-classified regions in the output of the
softmax layer. For inference, we use the weights which achieved the best Dice
score on the validation set of LGE-CMR data set. The network was developed
in Keras and TensorFlow, an open-source deep learning library for Python, and
was trained on an NVIDIA Titan X-Pascal GPU with 3840 CUDA cores, and
12 GB RAM.

2.5 Evaluation Criteria

To evaluate the accuracy of segmentation results, we used three different metrics
to evaluate segmentation accuracy, namely, the Dice coefficient (Dice), Hausdorff
distance (HD), and Average surface distance (ASD). The Dice metric measures
the degree of overlap between the predicted and ground truth segmentation. It
is the most widely used metric for evaluating segmentation quality in medical
imaging. HD is defined as the maximum of the minimum voxel-wise distances
between the ground truth and predicted object boundaries. ASD is the average
of the minimum voxel-wise distances between the ground truth and predicted
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object boundaries. HD and ASD are evaluated using the shortest Euclidean
distance of an arbitrary voxel v to a point P , defined as d̄(v, P ) = minp∈P ||v−p||.

3 Results and Discussion

The proposed model is evaluated on the task of LGE-MRI segmentation. We
compare our domain adapted network with three different training strategies
including training without domain adaptation and predicting using the model
trained on T2 and bSSFP only. Table 1 summarizes the comparison results,
where we can see that our proposed method significantly improved the segmen-
tation performance relative to networks tested without the adaptation strategy,
in terms of Dice, HD, and ASD metrics. The model without domain adapta-
tion and trained from scratch only on 5 LGE MR samples achieved an average
Dice of 66.9% on the validation set. Remarkably, for our proposed network with
data augmentation, the average Dice improved to 80.9% and HD and ASD was
reduced to 13.6 and 1.0 mm respectively. We achieved over 87.1% Dice score
for the LV structure and over 80.2% Dice score for the RV. To illustrate the
domain shift problem, we directly feed LGE-MR images to the first encoder-
decoder after supervised training on T2+bSSFP domain. The result in Table 1
indicates that the source model completely failed on LGE-MR images with an
average Dice score of 31.3%, HD score of 37.37 mm and ASD value of 11.06 mm.
Notably, compared with testing using model trained on T2+bSSFP, our method
achieved superior performance especially for the LV and Myo structures, which
are difficult to segment due to the presence of scars and blood pool within the
cavity. Figure 3 illustrates segmentation results produced with different methods.
Our method demonstrated robust segmentation performance on 40 LGE CMR
sequences in the test dataset, summarized in Table 2. We have achieved an aver-
age Dice score of 84.5% and HD, ASD score of 13.6 and 2.2 mm respectively. The
proposed model is able to reach a Dice score of 0.788 in terms of myocardium
segmentation. These results help to highlight the generalization capacity of our
approach to segmenting cardiac structures in LGE-MRI. Adapting the features
between two domains results to a better model weight initialization and conse-
quently improved the discrimination power of the second model.

Table 1. Performance comparison between our proposed method and other segmen-
tation methods for LGE-MR image segmentation on the validation data set.

Methods Dice ↑ HD [mm] ↓ ASD [mm] ↓
Myo LV RV Avg Myo LV RV Avg Myo LV RV Avg

W/o adaptation 0.527 0.775 0.705 0.669 57.23 129.67 124.13 103.68 2.96 1.37 1.35 1.89

T2+bSSFP 0.169 0.386 0.383 0.313 42.62 30.37 39.13 37.37 14.6 7.04 11.53 11.06

W-adaptation 0.671 0.862 0.766 0.766 17.6 13.25 22.78 17.88 2.77 0.75 3.81 2.44

W-adaptation+Aug 0.749 0.871 0.802 0.807 11.35 15.66 14.05 13.69 1.06 0.81 1.18 1.02
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Fig. 3. Visual comparison of segmentation results produced by different methods.
From left to right are the raw LGE-MR images, ground truth, W/o Adaptation out-
put trained from scratch on LGE-MR images only, output from model trained on
T2+bSSFP images, and proposed network. The cardiac structures of LV, RV, and
Myo are indicated in purple, blue and withe color respectively. Each row corresponds
to one subject. (Color figure online)

Table 2. The Dice, Jaccard, HD and ASD score of domain-adapted method on the
LGE CMR test dataset.

Structure Test-set results (m ± sd)

Dice ↑ Jaccard ↑ ASD [mm] ↓ HD [mm]↓
Myo 0.788 ± 0.073 0.656 ± 0.096 2.036 ± 0.616 12.53 ± 3.37

LV 0.912 ± 0.033 0.840 ± 0.056 1.806 ± 0.615 11.29 ± 4.55

RV 0.832 ± 0.084 0.721 ± 0.117 2.804 ± 1.376 17.11 ± 6.14

Average 0.844 ± 0.063 0.740 ± 0.090 2.215 ± 0.869 13.64 ± 4.68

4 Conclusion

In this study, we developed a robust deep learning approach for multi-sequence
CMR image segmentation based on feature/domain-adaptation. Our network
was first trained on T2-weighted and bSSFP sequences, and subsequently, the
learned model weights were used to initialize the second network, and fine-tuned
to segment LGE-MR images with a limited number of samples. The transfer
leaning mechanism drastically reduces the domain shift during the training pro-
cess. We validated our method on multi-sequence CMR images by comparing it
with networks trained without domain adaptation. We employ our network on
2D slices as 3D models did not perform well on the MS-CMRSeg challenge 2019
dataset, given the limited number of axial slices. Experimental results highlight
the advantage afforded by our approach, with regards to segmentation accuracy
in LGE-MRI. Future work will aim to extend the framework using techniques
for joint unsupervised image and feature adaptation using generative adversarial
networks.
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Abstract. Multi-sequence cardiac magnetic resonance (MR) segmentation is an
important medical imaging technology that facilitates intelligent interpretation
of clinical MR images. However, fully automatic segmentation of multi-
sequence cardiac MR is a challenging task due to the complexity and variability
of cardiac anatomy. In this study, we propose a two-stage deep learning scheme
for automatic segmentation of volumetric multi-sequence MR images by
leveraging both 2D and 3D U-Net. In the first stage, a 2D U-Net model coupled
with the iterative randomized Hough transform is employed on the balanced-
steady state free precession (bSSFP) MR sequences, so as to find the center
coordinates of the left ventricles (LVs). The regions of interest (ROIs) are then
localized around the center coordinates on the corresponding late gadolinium
enhanced (LGE) MR sequences. In the second stage, a 3D probabilistic U-Net
model is performed on the ROIs in the LGE data to segment the LV, right
ventricle (RV) and left ventricular myocardium (MYO). Experimental results on
the MICCAI 2019 Multi-Sequence Cardiac MR Segmentation (MS-CMRSeg)
Challenge show that the proposed scheme performs well with average Dice
similarity coefficients of LV, RV and MYO as 0.792, 0.697 and 0.611,
respectively.

Keywords: Multi-sequence Cardiac MR � U-Net � Iterative randomized Hough
transform � Image segmentation

1 Introduction

Accurate computing, analysis and modeling of the ventricles and myocardium from
medical images is important in the computer-aided diagnosis and treatment manage-
ment for patients suffering from myocardial infarction (MI) [1, 2].

Multi-sequence magnetic resonance (MR) imaging is used to provide anatomical
and functional information of heart, such as the balanced-steady state free precession
(bSSFP) cine sequence which captures cardiac motions and presents clear boundaries,
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and the T2-weighted cardiac MR (CMR) which images the acute injury and ischemic
regions [3]. Specifically, the late gadolinium enhanced (LGE) CMR can enhance the
infarcted myocardium, appearing with distinctive brightness compared with the healthy
tissues. The LGE is widely used to study the presence, location, and extent of MI in
clinical studies. Thus, delineating ventricles and myocardium from LGE CMR images
is of great importance.

However, fully automatic segmentation of multi-sequence cardiac MR is a chal-
lenging task, mainly due to the large anatomical variability in heart shape among
subjects, the artifacts and intensity inhomogeneity generated during the acquisition
procedures, and the blurry and indistinctive boundaries between substructures [4]. To
objectively compare the approaches to multi-sequence ventricle and myocardium
segmentation, the MICCAI 2019 has launched the Multi-Sequence Cardiac MR Seg-
mentation (MS-CMRSeg) Challenge for accelerating future applications of automatic
CMR segmentation methods in clinical practice.

In this work, we propose a two-stage deep learning scheme for fully automatic
segmentation of volumetric multi-sequence CMR images by leveraging both 2D and
3D U-Net. In the first stage, we present a 2D U-Net model coupled with the iterative
randomized Hough transform (IRHT) on the bSSFP sequences to search for the center
coordinates of the left ventricles (LVs); we then localize the regions of interest (ROIs)
around the center coordinates on the corresponding LGE sequences. In the second
stage, we perform a 3D probabilistic U-Net model on the ROIs of LGE to segment the
LV, right ventricle (RV) and left ventricular myocardium (MYO). We evaluate our
proposed approach on the MS-CMRSeg Challenge datasets.

2 Methods

We perform fully automatic LV, RV and MYO segmentation by using two CMR
sequences, consisting of the LGE and bSSFP [5, 6]. The MS-CMRSeg Challenge also
provides a third sequence namely T2, but we do not use it in our study due to the fact
that T2 images only have a small number of slices, typically three or five, and their
inplane resolution is also the lowest (1.35 � 1.35 mm) among three sequences.

In the paper, we propose a two-stage scheme that first localizes the LV center
coordinates and the ROIs in the bSSFP images, followed by obtaining the final seg-
mentation in the LGE CMR data. This pipeline is shown in Fig. 1.

2.1 2D U-Net and IRHT for ROI Detection

The data provided by the organizer include 45 bSSFP CMR cases from patients with 35
manually labeled. We use the labeled and unlabeled data in a semi-supervised fashion.
In other words, we firstly use the 35 labeled bSSFP cases to train a 2D U-Net network
and then use the network to predict the labels of the remaining 10 bSSFP cases; all the
45 cases are utilized for determination of the ROIs. Here, we only train the model for
LV segmentation and thus only the LV labels are used.

At the training step, firstly, the 3D images are transformed into 2D slices, which are
then normalized and histogram equalized. Multi-scale information is extracted from the
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2D slices by using the 2D U-Net. The gradient explosion problem in a deep network is
prevented by jumping links, which makes the final recovered feature map fuse more
low-level features. An adaptive moment (Adam) optimizer based on categorical cross-
entropy loss function is used to optimize the segmentation model, and its adaptive
learning rate controls the weight updating ratio and makes the model more convergent.
Finally, the labels of bSSFP data in the test set are predicted by the trained 2D U-Net.

Because the coronal view of the LVs is in a circular shape, we first use the Canny
edge detector to detect the pixels in the circles of LV boundaries. Then, we employ the
IRHT algorithm to fit the discrete boundary pixels of the LV in an ellipse and link them
to form a continuous circle. Therefore, the center coordinates of the LVs can be
calculated. According to the center coordinates, we crop a region around the LV center
on the LGE images as the ROI, and then we interpolate the ROI to a size of
256 � 256 � 20. Afterwards, we feed the resized ROI to the second-stage U-Net.

It should be noted that it is essential to generate more training samples with data
augmentation to improve the robustness of image segmentation [7]. We use the geo-
metric transformation as the augmentation method, including flipping, shifting, rotation
and sheer operations.

2.2 3D Probabilistic U-Net for Refined Segmentation

Figure 2 illustrates the second stage of our proposed segmentation method, i.e., the 3D
probabilistic U-Net [8–10]. The network combines a 3D U-Net and a conditional
variational auto-encoder (CVAE) [11–13], which can model complex distributions and
deliver more accurate segmentation for ambiguous images. Furthermore, a low-
dimensional latent space encodes the possible segmentation variants. From this space,
we can obtain a random sample which is injected into the 3D U-Net to generate the

Fig. 1. Overview of our fully automatic two-stage scheme for CMR segmentation with double
networks. The first network combines a 2D U-Net with the iterative randomized Hough
transform (IRHT) to localize the center coordinates of left ventricles and thus obtain the regions
of interest (ROIs) on bSSFP images. The second network is a 3D probabilistic U-Net, which
performs refined segmentation on ROIs of LGE data.
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corresponding segmentation map. There are a prior net and a posterior net in the 3D
probabilistic U-Net. The prior net calculates the probability of the segmentation vari-
ants for an input image X. The prior probability distribution is modelled as an axis-
aligned Gaussian with a mean of lprior and a variance of rprior. The posterior net learns
to recognize a segmentation variant and to map it to a position lpost with some
uncertainty rpost (Fig. 2).

One key characteristic of the 3D probabilistic U-Net is its ability to model the joint
probability of all pixels in the segmentation map. It leads to multiple segmentation
maps, each of which provides a consistent interpretation of the entire image. The 3D
probabilistic U-Net accounts for multiple plausible semantic segmentation hypotheses
to resolve the present ambiguities, and hence it is able to learn hypotheses that have a
low probability and to predict them with the corresponding frequency. Due to its
merits, we adopt the 3D probabilistic U-Net on the segmentation tasks of LV, RV and
MYO for ambiguous multi-sequence CMR images.

The network is trained with the standard training procedure for CVAEs by mini-
mizing the loss function, given the raw image X and the ground truth segmentation
Y. Finally, we use the connected-component labeling to select the largest connected-
component for postprocessing of the segmentation results obtained with the 3D
probabilistic U-Net.

Loss Function. In this study, the loss function combines a cross-entropy loss and
Kullback-Leibler divergence with a weighting factor a. A cross-entropy loss penalizes
difference between network output S and Y. The cross-entropy loss arises from treating
the output S as the parameterization of a pixel-wise categorical distribution Pc. The

Fig. 2. The 3D probabilistic U-Net for refined segmentation. Arrows: operation flows; blue
blocks: feature maps; white blocks: N-channel feature maps from broadcasting sample z; blue
double-headed arrows: loss functions. The number of feature map blocks shown here is reduced
for clarity of presentation. (Color figure online)

312 H. Xu et al.



Kullback-Leibler divergence penalizes differences between the posterior distribution
Q and the prior distribution P [14].

LðY ;XÞ ¼ � log PcðY jSÞþ a � DKLðQjjPÞ ð1Þ

Optimization. To optimize the network parameters, we also utilize the ADAM esti-
mation algorithm, which is straightforward to implement and computationally efficient
[15]. The training is performed in batches of 16 images with a learning rate of 0.001,
and the maximum number of epochs is set to 100.

Data Augmentation. The data augmentation method is similar to that used in
Sect. 2.1 and it includes geometric transformation.

3 Experiments

3.1 Datasets

This study made use of the CMR data provided by the Challenge organizer. The multi-
sequence CMR data from 45 patients with cardiomyopathy had been collected from
Shanghai Renji Hospital with institutional ethics approval and had been anonymized.
Each patient had been scanned using three sequences including the LGE, T2 and
bSSFP. The three sequences were all breath-hold, multi-slice, acquired in the ven-
tricular short-axis views.

We only used two sequences namely LGE and bSSFP for LV, RV and MYO
segmentation. We used the training sets of the Challenge, including Patient 1–5 with
LGE images and their manual labels, Patient 1–35 with bSSFP images and their manual
labels, and also Patient 36–45 with only bSSFP images but no labels. The LGE images
of Patient 6–45 were used to test our proposed segmentation model according to the
instructions of the Challenge.

3.2 Experimental Settings

The proposed two-stage segmentation scheme was implemented with Python 3.6 based
on TensorFlow framework. The experiments were conducted on an Ubuntu 16.04
system with 2 CPUs (Intel Xeon), 2 GPUs (NVIDIA GTX 1080ti 11 Gb), and 256 Gb
RAM.

3.3 Results

We tested and evaluated our proposed approach on LGE CMR of MS-CMRSeg
Challenge. The Challenge uses the Dice similarity coefficient (or Dice score), Jaccard
score, average surface distance (ASD) and Hausdorff distance (HD) as the evaluation
metrics. In the experiment, we also compared our proposed hybrid U-Net consisting of
both 2D U-Net and 3D probabilistic U-Net (denoted as 2D+3Dprob-U-Net) with the
hybrid U-Net using 2D U-Net and classic 3D U-Net (denoted as 2D+3D-U-Net). The
experimental results of the four metrics are enumerated in Tables 1 and 2.
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The results show that our proposed approach performs well in terms of the Dice
score, especially for the LV blood cavity. With the help from the 3D probabilistic U-
Net, our method gets improvements in terms of all four metrics. Table 3 shows the five
patients whose average Dice scores of the LV, RV and MYO were the highest among
40 patients. As can be seen from Table 3, the scores of LVs were generally higher than
those of RVs, and the scores of right ventricle were generally higher than those of
myocardium. This is partly because the shape of LV is relatively regular and thus easier
to predict. The cardiac structure near the LV myocardium is complex, and thus the Dice
score of the MYO was usually the lowest.

Hausdorff distances of LV endocardium, LV epicardium and RV endocardium
shown in Table 2 seem large. It may imply that some areas of endo- or epi-cardium
were wrongly detected because of noisy data and ambigious boundaries. In future
studies, more training samples need to be accumulated into the database to further
improve the segmentation performance.

Table 1. Dice score and Jaccard score on the LGE test sets

2D+3D-U-Net 2D+3Dprob-U-Net
Dice Jaccard Dice Jaccard

LV blood cavity 0.759 0.630 0.792 0.665
LV myocardium 0.573 0.412 0.611 0.445
RV blood cavity 0.622 0.467 0.697 0.546
Average 0.651 0.503 0.700 0.552

Table 2. Surface distance and Hausdorff distance on the LGE test sets

2D+3D-U-Net 2D+3Dprob-U-Net
ASD HD ASD HD

LV endocardium 5.619 41.914 4.159 36.129
LV epicardium 7.235 49.540 6.021 44.133
RV endocardium 8.768 53.837 8.327 55.152
Average 7.207 48.430 6.169 45.138

Table 3. Dice scores on the LGE test sets for five patients, ranked by the highest average Dice
scores.

Patient index LV blood cavity LV myocardium RV blood cavity Average

28 0.898 0.751 0.875 0.875
24 0.906 0.760 0.749 0.805
40 0.896 0.713 0.802 0.804
35 0.883 0.666 0.857 0.802
39 0.888 0.652 0.854 0.798
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Figure 3 shows the 3D rendering of three patients (a–c) with high Dice scores and
one patient (d) with a low Dice score. For LV segmentation, the three good cases
achieved high Dice scores around 0.90; and for RV and MYO segmentation, the Dice
scores exceeded 0.7. These results indicate satisfactory volumetric segmentation of the
three cardiac structures. However, for Patient37 (Fig. 3d), the Dice scores were
between 0.40–0.65, indicating a relatively poor performance. It should be noted that for
patient 24 (Fig. 3b), though our method performed well in overall evaluation, it also
falsely detected some debris of RV, which was consistent with relatively high Haus-
dorff distances of 66.710 mm for RV endocardium.

The center coordinates of LV localized in bSSFP images at the first stage may not
exactly coincide with those in LGE images, which is also one of the factors that induce
differences between the predicted segmentations at the second stage and the truth
grounds. Better localization of the center coordinates through accurate registration of
the two sequences could benefit following refined segmentation, and it deserves further
investigation in future studies.

4 Conclusion

In this paper, we have proposed a two-stage method for fully automatic segmentation
of LV, RV and MYO in multi-sequence CMR by using a pipeline combining both 2D
U-Net and 3D probabilistic U-Net. Results on the MS-CMRSeg Challenge show the
good performance of our proposed method.

Fig. 3. Segmentation results of volumes with good (a) (b) (c) and bad (d) Dice scores for
LGE CMR images for four typical patients.
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Abstract. Analysis and modeling of the ventricles and myocardium
are important in the diagnostic and treatment of heart diseases. Man-
ual delineation of those tissues in cardiac MR (CMR) scans is labori-
ous and time-consuming. The ambiguity of the boundaries makes the
segmentation task rather challenging. Furthermore, the annotations on
some modalities such as Late Gadolinium Enhancement (LGE) MRI, are
often not available. We propose an end-to-end segmentation framework
based on convolutional neural network (CNN) and adversarial learning.
A dilated residual U-shape network is used as a segmentor to gener-
ate the prediction mask; meanwhile, a CNN is utilized as a discrimina-
tor model to judge the segmentation quality. To leverage the available
annotations across modalities per patient, a new loss function named
weak domain-transfer loss is introduced to the pipeline. The proposed
model is evaluated on the public dataset released by the challenge orga-
nizer in MICCAI 2019, which consists of 45 sets of multi-sequence CMR
images. We demonstrate that the proposed adversarial pipeline outper-
forms baseline deep-learning methods.

Keywords: Adversarial convolutional network · Multi-sequence
cardiac segmentation

1 Introduction

Automatic segmentation of the tissues in cardiac magnetic resonance (CMR)
images can provide the initial geometric information for surgical guidance [5].
However, manual delineation of heart structures in CMR scans is laborious and
time-consuming. Late Gadolinium Enhancement (LGE) MR imaging is one of
the most effective imaging modalities that can predict heart failure and sudden
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death [16]. It enables doctors to visually exam the changes in the myocardium
(myo) and confirm the existence of ‘cardiomyopathy’ and the degree of fibrosis.

There are three main challenges in CMR image segmentation: (1) the large
anatomy variations between individuals, and the big diversity of imaging quality
in the LGE. For example, due to microvascular occlusion, the contrast agent
cannot reach certain areas of the heart, resulting in different enhancements; (2)
the ambiguities of boundaries between different cardiac tissues, i.e., the intensity
range of the myocardium in LGE CMR overlaps with the surrounding muscle
tissue [4]; (3) Despite its clinical importance, LGE slice is much more difficult
to annotate than both T2-weight and bSSFP, thus the annotations of LGE
CMR are often not accurate or not available. In contrast, the annotations of
T2-weight and bSSFP are easier and often available. To tackle these challenges,
various methods have been proposed for whole-heart segmentation [8], ventricles
segmentation [9,10], etc.

In recent years, deep convolutional neural networks (CNNs) [11] have
achieved remarkable success in various computer vision tasks [12,13] as well as
medical image segmentation [1]. Generative adversarial networks [2] as a recent
machine learning technique, offers a promising avenue in image synthesis [6] as
well as image segmentation [7].

We propose a framework to segment ventricles and myocardium from LGE
CMR images based on CNNs and adversarial learning, when the annotations of
LGE images are rather limited for training. Our contributions in this work are
three folds: (1) we proposed an adversarial segmentation network containing two
tailored modules: a segmentation model and a discriminator model, trained and
optimized in an end-to-end fashion. The segmentation network generates the
predicted masks, and the discriminator network aims to identify the segmenta-
tion mask and the ground-truth mask. The segmentation quality is improved in
the min-max game. (2) since different modalities share structure information, we
introduced a loss function named weak domain-transfer loss to leverage informa-
tion from available modalities with rich annotations; (3) results show that the
proposed method outperforms traditional CNN-based method.

2 Method

Our adversarial segmentation framework consists of a segmentation network and
discrimination network. A dilated residual U-shape networks [14] is used as a
segmentor (i.e. mask generator) G and a CNN classifier as a discriminator D.
D is used to ensure that a generated mask being close to its ground truth mask
conditioned on the same raw image; the segmentor and the discriminator are
updated to improve the performance in an adversarial manner. We also leverage
information from other common modalities using a weak domain-transfer loss.
Figure 1 shows the framework of the proposed method.

Data and Preprocessing. The dataset is provided by the challenge orga-
nizers [3] and [4]. It consists of 45 patients, each with three MRI modalities
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Fig. 1. Adversarial segmentation network architecture. It consists of a generator based
on a dilated residual U-shape network and a CNN discriminator. The two networks
are simultaneously optimized during the process of supervised learning and adversarial
learning. Segmentation loss is a combination of individual-domain and domain-transfer
loss, while the adversarial loss is a combination of the segmentation loss and the dis-
criminator loss.

(LGE, T2-weight and bSSFP). It is noted that not all of the modalities come
with the annotations of three heart regions (i.e., left ventricles, myocardium,
and right ventricles). Annotations of all the three modalities are provided for
patients 1–5; while patients 6–35 have manual annotations of T2-weight and
bSSFP. Patients 36–45 have the raw MR scans of three modalities but with-
out any annotations. When constructing the training set, only those MR scans
with manual annotations are included. The test data contains the MR scans
of LGE from patients 6 to 45, tasked to predict the masks of the three heart
regions. Data augmentation is used for robust training. Three geometrical trans-
formations (rotation, shear, zooming) are applied to all of the images and their
corresponding masks. For each slice, we also crop a region with a fixed bounding
box (224 * 224), enclosing all the annotated regions but at different locations to
capture the shift invariance, resulting in 5 groups of cropped regions of inter-
ests. Before training the networks, the intensities of each 2D slice from three
modalities are normalized using z-scores normalization to calibrate the range of
intensities.

Weak Domain Transfer. Figure 2 shows some sample images with annotation
masks of different modalities from the same patient. In Fig. 2, we can further
observe from the annotations that the bSSFP, T2 and LGE share some anatom-
ical and structure information; For example, the right ventricle is always sur-
rounded by myocardium, left ventricle is next to myocardium. The annotation
masks of the corresponding slices from the three modalities have a certain level
of overlap. Based on those observations, we hypothesize that the information
from bSSFP and T2 can facilitate the segmentation of LGE. Hence we propose



320 J. Chen et al.

to use the annotation masks on bSSFP and T2 modalities as the pseudo masks
for the unlabelled LGE modalities.

Fig. 2. From left to right are the images of the bSSFP, T2, LGE modalities from the
same patient, with ground truth masks imposed (best viewed in color). (Color figure
online)

The masks of bSSFP and T2 scans are transferred to LGE by using a normal-
ized index which identifies the correspondence between axial slices from different
modalities. These masks from bSSFP or T2 are directly used as the pseudo masks
for the corresponding LGE. Specifically, for an axial slice i in bSSFP (or T2)
with annotations, its corresponding slice index j in LGE is computed as below:

j = �i ∗ n

m
� (1)

where �·� is the floor function. n denotes the number of axial slices of LGE; while
m is the number of axial slice in bSSFP (or T2) respectively. Therefore the mask
of slice i in bSSFP (or T2) is treated as the pseudo mask of the slice j in LGE.

Notably, those masks are pseudo, therefore, the domain-transfer loss should
be set as a weaker one when combined with loss defined on ground truth anno-
tations from expert. We will discuss this further in next section.

It is worth noting that our transfer is different from the conventional trans-
fer, which often used a pre-trained model (e.g. on ImageNet), or a knowledge dis-
tillation framework of teacher-student learning [15]. Instead, our transfer is built
as part of the whole model, specifically tailored for the cross-domain annotation-
transfer problem.

Generator. Figure 3 shows the overview of the generator model, where a dilated
residual U-shape network is tailored and used for the segmentation network.
Residual blocks in downsampling and upsampling parts are connected through
skip connections. In total the entire network consists of only 0.16 million train-
able parameters.

In training a segmentation model, it is aware that cross-entropy loss focuses
on individual pixels while Dice loss focuses on the overlap of regions. Thus, a
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combination of cross-entropy loss and Dice loss is chosen to optimize the network.
Images and ground truth masks from the three sequences as well as the trans-
ferred masks mentioned above are used. Therefore, the training loss includes two
parts: individual-domain loss and domain-transfer loss. Individual-domain loss,
denoted as LID, is the difference between the ground truth mask and prediction
while domain-transfer loss denoted as LDT , is the difference between transferred
masks (pseudo masks) and predicted ones.

Fig. 3. Generator network architecture, composed of a downsampling tower and an
upsampling tower.

Both of LID and LDT consist of a linear combination of the multi-class cross-
entropy loss Lce and the Dice loss LDice, formulated as:

LID = β1 · Lce + (1 − β1) · LDice (2)

LDT = β2 · Lce + (1 − β2) · LDice (3)

The total loss function LG is formulated as:

LG = λ · LID + (1 − λ) · LDT (4)

Notably, the domain-transfer loss leverages the information from bSSFP and T2
modalities. It is worth noting that λ in Eq. (4) is used to control the balance of
the transfer; and it is set to 0.9, thus giving a much lower weight of the transfer
loss 0.1 which is weak. In our experiments, β1, β2 are set to 0.9 after observing
the segmentation performance on a validation set.

Mask Discriminator. We use a CNN as a discriminator to drive the generator
to generate good-quality masks similar to the ground truth ones. The architec-
ture contains several residual blocks with max-pooling layers. The raw images
and the masks are spatially concatenated as a multi-channel input to the CNN.
A (negative) binary cross-entropy loss LD is used to train the model, defined as:
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LD(S, T ,D,G) = E(x,y)∼S [log D(y|x)] + E(x′,y′)∼T [log D(y′|x′)]+
E(x,y)∼S [log(1 − D(G(x, y)|x))]+

E(x′,y′)∼T [log(1 − D(G(x′, y′)|x′))]
(5)

where S is the set of training data x with ground truth masks y, and T is
the set of LGE data x′ without masks, but with pseudo masks y′.

Adversarial Training of Generator and Discriminator. The objective
of the proposed system is to produce appropriate segmentation masks on the
target class during the min-max game of the two networks. Firstly we perform
a supervised training on G using the MR scans with ground truth masks, the
objective of G is to generate a good mask to deceive the discriminator network
D. The goal of D is to identify the generated masks from the real masks. We
aim to improve the segmentation quality by merging the generated masks with
the original images as condition labels and putting them into the discriminator
for adversarial learning training. The adversarial model is designed to minimize
the adversarial loss which will reverse optimize the generator loss.

Equation 6 represents the total loss in the adversarial model. G and D are
simultaneously optimized.

min
G

max
D

Ladv = LD + LG (6)

Algorithm 1. Training procedure of the adversarial model

Input: training images X, training masks Y, iteration j and k, batch size n
Output: Models: Segmentation model G, Discriminator D
i = 0
while i ¡ j do

update G by LIN

i = i+1
end
while i ¡ k do

update D by maximizing Ladv using a mini-batch while keep G fixed
update G by minimizing Ladv using a mini-batch while keep D fixed.
i = i+1

end
return G

3 Experiment

Implementation. The proposed method is implemented using Keras library.
The codes are available at https://github.com/jingkunchen/MS-CMR miccai
2019. α is set as 0.9 thus, giving the weight of 0.9 for the categorical

https://github.com/jingkunchen/MS-CMR_miccai_2019
https://github.com/jingkunchen/MS-CMR_miccai_2019
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cross-entropy loss and 0.1 for Dice loss. Learning rate is set to 2× 10−4, and the
learning decay is 1 × 10−8. We use a batch size of 16. For the transfer loss LDT ,
we use the ground truth (whenever available) masks of T2-weight and bSSFP,
as the pseudo ground truth masks for the corresponding LGE slices. The corre-
spondence between the LGE slices and the T2-weight (or the bSSFP) slices are
established based on the simple index normalization along the z-axis of the 3D
MRI scans1. We use Adam optimizer.

3.1 Results

It is noted that only 5 patients have LGE annotations available, thus we per-
forme a very preliminary experiment to test the proposed method. We held
out patients 4 and 5 for testing and the rest for training. Results are reported
in Table 1 in terms of Dice score and Hausdorff distance (LV, myo, RV). We
further compare three methods: dilated residual U-shape networks with Dice
loss (U+D), adversarial model with Dice coefficient loss (U+A+D), adversarial
model with Dice coefficient loss and transfer loss (U+A+D+T). The U-shape
networks are specifically designed to segment biomedical images and perform well
in myocardial segmentation of bSSFP CMR images [3]. Here we use dilated resid-
ual U-shape networks with Dice loss (U+D) as our baseline for a comparison. It
could be observed that adding adversarial training improves the segmentation
performance on both the myocardium and right ventricles, but performs worse
on left ventricles. The proposed method with transfer loss outperforms both of
them with only one exception of the lower Dice score the right ventricle.

Table 1. Average Dice and Hausdorff distance on patients 4 and 5

Method Dice Hausdorff Dist.

LV, myo, RV LV, myo, RV

U-shape network (U+D) 70.5%, 50.0%, 70.0% 13.2, 12.0, 24.6

Adversarial model (U+A+D) 65.1%, 53.9%, 74.7% 38.0, 16.1, 19.4

Adversarial transfer (U+A+D+T) 76.0%, 59.6%, 71.7% 10.2, 12.1, 12.9

Results on Challenge Test Set. We submitted the results of the methods of
(U+A+D) and (U+A+D+T) on the testing set containing patients 6 to 45 LGE.
Tables 2 and 3 summarize the average and median values of the results returned
by the organizers. It could be seen that overall the approach of (U+A+D+T)
outperforms (U+A+D), which confirms that promise of the proposed method.

1 In practice, we find this works well. Ideally, registration could be performed to find
the correspondence, which will be investigated further.
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Table 2. Average Dice, Jaccard, Surface Distance and Hausdorff distance on patients
6 to 45

Method Dice Jaccard Surface Dist Hausdorff Dist.

LV, myo, RV LV, myo, RV LV, myo, RV LV, myo, RV

U+A+D 76.6%, 42.0%, 69.5% 0.62, 0.27, 0.54 5.5, 4.7, 5.5 22.1, 42.0, 32.7

U+A+D+T 82.4%, 61.0%, 71.0% 0.71, 0.45, 0.57 3.9, 4.0, 5.0 23.7, 24.6, 23.5

Table 3. Median of Dice, Jaccard, Surface Distance and Hausdorff distance on patients
6 to 45

Method Dice Jaccard Surface Dist Hausdorff Dist.

LV,myo,RV LV,myo,RV LV,myo,RV LV,myo,RV

U+A+D 77.8%, 42.7%, 71.1% 0.63, 0.27, 0.55 5.3, 4.3, 5.0 18.5, 41.2, 28.5

U+A+D+T 82.1%, 60.8%, 72.8% 0.70, 0.44, 0.57 3.8, 3.9, 4.6 15.4, 19.6, 22.8

O

U+D

U+A+D

U+A+D+T

Fig. 4. The results of the segmentation. Rows from top to bottom: original images (O),
dilated residual networks (U+D), adversarial model (U+A+D), adversarial model with
Dice coefficient loss and transfer loss (U+A+D+T) (best viewed in color). (Color figure
online)

Visualisation. Figure 4 shows some predicted masks of the LGE slices of four
patients. It could be seen that adversarial learning improves the results of only
using the dilated residual network, and the cross-modality transfer further refine
the segmentation masks, especially for the left ventricles. Those observations are
consistent with the results shown in Tables 1, 2 and 3.

4 Conclusions

We propose an automated method for heart segmentation based on multi-
modality MRI images, which is trained in an adversarial manner. Specifically,
our architecture consists of two modules, a multi-channel mask generator and
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a discriminator. In particular, we further introduce a domain-transfer loss func-
tion to leverage the information across different modalities for the same patients.
Results show that such an idea is effective, and the overall framework performs
better than the baseline methods.
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Abstract. During the last years tens of challenges have been organized
to benchmark computational techniques with shared data. Historically,
most challenges in conferences such as MICCAI have been devoted to
medical image processing, especially on object recognition or segmenta-
tion tasks. Due to the increasing popularity and easy access to machine
(deep) learning methods, as part of our current Artificial Intellingence
(AI) summer, the number of AI-related challenges has exploded. In par-
allel, the community of biophysical models also has a valuable history
of organizing challenges, including synthetic and experimental data, to
assess the accuracy of the resulting simulations. In this paper, the sim-
ilarities and differences in computational challenges organized by these
communities are reviewed, suggesting best practices and what to avoid
when organizing a challenge on biophysical models. Specifically, details
will be given about the preparation of the CRT-EPiggy19 challenge.

Keywords: Reproducible research · Computational challenge ·
Electrophysiological modelling · Cardiac Resynchronization Therapy ·
Animal data

1 Introduction

Computational models in biomedicine have evolved during the last years to the
point of beginning to have an impact in some steps of clinical workflows [16].
A clear example is the success history of the Heartflow company1 with the
simulation-based computation of Fractional Flow Reserve for coronary artery
disease. Nevertheless, initiatives promoting reproducible research and verifica-
tion/validation of the existing models on common data are still needed to make
further steps on their realism and prediction abilities. The cardiac modelling

1 http://www.heartflow.com/.
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community has a long-standing track record of collective efforts on this direc-
tion, including: model repositories such as CellML2; Open Access softwares such
as OpenCMISS3 [4], Chaste4 [21], Continuity5, SOFA6 or CARP7, among oth-
ers; and benchmark studies with synthetic data such as the ones summarized
in Niederer et al. [22] on cardiac electrophysiology and in Land et al. [18] on
cardiac mechanics. Other than using analytical data for verification purposes,
a usual practice in computational modelling is to test computational models
with high-resolution data acquired in animal experiments (e.g. [5,28]). However,
reproducibility, processing and management of these data are not easy, being
also difficult to acquire large databases.

In parallel, the last years have seen an explosion of challenges in medical
image and signal processing communities, mainly fostered at international con-
ferences such as Medical Image Computing and Computer Assisted Intervention
(MICCAI, mainly through its workshops)8 or Computing in Cardiology (CinC)9,
among others. The Grand Challenge in Biomedical Image Analysis website10 is
a very useful repository listing most of medical image-related challenges whereas
Physionet11 [14] is a comprehensive resource, hosting some of the most used
databases in challenges involving complex physiological signals.

Several factors have contributed to the recent increase of computational chal-
lenges such as having easier protocols to acquire and share large amounts of
medical data with associated ground-truth, high scientific visibility for challenge
organizers/participants as well as easy access to Open Source data science soft-
wares and hardware infrastructure for fast processing (e.g. Graphical Processing
Units and High Performance Computing). Obviously, the disruptive develop-
ments in Machine Learning (ML) in the past years (a new Artificial Intelligence,
AI, summer), in particular with Deep Learning (DL) algorithms, has also had a
major impact, promoting the participation in these challenges of non-experts in
the biomedical engineering field, often agnostic to the targeted applications.

The substantial progress made in both biophysical modelling and biomedical
data science communities towards algorithm reproducibility, facilitating open
access to data and codes to all researchers, has been independent from each
other. There is a lack of communication and joint initiatives between these sci-
entific communities that would be very beneficial to both of them, e.g. to use
common clinical data to set up benchmarks and to train machine learning tech-
niques as well as for validation of cardiovascular multi-physics simulations. In
this manuscript, a brief review of current benchmarks and reproducible research

2 https://www.cellml.org/.
3 https://opencmiss.org/.
4 https://chaste.cs.ox.ac.uk/trac.
5 https://continuity.ucsd.edu/.
6 https://sofa-framework.org.
7 https://carpentry.medunigraz.at/carputils/index.html.
8 http://www.miccai.org.
9 http://www.cinc.org.

10 https://grand-challenge.org.
11 https://physionet.org.
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initiatives in medical data science and biophysical modelling is given, listing
some good and bad practices learnt from the experience of organizing the CRT-
EPiggy19 challenge on electrophysiological modelling.

2 Brief Review of Computational Challenges
and Reproducible Research in Biophysical Modelling
and Medical Data Science

2.1 Biophysical Modelling

Historically, the biophysical modelling community has been one of the pioneer-
ing scientific fields on Open Science, mainly due to the vision and resilience of
several leaders of the field, with numerous initiatives shaping its research and
helping thousands of investigators. Some examples with an important presence
of cardiovascular applications include the definition of standards and creation
of curated model repositories (e.g. cellML, FieldML, Physiome Model Repos-
itory12, the new Physiome journal13), Open Source softwares (see list above),
international networking forum (e.g. Physiome14, Virtual Physiological Insti-
tute15, COMBINE16) and derived conferences (Cardiac Physiome17, VPH18 or
the Barcelona VPH Summer School19, among others). In addition, substantial
steps are recently being made towards promoting reproducible research from
key healthcare players such as the National Institute of Health (e.g. Centre for
Reproducible Biomedical Modeling20), the Food and Drug Administration (e.g.
definition of best practices for verification, validation and uncertainty of com-
putational models [24–26]), the Medical Device Innovation Consortium (MDIC;
program on Computational Modeling and Simulation21) or the American Soci-
ety of Mechanical Engineers (ASME; definition of standards for Verification and
Validation in several computational modelling scenarios such as fluid dynamics
and heat transfer, V&V 20 Subcommittee [2], or modeling of medical devices,
V&V 40 Subcommittee [3]).

As for benchmarks and challenges, the complexity, high-level and multi-scale
nature of the questions usually asked to biophysical models makes the genera-
tion of realistic ground-truth data very difficult (in contrast to low-level tasks
in image processing such as object recognition), either analytically on synthetic
data or with experiments on animal or human data. This is particularly true in

12 https://models.physiomeproject.org.
13 https://journal.physiomeproject.org.
14 http://physiomeproject.org/.
15 https://www.vph-institute.org.
16 https://co.mbine.org.
17 https://www.cardiacphysiome.org/meetings.
18 https://vph-conference.org.
19 https://eventum.upf.edu/28646/detail/4th-barcelona-vph-summer-school.html.
20 https://reproduciblebiomodels.org/.
21 https://mdic.org/program/computational-modeling-and-simulation-cms/.
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cardiovascular applications since they involve the heart, one of the most sophisti-
cated human organs, with multiple strongly-coupled physical phenomena such as
electrophysiology, mechanics and haemodynamics. In addition, the real systemic
functioning of the human body is not considered, isolating the cardiovascular
system from the remaining organs and systems.

Some pioneering benchmarks have been proposed on synthetic data for the
verification of cardiac electrophysiology [22] and mechanics [18], which have been
very useful to the modelling community for comparing the different solver per-
formance on common, even if simple, data. More sophisticated approaches to
build ground-truth data include the building or use of (printed) phantoms con-
nected to flow pumps in in vitro experiments to validate fluid simulations [31]. Ex
vivo or in vivo experiments with animals allow the acquisition of high resolution
medical data, and subsequent generation of ground-truth, which usually charac-
terize the human cardiovascular system better than in vitro experiments. Over
the years, several cardiovascular modelling challenges have been based on exper-
imental models such as the ones taking place at the MICCAI-STACOM work-
shop22), from the initial electrophysiological simulation challenges (CESC’10 [5],
2011 [28]), to fluid simulation challenges for aortic coarctation (201223, 201324)
and a left ventricle mechanics challenge in 201425. However, acquiring and pro-
cessing experimental data is not straightforward and a previous detailed analysis
on the usefulness of a given experiment is required, considering intra-species dif-
ferences, ethical issues and associated costs.

2.2 Medical Image Processing

Open Science has also been promoted in the medical imaging community since its
initial developments in the 90’s, especially in some domains such as neuroimag-
ing. The leading role of researchers such as Pr K.J. Friston (Institute of Neu-
rology, University College London, United Kingdom) and other contributors to
the Open Source Statistical Parameter Mapping (SPM) software [1,12]26 hugely
influenced the neuroimaging community so that the main brain data processing
softwares are currently freely available. Examples of these softwares besides SPM,
some being routinely used by clinicians worldwide, include FreeSurfer [10]27,
AFNI [6]28, FSL [17]29, or Brainvisa [13]30, among others.

Neuroimaging researchers have also been at the vanguard of data sharing.
Just to name a couple of landmark projects that have helped thousands of
researchers, one could mention the multiple brain atlases and templates released
22 http://stacom.cardiacatlas.org/.
23 http://www.vascularmodel.org/miccai2012.
24 http://www.vascularmodel.org/miccai2013.
25 http://stacom.cardiacatlas.org/stacom2014.
26 https://www.fil.ion.ucl.ac.uk/spm.
27 https://surfer.nmr.mgh.harvard.edu.
28 https://afni.nimh.nih.gov.
29 https://fsl.fmrib.ox.ac.uk/fsl.
30 http://brainvisa.info.

http://stacom.cardiacatlas.org/
http://www.vascularmodel.org/miccai2012
http://www.vascularmodel.org/miccai2013
http://stacom.cardiacatlas.org/stacom2014
https://www.fil.ion.ucl.ac.uk/spm
https://surfer.nmr.mgh.harvard.edu
https://afni.nimh.nih.gov
https://fsl.fmrib.ox.ac.uk/fsl
http://brainvisa.info


Practices for Cardiac Biophysical Models Challenges 333

by the Montreal Neurological Institute (MNI) [9]31 and the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) [9]32 with thousands of multiple cross-
sectional and longitudinal data of controls and AD patients that have been used
in more than 1700 scientific papers (up to 2018). The historic involvement of
the neuroimaging community in Open Science has been strengthened in recent
times with several initiatives on standardization of data structures/processing
pipelines and reproducible research such as the Brain Imaging Data Structure
(BIDS) [15]33 that is based on OpenNeuro platform34 for sharing data, the Clin-
ica software35 for reproducible and objective classification experiments [30] or
the Stanford Centre for Reproducible Neuroscience36.

Cardiovascular imaging has required more time to embrace data sharing poli-
cies, arguably due to a higher difficulty to obtain good quality data than in the
brain, despite pioneering efforts such as the early open release of the Auckland
Dog Heart data [23] and the Cardiac Atlas Project [11]37, both led by the Uni-
versity of Auckland. Fortunately, this trend is changing and large datasets of
complete cardiovascular data are becoming available to the scientific community
such as the colossal UK Biobank database38, interestingly including brain and
heart data that allows for holistic studies including both organs [7].

The fast growth (in short time) and diversity of computational challenges did
prevent the common definition of standards and good practices for their organi-
zation, decisions being ultimately made based on each challenge organizer’s own
judgement. Recently, Maier-Hein et al. [20] thoroughly studied more than 150
biomedical image analysis competitions that represent a landmark step forward
in their scientific quality and standardization. The authors identified some typi-
cal issues in challenges such as (lack of) reproducibility, (correct) result interpre-
tation and (impossibility of) cross-comparison in most challenges. These issues
are particularly critical in the current era of massive use of ML/DL algorithms,
most of them used as black boxes independent of the final application, and
with the only objective of being a couple of decimals better in accuracy met-
rics such as the Dice coefficient. These metrics are often too optimistic and far
from reality in a clinical environment, hampering its real impact, which needs
randomized clinical trials to be properly evaluated. Another critical point is the
generation of ground-truth data to compare algorithms since its uncertainty and
intra-observer variability are rarely considered. Nevertheless, the long-standing
efforts of the medical imaging community, as summarized in [20], have led to
the creation of best practice forms to organize challenges, which are currently
used in conferences such as MICCAI. Unfortunately they are mainly focused on
image segmentation techniques.
31 https://mcgill.ca/bic/resources/brain-atlases.
32 http://adni.loni.usc.edu/.
33 http://bids.neuroimaging.io.
34 https://openneuro.org.
35 http://www.clinica.run.
36 http://reproducibility.stanford.edu.
37 https://www.cardiacatlas.org.
38 https://www.ukbiobank.ac.uk.
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2.3 Medical Signal Processing

Physionet [14]39 is the reference resource for data, software, challenges and tuto-
rials related to complex physiological signals, clearly demonstrating the long
history of medical signal processing, as well as the easiness to acquire large
databases of signals rather than with images. On the other hand, it is still an
open problem to find the required resources for labelling the vast amount of
samples available in these databases, i.e. generating the ground-truth or train-
ing data for validation of computational models or training of machine learning
algorithms. However, in conjunction with the CinC conference40, Physionet has
continuously organized annual challenges on available labelled data since 2000,
targeting clinically interesting and varied problems from sleep apnea to Intensive
Care Unit data or several arrhythmia applications.

As part of the scientific community around the CinC conference, it is worthy
to mention the Consortium for ECG Imaging (CEI)41 since it is an exemplary
initiative gathering most world-wide research groups specialized on this field,
working together to advance it and providing a repository of datasets for the
validation of the developed techniques.

3 CRT-EPiggy19 Challenge: CESC’10

3.1 Cradle of the Challenge

In 2010, at the first edition of the STACOM workshop during the MICCAI
conference held in Beijing, China, the Cardiac Electrophysiological Simulation
Challenge (CESC’10) took place. Different modelling approaches were tested
against optical mapping data of a perfused ex-vivo porcine heart [27], acquired
at the Sunnybrook Health Sciences Centre, Toronto, Canada. Additionally, a
modelling pipeline integrating the different approaches was developed, provid-
ing the best prediction power of depolarization isochrones in different pacing
conditions [5]. It seemed more than appropriate to organize a new EP mod-
elling challenge for the STACOM-MICCAI 2019 edition, to be held again in
China (Shenzen). Coinciding with the Chinese Year of the Pig, multimodal Pig
(kind of Big) Data was released to modelling researchers willing to participate
in the Cardiac Resynchronization Therapy Electrophysiological challenge 2019
(CRT-EPiggy19) challenge42.

3.2 Swine Model of Left Bundle Branch Block and Cardiac
Resynchronization Therapy

Cardiac Resynchronization Therapy (CRT) is a successful electrical treatment
for Heart Failure (HF), but still more than 30% of patients fulfilling the crite-
ria for implantation do not respond to the therapy. A better patient selection
39 https://www.cardiacatlas.org.
40 http://www.cinc.org.
41 http://www.ecg-imaging.org.
42 http://crt-epiggy19.surge.sh/.
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and stratification based on more sophisticated indices (i.e. beyond QRS duration
and ejection fraction) and optimization of therapy settings such as lead config-
uration (e.g. number and positioning, biventricular vs. His-bundle pacing) and
ventricular delays (inter-ventricular and atrio-ventricular) could reduce the rate
of non-responders. Computational models are ideal tools for better understand
pacing-based therapies such as CRT, providing additional information to the
clinician on its optimal parameters for a given patient. Lee et al. [19] recently
published a comprehensive review of computational models for CRT, showing
the large variety of options in the different steps of the modelling pipeline.

Nevertheless, as for most clinical modelling applications, computational mod-
els for CRT suffer from the lack of shared rich data to compare the different
options. This is especially complicated in CRT modelling due to the impossibility
of acquiring human data at different stages of the disease (e.g. baseline, disease,
after treatment). Some years ago, researchers at Hospital Cĺınic de Barcelona
and Universitat Pompeu Fabra developed a swine model of left bundle branch
block (LBBB) for experimental studies of CRT [29]. Radiofrequency applications
were performed to induce LBBB. Half of the animals presented a myocardial
infarction located at the septal wall. Imaging data and electro-anatomical maps
(EAM) were acquired at baseline, with the induced LBBB and after implanta-
tion of a CRT device. This rich data is well suited for evaluating some features
of the different cardiac computational models available nowadays, and was the
basis of the CRT-EPiggy19 challenge.

3.3 Organization of the Challenge

The spirit of CRT-EPiggy19 was to collectively review the current state-of-the-
art for computational cardiology models and their ability to predict pacing-based
therapy outcomes, as well as the identification of the most critical phases and
more promising solutions in the personalization modelling pipeline. More specif-
ically, participants were asked to predict the electrical response of CRT and
to propose the optimal device configuration in a swine model of left bundle
branch block, given fully controlled data. All challenge participants were invited
to contribute to the preparation of a journal article summarizing the main find-
ings from the CRT-EPiggy19 challenge, similarly to the CESC’10 challenge [5].
The challenge will remain open to new participants for some months after the
MICCAI-STACOM19 workshop.

3.4 Training and Testing Datasets

The training data included the LBBB and after CRT data of two complete
infarcted and two non-infarcted datasets (total of 4 cases), while the test data
(only LBBB) was composed of seven cases (3 infarcted and 4 non-infarcted).
Unlike LBBB and CRT activation maps, baseline maps were not released, since
they did not necessarily contribute to the prediction of CRT from LBBB. The
electrical activation patterns of the training datasets have already been detailed
in Soto-Iglesias et al. [32]. Figure 1 shows an overview of the EAM maps of the
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test data cases (after a LBBB), where the electrical dyssynchrony between the
right and left ventricles can be easily observed (e.g. right ventricle activated way
earlier than the left one due to the malfunctioning of the left bundle branch
of the conduction system). The training and test data sets were uploaded onto
the Zenodo portal43, which is a catch-all repository founded by CERN and the
OpenAIRE European Commission project to promote Open Science.

Fig. 1. Electro-anatomical maps of the seven cases composing the test data. All cases
have a left bundle branch block that induced electrical dyssynchrony between the two
ventricles. Red and blue areas indicate the earliest and the latest activation sites. (Color
figure online)

Some of the main sources of variability in model personalization come from
the extraction of anatomical data from medical images and the creation of the
geometrical domain where models are run. In order to reduce this variability,
biventricular finite element meshes were provided to each participant, built from
the segmentation of magnetic resonance imaging (cine-MRI) data. These meshes
included cardiomyocyte orientation (obtained with rule-based models; see Doste
et al. [8] for details), several regional labels (AHA regions, endo- and epi-cardial
walls, different ventricles) and the local activation times projected from EAM
data. Additionally, the affected AHA segments and its transmurality were given
for infarcted cases. Furthermore, for visualization and analysis purposes, 2D
bi-ventricular representations were also provided.

3.5 Evaluation Metrics

Global and regional differences between simulated and measured CRT activation
maps will be used to evaluate the prediction accuracy of each proposed model.

43 https://zenodo.org/record/3249511#.XWKfu5MzZpg.
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As global metric, we will use the difference in Total Activation Time (TAT,
whole heart fully activated). The TAT will also individually be assessed for
the LV, the RV, as well as for each AHA segment. TAT differences will be
separately analyzed between simulations and measurements for infarcted vs. non-
infarcted cases. Histograms of isochrones of electrical activation will be derived
from simulations to estimate inter- and intra-ventricular electrical dyssynchrony
(Soto-Iglesias et al. [32]). Each participant was asked to report the used hardware
infrastructure, computational times and details about the implementation and
a self-reported analysis for model integration onto a clinical workflow.

4 Dos and Don’ts When Organizing a Challenge
on Biophysical Modelling

Don’t Call It a ‘Challenge’ but Do Call It a ’Working Group’: Nobody
wants to be a loser and some researchers, including from companies, associate a
Challenge with a high risk of damaging their reputation rather than an opportu-
nity for dissemination. As the concept of a single winner do not help, the spirit of
the event should be towards a collaborative Working Group (e.g. similar to the
ECGI Consortium). In the case of the CRT-EPiggy19 event, after clarifying this
aspect, which was risen by several researchers, more participants were willing to
play with the data.

Don’t Initiate the Challenge Without Having All (Ground-Truth)
Data Curated Well in Advance and Do Be Flexible to Include More:
Preparing and curating the data for a biophysical modelling challenge can take
months and still not be fully complete, due to the large amount of multi-modal
raw and processed data available. Participants may ask for additional data that
might benefit everyone (e.g. the raw EGM signals to check possible LAT mistakes
in the CRT-EPiggy19 challenge) and the organizers must be flexible enough to
allow sub-studies not originally planned.

Don’t Associate the Challenge to (the Deadlines Of) a Conference
Workshop and Do Allow Enough Time for Participants: Even for
research groups with long-standing experience on CRT modelling, it is not obvi-
ous to find resources (e.g. time of people) to participate in an “unexpected”
project such as the CRT-EPiggy19 challenge, in particular if there are hard
deadlines due to the presentation of results in a conference. Obtaining satisfac-
tory simulation results from cardiac models on several datasets is more difficult
than just running multiple iterations of machine learning algorithms with differ-
ent hyper-parameters, for instance to set up the right boundary conditions for
every case.

Don’t Blindly Believe in Ground-Truth Data and Do Consider
Its Uncertainty: Raw and ground-truth data are intrinsically associated
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with acquisition and experiment inaccuracies as well as intra-observer bias and
labelling variability that might misjudge a given outcome of a cardiac simu-
lation. It can even happen that the model is better than the data in some
cases! Therefore, uncertainty needs to be considered at different levels, both
from observational and modelling points of view. For doing so, it is necessary to
have knowledge about data acquisition system principles and physiology to be
modelled, preventing the agnosticism to these aspects.

Don’t Bother About Tiny Differences in Accuracy Indices and Do Use
Multiple Evaluation Metrics, Including Related to Potential Clinical
Translation: It is absurd to rank challenge results based on a single accuracy
metric for biophysical modelling high-level tasks. As brilliantly shown by Maier-
Hain et al. [20], computational techniques will be ranked differently depending
on the metric of choice, thus it is more fair to use multiple indices to better
characterize the pros and cons of every algorithm according to different criteria.
If possible, it would be positive to consider indices related to potential clinical
translation or to the parameters used by clinicians to make clinical decisions.

Don’t Extrapolate Results Obtained on Experimental Models
to Human Data but Do Recognize Inter- and Intra-species Variabil-
ity and Differences with Real-World Clinical Data: The experimental
data used in the CRT-EPiggy19 challenge is practically impossible to obtain
in humans (e.g. at different longitudinal healthy, diseased and treated stages),
representing a unique dataset for the study of heart electromechanics abnor-
malities and the effect of different pacing therapy settings. In addition, it is an
ideal dataset for calibrating and tuning cardiac computational models. However,
organizers and participants need to be cautious on the conclusions drawn from
cardiac modelling results on the swine model, especially on (over-)promising
similar outcomes with human data. For instance, the fast conduction system
(e.g. Purkinje network) is different in pigs than in humans (i.e. more transmural
and endocardial, respectively), which makes the whole electrical and mechan-
ical interaction of the heart different in the two species. Moreover, even with
human data, similar caution is advisable from results obtained in the typically
well-curated and complete databases used in challenges, which usually are quite
different from noisy and incomplete real-world clinical data.

Don’t Underestimate the Amount of Resources Required to Orga-
nize and Participate in a Challenge and Do Acknowledge All Con-
tributors: The amount of time to organize and participate in a biophysical
modelling challenge can easily be underestimated; the work of several people is
needed for the acquisition of the data, the generation of ground-truth labels,
selection of the cases to be analyzed, pre-processing of the data, challenge dis-
semination (e.g. web preparation), participant hunting, and post-processing of
results, among multiple other tasks. It is important that all contributors are
appropriately acknowledged.
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5 Conclusions

Can the medical data scientists and machine learning communities learn some-
thing from biophysical modelling? And viceversa? The obvious answer to both
directions of the same question is affirmative. For high-level predictive tasks,
AI-based or biophysics-related models face similar issues (e.g. reproducibility,
labelling and curation of large databases, generalization, clinical translation,
etc.) that will benefit from joint solutions. On the one hand, data scientists can-
not be agnostic to data to have a real impact in relevant clinical decisions and
should be inspired by biophysical modelling that is intrinsically related to physi-
ology and understanding of the studied phenomena. Adding prior knowledge on
the targeted clinical application (e.g. through the training of ML algorithms on
virtual populations generated with biophysical models) to the powerful perfor-
mance of ML algorithms will improve its generalization and robustness, bringing
them closer to be used on real-world data. On the other hand, biophysical mod-
elling community should learn from the research, development and infrastructure
decisions that have made the explosion of data science possible, including Open
Science frameworks such as Tensorflow, standard release of developed codes as
Open Source and a successful communication with clinicians, lot of them already
adopting ML tools in a way that biophysical modellers have rarely achieved.
Finally, the joint development of common standards and ontologies, publishing
protocols (e.g. involving journals asking for code/data requirements) and edu-
cation of early researchers on the overall benefits of reproducible research and
Open Science will be beneficial for both scientific communities.
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Abstract. Optimization of lead placement and interventricular delay
settings in patients under cardiac resynchronization therapy is a com-
plex task that might benefit from prior information based on models.
Biophysical models can be used to predict the sequence of electrical heart
activation in a patient given a set of parameters which should be per-
sonalized to the patient. In this paper, we use electroanatomical maps to
personalize the endocardial activation of the right ventricle, and the dif-
ferent tissue conductivities in a pig model with left bundle branch block,
to reproduce personalized biventricular activations. Following, we tested
the personalized heart model by virtually simulating cardiac resynchro-
nization therapy.

Keywords: Cardiac resynchronization therapy · Tissue properties
personalization · Biophysical modeling

1 Introduction

Patients with a complete left bundle branch block (LBBB), show a significant
delay between activation of the interventricular septum and activation of the left
ventricular (LV) free wall. Therefore, decreasing the delay by pacing may restore
mechanical contraction. Cardiac Resynchronization Therapy (CRT) is a success-
ful electrical treatment for patients with ventricular dyssynchrony. During CRT,
two synchronized electrical stimuli are usually delivered to reduce ventricular
dyssynchrony. One stimulation lead is usually placed on the apex of the right
ventricle (RV), and the other one on the epicardium of the LV lateral wall. Large
randomized clinical trials [2,8] have led to the widespread adoption of CRT in
patients with a prolonged QRS duration ≥120 ms. A significant intraventricular
conduction delay reflected by a prolonged QRS duration (≥150 ms) with LBBB
morphology remained the main indication to CRT. Nevertheless, a significant
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proportion of implanted patients fails to respond sufficiently or in a predictable
manner. There are a number of critical factors that have to be considered for
CRT to be effective.

Since ECG criteria may be imperfect, there is increasing interest in advanced
multimodality imaging to improve patients selection, guide LV catheter delivery
and identify patients at risk for poor outcomes and serious ventricular arrhyth-
mias [4].

Computational models for biophysical simulation are valuable tools for bet-
ter understanding pacing-based therapies such as CRT [7], providing additional
information to the clinician on its optimal parameters for a given patient [3,10].
In this study, we show a pipeline to personalize a computational model of a
pig heart, using electro-anatomical maps (EAMs) acquired in LBBB, which is
subsequently used to predict the sequence of activation under CRT.

2 Materials and Methods

2.1 Construction of Anatomical Models

For this study, we used two datasets from the CRT-EPiggy19 Challenge publicly
available. The anatomical models used were segmented in a previous work by
Soto-Iglesias et al. [9], and were afterwards improved by including a more realistic
fiber orientation description [5]. The first dataset corresponded to a pig heart
labeled as Neus, a non-infarcted case with a LBBB activation pattern, which
was considered a CRT non-responder. The second model, labeled as Kira, was
an infarcted case with a large scar located in the antero-septal and septo-apical
areas, and a clear LBBB pattern and electrical dyssynchrony, who was considered
a CRT responder.

The biophysical finite element models provided for each case were enhanced
to obtain the required properties for simulation. First, models were remeshed
with hexahedra to meet the requirements of our biophysical solver (ELVIRA)
and to reduce the degrees of freedom. Second, all the properties of the original
model were transfer to the new volumetric model and extra information related
to endocardial, mid-myocardial and endocardial regions were added. For each
case, we calculated the conduction velocities from the mesh at each segment
of the AHA, for both the endocardium and the epicardium (we divided each
AHA segment in two subregions). We observed high conduction velocities in the
endocardium and the LV lateral wall at basal areas. We assumed that the effect
was due to the Purkinje system, which was functional and allowed retrograde
activation. Figure 1 shows the clear effect of the fast endocardial layer in the
EAM of the case Neus in LBBB, where the isochrones are much wider (faster
conduction velocity) in the LV endocardium and the LV epicardium. For instance
in the models Kira and Neus, the average conduction velocities measured in
all the endocardial AHA segments were 1.29 ± 0.69 m/s and 1.52 ± 0.97 m/s,
respectively. Therefore, we added a fast endocardial conduction layer that was
one element thick, to the RV and LV. We are aware that pig hearts present a
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Fig. 1. Analysis of electrical propagation in ground-truth data. LBBB cases show a
sequence of activation that can be summarized in four steps: (1) activation from RV
endocardium tu RB epicardium and septal wall, (2) transmural propagation from RV
to LV, (3) propagation from LV apex to base, with fast activation of the endocardium
and slow in the epicardium, (4) transmural propagation from fast endocardium to
epicardium in the LV lateral wall.

transmural Purkinje system, but since we do not have additional data, we opted
only for the fast endocardial layer.

2.2 Biophysical Simulation

Detailed multiscale simulations were carried out for each ventricular model. Cel-
lular electrophysiology was simulated by the ten Tusscher model considering
transmural cellular heterogeneity, and electrical propagation by monodomain
model.

2.3 Personalization of LBBB Activation Sequence

In order to obtain a personalized activation sequence for the LBBB patterns
we developed the following methodology, summarized in Fig. 2. First, from the
EAM, the LAT maps for the RV epicardium and the septal region of the LV endo-
cardium are selected. In LBBB, those regions are expected to be activated by
the RV endocardial sequence, since they are the closest ones. From the selected
regions an inverse propagation to the RV endocardium is performed to obtain the
original pattern of activation and the activation times in the RV endocardium.
Once the RV stimulation sequence is obtained, it is used to activate the RV,
obtaining the expected LBBB pattern. Following, the simulated LAT map is
compared to the EAM to adjust the longitudinal and traversal conductivities.
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Since the model includes a fast endocardial layer that functionally mimic the
Purkinje system, those conductivities have to be set. Myocardial conductivities
are obtained by looking at the epicardium isochrones, while Purkinje ones are
derived from the endocardium. In models including scar, the elements were prop-
erly labeled, and the conductivity was set as 25% of the normal myocardium.

Fig. 2. Pipeline for personalization of the model parameters and simulation of CRT.
EPI=Epicardium; ENDO=Endocardium

3 Results

3.1 LBBB Activation Sequences

For each of the models we followed the methodology developed to obtain the acti-
vation sequence of the RV endocardium. Conductivities were optimized in all the
models iteratively by performing simulations and comparing the differences with
the EAM data. Final conduction velocities are summarized in Table 1, together
with mean square errors and total activation times. Note that we aim to reduce
the average difference between LAT maps and not the final total activation time
(TAT).

Figure 3 shows the results for the non-ischemic case Neus. As can be observed
for the model Neus, the activation sequence is very similar at both the endo-
cardium and the epicardium. Since the EAMs do not include the endocardium
of the RV, the colormaps have been adjusted to be comparable, using the same
scale, by shifting to the initial times (depolarization of the RV epicardium). The
effect of the fast activated layer at the endocardium was key to obtain similar
maps at the LV lateral wall. The TATs match between EAM and simulation,
which is 71 ms. In the simulations, the isochrones are smoother, and do not repro-
duce the changes in the depolarization wavefront curvature observed in EAMs
(Fig. 3(a) and (c)), which are probably due to the sampling and interpolation of
the data. Even with the fast activation layer, the endocardium in the EAM is
slightly faster (wider isochrones), than the simulation (Fig. 3(b) and (d)).

For the infarcted case, the model Kira, we simulated the activation sequences
by personalizing the model as in Neus model. The real shape of the scar was not
provided, but only which AHA regions were affected, and therefore, we simply
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reduced 25% the conduction velocities on those regions. As can be observed in
Fig. 4(a), the epicardial RV activation was well reproduced, introducing the fast
endocardial layer in the RV. However, we observed in the EAM a very slow
conduction velocity (CV) in some regions of the LV endocardium (Fig. 4(c) top),
compared to the LV epicardium (Fig. 4(c) down). That was unexpected since the
scar in Kira model extends to the epicardium, but not the endocardium, and
therefore we expected exactly the opposite result, which matches simulations
(results not shown). Therefore, we updated the model to extend the scar to
the endocardium. With the updated conductivities, we simulated properly the
isochrones in LBBB in Kira model, with exception of the epicardium of the
anterior wall and the apical region of the lateral wall Fig. 4(b) and (d). Those
regions showed an abnormal fast CV (2,06 2,29 m/s) compared to the rest of the
model (Fig. 4(b) top vs down), which was very remarkable considering that there
is a large epicardial scar right under the anterior wall. The fast epicardial CV
in the anterior versus posterior wall was present in both Kira and Neus models,
although in the last was less marked.

Fig. 3. Personalized LBBB sequence of activation for model Neus. (a) and (c) are ante-
rior an posterior views of the model showing local activation times in the epicardium of
the model (left) and the ground-truth data (right). (b) and (d) show endocardial and
epicardial views of the LV lateral wall, respectively, where left subfigures correspond
to simulations and right subfigures to ground-truth.

3.2 CRT Activation Sequences

Once the conductivities were estimated for the LBBB sequences, they were used
for the CRT simulations. A priori, the fast endocardial layer was kept as it was
functional for the LBBB sequences, and was expected to activate as well from
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Fig. 4. Personalized LBBB sequence of activation for model Kira. (a) and (c) are ante-
rior an posterior views of the model showing local activation times in the epicardium of
the model (left) and the ground-truth data (right). (b) and (d) show endocardial and
epicardial views of the LV lateral wall, respectively, where left subfigures correspond
to simulations and right subfigures to ground-truth.

the CRT leads, or remote depolarization wavefronts travelling across the ven-
tricles. Note that the fast endocardial layer can be personalized independently
for the RV and LV. In the model Neus (see Fig. 5) the CRT leads were placed
in the earliest activation sites, which were the RV endocardium (mirroring the
earliest epicardial activation) and the apex of the LV epicardium (see Fig. 5(b)).
The activation of the RV epicardium in the EAM was finished in less than 30 ms,
which could be only explained if a fast RV endocardial layer spreads quickly the
initial CRT lead impulse over the endocardium. After 10 ms of the RV epicardial
breackthrough the wavefront reached the LV endocardium at the lower-septum
(see Fig. 5(e)), coinciding with the activation of the LV lead, which was prob-
ably set 20 ms after the RV lead. On the LV endocardium the depolarization
wavefront advanced slower than in the LBBB scenario, showing a much slower
CV, or a poor access to the Purkinje system (see Fig. 5(d)). The simulation,
reproduced well the activation pattern of the RV epicardium, with some differ-
ences at the basal region, and also the anterior and posterior walls. At the LV
endocardium, in contrast to the EAM, the model showed much faster conduc-
tion velocities than the EAMs, and an activation sequence from endocardium to
epicardium in the LV lateral wall due to the fast layer (see Fig. 5(e)). That was
the largest difference, since in the EAM the activation: (i) follow a epicardium to
endocardium activation sequence, with a large delay transmurally; and (ii) early
activated regions in the base of the lateral wall, which coincided with the latest
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Table 1. Estimation of CV parameters for computational models. CV=Conduction
velocity (longitudinal/transmural); SIM=simulation;

Model Tissue (m/s) PKN (m/s) TAT (ms)

Name Seq CVL CVT CVL CVT SIM EAM

Neus LBBB 0.5 0.25 2.6 0.54 71 71

Kira LBBB 1.78 0.58 1.4 1.3 68 59.5

Neus CRT 0.9 0.5 1.0 0.9 65 58

Kira CRT 1.78 0.58 1.4 1.3 49 40

Fig. 5. Personalized simulations for prediction of CRT sequence of activation in Neus
Model. (a) and (d) show anterior and posterior views of the EAM, and endocardial
and epicardial views of the LV lateral wall, respectively. (b) and (e) show the simu-
lations results using the personalized values obtained from the LBBB model. (c) and
(f) show the simulations using personalized values obtained from the data post CRT
implantation.

activated region in LBBB. Therefore, the model could not reproduce properly
the activation sequence in the LV, which is very difficult to explain unless the
LV lead would have been placed in the latest activated region in LBBB, that
is the basal region of the LV lateral wall. Therefore, we updated the CRT lead
locations to have a lead in the RV endocardium, and a lead in the LV epicardium
lateral wall. In addition, we adjusted the fast conduction layer of the LV to an
intermediate CV between Purkinje and myocardium. The results improved sig-
nificantly (see Fig. 5(c) and (f)) and the sequence of activation matched properly
between simulations and EAMs, i.e., there was a epicardial to endocardial acti-
vation sequence in the LV, and a delayed activation of the basal region of the
LV endocardium.

In the case of Kira model, using the same set of conductivities obtained from
the LBBB model did not obtain good agreement between EAM and simulations.
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Fig. 6. Personalized simulations for prediction of CRT sequence of activation in Kira
Model. (a) and (c) show anterior and posterior views of the EAM, and endocardial and
epicardial views of the LV lateral wall, respectively. (b) and (d) show the simulations
using personalized values obtained from the data post CRT implantation.

Kira model activates completely in 35 ms, which can only be accomplished if
the conduction velocities all over the model are really high. If one considers a
transmural Purkinje system, with a very fast access from the lead, such CVs
could have been obtained. Average conduction velocities all over the model were
2.22±1.17 m/s. Figure 6 shows the isochrones of Kira model obtained from EAM
and from simulations. After recalculating all the conductivities, not based on
LBBB but on CRT EAM, we could obtain similar results except in the anterior
wall that showed a very large initial activated area.

4 Discussion and Conclusions

The accurate reproduction of activation patterns from real patient data using
computational models is a complex task due to the large number of unknowns,
variability and heterogeneity in the heart. Comparing simulations with EAMs
introduces additional errors since the mapping is done sequentially and the acti-
vation of the heart may vary from beat to beat. In addition, it is very tricky to
annotate the local activation times and hence to have a meaningful and faithful
activation sequence of the patient that is spatio-temporally coherent. There-
fore, differences are expected a priori, sometimes large, between simulations and
EAMs.

An important feature added to our pipeline to obtain more accurate results
was the fast conduction endocardial layer, which was independent for LV and
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RV. Since the LBBB was artificially induced by blocking the LBB at the His
Bundle level, the remaining structure of the Purkinje system was still functional,
and could be activated retrogradely. This hypothesis was clearly confirmed in
cases such as Neus, where the wavefront coming from the RV speeds up in the
LV endocardium, advancing the LV epicardial wavefront and producing much
wider isochrones. In addition, once the effect of the fast endocardium reaches
the epicardium transmurally, it can be noticed a fast apex to base activation in
the LV lateral wall, see Fig. 1. All these observations were properly reproduced
once the fast conduction layer was included in the LBBB computational model.
In the original paper by Soto-Iglesias et al. [9], authors reported that in the Neus
model the fast conduction by Purkinje was not active in LBBB or under CRT,
which does not agree with our observations, where this effect in LBBB is very
clear (see Fig. 1), and was validated by the model who reproduced much more
accurately the EAMs once the layer was included.

Under CRT in Neus model, the late activated basal regions of the LV ini-
tially differed from that of the simulations. Analysing the EAMs under CRT, it
could be observed that the LATs at the LV basal region show large gradients
transmurally, i.e., the epicardium was activated around 40 ms earlier than the
corresponding endocardium. That effect was not observed during LBBB. We
performed simulations with and without a fast endocardial conduction layer on
the LV, and we concluded that there was a fast endocardial layer in the LV,
but it was slower than in the case of LBBB, probably due to a different access
of the Purkinje system. The activation of the LV epicardium under CRT was
surprisingly high, almost as fast as the fast endocardial layer, which could be
only explained by the presence of the Purkinje system in the epicardium of pig
hearts, where the system if fully transmural [6]. The effect was also observed
in Kira model, and remarkably in both cases the anterior wall showed much
higher CVs than the posterior. We hypothesized that the anterior branch of the
Purkinje system could have been functional whereas the posterior branch might
be damaged. Auricchio et al. [1], found using concact and non-contact map-
ping that around 32% of LBBB patients, had ≥20 ms between the beginning
of activation in the RV endocardium versus the LV endocardium, which was
considered as incomplete LBBB. Complete LBBB patients show interventricular
delays >40 ms. We consider that this could also be a case of incomplete LBBB,
since the delay between the RV breackthroughs and the LV breacktrough was
around 20 ms. In addition, as described in [6] for pig hearts the density of PMJs
in the epicardium is larger and particularly in the anterior region compared to
the posterior.

In conclusion, we have developed a pipeline to personalize globally, com-
putational models of the heart from EAMs, to predict the electrical activation
sequence of a given patient under CRT. Results show that a much detailed per-
sonalization of CVs is required to reproduce properly the activation sequence.
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Abstract. Congestive heart failure (CHF) is one of the leading causes
of death worldwide, despite the optimal treatment. Cardiac resynchro-
nization therapy (CRT) is one of the established methods for treating
severe CHF with conduction disorders, in particular, complete left bundle
branch block (LBBB). However, to the date, up to 30% of patients do not
respond to CRT. This study is focused on the developing model-based
approaches allowing one to predict consequences of ventricular pacing
after installing a CRT device based on computational cardiac models.

In this work, we used experimental data from the STACOM 2019
“CRT-EPiggy” Challenge containing a training dataset of EAM data
recorded in ventricles of 4 pig hearts. To simulate local activation time
(LAT) in the model we used the Eikonal equation based model, which
parameters were identified based on the experimental data. Solving an
optimisation problem over the conductivity parameters of this model, we
were able to achieve a good quality of LAT simulations before and after
bi-ventricular pacing with a mean error of about 3 ms.

We found essential changes in the local conduction velocity (CV) in
the ventricles at bi-ventricular pacing after CRT both in experimental
data and simulations. To predict these changes and post-operational LAT
from the pre-operational data, we used a population based approach to
simulate effects of conductivity modulation due to pacing. This approach
allowed us to predict an activation pattern at ventricular pacing based
on the optimised model of LAT before pacing with an average error of
7 ms. Despite the promising overall results of our pilot study, the pres-
ence of rather big local errors in the model predictions requires further
algorithm improvement.

Keywords: Computational models · Cardiac resynchronization
therapy · Cardiac electrophysiology · Patient-specific simulations

1 Introduction

Heart failure is the leading cause of morbidity and mortality worldwide. In
patients with chronic heart failure (CHR), the contractile dyssynchrony is an
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often adverse factor, which reduces the systolic function of the heart. Cardiac
resynchronization therapy (CRT) is the recommended treatment for advanced
CHF patients with conduction system disorders, particularly complete left bun-
dle branch block (LBBB) [1]. Implanted CRT devise delivers bi-ventricular (bi-V)
stimulation to re-coordinate the contraction of the heart by reducing the ven-
tricular dyssynchrony. However, in more than 30% of patients the procedure has
no clinical effect and does not induce reverse remodeling response in the left
ventricle (LV) [2].

The personalization of computational models in cardiology is a key step
toward making models useful in clinical practice and cardiac surgery. A com-
putational model, once properly calibrated, has the potential to forecast cardiac
function and disease, and can help in planning treatments and therapies. In this
paper, the main task of optimization was to personalize the activation pattern
of LV excitation according to electro-anatomical mapping (EAM) data.

This work is our contribution to a big challenge aimed to develop an approach
allowing one to predict a change in cardiac dyssynchrony after installing a CRT
device based on personalized mathematical models able to reproduce individual
activation pattern of cardiac excitation according to electro-anatomical mapping
(EAM) data.

2 Methods

2.1 Experimental Data

In this work, we used experimental data recorded in pig hearts collected for the
STACOM 2019 “CRT-EPiggy” Challenge [3]. The data includes a training data
set on cardiac EAM recorded in-vivo on the epicardial (EPI) and endocardial
(ENDO) surfaces of the LV and EPI surface of the right ventricle (RV) in 2
cases of the pig heart with myocardial infarction and 2 cases of no infarction.
Each training data set contains recordings performed with LBBB on the sinus
rhythm before operation and at bi-ventricular pacing after installing the CRT
device. A decrease in ventricular dyssynchrony is estimated as a decrease in the
total activation time (TAT) in the ventricles due to ventricular pacing. Note,
the only in-operation data recorded instantaneously after the device installation
were available for CRT results. No time delayed data suggesting myocardial
remodeling due to ventricular pacing were provided for the Challenge. A testing
data set contains 7 cases of LBBB data only. For each case, the anatomical
geometry of the LV and RV was provided.

2.2 Electrophysiology Model

In the most of the cardiac modeling applications, simulations of the electrical
activity in the heart at the organ level are based on a system of partial differential
equations (PDE) describing electrical excitation propagation in the continuum
tissue medium, where local electrical activity in cardiomyocytes is described by
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ordinary differential equations (ODE). Solution of such PDE/ODEs is computa-
tionally very demanding, due to the spatial scale of the wave front propagation
is much smaller than the size of the ventricles and the temporal characteristics
of different phases of the action potential generation in the cells require rather
small time and space steps for the correct PDE/ODE numerical solution in the
coupled electrophysiology problem. Therefore in this study, we used the Eikonal
equation approach [4,5], allowing one to find the wave-front motion during the
excitation process much faster than the calculation of PDE.

In the Eikonal model, the arrival times of the wave front ta in the myocardial
area Ω are described based on the spatially inhomogeneous orthotropic velocity
function, encoded as D(x), and the certain initial activation area Γ at time t0.
The Eikonal equation has the form:

√
∇taD∇ta = 1 in Ω

ta = t0 in Γ
(1)

where ta is a positive function describing the wavefront arrival time at location
x and D symmetric positive definite 3 × 3 tensor which is determined by the
myocardial fiber direction field and myocardial tissue conductivity along:across
set here as 9:1.

The problem was solved on the spatial mesh built for a certain geometry
model of the RV and LV with myocardial fiber direction defined from rule-based
approach [6]. For calculations, we used the finite element method; the model was
implemented using the FENICS library on Python.

2.3 Data Preparation

For each heart tested, the initial 3D finite-element mesh for two ventricles con-
tained around 300k nodes and 1.5M cells. Using operations of decimation and
remeshing we constructed new low-poly mesh of around 4k points and 12k cells
which allowed us to perform much faster computing.

In the next step, we transferred the initial data on the electrode location to
the low-poly mesh. The radial basis function (RBF) were used as in [7]. Based on
the EAM data available for the EPI and ENDO surfaces of the LV, we performed
approximation by RBF of the local activation time (LAT) in the all points in
two ventricles.

2.4 Personalization of Cardiac Models

Developing a feasible method for personalization of a mathematical model, we
attempted to use several approaches.

First, early activated points in the LV were found in the input EAM data
set and set as an activation region in the Eikonal model. After that, we tried
to solve an optimization problem to minimize the difference between the model
solution and the interpolated input data over the components of the tensor D



Prediction of CRT Response on Personalized Computer Models 355

at each point in the computational domain. The distance between the simulated
and input data was calculated as the following function:

J =

√√√
√

n∑

i=1

(ti − τi)2, (2)

where ti and τi denote the computed model output and interpolated LAT in i
point, respectively.

The solving of the optimization problem over the entire tensor D with all
varied parameters is computationally demanding and hardly being fulfilled even
for the optimized mesh of 3000 to 4000 nodes we rebuilt for each model.

To decrease the complexity of the task, we tested two different approaches.
In the first approach, we used an assumption of a discreet distribution of the
regional conductivity in the ventricles with constant conductivity throughout
each of chosen regions. Here, we split the grid-points into 50 groups based on their
distance from each other using the Voronoi diagram. Then we solved the above
minimization problem over the 50 regional conductivity parameters. However,
using this splitting algorithm we were not able to achieve rather low error level
(see Result section) and model solutions demonstrated visually inappropriate
activation maps as compared to the experimental data.

In the second approach, we used an assumption of a continuous distribu-
tion of the regional conductivity within the entire ventricular volume gradually
changing between a number of reference grid-points where the conductivity val-
ues are set. Later on we refer to this approach as to a surrogate model of regional
conductivity distribution in the ventricles. Here, by computing the gradients of
the interpolated LAT on the grid derived from experimental data, we computed
a conduction velocity (CV) at each grid-point and found its local minimum and
maximum in the domain for each LV model tested. In our training dataset, the
CV maps have 30–40 extreme points in every case. Then, we used conductivity
values at such grid-points of local extremes as the variables for the optimization
problem; while the conductivity parameters in the rest of the grid-points were
interpolated using RBF method. Using this surrogate model of regional con-
ductivity, we found appropriate model solutions of the minimization problem as
described in the Section Results.

The optimization problem was solved for both the pre- and post-operation
EAM data for each heart of the training set. This allows us to compare conduc-
tivity distribution in the LV predicted by the model before and after CRT. The
predicted conductivity values were shown to be significantly different in some
LV regions suggesting that the electrical activity in the paced heart after instal-
lation of the CRT devise is not determined by the activation sequence only, but
depends on some other unknown factors.

To solve the optimization problem, we tried a large number of methods,
including genetic algorithms, particle swarm optimization, L-BFGS, SLSQP,
Nelder-Mead and others. The genetic algorithm showed the best results, how-
ever, calculations for one case took about 2 days. Slightly worse results were
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obtained using the L-BFGS method, where calculations for one case took only
about 2 h, so this method was used further for this work.

2.5 Prediction of CRT

At first, to check if the difference in the conductivity we found for the post- and
pre-operation models is significant for the electrical activity of the paced LV, we
used the conductivity values was computed for a model of the LBBB case to run
a CRT simulation with activation points located at the position of electrodes in
the RV and LV. However, we found completely mismatched activation patterns
and total activation time (TAT) between the simulations and experimental data.

To find out why the model with pre-operational conductivity map failed to
simulate CRT consequences, we carefully compared the CV patterns derived
from the interpolated experimental EAM data recorded in the LV before and
after implantation of the CRT device. We found some LV regions with signifi-
cantly different values of the CV before and right after ventricular pacing. More-
over, these regions were unpredictably different among the heart cases we tested.
The limited available experimental data did not allow us to define reasonable
rules to determine specific location of the regions with post-operative conduction
change and direction of the change in the LV.

Based on the assumption on possible instantaneous change in the conduc-
tivity in the LV after CRT, we proposed the following approach. Conductivity
values for the model at bi-ventricular pacing (simulating consequences of CRT
installation) were defined as follows:

CCRT = W · CLBBB, (3)

where CXX - conductivity values before and after CRT in a certain LV region,
and W - unknown ratio of the conductivity.

To find the W factor for each of the heart cases from the training dataset, we
divided the LV into the 17 anatomical segments according to the LV model used
in AHA recommendations [8] and computed the ratio W between the conductiv-
ity predicted for the models after and before pacing in each of the LV segments,
based on the solution of optimization problem. Thus, for an individual LV case
from the training dataset, the distribution of the conductivity ratio in the LV was
characterised by 17-element vector of the mean and standard deviation of the
parameter W in the 17 LV segments. Using such approach for the entire training
dataset, we computed an average vector of W values for the conductivity ratio
with corresponding standard deviations σ for the 17 LV segments among the
training heart cases. These factors derived from the training dataset were then
used as a reference to generate local conductivity parameters in further CRT
simulations. Based on the W ± σ values, 1000 Monte-Carlo random samples of
the W coefficients were generated and tested in a series of model simulations of
ventricular pacing for each of the heart cases from training dataset. The sam-
pled W values were used in the Eq. 3 to assign conductivity in the paced models
for the centres of the 17 LV segments, while the conductivity in the remaining
grid-points was interpolated via RBF.
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In this way, for each case of the heart models we computed 1000 different
activation patterns in the paced model based on the conductivity values pre-
dicted from the LBBB data (as a solution of optimization problem (2) for a
particular LV model) and coefficients of the conductivity modulation based on
the expected data from the training dataset. Then the average values of LAT
for the case model were found and used as predictions of the heart response to
pacing.

3 Results

Fig. 1. Interpolation of the experimental electro-anatomical map data (shown as small
spheres) on the ventricular mesh. Local activation times (LAT) and conduction velocity
(CV) before (LBBB) and after (CRT) bi-ventricular pacing are compared for Lali 19
heart case.

3.1 LAT Interpolation Based on the EAM Data

The first step of the pre-processing of the input experimental data is interpolation
of the EAM data recorded in a number of discreet points on the ENDO and EPI
surfaces the LV and the EPI surface of the RV in each of the cases included in the
training dataset. The results of RBF interpolation of the LAT map computed
throughout the entire geometry mesh of the two ventricles are shown in Fig. 1
for one of the heart cases on the sinus rhythm before operation (labeled in the
Figs as LBBB) and at pacing after CRT installation (labeled as CRT).

Owing to the LAT interpolation withing the entire volume of the ventricles,
we were able to evaluate local conduction velocity (CV) in every grid-point of
the ventricular mesh and to compare the velocity before and after operation
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(Fig. 1, low panels). While in most of the ventricular volume the difference was
not big, some regions demonstrated visible difference, which was not obviously
associated with anatomical features or localization of the infarct scar or pacing
electrodes in the ventricles. For example, we observed a significant increase in
the CV in the apex of the right ventricle after CRT pacing for one heart case
with infarction and one case with no infarction. In the two other cases analysed,
the CV difference pattern was totally different, and other regions of high CV
difference were revealed. Classification of such observations is also a subject for
further analysis with need of more data available.

3.2 Personalization of the Ventricular Activation Model

Fig. 2. Example of the model personification. Local activation times (LATs) are built
on the input data (on the left) and predicted as a solution of the optimization problem
with the surrogate model of regional conductivity (on the right) for the LBBB and
CRT cases of Kira heart, respectively.

The interpolated LAT data based on the experimental EAM data were then
used as an input data for the model parameter identification (model personaliza-
tion, optimisation problem). Two approaches for choosing variable parameters of
conductivity for the optimization problem (2) were tested (see Sect. 2)). Table 1
shows the mean error computed as the average difference between the predicted
and input LAT values in all grid-points of the ventricular domain using these
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two approaches. Using the discreet conductivity approach based on the split of
the grid into regions of the constant conductivity, the mean error is ranged from
7 to 15% for the model cases from the training dataset, which we considered as
insufficient for reproducing the activation pattern.

Table 1. Mean LAT error (ME) of the optimization problem solution for algorithms
based on the region splitting approach and on the surrogate model of the conductivity
distribution

Pig name Conductivity split Conductivity surrogate model

LBBB ME, ms CRT ME, ms LBBB ME, ms CRT ME, ms

Lali 11.05± 4.65 5.95± 2.12 3.55± 1.45 3.6± 1.6

Kira 5.1± 2.3 3.2± 1.1 4.1± 1.38 2.7± 0.8

Aksak 7.6± 3.47 3.5± 1.46 3.2± 1.49 2.75 ± 0.74

Neus 5.7± 2.21 6.36± 1.74 2.8± 0.96 4.4± 2.58

The algorithm based on the surrogate model of regional conductivity showed
better results than splitting approach as shown in Table 1. Here, the mean error
is 3–4.5%, but still far from perfect result of model personalization. Figure 2
shows an example of LAT simulated at the model parameters found as the
solution of optimization problem (2) with the surrogate model of conductivity
distribution. While there is some mismatch in the activation patterns between
predicted and input data, we can consider this result as a good starting point
for future improvement of the optimization algorithms.

3.3 Prediction of CRT

Figure 3 demonstrates an example of inappropriate mismatch between input LAT
data at bi-ventricular pacing and model predictions computed with the optimal
parameters of regional conductivity found for the LBBB model simulating LAT
before pacing. This negative result demonstrates impossibility of the model to
reproduce experimental LAT data in paced ventricles without modification of
the conductivity parameters.

We evaluated the ratio between the conductivity parameters after and before
pacing found as the solutions of the optimization problem for the LBBB and
CRT models based on the experimental data from the training dataset. Figure 4
shows the distributions of the conductivity parameters in the training LBBB and
CRT models together with their ratio computed in 17 AHA LV segments. The
distributions of conductivity in the LBBB and CRT models have statistically
different means (despite the regions 3 and 6 with label *), demonstrating an
increase in the conductivity parameters in most of the LV segments in the CRT
model at ventricular pacing.

The mean values of the segmental conductivity ratio were used to generate
random samples of the multipliers in the formula (3) used to modify the LBBB
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conductivity in the paced ventricular model (see Methods for details). The final
LAT prediction was computed as the average of LAT simulations generated in the
virtual trial on 1000 model samples with randomly modified LBBB parameters
(see Fig. 3, panel C for an example).

Fig. 3. Results of model prediction of local activation times (LAT) at bi-ventricular
pacing. LAT maps are built using the interpolated experimental data (panel A), sim-
ulations with conductivity parameters from the LBBB model optimization (panel B),
simulation with modified conductivity parameters for the Aksak data from the training
dataset (panel C). Error map of the LAT prediction for the Aksak data is shown on the
panel D. Distributions of the LAT prediction errors in every model from the training
dataset are shown on the panel E.

While the mean error in the entire ventricular domain is not as big, the
regional error in the model prediction can be essential. For Aksak heart example
shown in Fig. 3, the large difference between the model prediction and experi-
mental CRT data is seen for the anterior wall, which can be explained as the
underestimated modification of the conductivity in this region due to CRT pac-
ing. Figure 3, panel E shows the LAT error distribution observed in the ventric-
ular grid-points for each case from the training set. In the 3 of 4 heart cases,
mean error is about 7–8 ms, but in some regional values the errors are bigger
than 20 ms. For Neus heart case, the prediction cannot be qualified as successful
as the average error is of 22.6 ms. This fail in LAT prediction in paced ventricles
can be explained by the presence of a large region of infarct scar which structural
details were not accounted in the presented preliminary data.
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Fig. 4. Boxplots for the distributions of the conductivity parameters (mS/cm) in each
of the 17 anatomical LV segments (according to the scheme on the right bottom panel)
of 4 training LBBB and CRT LV models optimized on the experimental data (left
panels) and the ratio (in the Log10 scale) between the parameters (right panel log
scale).

4 Discussion

4.1 Interpolation of the Experimental EAM Data

In this study, we used RBF interpolation to compute LAT values in the entire
ventricular walls from limited data experimentally recorded in discreet points
on the ENDO/EPI surfaces of the LV and the EPI surface of the RV. Though
the approach cannot overcome a lot of uncertainty related to the experimental
data, we believe it helps to limit model simulations with the conductivity found
as a solution of the optimization problem around the interpolated data and to
avoid unphysiological values of the conductivity parameters in the ventricles.

Later on, we are going to compare results we obtained with using RBF inter-
polation with Gaussian Markov Random Fields approach [9] and other effective
methods decreasing uncertainty. It is clear that evaluation of the quality of either
approach needs much more input data available.

4.2 Model Personalization

The approach we suggested for the model fitting to the personal experimental
data is based on the solving the optimisation problem with a number of variable
conductivity parameters. Criteria for the choice of the variable parameters can
be more or less grounded. Here, we tried two possibilities based on either the
regional splitting of the conductivity or accounting for the peaks in the regional
conduction velocity assessed from the input data.
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The second approach we proposed showed much better results of model per-
sonification (see Table 1, and Fig. 2). However, there is still room for improve-
ment. First, we did not test different metrics for the distance between the input
data and predicted model output. This might help to produce better predic-
tions. Another point of possible improvements is the choice of the amount of
variable parameters for the optimization problem. Here, we used about 30 param-
eters, but the amount should be further optimised. Additionally, we are going
to improve the computational costs of model personalization with using a sur-
rogate model of cardiac anatomy with small amount of parameters defined from
individual ventricular geometry. Parametrization of the heart geometry is shown
to be a valuable approach in combination with computational models of cardiac
function. Once created, the model allows one much faster computations. Simi-
lar approaches were used to test drugs [10] and to search for parameters of the
bio-mechanical model [11].

4.3 Model Prediction

The global goal of the “CRT-EPiggy” Challenge we took part is predicting the
outcome of CRT. As we revealed in this study, the main problem is the change
in the local conduction velocity suggesting a modulation of the effective conduc-
tivity in the myocardial tissue right after CRT devise installation (see Fig. 4).
One of the hypothesis on such conductivity change is the retrograde activation
of Purkinje system [12,13] but the underlying mechanism of these changes still
unknown.

Here, we used a population based approach to simulate effects of conductivity
modulation due to pacing. We computed a large number of models with modified
LBBB conductivity parameters from the range of possible changes in the con-
ductivity shown in the optimized training models under ventricular pacing (see
Fig. 4). The average LAT model output was then used to predict CRT. It showed
much less error than in the model predictions based on the parameters found for
the LBBB model before pacing (see Fig. 3). The results we achieved show rather
good mean quality of the LAT prediction in the paced ventricles. However, the
presence of big local errors requires further algorithm improvement.

5 Conclusion

In this paper we demonstrated promising preliminary data of using compu-
tational models to predict CRT response based on the pre-operation electro-
physiological data. The use of proposed surrogate models to solve the optimisa-
tion problem for the LBBB and CRT training dataset and the population based
approach allowed us to achieve rather good quality of model personification and
prediction of the CRT response to ventricular pacing. The global problem of
the challenge is still far away from the final decision and still requires further
collaborative efforts in this way.
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Abstract. In this manuscript, we personalise an Eikonal model of car-
diac wave front propagation using data acquired during an invasive elec-
trophysiological study. To this end, we use a genetic algorithm to deter-
mine the parameters that provide the best fit between simulated and
recorded activation maps during sinus rhythm. We propose a way to
parameterise the Eikonal simulations that take into account the Purk-
inje network and the septomarginal trabecula influences while keeping
the computational cost low. We then re-use these parameters to predict
the cardiac resynchronisation therapy electrophysiological response by
adapting the simulation initialisation to the pacing locations. We exper-
iment different divisions of the myocardium on which the propagation
velocities have to be optimised. We conclude that separating both ventri-
cles and both endocardia seems to provide a reasonable personalisation
framework in terms of accuracy and predictive power.

Keywords: Electrophysiology · Computer model · Personalisation ·
Cardiac resynchronisation therapy

1 Introduction

For our participation in the STACOM piggyCRT challenge, we decided to use
the Eikonal model of cardiac electrophysiology (EP). Using the fast marching
method, simulations using this model are very fast to solve, which makes them
both particularly suited to a clinical workflow [1] and easy to personalise. More-
over, as we are only interested in local activation times, the Eikonal model is
relevant.

We determined the optimal parameters for this model, i.e., the parameters
that minimise the discrepancy between the recorded and the simulated pre-
cardiac resynchronisation therapy (CRT) activation maps, for each pig. This
model personalisation was then used to predict the post-CRT activation maps
using the same parameters (except for the initialisation of the propagation).
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2 Model Personalisation: General Framework

2.1 Eikonal Model

The Eikonal model of cardiac electrophysiology outputs an activation map, i.e.,
local activation times (LATs) and is defined as follows:

v
√

∇T tD∇T = 1 (1)

where T is the local activation time, v is the local conduction velocity and D
the anisotropic tensor to account for the fibre orientation. We experimented
both with fibre orientations generated using the classic Streeter model and the
provided OTRBM model.

To make it possible to use multiple onset locations with different delays, we
ran one simulation Ti for each onset i. We then added the desired onset delay
di to the whole activation map and combined them into a final activation map
by choosing the minimal LAT for each element X of the domain Ω:

Tfinal = min
∀X∈Ω

(T1(X) + d1, T2(X) + d2, ...) (2)

Instead of solving the equation on the unstructured grid provided by the chal-
lenge, we decided to voxelise them, i.e., to define the domain on a regular lattice
of 1 cubic millimetre resolution. Two reasons motivated this choice:

– morphological information on an individual heart is generally obtained from
the segmentation of imaging data, which is naturally of this form,

– the fast marching method is faster on Cartesian grids.

As for the implementation, we used open-source fast marching routines available
online [2].

2.2 Parameter Fitting with CMA-ES

We used the covariance matrix adaptation - evolution strategy (CMA-ES) [3]
genetic algorithm to fit our model parameters to the recorded EP maps. This
approach has been used before for a similar challenge [4], and is well suited for
multi-parameters, non-convex optimisation problems.

We chose to minimise the root median square difference between the recorded
data and the simulation output. This choice is justified by the noise on the
training data probably due to the acquisition itself and to its registration on the
image-derived myocardial geometry. This could lead to outliers driving the root
mean square error.

3 Velocities and Domain Division

Given this framework, the main parameter that we tried to personalise was the
local conduction velocity. But what is the optimal domain decomposition to
define the number of local parameters to estimate?
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Using different velocities for each voxel would both be impractical (too many
parameters to optimise) and does not make sense from a physiological stand-
point. Moreover, it would probably result in massive over-fitting to the pre-CRT
maps with lower predictive power.

Keeping this in mind, we first tried to optimise a global speed for the whole
domain, but also tried by individualising:

– both endocardia to capture both the Purkinje network (PN) and the left
bundle branch block influences,

– both ventricle walls, for the same reason,
– the septum, for the same reason and because propagation through the septum

could be much slower due to fibre orientation,
– the scar if present,
– the 17 AHA segments of the left ventricle (LV), to determine if this would be

beneficial for the personalisation.

Fig. 1. An example of domain division. Yellow: wall, red: RV endocardium, green: RV
endocardium, purple: connective tissue (outside the domain) (Color figure online)

As the optimisation process is reasonably fast with our framework, we decided
to test several combinations of these “velocity zones”, as shown in Fig. 5.

4 Onsets

Besides the local propagation velocity, the Eikonal model requires to specify
starting points for the wave front propagation. Choosing such points for the
pre-CRT sinus rhythm maps is not trivial at all.
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4.1 Locations

Ideally, the simulated pre-CRT maps should use the atrio-ventricular (AV) node
as unique onset. We first tried to parameterise our model in such a way, but
this approach rapidly proved very inefficient due to the massive influence of the
septomarginal trabecula (ST) in the activation of the right ventricle (RV). As a
consequence, it seemed more reasonable to use two different onsets, both in the
RV endocardial layer. Unfortunately, the pre-CRT maps did not include any EP
study of the RV endocardial surface.

Fig. 2. Determination of onset locations for pre-CRT maps

To overcome this limitation of the personalisation data, we chose the centre of
gravity of all the points whose pre-CRT LATs were below the second percentile of
a given area and picked the closest RV endocardium point. Picking up the point
with the smallest LAT may sound more relevant, but because of the propagation
spread, likely due to the PN, the simulations fit better using the “percentile” way
(more on this in Subsect. 4.3) This was done for both the LV area, approximately
locating the LV onset and the RV area, approximately locating the ST epicardial
exit point, as illustrated in Fig. 2.

4.2 Delays

To determine the delays associated to these onsets (see Eq. 2) we proceeded as
follows:

1. Run an Eikonal simulation (Eq. 1) for each onset location.
2. Choose the delay such that the lowest LAT of the simulation match the data,

respectively for the LV endocardium (LV onset) and the RV epicardium (ST
epicardial breakthrough).
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4.3 Radii

Picking unique points for the onsets caused the optimisation to converge on unre-
alistically fast velocities to compensate for the spreading of the early activation
due to the PN. It seemed logical to overcome this difficulty by “dilating” our
onsets. To chose the radius of these dilations, we conducted the following study:

1. We fixed the endocardial velocity as 3 m/s and scar velocity at 0.1 m/s.
2. We experimented a wide array of velocities for the rest of the domain, between

0.5 and 4 m/s.
3. For each velocity, we tested different onset radii, between 0 and 30 mm.
4. We looked for the optimal myocardial velocity/onset radius combination, i.e.,

to combination that minimised the median square root error between the EP
data and simulations.

The results of this study are shown on Fig. 3.

Fig. 3. Combinations of onset radius and wall speed that result in the best match
between simulation and EP data. Endocardial speed was here set to 3m/s, scar speed
to 0.1 m/s.

Empirically, we could determine that an onset radius of 10 mm for the pre-
CRT simulations and 2 mm for the post-CRT simulations allowed physiology-
compatible velocities.

5 Constraints

We had to define parameter bounds for the optimisation process. We experi-
mented with 3 types of regional constraints:

1. “Physiological”: vscar ∈ [0, 0.5], vwall ∈ [0.5, 1], vendo ∈ [1, 4]
2. “Loose”: vscar ∈ [0, 1], vwall ∈ [0.5, 2], vendo ∈ [1, 6], to take into account the

fact that the scar might be coarsely located
3. “No constraints”: v ∈ [0.1, 4]
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To add a confidence estimation and to evaluate to the relevance of the fibre
orientation, the anisotropy ratio, defined as the ratio between the velocity in
the transverse plane and the velocity in the fibre direction was also optimised:
r ∈ [0.2, 1].

6 Results

An example of fitting and prediction is shown on Fig. 4.

Fig. 4. From left to right: recorded pre-CRT activation map, our model with fitted
parameters, recorded post-CRT activation map, our model’s prediction. Colours indi-
cate LATs in ms. (Color figure online)

6.1 Performance

The preCRT fit and CRT response prediction performances of the different con-
straints and domain divisions are shown in Fig. 5. Pre-CRT fit ranged from 9 to
17 ms of median square root difference, while post-CRT prediction performance
ranged from 7 to 22 ms.

As expected, a very good preCRT fit is not correlated with a better postCRT
prediction, but seems to rather be a sign of over-fitting.

The best approach in terms of prediction performance seems to be using
OTRBM fibres and different speeds for both ventricles and both endocardia.

6.2 Parameter Fitting

Taking a closer look at the optimal parameters, we realised that “physiological”
constraints were too strict: best parameters were virtually always 4 m/s for both
endocardia and 1 m/s for both walls.

In these conditions, personalisation did not seem to be really interesting and
this is what motivated our experiments with “loose” constraints. As can be seen
in Figs. 6 and 7, this approach made proper personalisation possible.
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Fig. 5. Fitting and prediction performance of the different domain divisions we exper-
imented
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Fig. 6. Distribution of parameters obtained with the “best” domain division and con-
straints combination.

7 Discussion

As we were given a very small dataset (3 post-CRT maps) to evaluate the predic-
tion performance, it is really difficult to draw conclusions as to which approach
really provides the best personalisation. However it seems clear that dividing
the domain in small zones, e.g. the LV AHA segments is both detrimental to
the prediction performance and the personalisation duration. We lacked time to
explore other parameters combination, for instance, different anisotropy ratios
by domain division or even looser constraints.

Our main contribution probably lies in the way we defined the onsets for
the pre-CRT simulations and the fast framework proposed. In a clinical set-
ting, personalisation could probably be enhanced with imaging data [5,6] and
possibly ECGI data, and CRT response has to be evaluated with mechanical
simulations [7].

Fig. 7. Evolution of the parameters’ values (top) and loss function (bottom) using
“loose” constraints for the pig “lali19” during the optimization process. The coloured
surfaces represent the [5–95] (light) and [25–75] (darker) percentiles of the parameters
(resp. the loss). (Color figure online)
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Abstract. Cardiac left ventricle (LV) quantification provides a tool for
diagnosing cardiac diseases. Automatic calculation of all relevant LV
indices from cardiac MR images is an intricate task due to large variations
among patients and deformation during the cardiac cycle. Typical meth-
ods are based on segmentation of the myocardium or direct regression
from MR images. To consider cardiac motion and deformation, recur-
rent neural networks and spatio-temporal convolutional neural networks
(CNNs) have been proposed. We study an approach combining state-
of-the-art models and emphasizing transfer learning to account for the
small dataset provided for the LVQuan19 challenge. We compare 2D spa-
tial and 3D spatio-temporal CNNs for LV indices regression and cardiac
phase classification. To incorporate segmentation information, we pro-
pose an architecture-independent segmentation-based regularization. To
improve the robustness further, we employ a search scheme that identifies
the optimal ensemble from a set of architecture variants. Evaluating on
the LVQuan19 Challenge training dataset with 5-fold cross-validation,
we achieve mean absolute errors of 111 ± 76 mm2, 1.84 ± 0.90 mm and
1.22 ± 0.60 mm for area, dimension and regional wall thickness regres-
sion, respectively. The error rate for cardiac phase classification is 6.7 %.

Keywords: Left ventricle quantification · Transfer learning ·
Regression · Regularization

1 Introduction

Left ventricle (LV) quantification from cardiac magnetic resonance imaging
(MRI) data is often employed for assessment of cardiac function and for diag-
nosing diseases [7]. The relevant LV indices include the myocardium and cavity
area, three LV cavity dimensions, six regional wall thickness (RWT) parameters
and the cardiac phase (systole and diastole). In practice, LV indices are usually
obtained by manual segmentation of the myocardium which is time-consuming
and associated with a high intra- and inter-observer variability [12].
c© Springer Nature Switzerland AG 2020
M. Pop et al. (Eds.): STACOM 2019, LNCS 12009, pp. 375–383, 2020.
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In recent years, a lot of work has gone into automatic LV indices estimation
which is challenging due to high variability of cardiac structure between patients
and deformation during the cardiac cycle. To overcome these problems, deep
learning methods have been employed as they have shown success for a variety
of image-based learning problems. One approach is to segment the myocardium
with a convolutional neural network (CNN) and calculate relevant metrics after-
wards [1,10]. Alternatively, LV indices can be regressed directly from the images
[8,16,17]. Other methods have combined segmentation and regression, e.g., by
regressing indices from a segmentation with an end-to-end model [13] or by
adding a regression path to a segmentation model [15].

Besides incorporating segmentation and direct estimation, handling temporal
dependencies is important as well. Often, temporal dependencies are modeled
using recurrent neural networks which have also been employed for LV quantifi-
cation [16]. Another approach is to utilize spatio-temporal 3D CNNs to capture
the relation between temporal slices [6].

In this work, we describe a new approach for LV quantification in the context
of the LVQuan19 Challenge. In contrast to a majority of previous work, the
associated dataset is significantly smaller (56 patients) and the MRI images are
hardly preprocessed with a high spatial resolution but without any region of
interest (ROI) cropping. Thus, an algorithm needs to deal with small dataset
size and make use of the high image resolution while focusing on the relevant
region in the image.

To address these challenges, we take previous approaches into account while
putting a strong focus on using pretrained CNNs. Using transfer learning from
ImageNet has been successful for a lot of medical imaging modalities, particu-
larly when data is as scarce as in our case [9,11]. Models trained for the common
problem of image classification can be adapted for regression by replacing the
output layer. Thus, we perform direct LV indices regression using various pre-
trained CNNs. For temporal processing, we employ spatio-temporal 3D CNNs.
We enable effective training of these parameter-intensive 3D CNNs with an
initialization strategy where we assign pretrained 2D weights to 3D kernels.
We address high spatial image resolution paired with uncertain ROIs by using
a multi-crop evaluation strategy that covers the entire image. To incorporate
segmentation information into predefined models, we propose an architecture-
independent regularization by adding a decoder to the model. Finally, we inte-
grate all our models with a new ensembling approach where we automatically
select the best performing ensemble for each regression and classification task.

2 Methods

2.1 Dataset and Preprocessing

The LVQuan19 training dataset consists of short-axis MRI data from 56 patients.
For each patient 20 slices representing one cardiac cycle are provided. The res-
olution of the MRI slices is either 256 × 256 or 512 × 512 with a pixel spacing
between 0.6836 mm

pixel and 1.7188 mm
pixel . For each slice, segmentation masks of the
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myocardium and cavity area, all 11 LV indices and the cardiac phase are pro-
vided. The LVQuan19 Challenge goal is the estimation of all 11 indices and the
cardiac phase, the segmentation masks can be optionally used.

First, we resize all images to have a pixel spacing of 1 mm
pixel . Second, we take a

center crop of size 300× 300 which is the smallest image size of all resized slices.
We clip intensities between the 1st and 99th percentile. Afterwards, we perform
image normalization by subtracting the mean and dividing by the standard
deviation for each slice. Then, the intensities are scaled between 0 and 1. We
convert the target indices to mm. Then, we scale all regression targets to a range
of 0–1 for training. For evaluation, the targets are scaled back to their original
range. We split the dataset into 5 cross-validation (CV) folds.

2.2 Models

Fig. 1. Overview of our approach. We use both 2D CNNs with 2D slices (top) and
3D CNNs with temporally stacked slices (bottom). Both are initialized with pretrained
weights from ImageNet. The initial and Conv2D/Conv3D blocks have a different struc-
ture based on the respective architecture.

2D CNN Approaches. The key idea of our approach is to use pretrained
architectures for indices regression. Thus, we consider a pool of pretrained archi-
tectures including Densenet (DN) [5], Resnet (RN) [3], Resnext (RX) [14] and
Squeeze-and-Excitation Networks (SE) [4]. The overall approach is shown in
Fig. 1.

Each CNN was pretrained on ImageNet for classification of natural images
into 1000 classes. We replace the model’s output layer to match the number of
outputs for our problem. We consider regression only with 11 outputs, classifi-
cation (cardiac phase) with 2 softmaxed outputs or both simultaneously with 13
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outputs. The pretrained model expects a 3-channel input image which we handle
with two approaches. Either, we use a single slice, copied to all three channels
or we include the two neighboring slices.

3D CNN Approaches. We also consider spatio-temporal 3D CNN approaches.
We hypothesize that temporal context might improve indices regression. Further-
more, cardiac phase classification requires temporal context and including more
slices might be helpful. The 3D CNN input is of size H×W ×NS where H and W
are the spatial slice dimensions and NS ∈ [1, 20] is the number of selected slices.
We also employ pretrained models to tackle small dataset size. Thus, we reuse
the same pool of 2D CNNs and extend them to 3D by replacing all 2D operations
by their 3D counterpart. The 3D convolutional kernels are initialized by copying
the 2D kernels pretrained on ImageNet of size hc × wc several times into the
new kernel of size hc × wc × dc. To ensure consistent value ranges, the new ker-
nels’ weights are multiplied by 1/dc. Throughout the entire network, we do not
change the slice dimension, i.e., we produce NS predictions for NS input slices
in a single forward pass. For this purpose, we replace the linear output layer by
a convolutional layer with kernel size 1 which is able to handle arbitrarily-sized
inputs. Due to increase in memory requirements, we only consider 3D variants
of the smaller CNNs in our pool which includes Densenet121, Densenet161, and
SE-Resnet101.

Segmentation Regularization. In addition, we propose a segmentation-based
regularization (SR). Here, we add an additional decoder to the architecture,
before its global average pooling (GAP) layer. The decoder upsamples the spa-
tial dimension of the feature maps in several steps until the original input image
size is reached. At each step, we apply a convolution with kernel size 1 which
halves the current feature map dimension, followed by nearest neighbor upsam-
pling with a factor of 2. Then, a standard Resnet block is applied. In total,
there are 5 upsampling stages. At the output, we predict a softmaxed probabil-
ity map which is used to calculate a cross-entropy loss with the ground-truth
masks. During training, the loss is propagated through the entire network, forc-
ing the core architecture to learn features for segmentation and indices regression
simultaneously. We do not use the predicted segmentation explicitly for indices
calculation, it only serves as a regularizer for the network. We employ this reg-
ularization strategy both for 2D and 3D CNNs.

Data Augmentation. Due to the small dataset size, we employ extensive data
augmentation. We use random rotation with θ ∈ [0◦, 360◦] which we found more
effective than simple 90◦ rotations. Furthermore, we employ random scaling by
resizing the slices by a factor of sc ∈ [0.8, 1.2] with appropriate cropping and zero
padding, if required. The targets are scaled accordingly (quadratic for areas). We
chose a small batch size of b = 8 to induce more variation during training. We
did not see any improvement for dropout, L1 or L2 regularization.

Model Input Strategy. The pretrained models’ standard input size is 224 ×
224 while our preprocessed images are of size 300 × 300. Therefore, we crop
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patches from random image locations during training. This should have a regu-
larizing effect as the CNN gets more robust towards different relative LV loca-
tions in the images. For 2D CNNs, we randomly select a cropped slice from b
different patients to construct a batch of size b. For 3D CNNs, we randomly
select a sequence of NS slices from b patients for each batch. For evaluation, we
follow a multi-crop evaluation approach to cover the entire image [2]. We crop
from 4 predefined locations in each slice and average the result. For 2D CNNs,
this is repeated for every slice for each patient. For 3D CNNs, we crop sequences
of NS slices from every possible location ns ∈ [1, 20]. Then, we average over all
overlapping regions to obtain a final prediction for each slice. To handle the start
and end of the sequence, we use cyclic repetition.

Training. In total, our loss function consists of the mean squared error (MSE)
for regression, the cross-entropy (CE) loss for phase classification and the CE loss
for segmentation. The two CE losses are not present in every model. If they are
included, phase classification is weighted by λP = 0.05 and the segmentation loss
is weighted by λS = 0.1. The final loss is the sum of all individual loss functions.
For optimization we employ Adam with a learning rate of lr = 1 × 10−4. We
train each CV model for 150 epochs where a single epoch consists of 10 random
crops from each patient in the training set. Overall, we train multiple models with
different configurations si. The configuration options include the network archi-
tecture (e.g. Densenet121), the input dimension (2D or 3D), NS ∈ {3, 5, 7, 10} for
3D CNNs, weight initialization (random or ImageNet), segmentation-based reg-
ularization (on or off) and prediction targets (areas, dimensions, RWTs, phase).

Ensembling. Instead of deciding for a single model we search for the optimal
ensemble. Let S = {s1, . . . , sn} be the set of all configurations we consider, and
let V = {v1, . . . , vm} be the set of all CV splits. Then we obtain predictions
ŷij = f(si, vj) for all combinations of i and j after training configuration si
on V \ vj . We obtain the predictions per configuration through concatenation
as ŷi = ∪j ŷij . Subsequently we perform an exhaustive search to identify the
set S∗ ⊆ S such that ŷ∗ = 1

|S∗|
∑

k∈S∗ ŷk minimizes the error between ŷ∗ and
ground-truth y. For the challenge test set we obtain predictions with all models
in the optimal subset S∗ which are subsequently averaged into a final prediction.
We search for the optimal subset for each task (areas, dimensions, RWTs, phase)
individually to maximize performance. To keep the search time bounded, S only
includes our top 20 configurations, ranked by individual CV performance.

Our proposed strategy potentially leads to implicit overfitting of the subset
choice to the CV sets. Therefore, results reported for the CV sets might over-
estimate the performance gain of our ensembling strategy. We overcome this
problem by introducing an additional test split for ensemble evaluation only.
Here, we split each CV fold into two folds. We use the first portion of these
new sets to find the optimal subset with our strategy. Then, we use the second
portion of sets to evaluate the strategy.
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Table 1. All results for different configurations. We consider the mean absolute error
(MAE) with standard deviation in mm (mm2 for areas) and Pearson correlation coef-
ficient (PCC) for regression and the error rate (ER) for classification. Configurations
include no pretraining (nopre), segmentation regularization (SR), joint indices regres-
sion and phase classification (Joint) and phase classification only (Class.). For ensem-
bling, we consider taking the average over all models (Average) and our new strategy
(Optimal). Results marked with a star (*) are evaluated on a different test split, see
Sect. 2.2. We use models based on Densenet (DN), Resnet (RN) and Resnext (RX).

Configuration Areas Dimensions RWTs Phase

MAE PCC MAE PCC MAE PCC ER

DN121 2D nopre 199 ± 129 0.935 2.98 ± 1.8 0.945 1.55 ± 0.9 0.770 –

DN121 2D 139 ± 74 0.972 2.38 ± 1.3 0.967 1.33 ± 0.7 0.835 –

DN121 2D SR 133 ± 76133 ± 76133 ± 76 0.9740.9740.974 2.08 ± 1.22.08 ± 1.22.08 ± 1.2 0.9750.9750.975 1.30 ± 0.71.30 ± 0.71.30 ± 0.7 0.8470.8470.847 –

DN121 2D Joint 161 ± 89 0.960 2.54 ± 1.3 0.963 1.39 ± 0.7 0.823 9.0

DN121 2D Class. – – – – – – 8.48.48.4

DN121 3D nopre 180 ± 165 0.940 2.77 ± 2.4 0.943 1.48 ± 0.8 0.798 –

DN121 3D 133 ± 82 0.971 2.26 ± 1.3 0.968 1.32 ± 0.7 0.838 –

DN121 3D SR 126 ± 71126 ± 71126 ± 71 0.9750.9750.975 2.14 ± 1.22.14 ± 1.22.14 ± 1.2 0.9720.9720.972 1.30 ± 0.81.30 ± 0.81.30 ± 0.8 0.8440.8440.844 –

DN121 3D Joint 146 ± 74 0.966 2.33 ± 1.2 0.969 1.43 ± 0.8 0.812 7.9

DN121 3D Class. – – – – – – 7.57.57.5

DN169 2D SR 122 ± 72 0.976 1.99 ± 1.2 0.976 1.27 ± 0.7 0.853 –

DN161 2D SR 127 ± 81 0.971 2.00 ± 1.1 0.978 1.30 ± 0.7 0.843 –

SE-RN101 2D SR 126 ± 70 0.974 2.01 ± 1.1 0.977 1.32 ± 0.8 0.844 –

SE-RN152 2D SR 124 ± 81 0.974 2.07 ± 1.2 0.975 1.29 ± 0.7 0.849 –

RX101-64d 2D SR 118 ± 72118 ± 72118 ± 72 0.9760.9760.976 1.99 ± 1.01.99 ± 1.01.99 ± 1.0 0.9780.9780.978 1.25 ± 0.71.25 ± 0.71.25 ± 0.7 0.8590.8590.859 –

SE-RX101 2D SR 135 ± 80 0.971 2.23 ± 1.2 0.973 1.33 ± 0.8 0.839 –

SENet154 2D SR 129 ± 81 0.973 2.12 ± 1.3 0.973 1.31 ± 0.8 0.846 –

Ensemble average 118 ± 76 0.977 1.96 ± 1.1 0.978 1.26 ± 0.6 0.856 7.7

Ensemble optimal 111 ± 76111 ± 76111 ± 76 0.9790.9790.979 1.84 ± 0.91.84 ± 0.91.84 ± 0.9 0.9800.9800.980 1.22 ± 0.61.22 ± 0.61.22 ± 0.6 0.8640.8640.864 6.76.76.7

Ensemble average* 117 ± 75 0.978 1.96 ± 1.0 0.978 1.23 ± 0.6 0.860 8.3

Ensemble optimal* 111 ± 75 0.979 1.85 ± 1.0 0.980 1.19 ± 0.6 0.871 7.0

Ensemble testset 371 0.925 3.02 0.957 2.53 0.826 11.5

DMTRL [16] 180 ± 118 0.945 2.51 ± 1.6 0.925 1.39 ± 0.7 0.768 8.2

3 Results

All results are shown in Table 1. For Densenet121 (DN121) with 2D slice inputs,
the pretrained model with segmentation regularization performs best. The dif-
ference in the median of the absolute errors of DN121 2D and DN121 2D SR is
significant for areas and dimensions (Wilcoxon signed-rank test, α = 5% signifi-
cance level). Combining regression and classification leads to a lower performance
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than training separate models. For DN121 in its 3D version (NS = 5), the over-
all performance improves slightly with respect to its 2D counterparts. Again,
the difference in the median of the absolute errors of the 2D and 3D model is
significant for areas and dimensions.

Considering different architectures, improved performance can be observed
for larger models. The best performing model is RX101-64d. With respect to
ensembling, taking the average over all our models does not perform better
than the best single model. Using our optimal subset strategy, performance is
improved. When evaluating on a different test split (*), the performce difference
is still large between averaging and our strategy. The difference in the median
of the absolute errors for averging and our ensembling strategy is statically
significant for all three indices. Our final ensembles mostly contain the models
RX101-64d 2D SR, DN 2D SR variants, and DN121 3D SR. On the test set of
the LVQuan19 Challenge, the performance of the ensemble is substantially lower.
For reference, we include the results from DMTRL [16]. Note that these results
are not directly comparable, as a different number of patients and different image
resolutions were used.

4 Discussion

We address LV quantification from cardiac MR images with a focus on utilizing
pretrained models. We consider a variety of deep learning models that have been
successful for classification of 2D images. We adopt these models by replacing
the output layer and performing direct LV indices regression from 2D MRI slices.
We find a substantial increase in performance with pretrained weights, e.g., the
MAE for area estimation improves from 199 mm2 to 134 mm2. This is likely tied
to the new and small dataset which contains only roughly a third of the number
of patients compared to most previous studies [13,16]. At the same time, the MRI
images have a higher resolution which is closer to the standard input resolution
of models trained on ImageNet. Both likely lead to a substantial advantage of
utilizing pretrained models.

To incorporate previous segmentation-based approaches, we propose a seg-
mentation regularization by adding an architecture-independent decoder close
to the model output. The additional segmentation loss forces the model core
to learn both features for direct indices regression and myocardium segmenta-
tion. Our results indicate that including the segmentation is advantageous as
we observe a statisticially significant increase in performance both for areas and
dimensions. This matches insights from previous work where using both a seg-
mentation mask and LV indices lead to improved results [13,15].

Furthermore, we address temporal dependencies by extending the existing
2D CNN models to 3D. To enable 3D CNN usage with very limited data, we use
an initialization strategy where we copy pretrained 2D weights to 3D kernels.
Again, we find a substantial increase in performance by relying on pretraining,
see Table 1. There is a significant improvement for dimension and area regression
for 3D CNNs over 2D CNNs with an MAE of 139 mm2 compared to 133 mm2
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for the areas. For the cardiac phase it is notable that the 2D approach with
neighboring slices performs reasonably well and only slightly worse than 3D
CNNs. Overall, enabled by our initialization strategy, spatio-temporal 3D CNNs
improve performance over spatial 2D CNNs for LV quantification.

Next, we consider different baseline architectures for our approach. Using
larger architectures with more layers and/or more feature maps tends to improve
performance over the DN121 baseline. In particular, it is notable that the highest
performance increase among different models is substantially larger than the
performance increase of moving from 2D to 3D. RX101-64d 2D improves the
MAE by 16 mm2 over DN121 compared to a 6 mm2 decrease caused by using
3D convolutions. In the best case, one would extend the best 2D model to 3D
for performance maximization, however, this is limited by GPU memory and
not feasible for the larger, higher performing 2D models. Summarized, using
high-performing 2D architectures can be very beneficial for LV quantification.

Last, we combine all our models with a new ensembling technique where the
best performing models were automatically selected based on cross-validation
performance. The method improves performance over simply averaging predic-
tions across all models. Also, we used separate test splits to ensure that the
optimal subset selection does not implicitly overfit to the CV sets. Even for
this evaluation scenario our ensembling method performs better than averag-
ing with statistically significant performance differences. Interestingly, the selec-
tion method included both 2D and 3D CNNs, which indicates that both spatial
and spatio-temporal information is important for LV indices regression. On the
LVQuan19 test set, our method performs substantially worse than in our CV
experiments. This indicates that the test set is very challenging and potentially
differs from the training set. Similar observations were made for the last year’s
challenge [15]. Thus, generalizable LV quantification remains a challenging task.

5 Conclusion

We address left ventricle quantification from cardiac MR images using CNNs for
direct indices regression and phase classification. To overcome the small dataset
size we emphasize transfer learning with state-of-the-art architectures which we
find to be very effective. Also, we incorporate temporal information in our models
by extending pretrained 2D CNNs to 3D. We observe improved performance for
temporal processing and our extension strategy for pretrained 2D CNNs appears
to be useful. Moreover, we propose a segmentation regularization that forces our
models to learn features both for myocardium segmentation and indices regres-
sion. Last, we demonstrate that a search for the optimal ensemble can further
improve our method’s performance. Future work could incorporate our proposed
approach into other frameworks, for example, by considering multi-task relation-
ship learning or recurrent models for temporal processing. Also, our approach
could be compared to methods that estimate indices from a segmentation map
instead of directly regressing the values.
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Abstract. Deep learning has been widely applied for left ventricle (LV) anal-
ysis, obtaining state of the art results in quantification through image segmen-
tation. When the training datasets are limited, data augmentation becomes
critical, but standard augmentation methods do not usually incorporate the
natural variation of anatomy. In this paper we propose a pipeline for LV
quantification applying our data augmentation methodology based on statistical
models of deformations (SMOD) to quantify LV based on segmentation of
cardiac MR (CMR) images, and present an in-depth analysis of the effects of
deformation parameters in SMOD performance. We trained and evaluated our
pipeline on the MICCAI 2019 Left Ventricle Full Quantification Challenge
dataset, and achieved average mean absolute error (MAE) for areas, dimensions,
regional wall thickness and phase of 106 mm2, 1.52 mm, 1.01 mm and 8.0%
respectively in a 3-fold cross-validation experiment.

Keywords: Deep learning � Data augmentation � LV quantification

1 Introduction

Automatic quantification of the left ventricle (LV) has been greatly enhanced by the
development of deep learning algorithms in the past few years. Convolutional neural
networks have shown great accuracy and flexibility for LV quantification. Recently, the
MICCAI 2018 Left Ventricle Full Quantification Challenge made possible to compare
a wide range of deep learning algorithms performing on the same benchmark dataset
with both direct regression [1] and segmentation based [2–4] approaches. Direct
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regression approaches have shown promising results, while segmentation-based
approaches were in general, at the time of the challenge, more accurate.

With the development of big databases such as UK Biobank [5], applying deep
learning algorithms on big data has become possible in biomedical applications [6, 7],
influencing the choice and design of neural networks. With more training data, deeper
networks with more parameters can be trained, which usually results in better per-
formance. However, in clinical practice, especially for pathological cases, it is difficult
to acquire such big dataset, and data augmentation becomes important. In this regard,
our recently developed augmentation method based on statistical models of deforma-
tion has shown promising results on a variety of datasets for segmentation task [8].

The MICCAI 2019 Left Ventricle Full Quantification Challenge has provided a
benchmark dataset which, compared to the corresponding 2018 dataset, is closer to
real-life clinical conditions, with no pre-processing applied to the images. We propose
a segmentation-based quantification pipeline enhanced with statistical models of
deformation, developed and evaluated on this dataset.

2 Methods

We propose a complete pipeline for quantifying the LV from cardiac MR (CMR) im-
ages, consisting of the following steps. We first build a population-specific atlas, and
train an initial neural network to locate the centre of the heart in all the images. We then
rigidly register each image to the atlas previously calculated. We build the statistical
models of deformation, which we use to augment the images using different strategies.
Finally, we train a second neural network to perform the fine segmentation and retrieve
the LV metrics from the segmentation results.

2.1 Data

We developed and evaluated our pipeline using the MICCAI 2019 Left Ventricle Full
Quantification Challenge dataset, which consists of 56 training subjects and 30 testing
subjects. For each subject in the training data, a single short-axis (SAX) CMR sequence
consisting of 20 frames was provided together with a set of clinically significant LV
indices including regional wall thicknesses, cavity dimensions, cavity areas and
myocardium and cardiac phase for each frame. Endocardial and epicardial segmenta-
tion binary masks were also made available as reference, and pixel-spacing values were
also given for metrics evaluation. For subjects in the testing dataset, only CMR image
sequences and pixel-spacing values were provided.

Comparing to MICCAI 2018 Left Ventricle Full Quantification Challenge, which
had 145 training subjects and 30 testing subjects, the size of training dataset reduced by
61.4% and the testing dataset remained the same size [10].

2.2 Rigid Registration

Our rigid registration method was based on the maximization of cross-correlation of
image intensities. In order to avoid converging to a local minimum, the algorithm was
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initialized to different transformations distributed in the space of possible transforma-
tions. Diffeomorphic Log Demons [11] was applied for non-rigid registration
(rfluid ¼ 2; rdiff ¼ 1:8 and ri=rx ¼ 0:82).

2.3 Atlas

In order to build the atlas, the set of images, I, was first rigidly aligned, using only the
first frame, and then non-rigidly registered.

For rigid alignment, the atlas was initialized to a randomly selected instance among
the training set, which we denote as A0, and cropped to completely contain the heart.
The rest of the instances were first centred, assuming the mass centre of the epicardium
reference segmentation as the centre of the LV, and then rigidly registered to A0,
constraining the transformation to rotations only. The obtained transformations for each
of the first frames were extended to the other frames to obtain the registered set IT0. The
intensity average of the images in the IT0 set was calculated to obtain the first iteration
of the atlas, A1.

For non-rigid alignment, the segmentations of IT0 were non-rigidly registered to the
segmentation of A1, obtaining the transformation set T1. The transformations T1 were
then applied to IT0 and the average of intensities calculated to obtain the atlas, A. Since
the segmentation masks were used, convergence was achieved in one single step.

2.4 Initial Segmentation and Rigid Registration

To initialize the rigid alignment, we trained a variation of U-Net [9] for epicardial
segmentation. We first down-sampled all the images to 256 � 256 and normalized
them by clipping the smallest and largest 5% intensity values. More details of the
network are described in Sect. 2.6. Based on the initial epicardium segmentation of the
first frames, we centred and oriented the set of images, I, to the atlas, A, as described in
Sect. 2.2.

2.5 Statistical Models of Deformation

We implemented the statistical models of deformation following the SMOD+ method
in [8]. Once the rigid registration was completed, the set of segmentations of the
images, S, is non-rigidly registered to the atlas segmentation, As, obtaining the set of
velocity fields, {vi}, to diffeomorphically bring each image to the atlas space.

This set {vi} intrinsically encodes the shape variability of the set of images, I, with
respect to the reference A. Thus, the distribution of {vi} can be sampled to obtain new
velocity fields that implicitly lead to anatomically meaningful deformations within the
space of plausible shapes, and we built a statistical model of deformations that can be
exploited to generate new images.

In order to generate random deformations, vg, we first reduced the dimensionality of
the distribution of velocity fields by applying principal component analysis (PCA) on
the residuals. Then, we sampled the relative weights of the main modes of variation
with a multivariate Gaussian distribution, centred at 0 and with standard deviation r.
Finally, each of the images, i, was brought to the atlas space applying vi and
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transformed back to the image space applying the inverse of the random velocity field,
vg. Thus, a new image with the appearance of image i but a random shape within the
space of variability of the original images was obtained.

2.6 Augmentation Strategies

We implemented two augmentations strategies: (1) standard augmentation based on
random flipping, rotations (0–360°) and translations (±11 mm in x and y); and
(2) augmentation based on SMOD+, which we combined with standard augmentation
samples due to the large variability of LV sizes shown in Fig. 1.

The different transformations needed to generate a new image were mathematically
combined by convolution as shown in Fig. 2, and therefore the images were interpo-
lated and resized only once at the end of the process. The final resolution used as the
neural network input was 128 � 128, with a pixel-spacing of 1.1 mm.

Fig. 1. Atlas and extreme cases of LV shape. The images were input images of the neural
networks with the size of 128 � 128 and pixel-spacing of 1.1 mm. (a) and (e) are the smallest
and largest LVs from the original dataset, respectively; (b) to (d) are generated by PCA mode 1
with r = −3, r = 0 and r = +3.

Original AtlasOriginal AugmentationA B

B ◦ A

Fig. 2. Combined transformation stages.
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2.7 Neural Network

We compared two neural networks for the final segmentation task, which were a
variation of U-Net [9] and a segmentation network based on VGG-16 [6]. For both
networks, there were four 2 � 2 max-pooling stages with the stride of 2 � 2, and the
number of filters were 64, 128, 256, 512 and 1024 for each stage accordingly. The size
of all kernels was 3 � 3 and the activation functions were ReLU for all layers other
than the output layer, which was sigmoid. The key difference between the networks
was the up-sampling process, with step-by-step up-sampling stages for the U-Net and
concatenated up-samples from each scale for VGG-16. This difference is shown in
Fig. 3. We implemented the training with cross-entropy as the loss function and
Adadelta as optimizer.

The initial segmentation network introduced in Sect. 2.3 shared the same U-Net
architecture, while the input size was 256 � 256 and the number of filters were
decreased to 16, 32, 64, 128 and 256 for efficiency.

2.8 Metrics Evaluation

In the absence of a detailed description of metrics calculation in the challenge, the
following approach was adopted. Metrics were calculated from our segmentation
results by first converting the neural network outputs to binary masks and then
thresholding at 0.5. We extracted the largest object from the binary masks and filled
any existing holes. The areas were calculated by multiplying the pixel area times the
number of pixels of the region. The dimensions were calculated by averaging the
distances between the endocardial contour points and the cavity centroid within the
corresponding section. To calculate the regional wall thickness, we first calculated the
middle contour of the myocardium and then averaged the closest point-to-point dis-
tances between both endocardial and epicardial contours to the middle contour for each
middle contour point. The phase estimation was calculated by first defining the frames
with maximum and minimum cavity areas to be end-diastolic (ED) and end-systolic
(ES) frames, and then assigning linearly interpolated labels to the other frames.

Applying our metrics estimation method to the reference segmentations provided
by challenge organisers led to a bias when compared to the set of reference metric
values also provided by challenge organisers. Such differences with respect to the
provided dataset introduced unnecessary complexity when designing the pipeline and
could have been at least partly (and for the areas fully) eliminated with the provision of
detailed descriptions of metrics calculation by the organisers. To minimize possible

Input Image Encoder Decoder Output Image Skip Connec�on

Fig. 3. Schematics of the two neural networks compared in this paper.
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errors that could be introduced within this stage, we calculated a correction factor k
using the reference area metrics (Ar) and the segmentation estimated areas (As), which
was the only metric independent of LV orientation, by minimizing the error of (Ar −
kAs). The square-root of k was then multiplied to 1D metrics estimated from the
segmentation.

3 Experiments and Results

We performed 3-fold cross-validation experiments on the training dataset, with the size
of each fold being 18, 19 and 19. The subjects were randomly assigned to one-fold, and
for each cross-validation experiment we used 4 subjects as validation set and kept the
rest as training set.

A model of deformation (described in Sect. 2.4) was learnt for each fold, and the
metrics correction factors (described in Sect. 2.7) were also calculated for each fold
independently. The network parameters were updated using the training set and model
selection was performed using the validation set with early stop. For each training
epoch, new instances of training images were randomly generated and used to update
the network parameters. Examples of resultant augmented images were shown in
Fig. 4, along with the combined transformations.
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Fig. 4. Example of generated augmentations. Five randomly generated augmentations are
shown for each of the two images. The augmented cases varied in size, shape and myocardium
thickness of LV.
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Results of the experiments are shown in Table 1. Errors in LV metrics obtained
from ideal segmentations are reported in the baseline experiment, which used the
reference segmentation provided by challenge organizers after applying the correction
factor. For area metrics, after applying the correction factor there was still a mean
absolute error (MAE) of 25 mm2, which is around 25% of the MAE with our best
segmentation results. Such an error might have been removed shall we had an accurate
description of metric calculations. We could also see a 2% phase estimation error,
which is purely dependent on cavity areas and introduced during resampling the
images, suggesting the reference phase was sensitive to small noise.

Table 1. Mean absolute error results.

Base
-line

U-Net 
Std. 

U-Net 
σ = 1

U-Net 
σ = 2

U-Net 
σ = 3

VGG 
Std. 

VGG  
σ = 1

VGG  
σ = 2

VGG  
σ = 3 

Test 

Dice 1 0.950 0.949 0.953 0.950 0.938 0.941 0.943 0.941 N/A 
Endo ±0 ±0.02 ±0.033 ±0.023 ±0.026 ±0.045 ±0.031 ±0.032 ±0.031 
Dice 1 0.966 0.965 0.967 0.965 0.957 0.958 0.959 0.959 N/A 
Epi ±0 ±0.01 ±0.019 ±0.014 ±0.013 ±0.026 ±0.020 ±0.021 ±0.020 
A1 24 102 107 92 100 101 95 90 101 184 

(mm2) ±19 ±87 ±111 ±83 ±83 ±121 ±77 ±79 ±84 
A2 25 132 142 121 135 140 155 126 140 525 

(mm2) ±19 ±105 ±105 ±98 ±105 ±121 ±131 ±110 ±112 
Areas 25 117 125 106 118 121 125 108 120 355 
(mm2) ±19 ±97 ±109 ±91 ±96 ±122 ±111 ±97 ±101 
Dim1 0.64 1.59 1.73 1.46 1.58 1.40 1.40 1.32 1.51 2.59 
(mm) ±0.72 ±1.53 ±2.30 ±1.28 ±1.45 ±1.78 ±1.16 ±1.08 ±1.23 
Dim2 0.68 1.70 1.81 1.53 1.60 2.17 1.72 1.89 1.96 2.33 
(mm) ±0.74 ±1.39 ± 2.18 ± 1.31 ± 1.38 ± 3.01 ± 1.48 ± 1.65 ±1.77 
Dim3 0.77 1.65 1.63 1.56 1.64 2.01 1.76 1.83 1.81 2.40 
(mm) ±0.87 ± 1.32 ± 1.59 ± 1.28 ± 1.26 ± 2.54 ± 1.55 ± 1.62 ±1.48 
Dims 0.69 1.65 1.72 1.52 1.60 1.86 1.63 1.68 1.76 2.44 
(mm) ±0.78 ±1.42 ±2.05 ±1.29 ±1.36 ±2.52 ±1.42 ±1.49 ±1.52 
RWT1 0.35 1.01 0.98 0.85 0.89 0.89 1.01 0.91 0.91 2.40 
(mm) ±0.45 ±1.03 ±0.89 ±0.68 ±0.68 ±0.75 ±0.89 ±0.80 ±0.84 
RWT2 0.41 1.23 1.23 1.05 1.18 1.19 1.19 1.15 1.22 2.39 
(mm) ±0.37 ±0.85 ±0.92 ±0.78 ±0.86 ±0.90 ±0.94 ±0.84 ±0.87 
RWT3 0.33 1.27 1.22 1.10 1.26 1.21 1.21 1.15 1.26 2.20 
(mm) ±0.27 ±0.97 ±0.95 ±0.87 ±1.03 ±0.97 ±0.97 ±0.92 ±1.00 
RWT4 0.36 1.20 1.27 1.21 1.23 1.22 1.16 1.13 1.29 1.91 
(mm) ±0.45 ±0.90 ±0.97 ±1.02 ±1.00 ±0.99 ±0.93 ±0.91 ±1.10 
RWT5 0.41 0.91 1.02 1.00 0.97 1.10 0.93 0.99 1.14 1.98 
(mm) ±0.37 ±0.75 ±0.79 ±0.74 ±0.78 ±1.30 ±0.78 ±0.89 ±0.97 
RWT6 0.45 0.91 0.85 0.84 0.88 1.08 1.02 0.99 0.93 2.21 
(mm) ±0.43 ±0.76 ±0.72 ±0.66 ±0.67 ±1.31 ±0.78 ±0.92 ±0.74 
RWT 0.38 1.09 1.10 1.01 1.07 1.12 1.09 1.06 1.12 2.18 
(mm) ±0.40 ±0.9 ±0.89 ±0.81 ±0.86 ±1.06 ±0.89 ±0.89 ±0.94 
Phase 2.0 7.9 8.3 8.0 8.1 8.2 7.8 8.4 8.2 9.5 

(%) 
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Comparing the two networks, the performance of the U-Net was better than VGG-
16 based segmentation network for Dice score, area, dimension and regional wall
thickness values. Despite a more accurate estimation of the endocardium using the U-
Net, VGG-16 achieved a more accurate phase estimation. This could be caused by the
effect of noise we detected in the baseline experiments. From the results we could see
that there was a negative effect on the segmentation task by removing multiple stage
up-sampling, even though VGG-16 is deeper in the down-sampling stages.

Comparing the two augmentation strategies, our modified SMOD+ approach with
r = 2 produced the best results. The performance of r = 1 and r = 3 were limited
because the variation of the deformation was either too close to the atlas or far enough
to become unrealistic, and for both cases the generalization of the network was dis-
rupted with either unbalanced data or unexpected data. By calculating the p-values, we
found significant differences between the two augmentation strategies.

Bland-Altman plots were produced to show the agreement between our best per-
forming network with the reference metrics in Fig. 5. The vast majority of the data
points lies within mean ± 1.96 � std suggesting a good agreement between the two
measurements.

We also evaluated qualitatively the segmentation results of our best performing
network. Three examples with Dice score from high to low (including the worst case)
are shown in Fig. 6. Our segmentation results from neural networks appeared to be
consistent with image features, however, the manual reference segmentation contours
were comparatively independent from image features. The values of Dice score showed
similarity between our segmentation results and the provided references, and larger
Dice score represented better similarity between the two.

For the testing dataset we used the entire training dataset to get the model of
deformation and the correction factor for better generalization. We used all three
networks of U-Net with r = 2 and embedded the neural network predictions by
averaging before calculating the metrics. The performance of our pipeline on the testing
dataset is shown in Table 1. Comparing to the cross-validation experiment results using

Fig. 5. Bland-Altman plots for U-Net with r = 2. Areas, dimensions and three regional wall
thickness metrics are shown.
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Patient 53 - Frame 16 Patient 29 - Frame 3 Patient 19 - Frame 6 

a b c

Fig. 6. Segmentation results of training dataset. (a) to (c) correspond to Dice scores from high to
low. The yellow contour is the reference segmentation, and the cyan contour is our proposed U-
Net result based on SMOD+ augmentation. (Color figure online)

Fig. 7. Segmentation results of the testing dataset. We presented the segmentation result of the
first frame of all subjects within the testing dataset. Different from the training dataset, there were
no reference segmentation provided, and therefore only the segmentation results from our
proposed neural networks are shown.

392 J. Corral Acero et al.



the training dataset, the testing dataset errors are comparatively larger. For metric A2
(representing myocardium area), the testing result mean absolute error is more than 4
times bigger and reaches 525 mm2, which is larger than a square with the side of 2 cm.

In order to further investigate this difference between training dataset and testing
dataset results, we produced the segmentation result of all the subjects in the testing
data for qualitative analysis. Results for the first frame of each subject are shown in
Fig. 7. From the visual inspection, the segmentation results of the testing dataset were
comparable with the training dataset, and there was no clear evidence suggesting why
would the metric evaluation of the testing dataset performed worse than in the training
dataset based on the segmentation results.

4 Conclusion

In this paper, we have proposed a full quantification pipeline of the LV using CMR
mages, developed and applied to the MICCAI 2019 Left Ventricle Full Quantification
Challenge. We performed 3-fold cross-validation experiments on the training dataset,
and for all the combinations of network structure and augmentation strategies, U-Net
with our modified SMOD+ augmentation achieved the best results within our pipeline,
showing the benefits of using multi-stage up-sampling and advanced augmentation
strategies.

Compared to MICCAI 2018 Left Ventricle Full Quantification Challenge, the
dataset was closer to real-life clinical conditions by removing the pre-processing of the
images. At the same time, the size of the training dataset was reduced from 145 to 56
subjects. Both changes made the task significantly more challenging, which steered our
focus towards the pre-processing and metrics evaluation stages, as well as the imple-
mentation of an anatomically meaningful augmentation method to enhance the neural
network performance. Despite the more challenging task, our method achieved com-
parable results to last year’s participants for both cross-validation on the training
dataset and the final testing dataset.

The performance of our pipeline on the testing dataset did not reach the level of our
cross-validation experiments, and based on the provided qualitative evaluation of the
segmentation results the reason of such big differences between the mean absolute
errors remains unclear to us. Similar performance drops in testing datasets were also
identified in all the best ranking methods in MICCAI 2018 Left Ventricle Full
Quantification Challenge [1–4]. It appears to us that this phenomenon is less dependent
on the candidate methods, but rather closely related to the distribution of subjects in the
training and testing dataset. Additional details on the testing dataset, and an explicit
description of metrics calculation, would facilitate the interpretability of these results
and improve future challenges.
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Abstract. Quantification of left ventricular (LV) parameters from car-
diac MRI is important to assess cardiac condition and help in the diag-
nosis of certain pathologies. We present a CNN-based approach for auto-
matic quantification of 11 LV indices: LV and myocardial area, 3 LV
dimensions and 6 regional wall thicknesses (RWT). We use an encoder-
decoder segmentation architecture and hypothesize that deep feature
maps contain important shape information suitable to start an addi-
tional network branch for LV index regression. The CNN is simulta-
neously trained on regression and segmentation losses. We validated
our approach on the LVQuan19 training dataset and found that our
proposed CNN significantly outperforms a standard encoder regres-
sion CNN. The mean absolute error and Pearson correlation coeffi-
cient obtained for the different indices are respectively 190 mm2 (96%),
214 mm2 (0.90%), 2.99 mm (95%) and 1.82 mm (71%) for LV area,
myocardial area, LV dimensions and RWT on a three-fold cross val-
idation and 186 mm2 (97%), 222 mm2 (0.88%), 3.03 mm (0.95%) and
1.67 mm (73%) on a five-fold cross validation.

Keywords: Cardiac MRI · Automatic LV quantification ·
Convolutional Neural Networks

1 Introduction

Quantification of left ventricular (LV) parameters from cardiac MRI is impor-
tant to assess cardiac condition and help in the diagnosis of certain pathologies.
Relevant measurements include LV volume and myocardial thickness. Further-
more, also functional measures, e.g. ejection fraction, can be calculated from cine
acquisitions. Quantification of LV indices can be performed completely manu-
ally, from a prior automatic segmentation of LV and myocardium or via direct
regression. In 2018, the Left Ventricle Full Quantification Challenge MICCAI
2018 (LVQuan18) [1] had been organized to compare different approaches for
automatic full LV quantification. In agreement with the current trend in medical
image analysis, 10 out of 12 teams used convolutional neural networks (CNNs)
c© Springer Nature Switzerland AG 2020
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for either direct regression of LV indices [2–7], a prior segmentation of LV and
myocardium [8,9] or a combination of the two [10–12].

In this paper, we propose a CNN-based approach for the regression of 11
LV indices: LV and myocardial area, 3 LV dimensions and 6 regional wall thick-
nesses (RWT) [2]. Simultaneously, we segment LV and myocardium using an
encoder-decoder architecture. Different from the contributions in LVQuan18 who
combined regression and segmentation by incorporating separate regression and
segmentation branches at the end of their CNNs [10,11], we hypothesize that
the innermost feature maps (FMs) of the segmentation CNN contain important
shape information and use them to start an additional network branch for LV
index regression. A similar approach, with a U-net backbone, is used in [13] for
simultaneous hippocampus segmentation and clinical score regression from brain
MR images. Furthermore, in contrast with LVQuan18 where images normalized
for position, orientation and scale were used, our approach is developed for real
clinical data variable in image size, cardiac orientation and position and image
contrast.

2 Method

We propose an encoder-decoder CNN architecture for simultaneous segmentation
and LV index regression. LV and myocardial areas, LV dimensions (3) and RWT
(6) are directly predicted by the CNN for every time point in a cine scan sepa-
rately. LV dimensions and RWT are defined according to the 17-segment model
[14], i.e. inferoseptal (IS), inferior (I), inferolateral (IL), anterolateral (AL), ante-
rior (A) and anteroseptal (AS) RWT and IS-AL, I-A and IL-AS LV dimensions.
Cardiac phase estimation is performed automatically from the predicted LV
areas: the maximal LV area of a subject characterizes the end of diastole while
the minimal LV area represents the end of systole.

2.1 Preprocessing

Since image size and pixel spacing are not standardized in clinical practice, all
images are resampled, using linear interpolation, to have an equal image size
of 476× 476 and a pixel spacing of 1 mm× 1 mm. Ground truth segmentations
and LV indices are modified accordingly. Furthermore, we equalize the image
histograms between patients by matching them with a reference histogram. This
intensity transformation is performed with a piecewise linear function that was
obtained by matching the 1% quantiles of the cumulative histogram of the
patient’s data with those of the reference dataset. Finally, each image is also
normalized to have zero mean and unit variance. All LV index values are also
normalized to have a mean of zero and a standard deviation of 1 over the train-
ing set.

2.2 Architecture

A schematic representation of the architecture can be found in Fig. 1. Three
pathways can be distinguished: encoder (E), decoder (D) and regression (R)
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Fig. 1. Proposed network architecture with encoder (E), decoder (D) and regression
(R) pathways. A detail of the residual block is given at the right. For every FM, the
shape and number is given. For each residual block, ‘Shape’ indicates the output shape
and ‘#FM’ the number of FMs used in every conv layer in that block.

Table 1. Architecture variations.

Name ED-RS E-R U-RS ED-S U-S

Pathways E-D-R E-R E-D-R E-D E-D

Skip connections No - Yes No Yes

pathways. The E-D framework is build with residual blocks that each have two
3× 3 convolutional (conv) layers and a parallel pathway with a 1× 1 conv layer.
These two pathways are summed at the end of the block. The residual blocks are
connected with 2× 2 max pooling layers in E and with 2× 2 upsampling layers
in D. At the innermost FMs, we start the regression pathway which consists of
1× 1 conv layers and one 22× 22 conv layer to remove the spatial dimensions.
All conv layers use valid padding and are followed by batch normalization (BN)
[15] and a parametric rectifying linear unit (PReLU) [16] activation function.
Softmax activation is used for the segmentation output and at the regression
output, an additional BN layer is added. We perform LV index regression with
three variations on this architecture: (1) proposed CNN (ED-RS), (2) encoder
regression CNN (E-R) without simultaneous segmentation and (3) U-Net variant
[17] (U-RS) where skip connections have been added. Additionally, we omit the
regression pathway in variants (1) and (3), resulting in two new variants ED-S
and U-S for segmentation only. An overview of all variants is given in Table 1.

2.3 Training

The loss function L is a weighted sum of the segmentation loss L1 and the
regression loss L2:

L = L1 + w · L2. (1)
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For the segmentation loss, the categorical Dice loss is used:

L1 = 1 − 1
n

∑

k

2 · ∑v tk(v) · pk(v)∑
v tk(v) +

∑
v pk(v)

(2)

where tk(v) is the true probability that voxel v belongs to class k, which is
either 1 or 0, pk(v) is the class probability predicted by the network and n is
the number of classes. We only use two classes, LV bloodpool and myocardium,
and omit background. Mean squared error is used as regression loss:

L2 =
∑

i

(x(i) − y(i))2 (3)

with x(i) the ground truth for index i and y(i) the estimated value. The net-
work is trained end-to-end over 80 epochs with Adam optimizer [18] and an
adaptive learning rate (lr) which is halved every 8 epochs (max lr = 1.6e−3, min
lr = 1e−4). The network weights are initialized according to [19] and a weight
w of 1 is used in Eq. 1. We use online data augmentation to artificially enlarge
the dataset: for all training images and every epoch, a new rotation factor is
randomly sampled from a Gaussian distribution with a mean of 0 rad and a
standard deviation of 2 rad. Furthermore, Gaussian noise with standard devia-
tion between 0 and 0.3 was added every epoch to make the network robust to
noise.

2.4 Postprocessing

After training, a linear regression between ground truth and predicted values of
the training data is performed for every index separately. The obtained slopes
and biases are used to adapt the CNN regression output values.

3 Experiments

The models were developed and validated on the LVQuan19 dataset. The train-
ing and test dataset contain cine MR images of respectively 56 and 30 sub-
jects. For each subject, a mid-cavity short-axis 2D image is available for 20 time
frames. The images of different subjects vary in pixel size (min = 0.68 mm, max =
1.72 mm), field of view (FOV, min = 300 × 300mm2, max = 480 × 480mm2),
image contrast and cardiac position and orientation. For the training dataset,
ground truth segmentations of LV and myocardium and ground truth values for
LV indices are also available. LV index prediction is evaluated with the mean
absolute error (MAE) and Pearson correlation coefficient (ρ), calculated for every
index separately. Additionally, an error rate (ER) for cardiac phase identifica-
tion is defined as the percentage of wrongly classified images. Furthermore, we
validate the segmentation performance by calculating the Dice Similarity Coef-
ficient (DSC) between ground truth and predicted segmentations. To test the
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Fig. 2. Segmentation results of the ED-RS approach in the five-fold cross validation.
Shown images have been corrected for pixel spacing, but not for contrast differences.
Ground truth segmentation is shown in green and CNN result in red. (Color figure
online)

initial stability of our results, both a three- and five-fold cross validation are per-
formed on the training set. The statistical significance of the results is assessed
using the two-sided Wilcoxon signed rank test with a significance level of 5%.
Additionally, we validate the LV index regression performance of our proposed
method (ED-RS) with a five-fold cross validation on the LVQuan18 training
dataset. This dataset contains 80× 80 images of 145 subjects for 20 time points
which are corrected for position and orientation. To make the CNN suited to
these smaller images, the CNN input and output shapes are changed to 80× 80
and same padding instead of valid padding is used.

4 Results

In Table 2, the results of three approaches for LV index regression (Table 1) are
compared. The results of the variant without joint segmentation (E-R) are sig-
nificantly worse than the results of the variants with joint segmentation (U-RS
and ED-RS). On areas and LV dimensions, ED-RS outperforms U-RS while for
RWT, U-RS has lower MAE and higher ρ in the three-fold and ED-RS in the
five-fold cross validation. Table 2 also shows the results on the test dataset and
the results of the five-fold cross validation on the LVQuan18 training dataset.
In Fig. 2, examples of endo- and epicardium segmentation are shown. Table 3
compares the segmentation results for four different approaches. Although no
major differences in performance are observed, the encoder-decoder segmenta-
tion architecture (ED-S) without simultaneous regression tends to perform best.
On the LVQuan18 dataset, we obtained a DSC of 95.7±2.4% for LV and of
88.9±4.2% for myocardium.

5 Discussion

In agreement with [10], we find that a joint segmentation of LV and myocardium
significantly improves LV index regression. In contrast with the methods in
LVQuan18 that included a segmentation loss and started a regression branch
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Table 2. MAE, ρ and ER for three and five-fold cross validation on the training dataset,
for the test dataset and for five-fold cross-validation on the LVQuan18 training dataset.
Best values are shown in bold. For MAE, the values that did not show a statistically
significant difference of absolute errors with the best value are also indicated in bold.

3-fold 5-fold Test LVQuan18

E-R U-RS ED-RS E-R U-RS ED-RS ED-RS ED-RS

MAE

Area [mm2]

LV 489 247 190 395 231 186 230 154

Myo 369 227 214 346 237 222 523 218

Mean 429 237 202 371 234 204 377 186

Dim [mm]

IS-AL 6.25 3.11 2.82 5.04 2.96 2.70 3.52 2.38

I-A 6.17 3.55 2.94 5.42 3.52 3.35 3.51 2.21

IL-AS 6.74 3.72 3.21 5.53 3.28 3.04 3.56 2.62

Mean 6.39 3.46 2.99 5.33 3.25 3.03 3.51 2.40

RWT [mm]

IS 2.17 1.56 1.54 2.08 1.58 1.46 3.14 1.35

I 1.90 1.79 1.81 1.93 1.70 1.64 2.71 1.61

IL 1.94 1.88 2.02 2.01 1.71 1.74 2.92 1.78

AL 2.00 1.71 1.80 1.94 1.81 1.73 2.16 1.67

A 2.02 1.81 1.93 1.87 1.87 1.86 2.12 1.46

AS 2.00 1.66 1.83 1.94 1.61 1.59 2.55 1.38

Mean 2.00 1.74 1.82 1.96 1.71 1.67 2.60 1.54

ρ [%]

Area

LV 0.71 0.93 0.96 0.83 0.95 0.97 0.95 0.97

Myo 0.63 0.87 0.90 0.68 0.87 0.88 0.84 0.87

Mean 0.67 0.90 0.93 0.75 0.91 0.92 0.92 0.92

Dim

IS-AL 0.70 0.93 0.95 0.82 0.94 0.95 0.92 0.95

I-A 0.76 0.93 0.95 0.82 0.93 0.94 0.94 0.96

IL-AS 0.67 0.91 0.94 0.80 0.93 0.95 0.93 0.95

Mean 0.71 0.92 0.95 0.81 0.93 0.95 0.93 0.95

RWT

IS 0.62 0.80 0.80 0.65 0.80 0.82 0.80 0.84

I 0.66 0.71 0.69 0.65 0.73 0.75 0.76 0.71

IL 0.66 0.70 0.66 0.63 0.73 0.72 0.78 0.68

AL 0.64 0.71 0.69 0.64 0.65 0.69 0.78 0.72

A 0.64 0.70 0.66 0.71 0.65 0.63 0.76 0.76

AS 0.68 0.78 0.75 0.72 0.77 0.78 0.75 0.86

Mean 0.65 0.73 0.71 0.67 0.72 0.73 0.77 0.76

ER [%] 13.3 13.0 12.6 12.2 12.2 10.7 13.7 9.2
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Table 3. Mean and std for DSC. Statistical significant difference between S and RS
are shown in gray and between U and ED with *. Best values are shown in bold.

DSC % U-S U-RS ED-S ED-RS

3-fold LV 88.7 ± 17.7* 91.1 ± 12.7 91.3 ± 14.5* 90.5 ± 14.1

Myo 82.5 ± 12.7* 83.3 ± 11.2 84.4 ± 10.9* 82.8 ± 11.1

5-fold LV 90.6 ± 17.1 89.2 ± 18.4 92.2 ± 11.9 91.3 ± 12.1

Myo 83.9 ± 13.0 82.8 ± 14.4 84.5 ± 10.5 83.4 ± 11.5

from full-scale FMs at the end of the network [10,11], we started the regres-
sion pathway from the innermost FMs. This approach is more elegant since
at prediction time, only encoding and regression pathways are required for LV
index estimation. Furthermore, it decreases the total size of FMs from which the
regression branch starts. In our case, the full-scale FMs have 2.728.448 features
while the innermost FMs only have 247.808, which is a reduction of 91%. A
five-fold cross-validation on the LVQuan18 dataset with the regression pathway
R connected to the last residual block in the decoder pathway D was used for
comparison of the two branching approaches and achieved a MAE of 158 mm2 for
LV area, 243 mm2 for myocardial area, 2.44 mm for LV dimensions and 1.72 mm
for RWT, indicating that our more efficient approach does not compromise per-
formance. Similar approaches, starting a regression branch at the innermost
FMs, have been presented in [20] for midpoint regression of LV, in [13] for clin-
ical score regression from brain MR images and in [21] for determining cardiac
position, orientation and scale. In these approaches, the presence of all relevant
information for accurate segmentation in the innermost FMs is not enforced
since additional pathways bypassing the innermost FMs are used in GridNet
[20] or U-net [13,21] architectures. To evaluate the influence of such bypassing
pathways, we compared our proposed approach (ED-RS) with its U-net vari-
ant (U-RS) and found that ED-RS performs better on area and LV dimension
regression. For RWT regression, results of ED-RS and U-RS are similar. The
results on area and LV dimensions are in accordance with our hypothesis that
all relevant shape parameters should be contained in the innermost FMs of a
encoder-decoder framework, but more research is needed to investigate the exact
meaning of these features. We also compared the segmentation results of archi-
tectures with and without skip connections and found that skip connections did
not improve the segmentation in this application.

Furthermore, since we observed a linear deviation between ground truth and
predicted values of LV indices on the training set (Fig. 3), a postprocessing step
that performs a linear regression was used. Intuitively, adding a separate 1× 1
conv layer with a bias term to every regression output should be able to capture
this mismatch. However, in some initial experiments with this extended archi-
tecture, we observed no improvement. Further experiments are thus required to
identify the origin of and possible solutions to such deviations, aiming at an
end-to-end trainable network not requiring postprocessing.
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Fig. 3. Scatter plot of ground truth and predicted LV area (top) and RWT1 (bottom)
of the training set before (left) and after (right) postprocessing when training on the
full training set. Unity line (black) and linear regression (green) are shown. (Color
figure online)

Finally, we performed a five-fold cross validation on the LVQuan18 training
dataset. Our results are in line with the values reported by the LVQuan18 par-
ticipants, but not reaching the performance of the top-scoring contributions [3].
However, we selected our network and training parameters using the LVQuan19
dataset and did not make any changes, except for adapting the input and output
size of the CNN and changing the padding method.

The major drawback of our current approach is that LV indices are predicted
for every time point separately. Because LV indices at different time points are
highly correlated, it is expected that including multiple time points of one subject
using a recurrent neural network (RNN) [2,4–6,11] or 3D network [7] will further
improve the results.

6 Conclusion

We presented an encoder-decoder segmentation network with simultaneous LV
index regression from the innermost feature maps and showed that this approach
outperforms a standard encoder regression network.
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Abstract. Automatic segmentation of the left ventricle (LV) of a liv-
ing human heart in a magnetic resonance (MR) image (2D+t) allows to
measure some clinical significant indices like the regional wall thicknesses
(RWT), cavity dimensions, cavity and myocardium areas, and cardiac
phase. Here, we propose a novel framework made of a sequence of two
fully convolutional networks (FCN). The first is a modified temporal-like
VGG16 (the “localization network”) and is used to localize roughly the
LV (filled-in) epicardium position in each MR volume. The second FCN
is a modified temporal-like VGG16 too, but devoted to segment the LV
myocardium and cavity (the “segmentation network”). We evaluate the
proposed method with 5-fold-cross-validation on the MICCAI 2019 LV
Full Quantification Challenge dataset. For the network used to localize
the epicardium, we obtain an average dice index of 0.8953 on validation
set. For the segmentation network, we obtain an average dice index of
0.8664 on validation set (there, data augmentation is used). The mean
absolute error (MAE) of average cavity and myocardium areas, dimen-
sions, RWT are 114.77mm2; 0.9220mm; 0.9185mm respectively. The
computation time of the pipeline is less than 2 s for an entire 3D vol-
ume. The error rate of phase classification is 7.6364%, which indicates
that the proposed approach has a promising performance to estimate all
these parameters.

Keywords: Deep learning · VGG · Left ventricle quantification ·
Segmentation · Fully convolutional network

1 Introduction

Left ventricle (LV) full quantification is critical to evaluate cardiac functionality
and diagnose cardiac diseases. Full quantification aims to simultaneously quan-
tify all LV indices, including the two areas of the LV (the area of its cavity and
the area of its myocardium), six RWT’s (along different directions and at differ-
ent positions), three LV dimensions (along different directions), and the cardiac
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phase (diastole or systole) [1,2], as shown in Fig. 1. However, the LV full quan-
tification is challenging: LV samples are variable, not only because the samples
can be obtained from different hospital, but also because some of them are not
concerned by cardiac diseases. It is also challenging because there are complex
correlations between the LV indices. For example, the cavity area has a direct
influence on the three LV dimensions and the cardiac phase. The MICCAI 2019
Challenge on Left Ventricle Full Quantification1 (LVQuan19) is an extension of
the one of 2018 2 with the difference that now the original data is given without
preprocessing for training and testing phases, to be closer to clinical reality.

We propose then in this paper a two-stage temporal-like FCN framework
that segments and estimates the parameters of interest in 2D+t sequences of
the MR image of a LV. First, in each temporal frame, we localize the greatest
connected component detected by the localization network, we dilate it using
a size equal to 10 pixels, and we compute the corresponding bounding box.
This results in a sequence of cropped LV’s (that we will abusively call cropped
volume). Second, we use these cropped volumes to train the LV segmentation
network. The procedure is depicted in Fig. 2. Finally, the segmentation results
are used for the LV full quantification.

The pipeline is based on our previous works [3,4] but with a new step:
we added one localization network before the segmentation network. Compared
with [5], our localization precision is higher, because we localize the entire LV
region (the filled-in epicardium) instead of the center of the bounding box con-
taining the LV structure. Compared with [6], our method is quicker and do not
have memory limit problems. To take advantages of time information, we use
3 successive 2D frames (n − 1, n, n + 1) at time n as inputs in the localization
and in the segmentation networks, yielding to better results than the traditional
approach which used only the information at time n for the nth slice.

We evaluated the proposed method using the dataset provided by LVQuan19
with 5-fold-cross-validation. Experiments with (very) limited training data have
shown that our model has a stable performance. We added pre-processing and
post-processing steps to enhance and refine our results.

Fig. 1. Illustration of LV indices, including (a) the cavity area and the myocardium
area, (b) three LV dimensions, (c) six regional wall thicknesses and (d) the cardiac
phase (diastole or systole).

1 https://lvquan19.github.io.
2 https://lvquan18.github.io.

https://lvquan19.github.io
https://lvquan18.github.io
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Fig. 2. Global overview of the proposed method.

The plan is the following: we detail our methodology in Sect. 2, we detail our
experiments in Sect. 3, and then Sect. 4 concludes.

2 Methodology

2.1 Dataset Description

LV dataset used for this work was provided by the LVQuan19 challenge. It
contains 56 patients processed SAX MR sequences. For each patient, 20 temporal
frames are given and correspond to a whole cardiac cycle. All ground truth
(GT) values of the LV indices are provided for every single frame. The pixel
spacings of the MR images range from 0.6836 mm/pixel to 1.5625 mm/pixel,
with mean values of 1.1809 mm/pixel. LV dataset includes two different image
sizes: 256 × 256 or 512 × 512 pixels.

2.2 Preprocessings

Let us recall what we call Gauss normalization: for the (2D + t)-image I corre-
sponding to a given patient, we compute I := I−μ

σ where μ is the mean of I and
σ its standard deviation (σ is assumed not to be equal to zero). There are then
two different pre-processing steps as depicted in Fig. 2.

– The first pre-processing (see preprocessing1 in Fig. 2) begins with a Gauss
normalization. When we treat training data, we crop the initial slices into a
256 × 256 image to optimize the dice of the network (we do not do this for
test datasets). Then we concatenate them for each n into a 256 × 256 × 3
pseudo-color image where R,G,B correspond respectively to n − 1, n, n + 1
(we do not detail the cases n = 1 and n = 20 because of a lack of space).
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– The second pre-processing (preprocessing2 in Fig. 2) is in four steps: (1) data
augmentation using rotations and flips, (2) resizing with a fixed inter-pixel
spacing (0.65mm), (3) Gauss normalization, and (4) we concatenate into a
pseudo-color image like above.

(a) n− 1 (b) n (c) n+ 1 (d) concatenation

Fig. 3. Illustration of our “temporal-like” procedure. (Color figure online)

Because the VGG-16 network’s input is an RGB image, we propose to take
advantage of the temporal information by stacking 3 successive 2D frames: to
segment the nth slice, we use the nth slice of the MR volume, and its neighboring
(n − 1)th and (n + 1)th slices, as green, red and blue channels, respectively. This
new image, named “temporal-like” image, enhances the area of motions, here
the heart, as shown in Fig. 3.

2.3 Network Architecture

Fig. 4. Architecture of our networks.

The localization and the segmentation networks have the same architecture
(see Fig. 4). First we downloaded the pre-trained original VGG16 [7] network
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architecture. We recall that this network has been pre-trained on millions of
natural images of ImageNet for image classification [8]. Second, we discard its
fully connected layers and this way we keep only the sub-network made of five
convolution-based “stages” (the base network). Each stage is made of two convo-
lutional layers, a ReLU activation function, and a max-pooling layer. Since the
max-pooling layers decrease the resolution of the input image, we obtain a set
of fine to coarse feature maps (with 5 levels of features). Inspired by the work
in [9,10], we added specialized convolutional layers (with a 3 × 3 kernel size)
with K (e.g. K = 16) feature maps after the up-convolutional layers placed at
the end of each stage. The outputs of the specialized layers have then the same
resolution as the input image, and are then concatenated together. We add a
1 × 1 convolutional layer at the output of the concatenation layer to linearly
combine the fine to coarse feature maps. This complete network provides the
final segmentation result.3

2.4 Postprocessing

Let us assume that we input the 20 cropped temporal slices of a patient into
an image of size 20 × width × height (where the crop is due to the localization
procedure) in preprocessing2 to obtain a 20 × width × height × 3 image. We
filter then the ouput of size 20 × width × height by keeping only the greatest
connected component in the segmented (2D + t)-image, and we compute the
inverse interpolation on the x and y axes to get back the initial inter-pixel
spacing. Finally, we add a zero-valued border to get back a 20 × 256 × 256 or a
20 × 512 × 512 image (depending on the shape of the input).

2.5 Evaluation Methods

The LV quantification as defined in LVquan19 relies on 11 parameters: the areas
of the LV cavity and the myocardium, 3 dimensions of the cavity and 6 measure-
ments of the wall thickness. We measure the areas (see Fig. 1 (a)) by computing
the number of pixels in the segmented regions corresponding to the LV cav-
ity and the myocardium. To measure the three cavity dimension values (dim1,
dim2, dim3) (see Fig. 1 (b)), we proceed this way: because our final segmenta-
tion results is the LV myocardium, we first extracted the LV cavity from the
segmentation results. We then compute the boundary of the LV cavity and cal-
culate the distances between the points of the boundary and the centroid of
the LV cavity along the integral angles θ ∈ [−30, 30[ (in degrees). Finally, we
average these distances. We do this for the six separated regions of the wall.
Finally, we compute the mean dimensions for each pair of opposite regions and
we obtain (dim1, dim2, dim3). To measure the RWT’s values, we first find the
boundaries of epicardium and endocardium respectively, and we compute the
distances between the points on the boundary of epicardium and the points on
the boundary of endocardium along the same integral angles as before where

3 Note that we designed our network’s architecture to work with any input shape.
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zero corresponds to the normal. Finally, we compute the mean among 60 dis-
tance values for each region. To classify the phase as systolic or diastolic, we
use a simple method: we detect the time nmax when the cavity is maximal, and
nmin when the cavity is minimal. Assuming that we have the case nmin > nmax,
then for each time n ∈ [nmax, nmin], we label the image as systolic phase, and
otherwise it is a diastolic phase. We do the converse when we have nmax < nmin.

3 Experiments

We implemented our experiments on Keras/TensorFlow using a NVidia Quadro
P6000 GPU. We used the multinomial logistic loss function for a one-of-many
classification task, passing real-valued predictions through a softmax to get a
probability distribution over classes. For the localization network, we used an
Adam optimizer (batchsize=4, β1=0.9, β2=0.999, epsilon=0.001, lr = 0.002) and
we did not use learning rate decay. We trained the network during 10 epochs.
We recall that we used the filled-in epicardium connected component given in
the GT as the “ones” of the output of our network. For the segmentation net-
work, we used the same optimizer and the same parameters but we changed the
batchsize to 1. Also, we considered three different classes4 in the given GT: the
background (0), the myocardum (1), the cavity (2) (we merge then 0 and 2 after
the segmentation). This way, we obtained better results than using only the wall
of the LV.

3.1 Results

We tested our method with 3- and 5-fold-cross-validations on the challenge
dataset. An example of bounding box is depicted in red (we did not do any
dilation here) in Fig. 5. We obtain an average dice index of 0.8953 on validation
set. In practice, we extend next the box by a size equal to 10 pixels to ensure
that the whole LV is included into the bounding box.

Fig. 5. Some localizations (in red) of the LV (in blue) of the 9th patient. (Color figure
online)

For the segmentation, we compared ResNet50 with VGG16 as feature extrac-
tion on 3-fold-cross-validation (18, 19, 19) (see Fig. 6). VGG16 is then more
efficient to detect boundaries than ResNet50 in our application.
4 From a technical point of view, we proceeded to a classification more than to a
segmentation.
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Fig. 6. Segmentation results (ResNet50-FCN on the left side vs. VGG16-FCN on the
right side) for one same patient. The yellow color shows the false negatives. (Color
figure online)

Table 1. Average results of compared methods on 3-fold-cross-validation. Values are
shown as mean absolute error.

Table 1 presents the average results for the two compared methods. The 11
indices of LV full quantification and dice using the VGG16-FCN are better than
when we use the ResNet50-FCN. For these reasons, we used the VGG16-FCN
for the segmentation of the LV.

To verify the stability of our algorithm, we evaluated the proposed method
with 5-fold-cross-validation (11, 11, 11, 11, 12). In Table 2, the average results
are showed. Compared with 3-fold-cross-validation, the average areas error is
improved from 122.93 mm2 to 114.77 mm2, the average dims error is improved
from 0.9978 mm to 0.9220 mm, the average RWT error is improved from
0.9518 mm to 0.9185 mm, the average phase error is improved from 8.0311%
to 7.6364% and the dice is improved from 86.04% to 86.64%.

Table 2. Average results on 5-fold-cross-validation. Values are shown as mean absolute
error.

In Table 2, we also reported the results on test dataset given by the organizers
of LVQuan19. The test dataset was composed of processed SAX MR sequences
of 30 patients. For each patient, only the SAX image sequences of 20 frames
were provided (no GT).

In Fig. 7, the segmentation results on fifth patient of test dataset are showed,
the yellow ring denotes the segmentation results.
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Fig. 7. Some segmentation results on the 5th patient of test dataset. (Color figure
online)

4 Conclusion

In this paper, we propose to use a modified VGG16 to proceed to pixelwise image
segmentation, in particular to segment the wall of the heart LV in temporal MR
images. The proposed method provides promising results at the same time in
matter of localization and segmentation, and leads to realistic physical measures
of clinical values relative to the human heart. Our perspective is to try to better
segment the boundary of the wall of the LV, either by increasing the weights rel-
ative to the boundary regions in the loss function, or by separating the boundary
and the interior of the wall into two classes during the classification procedure.

Acknowledgements. We thank the organizers of the MICCAI 2019 LV Full Quan-
tification Challenge for providing the LV dataset, NVidia for giving us a Quadro P6000
GPU for this research, and the financial support from China Scholarship Council (CSC,
File No.201806290010)
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